Initialization
In[403]:=
Usage
In[607]:=
Out[607]=
Make graph' s vertex list sorted
This is helpful when switching between labeled graph and adjacency matrix representation
Out[604]=
Out[606]=
Check if the graph is chordal
In[477]:=
Out[477]=
Find minimum fill triangulation
In[567]:=
Out[569]=
Get perfect elimination ordering, and rearrange graph vertices in elimination order
In[572]:=
Out[573]=
Check that vertices are now in perfect elimination order
In[574]:=
Out[574]=
Get 0 - fill Cholesky factorization of adjacency matrix in perfect elimination order
In[578]:=
Out[581]=
Arrange matrix in minimum fill order
In[641]:=
Out[644]=
Relabel graph vertices in minimum fill order
In[651]:=
Out[652]=
Out[653]=
Get min - fill Cholesky factorization of the matrix
In[675]:=
Out[680]=
Get min - fill triangulation of the corresponding graph
In[697]:=
Out[699]=
Get all maximal cliques of the chordal graph
In[703]:=
Out[704]=
Out[705]=
Get maximal cliques of non-chordal graph
These are cliques that are found using maximum cardinality search
In[708]:=
Out[708]=
Out[709]=
Create chordal graph with given clique-tree structure and tree width
In[717]:=
Out[717]=
Out[718]=
Recover original clique tree structure from a chordal graph
In[722]:=
Out[723]=
Out[724]=