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Abstract

In this paper we review the results on powers of matrices over a distributive lattice. We stress the signi3-
cance of the graph-theoretical approach and show how several previous results for matrices of special types
can be obtained in a uni3ed way.
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1. Introduction

Powers of real matrices computed with at least one of the addition/multiplication operations
replaced by maximum or minimum have been extensively studied, since they have applications
in various types of discrete systems. In particular, for the description of the behaviour of fuzzy
systems, whose states are expressed using fuzzy values taken from the real interval 〈0; 1〉 or an
arbitrary distributive lattice, the powers of lattice matrices are of special importance.

Among the structures, over which the powers of matrices are computed, are max–addition (linear
systems with synchronization [3,11,24,39,45]) max–multiplication [12,13], max–min (fuzzy systems,
[9,16,17,18,20,35,36,53]), and their generalizations to max–t-norm [14,15] and to general sup–inf
in a distributive lattice [52]. Results include proving convergence for special types of matrices
[16,29,53], proving upper bounds [36] or computing the length of the oscillation period of the matrix
power sequence [20], estimating its exponent, investigating connections between power sequence and
eigenvectors [8,51], etc.
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In this paper we shall concentrate our attention to powers of matrices over distributive lattices
and leave out other important and extensive areas, namely products of matrices over max-addition,
max-multiplication algebras or products involving t-norms. (The reason is that in these structures, in
contrary to the distributive lattices case, the ‘multiplication’ operation is not idempotent and so the
behaviour of the powers of a matrix does not in general exhibit a periodic pattern. An interested
reader is invited to study the relevant references, e.g. [3,11,24,38,39,45,54], for max-plus algebra,
[12,13,41] for max-times algebra, [14,15] for products using t-norms and [54] for a general algebraic
framework.) We would like to stress the signi3cance of the graph-theoretical approach in the study
of this topic, which was applied as early as in 1957 [43]. Graph theory is a powerful tool enabling
many easy generalizations of results for binary matrices to the case of linear and general distributive
lattices and giving uni3ed proofs of many isolated results, scattered through the literature in linear
algebra and in the world of fuzzy sets. Many authors are not aware of this possibility and of previous
works, so the subsequent history of this topic is full of individualized terminology and rediscovering
old results.

Let us also note here, that digraphs are used in a similar way for the study of nonnegative matrices,
for which a good reference is the monograph [7].

2. Lattice matrices

A distributive lattice (L;∨;∧; 0; 1) is an algebraic structure with two operations ∨;∧ called join
and meet, that are commutative, associative, idempotent, distributive with respect to each other and
posses neutral elements 0; 1 for the operations ∨ and ∧, respectively. For a detailed account of the
lattice theory the reader is recommended to study e.g. the monograph [27].

Let us denote the set of all n by n matrices over L by Mn(L) and the set of n-vectors by Vn(L).
The matrices of order n with all entries equal to 0 and to 1, respectively, will be denoted by 0n
and Jn. The vector with all entries equal to 1 will be denoted by e, the one with all entries equal
to �∈L by e� (the order of such vectors will be usually clear from the context).

We shall review the properties of powers of matrices over L. These powers are computed for-
mally in the same way as it is done in the classical linear algebra. It is common to use here a
notation resembling the classical linear algebra, namely, the sign ⊕ is used for ‘addition’ and ⊗ for
‘multiplication’. In the context of distributive lattices it is usually supposed that ⊕=∨ and ⊗=∧,
and so for A; B∈Mn(L)

A⊗ B = C with cij =
n⊕∑
k=1

aik ⊗ bkj =
n∨

k=1

aik ∧ bkj:

An element a∈L is called join-irreducible if for any x; y∈L, equality a= x∨y implies a= x or
y. The set of all nonzero join-irreducible elements of L will be denoted by J (L).

It is well known that each 3nite distributive lattice can be embedded into a 3nite Boolean lattice
Bk (see [27]) in the following way. For x∈L denote

r(x) =

{ ∅; x = 0;

{y ∈ J (L);y6x}; x �= 0:
(1)
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Fig. 1.

Then the set P(J (L)) of all subsets of J (L) with ∨ equal union and ∧ equal intersection is a
3nite Boolean lattice, r is an embedding of L into P(J (L)). Atoms of this Boolean lattice will be
denoted in this paper by letters s and they correspond to one-element subsets of J (L).

As an illustration of this embedding take the lattice considered in [52], depicted in the left half of
Fig. 1. Its join-irreducible elements are a; b and d. In the right half of Fig. 1 one can see the cor-
responding Boolean lattice, with its atoms s1; s2; s3. The embedding is r(0) = 0 = ∅, r(a) = s1 = {a},
r(b) = s2 = {b}, r(c) = s1 ∨ s2 = {a; b}, r(d) = s1 ∨ s3 = {a; d}, r(1) = 1 = {a; b; d}.

For a matrix A∈Mn(L) the set of its diNerent entries will be denoted by k(A). Clearly, k(A) is
3nite, so the sublattice L(A) of L generated by k(A) is 3nite and therefore can also be embedded
into a 3nite Boolean lattice. We shall denote this Boolean lattice by B(A) and call it the Boolean
lattice associated with A. Let us denote the set of atoms of B(A) by �(A).

A matrix A∈Mn(L) can be represented by binary matrices As, s∈ �(A) of the form

(As)ij =

{
1 if aij¿s;

0 otherwise;

called the sth constituent of A [34]. Matrix A can be uniquely expressed as a linear combination of
its constituents with coeOcients s; s∈ �(A) in the following way (compare [34,52]):

A =
⊕∑

s∈�(A)

s⊗ As: (2)

For example, the following matrix, taken from [52]:

A =




0 d b

c 0 d

d 1 a


 (3)

over the lattice from Fig. 1 has three constituents

As1 =




0 1 0

1 0 1

1 1 1


 ; As2 =




0 0 1

1 0 0

0 1 0


 ; As3 =




0 1 0

0 0 1

1 1 0


 : (4)
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An important special case of a distributive lattice is a bounded linearly ordered set; we shall
consider without loss of generality the interval F= 〈0; 1〉 (which, endowed with operations ⊕= max
and ⊗= min is called by many authors fuzzy algebra). Here, the representation of matrices by the
join-irreducible elements of F and hence its constituents is useless (in fact, each element of a linear
lattice is join-irreducible), so instead binary cut matrices A� for �∈F de3ned by

(A�)ij =

{
1 if aij ¿ �;

0 otherwise
(5)

are used. (Cut matrices are called by some authors its sections or zero patterns [33] or threshold
matrices [9,20] etc.) Notice, that although for A∈Mn(F) theoretically in3nitely many cut matrices
exist, in practice only at most n2 + 1 of them may be diNerent, and the decisive changing points
correspond to the entries of A. Matrix A can again be uniquely expressed as a linear combination
of its cut matrices:

A =
⊕∑

�∈k(A)

�⊗ A�: (6)

For example, the matrix

A =




0:2 0:4 1

0:5 0 0:2

0:4 0:5 0:5




over F has 3ve diNerent cut matrices, A0 = J3 and A0:2, A0:4, A0:5, A1 follow:


1 1 1

1 0 1

1 1 1


 ;


 0 1 1

1 0 0
1 1 1


 ;




0 0 1

1 0 0

0 1 1


 ;




0 0 1

0 0 0

0 0 0


 :

Each power sequence of A∈Mn(L) is ultimately periodic, since L(A) is 3nite and hence only
a 3nite number of diNerent matrices can be generated (compare [53,52]). Formally, there exist two
integers e; p such that

Ae = Ae+p: (7)

The smallest p such that (7) is satis3ed, is called the period of A, denoted sometimes by p(A).
If p(A) = 1 then A is called convergent. The smallest e such that Ae =Ae+p(A) holds, is called the
exponent of A.

Taking into account the representation of a matrix over a distributive lattice L or over the fuzzy
algebra F in the form (2) and (6), respectively, for each v we have

Av =
⊕∑

s∈�(A)

s⊗ Av
s; or Av =

⊕∑
�∈k(A)

�⊗ Av
�:

So the study of power sequences of a matrix over a distributive lattice can essentially be reduced
to the study of binary matrices.
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We shall also review the known results for some special types of matrices; their de3nitions are
summarized in

De$nition 1. A matrix A∈Mn(L) is called

1. transitive, if A26A,
2. increasing, if A2¿A,
3. diagonally dominant, if ajj =

∑⊕
i6n(aij ⊕ aji) for j = 1; : : : ; n,

4. symmetric, if aij = aji for all i; j = 1; : : : ; n,
5. nilpotent, if Am = 0n for some integer m,
6. primitive, if Am = Jn for some integer m,
7. circulant, if it has the following form:




x0 x1 · · · xn−1

xn−1 x0 · · · xn−2

...
...

. . .
...

x1 x2 · · · x0


 :

3. Basic notions of graph theory

Now we shall review basic notions and facts of graph theory used in this paper. For a detailed
introduction to this area refer to the monograph [5].

A digraph is a pair G = (V;H), where V is a 3nite set, called the vertex set, and H is a subset
of V × V , called the arc set. A digraph G′ = (V ′; H ′) is a subdigraph of G, if V ′⊆V and H ′⊆H .
A sequence of vertices p= (i0; i1; : : : ; im) is called a path from vertex i0 to vertex im, if for all
j = 1; : : : ; m the pair (ij−1; ij)∈H ; its length is m and is denoted by ‘(p). A path is called a cycle
if i0 = im, a cycle of length 1 is called a loop. Notice that on a path as well as on a cycle vertices
may occur repeatedly; if this is not the case, the path and the cycle are called elementary.

Now, for the present theory the following obvious fact is crucial:

Lemma 1. Every path of length at least n in a digraph on n vertices contains a cycle, i.e is not
elementary.

A digraph that does not contain any cycle is called acyclic. If for each pair of vertices u; v in G
there is a path from u to v and a path from v to u in G, then G is called strongly connected. A
maximal (with respect to inclusion) strongly connected subdigraph of a given digraph is its strongly
connected component (SCC for short). Every SCC can contain either several vertices (in that case
it must contain at least one cycle) or a single vertex u. A SCC containing a single vertex u but not
the loop (u; u) is called acyclic.

There exist eOcient algorithms for computing the partition of a digraph on n vertices into its
strongly connected components with complexity O(n2); as a reference see e.g. [1].
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Fig. 2.

The greatest common divisor (gcd for short) of all cycle lengths in a non-acyclic strongly con-
nected digraph G is called its period; the period of any digraph is the least common multiple (lcm
for short) of periods of its nonacyclic strongly connected components. Balcar and Vienott devised
an algorithm with complexity O(n2) for computing the period of a strongly connected digraph [4].
This algorithm successively condenses all terminal vertices of arcs starting in one vertex, until it
gets a digraph isomorphic to an elementary cycle. The number of arcs on this cycle is equal to the
period of the digraph.

Now let us de3ne the associated digraph G(A) = (V;H) of a binary matrix A of order n to be the
digraph on the set of vertices V = {1; 2; : : : ; n} such that

(i; j) ∈ H if and only if aij = 1:

For example, the associated digraphs for matrices from (4) are in Fig. 2.
There is a well-known connection between the entries in powers of binary matrices and paths in

associated digraphs: (i; j)th entry a(k)
ij in Ak is equal to 1 if and only if in the associated digraph

G(A) of A there exists a path of length k from vertex i to vertex j. A careful argument leads to the
following assertion:

Lemma 2. Let A∈Mn(L). Then

(i)
∑⊕

k¿n A
k6

∑⊕
k6n A

k ,
(ii) An6

∑⊕
k¿n A

k .

Proof. (i) Due to Lemma 1, each path on at least n + 1 vertices can be reduced to an elementary
path with length at most n by leaving out some of the cycles it contains, hence if a(k)

ij = 1 for

some k¿n in a binary matrix, then a(k)
ij = 1 for some k6n. Since these observations hold for each

constituent or cut matrix of a given matrix A∈Mn(L), due to the expression of lattice matrices in
the forms (2) and (6), inequality (i) holds for an arbitrary lattice matrix.

(ii) A path of length n must contain a cycle and if we add this cycle into this path several times,
we get another path between the same pair of vertices, which has its length greater than n. Hence,
if a(n)

ij = 1, then there exists k¿n such that a(k)
ij = 1 and the second inequality follows.

4. Binary matrices

In [31, Chapter 5, Theorem 5.4.25] a summary of the properties of binary matrices is given,
including the following ones:
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Theorem 1. Let A be a binary matrix of order n and G its associated digraph.

1. A is nilpotent if and only if G is acyclic.
2. A converges to Jn if and only if G is strongly connected with period 1.
3. The period of A is equal to the period of its associated digraph.
4. The exponent of A is at most (n− 1)2 + 1.

Kim attributes the authorship of the individual assertions in this theorem to [43,47]. A detailed
characterization of asymptotic forms of binary matrices is given in [46].

Kim [31, p. 226] gives an algorithm of complexity O(n3 log n) for computing the period of a
binary matrix. This algorithm 3rst computes (by repeated squaring) the pth power of A, where p
is a prime number not smaller than (n − 1)2 + 1 (notice that per(A) =per(Ap)). Then a power B
of I + Ap larger than the nth is computed (again by repeated squaring), since B ◦ BT, where ◦ is
the elementwise product, is the matrix of the equivalence relation of strongly connected components
of Ap. Rows in a submatrix Akk of Ap, corresponding to a SCCs of Ap are either equal or have
nonoverlapping sets of entries equal to 1. The period of Akk is the number of distinct vectors among
them. The period of A is then the lcm of periods of matrices Akk .

Notice that a graph–theoretic approach (i.e. 3rst computing the SCCs by the algorithm in [1] and
then using Balcar–Veinott’s algorithm for each one of them) yields an algorithm with complexity
O(n3).

Now we show how to use the stated properties of binary matrices for deriving results about powers
of fuzzy or lattice matrices.

5. Convergence and the period length

The most cited reference in the papers on powers of fuzzy matrices is [53] (often considered to
be the origin of this topic), which proves convergence of fuzzy matrices ful3lling some relatively
strong conditions. In [35] it was shown, using purely algebraic methods, that the period length of
a matrix A∈Mn(F) divides [n], the least common multiple of all integers not greater than n. The
author also gives an algorithm for computing the period length, which, in the worst case, involves
computing the power of A as high as the [n]th.

However, the graph–theoretical approach gives the following theorem, proved independently in
[33,20,17] (the references are given chronologically).

Theorem 2. The period of a fuzzy matrix A is equal to the least common multiple of the periods
of its cut matrices.

For computing the period of a fuzzy matrix it is possible to use the algorithm of Kim for computing
the period of each cut matrix, which will give an algorithm with complexity O(n5 log n). However,
for obtaining a good complexity bound, it is useful to realize that the associated digraphs of cut
matrices with greater cut values are subdigraphs of those for smaller cut values. As the cut value
decreases, the edges are added. Some of them are in existing SCCs or they merge previous SCCs;
in both cases, the periods of new SCCs divide the periods of SCCs existing in digraphs with



634 K. Cechl arov a / Fuzzy Sets and Systems 138 (2003) 627–641

greater cut values. So what only really matters, are the periods of minimal (with respect to vertex
inclusion) SCCs and the number of those is at most n (see [20]). Hence using the Balcar–Veinott’s
algorithm for computing the period of each minimal SCC yields and algorithm with complexity
O(n3).

In [37] it is rediscovered that in computing the period of a fuzzy matrix only minimal SCCs
are relevant. The authors of the latter paper are, however, aware neither of Kim’s nor of Balcar–
Veinott’s algorithm, so they propose to compute the period of an SCC by 3nding all its cycles, which
is obviously computationally not tractable. Another paper using digraphs in the study of powers of
fuzzy matrices in [30]. Here the authors use neither the standard graph-theoretical language nor the
tools of graph theory, so the paper is diOcult to read and the results, although equivalent to the
previous ones, have no immediate algorithmic realization.

The author of the present paper is not aware of any work using digraphs in the study of powers
of lattice matrices. To our knowledge the only paper on this topic is [52], where an analogy of [36]
for distributive lattices has been proved, i.e. the period of a matrix A∈Mn(L) divides [n] and also
a similar algorithm, using successive squaring of A has been given. However, Theorem 2 has an
obvious analogy for this case:

Theorem 3. The period of a lattice matrix A is equal to the least common multiple of the periods
of its constituents. So, if the number of atoms of B(A) is k, then it is possible to compute it in
O(kn3) time.

Let us notice here, that to the author’s knowledge, there does not exist a tight upper bound for
the number of atoms of B(A). From Chapter 2, Section 2 in [27] it follows, that the number of
elements in the lattice generated by a set of n elements is bounded from above by 22n−2, which is
clearly an exponential bound. However, at least in cases when the underlying lattice L has a simple
structure, the approach based on Theorem 3 might lead to a better algorithm than those proposed so
far.

We will show the advantages of the graph-theoretical approach by applying it to the example given
in [52]. Let us consider the lattice L given in Fig. 1 and the matrix A from (3). The constituents
of A are in (4) and their associated digraphs G(As1); G(As2) and G(As3) are depicted in Fig. 2. We
see that their periods are 1,3, and 1, respectively, so the period of A is 3.

When the order of the matrix is greater, the computational advantages are even more striking.
So suppose that n= 6. Then the bound for the period length from [52] is lcm{1; 2; 3; 4; 5; 6}= 60,
so in the worst case we would have to compute more than the 60th power of A. For the
matrix

A =




0 1 0 0 0 0

0 0 d 0 0 b

0 0 0 d 0 d

0 0 0 0 a b

0 0 0 b 0 d

1 0 c 0 b 0
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Fig. 3.

over the lattice from Fig. 1 we have three constituent matrices As1 ; As2 ; As3 :


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

1 0 1 0 0 0




;




0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

1 0 1 0 1 0




;




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0




:

Their associated digraphs are depicted in Fig. 3 and we see, that per(G(As1) = 2; per(G(As2)) = 3
and per(G(As3)) = 4, so per(A) = 12.

The graph-theoretical language provides a uni3ed way of proving the convergence results for
several types of special matrices.

Theorem 4. If A∈Mn(L) is symmetric then d(A) = 1 or d(A) = 2.

Proof. For a symmetric matrix, the digraphs corresponding to each constituent contain arc (i; j) if
and only if (j; i) is also an arc. Hence each strongly connected component has period 1 or 2.

Theorem 5. Each matrix, that is either diagonally dominant, or transitive or increasing, is conver-
gent.

Proof. The associated digraphs of constituents of a diagonally dominant matrix have the following
property: if (i; j) is an arc, then (i; i) is also an arc. Hence each nonacyclic strongly connected
component contains a loop, thus its period is 1.

In each associated digraph of a transitive matrix we have: if (i; j) and (j; k) are arcs, then (i; k)
is also an arc. Hence if a strongly connected component contains a cycle containing vertex i, it also
contains the loop (i; i) and therefore has period 1.

Property A2¿A means that for each arc (i; j) in each associated digraph G there exists a vertex k
such that (i; k) and (k; j) are also arcs in G. Hence if a strongly connected component of G contains
a cycle of length m, it also contains a cycle of length m + 1 and so its period is 1.
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Some nice nontrivial results have been obtained for circulants. To be able to formulate them, let
us denote by {i1; i2; : : : ; it} the set of indices of positions of maximal elements in the 3rst row of a
circulant. The following theorem was proved for binary matrices independently in [32,48]:

Theorem 6. Binary circulant A of order n is primitive if and only if

gcd(i2 − i1; i3 − i1; : : : ; it − i1; n) = 1:

For circulants over the fuzzy algebra the following expression for the period length has been
obtained in [2,22]:

Theorem 7. For a circulant A∈Mn(F), per(A) =d=d′, where

d = gcd(i2 − i1; i3 − i1; : : : ; it − i1; n);

d′ = gcd(i1; i2; : : : ; it ; n):

Hence a circulant A∈Mn(F) is convergent if and only if d divides i1.

A similar expression for the period of a circulant over a general distributive lattice is not known.

6. Exponent

Many results for the exponent of a matrix have been proved for primitive nonnegative matrices
using the usual product. In this context, a matrix A of order n is primitive if some of its powers is
a strictly positive matrix and the exponent is the smallest integer e such that Ae is strictly positive.
This clearly corresponds to max–min product of Boolean matrices.

The 3rst bound for the exponent of a Boolean matrix

e(A) 6 (n− 1)2 + 1 (8)

has been proved by Rosenblatt [43] and generalized to the distributive lattice case in [52]. Other
bounds, proved for primitive nonnegative matrices, include

e(A) 6 d2 + 1; (9)

where d is the diameter of the associated digraph (in [50] and independently in [40]) and

e(A) 6 (m− 1)2 + 1; (10)

where m is the degree of the minimal polynomial of matrix A in [49]. Another bound uses the
Boolean rank b of A, i.e. the minimum integer b such that A is equal to the Boolean product of an
n× b and a b× n Boolean matrix,

e(A) 6 (b− 1)2 + 1 (11)
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see [28], where also inequality d6b has been proved. For binary matrices of order n with period
p inequality

e(A) 6 2n2 − 3n + 2 (12)

was proved in [46], Theorem 3.20.
In [36] the bound e(A)6(n− 1)[n] was proved for a fuzzy matrix. For special types of matrices

tighter bounds can be obtained. For example, e(A)6n− 1 for transitive [29] and circulant [2] fuzzy
matrices. Tan in [52] proves for a matrix A∈Mn(L) that e(A)6n if A is transitive or increasing,
e(A)6n− 1 if A is diagonally dominant and e(A)62(n− 1) if A is symmetric.

However, the actual computation of the exponent of a Boolean matrix is NP-hard. This result was
proved for max-plus matrices in [6], but it can easily be strengthened for the binary case. First, let
a1¡a2¡ · · ·¡ak be relatively prime positive integers. Then there exists N such that each integer
m¿N can be expressed in the form )1a1 + )2a2 + · · · + )kak =m with )1; )2; : : : ; )k nonnegative
integers. The smallest number N is called the Frobenius–Shur index, is denoted by *(a1; a2; : : : ; ak)
and for k¿3 only some estimates of it are known. Moreover, Ram&'rez-Alfons&'n [42] proved:

Theorem 8. The computation of *(a1; a2; : : : ; ak) for k¿3 is NP-hard.

Using this result, one can derive

Theorem 9. Computing the exponent of a binary matrix is NP-hard.

Proof. For a given sequence a1¡a2¡ · · ·¡ak of relatively prime integers construct the digraph
G = (V;H) where the vertices are the integers 1; 2; : : : ; ak and the edges are of the form (j; j + 1)
for j = 1; 2; : : : ; ak − 1 and (ai; 1) for all i= 1; 2; : : : ; k. The binary matrix associated to G converges
to Jak , since this digraph is strongly connected and its period is 1. Notice that lengths of circuits
in G are of the form )1a1 + )2a2 + · · · + )kak =m with all )i nonnegative and recall that amij = 1
if and only if there exists a path from i to j in G of length m. Notice that for each pair i; j of
indices there is a path of length at most ak − 1 in G from i to j, and since each vertex lies on
a cycle of length m for each m¿*(a1; a2; : : : ; ak), we can insert this cycle into the path and get
alij = 1 for each l¿*(a1; a2; : : : ; ak) + ak − 1. Hence e(A)6*(a1; a2; : : : ; ak) + ak − 1. On the other
hand, since there exists a path from any vertex to any other vertex with any length not smaller
than e(A) and at most ak − 1 edges on it connect diNerent vertices, it follows that the rest of this
path is a cycle. Hence each integer not smaller than e(A) − ak + 1 can be expressed in the form
)1a1 + )2a2 + · · · + )kak with all )i nonnegative and therefore *(a1; a2; : : : ; ak)6e(A) − ak + 1. It
follows that *(a1; a2; : : : ; ak) = e(A)−ak + 1 and hence the computation of e(A) is also NP-hard.

7. Powers of matrices, orbits and eigenvectors

If x∈Vn(L), then the orbit orb(A; x) of the matrix A generated by vector x is the sequence
x; Ax; A2x; : : : : Each orbit must clearly either converge or oscillate. The length of its period is
denoted by per(A; x).
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The basic observation concerning the relation between the asymptotic behaviour of the powers of
A and of its orbits was proved in [9] (for fuzzy algebra, but in fact this assertion is true over any
distributive lattice):

Theorem 10. The powers of a matrix A converge if and only if each orbit of A converges.

Relations between powers of a matrix and its orbits have been further investigated by Gavalec,
who has obtained several interesting results. Namely, the period of A is the lcm of all its orbit periods
[9] and an O(n4) algorithm for computing the period of an orbit was given in [24]. However, the
problem to decide whether for a given matrix A a vector x exists, such that per(A) =per(A; x), is an
NP-complete problem already in the binary case [21]. The matrix used in this NP-completeness proof
has its period decomposable into the product of many primes, so it would be interesting to know,
whether the reachability problem remains NP-complete also for matrices whose period decomposes
into a product of two (three) primes. Other restricting conditions making the reachability problem
polynomially solvable were given in [26].

A vector x∈Vn(L) is called an eigenvector of a matrix A∈Mn(L), if there exists �∈L such
that A⊗ x= �⊗ x; in that case � is the associated eigenvalue. (Notice that some authors require the
eigenvector to be nonzero, for example [34], and in this case the results would be slightly diNerent.)
For brevity, let us call eigenvectors associated with the eigenvalue �= 1 the standard eigenvectors.
The following assertions have been proved for the fuzzy algebra in [8,44] and for an arbitrary
distributive lattice in [51].

Theorem 11. Each matrix A∈Mn(L) has a unique greatest standard eigenvector x∗(A) and
orb(A; e) converges to x∗(A) in at most n steps.

The previous theorem yields an algorithm for computing x∗(A) with complexity O(n3). However,
for the fuzzy algebra an algorithm with time complexity O(n2 log n) has been obtained in [10]
based on the ideas of [44]. A similar improvement for the general distributive lattice case is not
known.

Theorem 11 can be partly generalized to an arbitrary eigenvalue.

Theorem 12. Let A∈Mn(L). Then each �∈L is an eigenvalue of A and orb(A; e�) converges to
an eigenvector with associated eigenvalue � in at most n steps.

Proof. We will show that An+1 ⊗ e� = �⊗ An ⊗ e�, which implies that An ⊗ e� is an eigenvector of
A with the associated eigenvalue �.

To this end, realize 3rst that

A⊗ e� 6 �⊗ e� = e�

and so for each i:

Ai+1 ⊗ e� = Ai ⊗ (A⊗ e�)6Ai ⊗ e� = �⊗ Ai ⊗ e�: (13)
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Hence, in particular for i= n:

A⊗ (An ⊗ e�)6 �⊗ An ⊗ e�6 (due to Lemma 2)

6 �⊗
⊕∑

k¿n

Ak ⊗ e� =
⊕∑

k¿n

Ak ⊗ e�6(due to (13))

6An+1 ⊗ e�:

Hence everywhere equality must hold and we have the desired assertion.

The structure of the set of all eigenvectors of a fuzzy or a lattice matrix has not been fully
described yet. A 3rst step in this direction is the work [25], where an O(n2) algorithm for computing
the lower and the upper ends of the intervals consisting of all monotone eigenvectors of a 3xed
monotonicity type is described.

8. Conclusion

In this paper we gave an overview of the known results for the powers of matrices computed
over a distributive lattice. We have stressed the unifying potential of the graph–theory language and
pointed out several open problems in this area.
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