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1 Introduction

The topics discussed in this chapter are ones that I felt are often assumed in ap-
plied machine learning (and elsewhere), but that are seldom explained in detail.
This work is aimed at the student who’s taken some coursework in linear meth-
ods and analysis, but who’d like to see some of the tricks used by researchers
discussed in a little more detail. The mathematics described here is a small frac-
tion of that used in machine learning in general (a treatment of machine learning
theory would include the mathematics underlying generalization error bounds,
for example)1, although it’s a largely self-contained selection, in that derived
results are often used downstream. I include two kinds of homework, ’exercises’
and ’puzzles’. Exercises start out easy, and are otherwise as you’d expect; the
puzzles are exercises with an added dose of mildly Machiavellian mischief.

Notation: vectors appear in bold font, and vector components and matrices
in normal font, so that for example v

(a)
i denotes the i’th component of the

a’th vector v(a). The symbol A � 0 (�) means that the matrix A is positive
(semi)definite. The transpose of the matrix A is denoted AT , while that of the
vector x is denoted x′.

2 Lagrange Multipliers

Lagrange multipliers are a mathematical incarnation of one of the pillars of
diplomacy (see the historical notes at the end of this section): sometimes an
indirect approach will work beautifully when the direct approach fails.

2.1 One Equality Constraint

Suppose that you wish to minimize some function f(x), x ∈ Rd, subject to
the constraint c(x) = 0. A direct approach is to find a parameterization of
the constraint such that f , expressed in terms of those parameters, becomes
an unconstrained function. For example, if c(x) = x′Ax − 1, x ∈ Rd, and if
A � 0, you could rotate to a coordinate system and rescale to diagonalize the
constraints to the form y′y = 1, and then substitute with a parameterization
that encodes the constraint that y lives on the (d − 1)-sphere, for example

y1 = sin θ1 sin θ2 · · · sin θd−2 sin θd−1

y2 = sin θ1 sin θ2 · · · sin θd−2 cos θd−1

y3 = sin θ1 sin θ2 · · · cos θd−2

· · ·

Unfortunately, for general constraints (for example, when c is a general poly-
nomial in the d variables) this is not possible, and even when it is, the above
example shows that things can get complicated quickly. The geometry of the
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Fig. 1. At the constrained optimum, the gradient of the constraint must be parallel to
that of the function.

general situation is shown schematically in Figure 1. On the left, the gradient
of the constraint is not parallel to that of the function; it’s therefore possible to
move along the constraint surface (thick arrow) so as to further reduce f . On
the right, the two gradients are parallel, and any motion along c(x) = 0 will in-
crease f , or leave it unchanged. Hence, at the solution, we must have ∇f = λ∇c
for some constant λ; λ is called an (undetermined) Lagrange multiplier, where
’undetermined’ arises from the fact that for some problems, the value of λ itself
need never be computed.

2.2 Multiple Equality Constraints

How does this extend to multiple equality constraints, ci(x) = 0, i = 1, . . . , n?
Let gi ≡ ∇ci. At any solution x∗, it must be true that the gradient of f has no
components that are perpendicular to all of the gi, because otherwise you could
move x∗ a little in that direction (or in the opposite direction) to increase (de-
crease) f without changing any of the ci, i.e. without violating any constraints.
Hence for multiple equality constraints, it must be true that at the solution x∗,
the space spanned by the gi contains the vector ∇f , i.e. there are some constants
λi such that ∇f(x∗) =

∑
i λigi(x∗). Note that this is not sufficient, however -

we also need to impose that the solution is on the correct constraint surface
(i.e. ci = 0 ∀i). A neat way to encapsulate this is to introduce the Lagrangian
L ≡ f(x) − ∑

i λici(x), whose gradient with respect to the x, and with respect
to all the λi, vanishes at the solution.

Puzzle 1: A single constraint gave us one Lagrangian; more constraints must
give us more information about the solution; so why don’t multiple constraints
give us multiple Lagrangians?

Exercise 1. Suppose you are given a parallelogram whose sidelengths you can
choose but whose perimeter is fixed. What shaped parallelogram gives the largest
area? (This is a case where the Lagrange multiplier can remain undetermined.)
Now, your enterprising uncle has a business proposition: to provide cheap storage
1 My original lectures also contained material on functional analysis and convex opti-

mization, which is not included here.
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in floating containers that are moored at sea. He wants to build a given storage
facility out of a fixed area of sheet metal which he can shape as necessary. He
wants to keep construction simple and so desires that the facility be a closed
parallelpiped (it has to be protected from the rain and from the occasional wave).
What dimensions should you choose in order to maximize the weight that can be
stored without sinking?

Exercise 2. Prove that the distance between two points that are constrained
to lie on the n-sphere is extremized when they are either antipodal, or equal.

2.3 Inequality Constraints

Suppose that instead of the constraint c(x) = 0 we have the single constraint
c(x) ≤ 0. Now the entire region labeled c(x) < 0 in Figure 1 has become feasible.
At the solution, if the constraint is active (c(x) = 0), we again must have that
∇f is parallel to ∇c, by the same argument. In fact we have a stronger condition,
namely that if the Lagrangian is written L = f+λc, then since we are minimizing
f , we must have λ ≥ 0, since the two gradients must point in opposite directions
(otherwise a move away from the surface c = 0 and into the feasible region would
further reduce f). Thus for an inequality constraint, the sign of λ matters, and
so here λ ≥ 0 itself becomes a constraint (it’s useful to remember that if you’re
minimizing, and you write your Lagrangian with the multiplier appearing with
a positive coefficient, then the constraint is λ ≥ 0). If the constraint is not
active, then at the solution ∇f(x∗) = 0, and if ∇c(x∗) 	= 0, then in order that
∇L(x∗) = 0 we must set λ = 0 (and if in fact if ∇c(x∗) = 0, we can still
set λ = 0). Thus in either case (active or inactive), we can find the solution
by requiring that the gradients of the Lagrangian vanish, and we also have
λc(x∗) = 0. This latter condition is one of the important Karush-Kuhn-Tucker
conditions of convex optimization theory [15, 4], and can facilitate the search for
the solution, as the next exercise shows.

For multiple inequality constraints, again at the solution ∇f must lie in the
space spanned by the ∇ci, and again if the Lagrangian is L = f +

∑
i λici,

then we must in addition have λi ≥ 0 ∀i (since otherwise f could be reduced
by moving into the feasible region); and for inactive constraints, again we (can,
usually must, and so might as well) set λi = 0. Thus the above KKT condition
generalizes to λici(x∗) = 0 ∀i. Finally, a simple and often useful trick is to solve
ignoring one or more of the constraints, and then check that the solution satisfies
those constraints, in which case you have solved the problem; we’ll call this the
free constraint gambit below.

Exercise 3. Find the x ∈ Rd that minimizes
∑

i x2
i subject to

∑
i xi = 1.

Find the x ∈ Rd that maximizes
∑

i x2
i subject to

∑
i xi = 1 and xi ≥ 0 (hint:

use λix∗i = 0).

2.4 Cost Benefit Curves

Here’s an example from channel coding. Suppose that you are in charge of four
fiber optic communications systems. As you pump more bits down a given chan-
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nel, the error rate increases for that channel, but this behaviour is slightly dif-
ferent for each channel. Figure 2 show a graph of the bit rate for each channel
versus the ’distortion’ (error rate). Your goal is to send the maximum possible
number of bits per second at a given, fixed total distortion rate D. Let Di be

Fig. 2. Total bit rate versus distortion for each system.

the number of errored bits sent down the i’th channel. Given a particular error
rate, we’d like to find the maximum overall bit rate; that is, we must maximize
the total rate R ≡ ∑

i=1 Ri subject to the constraint D =
∑

i=1 Di. Introducing
a Lagrange multiplier λ, we wish to maximize the objective function

L =
4∑

i=1

Ri(Di) + λ(D −
4∑

i=1

Di) (1)

Setting ∂L/∂Di = 0 gives ∂Ri/∂Di = λ, that is, each fiber should be operated
at a point on its rate/distortion curve such that its slope is the same for all
fibers. Thus we’ve found the general rule for resource allocation, for benefit/cost
curves like those shown2 in Figure 2: whatever operating point is chosen for each
system, in order to maximize the benefit at a given cost, the slope of the graph
at that point should be the same for each curve. For the example shown, the
slope of each graph decreases monotonically, and we can start by choosing a
single large value of the slope λ for all curves, and decrease it until the condition∑

i=1 Di = D is met, so in general for m fibers, an m dimensional search problem
has been reduced to a one dimensional search problem. We can get the same
result informally as follows: suppose you had just two fibers, and were at an
operating point where the slope s1 of the rate/distortion graph for fiber 1 was
greater than the slope s2 for fiber 2. Suppose you then adjusted things so that
fiber 1 sent one more errored bit every second, and fiber 2 sent one fewer. The
extra number of bits you can now send down fiber 1 more than offsets the fewer
number of bits you must send down fiber 2. This will hold whenever the slopes
are different. For an arbitrary number of fibers, we can apply this argument to
any pair of fibers, so the optimal point is for all fibers to be operating at the
same slope.
2 This seemingly innocuous statement is actually a hint for the puzzle that follows.
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Puzzle 2: Suppose that instead of fibers, you have four factories making
widgets, that the y-axis in Figure 2 represents the total cost for making ni widgets,
and that the x-axis represents the number ni of widgets made by the i’th factory.
The curves have the same shape (they drop off at larger ni due to the economies
of scale). Does the above argument mean that, to produce a total, fixed number
of widgets, in order to minimize the cost, each factory should be operated at the
same slope on its curve as all the other factories?

2.5 An Isoperimetric Problem

Isoperimetric problems - problems for which a quantity is extremized while a
perimeter is held fixed - were considered in ancient times, but serious work
on them began only towards the end of the seventeenth century, with a minor
battle between the Bernouilli brothers [14]. It is a fitting example for us, since the
general isoperimetric problem had been discussed for fifty years before Lagrange
solved it in his first venture into mathematics [1], and it provides an introduction
to functional derivatives, which we’ll need. Let’s consider a classic isoperimetric
problem: to find the plane figure with maximum area, given fixed perimeter.
Consider a curve with fixed endpoints {x = 0, y = 0} and {x = 1, y = 0}, and
fixed length ρ. We will assume that the curve defines a function, that is, that for
a given x ∈ [0, 1], there corresponds just one y. We wish to maximize the area
between the curve and the x axis, A =

∫ 1

0 ydx, subject to the constraint that
the length, ρ =

∫ 1

0

√
1 + y′2dx, is fixed (here, prime denotes differentiation with

respect to x). The Lagrangian is therefore

L =
∫ 1

0

ydx + λ

(∫ 1

0

√
1 + y′2dx − ρ

)
(2)

Two new properties of the problem appear here: first, integrals appear in the
Lagrangian, and second, we are looking for a solution which is a function, not a
point. To solve this we will use the calculus of variations, introduced by Lagrange
and Euler. Denote a small variation of a function3 f by δf : that is, replace f(x)
by f(x) + δf(x) everywhere, where δf is chosen to vanish at the boundaries,
that is, δf(0) = δf(1) = 0 (note that δf is also a function of x). Here, y is the
variable function, so the change in L is

δL =
∫ 1

0

δydx + λ

∫ 1

0

(1 + y′2)−1/2y′δy′dx

By using the facts that δy′ = δ dy
dx = d

dxδy and that the variation in y vanishes
at the endpoints, integrating by parts then gives:

δL =
∫ 1

0

(
1 − λy′′(1 + y′2)−3/2

)
δydx

⇒ 1 −λy′′(1 + y′2)−3/2 ≡ 1 − λκ = 0
3 In fact Lagrange first suggested the use of the symbol δ to denote the variation of a

whole function, rather than that at a point, in 1755 [14].
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where κ is the local curvature, and where the second step results from our being
able to choose δy arbitrarily on (0, 1), so the quantity multiplying δy in the
integrand must vanish (imagine choosing δy to be zero everywhere except over
an arbitrarily small interval around some point x ∈ [0, 1]). Since the only plane
curves with constant curvature are the straight line and the arc of circle, we
find the result (which holds even if the diameter of the circle is greater than
one). Note that, as often happens in physical problems, λ here has a physical
interpretation (as the inverse curvature); λ is always the ratio of the norms of
∇f and ∇c at the solution, and in this sense the size of λ measures the influence
of the constraint on the solution.

2.6 Which Univariate Distribution has Maximum Entropy?

Here we use differential entropy, with the understanding that the bin width
is sufficiently small that the usual sums can be approximated by integrals, but
fixed, so that comparing the differential entropy of two distributions is equivalent
to comparing their entropies. We wish to find the function f that minimizes

∫ ∞

−∞
f(x) log2 f(x)dx, x ∈ R (3)

subject to the four constraints

f(x) ≥ 0 ∀x,

∫ ∞

−∞
f(x) = 1,

∫ ∞

−∞
xf(x) = c1

∫ ∞

−∞
x2f(x) = c2

Note that the last two constraints, which specify the first and second moments,
is equivalent to specifying the mean and variance. Our Lagrangian is therefore:

L =
∫ ∞

−∞
f(x) log2 f(x)dx + λ

(
1 −

∫ ∞

−∞
f(x)

)
+ β1

(
c1 −

∫ ∞

−∞
xf(x)dx

)

+ β2

(
c2 −

∫ ∞

−∞
x2f(x)dx

)

where we’ll try the free constraint gambit and skip the positivity constraint. In
this problem we again need the calculus of variations. In modern terms we use
the functional derivative, which is just a shorthand for capturing the rules of the
calculus of variations, one of which is:

δg(x)
δg(y)

= δ(x − y) (4)

where the right hand side is the Dirac delta function. Taking the functional
derivative of the Lagrangian with respect to f(y) and integrating with respect
to x then gives

log2 f(y) + log2(e) − λ − β1y − β2y
2 = 0 (5)
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which shows that f must have the functional form

f(y) = C exp(λ+β1y+β2y2) (6)

where C is a constant. The values for the Lagrange multipliers λ, β1 and β2

then follow from the three equality constraints above, giving the result that the
Gaussian is the desired distribution. Finally, choosing C > 0 makes the result
positive everywhere, so the free constraint gambit worked.

Puzzle 3: For a given event space, say with N possible outcomes, the maxi-
mum entropy is attained when pi = 1/N ∀i, that is, by the uniform distribution.
That doesn’t look very Gaussian. What gives?

Exercise 4. What distribution maximizes the entropy for the class of uni-
variate distributions whose argument is assumed to be positive, if only the mean
is fixed? How about univariate distributions whose argument is arbitrary, but
which have specified, finite support, and where no constraints are imposed on the
mean or the variance?

Puzzle 4: The differential entropy for a uniform distribution with support
in [−C, C] is

h(PU ) = −
∫ C

−C

(1/2C) log2(1/2C)dx

= − log2(1/2C) (7)

This tends to ∞ as C → ∞. How should we interpret this? Find the variance
for any fixed C, and show that the univariate Gaussian with that variance has
differential entropy greater than h.

2.7 Maximum Entropy with Linear Constraints

Suppose that you have a discrete probability distribution Pi,
∑n

i Pi = 1, and
suppose further that the only information that you have about the distribution
is that it must satisfy a set of linear constraints:∑

i

αjiPi = Cj , j = 1, . . . , m (8)

The maximum entropy approach (see [5], for example) posits that, subject to
the known constraints, our uncertainty about the set of events described by the
distribution should be as large as possible, or specifically, that the mean number
of bits required to describe an event generated from the constrained probability
distribution be as large as possible. Maximum entropy provides a principled
way to encode our uncertainty in a model, and it is the precursor to modern
Bayesian techniques [13]. Since the mean number of bits is just the entropy of
the distribution, we wish to find that distribution that maximizes4

−
∑

i

Pi log Pi +
∑

j

λj(Cj −
∑

i

αjiPi) + µ(
∑

i

Pi − 1) −
∑

i

δiPi (9)

4 The factor log2 e can be absorbed into the Lagrange multipliers.
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where the sum constraint on the Pi is imposed with µ, and the positivity of each
Pi with δi (so δi ≥ 0 and at the maximum, δiPi = 0 ∀i)5. Differentiating with
respect to Pk gives

Pk = exp(−1 + µ − δk −
∑

j

λjαjk) (10)

Since this is guaranteed to be positive we have δk = 0 ∀k. Imposing the sum
constraint then gives Pk = 1

Z exp(−∑
j λjαjk) where the “partition function”

Z is just a normalizing factor. Note that the Lagrange multipliers have shown
us the form that the solution must take, but that form does not automatically
satisfy the constraints - they must still be imposed as a condition on the solution.
The problem of maximizing the entropy subject to linear constraints therefore
gives the widely used logistic regression model, where the parameters of the
model are the Lagrange multipliers λi, which are themselves constrained by Eq.
(8). For an example from the document classification task of how imposing linear
constraints on the probabilities can arise in practice, see [16].

2.8 Some Algorithm Examples

Lagrange multipliers are ubiquitous for imposing constraints in algorithms. Here
we list their use in a few modern machine learning algorithms; in all of these ap-
plications, the free constraint gambit proves useful. For support vector machines,
the Lagrange multipliers have a physical force interpretation, and can be used to
find the exact solution to the problem of separating points in a symmetric sim-
plex in arbitrary dimensions [6]. For the remaining algorithms mentioned here,
see [7] for details on the underlying mathematics. In showing that the principal
PCA directions give minimal reconstruction error, one requires that the projec-
tion directions being sought after are orthogonal, and this can be imposed by
introducing a matrix of multipliers. In locally linear embedding [17], the trans-
lation invariance constraint is imposed for each local patch by a multiplier, and
the constraint that a solution matrix in the reconstruction algorithm be orthog-
onal is again imposed by a matrix of multipliers. In the Laplacian eigenmaps
dimensional reduction algorithm [2], in order to prevent the collapse to trivial
solutions, the dimension of the target space is enforced to be d > 0 by requiring
that the rank of the projected data matrix be d, and again this imposed using a
matrix of Lagrange multipliers.

Historical Notes. Joseph Louis Lagrange was born in 1736 in Turin. He was one
of only two of eleven siblings to survive infancy; he spent most of his life in Turin,
Berlin and Paris. He started teaching in Turin, where he organized a research
society, and was apparently responsible for much fine mathematics that was
published from that society under the names of other mathematicians [3, 1]. He
’believed that a mathematician has not thoroughly understood his own work till he

5 Actually the free constraint gambit would work here, too.
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has made it so clear that he can go out and explain it effectively to the first man
he meets on the street’ [3]6. His contributions lay in the subjects of mechanics,
calculus7, the calculus of variations8, astronomy, probability, group theory, and
number theory [14]. Lagrange is at least partly responsible for the choice of base
10 for the metric system, rather than 12. He was supported academically by Euler
and d’Alembert, financed by Frederick and Louis XIV, and was close to Lavoisier
(who saved him from being arrested and having his property confiscated, as
a foreigner living in Paris during the Revolution), Marie Antoinette and the
Abbé Marie. He survived the Revolution, although Lavoisier did not. His work
continued to be fruitful until his death in 1813, in Paris.

3 Some Notes on Matrices

This section touches on some useful results in the theory of matrices that are
rarely emphasized in coursework. For a complete treatment, see for example [12]
and [11]. Following [12], the set of p by q matrices is denoted Mpq, the set of
(square) p by p matrices by Mp, and the set of symmetric p by p matrices by
Sp. We work only with real matrices - the generalization of the results to the
complex field is straightforward. In this section only, we will use the notation
in which repeated indices are assumed to be summed over, so that for example
AijBjkCkl is written as shorthand for

∑
j,k AijBjkCkl. Let’s warm up with some

basic facts.

3.1 A Dual Basis

Suppose you are given a basis of d orthonormal vectors e(a) ∈ Rd, a = 1, . . . , d,
and you construct a matrix E ∈ Md whose columns are those vectors. It is a
striking fact that the rows of E then also always form an orthonormal basis. We
can see this as follows. Let the e(a) have components e

(a)
i , i = 1, . . . , d. Let’s

write the vectors constructed from the rows of E as ê so that ê(a)
i ≡ e(i)

a . Then
orthonormality of the columns can be encapsulated as ET E = 1. However since
E has full rank, it has an inverse, and ET EE−1 = E−1 = ET , so EET = 1 (using
the fundamental fact that the left and right inverses of any square matrix are the
same) which shows that the rows of E are also orthonormal. The vectors ê(a) are
called the dual basis to the e(a). This result is sometimes useful in simplifying
expressions: for example

∑
a e

(a)
i e

(a)
j Λ(i, j), where Λ is some function, can be

replaced by Λ(i, i)δij .

6 Sadly, at that time there were very few female mathematicians.
7 For example he was the first to state Taylor’s theorem with a remainder [14].
8 ...with which he started his career, in a letter to Euler, who then generously delayed

publication of some similar work so that Lagrange could have time to finish his work
[1].
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3.2 Other Ways To Think About Matrix Multiplication

Suppose you have matrices X ∈ Mmn and Y ∈ Mnp so that XY ∈ Mmp. The
familiar way to represent matrix multiplication is (XY )ab =

∑n
i=1 XaiYib, where

the summands are just products of numbers. However an alternative represen-
tation is XY =

∑n
i=1 xiy′

i, where xi (y′
i) is the i’th column (row) of X (Y ), and

where the summands are outer products of matrices. For example, we can write
the product of a 2 × 3 and a 3 × 2 matrix as

[
a b c
d e f

] ⎡
⎣ g h

i j
k l

⎤
⎦ =

[
a
d

]
[g h]

+
[

b
e

]
[i j]

+
[

c
f

]
[k l]

One immediate consequence (which we’ll use in our description of singular value
decomposition below) is that you can always add columns at the right of X , and
rows at the bottom of Y , and get the same product XY , provided either the
extra columns, or the extra rows, contain only zeros. To see why this expansion
works it’s helpful to expand the outer products into standard matrix form: the
matrix multiplication is just

{(
a 0 0
d 0 0

)
+

(
0 b 0
0 e 0

)
+

(
0 0 c
0 0 f

)
+

}
×

⎧⎨
⎩

⎛
⎝g h

0 0
0 0

⎞
⎠ +

⎛
⎝0 0

i j
0 0

⎞
⎠ +

⎛
⎝ 0 0

0 0
k l

⎞
⎠

⎫⎬
⎭

Along a similar vein, the usual way to view matrix-vector multiplication is as
an operation that maps a vector z ∈ Rn to another vector z′ ∈ Rm: z′ = Xz.
However you can also view the product as a linear combination of the columns
of X : z′ =

∑n
i=1 zixi. With this view it’s easy to see why the result must lie in

the span of the columns of X .

3.3 The Levi-Civita Symbol

The Levi-Civita symbol9 in d dimensions is denoted εij···k and takes the value
1 if its d indices are an even permutation of 1, 2, 3, · · · , d, the value -1 if an odd
permutation, and 0 otherwise. The 3-dimensional version of this is the fastest
way I know to derive vector identities in three dimensions, using the identity
εijkεimn = δjmδkn − δjnδkm (recall that repeated indices are summed).

Exercise 5. Use the fact that a = b ∧ c can be written in component form
as ai = εijkbjck to derive, in one satisfying line, the vector identity in three
dimensions: (a ∧ b) · (c ∧ d) = (a · c)(b · d) − (a · d)(b · c).
9 The name ’tensor’ is sometimes incorrectly applied to arbitrary objects with more

than one index. In factor a tensor is a generalization of the notion of a vector and is
a geometrical object (has meaning independent of the choice of coordinate system);
ε is a pseudo-tensor (transforms as a tensor, but changes sign upon inversion).
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3.4 Characterizing the Determinant and Inverse

The determinant of a matrix A ∈ Mn can be defined as

|A| ≡ 1
n!

εα1α2···αnεβ1β2···βnAα1β1Aα2β2 · · ·Aαnβn (11)

Exercise 6. Show that also,

|A| = εα1α2···αnA1α1A2α2 · · ·Anαn (12)

We can use this to prove an interesting theorem linking the determinant,
derivatives, and the inverse:

Lemma 1. For any square nonsingular matrix A,

∂|A|
∂Aij

= A−1
ji (13)

Proof.

∂|A|
∂Aij

= εjα2···αnδi1A2α2 · · ·Anαn + εα1j···αnA1α1δi2A3α3 · · ·Anαn + · · ·

so

Akj
∂|A|
∂Aij

= εα1α2···αn(Akα1δi1A2α2 · · ·Anαn + A1α1Akα2δi2A3α3 · · · + · · · )

For any value of i, one and only one term in the sum on the right survives, and
for that term, we must have k = i by antisymmetry of the ε. Thus the right
hand side is just |A|δki. Multiplying both sides on the right by (AT )−1 gives the
result. ��
We can also use this to write the following closed form for the inverse:

A−1
ij =

1
|A|(n − 1)!

εjα1α2···αn−1εiβ1β2···βn−1Aα1β1Aα2β2 · · ·Aαn−1βn−1 (14)

Exercise 7. Prove this, using Eqs. (11) and (13).

Exercise 8. Show that, for an arbitrary non-singular square matrix A,
∂A−1

ij

∂Aαβ
=

−A−1
iα A−1

βj . (Hint: take derivatives of A−1A = 1).

Exercise 9. The density p(x) for a multivariate Gaussian is proportional
to |Σ|−1/2 exp

(− 1
2 (x − µ)′Σ−1(x − µ)

)
. For n independent and identically dis-

tributed points, the density is p(x1,x2, · · · ,xn|µ, Σ) =
∏

i p(xi|µ, Σ). By taking
derivatives with respect to µ and Σ and using the above results, show that the
maximum likelihood values for the mean and covariance matrix are just their
sample estimates.
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Puzzle 5: Suppose that in Exercise 9, n = 2, and that x1 = −x2, so that
the maximum likelihood estimate for the mean is zero. Suppose that Σ is chosen
to have positive determinant but such that x is an eigenvector with negative
eigenvalue. Then the likelihood can be made as large as you like by just scaling
Σ with a positive scale factor, which appears to contradict the results of Exercise
9. What’s going on?

3.5 SVD in Seven Steps

Singular value decomposition is a generalization of eigenvalue decomposition.
While eigenvalue decomposition applies only to square matrices, SVD applies to
rectangular; and while not all square matrices are diagonalizable, every matrix
has an SVD. SVD is perhaps less familiar, but it plays important roles in every-
thing from theorem proving to algorithm design (for example, for a classic result
on applying SVD to document categorization, see [10]). The key observation is
that, given A ∈ Mmn, although we cannot perform an eigendecomposition of A,
we can do so for the two matrices AAT ∈ Sm and AT A ∈ Sn. Since both of
these are positive semidefinite, their eigenvalues are non-negative; if AAT has
rank k, define the ’singular values’ σ2

i to be its k positive eigenvalues. Below we
will use ’nonzero eigenvector’ to mean an eigenvector with nonzero eigenvalue,
will denote the diagonal matrix whose i’th diagonal component is σi by diag(σi),
and will assume without loss of generality that m ≤ n. Note that we repeatedly
use the tricks mentioned in Section (3.2). Let’s derive the SVD.

1. AAT has the same nonzero eigenvalues as AT A. Let xi ∈ Rm be an eigenvec-
tor of AAT with positive eigenvalue σ2

i , and let yi ≡ (1/σi)(AT xi), y ∈ Rn.
Then AT Ayi = (1/σi)AT AAT xi = σiA

T xi = σ2
i yi. Similarly let yi ∈ Rn be

an eigenvector of AT A with eigenvalue σ′2
i , and let zi ≡ (1/σ′

i)(Ayi). Then
AAT zi = (1/σ′

i)AAT Ayi = σ′
iAyi = σ′2

i zi. Thus there is a 1-1 correspon-
dence between nonzero eigenvectors for the matrices AT A and AAT , and the
corresponding eigenvalues are shared.

2. The xi can be chosen to be orthonormal, in which case so also are the yi.
The xi are orthonormal, or can be so chosen, since they are eigenvectors of
a symmetric matrix. Then yi · yj ∝ x′

iAATxj ∝ xi · xj ∝ δij .
3. rank(A) = rank(AT ) = rank(AAT ) = rank(AT A) ≡ k [12].
4. Let the xi be the nonzero eigenvectors of AAT and the yi those of AT A. Let

X ∈ Mmk (Y ∈ Mnk) be the matrix whose columns are the xi (yi). Then
Y = AT Xdiag(1/σi) ⇒ diag(σi)Y T = XT A. Note that m ≥ k; if m = k,
then A = Xdiag(σi)Y T .

5. If m > k, add m−k rows of orthonormal null vectors of AT to the bottom of
XT , and add m − k zero rows to the bottom of diag(σi); defining the latter
to be diag(σi, 0), then X is orthogonal and A = Xdiag(σi, 0)Y T . Note that
here, X ∈ Mm, diag(σi, 0) ∈ Mmk and Y ∈ Mnk.

6. To get something that looks more like an eigendecomposition, add n − k
rows of vectors that, together with the yi form an orthonormal set, to the
bottom of Y T , and add n − k columns of zeros to the right of diag(σi, 0);
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defining the latter to be diag(σi, 0, 0), then the Y are also orthogonal and
A = Xdiag(σi, 0, 0)Y T . Note that here, X ∈ Mm, diag(σi, 0, 0) ∈ Mmn, and
Y ∈ Mn.

7. To get something that looks more like a sum of outer products, just write A
in step (4) as A =

∑k
i=1 σixiy′

i.

Let’s put the singular value decomposition to work.

3.6 The Moore-Penrose Generalized Inverse

Suppose B ∈ Sm has eigendecomposition B = EΛET , where Λ is diagonal and E
is the orthogonal matrix of column eigenvectors. Suppose further that B is non-
singular, so that B−1 = EΛ−1ET =

∑
i(1/λi)eie′i. This suggests that, since SVD

generalizes eigendecomposition, perhaps we can also use SVD to generalize the
notion of matrix inverse to non-square matrices A ∈ Mmn. The Moore-Penrose
generalized inverse (often called just the generalized inverse) does exactly this10.
In outer product form, it’s the SVD analog of the ordinary inverse, with the latter
written in terms of outer products of eigenvectors: A† =

∑k
i=1(1/σi)yix′

i ∈ Mnm.
The generalized inverse has several special properties:

1. AA† and A†A are Hermitian;
2. AA†A = A;
3. A†AA† = A†.

In fact, A† is uniquely determined by conditions (1), (2) and (3). Also, if A is
square and nonsingular, then A† = A−1, and more generally, if (AT A)−1 exists,
then A† = (AT A)−1AT , and if (AAT )−1 exists, then A† = AT (AAT )−1. The
generalized inverse comes in handy, for example, in characterizing the general
solution to linear equations, as we’ll now see.

3.7 SVD, Linear Maps, Range and Null Space

If A ∈ Mmn, the range of A, R(A), is defined as that subspace spanned by
y = Ax for all x ∈ Rn. A’s null space N (A), on the other hand, is that subspace
spanned by those x ∈ Rn for which Ax = 0. Letting A|i denote the columns
of A, recall that Ax = x1A|1 + x2A|2 + · · · + xnA|n, so that the dimension
of R(A) is the rank k of A, and R(A) is spanned by the columns of A. Also,
N (AT ) is spanned by those vectors which are orthogonal to every row of AT

(or every column of A), so R(A) is the orthogonal complement of N (AT ). The
notions of range and null space are simply expressed in terms of the SVD, A =∑k

i=1 σixiy′
i, x ∈ Rm, y ∈ Rn. The null space of A is the subspace orthogonal

to the k yi, so dim(N (A)) = n − k. The range of A is spanned by the xi, so
dim(R(A)) = k. Thus in particular, we have dim(R(A)) + dim(N (A)) = n.

The SVD provides a handy way to characterize the solutions to linear systems
of equations. In general the system Az = b, A ∈ Mmn, z ∈ Rn, b ∈ Rm has 0, 1
10 The Moore-Penrose generalized inverse is one of many pseudo inverses.
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or ∞ solutions (if z1 and z2 are solutions, then so is αz1 +βz2, α, β ∈ R). When
does a solution exist? Since Az is a linear combination of the columns of A, b
must lie in the span of those columns. In fact, if b ∈ R(A), then z0 = A†b is
a solution, since Az0 =

∑k
i=1 σixiy′

i

∑k
j=1(1/σi)yjx′

jb =
∑k

i=1 xix′
ib = b, and

the general solution is therefore z = A†b + N (A).

Puzzle 6: How does this argument break down if b /∈ R(A)?

What if b /∈ R(A), i.e. Az = b has no solution? One reasonable step would
be to find that z that minimizes the Euclidean norm ‖Az−b‖. However, adding
any vector in N (A) to a solution z would also give a solution, so a reasonable
second step is to require in addition that ‖z‖ is minimized. The general solution
to this is again z = A†b. This is closely related to the following unconstrained
quadratic programming problem: minimize f(z) = 1

2z
′Az + bz, x ∈ Rn, A � 0.

(We need the extra condition on A since otherwise f can be made arbitrarily
negative). The solution to this is at ∇f = 0 → Az + b = 0, so the general
solution is again z = A†b + N (A).

Puzzle 7: If b /∈ R(A), there is again no solution, even though A � 0. What
happens if you go ahead and try to minimize f anyway?

3.8 Matrix Norms

A function ‖·‖ : Mmn → R is a matrix norm over a field F if for all A, B ∈ Mmn,

1. ‖A‖ ≥ 0
2. ‖A‖ = 0 ⇔ A = 0
3. ‖cA‖ = |c|‖A‖ for all scalars c ∈ F
4. ‖A + B‖ ≤ ‖A‖ + ‖B‖

The Frobenius norm, ‖A‖F =
√∑

ij |Aij |2, is often used to represent the dis-

tance between matrices A and B as ‖A−B‖2
F , when for example one is search-

ing for that matrix which is as close as possible to a given matrix, given some
constraints. For example, the closest positive semidefinite matrix, in Frobenius
norm, to a given symmetric matrix A, is Â ≡ ∑

i:λi>0 λie(i)e′(i) where the λi,
e(i) are the eigenvalues and eigenvectors of A, respectively. The Minkowski vec-
tor p-norm also has a matrix analog: ‖A‖p ≡ max‖x‖=1 ‖Ax‖p. There are three
interesting special cases of this which are easy to compute: the maximum ab-
solute column norm, ‖A‖1 ≡ maxj

∑n
i |Aij |, the maximum absolute row norm,

‖A‖∞ ≡ maxi

∑n
j |Aij |, and the spectral norm, ‖A‖2. Both the Frobenius and

spectral norms can be written in terms of the singular values: assuming the

ordering σ1 ≥ σ2 · · · ≥ σk, then ‖A‖2 = σ1 and ‖A‖F =
√∑k

i=1 σ2
i .

Exercise 10. Let U and W be orthogonal matrices. Show that ‖UAW‖F =
‖A‖F .
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Exercise 11. The submultiplicative property, ‖AB‖ ≤ ‖A‖‖B‖, is an
additional property that some matrix norms satisfy [11]11. Prove that, if A ∈ Mm

and if a submultiplicative norm exists for which ‖A‖ < 1, then (1 + A)−1 =
1−A+A2 −A3 + · · · , and if A is nonsingular and a submultiplicative norm ex-
ists for which ‖A−1‖ < 1, then (1+A)−1 = A−1(1−A−1+A−2−A−3+· · · ). Show
that for any rectangular matrix W , W (1+W ′W )−1W ′ = (1+WW ′)−1WW ′ =
WW ′(1 + WW ′)−1. (This is used, for example, in the derivation of the condi-
tional distribution of the latent variables given the observed variables, in proba-
bilistic PCA [19].)

The Minkowski p norm has the important property that ‖Ax‖p ≤ ‖A‖p ‖x‖p.
Let’s use this, and the L1 and L∞ matrix norms, to prove a basic fact about
stochastic matrices. A matrix P is stochastic if its elements can be interpreted
as probabilities, that is, if all elements are real and non-negative, and each row
sums to one (row-stochastic), or each column sums to one (column-stochastic),
or both (doubly stochastic).

Theorem 1. If P is a square stochastic matrix, then P has eigenvalues whose
absolute values lie in the range [0, 1].

Proof. For any p ≥ 1, and x any eigenvector of P , ‖Px‖p = |λ| ‖x‖p ≤ ‖P‖p ‖x‖p

so |λ| ≤ ‖P‖p. Suppose that P is row-stochastic; then choose the L∞ norm, which
is the maximum absolute row norm ‖P‖∞ = maxi

∑
j |Pij | = 1; so |λ| ≤ 1. If

P is column-stochastic, choosing the 1-norm (the maximum absolute column
norm) gives the same result. ��

Note that stochastic matrices, if not symmetric, can have complex eigenval-
ues, so in this case F is the field of complex numbers.

3.9 Positive Semidefinite Matrices

Positive semidefinite matrices are ubiquitous in machine learning theory and
algorithms (for example, every kernel matrix is positive semidefinite, for Mercer
kernels). Again we restrict ourselves to real matrices. A matrix A ∈ Sn is positive
definite iff for every x ∈ Rn, x′Ax > 0; it is positive semidefinite iff for every
x ∈ Rn, x′Ax ≥ 0, and some x exists for which the equality is met. Recall
that we denote the property of positive definiteness of a matrix A by A � 0,
and positive semidefiniteness by A � 0. Let’s start by listing a few properties,
the first of which relate to what positive semidefinite matrices look like (here,
repeated indices are not summed):

1. If A � 0, then Aii > 0 ∀i;
2. If A � 0, then Aii ≥ 0 ∀i;
3. If A � 0, then Aii = 1 ∀i ⇒ |Aij | ≤ 1 ∀i, j;
4. If A ∈ Sn is strictly diagonally dominant, that is, Aii >

∑
j �=i |Aij | ∀i, then

it is also positive definite;
11 Some authors include this in the definition of matrix norm [12].
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5. If A � 0 and Aii = 0 for some i, then Aij = Aji = 0 ∀j;
6. If A � 0 then AiiAjj ≥ |Aij |2 ∀i, j;
7. If A ∈ Sn � 0 and B ∈ Sn � 0 then AB � 0;
8. A ∈ Sn is positive semidefinite and of rank one iff A = xx′ for some x ∈ Rn;
9. A � 0 ⇔ A all of the leading minors of A are positive.

A very useful way to think of positive semidefinite matrices is in terms of Gram
matrices. Let V be a vector space over some field F , with inner product 〈·, ·〉.
The Gram matrix G of a set of vectors vi ∈ V is defined by Gij ≡ 〈vi,vj〉. Now
let V be Euclidean space and let F be the reals. The key result is the following:
let A ∈ Sn. Then A is positive semidefinite with rank r if and only if there exists
a set of vectors {v1, . . . ,vn}, vi ∈ V , containing exactly r linearly independent
vectors, such that Aij = vi · vj .

Note in particular that the vectors v can always be chosen to have dimension
r ≤ n.

Puzzle 8: A kernel matrix K ∈ Sn is a matrix whose elements take the
form Kij ≡ k(xi,xj) for some xi,xj ∈ Rd, i, j = 1, . . . , n for some d, where
k is a symmetric function which satisfies Mercer’s condition (see e.g. [6]). For
any such function k, there exists an inner product space H and a map Φ : Rd �→
H such that k(xi,xj) = Φ(xi) · Φ(xj). The dimension of H can be large, or
even infinite (an example of the latter is k(xi,xj) = exp−(1/σ2)‖xi−xj‖2

). In
particular, the dimension of the dot product space can be larger than n. How does
this square with the claim just made about the maximum necessary dimension of
the Gram vectors?

Some properties of positive semidefinite matrices that might otherwise seem
mysterious become obvious, when they are viewed as Gram matrices, as I hope
the following exercise helps demonstrate.

Exercise 12. Use the fact that every positive semidefinite matrix is a Gram
matrix to prove items (2), (3), (5), and (6) in the list above. Use the definition
of a positive (semi)definite matrix to prove (1), (4), (7) and (8).

If the Gram representation is so useful, the question naturally arises: given
a positive semidefinite matrix, how can you extract a set of Gram vectors for
it? (Note that the set of Gram vectors is never unique; for example, globally
rotating them gives the same matrix). Let A ∈ Sn � 0 and write the eigen-
decomposition of A in outer product form: A =

∑n
a=1 λae(a)e′(a) or Aij =∑n

a=1 λae
(a)
i e

(a)
j . Written in terms of the dual eigenvectors (see Section 3.1):

Aij =
∑n

a=1 λaê
(i)
a ê

(j)
a , the summand has become a weighted dot product; we

can therefore take the set of Gram vectors to be v
(i)
a =

√
λaê

(i)
a . The Gram

vectors therefore are the dual basis to the scaled eigenvectors.

3.10 Distance Matrices

One well-known use of the Gram vector decomposition of positive semidefinite
matrices is the following. Define a ’distance matrix’ to be any matrix of the
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form Dij ∈ Sn ≡ ‖xi − xj‖2, where ‖ · ‖ is the Euclidean norm (note that
the entries are actually squared distances). A central goal of multidimensional
scaling is the following: given a matrix which is a distance matrix, or which is
approximately a distance matrix, or which can be mapped to an approximate
distance matrix, find the underlying vectors xi ∈ Rd, where d is chosen to be
as small as possible, given the constraint that the distance matrix reconstructed
from the xi approximates D with acceptable accuracy [8]. d is chosen to be small
essentially to remove unimportant variance from the problem (or, if sufficiently
small, for data visualization). Now let e be the column vector of n ones, and
introduce the ’centering’ projection matrix P e ≡ 1− 1

nee′.

Exercise 13. Prove the following: (1) for any x ∈ Rn, P ex subtracts the
mean value of the components of x from each component of x, (2) P ee = 0,
(3) e is the only eigenvector of P e with eigenvalue zero, and (4) for any dot
product matrix Aij ∈ Sm ≡ xi · xj , i, j = 1, . . . , m, xi ∈ Rn, then (P eAP e)ij =
(xi − µ) · (xj − µ), where µ is the mean of the xi.

The earliest form of the following theorem is due to Schoenberg [18]. For a
proof of this version, see [7].

Theorem 2. Consider the class of symmetric matrices A ∈ Sn such that Aij ≥
0 and Aii = 0 ∀i, j. Then Ā ≡ −P eAP e is positive semidefinite if and only if
A is a distance matrix, with embedding space Rd for some d. Given that A is a
distance matrix, the minimal embedding dimension d is the rank of Ā, and the
embedding vectors are any set of Gram vectors of Ā, scaled by a factor of 1√

2
.

3.11 Computing the Inverse of an Enlarged Matrix

We end our excursion with a look at a trick for efficiently computing inverses.
Suppose you have a symmetric matrix K ∈ Sn−1, and suppose you form a new
symmetric matrix by adding a number u ≡ Knn and a column v, vi ≡ Kin (and
a corresponding row Kni ≡ Kin). Denote the enlarged matrix by

K+ =
(

K v
v′ u

)
(15)

Now consider the inverse

K−1
+ ≡

(
A b
b′ c

)
(16)

where again b is a column vector and c is a scalar. It turns out that it is straight-
forward to compute A, b and c in terms of K−1, v and u. Why is this useful?
In any machine learning algorithm where the dependence on all the data is cap-
tured by a symmetric matrix K(xi,xj), then in test phase, when a prediction is
being made for a single point x, the dependence on all the data is captured by
K+, where vi = K(xi,x) and u = K(x,x). If that algorithm in addition requires
that the quantities b and c be computed, it’s much more efficient to compute
them by using the following simple lemma (and computing K−1 just once, for
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the training data), rather than by computing K−1
+ for each x. This is used,

for example, in Gaussian process regression and Gaussian process classification,
where in Gaussian process regression, c is needed to compute the variance in the
estimate of the function value f(x) at the test point x, and b and c are needed
to compute the mean of f(x) [9, 20].

Lemma 2. : Given K ∈ Mn−1 and K+ ∈ Mn as defined above, then the ele-
ments of K+ are given by:

c =
1

u − v′K−1v
(17)

b = − 1
u − v′K−1v

v′K−1 (18)

Aij = K−1
ij +

1
u − v′K−1v

(v′K−1)i(v′K−1)j (19)

and furthermore,
det(K)
det(K+)

=
1

u − v′K−1v
= c (20)

Proof. Since the inverse of a symmetric matrix is symmetric, K−1
+ can be written

in the form (16). Then requiring that K−1
+ K+ = 1 gives (repeated indices are

summed):

i < n, j < n : AimKmj + bivj = δij (21)
i = n, j < n : bmKmj + cvj = 0 (22)
i < n, j = n : Aimvm + biu = 0 (23)
i = n, j = n : bmvm + cu = 1 (24)

Eq. (22) gives b = −cv′K−1. Substituting this in (24) gives Eq. (17), and sub-
stituting it in (21) gives Eq. (19). Finally the expression for the ratio of determi-
nants follows from the expression for the elements of an inverse matrix in terms
of ratios of its cofactors. ��

Exercise 14. Verify formulae (17), (18), (19) and (20) for a matrix K+ ∈ S2

of your choice.

Puzzle 9: Why not use this result iteratively (starting at n = 2) to compute
the inverse of an arbitrary symmetric matrix A ∈ Sn? How does the number of
operations needed to do this compare with the number of operations needed by
Gaussian elimination (as a function of n)? If, due to numerical problems, the
first (top left) element of the first matrix is off by a factor 1 + ε, ε � 1, what is
the error (roughly) in the estimated value of the final (bottom right) element of
Sn?
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