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We study the behavior of stochastic processes defined as an iterated function system

Xn+1 = Xn + af(Xn , Un+1)

with initial value X0 = x0 and a stationary ergodic input signal (Un)
n≥0 for small

values of the parameter a. We obtain almost sure convergence of the path to the solu-
tion of the corresponding deterministic dynamical system defined by ẏ = F (y), where
F (y) = E(f(y, U)). The results have applications in the study of neural network learning
algorithms.
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1. Introduction

In this paper we study the behavior of the R
d-valued stochastic process (Xa

n)n≥0

defined by the stochastic recursion scheme

Xa
n+1 = Xa

n + af(Xa
n, Un+1) (1.1)

with fixed initial value Xa
0 = x0 and stationary ergodic input signal (Un)n≥1.

Moreover f : R
d × R → R

d is assumed to be measurable, with further smoothness

assumptions made later.
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When (Un)n≥1 is an i.i.d. process taking finitely many values a1, . . . , aK with

associated probabilities p1, . . . , pK , the process defined by (1.1) is also called an

Iterated Function System with probabilities. In such a system, the next state is a

function of the present state, where the function to be applied is chosen at random

from a finite set f1, . . . , fK . Iterated function systems have been studied in con-

nection with fractal image encoding, see e.g. [2]. Roughly speaking, an IFS with

probabilities encodes the invariant distribution of the Markov process (Xn)n≥0,

which can in turn be recovered by running a simulation of (Xn)n≥0.

Here we are particularly interested in the behavior of the process (Xa
n)n≥0 for

small values of the parameter a. We will show that as a → 0, a properly time-scaled

version of (Xa
n)n≥0 converges to a solution of the deterministic differential equation

d

dt
y(t) = F (y(t)) (1.2)

with the same initial value y(0) = x0. Here F (y) denotes the mean vector field

F (y) = Ef(y, U) =

∫

f(y, u)dµ(u) , (1.3)

where µ is the marginal distribution of U . More precisely, we define the continuous-

time stochastic processes

Xa(t) := Xa
bt/ac , t ≥ 0 (1.4)

where bsc denotes the integer part of s. Then we obtain

Theorem 1.1. Let (Xa(t))t≥0 be defined as above, and assume that (Un)n≥1 is

a stationary ergodic stochastic process with marginal distribution µ. Moreover, let

f : R
d × R → R

d be uniformly Lipschitz-continuous in the first coordinate and

µ-integrable in the second coordinate. I.e., there exists a constant K such that

|f(x, u) − f(y, u)| ≤ K|x − y| (1.5)

for all x, y ∈ R
d, u ∈ R, and in addition,

∫

|f(x, u)|dµ(u) < ∞, for all x ∈ R. Then,

as a → 0, the process (Xa(t))t≥0 converges uniformly on compact sets to (y(t))t≥0,

almost everywhere. More precisely, for all T ≥ 0,

sup
0≤t≤T

|Xa(t) − y(t)| → 0 as a → 0, a.e.

Results of this type have been obtained before, e.g. [4]. In contrast with earlier

work, we make minimal assumptions concerning the dependence structure of the

input process (Un)n≥0, only requiring ergodicity.

Remark 1.2. Theorem 1.1 can also be applied to a time-dependent recursion

process

Xa
n+1 = Xa

n + af(an, Xa
n, Un+1) ,
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where f : R × R
d × R → R

d. The corresponding limit is the solution to the time-

dependent differential equation d
dty(t) = F (t, y(t)) where F (t, y) = Ef(t, y, U) =

∫

f(t, y, u)dµ(u). For the proof we introduce the spacetime process V a
n = (an, Xa

n)

and note that it satisfies

V a
n+1 = V a

n + ag(V a
n , Un+1) ,

where g(v, u) := (1, f(v, u)). Let G(v) := Eg(v, U) = (1, F (v)). Now, if y(t) is a

solution to d
dty(t) = F (t, y(t)), then w(t) = (t, y(t)) solves the differential equation

d

dt
w(t) = (1, F (t, y(t))) = G(w(t)) .

Thus Theorem 1.1 is applicable and provides the desired result

sup
0≤t≤T

|Xa(t) − y(t)| →
a→0

0 .

Example 1.3. To illustrate the result of the theorem, we take f(x, u) = u−x and

let (Un)n≥1 be i.i.d. symmetric Bernoulli, i.e. P (Un = −1) = P (Un = 1) = 1/2.

Then

Xa
n = Xa

n−1 + a(Un − Xn−1) = (1 − a)Xn−1 + aUn ,

a process known in time series analysis as AR(1)-process. In this case, the recursion

with initial value Xa
0 = x0 can be solved explicitly to yield

Xa
n = (1 − a)nx0 +

n
∑

k=1

a(1 − a)n−kUk ,

and thus

Xa(t) = (1 − a)bt/acx0 +

bt/ac
∑

k=1

a(1 − a)bt/ac−kUk .

As a → 0, the first term on the R.H.S. converges to e−t, uniformly in t ≥ 0. Using

some standard, but lengthy, calculations one can show that
∑bt/ac

k=1 a(1−a)bt/ac−kUk

converges to 0, uniformly on compact sets. Thus (Xa(t))t≥0 converges uniformly on

compact sets to y(t) := x0e
−t, which is indeed the solution to the mean differential

equation ẏ = F (y) = Ef(y, U) = −y with initial value y(0) = x0. For this special

case, one can thus directly verify the conclusions of Theorem 1.1.

The motivation for this research arises in part from a study of learning algo-

rithms for artificial neural networks. A neural network assigns to an input vector

x ∈ R
p an output y = fw(x) ∈ R, where w ∈ R

d is a vector of parameters of the

network, the weights and thresholds of the neurons and the synapses in the network.

It is the goal of neural learning to have the actual output of the network be as close

as possible to a given teacher T : R
p → R. We define the local error at x by

Φ(x, w) = |fw(x) − T (x)|2 .
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Now suppose that a stationary input signal (ξk)k is presented to the network. Then

we can define the global error Φ(w) as the average local error

Φ(w) :=

∫

Φ(x, w)dµ(x) ,

where µ is the distribution of ξk. One would like to choose the weight w in such a way

that Φ(w) gets minimized. To achieve this one can use a gradient descent algorithm

wn+1 = wn + a∇Φ(wn) ,

n ≥ 1, with given initial value w0. However, it may be that Φ(w) is unknown. For

this and other reasons we take a local gradient descent algorithm, defined by

Wn+1 = Wn + a∇Φ(Wn, ξn) ,

n ≥ 1, again with initial value w0. Besides being simpler to implement this algo-

rithm has closer analogy with biological neural learning. Moreover, it may enhance

learning by exploring more of the error surface. Note that the random inputs make

the weight sequence now a stochastic process. Simulations indicate that as a → 0,

the path of (Wn) closely follows the global gradient flow. Intuitively this is clear,

because there are many small displacements a∇Φ(w, Xk) which by the Law of Large

Numbers should be close to ∇Φ(w).

2. Preliminary Results

The following proposition provides an extension of Birkhoff’s pointwise ergodic

theorem to certain functions of two variables. This result will play a crucial role

in the proof of our main theorem.

Proposition 2.1. Let (Un)n≥1 be a stationary, ergodic process with marginal dis-

tribution µ. Suppose that g : [0, 1]×R → R
d is µ-integrable in the second coordinate

and uniformly Lipschitz-continuous in the first coordinate, i.e. satisfying

|g(s, u) − g(t, u)| ≤ K|s − t|

for all s, t, u and for some positive constant K. Then, as a → 0

sup
0≤t≤1

∣

∣

∣

∣

∣

a

bt/ac
∑

k=1

g(ka, Uk) −

∫
(
∫ t

0

g(s, u)ds

)

dµ(u)

∣

∣

∣

∣

∣

→ 0 , (2.1)

almost everywhere.

Proof. It suffices to consider the case d = 1. We first prove convergence in (2.1) for

simple functions of the type g(s, u) = 1[0,b](s) · h(u) with b ∈ [0, 1] and h : R → R

integrable. Then

a

bt/ac
∑

k=1

g(ka, Uk) = a

b(t∧b)/ac
∑

k=1

h(Uk) = (t ∧ b)
1

(t ∧ b)/a

b(t∧b)/ac
∑

k=1

h(Uk) .
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By Birkhoff’s ergodic theorem, 1
s

∑s
k=1 h(Uk) →

∫

h(u)dµ(u), as s → ∞, almost

everywhere. For a moment, we consider a fixed ω for which convergence in the

ergodic theorem holds. Then, given ε > 0, there exists n0 such that
∣

∣

∣

∣

∣

1

s

bsc
∑

k=1

h(Uk) −

∫

h(u)dµ(u)

∣

∣

∣

∣

∣

≤ ε

for all s ≥ n0. Define M = maxn=1,...,n0

1
n |
∑n

k=1 h(Uk)|+ |
∫

h(u)dµ(u)| and choose

a0 so that n0Ma0 ≤ ε. Then
∣

∣

∣

∣

∣

a

bt/ac
∑

k=1

g(ka, Uk) −

∫ ∫ t

0

g(s, u)dsdµ(u)

∣

∣

∣

∣

∣

= (t ∧ b)

∣

∣

∣

∣

∣

1

(t ∧ b)/a

b(t∧b)/ac
∑

k=1

h(Uk) −

∫

h(u)dµ(u)

∣

∣

∣

∣

∣

.

If (t ∧ b)/a ≥ n0, the R.H.S. is bounded by ε. Otherwise t ∧ b ≤ n0a ≤ ε/M and

hence the R.H.S. is again bounded by ε. Together we obtain

sup
0≤t≤1

∣

∣

∣

∣

∣

a

bt/ac
∑

k=1

g(ka, Uk) −

∫ ∫ t

0

g(s, u)dsdµ(u)

∣

∣

∣

∣

∣

≤ ε ,

thus establishing (2.1) for simple functions. By linearity, we can extend this to finite

linear combinations of simple functions, i.e. to functions of the form

g(s, u) =

m
∑

i=1

1(ai,bi](s)hi(u) . (2.2)

Now let g(s, u) be an arbitrary function satisfying the conditions of the propo-

sition. Let 0 = a0 ≤ a1 ≤ · · · ≤ am = 1 be a partition of [0, 1] with mesh

∆ := maxi=1,...,m |ai − ai−1| satisfying ∆ ≤ ε/K, and define

gε(s, u) =
m
∑

i=1

1(ai−1,ai](s)g(ai−1, u) .

Then, for ai−1 < s ≤ ai,

|gε(s, u) − g(s, u)| = |g(ai−1, u) − g(s, u)| ≤ K∆ ≤ ε ,

by the Lipschitz property of g. Hence sups,u |gε(s, u) − g(s, u)| ≤ ε and thus

sup
0≤t≤1

∣

∣

∣

∣

∣

a

bt/ac
∑

j=1

g(ka, Uk) − a

bt/ac
∑

j=1

gε(ka, Uk)

∣

∣

∣

∣

∣

≤ ε , (2.3)

sup
0≤t≤1

∣

∣

∣

∣

∫ ∫ t

0

g(s, u)dsdµ(u) −

∫ ∫ t

0

gε(s, u)dsdµ(u)

∣

∣

∣

∣

≤ ε . (2.4)

Moreover, gε(s, u) is of the form (2.2) and hence (2.1) holds, except on a set Ωε of

measure 0. Restricting ε to rational numbers, we obtain convergence in (2.1) for all
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gε, except on the null set Ω0 =
⋃

ε rational Ωε. Thus, except possibly on Ω0, we have

for N large enough

sup
0≤t≤1

∣

∣

∣

∣

∣

a

bt/ac
∑

k=1

gε(ka, Uk) −

∫ ∫ t

0

gε(s, u)dsdµ(u)

∣

∣

∣

∣

∣

≤ ε . (2.5)

Now, (2.3)–(2.5) together prove the statement of the proposition.

It is interesting to note two special cases of Proposition 2.1, namely when

g(s, u) = g(s) is a function of s only, and when g(s, u) = g(u) is a function of

u only. In the second case, our proposition is just the Birkhoff ergodic theorem,

actually under optimal conditions. In the first case, we obtain the convergence of

Riemann sums to the integral. Here, however, the condition on our proposition,

Lipschitz continuity of g(s) is unnecessarily restrictive. These considerations also

suggest that the conditions of our proposition are not sharp.

Corollary 2.2. Let (Un)n≥1 be a stationary ergodic process of bounded random

variables, and let f : [0, 1] → R be Lipschitz-continuous. Then, as N → ∞,

1

N

N
∑

j=1

f

(

j

N

)

Uj → E(U1)

∫ 1

0

f(s)ds ,

almost everywhere.

Proof. The proof follows directly from Proposition 2.1 with g(s, u) = f(s) · u.

The following lemma is a simplified and discrete version of Gronwall’s lemma

(for the continuous version see, e.g., [5]). For the sake of completeness we also

provide a proof here.

Lemma 2.3. Let (bn)n≥0 be a sequence of real numbers satisfying the recursive

inequalities

bn ≤ α +

n−1
∑

k=0

γkbk (2.6)

for n ≥ 0 and non-negative constants α, γk. Then

bn ≤ α exp

(

n−1
∑

k=0

γk

)

(2.7)

holds for all n ≥ 0.

Proof. We will actually show the stronger statement that

α +

n−1
∑

k=0

γkbk ≤ α exp

(

n−1
∑

k=0

γk

)

(2.8)
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holds for all n ≥ 0. These inequalities will be established by induction on n.

For n = 0, (2.8) holds trivially. Then, using (2.6), the induction hypothesis and

1 + x ≤ ex, we get

α +

n
∑

k=0

γkbk = α +

n−1
∑

k=0

γkbk + γnbn ≤ α +

n−1
∑

k=0

γkbk + γn

(

α +

n−1
∑

k=0

γkbk

)

= (1 + γn)

(

α +

n−1
∑

k=0

γkbk

)

≤ eγnα exp

n−1
∑

k=0

γk ,

thus establishing the induction step in the proof of (2.8). Finally, we combine (2.6)

and (2.8) to obtain the statement of the lemma.

3. Proof of Theorem 1.1

By (1.5), the mean vector field F : R
d → R

d, as defined in (1.3), is Lipschitz-

continuous with Lipschitz constant K. Hence the differential equation (1.2) has a

uniquely defined, continuously differentiable solution y : [0,∞) → R
d with y(0) =

x0. To show convergence of Xa(t) to y(t) uniformly on all compact sets in [0,∞),

we have to show that, as a → 0,

sup
0≤t≤T

|Xa(t) − y(t)| → 0 ,

almost everywhere. Without loss of generality, we take T = 1. By continuity of y

and by definition of Xa, it suffices to show that

max
0≤n≤ 1

a

|Xa(na) − y(na)| → 0 ,

almost everywhere. To this end, we define the difference Za
n := Xa(na) − y(na),

n ≥ 0. From (1.1) we obtain the following recursion formula for (Za
n)n≥0:

Za
n+1 = Xa((n + 1)a) − y((n + 1)a)

= Xa(na) + af(Xa(na), Un+1) − y(na) −

∫ (n+1)a

na

ẏ(t)dt

= Za
n + a[f(Xa(na), Un+1) − f(y(na), Un+1)]

+ a

[

f(y(na), Un+1) −
1

a

∫ (n+1)a

na

F (y(t))dt

]

,
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where we have used that ẏ(t) = F (y(t)). Iterating this recursion and noting that

Za
0 = 0, we obtain

Za
n+1 = a

n
∑

k=0

[f(Xa(ka), Uk+1) − f(y(ka), Uk+1)]

+ a
n
∑

k=0

f(y(ka), Uk+1) −

∫ (n+1)a

0

F (y(t))dt

= a

n
∑

k=0

[f(Xa(ka), Uk+1) − f(y(ka), Uk+1)]

+ a

n
∑

k=0

f(y(ka), Uk+1) −

∫ (n+1)a

0

∫

f(y(t), u)dµ(u)dt . (3.1)

To the last difference on the R.H.S., we can apply Proposition 2.1 with g(t, u) =

f(y(t), u). Thus we obtain

ε = ε(ω, a) := sup
0≤n≤ 1

a

∣

∣

∣

∣

∣

a

n
∑

k=0

f(y(ka), Uk+1) −

∫ na

0

∫

f(y(t), u)dµ(u)dt

∣

∣

∣

∣

∣

→ 0

as a → 0, almost everywhere. Regarding the first term, we make use of the Lipschitz

property of f , yielding

|f(Xa(ka), Uk+1) − f(y(ka), Uk+1)| ≤ K|Xa(ka) − y(ka)| = K|Za
k | .

In total we obtain

|Za
n+1| ≤ aK

n
∑

k=0

|Za
k | + ε

for all n = 1, 2, . . . , 1/a. We can now finish the proof by using Lemma 2.3 with

α = ε(ω, a) and γk ≡ aK. Then we obtain

|Za
n| ≤ εeaKn ≤ εeK ,

proving almost everywhere convergence of Za
n to zero as a → 0.
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