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Abstract.  Semi-supervised learning has recently emerged as a 
new paradigm in the machine learning community. It aims at 
exploiting simultaneously labeled and unlabeled data for 
classification. We introduce here a new semi-supervised algorithm. 
Its originality is that it relies on a discriminative approach to semi-
supervised learning rather than a generative approach, as it is 
usually the case. We present in details this algorithm for a logistic 
classifier and show that it can be interpreted as an instance of the 
Classification Expectation Maximization algorithm. 
We also provide empirical results on two data sets for sentence 
classification tasks and analyze the behavior of our methods. 
Keywords.  Machine learning, Semi-supervised learning. 

1 INTRODUCTION 

In the classical supervised learning classification framework, a 
decision rule is to be build from a labeled data set Dl ={(xi, ti) | 
i=1,…,n} where each example is described by a pattern xi and by 
the response of a supervisor ti=(t1i,…,tCi). In statistical machine 
learning, data are supposed to be drawn independently from a joint 
distribution p(x, t) and the learned decision rule is supposed to 
capture the relation between these two variables. 

In practice, labeling large amounts of data may sometimes 
require considerable human resources or expertise. This is for 
example the case for many information retrieval tasks where the 
relevance of retrieved information has to be evaluated by a human. 
For this type of application, although data are usually widely 
available, the development of labeled datasets is a long and 
resource consuming process. For other applications like medical 
diagnosis, labeling datasets may require expensive tests and be 
therefore very costly. For rapidly evolving domains or databases 
there is simply no time to process by hand large datasets. 

The semi-supervised learning paradigm has been proposed as a 
solution to this type of problem when large corpora of unlabeled 
data are available together with a small amount of labeled data. 
Labeling a few data is usually affordable and does not take much 
time. Since there is a belief that unlabeled data contain relevant 
information about the class, it is a natural idea to try to extract this 
information so as to provide a classifier more evidence. 
Classification methods either rely on the estimation of class 
conditional densities and make use of Bayes rule to take a 
decision, or directly attempt to estimate the posterior class 
probabilities. The former are called generative methods and the 
latter discriminant methods. In the same way, semi-supervised 
techniques are classified as generative and discriminant. The 
former usually start from an unsupervised paradigm (e.g. density 
estimation) and extend it so as to incorporate labeled data, the 
latter attempt to extend supervised techniques (e.g. linear 

classifiers) to cope with additional unlabeled data. In this paper, 
we introduce a new semi-supervised algorithm. Its originality is 
that it relies on a discriminative approach to semi-supervised 
learning rather than a generative approach, as it is usually the case. 
The advantage is that the algorithm is generic - it can be used with 
many different discriminant classifiers - it also leads to cheap and 
efficient implementations. We describe here the algorithm for the 
case of a logistic classifier and show how it can be interpreted as 
an instance of the Classification Expectation Maximization 
algorithm (CEM). This general framework provides insights into 
the proposed method and allow for a simple convergence proof of 
the algorithm. 

The paper is organized as follows, we first make a brief review 
of recent work in machine learning for semi-supervised techniques 
(section 2). We then present the formal framework of our model 
and its interpretation as a CEM instance (section 3). Finally we 
present a series of experiments on Reuters news-wire and on the 
Computation and Language (cmp_lg) of TIPSTER SUMMAC 
collections (section 4), and carry on a set of comparisons using 
different strategies. 

2 PREVIOUS WORK 

2.1 Generative approaches 

First attempts to consider simultaneously labeled and unlabeled 
data came from the statistician and the pattern recognition 
community. A review of the work prior to 92 in the context of 
discriminant analysis may be found in [9]. Most approaches are 
generative, they start from a mixture density model where mixture 
components are identified to classes and attempt at maximizing the 
joint likelihood of labeled and unlabeled data. Since direct 
optimization is usually unfeasible, the EM algorithm is used to 
perform maximum likelihood estimation. Usually, for continuous 
variables, density components are assumed to be gaussian 
especially when deriving asymptotic analysis. Practical algorithms 
may be used for more general settings, as soon as the different 
statistics needed for EM may be estimated, e.g. for discrete 
variables, non parametric techniques (e.g. histograms) are often 
used in practice. The semi-supervised paradigm has been recently 
rediscovered by the machine learning community and many papers 
now deal with this subject. Most papers propose mixture density 
models similar to the one described above.  

[10] consider a mixture of experts i.e. several mixture 
component may be associated to one class, when it is usually 
assumed that there is a one to one correspondence between classes 
and components. They then propose different models and EM 
implementation. [11] propose an algorithm which is a particular 
case of the general semi-supervised EM described in [9], and 
present an empirical evaluation for text classification, they also 
extend their model to multiple components per class. [12] propose 
a Kernel Discriminant Analysis which can be used for semi-
supervised classification.  

1 Computer Science Laboratory of Paris 6 (LIP6), University of 
Pierre et Marie Curie, 8 rue du capitaine Scott, 75015 Paris, 
France, email: {amini, gallinari}@poleia.lip6.fr 



2.2 Discriminant approaches 

Anderson [1] suggests to modify logistic regression, a well known 
classifier to incorporate unlabeled data. To do so, he maximizes 
the joint likelihood of labeled and unlabeled data.  

The co-training paradigm [2] which has been proposed 
independently is also related to semi supervised training. In this 
approach it is supposed that data x may be described by two 
modalities which are conditionally independent given the class of 
x. Two classifiers are used, one for each modality, each classifier 
operates alternatively as teacher and learner.  

[3] present an interesting extension of a boosting algorithm 
which incorporate co-training. The work of [4] also bears 
similarities with this technique. 

3 ALGORITHMS 

We now introduce an iterative discriminant algorithm for semi-
supervised learning. This algorithm is generic in the sense that it 
can be used with any discriminant classifier. For simplifying the 
presentation, we will consider only two-class classification and 
detail the algorithm for the case of a simple logistic classifier. This 
is not restrictive since the algorithm and analysis can be easily 
extended for any discriminant classifier and for multi-class 
problems. We briefly present logistic regression in 3.2.  

We then proceed to describe our algorithm under the general 
framework of the Classification maximum likelihood (CML) 
approach [5, 9]. For this we first introduce CML and the 
Classification EM algorithm in 3.3, we then show how this 
framework can be adapted to handle labeled-unlabeled data (3.4) 
and leads to natural discriminant formulation (3.5). Casting our 
method in this framework ensures that all properties of CEM (e.g. 
convergence) hold for our method.  This algorithm is detailed in 
the particular case of logistic regression in section (3.5). 

3.1 Framework 

We consider a binary decision problem where there are available a 
set of labeled data Dl and a set of unlabeled data Du. We will 
denote, Dl ={(xi, ti) | i=1,…,n} where xi ∈Rd, ti=(t1i,t2i) is the class 
indicator vector for xi and Du={xi | i= n+1,…,n+m}. The latter are 
assumed to have been drawn from a mixture of densities with two 
components C1, C2 in some unknown proportions π1,π2. We will 
consider that unlabeled data have an associated missing indicator 
vector ti = (t1i,t2i),  (i=n+1, …, n+m) which is a class or cluster 
indicator vector. The algorithms we consider attempt to iteratively 
partition the data into the two components C1 and C2. We will 
denote ) ,( )(
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1
jj PP the partition into two clusters computed by an 

algorithm at iteration j. 

3.2 Logistic regression 

Logistic regression is a well known technique for classification. [1, 
6]. The only distributional assumption with this method is that the 
log likelihood ratio of class distributions is linear in the 
observations (1), this assumption is verified by a large range of 
exponential density families, e.g. normal, beta, gamma, etc. 
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Where the fk, k={1,2} are class conditional parametric densities 
and { }d

k 0== ββ  is the set of parameters of the model. An 
advantage of such a model is that it gives the posterior 
probabilities a simple form: 
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The βs are trained to optimize the following log-likelihood [1]:  
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Where, ∑
∈ kPix

is a summation over all examples xi in the 

partition Pk. Criterion (3) is a convex function of the model 
parameters (1). The latter are estimated in order to maximize (3), 
gradient techniques are generally used to this end. 

This model could be implemented using a simple logistic unit G 

whose parameters are (β0, β), i.e. 
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After the estimation of β, G(x) and 1 - G(x) are used to estimate 
p(P1/x) and p(P2/x). 

3.3 Classification Maximum Likelihood approach 

Let us now introduce the classification maximum likelihood 
(CML) approach to clustering [14]. In this unsupervised approach 
there are m samples generated via a mixture density: 
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Where the fk are parametric densities with unknown parameters 
θk and πk the mixture proportions. The goal here is to cluster the 
samples into 2 components P1, P2. Under the mixture sampling 
scheme, samples xi are taken from the mixture density f, and the 
CML criterion is [5]: 
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Note that this is different from the classical mixture maximum 
likelihood (MML) approach that has been used for most semi-
supervised algorithms, where the log joint likelihood reads: 
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For MML the goal is to model the data distribution, whereas in 
the CML approach, we want to cluster data. For CML the mixture 
indicator tki for a given data xi is treated as an unknown parameter 
of the model and has to be estimated together with the θ's. Eq. (5) 
corresponds to the complete data likelihood of the variables (x,t), 
the t indicators correspond to a hard decision on the mixture 



component identity. Many clustering algorithms can be considered 
as particular cases of CML [5]. The classification EM algorithm 
(CEM) [5] is an iterative technique, which has been proposed for 
maximizing (5), it is similar to the classical EM except for an 
additional C-step where each xi is assigned to one and only one 
component of the mixture. The algorithm is sketched below. 
CEM 
Initialization: start from an initial partition P(0) 

 jth iteration, j ≥ 0: 
E –step. Estimate the posterior probability that xi belongs to Pk 
(i=1,..., m; k=1,2): 
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C – step. Assign each xi to the cluster )1( +j
kP with maximal 

posterior probability according to E[t/x]. 
M–step. Estimate the new parameters (π (j+1), θ (j+1)) which 
maximize log LCML(P (j+1), π (j), θ (j)). 

3.4 Semi-supervised generative-CEM 
CML has been proposed for unlabeled data, but it can be easily 
modified to handle both labeled and unlabeled data [9], the only 
difference is that the tki for labeled data are known, so the log 
likelihood criterion becomes: 
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In this expression, the first summation inside the brackets is 
over the labeled samples, and the second one over unlabeled 
samples. 

CEM can then be easily adapted to the case of semi supervised 
learning for maximizing (8) instead of (5); the tki for the unlabeled 
data are estimated as in the classical CEM (E and C steps) and are 
kept fixed for the labeled data. In this generative approach, any 
density estimation technique can be used for the fk. In our 
experiments, we have been using normal distributions. Once the 
densities have been estimated, classification decision on unknown 
data can be made according to the Bayes decision rule.  

3.5 Generalizing logistic regression to unlabeled 
data : Semi-supervised discriminant-CEM 

The above generative approach indirectly computes posteriors 
p(Pk/x) via conditional density estimation. This could lead to poor 
estimates for high dimensions or when only few data are labeled 
which is usually the case for semi-supervised learning. 
A more straightforward approach would be to use a discriminant 
model to directly estimate the posteriors without spending 
resources on the more complex task of density estimation. In this 
section, we first rewrite the semi-supervised CML criterion (8) in a 
suitable form which puts in evidence the role of posterior 
probabilities. 

We then show how it is possible to maximize this likelihood 
with discriminant classifiers. This leads to a modified CEM 

algorithm. For simplification, we detail this algorithm for a logistic 
model. 
Using Bayes rule, CML criterion (8) can be rewritten: 
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p(x) is the marginal distribution of data and β denotes the 
"parameters" of the classifiers, e.g. the weights of a linear 
classifier, the β coefficients of the logistic classifier (1), the 
weights of a neural network, the local decision functions of a 
classification tree, etc. (9) is the classification likelihood of the β. 
When using a discriminant classifier, we make no assumption 
about p(x), therefore the maximum likelihood estimate of β is the 
same for (10). See [1, 9] in the case of logistic classifiers. 

These maximum likelihood estimates can be obtained via a 
modified CEM, we detail this algorithm for the particular case of 
the logistic classifier (1). 

 
Logistic-CEM 

Initialization: Train a discriminant logistic model )()0( xG over Dl, 
let P(0) be the initial partition obtained from this model on Dl ∪Du. 

 jth iteration, j ≥ 0: 
E –step. Estimate the posterior probability that xi belongs to Pk  on 
Du (i=n+1,…, n+m; k=1,2) using the output of the logistic 
classifier )()( xG j : 
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posterior probability according to p( )( j
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M–step. Find new parameters ( )1(
0

+jβ , β (j+1)) which maximize log 

CL
~  (P (j+1), )(

0
jβ , β (j)). 

For the logistic classifier, there is no analytical method for 
maximizing CL

~  (P (j+1), )(
0

jβ , β (j)) in the M-step. We have used 
the quasi-Newton procedure for that. An advantage of this method 
is that they require only the first order derivatives at each iteration 
while giving an estimate of the matrix of second order derivatives 
at the maximum point. 

The main difference here with the generative method is that no 
assumption is made on the conditional densities f1 and f2 except 
that their log ratio is linear in x.  The algorithm directly attempts to 
estimate the p(Pi /x), which is the quantity we are interested in, 
instead of the conditional densities.  



It will be shown later to outperform significantly the generative 
approach, especially when there are few labeled data available. It 
does so by using fewer parameters than the generative approach 
and is faster to run. 

4 Numerical experiments 

We have performed experiments to evaluate CEM-generative and 
CEM-logistic for two large real data sets. The task we have used is 
the selection of relevant sentences from documents for 
constructing an extract summary. 

This is a classical approach to text summarization. From a 
machine learning point of view, this is a 2-class classification task: 
sentences have to be classified into relevant or irrelevant. The 
usual approach is to label document from a corpus at the sentence 
level and to train classifiers using a supervised classification 
approach as described in the seminal work of [8].  

This is particularly well suited for semi-supervised learning 
since the construction of such datasets is particularly tedious. We 
have used two datasets a) the Reuters data set consisting of news-
wire summaries: this corpus is composed of 1000 documents and 
their associated extracted sentence summaries and b) the 
Computation and Language (cmp_lg) collection of TIPSTER 
SUMMAC. This corpus is composed of 183 scientific articles.  

In both cases, the data set was split into a training and a test set 
whose size was respectively 1/3 and 2/3 of the available data. 
Sentences are encoded into five features as described in [8]. 

4.1 Experimental Results 

For evaluation measure, we have used the average precision which 
is a classical measure in information retrieval. This is more 
relevant here than the classical correct classification percentage 
and is computed as follows. 

For each document, sentences are ranked according to the 
classifier score. The k top sentences are then selected for k = 1, 2, 
…. For each k value, we compute the precision at k : 

system by the extracted sentences of # total
summaries  target  in the are whichsystem by the extracted sentencesof#Precision =

The average precision is the mean of all these values for all 
documents.  

Table 1 compares a baseline naive Bayes classifier with the 
generative and logistic CEM classifiers, all trained in a fully 
supervised way. The two CEM classifiers allow for approximately 
10% increase both in average precision and in accuracy over naive 
Bayes for both databases. This is not surprising, but this shows that 
they behave reasonably on this dataset. Logistic CEM is slightly 
above generative CEM.  

Figure 1 shows the average precision on the test sets of Reuters 
and SUMMAC cmp-lg for different ratio of labeled-unlabeled 
documents in the training set, and for the generative and logistic 
semi-supervised algorithms On the x-axis, 10% means that 10% of 
the documents in the training sets were labeled for training, the 
90% remaining being used as unlabeled training documents.  

For comparison, we have also performed test with a logistic 
classifier trained only on the labeled sentences without using the 
unlabeled sentences in the training set. 

The logistic classifier trained only on labeled sentences 
performs well but is clearly below the CEM-algorithms in the 
regions of interest where the ratio of labeled data is small (less 
than 50% in these experiments). This shows that unlabeled data 
indeed contains relevant information and that semi-supervised 
algorithms allow to extract part of this information.  

Logistic CEM uniformly outperforms the other systems in all 
regions. This is particularly clear for SUMMAC cmp-lg, which is a 
small document set. In this case, the discriminant approach is 
clearly superior to the generative approach which suffers from 
estimation problems. With only 10% of labeled documents in the 
training set, the logistic CEM approach is over the baseline naive 
Bayes system and using about 20% of labeled documents allows to 
reach half the performance increase of the fully supervised 
approach. Another interesting result is that both logistic and 
generative CEM trained on semi-supervised learning scheme 
(using always 10% of labeled documents together with 90% of 
unlabeled documents on the training set) gave similar 
performances than the baseline naive Bayes classifier trained with 
all documents on the training set. Tests with more sophisticated 
classifiers did not lead to improvements compared to logistic 
classification. These results have still to be confirmed and refined 
by experiments on other datasets, but they rise hope that the 
proposed methods perform well for some real world tasks. 

 
 

 

 

Table 1. Comparison between a baseline naive Bayes system and different learning classifiers on Reuters and cmp_lg test sets. 
All classifiers are trained in a fully supervised way. Accuracy is the ratio of correct classification for both relevant and 
irrelevant sentences. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Reuters data set Cmp_lg collection 

System Average Precision (%) Accuracy (%) Average Precision (%) Accuracy (%) 

Naive Bayes 61,02 63,03 61,83 63,48 

Generative-CEM 72,86 73,06 74,12 74,79 

Logistic-CEM 73,84 74,22 75,26 76,92 



Figure 1. Average precision of 3 trainable summarizers with respect to the ratio of labeled documents in the training set. The systems are the logistic and 
generative CEM algorithms and a logistic unit trained only on labeled data. 
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5  CONCLUSION 
We have introduced new generative and discriminant algorithms 
for training classifiers in presence of labeled and unlabeled data. 
These algorithms have been derived in the framework of CEM 
algorithms and are pretty general in the sense that they can be 
used respectively with any density estimation method and 
discriminant classifier. We have detailed the discriminant 
technique in the case of a logistic classifier. We have provided an 
experimental analysis of the proposed methods with regard to the 
ratio of labeled data in the training set, and we have shown that 
using only 10 to 20% of labeled allows to reach half of the 
performance increase provided by a fully supervised approach.  
We have also compared discriminant and generative approaches 
to semi-supervised learning and the former has been found clearly 
superior to the latter especially for small collections. 

6 REFERNCES 

[1] J.A. Anderson, S.C. Richardson. ‘Logistic Discrimination 
and Bias correction in maximum likelihood estimation’. 
Technometrics, 21, 71-78 (1979). 

[2]  A. Blum, T. Mitchell Combining Labeled and Unlabeled 
Data with Co-Training. Proceedings of the 1998 
Conference on Computational Learning Theory. (1998).  

[3] M. Collins and Y. Singer. Unsupervised models for 
named entity classification. In Proceedings of EMNLP, 
(1999) 

[4] V. De Sa, Learning classification with unlabeled data. 
Advances in Neural Information Processing Systems. 6, 
(1993). 

[5]  G. Celeux, G. Govaert ‘A classification EM algorithm for 
clustering and two stochastic versions’. Computational 
Statistics & Data Analysis, 14, 315-332 (1992). 

[6]  D.R. Cox, Some procedures associated with the logistic 
qualitative response curve. Research Papers in Statistics: 
Festschrift for J. Neyman. Wiley edn., 55-71, (1966). 

[7]  R. O. Duda, P. T. Hart Pattern Recognition and Scene 
Analysis. Edn. Wiley (1973). 

[8]  J. Kupiec, J. Pedersen, F. Chen, A Trainable Document 
Summarizer. Proceedings of the 18th ACM SIGIR, 68-73, 
(1995). 

[9]  G.J. McLachlan Discriminant Analysis and Statistical 
Pattern Recognition. John Wiley & Sons edn., New-York 
1992. 

[10]  D. Miller, H. Uyar, A Mixture of Experts classifier with 
learning based on both labeled and unlabeled data. 
Advances in Neural Information Processing Systems. 9, 
571-577, (1996). 

[11]  K. Nigam, A. McCallum, A. Thrun, T. Mitchell, Text 
Classification from labeled and unlabeled documents 
using EM. In proceedings of National Conference on 
Artificial Intelligence. (1998). 

[12] V. Roth, V. Steinhage, Nonlinear Discriminant Analysis 
using Kernel Functions. Advances in Neural Information 
Processing Systems, 12, (1999). 

[13]  A.J. Scott, M.J. Symons, Clustering Methods based on 
Likelihood Ratio Criteria. Biometrics. 27, 387-397 , 
(1991). 

[14] M. .J. Symons, Clustering criteria and multivariate normal 
mixtures. Biometrics. 37, 35-43, (1981). 

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

% of the labeled data in the training set

A
ve

ra
ge

 P
re

ci
si

on
 %

Logistic - supervised
Logistic-CEM
Generative-CEM

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

% of the labeled data in the training set

A
ve

ra
ge

 P
re

ci
si

on
 %

Logistic - supervised
Logistic-CEM
Generative-CEM


