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Abstract

Standard tools for the analysis of the (average) conditional associ-
ation structure of the distribution on a multiway contingency table are
log-linear models. A different association concept is that of marginal
association and this paper describes how marginal log-linear param-
eters can be used to measure this aspect of association. The paper
gives a non-technical discussion of these two aspects of association by
discussing their complementary nature and also describes how condi-
tional association is naturally incorporated in the framework provided
by marginal log-linear parameters. The properties and interpretation
of these parameters are discussed, including the variation indepen-
dence of hierarchically related marginal log-linear parameters, and the
modeling implications of these results are indicated.

1 Introduction

The first aim of this paper is to give an intuitive description of various
aspects of association in contingency tables and of some consequences for
parameter and model definition. Our approach will be introduced by sharply
distinguishing between conditional and marginal aspects of association. How-
ever, it will be shown that what is traditionally considered as conditional
association, can be incorporated in a generalized framework of marginal
association by the introduction of marginal log-linear parameters. It is
hoped that by this understanding of the relationship between conditional
and marginal association, new insight can be gained into the association
structure of multidimensional contingency tables.

The second aim of this paper, which in part overlaps with the first, is
to provide an accessible exposition of some of the results of Bergsma and
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Rudas (2002). This includes variation independence and smoothness con-
ditions for marginal log-linear parameters. Furthermore, a simple notation
for marginal log-linear parameters is introduced which should facilitate their
use, especially in applied papers.

Section 2 of the paper briefly reviews the basic facts and ideas regard-
ing the association structure of a multidimensional contingency table. The
conditional and marginal aspects of association are discussed with reference
to log-linear analysis. Section 3 considers log-linear parameters that are
standard tools to measure conditional association and introduces marginal
log-linear parameters that are able to represent a more general aspect of as-
sociation. Marginal log-linear parameters are simply log-linear parameters
computed from marginals of the table.

Section 4 discusses parameterizations of the joint distribution using marginal
log-linear parameters. This is a large class of flexible parameterizations, with
the log-linear parameterization being a simple special case. Conditions for
such desirable properties as the parameterization being smooth and its com-
ponents being variationally independent are also given. These conditions are
formulated in terms of simple combinatorial properties of the subsets of vari-
ables involved. Section 5 considers statistical models obtained by imposing
affine restrictions on marginal log-linear parameters. The conditions that
assure existence and standard asymptotic behavior of such models are the
same combinatorial properties.

The paper contains no proofs and most of the detailed arguments that
support the claims made here can be found in Bergsma and Rudas (2002).

2 Conditional and marginal association

In real-life applications of statistics, the relevant problems are almost all
multivariate. In such situations, it is not so much the separate behavior
of the variables observed but rather the association among them which is
of primary interest. Association, of course, can have many different forms
and subject matter knowledge can often be used to postulate a particular
association structure.

A definition of association among a group of variables, which is not re-
lated to any specific type of association, is obtained by considering the differ-
ence of information contained in the joint distribution and that of the lower
order marginal distributions. Here, again, no particular technical meaning
of information is used, rather it is said that if all lower order marginal dis-
tributions are known, the additional information needed to reconstruct the
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joint distribution is the association among the variables. The additional in-
formation should be sufficient to reconstruct the joint distribution, but it
also should be necessary (non-redundant) in the sense that association is
only information not contained in the lower order marginal distributions.
This latter requirement is best characterized by the concept of variation in-
dependence, that is, the joint range of the marginals and of the measure of
association should be the Cartesian product of the separate ranges.

As an example, consider a 2×2 contingency table. Here, the lower order
marginal distributions are represented by the marginal probabilities π1+ and
π+1. There are several expressions of the cell probabilities that carry enough
information to reconstruct the joint distribution. For example π11/(π1+π+1)
is intuitively appealing and is sometimes used as a measure of the strength
of association. This quantity, however, is not variationally independent from
the one way marginals, that is, its range is effected by the actual marginals.
Therefore, it lacks calibration and its values, other than 1, may be difficult
to compare across different tables. It is only the odds ratio

π11π22

π12π21
,

and its one-to-one functions that are both sufficient and necessary in the
above sense to reconstruct the joint distribution. That is, every measure
of association (if defined as information not contained in the marginals) is
a one-to-one function of the odds ratio. For a detailed exposition of this
argument see Edwards (1963) or Rudas (1998).

The log-linear association term is a one-to-one function of the odds ratio
and is therefore an appropriate measure of association. In the multivariate
case, the argument above generalizes, in parallel to the theory of log-linear
representation (Bishop, Fienberg and Holland, 1975), in a hierarchical way
(see Rudas, 1998).

A crucial aspect in understanding and modeling the association structure
of a multiway table, is the way of defining subsets of variables of which the
strength of association is measured. From a technical point of view, there
are two ways of deriving lower dimensional subsets from a set of variables:
conditioning and marginalization. In conditioning, some of the variables
are fixed at certain categories, and the strength of association is measured
for the remaining variables. The parameter values obtained will depend
on the actual categories of the fixed variables and refer to association in
a subset of the population. Log-linear parameters can be used to measure
the “average” conditional association over the categories of the fixed variable
(more precisely, the log-linear parameters refer to a geometric mean over the
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categories). Analysis of this conditional association structure can therefore
be done by means of log-linear analysis (Bishop, Fienberg and Holland,
1975, pages 33-34). For example, the log-linear model of no-three-variable
interaction is the model of constant conditional association between any two
variables given the third.

Marginalization, on the other hand, considers subsets of variables with-
out paying attention to the remaining variables, no selection is involved and
the association for a group of variables refers to the entire population. This
marginal approach to measuring and modeling association cannot be imple-
mented in standard log-linear analysis and it is the aim of the present paper
to illustrate how the theory developed in Bergsma and Rudas (2002) can be
used to analyze the association structure of a table, including marginal asso-
ciations, but also conditional associations and certain mixtures of these. The
approach presented here also contains the log-linear approach, as a simple
special case.

This general methodology is based on the introduction of a very flexible
class of parameters of association that will be discussed in the next section.

3 Parameters of association

For simplicity, log-linear and marginal log-linear parameters will be intro-
duced here for an I × J × K contingency table ABC, but the definitions
extend in a natural way to higher dimensional tables.

The decomposition of log cell probabilities log πA
i

B
j

C
k as a sum of log-

linear parameters is as follows (see Bishop, Fienberg and Holland, 1975 or
Agresti, 1990):

log πA
i

B
j

C
k

= λA
∗

B
∗

C
∗ + λA

i
B
∗

C
∗ + λA

∗
B
j

C
∗ + λA

∗
B
∗

C
k + λA

i
B
j

C
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i
B
∗

C
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∗
B
j

C
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i
B
j

C
k (1)

In our notation, the superscript of a log-linear parameter identifies the vari-
ables and the subscript shows to which variables the parameter refers to (the
ones not replaced by an asterisk) and these variables are represented by their
relevant indices. For example, λA

∗
B
j

C
k is usually denoted as λB

j
C
k . The log-

linear parameters are not yet identified and cannot therefore be interpreted.
Many identification methods exist, but a common one is the so-called effect
coding, obtained by setting the sum over any subscript to zero that is,
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+
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λA
i

B
j

C
+ = λA

i
B
+

C
k = λA

+
B
j

C
k = 0,

where a “+” in the subscript means summation over the corresponding in-
dex. Another popular method is the so-called dummy coding, where identi-
fication is obtained by setting certain log-linear parameters to zero.

It is well known (Bishop, Fienberg and Holland, 1975, pages 33-34) that
the log-linear parameters measure the average strength of conditional asso-
ciation. For example, in the effect coding scheme, if B and C are binary,
λA
∗

B
j

C
k is equal to constant times the average of the values of the odds ratios

of B and C, conditioned on the different values of A.
More generally (in the above notation), a log-linear parameter represents

the strength of association between the non-asterisked variables, conditioned
on and then averaged over the categories of the asterisked variables. If the
higher order parameters are (close to) zero then the values averaged do not
differ (too much) and the log-linear parameters can be interpreted as partial
associations (Hagenaars, 1990). Notice however, that the assumption that
for a multiway contingency table the higher order interaction parameters
are zero is a very strong one that essentially removes the most important
differences between the otherwise unrestricted distribution on the contin-
gency table and a multivariate normal distribution, in the sense that a basic
property of the latter is the lack of higher than first order interactions. Such
an assumption is usually called a log-linear model (Haberman, 1974; Rudas,
1998).

The two-dimensional marginal cell probabilities are defined as

πA
i

B
j =

∑
k

πA
i

B
j

C
k πB

i
C
j =

∑
i

πA
i

B
j

C
k πA

i
C
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∑
j

πA
i

B
j

C
k

and the one-dimensional marginal cell probabilities as

πA
i =

∑
j,k

πA
i

B
j

C
k πB

j =
∑
i,k

πA
i

B
j

C
k πC
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∑
i,j
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i

B
j

C
k .

Analogously to the joint probabilities, the two-dimensional marginal ones
can be decomposed as

log πA
i

B
j = λA

∗
B
∗ + λA

i
B
∗ + λA

∗
B
j + λA

i
B
j

log πB
j

C
k = λB

∗
C
∗ + λB

j
C
∗ + λB

∗
C
k + λB

j
C
k

log πA
i

C
k = λA

i
C
k + λA

∗
C
∗ + λA

i
C
∗ + λA

∗
C
k

and the one-dimensional ones as

log πA
i = λA

∗ + λA
i
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log πB
j = λB

∗ + λB
j

log πC
k = λC

∗ + λC
k .

The log-linear parameters used in the above representations are computed
from a marginal of the original table and are therefore, called marginal log-
linear parameters. The marginal to which a parameter pertains is indicated
in the superscript. The parameters have an interpretation similar to the
classical log-linear parameters discussed above. They measure the strength
of the average conditional association among a certain group of variables
(the effect) , with some of the other variables omitted and some others fixed
(i.e. conditioned on). To define a marginal log-linear parameter, one has
to choose a subset of the variables (the marginal – and the variables not
selected are omitted) and within this marginal another subset (the effect)
and the variables in the marginal but not in the effect are conditioned upon.
Such a marginal log-linear parameter takes on different values depending on
the actual categories of the variables in the effects and the term parameter
refers to all these values (see Bergsma and Rudas, 2002, for details).

The definition of marginal log-linear parameters opens up the possibility
of defining a large number of parameters, depending on the choice of the
marginal and of the effect and the rest of this section in concerned with dis-
cussing a strategy of defining marginal log-linear parameterizations. Certain
properties of the parameterizations and of the statistical models obtained
by restricting the ranges of these parameters will be investigated later on.

It is always the substantial problem at hand that determines which
groups of variables (marginals) of the table are of interest. These must
be ordered hierarchically, that is, in such a way that a later marginal is not
contained in an earlier one. For example, for a table ABC one may be in-
terested in the three marginals AB, BC, and ABC. There are two possible
hierarchical orderings:

(AB,BC, ABC) and (BC, AB, ABC)

If the ordering of the marginals has been established, the following inductive
scheme can be used to construct a set of parameters:

1. Calculate the log-linear parameters all the effects in the first marginal

2. For k = 2, . . . , n, calculate the log-linear parameters for those effects
of the kth marginal that have not been used before,

where n is the number of marginals involved.
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To illustrate for the ordering (AB,BC,ABC), the first step is to calcu-
late the log-linear parameters in table AB from the probabilities πA

i
B
j :

{πA
i

B
j } → {λA

∗
B
∗ , λA

i
B
∗ , λA

∗
B
j , λA

i
B
j } (2)

Next, for the BC marginal the effects that have not been used before are
included, i.e., the C and BC effects:

{πB
j

C
k } → {λB

∗
C
k , λB

j
C
k } (3)

Finally, for the ABC marginal, the only effects that have not been included
yet are the AC and ABC effects. Hence

{πA
i

B
j

C
k } → {λA

i
B
∗

C
k , λA

i
B
j

C
k } (4)

Thus, combining the sets obtained in (2), (3), and (4), the parameters gen-
erated by the sequence (AB,BC,ABC) are

{λA
∗

B
∗ , λA

i
B
∗ , λA

∗
B
j , λA

i
B
j , λA

i
B
∗

C
k , λA

i
B
j

C
k } (5)

Note that in (5) all subsets are included, as effects, in the set of generated
parameters. It is easy to verify that this only happens if the whole table is
included in the sequence of marginals. Such a sequence is called complete.
Because of hierarchy, the whole table appears at the end of the sequence.
Notice that if there are several hierarchical orderings of the marginals pos-
sible, the one selected will determine which subsets appear as effects within
the marginals. Marginal log-linear parameters generated by a complete se-
quence form a parameterization of the distribution on the contingency table.

Two specific sets of parameters generated by complete hierarchical se-
quences of marginals have received special attention in the literature. The
first is the set of ordinary log-linear parameters that is generated by the
whole table as the only marginal involved: all log-linear effects pertain to the
full table. The second is what is called by Glonek and McCullagh (1995) the
multivariate logistic transform, and is generated by a hierarchical sequence
of all the subsets of the variables as marginals.

For three-way tables ABC, the ordinary log-linear and multivariate lo-
gistic parameterization are generated by

(ABC), (∅, A, B,C,AB,BC,AC,ABC)

respectively, yielding the complete hierarchical sets of parameters

{λA
∗

B
∗

C
∗ , λA

i
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∗
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∗ , λA

∗
B
j
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∗
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k } (6)

{λ∅, λA
i , λB

j , λC
k , λA

i
B
j , λB

j
C
k , λA

i
C
k , λA

i
B
j

C
k } (7)
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respectively. The ordinary log-linear parameters have all the variables in the
superscript (i.e., the superscript is maximal), and the multivariate logistic
parameters have a minimal superscript. The latter contain no asterisks in
the subscript. In this sense, the ordinary log-linear and multivariate logistic
parameterizations form the end-points of all hierarchical marginal log-linear
parameterizations.

A huge number of sequences of marginals is possible even for a moderate
number of variables. For one variable, say A, there are two possible complete
sequences. The sequences and the parameters they generate are:

(A) → {λA
∗ , λA

i }
(∅, A) → {λ∅, λA

i } .

Note that these are the log-linear and univariate logistic parameters, respec-
tively. For two variables, say A and B, the nine possible complete sequences
and the parameters they generate are:

(AB) → {λA
∗

B
∗ , λA

i
B
∗ , λA

∗
B
j , λA

i
B
j }

(∅, AB) → {λ∅, λA
i

B
∗ , λA

∗
B
j , λA

i
B
j }

(A,AB) → {λA
∗ , λA

i , λA
∗

B
j , λA

i
B
j }

(B,AB) → {λB
∗ , λB

j , λA
i

B
∗ , λA

i
B
j }

(∅, A, AB) → {λ∅, λA
i , λA

∗
B
j , λA

i
B
j }

(∅, B, AB) → {λ∅, λB
j , λA

i
B
∗ , λA

i
B
j }

(A,B, AB) → {λA
∗ , λA

i , λB
j , λA

i
B
j }

(B,A, AB) → {λB
∗ , λB

j , λA
i , λA

i
B
j }

(∅, A, B,AB) → {λ∅, λA
i , λB

j , λA
i

B
j } .

The first and last sets form the log-linear and bivariate logistic parameters,
respectively. Note that the seventh and eighth sequences are the same except
for the A and B marginals that are interchanged, yielding two different sets
of parameters. In the last sequence A and B can be interchanged but this
would yield the same set of parameters.

4 Marginal log-linear parameterizations

A mixed parameterization of a distribution on a contingency table consists
of certain marginal probabilities and all the higher order log-linear effects
within the table (see Rudas, 1998). For example, for the ABC table, a
mixed parameterization may consist of the marginal probabilities {πA

i
B
j }

and {πB
j

C
k }, and the higher order log-linear effects {λA

i
B
∗

C
k } and {λA

i
B
j

C
k }.
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This is a large and flexible class, with the log-linear parameterization being
a simple special case. As is well-known, if the marginal probabilities and
log-linear parameters in a mixed parameterization have prescribed values,
the iterative proportional fitting (IPF) algorithm can be used to reconstruct
the joint probability distribution.

In exponential family terminology, the marginal probabilities are called
mean value parameters, and the log-linear parameters are called canonical
parameters. Barndorff-Nielsen (1978) proved several important properties
of mixed parameterizations in terms of mean value and canonical param-
eters. Firstly, they are obtained from the distributions via a one-to-one
transformation that satisfies certain differentiability conditions. Such a pa-
rameterization is called smooth. Secondly, the mean value and canonical
parameters are variation independent. This means that, provided both the
mean value and the canonical parameters are compatible within themselves,
then they can always be combined to form a joint distribution. More for-
mally, two (possibly vector valued) components of a parameterization are
variation independent, if their joint range is the Cartesian product of their
separate ranges.

The absence of variation independence can lead to problems in estima-
tion, and may lead to difficulties in the interpretation of parameters (see the
example in section 2).

Appropriately selected marginal log-linear parameters constitute a pa-
rameterization of the joint distribution. This is a generalization of the result
concerning mixed parameterizations.

Consider the marginal log-linear parameters generated by a complete hi-
erarchical sequence (M1, . . . ,Mk), where Mk contains all the variables. For
1 ≤ j < i ≤ k, let M

(i)
j consist of those variables, if any, in Mj which also be-

long to Mi, and let λ(i) be the set of marginal log-linear parameters belong-
ing to Mi. Then, λ(i) and the marginal probabilities over M

(i)
1 , . . . ,M

(i)
i−1

form a mixed parameterization of the distribution over Mi, because λ(i)
contains classical log-linear parameters in the marginal Mi (Bergsma and
Rudas, 2002). This fact allows the following recursive scheme to reconstruct
the distribution over Mk to be established:

1. Calculate the probability distribution over M1 directly from the (marginal)
log-linear parameters.

2. For i = 2, . . . , k, calculate, using IPF, the probability distribution over
Mi from λ(i) and the distributions over M

(i)
1 , . . . ,M

(i)
i−1.

Note that it is assumed that, for each i, the distributions over M
(i)
1 , . . . ,M

(i)
i−1
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are compatible. Conditions for this to be the case will be discussed later on.
To illustrate the reconstruction procedure, consider the parameters gener-
ated by the marginals (AB,BC,ABC):

{λA
∗

B
∗ , λA

i
B
∗ , λA

∗
B
j , λA

i
B
j , λB

∗
C
k , λB

j
C
k , λA

i
B
∗

C
k , λA

i
B
j

C
k }

To reconstruct the distribution over ABC, we first obtain the AB distribu-
tion by direct calculation:

πA
i

B
j = exp(λA

∗
B
∗ + λA

i
B
∗ + λA

∗
B
j + λA

i
B
j )

Hence, we are left with the reduced set

{πA
i

B
j , λB

∗
C
k , λB

j
C
k , λA

i
B
∗

C
k , λA

i
B
j

C
k } (8)

Now πB
j = πA

+
B
j so the mixed parameterization

{πB
j , λB

∗
C
k } (9)

of {πB
j

C
k } is included in (8). From (9), {πB

j
C
k } can be reconstructed using

IPF. Replacement in (8) yields:

{πA
i

B
j , πB

j
C
k , λA

i
B
∗

C
k , λA

i
B
j

C
k }

Now this is a mixed parameterization of {πA
i

B
j

C
k }, that can again be found

using IPF. Hence, the complete distribution over ABC can be reconstructed
by applying IPF to a sequence of mixed parameterizations.

As long as the original set of parameters is compatible, the construction
can always be performed. As shown by Barndorff-Nielsen (1978), each step
is a one-to-one and differentiable transformation. The following theorem
follows directly:

Theorem 1 The set of parameters generated by a hierarchical complete se-
quence of marginals of a contingency table T , excluding the null effect, forms
a smooth parameterization of the distributions over T .

Note that the null effect is redundant because the probabilities must sum to
one.

It is important, that the previous theorem starts with parameters de-
rived from an existing distribution. If one starts the reconstruction process
with arbitrarily selected parameter values, the reconstruction process can
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sometimes fail. Consider the parameterization generated by the marginals
(AB,BC, AC,ABC):

{λA
∗

B
∗ , λA

i
B
∗ , λA

∗
B
j , λA

i
B
j , λB

∗
C
k , λB

j
C
k , λA

i
C
k , λA

i
B
j

C
k }

The first two steps are the same as above and yield

{πA
i

B
j , πB

j
C
k , λA

i
C
k , λA

i
B
j

C
k }

Now {πA
i , πC

k , λA
i

C
k } forms a mixed parameterization of {πA

i
C
k }, that can be

reconstructed using IPF. So, one obtains the following:

{πA
i

B
j , πB

j
C
k , πA

i
C
k , λA

i
B
j

C
k } (10)

However, now there may be a problem. The AB, BC, and AC marginals
have been constructed, but they may not be compatible. For example,
there is no three-way distribution, that would have the following two-way
marginals.

B

A
0.35 0.15
0.15 0.35

C

B
0.35 0.15
0.15 0.35

C

A
0.15 0.35
0.35 0.15

Notice that this is an example of lack of variation independence. The
values given belong to the respective ranges of the parameters but they do
not belong to the joint range. The well-known reason that a set of marginals
may have prescribed values that are incompatible, is that they do not form
a so called decomposable set. A set of marginals is decomposable if there
is an ordering that satisfies the so-called running intersection property (see
Haberman, 1974). This means that for any marginal in the ordering, all
those variables which have appeared in any of the marginals before it, also
appear in a single marginal before it. For example, for the set of marginals
{AB,CD, AC} the ordering (AB,CD, AC) does not satisfy the running
intersection property, since the variables from AC which have appeared
before are A and C, but they do not both appear in either AB or CD.
However, the ordering (AB,AC,CD) does satisfy the running intersection
property, hence the set {AB,AC,CD} is decomposable. On the other hand,
the elements of the set {AB,BC, AC} do not have an ordering satisfying
the running intersection property, so {AB,BC,AC} is non-decomposable.

The decomposability concept can be used to give explicit conditions
for marginal log-linear parameters generated by a sequence of marginals
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to be variation independent. In particular, all the marginals that are con-
structed at any given step in the reconstruction process have to form a
decomposable set (Kellerer, 1964). That is, for all k ≤ n, the maximal
elements of the first k marginals in the sequence must be decomposable.
Such sequences are called ordered decomposable. For example, the ordering
(AB,BC, CD,ABCD) is ordered decomposable, since {AB}, {AB,BC},
{AB,BC,CD}, and {ABCD} are all decomposable, respectively. The or-
dering (AB,BC, AC,ABC), however, is not ordered decomposable, since
the maximal elements of the first three marginals are {AB,BC, AC}, that
is not a decomposable set. The following theorem follows immediately from
the construction process.

Theorem 2 The marginal log-linear parameters generated by a hierarchical
sequence of marginals are variation independent if and only if the sequence
is ordered decomposable.

It follows that the ordinary log-linear parameters (excluding the redundant
ones) are variation independent. This is easy to see, since given any prespec-
ified values, a distribution can immediately be found by appropriate addi-
tions such as in (1). On the other hand, the multivariate logistic transform
is not variation independent if there are more than two variables. However,
for the three variable case, replacing λA

i
C
k in (7) by λA

i
B
∗

C
k yields the set

{λ∅, λA
i , λB

j , λC
k , λA

i
B
j , λB

j
C
k , λA

i
B
∗

C
k , λA

i
B
j

C
k } (11)

This set is generated by the sequence (∅, A, B,C,AB,BC,ABC), that is or-
dered decomposable. Hence, the parameterization is variation independent.

5 Restricting marginal log-linear parameters

A wide range of interesting statistical models are obtained by imposing affine
restrictions on marginal log-linear parameters. Two fundamental questions
that will be dealt with in this section are, firstly, when those restrictions are
feasible, and, secondly, how to test, using a randomly drawn sample, the
hypothesis that the restrictions hold true for a population.

An example of infeasible restrictions was given above, where prescribed
AB, BC, and AC marginals of a table ABC turned out to be incompatible.
The restrictions can be obtained by prescribing, for example, the marginal
log-linear parameters generated by the sequence (AB,BC,AC). Since the
three marginals are not ordered decomposable, the generated parameters
are not variation independent by Theorem 2. Hence, it is possible that

12



restrictions on them are infeasible. Note that no ordering of these marginals
makes them ordered decomposable. In general, if restrictions are placed on
parameters generated by an ordered decomposable sequence of marginals,
those restrictions will be feasible. Furthermore, as shown by Bergsma and
Rudas (2002), linear restrictions on parameters generated by any sequence
of marginals are always feasible because the uniform distribution satisfies
them.

It may be noted that the question of feasibility is also important in a
related field, namely that of conditionally specified distributions (Arnold, B.
C., E. Castillo and J-M. Sarabia, 1999). However, the marginal log-linear
parameters discussed here are most suitable for specifying average condi-
tional parameters or for specifying constancy of conditional distributions,
rather than for the complete specification of the conditional distributions.
Therefore the feasibility problems arising in the two fields are of a differ-
ent nature, and some of the complex issues arising in general conditionally
specified distributions do not occur here.

If it has been determined that a particular model is feasible, it may be
tested by drawing a sample from the population and assessing its goodness-
of-fit to the model. The most widely used sampling schemes are multinomial
and Poisson. From Theorem 1, it follows that such models form a so-called
curved exponential family, to which standard asymptotic theory is applicable
(Lauritzen, 1996). A detailed discussion of this topic is given by Bergsma
and Rudas (2002).
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