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1. Introduction

By a nonnegative matrix we mean a matrix whose entries are nonnegative real
numbers. By positive matrix we mean a matrix all of whose entries are strictly
positive real numbers.

These notes give the core elements of the Perron-Frobenius theory of nonnegative
matrices. This splits into three parts:

(1) the primitive case (due to Perron)
(2) the irreducible case (due to Frobenius)
(3) the general case (due to?)

We will skip the (in most respects easy) transition from the irreducible to the
general case.

2. The primitive case

Definition 2.1. A primitive matrix is a square nonnegative matrix some power of
which is positive.

The primitive case is the heart of the Perron-Frobenius theory and its applica-
tions. There are various proofs. See the final remarks for acknowledgments on this
one.

The spectral radius of a square matrix is the maximum of the moduli of its
eigenvalues. A number λ is a simple root of a polynomial p(x) if it is a root of
multiplicity one (i.e., p(λ) = 0 and p′(λ) 6= 0). For a matrix A or vector v, we
define the norm (||A|| or ||v||) to be the sum of the absolute values of its entries.

Theorem 2.2 (Perron Theorem). Suppose A is a primitive matrix, with spectral
radius λ. Then λ is a simple root of the characteristic polynomial which is strictly
greater than the modulus of any other root, and λ has strictly positive eigenvectors.

For example, the matrix
(

0 2
1 1

)
is primitive (with eigenvalues 2,−1), but the

matrices
(

0 4
1 0

)
(with eigenvalues 2,−2) and

(
1 0
1 1

)
(with 1 a repeated eigen-

value) are not. Note that the “simple root” condition is stronger than the condition
that λ have a one dimensional eigenspace, because a one-dimensional eigenspace
may be part of a larger-dimensional generalized eigenspace.

We begin with a geometrically compelling lemma.

Lemma 2.3. Suppose T is a linear transformation of a finite dimensional vector
space, S′ is a polyhedron containing the origin in its interior, and a positive power
of T maps S′ into its interior. Then the spectral radius of T is less than 1.
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Proof of the lemma. Without loss of generality, we may suppose T maps S′ into its
interior. Clearly, there is no eigenvalue of modulus greater than 1.

The image of S′ is a closed set which does not intersect the boundary of S′.
Because Tn(S′) ⊂ T (S′) if n ≥ 1, no point on the boundary of S′ can be an image
of a power of T , or an accumulation point of points which are images of powers of
T . But this is contradicted if T has an eigenvalue of modulus 1, as follows:

CASE I: a root of unity is an eigenvalue of a T.
In this case, 1 is an eigenvalue of a power of T , and a power of T has a fixed

point on the boundary of S′. Thus the image of S′ under a power of T intersects
the boundary of S′, a contradiction.

CASE II: there is an eigenvalue of modulus 1 which is not a root of unity.
In this case, let V be a 2-dimensional subspace on which T acts as an irrational

rotation. Let p be a point on the boundary of S′ which is in V . Then p is a limit
point of {Tn(p) : n > 1}, so p is in the image of T , a contradiction.

This completes the proof. �

Proof of the Perron Theorem. There are three steps.
STEP 1: get the positive eigenvector.
The unit simplex S is the set of nonnegative vectors v such that ||v|| = 1. The

matrix A induces the continuous map from S into itself which sends a vector v to
||v||−1v. By Brouwer’s Fixed Point Theorem, this map has a fixed point, which
shows there exists a nonnegative eigenvector. Because a power of A is positive, the
eigenvector must actually be positive. Let λ be the eigenvalue, which is positive.

STEP 2: stochasticize A.
Let r be a positive right eigenvector. Let R be the diagonal matrix whose

diagonal entries come from r, i.e. R(i, i) = ri. Define the matrix P = (1/λ)R−1AR.
P is still primitive. The column vector with every entry equal to 1 is an eigenvector
of P with eigenvalue 1, i.e. P is stochastic. It now suffices to do Step 3.

STEP 3: show 1 is a simple root of the characteristic polynomial of P dominating
the modulus of any other root.

Consider the action of P on row vectors: P maps the unit simplex S into itself
and a power of P maps S into its interior. From Step 1, we know there is a
positive row vector v in S which is fixed by P . Therefore S′ = −v + S is a
polyhedron, whose interior contains the origin. By the lemma the restriction of
P to the subspace V spanned by S′ has spectral radius less than 1. But V is
P -invariant with codimension 1. �

We can now check that a primitive matrix has (up to scalar multiples) just one
nonnegative eigenvector.

Corollary 2.4. Suppose A is a primitive matrix and w is a nonnegative vector,
with eigenvalue β. Then β must be the spectral radius of A.

Proof. Because A is primitive, we can choose k > 0 such that Akw is positive.
Thus, w > 0 (since Akw = βkw) and β > 0. Now choose a positive eigenvector v
which has eigenvalue λ, the spectral radius, such that v < w. Then for all n > 0,

λnv = Anv ≤ Anw = βnw .

This is impossible if β < λ, so β = λ. �
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Remarks 2.5. (1) Any number of people have noticed that applicability of Brouwer’s
Theorem. (Charles Johnson told me Ky Fan did this in the 1950’s.) It’s a matter
of taste as to whether to use it to get the eigenvector.

(2) The proof above, using the easy reduction to the geometrically clear and
simple lemma, was found by Michael Brin in 1993. It is dangerous in this area to
claim a proof is new, and I haven’t read the German papers of Perron and Frobenius
themselves. However I haven’t seen this reduction in the other proofs of the Perron
theorem I’ve read.

(3) The utility of the stochasticization trick is by no means confined to this
theorem.

3. The irreducible case

Given a nonnegative n× n matrix A, we let its rows and columns be indexed in
the usual way by {1, 2, . . . n}, and we define a directed graph G(A) with vertex set
{1, 2, . . . , n} by declaring that there is an edge from i to j if and only if A(i, j) 6= 0.
A loop of length k in G(A) is a path of length k (a path of k successive edges)
which begins and ends at the same vertex.

Definition 3.1. An irreducible matrix is a square nonnegative matrix such that for
every i, j there exists k > 0 such that Ak(i, j) > 0.

Notice, for any positive integer k, Ak(i, j) > 0 if and only if there is a path of
length k in G(A) from i to j.

Definition 3.2. The period of an irreducible matrix A is the greatest common divisor
of the lengths of loops in G(A).

For example, the matrix
(

0 2
1 1

)
has period 1 and the matrix

(
0 4
1 0

)
has period

2.
Now suppose A is irreducible with period p. Pick some vertex v, and for 0 ≤ i, p

define a set of vertices

Ci = {u : there is a path of length n from v to u such that n ≡ i mod p} .

The sets C(i) partition the vertex set. An arc from a vertex in C(i) must lead to
a vertex in C(j) where j = i + 1 mod p. If we reorder the indices for rows and
columns of A, listing indices for C0, then Cl, etc., and replace A with PAP−1 where
P is the corresponding permutation matrix, then we get a matrix B with a block
form which looks like a cyclic permutation matrix. For example, with p = 4, we
have a block matrix

B =


0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0

 .

An specific example with p = 3 is
0 2 1 0 0 0
0 0 0 4 1 2
0 0 0 1 0 3
3 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0

 .
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Note the blocks of B are rectangular (not necessarily square). B and A agree on
virtually all interesting properties, so we usually just assume A has the form given
as B (i.e., we tacitly replace A with B, not bothering to rename). We call this a
cyclic block form.

Proposition 3.3. Let A be a square nonnegative matrix. Then A is primitive if
and only if it is irreducible with period one.

Proof. Exercise. �

Definition 3.4. We say two matrices have the same nonzero spectrum if their char-
acteristic polynomials have the same nonzero roots, with the same multiplicities.

Proposition 3.5. Let A be an irreducible matrix of period p in cyclic block form.
Then Ap is a block diagonal matrix and each of its diagonal blocks is primitive.
Moreover each diagonal block has the same nonzero spectrum.

Proof. These diagonal blocks must be irreducible of period 1, hence primitive. Each
has the form D(i) = A(i)A(i + l) · · ·A(i + p) where A(j) is the nonzero block in
the jth block row and j is understood mod p. Thus given i there are rectangular
matrices S, R such that D(i) = SR, D(i + l) = RS. Therefore their nth powers
are S((RS)n−1R) and ((RS)n−1R)S, so for each n their nth powers have the same
trace (because trace(UV ) = trace(V U) for any matrices U, V ). This forces D(i)
and D(i + 1) to have the same nonzero spectrum. (In fact the nonnilpotent part of
the Jordan form for D(i) is the same for all i.) �

Proposition 3.6. Let A be an irreducible matrix with period p and suppose that ξ
is a primitive pth root of unity. Then the matrices A and ξA are similar.

In particular, if c is root of the characteristic polynomial of A with multiplicity
m, then ξc is also a root with multiplicity m.

Proof. The proof for the period 3 case already explains the general case:ξ−1I 0 0
0 ξ−2I 0
0 0 ξ−3I

  0 A1 0
0 0 A2

A3 0 0

 ξ1I 0 0
0 ξ2I 0
0 0 ξ3I


=

 0 ξA1 0
0 0 ξA2

ξ−2A3 0 0

 = ξ

 0 A1 0
0 0 A2

A3 0 0


since ξ−2 = ξ. �

Definition 3.7. If A is a matrix, then its characteristic polynomial away from zero
is the polynomial qA(t) such that qA(0) is not 0 and the characteristic polynomial
of A is a power of t times qA(t).

Theorem 3.8. Let A be an irreducible matrix of period p. Let D be a diagonal
block of Ap (so, D is primitive). Then

qA(t) = qD(tp) .

Equivalently, if ξ is a primitive pth root of unity and we choose complex numbers
λ1, . . . , λj such that qD(t) =

∏k
j=1(t− (λp

j )), then

qA(t) =
p−1∏
i=0

k∏
j=1

(t− ξiλj) .
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Proof. From the last proposition, a nonzero root c of qAp has multiplicity kp, where
k is the number such that every pth root of c is a root of multiplicity k of qA. Each
c which is a root of multiplicity k for qD is a root of multiplicity kp for qAp (since
the diagonal blocks of Ap have the same nonzero spectrum. �

Theorem 3.9 (Perron-Frobenius Theorem). Let A be an irreducible matrix of
period p.

(1) A has a nonnegative right eigenvector r. This eigenvector is strictly posi-
tive, its eigenvalue λ is the spectral radius of A, and any nonnegative eigen-
vector of A is a scalar multiple of r.

(2) The roots of the characteristic polynomial of A of modulus λ are all simple
roots, and these roots are precisely the p numbers λ, ξλ, . . . , ξp−1λ where ξ
is a primitive pth root of unity.

(3) The nonzero spectrum of A is invariant under multiplication by ξ.

Proof. Everything is easy from what has gone before except the construction of the
eigenvector. The general idea is already clear for p = 3. Then we can consider A
in the block form

A =

 0 A1 0
0 0 A2

A3 0 0

 .

Now A1A2A3 is a diagonal block of A, primitive with spectral radius λ3. Let r
be a positive right eigenvector for A1A2A3. Compute: 0 A1 0

0 0 A2

A3 0 0

  λ2r
A2A3r
λA3r

 =

A1A2A3r
λA2A3r
λ2A3r

 = λ

 λ2r
A2A3r
λA3r


�

4. An application

The Perron theorem provides a very clear picture of the way large powers of a
primitive matrix behave.

Theorem 4.1. Suppose A is primitive. Let u be a positive left eigenvector and let
v be a positive right eigenvector for the spectral radius λ, chosen such that uv = 1.
Then ((1/λ)A)n converges to the matrix vu, exponentially fast.

Remark 4.2. The theorem says that for large n, An−λnvu has entries much smaller
than An; the dominant behavior of An is described by the simple matrix λnvu. For

example, if A =
(

1 3
2 2

)
, then A has spectral radius λ = 4, with left and right

eigenvectors (2, 3) and
(

1
1

)
. Their inner product is 5; so, we can take

u = (2/5, 3/5) , v =
(

1
1

)
, and vu =

(
2/5 3/5
2/5 3/5

)
.

One can check that indeed

An = 4n

(
2/5 3/5
2/5 3/5

)
+ (−1)n

(
3/5 −3/5
−2/5 2/5

)
.
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Proof of theorem. The matrix (1/λ)A multiplies the eigenvectors u and v by 1 (i.e.
leaves them unchanged). Now suppose w is a generalized column eigenvector for
A for eigenvalue β. By the Perron Theorem we have |β| < λ, so limn((1/λ)A)nw
converges to the zero vector (exponentially fast). The same holds for row vectors.
Consequently ((1/λ)A)n converges to a matrix M which fixes u and v and which
annihilates the other generalized eigenvectors of A. This matrix is unique. We claim
that M = vu. For this we first note that uM = u(vu) = (uv)u = u and similarly
Mv = v. Now suppose w is a generalized column eigenvector for eigenvalue β not
equal to λ: then Mw = 0, because otherwise Mw = vuw 6= 0 would imply uw 6= 0
and then for all n > 0

λnuw = (uAn)w = u(Anw)
so

uw = (1/λn)u(Anw)
which is impossible because

lim
n→∞

1
λn

Anw = 0 .

Similarly, wM = 0 if w is a generalized row eigenvector for A for eigenvalue other
than λ.

�
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