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Abstract

When learning processes depend on samples but not on the order of the informa-

tion in the sample, then the Bernoulli distribution is relevant and Bernstein polynomials

enter into the analysis. We derive estimates of the approximation of the entropy func-

tion x log x that are sharper than the bounds from Voronovskaja’s theorem. In this

way we get the correct asymptotics for the Kullback–Leibler distance for an encoding

problem.
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1. Introduction

The approximation properties of the Bernstein polynomials for the entropy

function

f ðxÞ :¼ �x log x � ð1� xÞ logð1� xÞ ð1:1Þ
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are of interest since f 00ðxÞ ¼ �½xð1� xÞ��1 and, according to the Voronovskaja
theorem, cf. [10, p. 22], the pointwise limit

lim
n-N

nf f ðxÞ � Bn½ f �ðxÞg ¼ 1
2

ð1:2Þ

is constant for all xAð0; 1Þ: On the other hand, the difference f � Bn½ f � assumes the
value 0 at the boundary points x ¼ 0; 1 for all nAN: Thus the convergence in (1.2)
cannot be uniform, though f does belong to the O-saturation class for the Bernstein
polynomials. Further information on the global approximation behavior can be
found, e.g. in [3,8,14]. More surprising, however, is the fact that although f ðxÞ �
Bn½ f �ðxÞX0 for all xA½0; 1� with equality exactly for x ¼ 0; 1; the value 1

2
is always

exceeded by the approximation which can be phrased as

c :¼ lim inf
n-N

sup
xA½0;1�

nf f ðxÞ � Bn½ f �ðxÞg41
2
:

It is worthwhile to mention that the abscissas where the maximum is assumed tend to

the boundary like Oðn�1Þ as n increases.
It can be shown relatively easily that

f ðxÞ � Bn½ f �ðxÞX 1

2n
þ oðn�1Þ

holds uniformly in the interior of ½0; 1� as long as boundary regions of size Oðn�1þeÞ;
e40; are excluded, see (2.7). This, however, is insufficient for the application we bear
in mind, in particular as this way the points where the maximal deviation takes place
are not captured. For that reason we establish an improved estimate in Theorem 1

which extends up to boundary regions of size Oðn�1Þ: The crucial tool to achieve this
goal is a one-sided estimate for the Bernstein polynomials of convex functions which
is applicable to the Taylor polynomials of f here.

The improved estimate enables us to close a gap in an application from Learning
Theory which is concerned with the optimal encoding of the output of a random
source under the assumption that a sample of length n is available. Carefully
analyzing the difference between the entropy function and its approximating
Bernstein polynomials, we obtain improved asymptotics compared to [9]. For points
close the to left boundary, i.e., when nx is (uniformly) bounded, the asymptotical
behavior is captured by a function that can be accessed numerically. In contrast to
[9] those numerical estimates are only needed for the representation of one particular

univariate function. The gap for x between cn�1 and cn�1�e which had still been
present in [5] is thus closed. It is remarkable that the improved asymptotical estimate
becomes available due to methods from Approximation Theory which investigate
the approximation behavior of nf f � Bn½ f �g; thus remaining in the ‘‘finite’’
Bernoulli probability distribution, instead of passing to the Poisson distribution as
it is traditional in Bayesian statistics.

The univariate entropy function f from (1.2) corresponds to sources that use a
binary alphabet consisting of two symbols only. To study more general sources, we
need to extend the estimates to multivariate Bernstein polynomials on simplices
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which will be done by reducing it to sums over univariate Bernstein polynomial
approximations.

2. Interior estimate

In this section we consider the approximation of the univariate function (1.1) by
Bernstein polynomials

Bn½ f �ðxÞ :¼
Xn

k¼0

Bn
kðxÞf

k

n

� �
;

where

Bn
kðxÞ :¼

n

k

� �
xkð1� xÞn�k: ð2:1Þ

The aim of this section is an estimate of the approximation error in the interior that
is sharper than Voronovskaja’s bound.

Theorem 1. Let f be defined by (1.1). Then,

f ðxÞ � Bn½ f �ðxÞX 1

2n
þ 1

20n2xð1� xÞ �
1

12n2
for

15

n
pxp1� 15

n
: ð2:2Þ

The following observation from [2,11] provides a useful tool, and its short proof
will be given for the sake of completeness.

Lemma 2. If f is concave in ð0; 1Þ; then we have

f ðxÞ � Bn½ f �ðxÞX0 for 0pxp1:

Proof. Given x1A½0; 1�; let Q1 be the linear polynomial that interpolates f and f 0 at
x1: Since f is concave, we have Q1 � fX0 in ½0; 1�: The mapping f/Bn½ f � is
performed by a positive linear operator, and it follows that Bn½Q1 � f �X0:
Moreover, linear functions are reproduced by Bernstein polynomials. Hence,

Bn½ f �ðx1Þ ¼Bn½ f � Q1�ðx1Þ þ Bn½Q1�ðx1ÞpBn½Q1�ðx1Þ ¼ Q1ðx1Þ:

¼ f ðx1Þ:

This holds for any x1A½0; 1�; and the proof is complete. &

A direct consequence is the following.

Corollary 3. Let nX4 be an even number, f ðnÞp0 in ð0; 1Þ and Qn�1 be the Taylor

polynomial of degree n to f cat some x1 in ð0; 1Þ: Then we have in ½0; 1�:
f � Bn½ f �XQn�1 � Bn½Qn�1�:
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The inequality follows immediately from Lemma 2. The second derivative of
f � Qn�1 vanishes at x1 and by Taylor’s formula it is not positive in the interval.

The evaluation of the Bernstein polynomials of Taylor’s polynomials requires the
following expressions:

Bn½ðx � x0Þs�ðx0Þ ¼
Xn

k¼0

Bn
kðx0Þ

k

n
� x0

� �s

:

The right-hand side coincides with n�sTnsðx0Þ in terms of the functions defined in
[10, p. 13] and are provided up to s ¼ 5 in [10, p. 14].

Proposition 4. Let 0px0p1: Then we have x ¼ x0;

Bn½ðx � x0Þ2� ¼
xð1� xÞ

n
;

Bn½ðx � x0Þ3� ¼
xð1� xÞ

n2
ð1� 2xÞ;

Bn½ðx � x0Þ4� ¼ 3
x2ð1� xÞ2

n2
þ xð1� xÞ

n3
½1� 6xð1� xÞ�;

Bn½ðx � x0Þ5� ¼ 10
x2ð1� xÞ2

n3
þ xð1� xÞ

n4
½1� 12xð1� xÞ�

( )
ð1� 2xÞ:

The monomials ðx � x0Þm;m42; cause only contributions of the order n�2: This is
consistent with Voronovskaja’s theorem.

We split the symmetric entropy function (1.1) into two parts in view of the
generalization to the higher dimensional case

f ðxÞ ¼ gðxÞ þ gð1� xÞ;

gðxÞ :¼ �x log x: ð2:3Þ

Obviously,

g0ðxÞ ¼ �log x � 1;

gðkÞðxÞ ¼ ð�1Þkþ1ðk � 2Þ!
xk�1

for k41;

and gð2mÞo0: Taylor’s polynomial of degree 5 has the form

Q5ðxÞ ¼
X5
k¼2

ð�1Þk�1

kðk � 1Þxk�1
0

ðx � x0Þk þ linear polynomial:
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The Bernstein polynomial for Q5 is now evaluated at x ¼ x0 by using Lemma 4,

Q5ðxÞ � Bn½Q5�ðxÞ ¼
1� x

2n
� ð1� xÞð1� 2xÞ

6n2x

þ ð1� xÞ2

4n2x
þ ð1� xÞ

12n3x2
½1� 6xð1� xÞ�

� ð1� xÞ2ð1� 2xÞ
2n3x2

� ð1� xÞð1� 2xÞ
20n4x3

½1� 12xð1� xÞ�

¼ ð1� xÞ 1

2n
þ 1þ x

12n2x

� �
þ 1

2n3x2

ð1� xÞð1� 6xð1� xÞÞ
6

� ð1� xÞ2ð1� 2xÞ
� �

� ð1� xÞð1� 2xÞ
20n4x3

½1� 12xð1� xÞ� ð2:4Þ

¼:
1� x

2n
þ 1

12n2x
� x

12n2
þ 1

2n3x2

� R1ðxÞ þ
1

20n4x3
R2ðxÞ: ð2:5Þ

Next we estimate the function R1 in the term of order n�3 in (2.5)

R1ðxÞ ¼ ð1� xÞð1
6
� xð1� xÞ � ð1� xÞð1� 2xÞÞ

¼ ð1� xÞð1
6
� ð1� xÞ2ÞXð1� xÞð1

6
� 1ÞX� 5

6
:

The function R2 will estimated from below by the trivial bound R2ðxÞX� 2: Hence,

R1ðxÞ
2n3x2

þ R2ðxÞ
20n4x3

X� 1

n2x

5

12nx
þ 1

10ðnxÞ2

 !
:

We estimate now all the terms in (2.4) with a singularity at zero for nxX6:

1

12n2x
þ R1ðxÞ

2n3x2
þ R2ðxÞ
20n4x3

X
1

n2x

1

12
� 5

12nx
� 1

60nx

� �
X

1

12n2x
1� 6

nx

� �
:

By collecting terms we obtain.

Theorem 5. Let g be defined by (2.3). For xX15=n we have

gðxÞ � Bn½g�ðxÞX
1� x

2n
þ 1

12n2x
1� 6

nx

� �
� x

12n2

X
1� x

2n
þ 1

20n2x
� x

12n2
: ð2:6Þ

A symmetry argument yields the corresponding estimate for gð1� xÞ; and the
proof of Theorem 1 is also complete.
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Obviously, an estimate is more easily determined if it is based only on Taylor’s
polynomial of degree 3 and only the first line of (2.4) is taken into account. We note
that the resulting estimate

f ðxÞ � Bn½ f �xX 1

2n
� ð1� 2xÞ2

6n2xð1� xÞ; ð2:7Þ

however, is not sufficient for our purpose.

3. Behavior at the boundary

In Theorem 1 the neighborhood of the boundary of the interval is excluded. The
behavior near the (left) boundary of the interval will be described by a function of
the variable

z ¼ nx: ð3:1Þ

The function will be given by a power series; cf. [9], but the required properties will
be determined by numerical computations.

Recalling (2.3) we set

LnðzÞ :¼ nfg � Bn½g�g
z

n


 �
:

The handling of the Binomial coefficients will be simplified by the notation; cf. [1]

n%
k :¼ nðn � 1Þðn � 2Þyðn � k þ 1Þ: ð3:2Þ

Since the linear function x log n is reproduced by Bernstein polynomials [10], it
follows that

LnðzÞ ¼ � nx log x þ n
Xn

k¼0

n

k

� �
xkð1� xÞn�kk

n
log

k

n

¼ � nx log x � nx log n þ n
Xn

k¼0

n

k

� �
xkð1� xÞn�k k

n
log

k

n
þ k

n
log n

� �
¼ � z log z þ

Xn

k¼1

n

k

� �
z

n


 �k

1� z

n


 �n�k

k log k

¼ � z log z þ 1� z

n


 �nXn

k¼2

n%
k

nk

1

k!
z 1� z

n


 ��1
� �k

k log k:

Obviously z 1� z
n

� �1
converges uniformly to z on the compact interval ½0; 15�:

Moreover, n%
k

nk-1 for each k: The coefficients of the power series converge for n-N;

and the limits decrease as fast as the coefficients of the exponential function.
Therefore, by extending the well-known argument for uniform convergence of power
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series we conclude that Ln converges uniformly on the interval ½0; 15� to

LðzÞ :¼ � z log z þ e�z
XN
k¼2

zk

k!
k log k

¼ � z log z þ ze�z
XN
k¼1

zk

k!
logðk þ 1Þ: ð3:3Þ

The complementary function from (2.3)

hðxÞ :¼ gð1� xÞ ¼ �ð1� xÞ logð1� xÞ ¼ x �
XN
k¼2

xk

kðk � 1Þ

and the difference to its Bernstein polynomial are easily estimated by

jhðxÞ � Bn½h�ðxÞjp jhðxÞ � xj þ jBn½h � x�ðxÞj

px2 þ x2 þ x

n
p
465

n2
for 0pxp

15

n
: ð3:4Þ

Therefore, gð1� xÞ does not contribute to the asymptotics and

lim
n-N

nf f � Bn½ f �g z

n


 �
¼ LðzÞ ¼ �z log z þ ze�z

XN
k¼1

zk

k!
log ðk þ 1Þ:

The function LðzÞ is depicted in Fig. 1.
The descent of f � Bn½ f � from Voronovskaja’s bound to zero is confined to an

intervals of length 1. This is expressed in the form

lim
n-N

min
0pxp1

n f ðxÞ � Bn½ f �ðxÞ þ 1

2n
½Bn

0ðxÞ þ Bn
nðxÞ�

� �
¼ 1

2
: ð3:5Þ
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Fig. 1. Asymptotics of the error at the left end of the interval for �x log x: LðzÞ and the modification in

(3.6), (dashed).
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This remains true if in addition the non-negative function 0:4
n
½Bn

1 þ Bn
n�1� is subtracted

from L: To verify this, we have depicted in Fig. 1

LðzÞ þ e�z 1

2
� 2

5
z

� �
ð3:6Þ

in addition to L: Summing up, the asymptotics of nð f � Bn½ f �Þ is now completely
characterized by Theorem 1 and (3.5) or Fig. 1, respectively.

4. Extension to several variables

We are now turning our attention to the approximation behavior of Bernstein
polynomials for the multivariate entropy function

f ðuÞ ¼ �
Xm

j¼0

uj log uj; ð4:1Þ

where the components uj; j ¼ 0;y;m of the vector

uADm :¼ u ¼ ðu0;y; umÞARmþ1 : ujX0;
Xm

j¼0

uj ¼ 1

( )
;

can be viewed either as probabilities or as barycentric coordinates in the unit simplex

Dm: The multivariate Bernstein polynomial on the simplex now takes the form

Bn½ f �ðuÞ ¼
X

aAKm;n

f
a
n


 �
BaðuÞ;

BaðuÞ :¼
n

a

� �
ua ¼ n!

a0! � am!
ua0
0 ?uam

m ;

where

Km;n :¼ a ¼ ða0;y; amÞANmþ1
0 : n ¼ jaj :¼

Xm

j¼0

aj

( )

is the set of all homogeneous multiindices of length jaj ¼ n: Note that in the above
notation the univariate basis polynomial Bn

kðxÞ coincides with Bn�k;kð1� x; xÞ:
Before we investigate the multivariate approximation behavior of Bn½ f �; we depict

the error of approximation f � Bn½ f � in Fig. 2, showing that again at the boundary,
in particular close to the corners, the error of approximation is significantly higher
than the ‘‘plateau’’ of value 1 that is approached in the interior of the triangle. Also
note that at the boundary the univariate approximation behavior is visible, now

however with the associated limit value 1
2
:

In the following lemma we will state an elementary identity which will allow us to
reduce the approximation of the function f from (4.1) to the univariate case.
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Lemma 6. For any set of functions Gj : ½0; 1� �N0-R we haveX
aAKm;n

BaðuÞ
Xm

j¼0

Gjðuj; ajÞ ¼
Xm

j¼0

Xn

k¼0

Bn
kðujÞGjðuj; kÞ: ð4:2Þ

In particular, if

g ¼
Xm

j¼0

gjðujÞ; then Bn½g�ðuÞ ¼
Xm

j¼0

Bn½gj�ðujÞ: ð4:3Þ

Proof. Define, for any aAKm;n and 0pjpm the reduced multiindex baaj :¼ a� ajej ;

which coincides with a except that its jth component has zero value. We decompose
the basis polynomials Ba in a fashion similar to tensor products, cf. [4,12], to obtainX

aAKm;n

Xm

j¼0

Gjðuj; ajÞBaðuÞ

¼
Xm

j¼0

Xn

aj¼0

X
baajAKm�1;n�aj

Gjðuj; ajÞBaðuÞ

¼
Xm

j¼0

Xn

aj¼0

Gjðuj; ajÞ
n!

ðn � ajÞ!aj!
u
aj

j �
X

baajAKm�1;n�aj

ðn � ajÞ!
a0!?aj�1!ajþ1!?am!

ubaaj
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¼
Xm

j¼0

Xn

aj¼0

Gjðuj; ajÞuaj

j

n

aj

� �
ðu0 þ?þ uj�1 þ ujþ1 þ?þ umÞn�aj

¼
Xm

j¼0

Xn

k¼0

Gjðuj; kÞ
n

k

� �
uk

j ð1� ujÞn�k ¼
Xm

j¼0

Xn

k¼0

Gjðuj; kÞBn
kðujÞ:

This proves (4.2). By setting Gjðuj; ajÞ :¼ gjðk=nÞ we obtain (4.3). &

Combining Lemma 6 with Theorem 5, we derive the multivariate counterpart of
(2.2).

Theorem 7. Let the function f be defined in (4.1). For any uADm such that ujX15=n for

j ¼ 0; 1;y;m we have

f ðuÞ � Bn½ f �ðuÞXm

2n
þ 1

20n2

Xm

j¼0

1

uj

� 1

12n2
: ð4:4Þ

To extend our estimate to the boundary also in the multivariate case, we will again
appeal to (4.3) and make use of the univariate estimates obtained in the preceding
chapter. To that end, we define for uADm the two index sets

IX ¼ j : ujX
15

n

� �
and Io :¼ j : ujo

15

n

� �
of cardinality m þ 1� k and k :¼ #Io; respectively. Then we obtain from (2.6) that

n
X
jAIX

fg � Bn½g�gðujÞX
X
jAIX

1� uj

2
þ 1

20nuj

� uj

12n

� �
X

m þ 1� k

2
� 1

2
þ 1

12n

� �X
jAIX

uj

X
m þ 1� k

2
� 1

2
þ 1

12n

� �
1� 12k

n

� �
¼ m � k

2
þ Oðn�1Þ:

Taking also into account (3.3) we thus end up with

nf f � Bn½ f �gðuÞXm � k

2
þ
X
jAIo

LðnujÞ þ Oðn�1Þ;

or, with any zARnþ1 such that jzj ¼ n;

nf f � Bn½ f �g z

n


 �
X

m � k

2
þ
X

j:zjp12

LðzjÞ þ Oðn�1Þ: ð4:5Þ
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Since the basis polynomials Bej
decrease exponentially away from the vertices of the

simplex, now the counterpart of (3.5) becomes

lim
n-N

min
uADm

n f ðuÞ � Bn½ f �ðuÞ þ 1

2n

Xm

j¼0

Bej
ðuÞ

( )
¼ 1

2
; ð4:6Þ

which is always assumed on the boundary, see Fig. 2. In general, on a k-dimensional

face of the boundary the minimum on the interior of it would be k
2
:

5. An application from learning theory

Theorem 1 and the knowledge of the Bernstein approximation in the region next
to the boundary enables us to determine the exact asymptotics for a problem in
learning theory.

The symbols A0;A1;y;Am of an alphabet with m þ 1 letters are to be encoded.
The length of the codes may be different for the letters. Following [13] it is possible

to have a code with length log 1
qi
for the letter Ai if

Pm
i¼0 qi ¼ 1: If the symbol Ai is

found with the probability pi; the expectation value of the code length isXm

i¼0

pi log
1

qi

:

The minimum of this expression is attained if qi ¼ pi for all i: If the lengths qi differ
from the optimal values, there is a redundancy, i.e. a difference to the minimum ofXm

i¼0

pi log
pi

qi

: ð5:1Þ

First we restrict our attention to the special case m ¼ 1: Here the sum (5.1) may be
rewritten as

p log
p

q
þ ð1� pÞ log 1� p

1� q
; ð5:2Þ

if we write p1 ¼ p; p0 ¼ 1� p; q1 ¼ q; and q0 ¼ 1� q:
The probability p is unknown, but we have got a sample with n letters. The

encoding will be performed on the base of the information, how often the symbol A1

is contained in the sample. Due to Bernoulli, the probability for finding it k times in
the sample is

n

k

� �
ð1� pÞn�k

pk ¼ Bn
kðpÞ:

Now, an appropriate rule k/QðkÞ; 0pkpn; is to be found for the encoding
procedure. If the sample contains the symbol A1 exactly k times, the encoding for the
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parameter qk ¼ QðkÞ is chosen. The associated contribution to the redundancy is

Bn
kðpÞ p log

p

qk

þ ð1� pÞ log 1� p

1� qk

� �
:

Summing over all k we obtain the expectation value of the redundancy [7,9].
Therefore, the following problem arises:

Find numbers qkAð0; 1Þ; k ¼ 0; 1;y; n; such that the worst case redundancy

sup
0pxp1

FnðxÞ ð5:3Þ

is minimized where

FnðxÞ :¼
Xn

k¼0

n

k

� �
xkð1� xÞn�k

x log
x

qk

þ ð1� xÞ log 1� x

1� qk

� �
¼
Xn

k¼0

Bn
kðxÞ x log

x

qk

þ ð1� xÞ log 1� x

1� qk

� �
: ð5:4Þ

The challenge consists of determining the numbers qk in such a way that the
optimal asymptotics are obtained inside the interval and on its boundary
simultaneously.

There are already several results for the rule called add-b rule,

q
b
k :¼ k þ b

n þ 2b
for k ¼ 0; 1y; n: ð5:5Þ

The parameter b describes the deviation of qk from k=n; i.e. from the relative
frequency of A1 in the sample. In particular, the add-one rule is called Laplace’s rule

of succession, and the add-half rule is Jeffreys’rule. Krichevskiy [9] reported that
b0 ¼ 0:50922 leads to

lim
n-N

sup
0pxp1

nFb0
n ðxÞ ¼ b0 ¼ 0:50922;

while the corresponding number for Jeffrey’s prior is 0:5106 due to our calculations.
Moreover, Cover [6] had shown the lower bound

lim
n-N

sup
0pxp1

nFnðxÞX0:5 for all choices of q;

by applying a suitable functional and the add-one rule.
We will close the gap by applying Theorem 1; cf. [5]. Our point of departure is the

add�3
4
rule. This rule is optimal in the interior, and it will be modified later to cover

also the subdomain next to the boundary. Since we fix the parameters in the one-
dimensional case such that qk þ qn�k ¼ 1; it follows that Fð1� xÞ ¼ FðxÞ and

FnðxÞ ¼ GnðxÞ þ Gnð1� xÞ;

where

GnðxÞ :¼
Xn

k¼0

n

k

� �
xkð1� xÞn�k

x log
x

qk

: ð5:6Þ

ARTICLE IN PRESS
D. Braess, T. Sauer / Journal of Approximation Theory 128 (2004) 187–206198



Following Forster and Warmuth [7] we study the function for n � 1 letters and
separate the Bernstein polynomial for the function g defined in (2.3)

Gn�1ðxÞ ¼ �
Xn�1

k¼0

n � 1

k

� �
xkþ1ð1� xÞn�1�k log qk � gðxÞ

¼ �
Xn

k¼0

n

k

� �
xkð1� xÞn�kk

n
log qk�1 � gðxÞ

¼ 1

n

Xn

k¼0

n

k

� �
xkð1� xÞn�k

k log
k=n

qk�1
þ fBn½g�ðxÞ � gðxÞg: ð5:7Þ

The add-b rule (5.5) for n � 1 reads qk ¼ kþb
n�1þ2b: We can extract the terms with

k
n
log n�1þ2b

n
since they belong to a Bernstein polynomial for a linear function that is

reproduced,

G
b
n�1ðxÞ ¼

1

n

Xn

k¼0

n

k

� �
xkð1� xÞn�k

k log
k

k � 1þ b
þ x log

n � 1þ 2b
n

þ Bn½g�ðxÞ � gðxÞ: ð5:8Þ

Now we fix b ¼ b� ¼ 3
4
; since the following estimate of the power series of the

logarithm is an helpful upper bound only for 3
4pbp1;

k log k
k�1=4 ¼ � k logð1� 1

4k
Þ ¼ k½ 1

4k
þ 1

2ð4kÞ2 þ?�

p
1

4
þ 1

32k
þ 4

3

1

192k2

p
1

4
þ 1

32ðk þ 1Þ þ
1

7ðk þ 1Þðk þ 2Þ:

When estimating the sum in (5.8) we note that n
k

� 
xk

kþ1 ¼ x�1 nþ1
kþ1


 �
xkþ1

nþ1 and an

analogous formula holds for the term with the quadratic denominator. Hence,

Xn

k¼0

n

k

� �
xkð1� xÞn�k

k log
k

k � 1=4

p
Xn

k¼0

n

k

� �
xkð1� xÞn�k 1

4
þ 1

32ðk þ 1Þ þ
1

7ðk þ 1Þðk þ 2Þ

� �
p
1

4
þ 1

32ðn þ 1Þx þ 1

7ðn þ 1Þðn þ 2Þx2

p
1

4
þ 1

24ðn þ 1Þx for xX
15

n
: ð5:9Þ
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From the previous bound and Theorem 5 it follows that (for xX15
n
)

G
b�
n�1ðxÞp

1

n

1

4
þ 1

24ðn þ 1Þx

� �
þ x log 1þ 1

2n

� �
� 1

n

1� x

2
þ 1

20nx
� x

12n

� �
p

1

n
�1

4
þ x þ x

12n

� �
: ð5:10Þ

Hence,

F
b�
n�1ðxÞp

1

2n
þ 1

12n2
for

15

n
pxp1� 15

n
: ð5:11Þ

This is the required bound for the interior of the interval.

We note that we can drop the restriction 3
4
pbp1 if we are interested in G

b
n�1 for

xX1
2
: In this case it is no drawback to have a larger factor in the 1=ðn2x2Þ term in

(5.9). Repeating the calculations with the power series of the logarithm, we obtain

G
b
n�1ðxÞp

1

n

1� x

2
þ bð2x � 1Þ þ 3

2n

� �
for xX

1

2
;
1

2
pbp1: ð5:12Þ

Now we consider the add-b rule at the left-hand boundary with emphasis on the

choice b ¼ b� ¼ 3
4
: This will be done in the spirit and with the tools of Section 3.

Since the bound (5.12) is sharp for x-1; (or alternately from (5.6)) it follows that

nG
b
n�1ð1� z=nÞ-b for n-N: ð5:13Þ

Moreover, terms of the size xOðn�1Þ are obviously zOðn�2Þ: Now it follows from
(5.8) with the argument as for the verification of (3.3); cf. Krichevskiy [9] that

FbðzÞ :¼ lim
n-N

nF
b
n�1

z

n


 �
¼ e�z

XN
k¼0

zk

k!
k log

k

k � 1þ b
þ b� LðzÞ

¼ bþ z log z � e�z
XN
k¼1

zk

k!
k logðk � 1þ bÞ

¼ bþ z log z � ze�z
XN
k¼0

zk

k!
logðk þ bÞ: ð5:14Þ

The convergence is uniform on compact intervals.

Obviously, Fb� ð0Þ ¼ b� ¼ 3
4
; and the choice (5.5) is not appropriate for the

boundary region as depicted in Fig. 3. The rule will become optimal if we modify q0

and q1 in an appropriate way. The symmetry requirement qk þ qn�k ¼ 1 causes that

qn and qn�1 will be also modified. Since we consider only the subdomain where xp1
2
;
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the contribution of qn and qn�1 is Oðn�2Þ: By taking differences we obtain

FnðxÞ � Fb
n ðxÞ ¼ ð1� xÞn

x log
q
b
0

q0
þ ð1� xÞ log 1� q

b
0

1� q0

( )
þ nxð1� xÞn�1

� x; log
q
b
1

q1
þ ð1� xÞ log 1� q

b
1

1� q1

( )
þ Oð2�nÞ: ð5:15Þ

The shifts will be bounded by 1=n: Hence,

log
1� q

b
k

1� qk

¼ log 1þ qk � q
b
k

1� qk

( )
¼ qk � q

b
k þ Oðn�2Þ for k ¼ 0; 1: ð5:16Þ

We insert (5.16) into (5.15) to obtain

n½Fnðz
n
Þ � Fb

n ðz
n
Þ� ¼ e�zfz log

q
b
0

q0
þ nðq0 � q

b
0Þg

þ ze�zfz log
q
b
1

q1
þ nðq1 � q

b
1Þg þ Oðn�1Þ: ð5:17Þ

Now we are ready to present the final choice. Here, the add-b rules for b ¼ 1
2
; 3
4
and 1

are combined,

qk :¼

kþ1=2
nþ5=4 if k ¼ 0;

kþ1
nþ7=4 if k ¼ 1;

kþ3=4
nþ7=4 if k ¼ n � 1;

kþ3=4
nþ5=4 if k ¼ n;

kþ3=4
nþ3=2 otherwise:

8>>>>>>>>><>>>>>>>>>:
ð5:18Þ
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Fig. 3. Asymptotics of the entropy at the left end of the interval: *FðzÞ and Fb� ðzÞ: The maximal value is

E0:5027 if only q0 is modified.
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We insert the actual numbers in (5.17) and take the limit n-N to obtain

*FðzÞ ¼ Fb� ðzÞ þ e�z �1

4
þ z log

3

2
þ 1

4

� �
� z2 log

2

7=4

� �
: ð5:19Þ

The extra term in (5.19) is negative for z45 and does not spoil the bound from
(5.10). Moreover, as is shown in Fig. 3 for the interesting part of the interval, we
have now

*FðzÞp1

2
for zp15:

This extends estimate (5.11) to all of ½0; 1� for the modified rule, and the upper bound
of the asymptotics is complete for m ¼ 1:

In view of the extension to the multivariate case m41 and an application of
Theorem 7 we introduce the function

G̃nðxÞ :¼ Gb�
n ðxÞ þ � 1

4n
þ x log 3

2

� �
Bn
0ðxÞ þ

1

4n
� x log 8

7

� �
Bn
1ðxÞ ð5:20Þ

which realizes the decomposition of F�
n into barycentric coordinates: F�

n ðxÞ ¼
G̃nðxÞ þ G̃nð1� xÞ: Based on the preceding estimates we can immediately establish
the inequality

G̃nðxÞp
1

n
ð�1

4
þ xÞ þ oðn�1Þ for 0pxp1; ð5:21Þ

where the oðn�1Þ term is independent of x:

Indeed, if xX15
n
; then (5.21) follows from G̃nðxÞpGb�

n ðxÞ and (5.10). If x ¼ z
n
p15

n
;

then recalling (5.13) we have ðn þ 1ÞG̃ðz=nÞ- *FðzÞ � b�p� 1
4
; and x=np15=n2

together with the uniform convergence implies (5.21). Hence,

F �
n ðxÞ ¼ G̃nðxÞ þ G̃nð1� xÞp 1

2n
þ oðn�1Þ;

and we have verified the upper bound

lim
n-N

sup
0pxp1

nF �
n ðxÞ ¼

1

2
:

It cannot be improved due to the known lower bound [6].

The shift of q0 was necessary since Fb� ð0Þ ¼ b�4
1
2
; see also Fig. 3. Therefore, q0 is

chosen according to Jeffrey’s rule. This shift induces a deterioration in the interior,
which can be compensated by a shift of q1 into to opposite direction. From (5.19) we
conclude that the additive term induced by the two shifts reduces the redundancy for
z ¼ nxX5: As a consequence, the bound (5.11) is improved and not deteriorated.
This can be understood as motivation for two shifts.
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6. Multivariate renormalization

We now turn our attention to alphabets consisting of the m þ 1 symbols
A0;y;Am: Since the probabilities pj of the symbols Aj are independent, the

important information about a sample of the length n is how often each of the
symbols appeared, which can be written as a multiindex aAKm;n: Now, a code with

the parameter qðaÞ ¼ ðqjðaÞ : j ¼ 0;y;mÞ is associated to any sample, and the

deviation of the expected code length from entropy takes the formXm

j¼0

pj

pj

qjðaÞ

as already mentioned above. Since the probability of a to appear is BaðpÞ; the average

deviation from entropy is thus computed as

FnðpÞ ¼ Fn;qðpÞ ¼
X

aAKm;n

BaðpÞ
Xm

j¼0

pj log
pj

qjðaÞ
; ð6:1Þ

which is the natural generalization of (5.4), cf. [5]. To continue our approach from
the theory of Bernstein polynomials, we will again use the symbol u for the
probabilities pj that are interpreted here as barycentric coordinates of an m-simplex.

To be able to apply Lemma 6 to (6.1) for a reduction to the univariate case, we
would need that

qjðaÞ ¼ qjðajÞ; j ¼ 0;y;m; aAKm;n; ð6:2Þ

an assumption that is too restrictive. The prediction rules we are going to use in the
multivariate case will depend on both j and a as

qjðaÞ :¼
aj þ bðajÞ

n þ
Pm

i¼0 bðaiÞ
; ð6:3Þ

where

bðkÞ :¼
1=2 k ¼ 0;

1 k ¼ 1;

b� ¼ 3
4

otherwise:

8><>:
Note that these values do not have the property (6.2). For this reason we introduce
renormalized quantities

eqqjðaÞ :¼ rðajÞ :¼
aj þ bðajÞ

n þ ðm þ 1Þb�
:

It will be no drawback that
P

j eqqjðaÞa1 holds for some a: These auxiliary parameters

can be accessed by Lemma 6 as follows:

Fn;q̃ðuÞ ¼
X

aAKm;n�1

BaðuÞ
Xm

j¼0

uj log
ujeqqjðaÞ

¼
Xm

j¼0

Xn

k¼0

ujB
n
kðujÞ log

uj

rðkÞ: ð6:4Þ
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We consider the difference

log eqqjðaÞ � log qjðaÞ ¼ log
n þ

Pm
i¼0 bðaiÞ

n þ ðm þ 1Þb�

¼ log 1þ
Pm

i¼0 ðbðaiÞ � b�Þ
n þ ðm þ 1Þb�

� �
p

1

n

Xm

i¼0

ðbðaiÞ � b�Þ þ
2m

n2

Xm

i¼0

jbðaiÞ � b�j:

For convenience, we will ignore the last sum since it contributes only to Oðn�2Þ and
can be handled analogously to the first sum. Noting that this expression is
independent of j we thus get

Fn;qðuÞ � Fn;q̃ðuÞp
1

n

X
a

BaðuÞ
Xm

j¼0

uj

Xm

i¼0

ðbðaiÞ � b�Þ

¼ 1

n

X
a

BaðuÞ
Xm

i¼0

ðbðaiÞ � b�Þ

¼ 1

n

Xm

i¼0

Xm

k¼0

Bn
kðuiÞ½bðkÞ � b��

¼ 1

n

Xm

i¼0

½�1
4

Bn
0ðuiÞ þ 1

4
Bn
1ðuiÞ�: ð6:5Þ

The summands in (6.5) correspond to two additive terms in (5.20). From the
identities (6.4) and (6.5) it follows that

Fn;qðuÞ ¼Fn;q̃ðuÞ þ Fn;qðuÞ � Fn;q̃ðuÞ

¼
Xm

j¼0

Xn

k¼0

Bn
kðujÞuj log

ujebbðkÞ � 1

4n
Bn
0ðujÞ þ

1

4n
Bn
1ðujÞ

" #
: ð6:6Þ

The inner sum is now evaluated by comparing it with Gb�
n ;

Xn

k¼0

Bn
kðujÞuj log

uj

rðkÞ

¼
Xn

k¼0

Bn
kðujÞuj log

uj

ðk þ b�Þ=ðn þ 2b�Þ
þ log

n þ ðm þ 1Þb�
n þ 2b�

� �
þ Bn

0ðujÞuj log
3
2
� Bn

1ðujÞuj log
8
7

¼ Gb�
n ðujÞ þ

ðm � 1Þb�
n

uj þ oðn�1Þ þ Bn
0ðujÞuj log

3
2
� Bn

1ðujÞuj log
8
7
:
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Combining this with (6.4), (5.20) and (5.21) we obtain

Fn;qðuÞ ¼
Xm

j¼0

G̃nðujÞ þ
m � 1

n

3

4
uj þ oðn�1Þ

� �

p
Xm

j¼0

1

n
�1

4
þ uj

� �
þ m � 1

n

3

4
uj

� �
þ oðn�1Þ

¼ 1

n
�m þ 1

4
þ 1þ 3

4
ðm � 1Þ

� �
þ oðn�1Þ

¼ m

2n
þ oðn�1Þ:

This completes the proof of our final result.

Theorem 8. For the choice (6.3) of the prediction rule qjðaÞ we get that

lim
n-N

max
uADm

nFn;qðuÞ ¼
m

2
;

which is the asymptotically optimal bound.

We remark that for the optimal q even the bound ðn þ 1ÞFn;qpm
2
holds true, but of

course passing from n to n þ 1 is irrelevant as far as asymptotics are concerned. To
highlight the structure of Fn;q; we depict it for m ¼ 2 and n ¼ 25 in Fig. 4. Note that
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Fig. 4. The redundancy ðn þ 1ÞFn;q for the optimal q from (6.3), n ¼ 25:
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the extremal value is approached by the narrow ridges close to the boundary as well
as in the interior of the simplex. It is also worthwhile to remark that along those
boundary ridges the univariate behavior of the function can be observed. In fact, we
always first have a sharp decrease from the value at the corners, which is due to the

add�1
2
rules there, followed by a narrow ‘‘overshooting’’ due to the add-1 rule, then

as small local minimum from which the function smoothly ascends to the interior
limit function.

Acknowledgments

The authors want to thank H. Simon for bringing the problem to our knowledge
and for many helpful discussions. We also thank J. Stöckler for some shorter proofs
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