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Abstract—By extending the information-theoretic arguments of
previous papers dealing with the Barron-type density estimates,
and their consistency in information divergence and chi-square
divergence, the problem of consistency in Csiszár’s �-divergence
is motivated for general convex functions�. The problem of
consistency in�-divergence is solved for all� with �(0) <1 and
�(t) = O(t ln t) when t!1. The problem of consistency in the
expected�-divergence is solved for all� with t �(1=t) + �(t) =
O(t2) when t!1. Various stronger versions of these asymptotic
restrictions are considered too. Assumptions about the model
needed for the consistency are shown to depend on how strong
these restrictions are.

Index Terms—Barron density estimate, consistency in diver-
gences and expected divergences, divergences of Csiszár, non-
parametric density estimates, Ŕenyi distances.

I. INTRODUCTION

T HERE is an extensive literature dealing with nonpara-
metric density estimators consistent in the-distance

or -distance. Relatively few papers have considered density
estimators consistent in distances topologically stronger than
these two. Bickel and Rosenblatt [7] proved consistency of
the well-known kernel estimators in the reversed (Neyman-
modified) -divergence. Barron [2], [4] introduced an estima-
tor combining in some sense the advantages of histogram and
kernel estimators. Later Barronet al. [4] introduced a whole
class of such estimators and proved their consistency in the
information divergence. Recently, Gy¨orfi et al. [18] established
the consistency of the Barron estimator in the-divergence.

The Barron estimator proved to be a practically useful
tool for nonparametric density estimation as part of the non-
parametric density estimation package reported in [38]. It
combines the computational simplicity of classical histograms
with the accuracy of computationally much more complicated
estimators. From this point of view it thus seems to be
suitable for applications in many areas of communication
where decisions depend on density estimates and various
functionals of such estimates.

According to [4], [18], the information divergence and the
-divergence between a true densityand any estimate
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are appropriate measures of inaccuracy of. Estimators
consistent in these two divergences are thus asymptotically
accurate. In this paper, we consider the general class of-
divergences introduced by Csisźar [10], [11] and
specified by convex functions . We extend
information-theoretic and statistical arguments in [2], [4], [18]
to this class and we demonstrate the significance of the
inaccuracy measure for a quite wide family of
convex functions . We prove the asymptotic accuracy of
Barron estimator in the sense of consistency in-divergence
or expected -divergence for most common types of convex
functions . Conditions imposed on the statistical model by
our theorems depend on how fast the convex function
increases in the neighborhoods of and . The
faster increases, the stronger is the-divergence topology
on the model and, consequently, the stricter restrictions on the
model are needed.

The two types of information divergence considered in [4]
and the two types of -divergence considered in [7] and
[18] satisfy the aforementioned technical conditions. The same
holds also for the total variation norm considered by Devroye
and Gÿorfi [16] (c.f. also Barronet al. [4] and Berlinetet al.
[5]), the distances of Matusita [23], and the most important
of the distances of Ŕenyi [30] (c.f. their variant considered by
Liese and Vajda [21] and Read and Cressie [29]). Our paper
extends these results. In particular, our result concerning the
reversed -divergence is complementary to the consistency
of Barron estimator in the expected-divergence established
in [18]. The consistency in the expected reversed information
divergence is proved here under essentially weaker conditions
on the model than in [4].

Consistency in -divergence and expected-divergence
leads to the problem of asymptotic distribution of appropri-
ately normalized differences . This
problem has already been solved for some-divergences and
estimators . Namely, an asymptotic normality has been es-
tablished for the reversed -divergence and kernel estimators
in [7], for the total variation and histogram estimators in [5],
and for the information divergence and Barron-type estimators
in [6].

II. THE ESTIMATORS

We restrict ourselves to measures defined on the Borel line
, and to probability distributions defined by densities

on . Let be a probability measure or, more generally, a-
finite measure (Lebesgueis a typical continuous example, and
countinga typical discrete example). By ,
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we denote the normed space of measurable functions
with finite norms

d

(equal to the limit for ). By we denote
the set of all probability densities with respect to, i.e.,

In practice, many decisions depend on a probability distribu-
tion which is not precisely known. What is usually known are
random observations with density in a given
class . The class specifies thestatistical model. If
is not simply parameterizable, one cannot simply use a para-
metric point estimate. In such situations one has to consider a
nonparametric density estimate ,
i.e., a measurable mapping such that a.s.
(almost surely with respect to the distribution of observations

figuring in )

d and

A sequence of such mappings is anestimatorof
the unknown density .

If a distance or divergence is defined for all
and

a.s. for all (1)

then the estimator is said to beconsistent in . If in this defini-
tion is replaced by the expectation taken
with respect to the density of observations

then we obtain theconsistency in the expected
distance .

The most popular density estimator is thehistogram esti-
mator defined by means of sequences of partitionsof
the real line into intervals. We consider the variant defined for
models specified by a nonatomic probability measure

, with partitions defined by

where is the distribution function of ,
and where the sequence increases slowly to infinity in the
sense

The nonatomic assumption means thatis continuous on ,
but not necessarily strictly monotone. Therefore, is
defined as . The -probability of all sets

is then the constant , and the histogram
estimator is defined by the formula

for all

(2)

where

for all (3)

is the empirical probability distribution, with all mass uni-
formly concentrated at the observation points .
References to the extensive literature dealing with histo-
gram estimators can be found in Devroye and Györfi [16] and
Scott [34].

Some properties of the histogram estimator are undesirable.
For instance, if is continuous, then is a.s. discontinuous.
Additionally, the support of may not
contain the support of , i.e.,

(4)

Some distances defined on are hypersensitive
to discontinuities of densities and , or to situations
when the domination fails. To circumvent such
drawbacks various modifications of have been proposed in
the literature. The modifications include thefrequency polygon
(see Scott [34]) which is always continuous, and theBarron
estimator (see Barron [2]) which always dominates.

The Barron estimator is defined for modelsand partitions
considered in the definition of histogram estimator above,

by the formula

for all (5)

where for all , and
as . Each estimate belongs a.s. to .

Indeed, it is nothing but a convex mixture in the convex set
of probability densities

for (6)

The second mixture component is the density
of the dominating probability measureitself. Therefore,
is a probability density whose support
coincides with that of . Consequently, for all

.
Other examples of density estimators are thekernel esti-

mator defined as a convolution of a stochastic
kernel with (see Rosenblatt [31] and Parzen [28], or
the monographs [16] and [34]), or theminimum Kolmogorov
distance estimator which minimizes the Kolmogorov
distance between and (see Gÿorfi et al. [17]).

III. T HE DISTANCES

The most natural and popular candidate for the distance
considered in Section II is the -norm .

It is defined for all , it is further convex and
bounded by on , and possesses other nice properties. For
this distance it is relatively easy to prove the consistency and
other asymptotic properties of the above considered estimators.
Some of these properties can be extended to the-norms

, for models .
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In fact, the original asymptotic results of Rosenblatt and
Parzen concerning the kernel estimators were formulated for
the -norm. Asymptotic properties of histogram and kernel
estimators under the -norm can be found in Devroye and
Györfi [16]. Beirlant et al. [5] is the most recent contribution
in this area. The -norm consistency of the Barron estimator
was established in Barronet al. [4, Sec. II]. The -norm
properties of the histogram and kernel estimators were recently
summarized in Scott [34].

Sometimes it is necessary to consider distances
different from the -norms. These distances are often not
topologically dominated by even the strongest of the-
norms, the -norm. Conversely, they topologically dominate
weaker norms, such as the -norm.

Definition: The -divergenceof distributions represented
by densities is defined as

d (7)

where is assumed to be convex on and not linear in
an open neighborhood of, with . (The expression
behind the integral is assumed to be on

and on . Outside
this expression is assumed to be.)

The concept of -divergence was first introduced by Csiszár
[10]. As proved by Csisźar [10], [11] and Vajda [35], [37],
under the present assumptions on, the sum
is strictly positive and takes on values in the interval

. The equality takes place
if and only if while

if the orthogonality holds. For
the last equality is equivalent to orthogonality ofand .
Finally, for , the finiteness of implies

. For the same finiteness implies
the reversed domination . Thus if with a
positive -probability then for all with

.
According toÖsterreicher and Vajda [26], is an

average risk in the Bayesian dichotomy with conditional den-
sities and the – loss, provided the prior probabilities
are randomly selected with a distribution depending on.
For more details about the role of-divergences in Bayesian
decision, we refer to Clarke and Barron [8].

Obviously, the -divergence remains unaltered whenis
replaced by the nonnegative function
where is the right-hand derivative of at .
Consequently, we can restrict ourselves to nonnegativewith
the properties assumed in (7).

Example 1: -Divergences:The class of functions

defines a particular class of-divergences on . These -
divergencesare cumulants of the likelihood ratio , as
defined by the formula

d

As a special case, we have the-norm

and the well-known -divergence

d

The upper bound is

if
otherwise

and is nondecreasing in the variable . This
class of divergences has been systematically studied in [21]
and [36].
Example 2: -Divergences and R´enyi Distances:The class
of nonnegative convex functions

for and

with the corresponding limits

was introduced by Liese and Vajda [21] (unless otherwise
explicitely stated, the natural logarithms are used throughout
the paper). This class leads to the divergences

for all (8)

called information divergences of order (briefly, -diver-
gences). These divergences are skew-symmetric in the sense

for all

They are upper-bounded by where
is nonincreasing in with for , and

is nondecreasing with for
. Notice that

d

is twice the squaredHellinger distance. Other special cases
include the classicalinformation divergence( -divergence)

d

the reversed information divergence

the -divergence

d d

and thereversed -divergence

-divergences and -divergences of arbitrary distributions
have been systematically studied in [21] and [37]. Properties
of -divergences of discrete distributions have been system-
atically studied by Read and Cressie [29].

Liese and Vajda [21] also introduced the Rényi distances of
order

d

for and
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with the corresponding limits

and

These distances were originally proposed by Rényi [30] for
in a slightly different form. R´enyi distances and -

divergences are one-to-one related, with mutual coincidence
at and . In this sense, the -divergences can be
considered as versions of the Rényi distances.

We now present several applications that motivate the
present study.

Application 1: Consider a partition not
depending on , and the theoretical and empirical probability
vectors

d

and

(c.f. (3))

By the strong law of large numbers, the estimate of is
consistent in the -norms . It is thus
reasonable to reject the hypothesis when the distances

exceed certain critical values . It
is however too hard to calculate critical values leading to
given asymptotic test sizes , i.e., to specify scaling
factors leading to known asymptotic distributions for

. This negative conclusion remains valid
even if the -norm is replaced by the power or any
other one-to-one mapping. On the other hand, if the-norms
are replaced by the-divergences

with twice continuously differentiable at and
, then the scaling factors

lead to the chi-squared asymptotic distribution of statistics
, with degrees of freedom (c.f.

Section II in Meńendezet al. [24]). The particular choice
(c.f. Example 2) leads to the Pearson statistic

for which the mentioned asymptotic distribution is a classical
statistical result. The choice leads to the Neyman
statistic

(reversed -divergence statistic of Pearson, see Example 2),
with the same asymptotic distribution. For some alternatives

and fixed sample sizes the power of the Neyman test
exceeds that of the Pearson test, while for other alternatives
the converse was established to be true (see, e.g., [29, Table
5.2]). Extensions of some of these testing results to the case
where the partition varies with the sample size can be
found in [24].

Application 2: Consider now data compression, where the
redundancy of a code based on a density equals
the -divergence (see Davisson [13]). A simple
binary example easily demonstrates that may be
arbitrarily large while is arbitrarily close in the -norm
to . Therefore, even the estimates consistent in all -
norms may provide asymptotically redundant codes, while
estimates consistent in the-divergence achieve asymptotic
nonredundancy. On the other hand, by the Pinsker inequal-
ity , the -divergence topologically
dominates the -norm. The consistency of in the -
divergence guarantees the a.s. convergence of to
zero. Therefore, e.g., the estimate d of the expectation

d of any bounded statistics is consistent
too. The consistency of in the expected -divergence
implies that the estimate d is asymptotically unbiased.
The consistencies of Barron estimator in the -divergence
and expected-divergence were proved in [4] for models with

finite (c.f. [4, Lemma 2, Appendix]).
Application 3: Consider the -divergences. Similarly as

in the previous situation, all -divergences with
dominate the -norm, and none of them is dominated by the

-norm. Consistency of an estimate in the -divergence
for implies consistency of estimates d
of the expectations d for all statistics
satisfying the condition

d

Similarly, consistency in the expected -divergence implies
asymptotic unbiasedness of estimates d . These con-
clusions follow from the fact that, by the Hölder inequality,
the normalized absolute deviation

d d

d

is bounded above by (c.f. [36]). Thus if in a
model the moment d is bounded on

for some , then for every estimate consistent in the
-divergence and every , the statistic

d

consistently estimates the linear function

d

with polynomials of degree at most. Estimates
of such functions were considered by Barron and Sheu [3].
Note that all previous conclusions also hold with the absolute
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moments of order or replaced by the corresponding
centralized alternatives.

Since

for all

consistency in the (expected) -divergence for any is
stronger than the consistency in the (expected)-divergence.
Consistency of the Barron estimator in the -divergence
and expected -divergence was proved in [18] for models
satisfying stronger conditions than (c.f. [18,
Lemma 4, Appendix]).

Application 4: Another application of density estimators
consistent in -divergence is the call admission control and
call admission policing in asynchronous transmission mode
(ATM) networks, such as broadband integrated service digital
networks (ISDN’s) (see De Prycker [15] or Hui [19]). Data
rates achieved by the individual user during the transmission
period followed a distribution (here
for ). Relevant user characteristics include the tail
probabilities

d

and the moments

d

(Usually it suffices to consider .) By sampling a user’s
data rates one can obtain various estimatesof his density

. In models with centralized or noncentralized moments
of order bounded for some , each density
estimator consistent in -divergence guarantees the a.s.
convergence of both

d d

and

d d

to zero. Estimators consistent in a distance topologically
weaker than the -divergence cannot guarantee this. For
instance, the Kolmogorov distance guarantees the convergence
of tail probabilities but neither the convergence of expectations
nor the convergence of variances.

Application 5: Consider a sequence of
tests of the null hypothesis against the
alternative based on independent observations, and
the correspondingfirst- and second-kind errors

d and d

As follows from Csisźar [12, Theorem 1], the Ŕenyi distance
with is nothing but the supremum of

real numbers for which there exists a sequence of tests
such that for all

and

as

Therefore, the R´enyi distances represent the cutoff rates in
testing one data source against another.

This result of Csisźar means that the data sourcesand
are exponentially separable (in an obvious statistical sense),
and that the R´enyi distance characterizes the rate
of this separation.

Let be an estimator of the density a
sequence of positive integers,
a sequence of tests of against the alternatives
based on independent observations, and the
corresponding sequences of errors. We shall consider two
extremal situations: entire separability of pairs of the-
dimensional product sources and contiguity of these
pairs (see Roussas [32] and Liptseret al. [20]).

The sequences and of product densities are said
to be entirely separableif there exists a sequenceof tests
under consideration such that

a.s.

The sequences and are said to becontiguousif for
any sequence of tests under consideration

implies a.s.

and

implies

We see that in the case of entire separation, the data sources
and can asymptotically be distinguished on the basis of
independent observations with the error tending a.s. to zero.

In the case of contiguity such a distinction is impossible. It is
preferable to use density estimates such that and
are contiguous for increasing as fast as possible. By Liese
and Vajda [21, Proposition 7.8], the contiguity takes place if
and only if the -divergences satisfy the relation

a.s.

It is seen from here that the desired contiguity is hardly
possible without the consistency of in the -divergence
for all . On the other hand, the contiguity takes
place if is order consistent in the -divergence (i.e.,

a.s.) for each . Thus the
new approach to optimality of density estimates formulated
in this application leads to consistency in a subfamily of
generalized information divergences.

Another application where accuracy of density estimates
is measured by some divergence can be found in
the extensive literature on classification, pattern recognition,
and neural networks, see the first two chapters in Devroyeet
al. [14] and references therein.

An additional argument in favor of -divergences follows
from Pardo and Vajda [27]. Namely,-divergences are the
only distances that satisfy the information processing theorem
of information theory (c.f., Cover and Thomas [9]), in the
sense that they are invariant with respect to all information-
preserving transformations of data. Distances that



1004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998

lack this invariance property (e.g., the -norms for ,
and the Kolmogorov distance) can be dramatically changed
by – recodings of data spaces.

IV. THE RESULTS

In this section we consider models where the
dominating is a probability measure. We also consider
special models defined by the formulas

(9)

(10)

(11)

where are constants satisfying the relation

(12)

where we put . Moreover, the definition of is
extended also to and . These
added pairs satisfy (12) with replaced by equality.

The inequalities (valid for ) and
(valid for ) imply

and

for all . Therefore, the conditions and
are, respectively, equivalent to

d

and

d

Similarly, for all and

and for all

Using the first inequality with , we obtain
, i.e.,

for any and . Further, taking the
first inequality with and combining it with the
second inequality, we obtain

Hence, for any , the assumptions
imply . Therefore, .

It is easy to see that if this inclusion remains valid for
all and if , for all . Thus we
have proved the following result.

Proposition 1: For any pair with the
property (12), the models (9)–(11) satisfy the relations

The restricted relations

remain valid also for with and
.

In the following theorems we consider the Barron estimator
defined by (5) for probability measuresand partitions
satisfying the condition

–a.s. for all (13)

Here denotes the conditional-expectation of the
density on the -generated subfield of , i.e., a function
constant on the sets of , with values given by the formula

d
d for all

(14)
(Notice that the expectation with respect to the distribution

differs from the expectation with respect to the distribution
defined by the product density which is also
used in the paper.) Since is a piecewise-constant
approximation of by mean values taken with respect to,
arbitrary partitions of satisfying (13) have been called-
approximatingin [4] and [18]. Applying (13) to the positive
and negative part of any one easily obtains that
(13) is equivalent to

–a.s. for all

The partitions considered in (5) are for a given
specified by a slowly increasing sequence of integers. Ac-
cording to the next Proposition, if for a sequence of
positive integers , (13) holds for every probability measure

. Replacing by

we obtain modified partitions differing from just
by slightly reduced cardinality, but with the guaranteed-
approximating property for any.

Note that satisfies the relation if
and only if

If then this condition holds for
so that also .

The binary exponential specification of also simplifies
the numerical calculations involving . Indeed, this estimate
can then be evaluated iteratively for all
by storing in memory the frequency counts for all
intervals . Then differs from
on just one interval covering the new observation

. Addressing the memory cells by an appropriate-bit
binary code, one can easily calculate the values for all
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and all , as well as the values of linear
functionals

d d

of the corresponding distribution estimate . Practically, the
only task is to recover the values for by
summing up the contents of all memory cells corresponding
to the intervals of contained in .

Proposition 2: If for some integers
and then every probability measure and the
corresponding partitions satisfy the relation (13).

Proof of this statement and the main results below are
presented in Section V.

Theorem 1: Let be a function satisfying the assumptions
of the Definition with finite. Then is consistent -
divergence and expected-divergence

i) in the model if , and
ii) in the model if for .

All -divergences of order satisfy the condition
in i). This condition is satisfied also by (leading
to the -norm ), by all considered in (8) with

, by

(leading to the metrics on , seeÖsterreicher
[25]), by

(leading to divergences with an interesting statistical applica-
tion in Rukhin [33]), and by

(leading to the -norms known as Matusita
distances, see Matusita [23]).

The conditions in ii) and hold, e.g., for the
divergences of Lin [22] defined by the convex functions

and for -divergences of order .

Theorem 2: Let . The estimator is consistent
in the expected -divergence for all considered in the
Definition with when .

The condition of Theorem 2 holds for all -divergences of
order .

Theorem 3: Let . The estimator is consistent
in the expected -divergence for all considered in the
Definition with when .

The condition of this theorem holds for all -divergences
of order , and for -divergences with .
These functions can be linearly combined (using positive

coefficients) with the -functions satisfying the condition of
i) or ii) in Theorem 1. Indeed, the conditions i) and ii) are
stronger than that of Theorem 3, and each positive linear
combination of functions satisfying the assumptions of
Definition satisfies these assumptions too. A similar remark
applies, of course, also to the examples satisfying Theorem 2.

The conditions imposed on-divergences in Theorems 1–3
obviously do not hold for -divergences with and

-divergences with .

V. PROOFS OF THERESULTS

Proof of Proposition 2: Let be the continuous distri-
bution function of

and the set of all such that

for all

Obviously, the complement– is a union of disjoint intervals
(open on the left) on which the function takes on different
constant values. The set is thus measurable and .

Let us now consider the subfields of the Borel
field generated by , where is the partition
of into disjoint intervals defined by the equidistant
points . The assumed expo-
nential form of guarantees that these subfields are nested
in the sense that . If is the subfield
generated by the union then the well-known Ĺevy
martingale convergence theorem implies that the conditional
expectations and
satisfy the asymptotic relation

–a.s. for all

We shall prove that –a.s.
It follows from the exponential form of that the subsets

and

are nested in the sense that , and
. The union is dense in . Indeed, for any

and , there exists with the property

so that, by the assumed strict monotonicity of, the point
satisfies the relation

By the theorem proved in Abou–Jaude [1, pp. 216–219] (c.f.
also [16, Theorem 5]), it follows that

As is well known, this implies –a.s. convergence of sub-
sequences of to . But in view of the martingale
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convergence established above, this means that –a.s.
which completes the proof.

Proofs of Theorems 1–3 are based on a chain of lemmas.
The first lemma is proved in Theorem 1 and [4, eq. (2.10)].

Lemma 1: Let . The estimator is consistent in
the -norm and expected -norm.

The following result follows from [4, Theorem 2].

Lemma 2: Let . The estimator is consistent in
the -divergence and expected-divergence.

The consistency of established in the next lemma was
proved for the particular model with and in
Barronet al. [4, Theorem 5]. The present stronger and wider
result is thus of its own interest in information theory, with
similar applications as the mentioned Theorem 5.

Lemma 3: Let . The estimators and are
consistent in the expected-divergence.

Proof: By (6) and by the Jensen inequality applied to the
convex function

d

d

where, by the assumption , is finite.
Denoting for simplicity the conditional expectation (14) by
we obtain

d d

where, by [4, Theorem 3], tends to zero. Thus it remains
to prove that tends to zero. By (2)

d

d

so the obvious relation implies

d

Since , we have

By the monotonicity of -divergence (c.f. [21] or [37])

Therefore, if we prove

(15)

we have established the desired consistency. We see from (13)
that (15) holds when the limit and the expectation can be
interchanged. If or in (10), this interchange is
justified for by the Lebesgue bounded convergence
theorem. Indeed, if and for some

, then –a.s., where
is -integrable. If then is –a.s. bounded
below and above by positive constants. Therefore, is
absolutely –a.s. bounded. It remains to investigate the case

. Here the Ḧolder inequality implies that

for all and conjugated in the usual
sense. Applying Jensen’s inequality in the convex function

and the conditional -expectation, we obtain
. Therefore,

Choosing

and

we obtain

for any . Since , the strict inequality
in (12) implies that . This implies the uniform -
integrability of the sequence , and therefore the
commutativity of and in (15). This proves (15) and
thus completes the proof of consistency in the expected-
divergence.

Since is the -divergence, the fol-
lowing result follows from Proposition 2 and [18, Theorem 1].

Lemma 4: Let . The estimator is consistent in
the expected -divergence.

Since is the reversed -diver-
gence, the following lemma is complementary to the previ-
ously mentioned result of [18].

Lemma 5: Let . The estimator is consistent in
the expected -divergence.

Proof: The proof is similar to that of Lemma 3. Jensen’s
inequality implies that

d

d

where if . Thus it suffices to consider
the random variables

d

By definitions (2) and (3)

d
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so that

d d d

d

d d

By the Cauchy–Schwarz inequality

d d

so that the relation

d d (16)

would imply the desired consistency. Obviously, (16) holds if
the sequence is uniformly integrable. For
we can consider the same and as in the proof of Lemma
3. We obtain a similar result

Hence by the definition of

Since , this implies the desired uniform integrability, and
thus the validity of (16). If then (12) implies
and if then . The modification of the previous
procedure in the case is thus obvious.

Lemma 6: If satisfies the conditions of Theorem 1, part
i), then there exists such that

for all

Proof: Since is convex

is nonincreasing in the domain and nondecreasing
in the domain . Therefore, is bounded above by

which is by assumption finite and positive.

Lemma 7: If satisfies the conditions of Theorem 1, part
ii), then there exist positive and such that

for all

Proof: In view of Lemma 6 we may restrict ourselves
to ’s with . Using the same argument as in
the previous proof

for all (17)

Further, is convex on the interval with
and with the derivative . This implies

for all (18)

Consequently, if and then

for all

Thus it suffices to prove that the assumptions
when and imply the

existence of such that

for all (19)

By the assumption, there exist and such that
and for all . We shall

prove that (19) holds for

The convexity of functions and implies for
all

and

Therefore,

i.e., (19) with the above considered holds for .
If then

and we see that the previous conclusion remains valid.

Lemma 8: If satisfies the condition of Theorem 2 then
there exist positive and such that

for all

Proof: Let satisfy the condition of Theorem 3. Replac-
ing in the domain by
one obtains a modification of satisfying the conditions of
Theorem 1, part ii). By (19) there exists such that

for all

and, by (18), all satisfy the relation

for all
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Thus is suffices to prove the existence of such that

for all (20)

By substituting in (20) and multiplying both sides of
the inequality by one obtains that (20) is equivalent to

for all

It is easy to see that possesses the properties
assumed in (7) over the whole domain . Moreover,
the condition of Theorem 3 concerning implies that
satisfies the assumptions of Theorem 1, part ii) over the domain

. Thus (20) follows from (19) which has already been
proved above.

Lemma 9: If satisfies the condition of Theorem 3, then
there exist positive and such that

for all

Proof: Let satisfy the condition of Theorem 3. It
suffices to prove that there exist positive such that

for all

Indeed, by taking large enough and putting , one
obtains the relation of Lemma 9.

1) If is finite then (17) holds. If and
then

for all

Thus it suffices to prove the existence of such
that

for all (21)

Proof of this relation for considered in (7) with
when follows the lines of proof

of (19) and is thus omitted here.
2) If then the validity of (21) remains unaf-

fected, and it suffices to prove the existence of
such that

for all (22)

The proof of (22) is similar to that of (20) above.
Namely, by substituting in (22) and multiplying
both sides of the inequality by , (22) is seen to
be equivalent to

for all

where possesses the properties as-
sumed in (7) over the whole domain . Moreover,
the condition of Theorem 3 concerning implies that

when . Thus the existence of
satisfying (22) is equivalent to the existence of
satisfying (21). This completes the proof.

Proofs of Theorems 1–3:Since the -divergence is non-
negative, part i) of Theorem 1 follows from Lemmas 1 and 6
part ii) from Lemmas 2 and 7. Similarly, Theorem 2 follows
from Lemmas 2, 3, and 8, and Theorem 3 from Lemmas 4,
5, and 9.

VI. CONCLUSIONS

Asymptotic accuracy of the Barron nonparametric density
estimator introduced in [2] for models dominated by
a probability measure on has been established in the
sense that the -divergence and/or the expected

-divergence between the true and estimated
model tend to zero. The conditions for the consistency in
expected -divergence are

when

when

and

d d

for some . In particular, this implies consistency
in the reversed -divergence defined by .

For functions satisfying the stronger restrictions

when

when

the condition for the above considered consistency is weaker,
namely,

d and d

This fact leads to a new result about consistency in the
expected reversed-divergence defined by .

If when and/or when
then the restrictions on are even weaker, andis consistent
for all models dominated by .

For purely atomic probability measuresthere exist density
estimators consistent in all -divergences for any .
The Barron estimators exist in the sense specified in this
paper if and only if is nonatomic. By Theorem 1, if is
a nonatomic probability measure on, then is consistent
in infinitely many -divergences and expected-divergences
for all . It is however not clear, whether there exist
nonatomic probability measureson with consistent in
all -divergences or expected-divergences for at least one

. The existence of such pairs , or characterization
of convex function such that for a given nonatomic the
corresponding estimators are inconsistent in the expected

-divergence for all , are interesting open problems.
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IEEE Trans. Inform. Theory, vol. 41, pp. 26–34, Jan. 1995.

[13] L. D. Davisson, “Universal noiseless coding,”IEEE Trans. Inform.
Theory, vol. IT-19, pp. 783–795, 1973.

[14] L. Devroye, L. Györfi, and G. Lugosi,A Probabilistic Theory of Pattern
Recognition. New York: Springer-Verlag, 1996.

[15] M. de Prycker,Asynchronous Transfer Mode Solution for Broadband
ISDN. London, U.K.: Ellis Harwood, 1991.

[16] L. Devroye and L. Gy¨orfi, Nonparametric Density Estimation: The
L1-View. New York: Wiley, 1985.

[17] L. Györfi, I. Vajda, and E. van der Meulen, “Minimum Kolmogorov dis-
tance estimates of parameters and parametrized distributions,”Metrika,
vol. 42, pp. 237–255, 1995.

[18] L. Györfi, F. Liese, I. Vajda, and E. van der Meulen, “Distribution
estimates consistent in�2-divergence,”Statistics, vol. 31, 1998, in print.

[19] J. Hui,Switching and Traffic Theory for Integrated Broadband Networks
in Telecommunications.Boston, MA: Kluwer, 1990.

[20] R. S. Liptser, F. Pukelheim, and A. N. Shiryayev, “On necessary and
sufficient conditions for contiguity and entire separation of probability
measures,”Uspekhi Matemat. Nauk, vol. 37, pp. 97–124, 1982.

[21] F. Liese and I. Vajda,Convex Statistical Distances.Leipzig, Germany:
Teubner, 1987.

[22] J. Lin, “Divergence measures based on Shannon entropy,”IEEE Trans.
Inform. Theory, vol. 37, pp. 145–151, 1991.

[23] K. Matusita, “Distances and decision rules,”Ann. Inst. Statist. Math.,
vol. 16, pp. 305–320, 1964.

[24] M. L. Menéndez, D. Morales, L. Pardo, and I. Vajda, “Asymptotic
distributions of�-divergences of hypothetical and observed frequencies
on refined partitions,”Statist. Nederland., to be published.
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[30] A. Rényi, “On measures of entropy and information,” inProc. 4th
Berkeley Symp. Probability Theory and Mathematical Statisticsvol. 1,
pp. 547–561, 1961.

[31] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” Ann. Math. Statist., vol. 47, pp. 832–837, 1956.

[32] G. G. Roussas,Contiguity of Probability Measures.Cambridge, U.K.:
Cambridge Univ. Press, 1972.

[33] A. L. Rukhin, “Optimal estimator of the mixture parameter by the
method of moments and information affinity,” inTrans. 12th Prague
Conf. Information Theory, Statistical Decision Functions and Random
Processes(Prague: Czech Acad. Sci. and Charles Univ., 1994), pp.
214–219.

[34] D. W. Scott,Multivariate Density Estimation. New York: Wiley, 1992.
[35] I. Vajda, “On thef -divergence and singularity of probability measures,”

Period. Math. Hungar., vol. 2, pp. 223–234, 1972.
[36] , ��-divergence and generalized Fisher’s information,” inTrans.

6th Prague Conf. Information Theory, Statistical Decision Functions
and Random ProcessesPrague, Czechoslovakia: Academia, 1972, pp.
873–886.

[37] , Theory of Statistical Inference and Information.Boston, MA:
Kluwer, 1989.

[38] I. Vajda and V. K̊us, “Adaptive density estimates for ATM networks,”
Prague, Czech Rep., Inst. Inform. Theory and Automation, Res. Rep.
1893, Dec. 1996.


