
CONVERGENT LEARNING RATES FOR LINEAR SGD

A PREPRINT

Yaroslav Bulatov
ML Collective

http://mlcollective.org
San Francisco, CA

yaroslavvb@gmail.com

Ben Grossman
Vrije Universiteit Brussel

Benjamin.Grossmann@vub.ac.be

October 14, 2020

ABSTRACT

In this note we derive an expression for the largest learning rate which guarantees convergence of
SGD in the linear setting. We then specialize to the case of normally distributed observations, which
allows us to get a simple linear form of SGD update, and simplifies expressions for largest learning
rates.

1 Overview

Following setting of [5], let D be a dataset of observations D = (x1, y1), . . .. We apply Stochastic Gradient Descent
(SGD) with learning rate α and least squares loss to find w such for all i

〈wxi〉 = yi

This is known as the case of consistent equations, or learning in ”the interpolation regime.” For low enough learning
rate α, this algorithm produces a sequence of estimates w1, . . . , wk, . . . converging to the unique point w∗ which
satisfies the constraint above 1. How low should α be? Consider the case of batch-size=1 (stochastic gradient descent)
and batch-size=infinity (gradient descent)

We are interested in the following thresholds:

• α < αgd
a is necessary and sufficient for gradient descent to converge to w∗

• α < αm is necessary and sufficient for kth step of SGD to decrease expected distance between wk and w∗
(monotonic convergence)

• α < αa is necessary and sufficient for SGD to converge to w∗ (asymptotic convergence)

Consider the case of normally distributed x with covariance Σ and mean zero. The Hessian of corresponding opti-
mization problem is H = E[xx′] = Σ. We show the following

2

αgd
a

= ‖H‖ (1)

2

αm
= 2‖H‖+ TrH (2)

2

αa
= ρ(A) (3)

1for uniqueness proof in overparameterized setting, see Section 3.3 of [11]
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We use ρ to denote spectral radius and A is defined below. Let s = (s1, s2, s3, . . .) be the vector of eigenvalues of H ,
then

A = 2

 s1 0 0 . . .
0 s2 0 . . .
0 0 s3 . . .
. . . . . . . . . . . .

+

 s1 s1 s1 . . .
s2 s2 s2 . . .
s3 s3 s3 . . .
. . . . . . . . . . . .

 (4)

We can represent quantities in Eq 1-3 in terms of s

2

αgd
a

= ‖s‖∞ (5)

2

αm
= 2‖s‖∞ + ‖s‖1 (6)

2

αa
= λmaxA (7)

(8)

We can consider learning rate which guarantees a decrease after k steps. For k → ∞, this approaches αa, but for
intermediate k we obtain a sequence of increasingly tight bounds. For instance, for k = 2 we get

2

α2
a

< 2‖s‖2∞ + ‖s� s‖1 + ‖s‖∞‖s‖1 +
1

2
‖s‖21 (9)

When x is normally distributed, SGD update of error distribution with diagonal covariance matrix produces another
distribution with diagonal covariance matrix. This allows us to view update of error covariance after SGD step in d
dimensions as multiplication a d× d matrix B. Reusing definition of s from Eq 4 this matrix is below

B = I − 2αH + 2α2H2 + α2ss′

Stationary distribution of SGD corresponds to the top eigenvector of this matrix. Also, this matrix provides an alter-
native way to derive maximual learning rates for monotonic and asymptotic convergence.

In the rest of this note, we will give an example, summarize previous results, derive expression for αm (monotonic
convergence) in Section 3, expression for αa (asymptotic convergence) in Section 4, specialize these to Gaussian
observations x in sections 3.1 and 4.2, and provide a way to obtain bounds on αa in Section 4.3. To help understand
notation, an example is worked out numerically end-to-end in Appendix B. Linear update form of SGD and the
covariance of stationary distribution is derived in Appendix F

1.1 Example

Suppose our observations x are centered at zero and normally distributed with covariance matrix Σ

Σ =

(
1 0
0 2

)
(10)

Applying formulas above gives us the following

αgd
a = 1 (11)

αm =
2

7
≈ 0.285714 (12)

αa =
4

9 +
√

17
≈ 0.3048 (13)

αa >
2√
47
≈ 0.29173 (14)

We can set α = 0.3 and run SGD on this dataset many times to demonstrate the effect of learning rate which guarantees
asymptotic but not monotonic convergence:

2



A PREPRINT - OCTOBER 14, 2020

10 20 30 40
step

0.7

0.8

0.9

1.0

1.1

error

Average distance from w* for α=0.3

2 Previous results

It can be shown that in the case of 1 dimension and deterministic x, the following condition on α is necessary and
sufficient for convergence

αx4 < 2x2 (15)

Since we have h = x2 for Hessian h, this reduces to the well known bound on convergent learning rate: α < 2/h

In the case of stochastic x, the following is necessary and sufficient (Eq 36 of [14])

αE[x4] < 2E[x2] (16)

For the case of x being distributed as standard normal, this gives 2/(3h) for the largest learning rate, three times
smaller than what’s allowed in deterministic case (Eq 15)

For the case of d dimensions, the following is a sufficient condition, with ≺ indicating Loewner order2

αE[xx′xx′] ≺ E[xx′] (17)

The right-hand side was tightened in [9], section 1.1.2

αE[xx′xx′] ≺ 2E[xx′] (18)

Defossez, Bach showed that the following optimization over symmetric matrices gives sufficient condition for conver-
gence, and conjectured it to also be necessary (Lemma 1 of [5])

1

α
< sup
A∈S(Rd)

E[(x′Ax)2]

2E[x′A2x]
(19)

In Section 4.1 we show this to be equivalent to the following positive semi-definite constraint

αE[xx′ ⊗ xx′] ≺ E[xx′ ⊗ I] + E[I ⊗ xx′] (20)

Most recently, [9] generalized Eq 19 to batch sizes beyond 1 and formally showed it to be a necessary condition for
convergence.

3 Derivation of monotonic convergence

Let xk denote the example x sampled at kth step of SGD, and wk be the estimate of parameter w at that step. It can
be shown that the error vector ηk = wk − w∗ obeys the following 3

2assumption A.6 in [1]
3Section 1.1 of [5]

3
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ηk+1 = (I − αxkxTk )ηk (21)

Consider error squared Ak = E[ηkη
T
k ], for which the following linear recurrence holds

Ak+1 = E[(I − αxx′)Ak(I − αxx′)] = Tα(Ak) (22)

Equation above serves as the definition of linear operator Tα. In Appendix B we will give a matrix representation of
Tα

Note that the following is true4

E[‖ηk‖2] = TrAk (23)
This is the average distance squared from estimate at step k, wk and target w∗. This equivalence means Tα is guaran-
teed to decrease expected error E[‖ηk‖] if and only the induced trace norm of Tα is less than 1, defined as follows

‖T‖1 = max
TrA=1

TrT (A) (24)

Russo-Dye theorem for induced trace norm 5 tells us that this quantity is maximized by a symmetric rank-1 matrix,
hence we can turn Eq 24 into optimization over unit vectors

‖T‖1 = max
‖u‖=1

TrT (uu′)

Substitute definition of T from Eq 22, and simplify using the following properties: 1) linearity of E 2) linearity of Tr
3) cyclic property of Tr. We get

‖T‖1 = max
‖u‖=1

u′E[(I − αxx′)2]u

That this is the Raleigh quotient characterization of the largest eigenvalue, equivalent to matrix norm in symmetric
case, hence

‖T‖1 = ‖E[(I − αxx′)2]‖ = ‖T (I)‖

Alternative way to obtain this expression is to rely on duality of trace and spectral norms, see Appendix D

To find the largest α satisfying ‖Tα(I)‖ < 1, reformulate in terms of positive definite constraints

maximize α
subject to −I ≺ Tα(I) ≺ I (25)

Note that Tα(I) can be expanded

Tα(I) = E[(I − αxx′)2] = I − 2αE[xx′] + α2E[xx′xx′] (26)

Since −I ≺ T (I) is true by virtue of T (I) being a covariance matrix, we only consider the rightmost inequality. Plug
Eq 26 into Eq 25 and simplify to obtain

maximize α
subject to αE[xx′xx′] ≺ 2E[xx′]

If E[xx′] is not singular, the solution is obtained at 1/λmax, where λmax is the largest eigenvalue of the following
matrix6:

E[xx′xx′](2E[xx′])−1 (27)
4E[‖η‖2] = E[ηT η] = E[Tr(ηT η)] = E[Tr(ηηT )] = TrE[ηηT ] = TrA
5Theorem 3.39 of [16], https://cs.uwaterloo.ca/~watrous/TQI/TQI.pdf
6See Appendix A

4

https://cs.uwaterloo.ca/~watrous/TQI/TQI.pdf


A PREPRINT - OCTOBER 14, 2020

3.1 Gaussian case

The following holds for Gaussian-distributed x centered at 0 7

E[xx′xx′] = 2Σ2 + ΣTrΣ

Assuming Σ is full-rank and plug into Eq.27, we get

E[xx′xx′](2E[xx′])−1 = Σ +

(
1

2
TrΣ

)
I

Largest eigenvalue of this matrix is ‖Σ‖+ 1
2TrΣ, hence we have

2

αm
= 2‖Σ‖+ TrΣ

4 Derivation of asymptotic convergence

We can derive the necessary and sufficient conditions for asymptotic convergence by examining spectral radius of
operator T . Consider its matrix form

vecCk+1 = M vecCk (28)

M is a symmetric d2-by-d2 positive semi-definite matrix below

M = I ⊗ I − α(X2 ⊗ I)− α(I ⊗X2) + α2X4 = (29)
= I − αMp (30)

We we have defined the following quantities

X2 = E[xx′] (31)

X4 = E[xx′ ⊗ xx′] (32)

Mp = (I ⊗X2) + (X2 ⊗ I)− αX4 (33)

Since M is symmetric, operator norm ‖M‖ corresponds to M ’s spectral radius ρ. We know that Mk converges iff
ρ < 1 8

To guarantee this, we need to bound T (A) from two sides,−I ≺ T (A) ≺ I . Because T (A) is a covariance matrix, the
leftmost inequality is true independent of α. Rearrange and divide rightmost inequality by α > 0, to get an equivalent
condition: Mp � 0. Expanding we get

(I ⊗X2) + (X2 ⊗ I)− αX4 � 0 (34)

Alternatively
αX4 ≺ (I ⊗X2) + (X2 ⊗ I) (35)

The largest rate for which this is true, αa is determined as the solution of the following optimization problem

maximize α
subject to αX4 ≺ (I ⊗X2) + (X2 ⊗ I)

(36)

7see 20.24 of [13], also Appendix B
8Theorem 10.1 of [10] in http://www.optimization-online.org/DB_FILE/2003/04/640.pdf

5
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4.1 Characterization in terms of moments

Lets show that bound in terms of moments of x in Eq 19 is equivalent to the positive semidefinite bound in Eq 35.
Consider that Eq 35 can be represented as follows. For all a = vecA, with A a d-by-d matrix

αa′X4a < a′((I ⊗X2) + (X2 ⊗ I))a (37)

Maximizing α subject to this constraint is a generalized eigenvalue problem in disguise, see Appendix B.4.

To show the equivalence of Eq 37 with Eq 19 first express the following quantities as expectations:

a′X4a = E
∑
ijkl

xixjxkxlAijAkl = E[(x′Ax)2] (38)

a(X2 ⊗ I)a′ = a′ vec(AX2) = TrA′AX2 = E[x′A′Ax] (39)

a(I ⊗X2)a′ = E[x′AA′x] = E[x′A′Ax] (40)

Plugging these into equation 37 we get the following. For all matrices A

αE[(x′Ax)2] < 2E[x′A′Ax] (41)

Since elements of A only occur as parts of quadratic form, non-symmetric part of A has no effect, hence can restrict
attention to symmetric A and simplify further to obtain the intended result

αE[(x′Ax)2] < 2E[x′A2x] (42)

4.2 Gaussian case

Lets obtain αa for the case of x being distributed as Gaussian with covariance matrix Σ = X2 and mean 0. Assume
eigenvalues of covariance matrix Σ are positive and distinct. Then you can show that the following power iteration
converges to the top generalized eigenvector of the problem in Eq. 36.

Ak+1 = divideAk (43)
Ak+2 = multiplyAk+1 (44)

Here ”multiply” represents multiplying vec(A) by matrix X4 and ”divide” is corresponding division by matrix (I ⊗
X2) + (X2 ⊗ I).

We can extract ρ as the limiting ratio of Frobenius norms

1

αa
= lim
k→∞

‖Ak+2‖F
‖Ak‖F

(45)

It’s convenient to deal with matrix form rather than vec form, where ”multiply” and ”divide” can be represented as
follows

divide(A) = lyapunov(X2, A) (46)
multiply(A) = E[xx′Axx′] (47)

(48)

Here lyapunov(X2, A) is an alternative way to represent division of vec(A) by matrix (I ⊗X2) + (X2 ⊗ I), defined
as follows

vec lyapunov(X2, A) = ((I ⊗X2) + (X2 ⊗ I))−1 vecA

6
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Equivalently, lyapunov(X2, A) is a function which produces Y the solution of Lyapunov equation below

X2Y + Y X2 = A

Solution is known to exist and be unique when X2 = Σ eigenvalues are all positive9

Because of rotational symmetry of the problem, we can assume that Σ is diagonal. Starting with diagonal A0, observe
that each step of power iteration produces another diagonal matrix – Lyapunov solver in diagonal case reduces to
elementwise division. Analogously, multiplication by X4 keeps the argument diagonal.

Now, use Gaussian 4th moment formulas from Appendix B and the fact that A stays diagonal to simplify our updates

divide(A) = A.(2X2)−1 (49)
multiply(A) = 2ΣAΣ + ΣTrΣ (50)

(51)

Observe that only diagonal entries of Σ and A are non-zero, therefore we can merge the two updates into a single
update and represent it in terms of diagonal entries s (of Σ) and a (of A)

merged(a) = a� s+ 0.5s‖a‖1 (52)
(53)

Correspondingly we can reformulate our Eq 45 in terms of vector ak

1

αa
= lim
k→∞

‖ak+1‖
‖ak‖

(54)

Now represent Eq 52 as a linear linear update ak+1 = Mak where M is defined below

M =

 s1 0 0 . . .
0 s2 0 . . .
0 0 s3 . . .
. . . . . . . . . . . .

+
1

2

 s1 s1 s1 . . .
s2 s2 s2 . . .
s3 s3 s3 . . .
. . . . . . . . . . . .

 (55)

Now we can say that 1
αa

is equal to to ρ(M), its spectral radius10

4.3 Additional bounds

Since spectral radius ρ is upper bounded by any matrix norm ‖ · ‖∗, we can use the following to produce alternative
bounds

ρ(M)n ≤ ‖Mn‖∗

If we use n = 1 and max-column-norm of M , we obtain the following bound

ρ ≤ ‖s‖∞ + 0.5‖s‖1

Note that because s represent eigenvalues of H , ‖s‖1 = TrH and ‖s‖∞ = ‖H‖. Also, because 1/ρ represents
asymptotic critical rate, we can rewrite the result above as follows

2

αa
≤ 2‖H‖+ Tr(H) =

2

αm

9Lyapunov stability theorem, Theorem 19.2.1 of [17]
10In Equation 4 we used 2

αa
instead of 1

αa
, hence the corresponding bound was ρ(A) = ρ(2M)

7
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In other words, this provides a way to derive αm purely algebraically as a bound on αa. We could now use different
matrix norms or different values of n to get tighter bounds. For instance, for max-column-norm and n = 2 we obtain
the following expression

2

α2
a

≤ 2‖H‖2 + Tr(H2) + ‖H‖TrH +
1

2
Tr(H)2

5 Appendix

A Solving semidefinite constraint

We are interested in finding largest α such that ‖Tα‖ < 1. We can formulate this as the following optimization problem

maximize α
subject to ‖Tα‖ < 1

Since our matrices are symmetric, we can can reformulate this problem in terms of semidefinite constraint

maximize α
subject to Tα ≺ I

Expanding and rearranging constraint we get

maximize α
subject to αE[xx′xx′] ≺ 2E[xx′]

Turn this into minimization problem by defining R = 1/α and solving the following

minimize R
subject to E[xx′xx′] ≺ 2RE[xx′]

(56)

This is one of the forms of a generalized eigenvalue problem (2.2.3 of [3])

If E[xx′] is not singular, we can reduce this to standard eigenvalue problem by multiplying both sides of 56 by inverse
of 2E[xx′] (see [6] for the case of singular matrix)

minimize R
subject to RE[xx′xx′](2E[xx′])−1 � I (57)

In full-rank case, solution can be obtained as the solution of the eigenvalue problem below11

Rmin = λmax(E[xx′xx′](2E[xx′])−1)

B End-to-end example

As a reminder, operator T represents evolution of error covariance12 E[ηηT ] where η = w−w∗, the difference between
current estimate of parameter and the target estimate. If A represents error covariance at step k, T (A) represents is
error covariance at step k + 1. In this section we shall derive the explicit form of T , and use it to obtain learning rate
quantities.

Suppose inputs in our dataset are distributed as a 2-d Gaussian with mean zero and the following covariance matrix

Σ =

(
1 0
0 2

)
(58)

11For rank-deficient case, check [6]
12technically it is ”error second moment”, but ”error covariance” has a better ring to it

8
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Corresponding optimization problem has Hessian H = Σ

The following quantities will be useful later, obtained using Gaussian formulas (see 20.24 of [13], and implementation
13)

E[xx′xx′] = 2Σ2 + ΣTrΣ (59)
E[xx′ ⊗ xx′] = 2Pd(Σ⊗ Σ) + vecΣ(vecΣ)′ (60)

(61)

Here Pd is the symmetrizer matrix14, matrix of the linear operator V (A) = (A+AT )/2

Plugging in the values we get the following:

E[xx′xx′] =

(
5 0
0 14

)
(62)

E[xx′ ⊗ xx′] =

 3 0 0 2
0 4 0 0
0 0 4 0
2 0 0 12

 (63)

(64)

B.1 Explicit form of T

The operator T that governs evolution of error covariance has the following representation in matrix form. Let a =
vecA, then

vecT (A) = (I − αE[xx′]⊗ I − I ⊗ E[xx′] + α2E[xx′ ⊗ xx′])a (65)

vecT (A) =


 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

− α
 2 0 0 0

0 3 0 0
0 0 3 0
0 0 0 4

+ α2

 3 0 0 2
0 2 2 0
0 2 2 0
2 0 0 12


 a (66)

B.2 Asymptotic convergence

For asymptotic convergence, the matrix M corresponding to operator T needs to have norm less than one

Mα =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− α
 2 0 0 0

0 3 0 0
0 0 3 0
0 0 0 4

g

+ α2

 3 0 0 2
0 2 2 0
0 2 2 0
2 0 0 12


maximize α (67)
subject to ‖Mα‖ < 1 (68)

This can be turned into minimization problem with semidefinite constraint:

minimize R

subject to

 3 0 0 2
0 2 2 0
0 2 2 0
2 0 0 12

 ≺ R
 2 0 0 0

0 3 0 0
0 0 3 0
0 0 0 4

 (69)

Maximum learning rate is extracted from the solution to this problem as α = 1/Rmin
15

13https://mathematica.stackexchange.com/questions/230036/speeding-up-gaussian-expectations
14https://mathematica.stackexchange.com/questions/230167/commutation-symmetrizer-and-duplication-matrices
15see Appendix A for details on semidefinite constraint
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Convert to regular eigenvalue problem by dividing both sides by the matrix on the right-hand side, to obtain the answer
as largest eigenvalue of the following matrix


3
2 0 0 1

2
0 2

3
2
3 0

0 2
3

2
3 0

1 0 0 3


The largest eigenvalue is R = 1

4

(√
17 + 9

)
hence largest allowable learning rate is αm = 1/R ≈ 0.304806

So far we have used the method which applies in a generic setting. Since distribution of x is Gaussian, we could’ve
instead used Eq 3 to obtain equivalent result. Form matrix A out of eigenvalues of Σ

A = 2

(
1 0
0 2

)
+

(
1 1
2 2

)
=

(
3 2
1 6

)

Eigenvalues of this matrix are 1
2

(√
17 + 9

)
, 12
(
9−
√

17
)

Hence we have
2

αm
= ρ(A) =

1

2

(√
17 + 9

)
Note that generic method required solving eigenvalue problem on d2 × d2 matrix, whereas Gaussian-specialized
method only needs to consider d× d matrix.

B.3 Monotonic convergence

To obtain conditions for monotonic convergence, calculate induced trace norm of T , which we know is obtained as
‖T (I)‖16

T (I) = E[(I − αxx′)2] = I − 2αE[xx′] + α2E[xx′xx′]

Plug-in numeric values of these moments from Eq 62

T (I) = I − 2α

(
1 0
0 2

)
+ α2

(
5 0
0 14

)
The range of α which guarantee monotonic convergence is the range of α for which ‖Tα(I)‖ < 1. The reciprocal of
the largest learning rate for which this is true is the solution of the following generalized eigenvalue problem

minimize R

subject to
(

5 0
0 14

)
≺ R

(
2 0
0 4

)
Divide both sides by E[xx′] to convert this into regular eigenvalue problem

Rmin = λmax

(
5/2 0
0 7/2

)
Since this matrix is diagonal, largest eigenvalue is readily identifiable as 7/2, therefore the largest rate which guarantees
monotonic convergence is 2

7

16see Appendix D for proof

10
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B.4 Asymptotic convergence from the moment bound

We can use equation 19 to obtain equivalent rate. The following expectation identities are useful (20.5.2 of [13])

E[x′A2x] = A2Σ (70)

E[(x′Ax)2] = (Tr AΣ)2 + 2Tr (AΣ)2 (71)
(72)

Therefore to apply equation 19 we need to solve the following maximization problem over symmetric matrices A
(using cyclic properties of trace for some rearranging)

1

α
= max
A∈S(Rd)

(TrAΣ)2 + 2TrAΣAΣ

2Tr(AΣA)
(73)

We can try to optimize this directly, alternatively, convert this to the generalized eigenvalue problem by noting that for
symmetric A and Σ the following hold. Let a = vecA, then

Tr(AΣA) = a′(Σ⊗ I)a = a′(I ⊗ Σ)a (74)
TrAΣAΣ = a′(Σ⊗ Σ)a (75)

(TrAΣ)2 = a′vecΣvecΣ′a (76)

Substitute this into Equation 73 to get the following optimization over d× d vectors a 17.

1

αmax
= max

a

a′(2Σ⊗ Σ + vecΣvecΣ′)a

2a′(Σ⊗ I)a

This is readily recognizable as Raleigh quotient of generalized eigenvalue problem (A,B) with

A = 2Σ⊗ Σ + vecΣvecΣ′ (77)
B = 2Σ⊗ I (78)

. We can divide by B to obtain an equivalent eigenvalue problem

1

αmax
= λmax


 3 0 0 2

0 2 2 0
0 2 2 0
2 0 0 12


 2 0 0 0

0 2 0 0
0 0 4 0
0 0 0 4


−1 = λmax


3
2 0 0 1

2
0 1 1

2 0
0 1 1

2 0
1 0 0 3


Find the eigenvalues as roots of characteristic polynomial for this matrix

x4 − 6x3 +
43x2

4
− 6x

Largest root is 1
4

(√
17 + 9

)
, hence αmax ≈ 0.304806

Note that this produced a slightly different eigenvalue problem as in previous section, but the solution was the same.

17Normally we would enforce symmetry constraint by using d(d+ 1)/2 sized vector a and a duplication matrix, but in this case
it doesn’t affect the result

11
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C Properties of operator T

C.1 Completely Positive Map

For distribution with finite support, we can write T in the form below18

T (A) = Ex[BxAB
∗
x] =

∑
x

VxAV
∗
x

This is the representation used to establish complete positivity in proof of Choi’s Theorem 19, meaning T is a com-
pletely positive map.

This means it is a positive map, making Russo-Dye theorem applicable. Also it means that T behaves like expectation
and various inequalities that hold for E also hold for T , see Section 3.3.3 of [2]

A useful representation for such operator is the ”operator sum representation” or ”Kraus decomposition” of the fol-
lowing form.

T (A) =
∑
i

ViAV
′
i (79)

For instance, if we apply gradient descent with learning rate 1 on our toy problem of (1,2) Gaussian from Appendix
B, T (A) can be written in this representation with the following values for Vi

V1 =

(
0 0
0 3

)
, V2 =

(
0
√

2√
2 0

)
, V3 =

( √
2 0

0 0

)
This is more compact that the eigenvector representation of T which requires 4 vectors. Generally, for Gaussian
SGD in d dimensions, the SGD operator needs d(d+1)/2 components in operator sum representation, as opposed to d2
required by rank-1 decomposition. Also, this representation makes convergence of SGD to a fixed distribution evident
– if we normalize T to be trace preserving, each entry of the sum in OSR representation in Eq 79 will be a valid
covariance matrix, hence we can view operator T as choosing one of the covariance matrices with some probability
which makes it a kind of mixing process.

Matrices Vi come up in characterizing properties of the operator, for instance, formula (9.135) of [12] gives a way to
characterize information loss incurred by applying T in terms of {Vi}

C.2 Self-adjoint

Recall that

vecT (A) = M vecA

Consider form of matrix M

M = E[I ⊗ I − α(xx′ ⊗ I)− α(I ⊗ xx′) + α2xx′ ⊗ xx′] (80)

Every matrix inside expectation operator is symmetric, therefore M (and hence T ) is symmetric.

C.3 Positive definite

We know that operator T with corresponding matrix M is contractive iff the following matrix is positive definite
(Proposition 1.3.1 of [2]) (

I M
M I

)
This is equivalent to the following statement (Shur component, Theorem 2.3.9 of [17])

18for proof in infinite case, use facts from IV.3 of [15]
19Theorem 2.22 part 4 of [16], https://cs.uwaterloo.ca/~watrous/TQI/TQI.pdf
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M2 ≺ I
Which translates to

−I ≺M ≺ I

Then apply Theorem 2.3.9 of [17], to translate M into form e) in Shur’s complement, which is equivalent to form b),
which is true because result is a covariance matrix.

C.3.1 Alternative proof for T (I) � 0

Consider the following matrix with X4 = E[xx′xx′], X2 = E[xx′](
I αX2

αX2 α2X4

)
By Shur’s complement theorem20, the following two conditions are equivalent:

I − 2αX2 + α2X4 � 0

X4 � X2X2

The first condition is equivalent to T (I) � 0. The latter is true because X4 − X2X2 is a covariance matrix of
Y = X ⊗X .

D Alternative derivation of maximal rate

• Russo-Dye Theorem gives induced operator norm of T : ‖T‖ = ‖T (I)‖21

• We are instead interested in the induced trace norm ‖T‖1 22

• Because trace norm and operator norm are dual: ‖T‖1 = ‖T ∗‖ 23

• Because T is self-adjoint: T ∗ = T 24

• Hence, ‖T‖1 = ‖T ∗‖ = ‖T‖ = ‖T (I)‖

.

For duality of trace and spectral norm, see A.1.6 of [4]. The fact ‖T‖1 = ‖T ∗‖ is also stated without proof as Eq 2.37
in [2]

E Expected smoothness for linear regression

[7] provides a bound on step size in terms of ”expected smoothness”. Suppose we are in noise-free realizable regime, in
other words we achive zero loss, or fi(w∗) = 0 for all i. The following step size is sufficient to guarantee convergence

α < αs =
2

L
(81)

Where L is the expected smoothness constant, defined as follows25

E‖∇f(w)‖2 ≤ L

2
Ef(w) (82)

20Theorem 2.3.9 of https://www.convexoptimization.com/TOOLS/Handbook.pdf
21Russo-Dye theorem for operator norm, Theorem 2.6.4 of [2]
22definition and properties, see Section 3.3.2 of [16]
23property of induced norms, Theorem 5.6.35 of [8]
24Appendix C.2
25using Lmine = 4Lgowers for consistency with rest of paper
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Let us setup standard linear regression problem and compute its expected smoothness. Let g(x) = w′x be our predictor
for observation x ∈ Rd. We try to minimize the difference between predicted label y = g(x), y ∈ R and true label ŷ
by minimizing the following per-example loss

f̂(y) =
1

2
h(y − ŷ)2

Here, h is a parameter which is useful for debugging formulas, but can be assumed to be equal to 1.

Our function f(w) represents loss on a single example x evaluated at parameter value w, f = f̂ ◦ g ◦ w

f(w) =
1

2
h(y − ŷ)2 =

1

2
h(wTx− wT∗ x)2 =

1

2
h(η′x)2

We have defined η = w − w∗, the difference between current estimate w and target parameter w∗
Taking expectation over x we compute Ef(w) 26

Ef(w) =
1

2
hη′E[xx′]η

For the left-hand side, note the following

∇f(w) = hη′xx′

Hence

E[‖∇f(w)‖2] = h2η′E[xx′xx′]η

Plugging these into Eq 82 we get

4hη′E[xx′xx′]η ≤ Lη′E[xx′]η

For standard least-squares loss, h = 1. Suppose E[xx′] is full-rank. Then the optimal value of L is determined as the
largest eigenvalue ρ(A) of the following matrix (see Section A)

A = 4E[xx′xx′](E[xx′])−1

Note that this is identical to Eq 27, except for the extra factor of 4. Therefore, required step size from this analysis is
exactly 1/4th of the largest rate which guarantees monotonic convergence rate. In other words

αs =
1

4
αm

F Asymptotic distribution of SGD

When inputs are Gaussian, rotational symmetry of SGD allows us to assume that it is diagonal. If we then take
diagonal starting covariance matrix A0, SGD updates will keep the result diagonal, so we can reformulate T (A) in
terms of diagonal entries of A and Σ. In other words we can formulate action of SGD operator T by using diagonal
extraction operation ”diag”.

diagT (A) = M̂diagA

Define the following

A = diag(a)
Σ = diag(h)

(83)

26Use var(Ax) = AvarxA′ from [13] 20.5 and 20.6
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Now a single step of SGD updates ai as follows

ai
T←− ai(1− 2αhi + 2α2h2i + α2hi〈a, h〉)

We can write this update in matrix form a←Ma where

M̂α = I − 2αΣ + 2α2Σ2 + α2hh′

For our toy example with diag(1, 2) Gaussian, this matrix has the following form

M̂α = I − 2α

(
1 0
0 2

)
+ 2α2

(
1 0
0 4

)
+ α2

(
1 2
2 4

)
This gives an alternative expression for αm and αa in terms of spectral and max-row-sum norm of M̂α

αa = Solve[α such that ‖M̂α‖ = 1]]

αm = Solve[α such that ‖M̂α‖∞ = 1]
(84)

Additionally, this matrix allows us to recover asymptotic distribution of SGD from the top eigenvector of M̂

If we x distributed as 1000 dimensional Gaussian with geometrically decaying eigenvalues, we can look at stationary
distribution of SGD errors (normalized by expected magnitude) for learning rates slightly larger and slightly smaller
than asymptotic convergence threshold:

200 400 600 800 1000

0.00100

0.00105

0.00110

diverging α

200 400 600 800 1000

0.00100

0.00105

0.00110

converging α

You can see that around the value of critical learning rate, asymptotic distribution of SGD flips from being aligned
with Σ to being aligned with Σ−1.

We can also examine the decay in eigenvalues of SGD stationary distribution for a convergent learning rate that
maximizes decrease in distance to w∗ after one SGD step. In the case of Σ eigenvalues decaying as 1/k, SGD
stationary distribution exhibits the same 1/k behavior throughout the spectrum.

1 5 10 50 100 500 1000

10
-4

0.001

0.010

0.100

1

Eigenvalues of SGD stationary distribution and Σ

Σ

SGD
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