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A card player may ask the following question: how many shuffles are needed to

mix up a deck of cards? Mathematically, this question falls in the realm of the

quantitative study of the convergence of finite Markov chains. Similar convergence

rate questions for finite Markov chains are important in many fields including

statistical physics, computer science, biology and more. In this dissertation, we

discuss a behavior —the cutoff phenomenon— that is known to appear in many

models. For these models, after a waiting period, the chain abruptly converges to

its stationary distribution.

Our aim is to develop a theory of this phenomenon and to illustrate this theory

with interesting examples. We focus on the case when the convergence is measured

at the `p-distance for 1 ≤ p ≤ ∞. For p = 1, one recovers the classical total

variation distance.

One of the main result of the thesis is that for families of reversible Markov

chains and 1 < p ≤ ∞, the existence of an `p-cutoff can be characterized using two

parameters: the spectral gap and the mixing time. This fails when p = 1.

The notion of cutoff for a family of Markov chains indexed by n involves a

cutoff time sequence (tn)∞1 and window size sequence (bn)∞1 . Ideally, when a cutoff

exists, we would like to determine precisely tn and bn. When p = 2, spectral theory

allows for a deeper analysis of the cutoff phenomenon producing in some cases the



asymptotic behavior of the sequences (tn)∞1 and (bn)∞1 .

Throughout the thesis, examples are provided to illustrate the theoretical re-

sults. In particular, the last chapter is devoted to the study of the cutoff for the

randomized riffle shuffle.



BIOGRAPHICAL SKETCH

Guan-Yu Chen was born in Hsinchu, Taiwan in 1975. He studied mathematics in

National Chiao Tung University. After finishing his undergraduate study in 1997,

he performed a two year obligatory military service. In fall 2000, Guan-Yu enrolled

in a master program in National Chiao Tung University and, after one year, he

transferred to a Ph.D. program. In 2003, he visited Professor Saloff-Coste and

registered at Cornell University as a non-degree graduate student. In fall 2004,

he became an official graduate student in Cornell University and started pursuing

the Ph.D. there. Under the supervision of Prof. Saloff-Coste, he graduated from

Cornell University in summer 2006. After leaving Ithaca, Guan-Yu will go back to

Taiwan and work in the National Center for Theoretical Science in Hsinchu as a

visiting assistant professor for two years.

iii



To Min-Yu

iv



ACKNOWLEDGEMENTS

I am sincerely grateful to my advisor and mentor Laurent Saloff-Coste for enthusi-

astically and patiently sharing his knowledge with me. I thank him for his guidance

in exploring the world of mathematics and his help with composing this disserta-

tion. I thank Richard Durrett and Leonard Gross for reading through my thesis

and generously directing me to interesting problems as well as precious comments

during the Ph.D. defense.

I thank my friends and colleagues in the Mathematics department for brighten-

ing my life at Cornell and making Ithaca an enjoyable place to live. I want to share

my immense appreciation for the energetic support and encouragement from my

family and friends in Taiwan. At last, I thank my wife, Min-Yu, for her kindness

and generosity and her priceless company.

v



TABLE OF CONTENTS

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Mixing time and cutoff phenomenon . . . . . . . . . . . . . . . . . 15
1.4 The optimality of the window . . . . . . . . . . . . . . . . . . . . . 22
1.5 The weak cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Relations between cutoff and mixing time . . . . . . . . . . . . . . . 29
1.7 A short history of cutoff phenomenon . . . . . . . . . . . . . . . . . 37

2 The `p-cutoff phenomenon 39
2.1 The `p-mixing time and the `p-cutoff . . . . . . . . . . . . . . . . . 39

2.1.1 Comparison of `p and `q mixing time . . . . . . . . . . . . . 43
2.1.2 The `p-cutoff for general Markov chains . . . . . . . . . . . . 47
2.1.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.4 Comparing the `p and `q cutoffs . . . . . . . . . . . . . . . . 62
2.1.5 The `p-cutoff for normal and reversible Markov chains . . . . 66
2.1.6 The `p-cutoff for normal random walks on symmetric groups 74

2.2 Comparison between continuous-time and discrete-time `p-cutoffs . 86
2.2.1 Discrete-time Markov chains with small `p-mixing time for

p > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2.2 Discrete-time Markov chains with large `p-mixing time for

p > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.3 The `p-cutoff for standard riffle shuffle with 1 < p ≤ ∞ . . . . . . . 100

3 The `2-cutoff for random walks on finite groups 107
3.1 Basic results and settings . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2 Triangular arrays of positive numbers . . . . . . . . . . . . . . . . . 110
3.3 Cutoff for triangular arrays . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 The `2-cutoff for normal Markov chains . . . . . . . . . . . . . . . . 126
3.5 The continuous-time Random walk on a product space . . . . . . . 133

3.5.1 The `2-cutoff for product chains . . . . . . . . . . . . . . . . 134
3.5.2 The `2 cutoff for some specific product chains . . . . . . . . 141
3.5.3 The `1-cutoff for products of random walks on finite abelian

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.5.4 An application: A product of simple random walks on cycles 151
3.5.5 The cutoff for the product of random walks on abelian groups

with a bounded number of generators . . . . . . . . . . . . . 162

4 The total variation cutoff 166
4.1 The total variation cutoff for finite Markov chains . . . . . . . . . . 167
4.2 Peres’ conjecture and Aldous’ counterexample . . . . . . . . . . . . 173

vi



5 Randomized riffle shuffle 181
5.1 The cutoff phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.2 Cutoffs for generalized riffle shuffles . . . . . . . . . . . . . . . . . . 189
5.3 An application: Continuous-time card shuffling . . . . . . . . . . . . 196
5.4 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.5 Proof of Theorem 5.3, 5.4 . . . . . . . . . . . . . . . . . . . . . . . 203
5.6 Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.7 Proof of Theorems 5.6, 5.7 . . . . . . . . . . . . . . . . . . . . . . . 212
5.8 Proofs of Theorems 5.8 and 5.9 . . . . . . . . . . . . . . . . . . . . 215

A Techniques and proofs 221
A.1 Fundamental results of analysis . . . . . . . . . . . . . . . . . . . . 221

Bibliography 224

vii



Chapter 1

Introduction
A card player may ask the following question: how many shuffles are needed to

mix up a deck of cards? Mathematically, this question falls in the realm of the

quantitative study of the convergence of finite Markov chains. Similar convergence

rate questions for finite Markov chains are important in many fields including

statistical physics, computer science, biology and more. In statistical physics, it is

common to have to estimate the average entropy of a dynamical mechanism. In

biology, the question could concern the position of the last common ancestor of

two related species in the history of evolution or the expected spatial structure of a

protein. The common problem posed by these questions is to estimate the average

of a function f defined on Ω with respect to a probability measure π on Ω. From

the perspective of the Markov Chain Monte Carlo method, this is achieved by

simulating a Markov process with limiting distribution π and choosing the state at

a certain time T as a random sample. However, knowing the qualitative behavior

of convergence is not sufficient to determine the sampling time T . A quantitative

understanding of the mixing time is essential for theoretical results. In practice,

various heuristics are used to choose T .

Diverse techniques have been introduced to estimate the mixing time. Coupling

and strong uniform time are discussed by Aldous and Diaconis in [1, 2]. Jerrum

and Sinclair use conductance to bound mixing time in [27]. Application of rep-

resentation theory appears in [21] and Diaconis and Saloff-Coste used comparison

techniques in [15, 16]. For lower bound, important techniques are described in [9]

and in more recent work of Wilson [36].

1
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In this dissertation, we define the mixing time and the cutoff phenomenon for

a family of finite Markov chains and discuss their relationships. Based on classical

results in spectral theory and real analysis, we give bounds for the mixing time

and derive equivalent conditions for the cutoff phenomenon.

1.1 Preliminaries

Let X be a finite set. A discrete time Markov chain is a sequence of X -valued

random variables (Xn)∞0 satisfying

P{Xn+1 = xn+1|Xi = xi,∀0 ≤ i ≤ n} = P{Xn+1 = xn+1|Xn = xn}

for all xi ∈ X with 0 ≤ i ≤ n and n ≥ 0. A Markov chain is time homogeneous if

the quantity in the right hand side above is independent of n. In this case, such a

Markov chains is specified by the initial distribution (the distribution of X0) and

the one-step transition kernel K : X × X → [0, 1](also called the Markov kernel)

which is defined by

∀x, y ∈ X , K(x, y) = P{Xn+1 = y|Xn = x}.

An immediate observation on the Markov kernel K is that
∑

y∈X K(x, y) = 1 for

all x ∈ X . Throughout this thesis, all Markov chains are assumed to be time

homogeneous. For any Markov chain (Xn)∞0 with transition matrix K and initial

distribution µ, that is, P{X0 = x} = µ(x) for all x ∈ X , the distribution of Xn is

given by

∀x ∈ X , P{Xn = x} = (µKn)(x) =
∑
y∈X

µ(y)Kn(y, x),

where Kn is a matrix defined iteratively by

∀x, y ∈ X , Kn(x, y) =
∑
z∈X

Kn−1(x, z)K(z, y).
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Similarly, one can also consider a continuous-time Markov process. Here we

consider only the following specific type. For any Markov kernel K, let (Xt)t≥0 be

a Markov process with infinitesimal generator K−I(the Q-matrix defined in [28]).

One way to realize this process is to stay in a state for an exponential(1) time and

then move to another state according to the Markov kernel K. In other words, the

law of Xt is determined by the initial distribution µ and the continuous-time semi-

group Ht = e−t(I−K)(a matrix defined formally by Ht(x, y) = e−t
∑∞

n=0
tnKn(x,y)

n!
for

x, y ∈ X and t ≥ 0, where K0 = I) through the formula

∀x ∈ X , t ≥ 0 P{Xt = x} =
∑
y∈X

µ(y)Ht(y, x).

Note that if (Yn)∞0 is a Markov chain with transition kernel K and Nt is a Poisson

process with rate 1 and independent of (Yn)∞0 , then the above Markov process

(Xt)t≥0 satisfies that Xt
d
= YNt(in distribution) for t ≥ 0, since

∀x, y ∈ X , Ht(x, y) = E[KNt(x, y)] = P{YNt = y|Y0 = x}.

Another view point on the continuous-time semigroup Ht is the following. For any

Markov kernel K, let L = LK be a linear operator on R|X | defined by

∀x ∈ X , Lf(x) = (K − I)f(x) =
∑
y∈X

K(x, y)f(y)− f(x). (1.1)

The operator L can be viewed intuitively as a Laplacian operator on X . A direct

computation then shows that, for any real-valued function f on X , the function

u(t, x) = Htf(x) is a solution for the initial value problem of the discrete-version

heat equation, i.e.,





(∂t + L)u = 0 u : R+ ×X → R

u(0, x) = f(x) ∀x ∈ X .
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For any Markov kernel K, a measure π on X is called invariant(with respect

to K) if πK = π or equivalently

∀x ∈ X ,
∑
y∈X

π(y)K(y, x) = π(x).

A measure π on X is called reversible if the following identity holds

∀x, y ∈ X , π(x)K(x, y) = π(y)K(y, x).

In this case, K is said to be reversible with respect to π. From these definitions,

it is obvious that a reversible measure is an invariant measure. Besides, if π

is invariant(resp. reversible) with respect to K, then, for all t ≥ 0, πHt = π

or equivalently
∑

y∈X π(y)Ht(y, x) = π(x) for all x ∈ X (resp. π(x)Ht(x, y) =

π(y)Ht(y, x) for all x, y ∈ X ).

Note that, for any Markov kernel K on X , a constant vector on X is a right

eigenvector of K associated to eigenvalue 1. This implies the existence of a real-

valued function f on X satisfying f = fK, that is, f(x) =
∑

y f(y)K(y, x) for all

x ∈ X . Then, by the following computation,

∑
x∈X

|f(x)| =
∑
x∈X

∣∣∣∣∣
∑
y∈X

f(y)K(y, x)

∣∣∣∣∣ ≤
∑

x,y∈X
|f(y)|K(y, x) =

∑
y∈X

|f(y)|,

one finds that |f | is also a left eigenvector of K with eigenvalue 1. Hence, one can

always find a probability measure π, which is invariant with respect to K. In that

case, π is called a stationary distribution for K.

A Markov kernel K is called irreducible if, for any x, y ∈ X , there exists n =

n(x, y) such that Kn(x, y) > 0. A state x ∈ X is called aperiodic if Kn(x, x) > 0

for sufficiently large n,and K is called aperiodic if all states are aperiodic. It is

known that under the assumption of irreducibility of K, there exists a unique

stationary distribution π. In particular, the distribution π is positive everywhere.
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In addition, if K is irreducible, then K is aperiodic if and only if some state in X
is aperiodic.

Proposition 1.1. Let K be an irreducible Markov kernel on a finite set X with

the stationary distribution π. Then

∀x, y ∈ X , lim
t→∞

Ht(x, y) = π(y).

If K is irreducible and aperiodic, then

∀x, y ∈ X , lim
n→∞

Kn(x, y) = π(y).

Under mild assumptions —irreducibility for continuous-time Markov processes

and irreducibility and aperiodicity for discrete-time Markov chains— Proposition

1.1 shows the qualitative result that Markov chains converge to their stationarity

as time tends to infinity. If such a convergence happens, the Markov kernel is

called ergodic.

Proposition 1.2. Let K be a Markov kernel on a finite set X and π is a positive

probability measure on X . If, for all x, y ∈ X ,

lim
t→∞

Ht(x, y) = π(y),

then K is irreducible. If the following holds

lim
n→∞

Kn(x, y) = π(y), ∀x, y ∈ X ,

then K is irreducible and aperiodic.

Note that the positiveness of π in Proposition 1.2 is sufficient but not necessary

for the ergodicity. A simple example is to consider a two point space {0, 1} and

the Markov kernel

K(0, 0) = 1, K(0, 1) = 0, K(1, 0) = 1− p, K(1, 1) = p,
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where p ∈ (0, 1). It is clear that K is not irreducible because Kn(0, 1) = 0 for all

n ≥ 0. A simple computation shows that for n ≥ 1 and t > 0,

Kn =




1 0

1− pn pn


 , Ht =




1 0

1− e(p−1)t e(p−1)t


 .

Thus, the limiting distribution exists and equals to (1, 0) whatever the starting

state is. However, by Proposition 1.1 and 1.2, if the limiting distribution is as-

sumed positive, then, in continuous-time cases, K is ergodic if and only if K is

irreducible, whereas, in discrete-time cases, ergodicity is equivalent to irreducibility

and aperiodicity.

Before we can make a quantitative analysis, the function used to measure the

distance should be specified. The following distances are frequently used to study

this convergence.

Definition 1.1. Let µ and ν be two measures on X . The total variation distance(or

briefly the variation norm) between µ and ν is denoted and defined by

dTV(µ, ν) = ‖µ− ν‖TV = max
A⊂X

|µ(A)− ν(A)|.

Let π be a nowhere vanishing finite measure on X . For 1 ≤ p ≤ ∞ and any

(complex-valued) function f on X , the `p(π)-norm(or briefly the `p-norm, if there

is no confusion) of f is defined by

‖f‖p = ‖f‖`p(π) =





( ∑
x∈X

|f(x)|pπ(x)

)1/p

if 1 ≤ p < ∞

max
x∈X

|f(x)| if p = ∞
.

Definition 1.2. Let µ, ν and π be finite measures on X and assume that π is

positive everywhere. The `p(π)-distance(or briefly the `p-distance) between µ and

ν is defined to be

dπ,p(µ, ν) = ‖f − g‖`p(π),
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where f and g are corresponding densities of µ and ν with respect to π, which

means µ = fπ and ν = gπ.

According to the above definitions, we have ‖µ− ν‖TV ≤ dπ,1(µ, ν). In partic-

ular, if µ(X ) = ν(X ), then

∀π > 0, dπ,1(µ, ν) = 2‖µ− ν‖TV = 2 max
A⊂X

{µ(A)− ν(A)}.

Remark 1.1. In general, if (X , π) is a measure space and f has a finite `p(π)-norm,

then

‖f‖`p(π) = sup
‖g‖`q(π)≤1

∫

X
f(x)g(x)dπ(x), (1.2)

where p−1 + q−1 = 1.

By the above remark, one can rewrite the `p(π)-distance as follows.

Proposition 1.3. Let π, µ, ν, f, g be the same as in Definition 1.2. Then, for

1 ≤ p ≤ ∞,

dπ,p(µ, ν) = max
‖h‖q≤1

‖(f − g)h‖1,

where p−1 + q−1 = 1. In particular, if p = 1, one has

dπ,1(µ, ν) = max
‖h‖∞≤1

{µ(h)− ν(h)}.

By Jensen’s inequality, if π is a positive probability measure, then

‖f‖p ≤ ‖f‖q, ∀1 ≤ p < q ≤ ∞.

With this fact, one can easily obtain a relation between the distances mentioned

above.

Proposition 1.4. Let π be a positive probability measure on X . Then, for any

two finite measures µ, ν on X ,

dπ,p(µ, ν) ≤ dπ,q(µ, ν), ∀1 ≤ p ≤ q ≤ ∞.
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The following fact shows that, for fixed 1 ≤ p ≤ ∞, the `p-distance of Markov

chains to their stationarity decays exponentially.

Proposition 1.5. Let K be an irreducible Markov kernel and π be the stationary

distribution of K. Then, for 1 ≤ p ≤ ∞, the maps

n 7→ max
x∈X

dπ,p(K
n(x, ·), π) and t 7→ max

x∈X
dπ,p(Ht(x, ·), π)

are non-increasing and submultiplicative. In particular, if there exists β > 0 such

that

max
x∈X

dπ,p(K
m(x, ·), π) ≤ β (resp. max

x∈X
dπ,p(Hs(x, ·), π) ≤ β),

then for n ≥ m(resp. t ≥ s),

max
x∈X

dπ,p(K
n(x, ·), π) ≤ βbn/mc (resp. max

x∈X
dπ,p(Ht(x, ·), π) ≤ βbt/sc).

Remark 1.2. By Proposition 1.5, if β ∈ (0, 1), then the exponential convergence of

`p-distance has rate at least m−1 log(1/β) in discrete-time cases and s−1 log(1/β)

in continuous-time cases.

To any Markov kernel K, we associate a linear operator denoted by K and

defined by Kf(x) =
∑

y∈X K(x, y)f(y) for f ∈ R|X |. Similarly, we can view Ht, π

as linear operators on R|X | by setting Htf(x) =
∑

y∈X Ht(x, y)f(y) and interpreting

π(f) as a constant vector on X with value
∑

x∈X f(x)π(x). We let L∗ be the adjoint

operator of L. The following proposition follows easily from this view point.

Proposition 1.6. Let K be an irreducible Markov operator with stationary distri-

bution π. Then for 1 ≤ p ≤ ∞,

max
x∈X

dπ,p(K
n(x, ·), π) = ‖Kn − π‖q→∞ for n ≥ 0
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and

max
x∈X

dπ,p(Ht(x, ·), π) = ‖Ht − π‖q→∞ for t ≥ 0

where p−1 + q−1 = 1 and for any linear operator L : `r(π) → `s(π),

‖L‖r→s = sup
‖f‖`r(π)≤1

‖Lf‖`s(π). (1.3)

Proof. Please confer to Lemma A.2.

In this work, we will mostly consider the `p-distance. However, many other

distances are considered in this literature. We end this section by introducing

three other quantities which are not distances in mathematical sense. For any

probability measure µ and any positive probability measure π on X , let h be the

density of µ with respect to π, that is, µ = hπ. The separation of µ respect to π

is defined by

dsep(µ, π) = max
x∈X

{1− h(x)}.

The Kullback-Leibler separation or the (relative) entropy of µ w.r.t. π is defined

by

dent(µ, π) = Entπ(µ) =
∑
x∈X

[h(x) log h(x)]π(x).

(Generally, the entropy of any nonnegative function f with respect to any measure

π is defined by Entπ(f) = Eπ[f log(f/Eπf)] where Eπ(f) =
∑

x∈X f(x)π(x).) The

Hellinger distance between µ and π is given by

dH(µ, π) =
∑
x∈X

∣∣∣
√

h(x)− 1
∣∣∣
2

π(x) =
∑
x∈X

∣∣∣
√

µ(x)−
√

π(x)
∣∣∣
2

= 2

(
1−

∑
x∈X

√
h(x)π(x)

)
.

Let K1 and K2 be two Markov kernels on the same state space X and let d(·, ·) be

any one of the above three functions. Applying Jensen’s inequality, one has

max
x∈X

d(K1K2(x, ·), π) ≤ max
x∈X

d(K1(x, ·), π) if πK2 = π,
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This implies that the maps

∀n ≥ 0, n 7→ max
x∈X

d(Kn(x, ·), π), ∀t ≥ 0, t 7→ max
x∈X

d(Ht(x, ·), π)

are non-increasing.

As mentioned in Proposition 1.1 and Proposition 1.5, an ergodic Markov chain

has distributions tending to its stationarity and the `p-distance decays exponen-

tially for 1 ≤ p ≤ ∞. Thus, it is interesting to ask what is the first time that the

total variation distance or the `p-distance is less than 1/2, if a chain starts at some

specific state. By Proposition 1.5, one obtains an upper bound on this quantity

and even gets an asymptotic rate of the exponential convergence. However, this

is not enough to answer that question since the obtained quantity is sufficient for

the chain to get close to the stationary distribution but usually not of the same

order as the exact one. In the next section, we give a short discussion on functions

used to measure the distance of a Markov chain to its stationarity. In section 1.3,

we give definitions on the quantity stated in the above question and the cut-off

phenomenon.

1.2 Distances

Let X be a finite set, D be the set of all probability measures on X and M be the

set of all |X | × |X | stochastic matrices, where a |X | × |X | matrix A is stochastic

if A(x, ·) ∈ D for all x ∈ D or equivalently

A(x, y) ≥ 0,∀x, y ∈ X and
∑
y∈X

A(x, y) = 1, ∀x ∈ X .

For any positive probability measure π ∈ D, we consider the subset Mπ of M given

by

Mπ = {A ∈ M : πA = π}.
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Note that Mπ contains the identity matrix and is closed under the matrix multi-

plication and convex combination. Our purpose now is to define a rich collection

of nonnegative functions ρπ on Mπ such that, for K ∈ Mπ, the following maps

∀n ≥ 0, n 7→ ρπ(Kn) and ∀t ≥ 0, t 7→ ρπ(Ht) (1.4)

are non-increasing.

Let ρ
(1)
π and ρ

(2)
π be nonnegative functions defined respectively on D and R|X |+ .

Define a function ρπ : Mπ → [0,∞) by letting

∀A ∈ Mπ, ρπ(A) = ρ(2)
π (v) where v(x) = ρ(1)

π (A(x, ·)), ∀x ∈ X . (1.5)

Note that both ρ
(1)
π and ρ

(2)
π need not depend on π. Because of the convergence of

ergodic chains, ρ
(1)
π is usually related to π. However, there is no reason to put any

restriction on ρ
(2)
π a priori. The following lemma gives a simple sufficiency for the

monotonicity of functions in (1.4).

Lemma 1.1. Let ρπ be a function on Mπ defined by (1.5). Assume that either

ρπ(AB) ≤ ρπ(A) ∀A,B ∈ Mπ, (1.6)

or

ρπ(AB) ≤ ρπ(B) ∀A,B ∈ Mπ. (1.7)

Then, for K ∈ Mπ, both maps in (1.4) are non-increasing.

Remark 1.3. Note that the operator norm ‖ · ‖q→∞ mentioned in Proposition 1.6

is of the form in (1.5) with

ρ(1)
π (v) = dπ,p(v, π) = ‖v/π − 1‖p, ρ(2)

π (v) = ‖v‖∞,
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where p−1 + q−1 = 1. For other concrete examples, one may choose ρ
(1)
π to be the

separation , the entropy and the Hellinger distance defined in section 1.1. That is,

ρ
(1)
π (v) is defined respectively by

max
y∈X

{1− v(y)/π(y)},
∑
y∈X

v(y) log(v(y)/π(y)),
∑
y∈X

∣∣∣
√

v(y)/π(y)− 1
∣∣∣
2

.

Besides the `∞(π)-norm, if one is particularly interested in a Markov chain with

specific starting states, we may choose ρ
(2)
π (v) to be ‖vδS‖∞ for some set S ⊂ X ,

where δS(x) = 1 if x ∈ S and δS(x) = 0 if x /∈ S. Then the special case S = X is

the `∞-norm mentioned above.

The following proposition provides some classes of functions(ρπ) satisfying the

assumption in Lemma 1.1, which include those quantities in Remark 1.3.

Proposition 1.7. Let X be a finite set and D be the collection of all probability

measures on X . Fix a positive measure π ∈ D and let, for µ ∈ D, fµ be the

density of µ with respect to π. Consider a function ρπ defined in (1.5). Assume

that ρ
(2)
π : R|X |+ → R+ is non-decreasing in the following sense:

ρ(2)
π (u) ≤ ρ(2)

π (v), for u, v ∈ R|X |+ satisfying u(x) ≤ v(x),∀x ∈ X . (1.8)

If one of the following conditions holds, then the function ρπ is nonnegative and

satisfies one of (1.6) and (1.7).

(1) ρ
(1)
π (µ) =

∑
x∈X F (fµ(x))π(x) for all µ ∈ D, where F is a convex function

on R+ with F (1) ≥ 0.

(2) ρ
(1)
π (µ) =

∑
x∈X F (|1−fµ(x)|)π(x) for all µ ∈ D, where F is a non-decreasing

convex function on R+ with F (0) ≥ 0.

(3) ρ
(1)
π (µ) = G(1−fµ) for all µ ∈ D, where G is a nonnegative function on R|X |

satisfying ‖v‖∞ ≤ G(v) and G(u) ≤ G(v) if u(x) ≤ v(x) for all x ∈ X .
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(4) ρ
(1)
π (µ) = G(1− fµ) for all µ ∈ D, where G is a nonnegative convex function

on R|X | and ρ
(2)
π is convex on R|X |+ .

Proof. We will prove that (1), (2) and (3) imply (1.6) and (4) implies (1.7). Note

first that (2) is a special case of (1) since F (|1− t|) is a convex function for t ≥ 0

while F is a nonnegative non-decreasing convex function on R+.

For (1), note that

AB(x, y)

π(y)
=

∑
z∈X

(
A(x, z)

π(z)

)
π(z)B(z, y)

π(y)
.

Since, for fixed y, {π(z)B(z, y)/π(y)}z∈X is a probability measure, by Jensen’s

inequality, one has

F

(
AB(x, y)

π(y)

)
≤

∑
z∈X

F

(
A(x, z)

π(z)

)
π(z)B(z, y)

π(y)
.

This implies ρ
(1)
π (AB(x, ·)) ≤ ρ

(1)
π (A(x, ·)) and then proves (1.6) by the monotonic-

ity of ρ
(2)
π .

For (3), observe that, for y ∈ X ,

1− AB(x, y)

π(y)
=

∑
z∈X

(
1− A(x, z)

π(z)

)
π(z)B(z, y)

π(y)
≤ ρ(1)

π (A(x, ·)).

The monotonicity of G then implies ρ
(1)
π (AB(x, ·)) ≤ ρ

(1)
π (A(x, ·)) and then, as in

(1), ρπ(AB) ≤ ρπ(A).

For (4), we rewrite 1− AB(x, y)/π(y) as follows.

1− AB(x, y)

π(y)
=

∑
z∈X

A(x, z)

(
1− B(z, y)

π(y)

)

The convexity of G implies

ρ(1)
π (AB(x, ·)) ≤

∑
z∈X

A(x, z)ρ(1)
π (B(z, ·)).

Hence, the desired identity is proved by the convexity and monotonicity of ρ
(2)
π .
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Remark 1.4. Note that Proposition 1.7(2) remains true if the term |1 − fµ(x)| is

replaced by H(fµ(x)), where H is any nonnegative convex function on R+.

Corollary 1.1. Let D be the set of all probability measures on the finite set X
and, for fixed positive probability measure π, let ρ

(1)
π be any one of the following

function on D.

‖fµ − 1‖p, Entπ(µ), dsep(µ, π), ‖µ− π‖H

where 1 ≤ p ≤ ∞ and µ = fµπ for all µ ∈ D. Assume that ρ
(2)
π is a nonneg-

ative function on R|X |+ satisfying (1.8). Then the function ρπ defined in (1.5) is

nonnegative and, for K ∈ Mπ, those maps in (1.4) are non-increasing.

Proof. It can be easily checked that in Proposition 1.7, case (1) is satisfied by

the entropy and the Hellinger distance, case (2) holds for the `p(π)-norm and the

separation fits case (3).

Because the intended use of the functions ρπ is to measure convergence to π, it

is natural to request

ρ(1)
π (µ) = 0 ⇔ µ = π, ρ(2)

π (0) = 0. (1.9)

This implies ρπ(Π) = 0, where Π ∈ Mπ is a matrix with rows π. To achieve such

a requirement, one needs only to assume further in Proposition 1.7 that F (1) = 0

in (1), F (0) = 0 in (2), G(0) = 0 in (3) and (4), and ρ
(2)
π (0) = 0.

The following are some other interesting possibilities for ρ
(2)
π . For any positive

measure ν on X , define ρ
(2)
π to be

∀u ∈ R|X |+ , ρ(2)
π (u) = ‖u‖`q(ν) for some 1 ≤ q ≤ ∞.

When ν is a counting measure on X , one has ‖u‖`∞(ν) = maxx∈X{u(x)}, which is

the one used in section 1.1. If g is a nonnegative function on X , then the function
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ρ
(2)
π (u) = ‖gu‖`q(ν) still fits the requirement for Proposition 1.7(1), (2) and (3) and

for Corollary 1.1. Particularly, if g = δx for some x ∈ X and q = ∞, then the

maps

∀n ≥ 0, dπ,p(K
n(x, ·), π), dsep(K

n(x, ·), π), Entπ(Kn(x, ·)), ‖Kn(x, ·)− π‖H

and

∀t ≥ 0, dπ,p(Ht(x, ·), π), dsep(Ht(x, ·), π), Entπ(Ht(x, ·)), ‖Ht(x, ·)− π‖H

are non-increasing.

Specifically, consider that ρ
(1)
π (u) is the `p(π)-norm of u/π−1 and ρ

(2)
π (v) is the

`r(π)-norm of v. Then, by Lemma A.2, one has

ρπ(A) ≥ ‖A− π‖q→r,

where p−1 + q−1 = 1. In particular, if r = ∞, then

ρπ(A) = ‖A− π‖q→∞.

1.3 Mixing time and cutoff phenomenon

In this section, we will define the quantity reflecting the distance between the

distribution of a Markov chain and its stationarity. First, recall that, for any

positive probability measure π on a finite set X , Mπ is the set containing all

|X | × |X | stochastic matrices with stationary distribution π.

Definition 1.3. Let π be a positive probability measure on the finite set X and

ρπ be a nonnegative function on Mπ. For ε > 0 and K ∈ Mπ, the ρπ-mixing time

is defined by

T c
ρπ

(K, ε) := inf{t ≥ 0 : ρπ(Ht) ≤ ε}
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and

T d
ρπ

(K, ε) := inf{n ≥ 0 : ρπ(Kn) ≤ ε},

where T c
ρπ

(K, ε) or respectively T d
ρπ

(K, ε) is infinity if the infimum is taken on

an empty set. For convenience, we use Tρπ(K, ε) to denote both T c
ρπ

(K, ε) and

T d
ρπ

(K, ε).

Remark 1.5. (1) Note that if ρπ is a nonnegative function on Mπ satisfying (1.6)

or (1.7), then, for any K ∈ Mπ, the mixing time Tρπ(K, ε) is non-increasing for

ε ∈ (0,∞).

(2) The definition of ρπ-mixing time does not imply the finiteness of Tρπ(K, ε)

for small ε > 0, even though K ∈ Mπ is irreducible and ρπ(Π) = 0, where Π ∈ Mπ

is a matrix having rows π. Consider Mπ as a subset of the metric space R|X |2

whose metric is given by the Euclidean norm. Then the continuity of ρπ at Π is

sufficient for the finiteness of Tρπ . That is, if K is ergodic in discrete-time(resp.

continuous-time) cases, then for ε > 0,

T d
ρπ

(K, ε) < ∞. (resp. T c
ρπ

(K, ε) < ∞.)

The mixing time reflects the finite-time behavior of Markov chains we are in-

terested in. For ε > 0, if Tρπ(K, ε) ∈ (0,∞), then

ρπ(Ht+s) < ε, ∀s > 0, ρπ(Ht−s) > ε, ∀s ∈ (0, t),

and

ρπ(Km) ≤ ε, ρπ(Km−1) > ε,

if t = T c
ρπ

(K, ε) > 0 and m = T d
ρπ

(K, ε) > 0.

For any family of finite Markov chains F = {(Xn, Kn, πn) : n = 1, 2, ...}, where

Xn is the state space and Kn is the Markov kernel with stationary distribution
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πn, we denote Hn,t = e−t(I−Kn) and use Fc and Fd to distinguish the family of

continuous-time Markov processes and the family of discrete-time Markov chains.

Definition 1.4. For n ≥ 1, let πn be a positive probability measure on a finite

set Xn and Mn be the set of all |Xn| × |Xn| stochastic matrices with stationary

distribution πn. Consider a sequence of pairs M = {(Mn, ρn)|n = 1, 2, ...} where

ρn is a nonnegative function on Mn satisfying one of the monotonicity conditions

(1.6) or (1.7). Assume that ρn is continuous at Πn, the matrix in Mn with rows

πn, and satisfies

lim
n→∞

ρn(Πn) = 0, lim
n→∞

ρn(In) = U ∈ (0,∞],

where In is the |Xn| × |Xn| identity matrix. For any family F = {(Xn, Kn, πn)}∞1
of finite Markov chains, we say that Fc presents:

(1) A M-pre-cutoff if there exist 0 < a < b and a sequence of positive numbers

(tn)∞1 such that

lim inf
n→∞

ρn(Hn,atn) > 0, lim
n→∞

ρn(Hn,btn) = 0.

(2) A M-cutoff if there exists a sequence of positive numbers (tn)∞1 such that

∀ε > 0, lim
n→∞

ρn(Hn,(1+ε)tn) = 0

and

∀ε ∈ (0, 1), lim
n→∞

ρn(Hn,(1−ε)tn) = U.

(3) A (tn, bn) M-cutoff if tn > 0, bn > 0 satisfy bn = o(tn) and

lim
c→∞

f(c) = 0, lim
c→−∞

f(c) = U,

where

f(c) = lim sup
n→∞

ρn(Hn,tn+cbn), f(c) = lim inf
n→∞

ρn(Hn,tn+cbn). (1.10)
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In the case of Definition 1.4(2) and (3), we refer to tn as the M-cutoff critical

time and in the case of Definition 1.4(3), we refer to bn as the window of the

M-cutoff.

Definition 1.5. The definition of cutoffs(the M-pre-cutoff, the M-cutoff and the

(tn, bn) M-cutoff) for Fd are given by replacing the following terms

atn, btn, (1− ε)tn, (1 + ε)tn, tn + cbn

with

batnc, dbtne, b(1− ε)tnc, d(1 + ε)tne,





dtn + cbne if c > 0

btn + cbnc if c < 0

in Definition 1.4 and requiring only bn ≥ 0 in (3), where bn > 0 is necessary in

continuous-time cases.

In the following, we introduce four well-known models as examples for the

above definitions. In these examples, we will discuss `p-cutoffs for 1 ≤ p ≤ ∞.

This means that

ρn(A) = max
x∈Xn

‖A(x, ·)/πn − 1‖p = ‖A− πn‖q→∞

with p−1 + q−1 = 1. In this case, U = 2 if p = 1 and U = ∞ otherwise. Note that

the `1-cutoff is the same as the total variation cutoff whose distance is defined by

ρn(A) = max
x∈Xn

‖A(x, ·)− πn‖TV.

In the above setting, we will call the M-mixing time as the `p-mixing time, for

1 ≤ p ≤ ∞, and the total variation mixing time respectively. For a further

discussion on the `p-cutoff, please refer to Chapter 2, 3 and 4.
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Example 1.1. (Simple random walk on a cycle.) For n ≥ 1, we consider a

Markov chain on the n-cycle Z/nZ whose transitions are from x to either x − 1

or x + 1 with the same probability. To avoid the parity problem occurring in

the discrete-time case, we assume that n is odd. It has been shown by many

authors with different techniques that none of the families Fc and Fd presents a

total variation or a `2 pre-cutoff, but the mixing time(for both discrete-time and

continuous-time cases) is of order n2. For a proof on this fact, see [9] and [30].

Example 1.2. (Simple random walk on the hypercube.) This model is in fact

a nearest neighbor random walk on the hypercube, which is essentially the same

process as Ehrenfest model of diffusion. For n ≥ 1, the state space Xn consists of

n-vectors whose entries are either 0 or 1, and the transition is done by uniformly

selecting a coordinate i from {0, 1, ..., n} and then changing the value of the ith

entry. If i = 0, then the transition does nothing.

In [9], Diaconis proved that, for p = 1, 2, the family Fd has a (n log n
4

, n) `p-

cutoff. Latter in [14], Diaconis, Graham and Morrison proved that both Fd and

Fc have a (n log n
4

, n) total variation cutoff.

Example 1.3. (Top to random shuffle.) This model is first studied by Aldous

and Diaconis in [2]. For a deck of n cards, a top to random shuffle is made

by removing the top card from the deck and inserting it uniformly back to the

deck. Another interpretation of this model is to identify the state space(all deck

arrangements of n cards) with the symmetric group Sn of n elements. For the

transition kernel, the present permutation σ is moved to στ , where τ is uniformly

selected from the set {(1, ..., i) : i = 1, ..., n}. Aldous and Diaconis proved that Fd

presents a (n log n, bn) total variation cutoff, where (bn)∞1 is any sequence satisfying

bn = o(n log n) and n = o(bn).
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Later in 1992, Diaconis, Fill and Pitman in [13] improved the result by studying

a generalized model of top to random. In their work, the shuffling is called top

m to random and cards are shuffled by removing the top m cards from the deck

and then randomly inserting them back. In this setting, the top to random card

shuffling is just the special case m = 1. In that paper, for fixed m, they give a

formula on the functions f and f in Definition 1.4 which suffices to show that Fd

has a ( n
m

log n, n) total variation cutoff.

Example 1.4. (Standard riffle shuffle.) The standard riffle shuffle models how

a card player shuffles a deck of cards. First, a deck of n cards is cut into two piles

according to a binomial (n, 1/2) random variable. Then forming a deck by dropping

cards one by one from the bottom of each pile with probability proportional to

respective sizes. There are many equivalent ways to defined such a model. For a

detailed description and discussion, please refer to Chapter 5 and references given

there.

Aldous proved in [1] that Fd presents a total variation cutoff with critical

time 3
2
log2 n(loga b = log b/ log a). In [6], Bayer and Diaconis obtained an exact

formula on the distribution after k riffle shuffles. Based on this observation, they

determined the functions f and f in Definition 1.4 and proved that the family Fd

presents a (3
2
log2 n, 1) total variation cutoff.

Later, we shall prove in Chapter 5 that Fc presents a (3
2
log2 n,

√
log n) total

variation cutoff. In section 2.3, we show that Fd presents a (3
2
log2 n, 1) `p-cutoff for

1 < p < ∞ and has a (2 log2 n, 1) `∞-cutoff. For continuous-time cases, the family

Fc has a
(

p−1
p

(n log n− n), (log n)2
)

`p-cutoff for 1 < p ≤ ∞, where (p− 1)/p = 1

if p = ∞.

Remark 1.6. Considering cutoffs for discrete-time chains, one might think that, in
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Definition 1.5, it is possible to exchange b·c and d·e at any time without changing

the critical time tn and the window size bn at all. However this can fail in some

cases. Under the assumption of tn →∞ and infn≥1 bn > 0, all cutoffs in Definition

1.5 are preserved with the same tn and bn whatever b·c or d·e is used. This is

because btc ≤ dte for t ∈ R and we can choose, for each ε ∈ (0, 1/2), a constant

N(ε) > 0 such that




d(1 + ε)tne ≤ b(1 + 2ε)tnc

d(1− ε)tne ≤ b(1− ε/2)tnc
∀n ≥ N(ε), ε ∈ (0, 1).

Similarly, by the assumption infn≥1 bn > 0, one may choose c1 > 0 such that for

all n ≥ 1,

dtn + cbne ≤





btn + 2cbnc if c > c1

btn + cbn/2c if c < −c1

.

Remark 1.7. When the mixing time (tn)∞1 is bounded or the window size bn tends

to 0, one cannot exchange the floor and the ceiling arbitrarily because the cutoff

happens in one or two steps and, if any, the window size tends to 0. In such cases,

instead of looking at the critical time and the type of cutoff, it is natural to ask

for the actual step at which a cutoff occurs and for the limiting distances at that

step. See examples in Chapter 5. Whatever the cutoff is, we use Definition 1.5

throughout this work unless another one is specified.

Remark 1.8. (1) By the monotonicity of ρn(Hn,t) and ρn(Km
n )(respectively in t and

m), both functions f and f in Definition 1.4(3) are non-increasing on R and, as far

as the M-cutoff is concerned, one needs only to prove each identity in Definition

1.4(2) with sufficiently small ε.

(2) Clearly, (3)⇒(2)⇒(1). For instance, if F has (tn, bn) M-cutoff, then it

presents a M-cutoff with critical time tn.
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1.4 The optimality of the window

The cutoffs given in Definition 1.4(3) specifies the asymptotic behavior of the

mixing time(please refer to Proposition 1.10 and Proposition 1.11) but say nothing

about the distance at time tn +cbn, or f(c) and f(c). In fact, one may construct an

example that presents a (tn, bn) M-cutoff with f(c1) = ∞ and f(c2) < ∞ for some

−∞ < c1 < c2 < ∞. This means that asymptotically the nth Markov chain is far

from its stationarity at time tn + c1bn. To distinguish the difference of window, we

define the optimality of the window size(the difference between the critical time

and the mixing time) as follows.

Definition 1.6. Let F , M and U be the same as in Definition 1.4. A (tn, bn)

M-cutoff for F is

(1) weakly optimal if, given any (tn, cn) M-cutoff for F , one has bn = O(cn).

(2) optimal if, given any (sn, cn) M-cutoff for F , one has bn = O(cn). In this

case, bn is called an optimal window size of the M-cutoff.

(3) strongly optimal if the functions f and f given in Definition 1.4(3) satisfy

f(−c) < U and f(c) > 0 for all c > 0.

Remark 1.9. Note that the strong optimality implies that one may choose 0 <

c1 < c2 < U such that the sequence ρπn(Hn,tn) is bounded from above by c2 and

from below by c1. However, if the family has only an optimal cutoff, nothing can

be said about the sequence ρπn(Hn,tn), but see Corollary 1.6.

Remark 1.10. In the discrete-time cases, as the window size bn converges to 0,

it makes no sense to discuss the optimality of a cutoff and it is worthwhile to
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determine the following limiting values,

lim sup
n→∞

ρn(K [tn]+k
n ), lim inf

n→∞
ρn(K [tn]+k

n ) for k = −1, 0, 1.

As the above remark says, if a discrete-time family presents a cutoff with critical

time tn and the window size converges to 0, then the cutoff phenomenon ranges

over these steps, [tn]−1, [tn] and [tn]+1. This is sufficient to show that no strongly

optimal cutoff exists since the functions f(c) and f(c) in Definition 1.5 take values

on a finite set and, hence, mush equal to 0 or U for some c ∈ R. The following

lemma remark this fact.

Lemma 1.2. Let F and M be as in Definition 1.5. If Fd presents a strongly

optimal (tn, bn) M-cutoff, then infn bn > 0.

These definitions show that there are more than one way to discuss the opti-

mality of a cutoff and the difference is somewhat subtle. Please refer to Corollary

1.6 for a relation between the optimality and the weak one. In the following, we

give a comparison of the optimal window size when two families present M-cutoffs

with the same critical time.

Lemma 1.3. Let F1 and F2 be families of finite Markov chains. Assume that

both of them present M-cutoffs with the same critical time. Then the following are

equivalent.

(1) F1 and F2 have the same optimal window size(in the sense of order), if any.

(2) F1 presents a (tn, bn) M-cutoff if and only if F2 has a (tn, bn) M-cutoff.

Proof. Immediate from the definition of the optimality for a cutoff.

The following are examples whose optimality had been or shall be proved in

the reference or the oncoming chapters.
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Example 1.5. (Simple random walks on the hypercube.) In [14], the families

Fd and Fc are proved to have an optimal (n log n
4

, n) total variation cutoff. In

Chapter 3, we will show that, for 1 ≤ p ≤ 2, the family Fc has an optimal

(n log n
4

, n) `p-cutoff and presents an optimal (n log n
2

, n) `∞-cutoff. In particular, if

p = 1, 2,∞, the `p-cutoff is strongly optimal.

Example 1.6. (Top m to random shuffle.) Diaconis, Fill and Pitman proved in

[13] that, for fixed m ≥ 1, the family Fd has a strongly optimal ( n
m

log n, 1) total

variation cutoff.

Example 1.7. (Standard riffle shuffle.) In [6], Bayer and Diaconis shows that

Fd has a strongly optimal (3
2
log2 n, 1) total variation cutoff. In Chapter 5, we will

show that Fc presents a strongly optimal (3
2
log2 n,

√
log n) total variation cutoff.

In section 2.3, the family Fd is proved to have a strongly optimal (3
2
log2 n, 1)

`p-cutoff for 1 < p < ∞ and has a strongly optimal (2 log2 n, 1) `∞-cutoff.

Note that the optimality in Definition 1.6 is not the only way to discuss the

window size of a cutoff. Consider the following simple example(a general setting

will be given in section 2.1.3). For n ≥ 1, let Xn = (Z2)
n, πn ≡ 2−n and Kn be a

Markov kernel defined by

Kn(x, y) =





1
2

if y = s(x) + (0, ..., 0, i) for i ∈ {0, 1}

0 otherwise

,

where s(x) = (x2, x3, ..., xn, x1) for all x = (x1, ..., xn) ∈ Xn. In the total variation

distance, one can easily compute that for m ≥ 1,

max
x∈Xn

‖Km
n (x, ·)− πn‖TV =





1− 2m−n for 0 ≤ m ≤ n− 1

0 for m ≥ n

.
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From this fact, it is clear that the family has an optimal (n, 1) total variation

cutoff. However, one can find that the “left” window is strongly optimal but the

“right” window is not optimal at all.

For a further categorization of the optimality of window sizes, it is natural to

consider each side individually. For instance, in discrete-time cases, one can reset

the functions f and f in Definition 1.4 by considering two window sizes for each

of the cases c > 0 and c < 0. That is, we set

∀c < 0, f(c) = lim sup
n→∞

ρn(Kdtn+cbne
n ), f(c) = lim inf

n→∞
ρn(Kbtn+cbnc

n ),

and

∀c > 0, f(c) = lim sup
n→∞

ρn(Kdtn+ccne
n ), f(c) = lim inf

n→∞
ρn(Kbtn+cbnc

n ).

Then the left window (bn)∞1 is called optimal if any cutoff with left window (b′n)∞1 ,

one has bn = O(b′n). Similarly, one can define the optimality for the right window.

In this setting, it can be easily seen that the cutoff in the above example has an

optimal left window 1 and an optimal right window 0. Though this dissertation,

we treat only the simplest classification of the optimality given in Definition 1.6.

1.5 The weak cutoff

As one can see from Definition 1.4 and Definition 1.5, the cutoff can be defined in

many different ways. Here, we introduce another cutoff which is first introduced

by Saloff-Coste in his survey [29].

Definition 1.7. Let F = {(Xn, Kn, πn)}∞1 and M be as in Definition 1.4 and Hn,t

be the continuous-time semigroup associated to Kn. A family Fc(resp. Fd) is said

to present a weak M-cutoff if there exists a sequence of positive numbers (tn)∞1



26

such that

lim inf
n→∞

ρn(Hn,tn) > 0, lim
n→∞

ρn(Hn,(1+ε)tn) = 0, ∀ε > 0.

(
resp. lim inf

n→∞
ρn(Kbtnc

n ) > 0, lim
n→∞

ρn(Kd(1+ε)tne
n ) = 0 ∀ε > 0

)

We refer to tn as the critical time for the weak M-cutoff.

Remark 1.11. (1) By definition, it is clear that the weak M-cutoff is weaker than

the M-cutoff but stronger that the M-pre-cutoff.

(2) Note that if tn → ∞, the ceiling of the term d(1 + ε)tne in discrete-time

case can be changed into the floor without changing the critical time. However,

this does not necessarily hold for the term btnc.
(3) To show the weak M-cutoff for a family, it suffices to prove the second

requirement in Definition 1.7 for sufficiently small ε.

Note that it is easy to see from Definition 1.4 and Definition 1.7 the difference

between the weak M-cutoff and the M-cutoff. But how distinct between the weak

M-cutoff and theM-pre-cutoff is not so obvious. The following proposition clearly

specifies the unlikeness.

Proposition 1.8. Let F and M be the families in Definition 1.4. Assume that

Fc has a M-pre-cutoff at time tn and set

c1 = inf{c > 0 : g(c) = 0}, c2 = inf{c > 0 : g(c) = 0},

where

g(c) = lim inf
n→∞

ρn(Hn,ctn), g(c) = lim sup
n→∞

ρn(Hn,ctn), ∀c > 0.

Then Fc has a weak M-cutoff if and only if c1 = c2 and g is discontinuous at

c1. Furthermore, the critical time of a weak M-cutoff for Fc can be taken to be

T c
ρn

(Kn, ε), where ε ∈ (0, U1) and U1 = lim
c↑c1

g(c).
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The following proposition says that Proposition 1.8 also holds in discrete-time

cases if the mixing time tends to infinity.

Proposition 1.9. The result in Proposition 1.8 also holds for Fd if one assumes

tn →∞, replaces T c
ρn

(Kn, ε) with T d
ρn

(Kn, ε)− 1 and resets g and g as follows.

g(c) = lim inf
n→∞

ρn(Kbctnc
n ), g(c) = lim sup

n→∞
ρn(Kbctnc

n ), ∀c > 0.

Proof of Proposition 1.8 and Proposition 1.9. Let a, b be constants for the M-pre-

cutoff in Definition 1.4. Then, by assumption, a ≤ c1 ≤ c2 ≤ b. Assume first that

Fc has a weak M-cutoff at time sn. If c1 < c2, one may choose δ ∈ (0, 1) such

that c1(1 + δ)2 < c2 and, by the monotonicity of g, we have g(1 + δ) = 0. Since

lim inf
n→∞

ρn(Hn,sn) > 0, one may select a subsequence (nk)
∞
1 such that

snk
≤ c1(1 + δ)tnk

∀k ≥ 1.

This implies c1(1 + δ)2tnk
> (1 + δ)snk

for all k ≥ 1, and then g(c1(1 + δ)2) = 0,

which contradicts the definition of c2. Hence c1 = c2.

For the discontinuity of g at c1, note that the fact c1 = c2 implies the existence

of an integer N(δ), for each δ ∈ (0, 1), such that

(1− δ)c1tn ≤ (1 + δ)sn ∀n ≥ N(δ).

The discontinuity of g at c1 is then proved by the following.

lim
c↑c1

g(c) = lim
δ↓0

g

(
1− δ

1 + δ
c1

)
≥ lim inf

n→∞
ρn(Hn,sn) > 0.

We prove the inverse direction and the second part at the same time. Set, as

in the assumption,

U1 = lim
c↑c1

g(c) > 0, ε ∈ (0, U1), sn = T c
ρn

(Kn, ε).
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By the monotonicity of g, one can choose, for each δ ∈ (0, 1), an integer N(δ) such

that

(1− δ/2)c1tn ≤ sn ∀n ≥ N(δ).

Since c1 = c2 and (1 + δ)(1 − δ/2) > 1 for δ ∈ (0, 1), the above inequality im-

plies lim
n→∞

ρn(Hn,(1+δ)sn) = 0. Hence Fc has a weak M-cutoff with critical time

T c
ρn

(Kn, ε).

For discrete-time cases, since tn tends to infinity, one may replace d·e with b·c
in the definition of a weak M-cutoff. The proof goes word for word as above.

According to Definition 1.7, without choosing tn to be the mixing time, it is

not easy to prove the weak M-cutoff for a family. The following corollary provides

an easier criterion to inspect a weak M-cutoff for a family.

Corollary 1.2. Let F , M and U be the same as in Definition 1.4. The family

Fc has a weak M-cutoff if and only if there exists a sequence (tn)∞1 of positive

numbers such that

lim
n→∞

ρn(Hn,(1+δ)tn) = 0 ∀δ > 0, (1.11)

and

lim
δ↓0

lim inf
n→∞

ρn(Hn,(1−δ)tn) > 0. (1.12)

Similarly, the family Fd presents a weak M-cutoff with critical time tending to

infinity if and only if there exists a sequence (tn)∞1 tending to infinity such that

lim
n→∞

ρn(Kd(1+δ)tne
n ) = 0 ∀δ > 0

and

lim
δ↓0

lim inf
n→∞

ρn(Kb(1−δ)tnc
n ) > 0.

Furthermore, one can exchange b·c and d·e at any time.
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Remark 1.12. Corollary 1.2 is also a simple corollary of Proposition 1.10 and 1.11.

1.6 Relations between cutoff and mixing time

As one can see from the definition of mixing time and cutoff, the critical time and

the mixing time are closely related. We will make a connection between them in

this section. The following is a result on continuous-time cases.

Proposition 1.10. Let M, F and U be the same as in Definition 1.4.

(1) Fc has a M-pre-cutoff if and only if there exist a sequence (tn)∞1 and con-

stants 0 < c1 < c2 < ∞, ε0 > 0 such that for all 0 < ε < ε0,

c1tn < T c
ρn

(Kn, ε) ≤ c2tn ∀n ≥ N(ε),

where N(ε) is a positive integer depending on ε.

(2) Fc presents a weak M-cutoff if and only if there exists 0 < U1 ≤ U such

that for all 0 < ε < η < U1,

T c
ρn

(Kn, ε) ∼ T c
ρn

(Kn, η). (1.13)

(3) Fc presents a M-cutoff if and only if (1.13) holds for all 0 < ε < η < U .

(4) Fc has a (tn, bn) M-cutoff if and only if tn > 0, bn > 0, bn = o(tn) and, for

all 0 < ε < U ,

∣∣tn − T c
ρn

(Kn, ε)
∣∣ = Oε(bn). (1.14)

Proof. For (1), assume first that Fc presents a M-pre-cutoff. Let a, b, tn be con-

stants in Definition 1.4 and set

L = lim inf
n→∞

ρn(Hn,atn).
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Then for ε ∈ (0, L), we may choose N(ε) > 0 such that

atn < T c
ρn

(Kn, ε) ≤ btn ∀n ≥ N(ε). (1.15)

For the other direction, we assume that (1.15) holds for 0 < ε < L. This implies

that, for ε ∈ (0, L),

lim sup
n→∞

ρn(Hn,btn) ≤ ε, lim inf
n→∞

ρn(Hn,atn) ≥ ε.

Taking ε → 0 in the first inequality proves the M-pre-cutoff.

For (2), assume that Fc has a weak M- cutoff at time tn and set

U1 = lim inf
n→∞

ρn(Hn,tn).

By definition, U1 > 0 and we choose, for each ε ∈ (0, U1) and δ ∈ (0, 1), an integer

N(δ, ε) such that

tn < T c
ρn

(Kn, ε) ≤ (1 + δ)tn ∀n ≥ N(δ, ε), (1.16)

which implies (1.13). For the inverse, we prove it by applying the equivalence of the

weak M-cutoff given by Corollary 1.2. Fix 0 < η < U1 and set tn = T c
ρn

(Kn, η).

By assumption, we may choose, for each ε ∈ (0, U1) and δ ∈ (0, 1), an integer

N(δ, ε) such that

(1− δ)tn < T c
ρn

(Kn, ε) ≤ (1 + δ)tn ∀n ≥ N(δ, ε). (1.17)

This implies

lim sup
n→∞

ρn(Hn,(1+δ)tn) ≤ ε, lim inf
n→∞

ρn(Hn,(1−δ)tn) ≥ ε > 0.

Letting ε → 0 in the first inequality and letting δ ↓ 0 in the second identity proves

the weak cutoff of Fc.
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For (3), we first assume that Fc presents a M-cutoff with critical time (tn)∞1 .

Note that it suffices to prove T c
ρn

(Kn, ε) ∼ tn for all ε ∈ (0, U). By the monotonicity

of ρn(Hn,t)(as a function of t), we may choose, for each δ ∈ (0, 1) and ε ∈ (0, U),

an integer N(δ, ε) such that

(1− δ)tn < T c
ρn

(Kn, ε) ≤ (1 + δ)tn ∀n ≥ N(δ, ε). (1.18)

This is equivalent to T c
ρn

(Kn, ε) ∼ tn.

For the inverse direction, choose η ∈ (0, U) and let tn = T c
ρn

(Kn, η) for n ≥ 1.

By assumption, for ε ∈ (0, U) and δ ∈ (0, 1), the inequality (1.18) holds for some

integer N(δ, ε). This implies

lim sup
n→∞

ρn(Hn,(1+δ)tn) ≤ ε, lim inf
n→∞

ρn(Hn,(1−δ)tn) ≥ ε.

Letting ε → 0 in the former and ε → U in the latter derives the M-cutoff.

For (4), assume that Fc presents a (tn, bn) M-cutoff. By definition, for ε ∈
(0, U), there exist C(ε) > 0 and N(ε) ∈ N such that

sup
n≥N(ε)

ρn(Hn,tn+C(ε)bn) < ε, inf
n≥N(ε)

ρn(Hn,tn−C(ε)bn) > ε.

By the above fact, one can easily prove

tn − C(ε)bn < T c
ρn

(Kn, ε) ≤ tn + C(ε)bn ∀n ≥ N(ε), (1.19)

which is equivalent to (1.14).

For the other direction, assume that (1.19) holds for ε ∈ (0, U). Then those

functions f and f in Definition 1.4 satisfy f(C(ε)) ≤ ε and f(−C(ε)) ≥ ε. Since f

and f are non-increasing on R+ ∪ R−, we have

lim sup
c→∞

f(c) ≤ ε, lim inf
c→−∞

f(c) ≥ ε.

Letting ε → 0 and ε → U1 respectively in the above derives the desired cutoff.
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One can imagine a similar proof for the discrete-time cases, but will find that the

similar statements are not true when the ρn-mixing time sequence (T d
ρn

(Kn, ε))∞1

is bounded. However, as mentioned in section 1.3, we should treat independently

the case where the critical time tn is bounded or the window size bn tends to 0.

The following proposition deals with the case tn →∞ whose results are the same

as Proposition 1.10.

Proposition 1.11. LetM, F and U be the same as in Definition 1.4. Assume that

tn →∞, infn≥1 bn > 0 and T d
ρn

(Kn, ε) →∞ for some ε ∈ (0, U). Then Proposition

1.10 remains true if one replaces Fc and T c
ρn

(Kn, ε) with Fd and T d
ρn

(Kn, ε).

Proof. According to the discussion in the paragraph after Definition 1.5, we may

replace d·e with b·c in the definition of cutoffs for Fd. The proof is almost stated

word for word by following the proof of Proposition 1.11 and correlating the in-

equalities in (1.15), (1.16), (1.17), (1.18) and (1.19) with

batnc < T d
ρn

(Kn, ε) ≤ bbtnc, btnc < T d
ρn

(Kn, ε) ≤ b(1 + ε)tnc,

b(1− δ)tnc < T d
ρn

(Kn, ε) ≤ b(1 + δ)tnc,

btn − C(ε)bnc < T d
ρn

(Kn, ε) ≤ btn + C(ε)bnc,

through the following fact

bac < c ≤ bbc ⇔ a < c ≤ b ∀a, b ∈ R, c ∈ Z.

By Proposition 1.10 and Proposition 1.11, one can find that the established

relationship between the cutoff and the mixing time implies that the critical time

is asymptotically the same as the mixing time if there is a cutoff.
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Corollary 1.3. Let F , M and U be the same as in Definition 1.4.

(1) If Fc presents a weak M-cutoff with critical time (tn)∞1 , then tn ∼ T c
ρn

(Kn, ε)

for all ε ∈ (0, U1), where

U1 = lim inf
n→∞

ρn(Hn,tn).

(2) If Fc presents a M-cutoff with critical time (tn)∞1 , then tn ∼ T c
ρn

(Kn, ε) for

all ε ∈ (0, U).

The above facts also hold for discrete-time cases if tn tends to infinity.

The following question arises. Suppose two critical time sequences (tn)∞1 and

(sn)∞1 have been found for a given family F . What can we say about these se-

quences? The following corollary provides some answer.

Corollary 1.4. Let F , M and U be the same as in Definition 1.4.

(1) Assume that Fc presents a weak M-cutoff with critical time tn and sn.

Then tn ∼ sn.

(2) Assume that Fc presents a M-cutoff with critical time (tn)∞1 . Then Fc

presents a M-cutoff with critical time (sn)∞1 if and only if sn ∼ tn. In particular,

for ε ∈ (0, U), the critical time for the M-cutoff can be taken to be T c
ρn

(Kn, ε).

The above statements remain true for Fd if we assume further tn →∞.

Remark 1.13. Note that the inverse direction of Corollary 1.4(1) is not neces-

sarily true since the definition of a weak cutoff requires a critical time “not too

large”(please refer to Definition 1.4(2)). In any case, one can always choose, for

small enough ε, T c
ρn

(Kn, ε) as a critical time for a weak cutoff.



34

For cutoffs with windows, a similar question arises. Suppose a family has a

(tn, bn) and a (sn, dn) cutoff. What can we say about those quantities tn, sn, bn, dn?

It has been known from Corollary 1.4 that tn ∼ sn. For the window sizes bn and

dn, the following corollary gives some answer.

Corollary 1.5. Let F , M and U be the same as in Definition 1.4.

(1) If Fc has both (tn, bn) and (sn, dn) M-cutoff, then |tn − sn| = O(bn + dn).

(2) Suppose that Fc presents a (tn, bn) M-cutoff and (sn)∞1 and (dn)∞1 are

sequences satisfying bn = O(dn) and dn = o(sn). Then Fc has a (sn, dn) M-cutoff

if and only if |tn − sn| = O(dn).

The above statements remain true for Fd if we assume further

lim
n→∞

tn = ∞, inf
n≥1

bn > 0.

The following is a useful consequence of Proposition 1.10 and Proposition 1.11

which gives a necessary and sufficient condition for the critical time to possesses

an optimal window size.

Corollary 1.6. Let M, F and U be the same as in Definition 1.4. Assume that

Fc presents a M-cutoff. Then the following are equivalent.

(1) The M-cutoff for Fc has an optimal window size bn.

(2) Fc presents a weakly optimal (tn, bn) M-cutoff, where tn is a sequence satis-

fying

0 < lim inf
n→∞

ρn(Hn,tn) ≤ lim sup
n→∞

ρn(Hn,tn) < ∞.

In particular, if Fc presents a weakly optimal (T c
ρn

(Kn, ε), bn) M-cutoff, then it is

optimal.
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For discrete-time cases, the above remains true if one assumes further

inf
n≥1

bn > 0.

Proof. By Corollary 1.4, it is clear that (1)⇒(2). For (2)⇒(1), by the assumptions

in (2) and Corollary 1.4, the family Fc has a weakly optimal (tn, bn) M-cutoff,

where tn = T c
ρn

(Kn, ε). Assume that Fc also presents a (sn, cn) M-cutoff. Then,

by Proposition 1.10, Fc has a (tn, cn)M-cutoff. Hence, the weak optimality implies

bn = O(cn).

Frequently, one uses a different distance ρ′π to bound the original one ρπ from

above or below. The following proposition says that if a family presents a cutoff in

both distances with the same critical time and one of them has a strongly optimal

window, then the window size of the other can not be too small.

Proposition 1.12. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov

chains and M = {(Mn, ρn)}∞1 and M′ = {(Mn, ρ
′
n)}∞1 be families satisfying (1.6)

or (1.7). Set

U = lim
n→∞

ρn(In), U ′ = lim
n→∞

ρ′n(In),

where In is a |Xn| × |Xn| identity matrix.

(1) Assume that ρn ≤ ρ′n for all n ≥ 1. If F presents a strongly optimal (tn, bn)

M-cutoff and a (sn, cn) M′-cutoff with |tn − sn| = O(bn), then bn = O(cn).

(2) Assume that U = U ′ and, for n ≥ 1, either ρn ≤ ρ′n or ρn ≥ ρ′n. If F
presents a strongly optimal (tn, bn) M-cutoff and a (sn, cn) M′-cutoff with

|tn − sn| = O(bn), then bn = O(cn).

Proof. We prove by contradiction and first deal with the continuous-time cases.

Assume that bn 6= O(cn), that is, one may find a subsequence (kn)∞1 such that
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ckn = o(bkn). Let C > 0 be such that |tn− sn| ≤ Cbn. Then, for c > 0, there exists

N = N(c) such that

tkn + 2Cbkn ≥ skn + cckn , ∀n ≥ N. (1.20)

This implies that for c > 0,

0 < lim sup
n→∞

ρkn(Hn,tkn+2Cbkn
) ≤ lim sup

n→∞
ρ′kn

(Hn,skn+cckn
). (1.21)

This contracts the assumption of the (sn, cn) M′-cutoff of Fc.

For (2), it suffices to prove the desired property by assuming further that ρn ≥
ρ′n for all n ≥ 1. This is because one can separate N into two subsequences (kn)∞1

and (k′n)∞1 , where ρkn ≤ ρ′kn
and ρk′n ≥ ρ′k′n for all n ≥ 1, and apply part (1) to

conclude bk′n = O(ck′n). For the case ρn ≥ ρ′n for all n ≥ 1, let C be the constant

as before. Assume that bn 6= O(cn) and (mn)∞1 is a subsequence of N such that

cmn = o(bmn). Then, for c > 0, one can choose an integer N = N(c) such that

tmn − 2Cbmn ≤ smn − ccmn , ∀n ≥ N, (1.22)

which implies

U > lim inf
n→∞

ρmn(Hn,tmn−2Cbmn
) ≥ lim inf

n→∞
ρ′mn

(Hn,smn−ccmn
), ∀c > 0. (1.23)

This contradicts the assumption of a (sn, cn) M′-cutoff.

For discrete-time cases, note that Lemma 1.2 implies that b = infn bn > 0.

Since |tn − sn| = O(bn), we may choose C > b−1, such that |tn − sn| ≤ Cbn for all

n ≥ 1. Then, by replacing (1.20) and (1.22) with

tkn + 3Cbkn ≥ skn + cckn + 1, ∀n ≥ N

and

tmn − 3Cbmn ≤ smn − ccmn − 1, ∀n ≥ N,
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we get

0 < lim sup
n→∞

ρkn(Kbtkn+3Cbknc
n ) ≤ lim sup

n→∞
ρ′kn

(Kdskn+cckne
n )

and

U > lim inf
n→∞

ρmn(Kdtmn−3Cbmne
n ) ≥ lim inf

n→∞
ρ′mn

(Kbsmn−ccmnc
n ), ∀c > 0.

Hence, bn = O(cn).

1.7 A short history of cutoff phenomenon

Chains presenting a cutoff show a sharp phase transition in their behavior: The

distance ‖Km − π‖TV holds at almost its maximum for a while, then goes down

in a relatively short time to a small value and converges to 0 exponentially fast.

One of the most striking observation in the quantitative study of Markov chains is

that many models presenting such a phase transition. The first example presenting

such a phenomenon is the random transposition model studied by Diaconis and

Shahshahani in [21] using the group representation theory.

After this first example, diverse techniques were invented and classical tools

were developed to bound the total variation mixing time. In [2], Aldous and Di-

aconis implemented a stopping time argument to derive the cutoff for the top to

random shuffle. This is the first time that the phrase, “cutoff phenomenon”, ap-

pears. Aldous and Diaconis introduced systemically in [3] the coupling, the strong

uniform time and the method of discrete Fourier analysis. A rigorous definition

of cutoff phenomenon had never been given until Diaconis’ article [11]. In that

paper, the definition is the same as that given in Definition 1.4(3). In [29, 30],

Saloff-Coste clarified different cutoffs according the shape(the functions f and f
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in Definition 1.4(4)) and the window size(bn). A detailed introduction of various

techniques and a list of existing results are given in his survey [30].

In this dissertation, we focus on the `p-distance for 1 ≤ p ≤ ∞. In chapter

2, various equivalent conditions for the `p-cutoff are established and comparisons

between the `p and `q cutoffs are made. In chapter 3, we restrict ourselves to

normal Markov chains, and, based on an observation in chapter 2, the study of the

`p-cutoff for 1 < p < ∞ reduces to that of the `2-cutoff. Under the circumstances,

the `2-cutoff is determined by the spectrum and eigenvectors of the transition

matrices and a method to test the `2-cutoff is introduced. It is remarkable that

the method not only determines the `2-cutoff but also gives a critical time and a

window. In chapter 4, we discuss the `1-cutoff and compare the discrete-time and

continuous-time cases. With the developed techniques, a counterexample to Peres’

conjecture in ARCC workshop is built based on Aldous’ idea. In the last chapter,

we illustrate the notion of cutoff by introducing a specific card shuffling modified

from the riffle shuffle.



Chapter 2

The `p-cutoff phenomenon
From the examples presented in Chapter 1, one can see that most of the known

results are given for the total variation mixing time and the total variation cut-

off(equivalent to the `1-mixing time and the `1-cutoff). One reason to study the

`2-mixing time is the application of classical techniques, e.g. the operator theory

and the group representation theory. As one can see from the definition of the

`∞-norm, the `∞-distance is an upper bound for all other distances.

In this chapter, we will concentrate mostly on the `p-cutoff for 1 < p ≤ ∞. In

section 2.1, we have a short discussion on the comparison of the `p and `q mixing

time. Based on Riesz-Thorin interpolation theorem, we establish an equivalence

relation for the `p-cutoff with 1 < p < ∞. In section 2.2, we discuss how the `p-

mixing time for discrete-time chains affects the `p-mixing time for continuous-time

processes. They can be very different.

2.1 The `p-mixing time and the `p-cutoff

In this section, we restrict the function ρn to be the following type

ρn(A) = max
x∈Xn

dπn,p(A(x, ·), πn) = ‖A− πn‖q→∞,

where 1 < p ≤ ∞, p−1 + q−1 = 1 and A is any |Xn| × |Xn| matrix. To distinguish

the difference of ρn as p ranges over the set [1,∞], we denote, for 1 ≤ p ≤ ∞,

ρn,p(A) = ‖A− πn‖q→∞, Mp = {(Mn, ρn,p)}∞n=1,

39
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where p−1 + q−1 = 1. From the view point of continuous state spaces, it is natural

to assume that U = 2 for p = 1 and

U = lim
n→∞

ρn,p(In) = lim
n→∞

(
(1− πn,∗)pπ1−p

n,∗ + 1− πn,∗
)1/p

= ∞, ∀1 < p ≤ ∞,

where πn,∗ = minx∈X πn(x). Obviously, this is equivalent to πn,∗ → 0 and is a very

weak assumption in discrete-time cases.

In the above setting, if a family F presents a Mp-pre-cutoff, (weak) Mp-cutoff

or (tn, bn) Mp-cutoff, we briefly say that F has a `p-pre-cutoff, (weak) `p-cutoff or

(tn, bn) `p-cutoff. Similarly, we let Tp(Kn, ε) denote the mixing time Tρn,p(Kn, ε).

For convenience, for x, y ∈ Xn, we set

hx
n,t(y) =

Hn,t(x, y)

πn(y)
, km

n,x(y) =
Km

n (x, y)

πn(y)

and

h∗,xn,t(y) =
H∗

n,t(x, y)

πn(y)
=

Hn,t(y, x)

πn(x)
, k∗,mn,x (y) =

(K∗
n)m(x, y)

πn(y)
=

Km
n (y, x)

πn(x)
.

The following is a simple observation from the definition of `p-norm and Jensen’s

inequality.

Lemma 2.1. Let (X , K, π) be an irreducible Markov chain. Then for 1 ≤ p ≤ ∞,

the following mappings

m 7→ max
x∈X

‖km
x − 1‖p, t 7→ max

x∈X
‖hx

t − 1‖p

are non-increasing and submultiplicative.

In particular, if Tp(K, ε) > 0 for some ε ∈ (0, 1), then

Tp(K, ε) ≤ Tp(K, δ) ≤
⌈

log δ

log ε

⌉
Tp(K, ε) ∀δ ∈ (0, ε).
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In many cases, the underlying Markov chain (X , K, π) are assumed to be re-

versible. In addition to the diagonalizability of K with orthogonal matrix, one

may prove by applying Lemma A.1 that for 1 ≤ p ≤ ∞ and t > 0,m > 0,

max
x∈X

‖km
x − 1‖p = max

x∈X
‖k∗,mx − 1‖p, max

x∈X
‖hx

t − 1‖p = max
x∈X

‖hx
t − 1‖p. (2.1)

This means that if K is reversible, there is no difference in the `p-distance whatever

K or K∗ is studied. However, there are still many other cases whose Markov kernels

are not reversible. The following lemma gives another class of stochastic matrices

satisfying (2.1).

Lemma 2.2. Let X be a finite set and K be an irreducible Markov kernel on X
with stationary distribution π. Assume that there exists a finite group G acting

transitively on X such that

K(gx, gy) = K(x, y) ∀x, y ∈ X , g ∈ G.

Then π ≡ 1/|X | and, for 1 ≤ p ≤ ∞ and m, t ≥ 0, the following quantities

‖km
x − 1‖p and ‖hx

t − 1‖p

are independent of x and satisfy

‖km
x − 1‖p = ‖(k∗)m

x − 1‖p and ‖hx
t − 1‖p = ‖(h∗)x

t − 1‖p.

Proof. For the first part, fix g ∈ G and let µ be a probability measure on X defined

by µ(x) = π(g−1x) for all x ∈ X . A simple computation then shows, for y ∈ X ,

∑
x∈X

µ(x)K(x, y) =
∑
x∈X

π(g−1gx)K(gx, y) =
∑
x∈X

π(x)K(x, g−1y) = µ(y).

This implies that µ is also a stationary distribution for K. By the uniqueness of

π, one has π(gx) = π(x). Since G acts transitively on X , π has to be uniform on

X .
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For the second part, choose a ∈ X and set Ga be the stabilizer of a. Since G

acts transitively on X , we have |G| = |Ga| × |X |. Let |X | = n and g1Ga, ..., gnGa

be all left cosets of Ga in G, where g1, ..., gn ∈ G are representatives. Then one has

G = g1Ga ∪ · · · ∪ gnGa and

gia = gja ⇔ i = j.

By this fact, the `p-distances for Km and (K∗)m are given by

‖km
x − 1‖p

p = np−1
∑
y∈X

|Km(x, y)− n−1|p

=
np−1

|Ga|
∑
g∈G

|Km(x, ga)− n−1|p

=
np−1

|Ga|
∑
g∈G

|Km(a, ga)− n−1|p

and then

‖(k∗)m
x − 1‖p

p =
np−1

|Ga|
∑
g∈G

|(K∗)m(a, ga)− n−1|p

=
np−1

|Ga|
∑
g∈G

|Km(ga, a)− n−1|p

=
np−1

|Ga|
∑
g∈G

|Km(a, ga)− n−1|p.

For the continuous-time cases, since H(gx, gy) = H(x, y) for all x, y ∈ X and

g ∈ G, one can prove this lemma by the same method as above.

Remark 2.1. It can be easily checked that the requirements in Lemma 2.2 are

satisfied if X is a group and K(x, y) = P (x−1y) for all x, y ∈ X , where P is

probability measure on X .
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2.1.1 Comparison of `p and `q mixing time

In this subsection, we will establish relations between the `p- and `q-mixing time

for 1 < p, q ≤ ∞. The following lemma says that the `p and `q distances are not

too different if the adjoint operator is considered.

Lemma 2.3. Let K be a finite irreducible Markov kernel with stationary distribu-

tion π. Assume that 1 ≤ q, r, s ≤ ∞ satisfy 1 + q−1 = r−1 + s−1. Then, for all

positive numbers ε, η, δ,

Tq(K, εs/qη1−s/qδ) ≤ max{1[1,∞)(q)Ts(K, ε),1(1,∞](q)Ts(K
∗, η)}+ Tr(K, δ).

Proof. By Lemma A.2 and Lemma A.3, one has

max
x∈X

‖hx
u+v − 1‖q ≤ max

x∈X
‖hx

u − 1‖s/q
s max

x∈X
‖h∗,xu − 1‖1−s/q

s max
x∈X

‖hx
v − 1‖r

In the case 1 < q < ∞, replacing u, v with max{T c
s (K, ε), T c

s (K∗, η)} and T c
r (K, δ)

implies the desired identity. For the case q = 1 and q = ∞, one can find that the

second term of the right hand side in the above inequality has the power 0 if q = 1,

and so does the first term if q = ∞.

For discrete-time Markov chains, one can prove the lemma in the same way as

above.

The following propositions are useful facts in comparing different mixing times.

Proposition 2.1. Let K be an irreducible Markov kernel on the finite set X with

stationary distribution π. Then one has, for all ε > 0,

Tp(K, ε) ≤ Tq(K, ε) if 1 ≤ p < q ≤ ∞,

and

T∞(K, ε2) ≤ Tp(K, ε) + Tp′(K
∗, ε), (2.2)
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for any 1 ≤ p ≤ ∞, where p−1 + (p′)−1 = 1. In particular, T∞(K, ε2) ≤ T2(K, ε) +

T2(K
∗, ε).

If K is reversible, then for ε > 0,

T c
∞(K, ε2) = 2T c

2 (K, ε)

and

2T d
2 (K, ε)− 1 ≤ T d

∞(K, ε2) ≤ 2T d
2 (K, ε).

Proof. The first inequality is implied by Proposition 1.4 and the second one is

implied by Lemma 2.3 with q = ∞, s = p, r = p′ and η = δ = ε.

In the case of reversible Markov chains, one has that, for t ≥ 0,

h2t(y, y)− 1 =
∑
z∈X

(ht(y, z)− 1)(ht(y)− 1)π(z) = ‖hy
t − 1‖2

2,

and

|h2t(x, y)− 1| =
∣∣∣∣∣
∑
z∈X

(ht(x, z)− 1)(ht(y)− 1)π(z)

∣∣∣∣∣ ≤ ‖hx
t − 1‖2‖hy

t − 1‖2,

where the last inequality is obtained by applying Cauchy-Schwartz inequality. This

implies ‖H2t − π‖1→∞ = ‖Ht − π‖2
2→∞ and then 2T c

2 (K, ε) = T c
∞(K, ε2). For

discrete-time cases, the inequality T d
∞(K, ε2) ≤ 2T d

2 (K, ε) can be derived from

(2.2) with p = p′ = 2. For the other part, note that the same computation as

above implies

max
x∈X

‖k2m
x − 1‖∞ = max

x∈X
‖km

x − 1‖2
2.

If T d
∞(K, ε2) is even, then T d

2 (K, ε) ≤ 1
2
T d
∞(K, ε2); if T d

∞(K, ε2) is odd, then T d
2 (K, ε) ≤

1
2
[T d
∞(K, ε2) + 1]. This proves the last inequality.

Remark 2.2. Recall Example 2.3. By Proposition 2.3, one has

T c
p (Kn, ε) ∼ tn,p ∀1 < p ≤ ∞,
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where tn,p = (1−p−1)n log an

1−ap−1−1
n

. Letting an →∞, we get

T c
p (Kn, ε) + T c

p′(Kn, ε) ∼ tn,p + tn,p′ ∼ tn,∞ ∼ T c
∞(Kn, ε

2).

This implies that (2.2) is sharp in continuous-time cases in the sense that, for any

1 < p < ∞, one can’t find a constant 0 < C < 1 universal for any Markov kernel

such that

T∞(Kn, ε
2) ≤ C[T c

p (Kn, ε) + T c
p′(Kn, ε)],

where p−1 + (p′)−1 = 1.

Remark 2.3. (1) Note that, if the Markov kernel is reversible(that is, the linear

operator K is self adjoint), then by Lemma 2.1,

Tp(K, ε) = Tp(K
∗, ε) ∀1 ≤ p ≤ ∞. (2.3)

(2) Assume that X is equipped with a group structure and P is a probability

measure on X . If the Markov kernel K is given by K(x, y) = P (x−1y) for x, y ∈ X ,

then, by Lemma 2.2, the identity in (2.3) holds.

The following proposition is a complementary of Proposition 2.1, which allows

one to bound the `q-mixing time from above with the `p-mixing time, where 1 <

p < q < ∞.

Proposition 2.2. Let K be an irreducible Markov kernel on the finite set X . Then

one has, for 1 < p < q < ∞ and ε > 0,

Tq(K, ε) ≤ mp,q max{Tp(K, ε1/mp,q), Tp(K
∗, ε1/mp,q)},

where mp,q =
⌈

p(q−1)
q(p−1)

⌉
, and

T∞(K, ε) ≤ (1 + mp,p′) max{Tp(K, ε0), Tp(K
∗, ε0)} for 1 < p < 2,

where p−1 + (p′)−1 = 1 and ε0 = min{ε1/2, ε1/2mp,p′}.
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Proof. By Lemma 2.3, one has, for 1 ≤ q, r, s ≤ ∞ with 1 + q−1 = r−1 + s−1 and

1 < q < ∞,

Tq(K, εδ) ≤ max{Ts(K, ε), Ts(K
∗, ε)}+ Tr(K, δ). (2.4)

Let (pn)∞0 be a sequence of positive numbers satisfying

p0 = q, 1 +
1

pi

=
1

pi+1

+
1

p
∀i ≥ 0.

Note that p−1
j = (1 − p−1)j + q−1 for all j ≥ 0. This implies pj−1 ≤ p if and only

if j ≥ p(q−1)
q(p−1)

. Let mp,q be the quantity given in the assumption, then by iterating

the inequality (2.4) for mp,q times, we get the desired inequality.

For q = ∞, the inequality is a combination of the above result and Proposition

2.1.

Note that in Proposition 2.1 and Proposition 2.2, to relate different `p-mixing

time, one always needs to consider the adjoint operator. The following corollary

restricts Markov kernels to some specific type, which allows one to use inequalities

in Proposition 2.1 and Proposition 2.2 without using the adjoint of Markov kernels.

Corollary 2.1. Let K be an irreducible Markov kernel on a finite set X with the

stationary distribution π. Assume that either K is reversible or there exists a finite

group G acting transitively on X such that

K(gx, gy) = K(x, y), ∀x, y ∈ X , g ∈ G. (2.5)

Then

T∞(K, ε) ≤ (1 + mp,p′)Tp(K, ε0) for 1 < p ≤ 2,

where p−1 + (p′)−1 = 1, ε0 = min{ε1/2, ε1/2mp,p′} and mp,q =
⌈

p(q−1)
q(p−1)

⌉
.

Proof. Using Lemma 2.2 and Proposition 2.2.
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Remark 2.4. Note that Corollary 2.1 needs only the assumption of T c
p (K, ε) =

T c
p (K∗, ε) and T d

p (K, ε) = T d
p (K∗, ε) for all 1 < p < ∞ and ε > 0, while the

reversibility of K and the existence of a transitive group action satisfying (2.5) are

sufficient for that.

2.1.2 The `p-cutoff for general Markov chains

In this section, we will establish some equivalence for the `p-cutoff defined in Def-

inition 1.4(4).

Theorem 2.1. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains

and λn be the spectral gap of Kn(the smallest nonzero eigenvalue of I− 1
2
(Kn+K∗

n)).

Assume that

lim
n→∞

πn,∗ = 0, (2.6)

where πn,∗ = minx∈Xn πn(x). Then, for fixed 1 < p < ∞, the following are equiva-

lent.

(1) For all ε > 0, Fc presents a (T c
p (Kn, ε), λ−1

n ) `p-cutoff.

(2) For some ε > 0, λ−1
n = o(T c

p (Kn, ε)).

Proof. (1)⇒(2) is obvious from Definition 1.4. For (2)⇒(1), we prove it by modi-

fying the proof of Theorem 2.4.7 in [29].

Denote tn = T c
p (Kn, ε). Observe that the second identity of (2.6) implies that

tn > 0 for all but finitely many n. Since the distance ρn,p(Hn,t) is continuous in t,

one has ρn,p(Hn,tn) = ε > 0 for n large enough. Recall that: For s ≥ 0,

∥∥H∗
n,s − πn

∥∥
2→2

≤ e−sλn ,
∥∥H∗

n,s − πn

∥∥
1→1

≤ 2,
∥∥H∗

n,s − πn

∥∥
∞→∞ ≤ 2. (2.7)
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For 1 < p < ∞, set θp =
∣∣∣1− 2

p

∣∣∣. A simple computation shows that 1− θp > 0 and

1

p
=





1−θp

2
+ θp

∞ for 2 < p < ∞
θp

1
+ 1−θp

2
for 1 < p ≤ 2

By Theorem A.1, we have

∥∥H∗
n,s − πn

∥∥
p→p

≤ 2θpe−λns(1−θp). (2.8)

The above fact then implies

∥∥hx
n,tn+s − 1

∥∥
p

=
∥∥(H∗

n,s − πn)(hx
n,tn − 1)

∥∥
p

≤
∥∥H∗

n,s − πn

∥∥
p→p

∥∥hx
n,tn − 1

∥∥
p
≤ ε2θpe−λns(1−θp).

Similarly, one has

ε = ρn,p(Hn,tn) ≤
∥∥H∗

n,s − πn

∥∥
p→p

ρn,p(Hn,tn−s),

which implies

ρn,p(Hn,tn−s) ≥ ε2−θpeλns(1−θp).

By replacing s with cλ−1
n , the functions f and f in Definition 1.4 are bounded

as follows.

∀c > 0, f(c) ≤ ε2θpe−c(1−θp), f(−c) ≥ ε2−θpec(1−θp). (2.9)

This proves the desired cutoff.

Remark 2.5. The second inequality in (2.9) says that if the quantity U < ∞(or

equivalently πn,∗ is bounded) in Definition 1.4, then, for ε > 0, the mixing time

sequence (T c
p (Kn, ε))

∞
1 is bounded from above by c(p, ε)λ−1

n for some c(p, ε) > 0.
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Example 2.1. (The `p-cutoff for the top to random shuffle in continuous-

time cases with 1 < p < ∞). Let F = {(Xn, Kn, πn)}∞1 be the family of

top to random shuffles, where n denotes the number of cards in a deck. Lemma

2.7(proved later in section 2.2) shows that the `p-mixing time for the family Fc

can be bounded from below by

T c
p (Kn, ε) ≥ p− 1

2p
n log n, for n large enough.

To apply Theorem 2.1, we need to get a bound on the spectral gap. Let λn

be the spectral gap of the top to random shuffle for a deck on n cards. By the

comparison technique introduced in [16], comparing the top to random shuffle

with the random transposition(a card shuffling made by randomly choosing one

card respectively and independently from each hand and then exchanging them)

implies that there exists a constant c such that

λn ≥ c

n
, ∀n ≥ 2.

For a proof of the above inequality, one can use the comparison by rewriting a

transposition (i, j) ∈ Sn as

(i, j) = (j, ..., 1)(1, ..., i + 1)(i, ..., 1)(1, ..., j), ∀1 ≤ i < j ≤ n,

and apply the fact that the spectral gap of the random transposition obtained in

[21] is equal to 2/n.

Combining all the above, we get λ−1
n = o(T c

p (Kn, ε)). Then, by Theorem 2.1,

the family Fc presents a (T c
p (Kn, ε), λ−1

n ) `p-cutoff. It is an open problem to find

what the critical time is in, say, the `2-cutoff.

One can observe that the proof of Theorem 2.1 is based on the inequality (2.8),

which is provided by Riesz-Thorin interpolation and (2.7). Hence, for discrete-time
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cases, one has to find the rate of exponential decay of ‖Km
n − πn‖2→2. This comes

from the operator theory, which says

‖Kn − πn‖2→2 = µn,

where µn is the second largest singular value of Kn and

‖Km
n − πn‖2→2 ≤ µm

n ∀m ≥ 1. (2.10)

Note that the ergodicity of Kn is not sufficient for the positiveness of 1− µn, that

is, KnK∗
n is not necessarily irreducible. Example 2.3 illustrates this fact.

Theorem 2.2. Let F = {(Xn, Kn, πn)|n = 1, 2, ...} be a family of finite ergodic

Markov chains whose second largest singular values (µn)∞1 are contained in (0, 1)

and set bn = min{− log µn, 1}. Assume that

lim
n→∞

πn,∗ = 0.

Then, for fixed 1 < p < ∞, the following are equivalent.

(1) For any ε > 0, Fd has a (T d
p (Kn, ε), b

−1
n ) `p-cutoff.

(2) For some ε > 0, one has b−1
n = o(T d

p (Kn, ε)).

Proof. (1)⇒(2) is the definition of cutoff phenomena. For (2)⇒(1), the proof is

similar to that of Theorem 2.1.

By (2.10), one has

‖Km
n − πn‖2→2 ≤ e−mbn ,

and by Theorem A.1, we get

‖(Km
n )∗ − πn‖p→p ≤ 2θpe−mbn(1−θp) ∀m ≥ 1, (2.11)
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where θp =
∣∣∣1− 2

p

∣∣∣. Set tn = T d
p (Kn, ε). Then a similar argument as in the proof

of Theorem 2.1 implies that for m ≥ 1,

max
x∈Xn

‖ktn+m
n,x − 1‖p ≤ ε2θpe−mbn(1−θp),

and for m ≥ 2,

max
x∈Xn

‖ktn−m
n,x − 1‖p ≥ ε2−θpe(m−1)bn(1−θp).

Note that for c > 0,

dcb−1
n e ≥ cb−1

n ≥ (c− 1)b−1
n + 1.

By the above inequality, replacing m with bcb−1
n c in the previous computations

implies

max
x∈Xn

‖kdtn+cb−1
n e

n,x − 1‖p ≤ ε2θpe−c(1−θp)

and

max
x∈Xn

‖kbtn−cbnc
n,x − 1‖p ≥ ε2−θpe(1−c)(1−θp).

Then both functions f and f defined in Definition 1.4 satisfy

f(c) ≤ ε2θpe−c(1−θp), f(−c) ≥ ε2−θpe(1−c)(1−θp), ∀c > 2.

and hence Fd presents a (tn, b−1
n ) `p-cutoff.

Example 2.2. (The `p-cutoff for the top to random shuffle in discrete-time

cases with 1 < p < ∞). Let F = {(Xn, Kn, πn)}∞1 be the family of top to random

shuffles, where n denotes the number of cards in a deck. Note that the family Fd

is proved in [13] to present a total variation cutoff with critical time n log n. Then

the monotonicity of the `p-norm(in p) implies that T d
p (Kn, ε) ≥ 1

2
n log n for n large

enough.

As in the continuous-time case, we need to bound the quantity bn defined in

Theorem 2.2. By definition, the square of the second largest singular value µn of
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Kn is the second largest eigenvalue of K∗
nKn. Note that the Markov kernel K∗

nKn

describes the random insertion, which is a card shuffling modelled by randomly

drawing out a card from a deck and then randomly inserting it back. Again, by

the comparison technique in [16] with the following identity

(i, j) = (j, ..., i + 1)(i, ..., j), ∀1 ≤ i < j ≤ n,

one may choose a constant c such that 1− µ2
n ≥ c/n. This implies that

− log µn ≥ c

2n
, ∀n > c.

Combining those results in the above, we get b−1
n = O(n) = o(T d

p (Kn, ε)) and

then, by Theorem 2.2, the family Fd has a (T d
p (Kn, ε), b−1

n ) `p-cutoff for 1 < p < ∞.

The `p-critical time for the top to random shuffle is an open problem.

The following lemma says that the window sizes of Fc given by Theorem 2.1 is

smaller(in the sense of order) than that of Fd given by Theorem 2.2.

Lemma 2.4. Let λn and bn be quantities defined in Theorem 2.1 and Theorem

2.2. Then bn ≤ 2λn. Moreover, if λn = O(1− µn), then λn = O(bn).

Proof. One can easily obtain the relation 1− λn ≤ µn by the characterizations of

both constants λn and µn. A proof can also be found in [26].

Assume first that µn ∈ (e−1, 1). In this case, bn = − log µn. Note that

log t ≥ t− 1

1− e−1
∀t ∈ (e−1, 1).

This implies − log µn ≤ 1−µn

1−e−1 ≤ 2λn. For µn ∈ (0, e−1), it is obvious that bn = 1

and then λn ≥ 1− µn ≥ bn/2.

For the second part, let c > 0 such that λn ≤ c(1−µn) for all n ≥ 1. Note that

− log µn ≥ 1− µn ≥ c−1λn.
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Since λn ≤ 2, we have

bn = min{− log µn, 1} ≥ min{c−1, 2−1}λn.

2.1.3 An example

By Remark 1.8, the consequence of Theorem 2.1 and Theorem 2.2 implies that,

for 1 < p ≤ ∞ and ε > 0,

λ−1
n = o(T c

p (Kn, ε)) ⇒ Fc presents a `p-cutoff (2.12)

and

b−1
n = o(T d

p (Kn, ε)) ⇒ Fd presents a `p-cutoff.

As in those two theorems, it is natural to consider the inverse direction of the above

implications. Generally, this is not true unless the normality of Markov kernels

is assumed. For an explicit description of the equivalence and a detailed proof,

please see Theorem 2.4 and 2.5.

In the following, we will construction a counterexample in continuous-time

cases for the inverse implication of (2.12). This means that there exists a family

of irreducible Markov chains presenting a `p-cutoff but the window size can not be

λ−1
n .

Example 2.3. Let (an)∞1 be a sequence of positive integers greater than 1 and set

F = {(Xn, Kn, πn)}∞1 be a family of Markov chains where Xn = (Zan)n, πn ≡ a−n
n

and the Markov kernel Kn is given by

Kn(x, y) =





1
an

if y = s(x) + (0, ..., 0, i) for some i ∈ Zan

0 otherwise

, (2.13)
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where s(x) = (x2, x3, ..., xn, x1) for all x = (x1, ..., xn) ∈ Xn.

We will show that, in the case an ≡ 2, this family has a `p-cutoff for 1 < p ≤ ∞
but the mixing time Tp(Kn, ε) is of order n and the spectral gap λn of Kn satisfies

λn = O(1/n).

Proposition 2.3. Let F = {(Xn, Kn, πn)}∞1 be the family of irreducible Markov

chains, where Xn = (Zan)n, πn ≡ a−n
n and Kn satisfies (2.13). Assume that

1 < p ≤ ∞ and an > 1 for n ≥ 1.

(1) The family Fc presents a (tn,p, bn) `p-cutoff, where

tn,p =
(1− p−1)n log an

1− ap−1−1
n

, bn =





log n for 1 < p < ∞

1 for p = ∞
.

Moreover, the family Fc presents a strongly optimal (tn,∞, 1) `∞-cutoff.

(2) Set K̃n = 1
2
(Kn + K∗

n), then, for any ε > 0 and for 2 < p ≤ ∞, T c
p (K̃n, ε) >

n2/20 for n large enough.

We are now ready to construct a counterexample for the following implication

Fc presents a `p-cutoff ⇒ λ−1
n = o(T c

p (Kn, ε)).

Let an = 2 for n ≥ 1. By Proposition 2.3(1), for 1 < p ≤ ∞, the family Fc presents

a `p-cutoff and the mixing time T c
p (Kn, ε) is of order n. Recalling (2.7) and (2.8),

a simple computation shows

‖H̃n,t − πn‖q→∞ ≤ ‖H̃n,t − πn‖q→q‖In‖q→∞ ≤ 2θqe−λn(1−θq)t2n(1−1/p),

where λn is the spectral gap of Kn and K̃n, p−1 + q−1 = 1 and θq ∈ (0, 1) for

1 < q < ∞. By Proposition 2.3(2), one has

for 2 < p < ∞, lim
n→∞

e−λn(1−θq)n2/202n(1−1/p) = ∞.
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This implies that λnn
2 ≤ Cn for some C > 0, or equivalently λn = O(1/n). Thus,

for all ε > 0 and 1 < p ≤ ∞,

λnT c
p (Kn, ε) = O(1) as n →∞.

In discrete-time cases, it is obvious that the family Fd presents a `p-cutoff with

critical time n for 1 ≤ p ≤ ∞. Furthermore, Fd presents an optimal(in the sense

of Definition 1.6(2)) (tn, bn) `p-cutoff, where (tn, bn) = (n, 1) if an is bounded and

(tn, bn) = (n− 1
2
, 0) if an →∞. In details, the distance d(p, c) = max

x∈Xn

‖kn−c
n,x − 1‖p

satisfies d(p, 0) = 0 for 1 ≤ p ≤ ∞,

∀1 ≤ c ≤ n, d(1, c) = 2(1− a−c
n ), f(∞, c) = ac

n − 1,

and for 1 < p < ∞,

d(p, c) = ac(1−1/p)
n

{
(1− a−c

n )p + ac(1−p)
n − a−cp

n

}1/p





≤ 2a
c(1−1/p)
n

≥ 1
2
a

c(1−1/p)
n

However, KnK
∗
n is not irreducible and hence µn = 1.

Remark 2.6. Proposition 2.3 illustrates a possibility that, comparing with Kn, the

reversibility of 1
2
(Kn + K∗

n) slows down the convergence to its stationarity.

To prove Proposition 2.3, we need the following lemma.

Lemma 2.5. For n > 0, let an ∈ R+, bn ∈ Z+, cn = bn−an√
an

and dn = e−an
∑bn

i=0
ai

n

i!
.

Assume that an + bn →∞. Then

lim sup
n→∞

dn = Φ

(
lim sup

n→∞
cn

)
, lim inf

n→∞
dn = Φ

(
lim inf
n→∞

cn

)
, (2.14)

where Φ(x) = 1√
2π

∫ x

−∞ e−t2/2dt.

In particular, if cn converges(the limit can be +∞ and −∞), then lim
n→∞

dn =

Φ
(

lim
n→∞

cn

)
.
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Proof. Here we give a proof for the first identity of (2.14) while the second one is

done in a similar way. Note that if (2.14) fails, one can always find a subsequence

of (an)∞1 which is either bounded or tending to infinity such that

lim sup
n→∞

dn < Φ

(
lim sup

n→∞
cn

)
.

Hence it suffices to prove Lemma 2.5 by assuming the sequence (an)∞1 is either

bounded or tending to infinity. In the former case, one can easily prove it by

Taylor expansion of an exponential function and the boundedness of an.

Now assume that an tends to infinity. We first deal with the case an ∈ Z+

for all n ≥ 1. Let Y1, Y2, ... be i.i.d. Poisson(1) random variables and Fn the

distribution function of a
−1/2
n (Y1 + Y2 + ... + Yan − an). Then dn = Fn(cn) and, by

the central limit theorem, Fn converges uniformly to the distribution function Φ

of the standard normal random variable.

Set L = lim supn→∞ cn. We first assume that |L| < ∞. For all ε > 0, if k is

large enough, one has

sup
n≥k

Fn(L− ε) ≤ sup
n≥k

Fn(cn) ≤ sup
n≥k

Fn(L + ε).

Letting k →∞ and then ε → 0 implies the desired identity.

In the case |L| = ∞, observe that, for l ∈ R, if k is large enough, one has

sup
n≥k

Fn(cn)





≥ supn≥k Fn(l) if L = ∞

≤ supn≥k Fn(l) if L = −∞
.

Then the first identity with integer an is proved by letting k →∞ and l → ±∞.

For an ∈ R+, we consider these two sequences, (banc)∞n=1 and (dane)∞n=1. Note

that, for fixed k, l > 0, both l−t√
t

and e−t
∑k

i=0
ti

i!
are strictly decreasing for t ∈ R+,

which implies

bn − dane√
dane

≤ cn ≤ bn − banc√
banc

,
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and

e−dane
bn∑
i=0

danei
i!

≤ dn ≤ e−banc
bn∑
i=0

banci
i!

. (2.15)

Note also that for [·] ∈ {b·c, d·e},
bn − [an]√

[an]
=

bn − an√
an

×
√

an

[an]
+

an − [an]√
[an]

.

One then has lim sup
n→∞

bn−[an]√
[an]

= lim sup
n→∞

cn. Hence, the first identity for nonnegative

real-valued an is proved by applying (2.15) and the result in the case an ∈ Z+ for

n ≥ 1.

Proof of Proposition 2.3(1). For (1), note that for Kn and K̃n, the `p-distance(for

both discrete-time and continuous-time cases) is independent of the initial state.

It is obvious that, for i ≥ n, Ki
n(x, ·) ≡ πn for all x ∈ Xn, which means that the

discrete-time Markov chain with transition matrix Kn perfectly mixes after the

nth step. This implies

hn,t(0, 0)− 1 = e−t

n∑
j=0

tj

j!
(an−j

n − 1)

and

hn,t(0, y)− 1 = e−t

n∑
j=i

tj

j!
(an−j

n − 1)− e−t

i−1∑
j=0

tj

j!
,

if y = (y1, ..., yn) satisfies y1 = y2 = · · · = yn−i = 0 and yn−i+1 6= 0 for some

1 ≤ i ≤ n.

For 1 < p < ∞, the `p-distance is given by

‖h0
n,t − 1‖p

p =
n∑

i=1

∣∣∣∣∣e
−t

n∑
j=i

tj

j!
(an−j

n − 1)− e−t

i−1∑
j=0

tj

j!

∣∣∣∣∣

p

a−n
n ai−1

n (an − 1)

+

(
e−t

n∑
j=0

tj

j!
(an−j

n − 1)

)p

a−n
n .

By the triangle inequality and the following fact

n1−p(c1 + · · ·+ cn)p ≤ cp
1 + · · ·+ cp

n ≤ (c1 + · · ·+ cn)p
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for ci ≥ 0 and 1 ≤ p < ∞, one has that for t > 0,

2
−1
p (n + 1)

1−p
p [fp,1(n, t)− fp,2(n, t)] ≤ ‖h0

n,t − 1‖p ≤ [fp,1(n, t) + fp,2(n, t)] (2.16)

where

fp,1(n, t) = e−ta−n/p
n

(
n∑

i=1

n∑
j=i

tj

j!
(an−j

n − 1)ai/p
n +

n∑
j=0

tj

j!
(an−j

n − 1)

)

= e−tan(1−1/p)
n

n−1∑
j=0

1

j!
(ta(1−p)/p

n )j (1− aj−n
n )(1− a

−(j+1)/p
n )

1− a
−1/p
n

and

fp,2(n, t) = e−ta−n/p
n

(
n∑

i=1

i−1∑
j=0

tj

j!
ai/p

n

)
≤ 2e−t

n∑
j=0

tj

j
.

Let tn,p and bn be quantities defined in Proposition 2.3 and tn = tn,p. Note

that for s > 1, the function s 7→ log s
1−s−1 is increasing and has limit 1 as s ↓ 1. This

implies tn(1− δ) > n for some δ > 0 and hence, by Lemma 2.5, one has

lim
n→∞

fp,2(n, tn + cbn) ≤ lim
n→∞

fp,2(n, tn(1− δ/2)) = 0 ∀c ∈ R. (2.17)

By this fact, it suffices to consider only the function fp,1. Moreover, by the following

inequality

1− 2−1/p ≤ (1− aj−n
n )(1− a−(j+1)/p

n )(1− a−1/p
n )−1 ≤ (1− 2−1/p)−1,

for 0 ≤ j ≤ n− 1, it is equivalent to concern the following function

gp(n, t) = e−tan(1−1/p)
n

n−1∑
j=0

1

j!
(ta(1−p)/p

n )j.

A simple computation shows

gp(n, tn + cbn) = exp{−cbn(1− a(1−p)/p
n )}e−sn

n−1∑
j=0

sj
n

j!
(2.18)

where sn = (tn + cbn)a
(1−p)/p
n , and for fixed c ∈ R,

n− sn = n

(
1− (1 + o(1))

log a
1−1/p
n

a
1−1/p
n − 1

)
as n →∞.
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Since the mapping s 7→ log s
s−1

for s ≥ 1 is strictly decreasing and has limit 1 as s ↓ 1,

one may choose δ ∈ (0, 1) and N = N(δ, p, c) ∈ N such that

n− sn ≥ δn ∀n ≥ N,

which implies, by Lemma 2.5,

lim
n→∞

e−sn

n−1∑
j=0

sj
n

j!
= 1 ∀c ∈ R. (2.19)

Now combining (2.16), (2.17), (2.18) and (2.19), we get

lim sup
n→∞

‖h0
n,tn+cbn

− 1‖p ≤ lim sup
n→∞

n−c(1−21/p−1), ∀c > 0,

and

lim inf
n→∞

‖h0
n,tn+cbn

− 1‖p ≥ lim inf
n→∞

2−1/pn−c(1−21/p−1)+1/p−1, ∀c < 0.

Hence both functions f and f defined in Definition 1.4 satisfy

f(c) = 0 ∀c > 0, f(c) = ∞ ∀c <
p−1 − 1

1− 21/p−1
,

which proves the desired `p-cutoff for 1 < p < ∞.

For p = ∞, the `∞-distance is given by

‖h0
n,t − 1‖∞ = hn,t(0, 0)− 1





≤ an
ne−t

∑n−1
j=0

(t/an)j

j!

≥ 1
2
an

ne
−t

∑n−1
j=0

(t/an)j

j!

.

For c ∈ R, let t = tn,∞ + c. Then one has

t− n log an =
n log an

an − 1
+ c =

t

an

+ (1− a−1
n )c.

which implies

1

2
e−ccn ≤ ‖h0

n,t − 1‖∞ ≤ e−c/2cn,
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where cn = e−t/an
∑n−1

j=0
(t/an)j

j!
. Since log an

an−1
≤ log 2 < 1 for n ≥ 1, by Lemma 2.5,

one has cn → 1 as n → ∞. Hence those functions f and f defined in Definition

1.4(3) are bounded by

e−c

2
≤ f(c) ≤ f(c) ≤ e−c/2 ∀c ∈ R.

This proves the desired `∞-cutoff.

Proof of Proposition 2.3(2). One can see that the mixing time of K̃n depends

strongly on how many digits are randomized via the mapping s in Example 2.3

and hence is related to the ruin problem of the simple random walk on Z.

We first consider the following realization of the Markov kernel K̃n. For n ≥ 1,

let X1
n, X2

n, ... be a sequence of i.i.d. random variables on the n-cycle Zn satisfying

P{X1
n = 1} = P{X1

n = −1} =
1

2
,

and let U1
n, U2

n, ... be a sequence of i.i.d. random variables which is independent

of (X i
n)∞i=1 and U1

n is uniformly distributed on {1, ..., an}. Set S0
n = 0, Sk

n =

X1
n + · · ·+ Xk

n for k ≥ 1 and, for 1 ≤ i ≤ n, let en,i be the element in (Zan)n with

entry 0 in each coordinate except the ith one which is equal to 1. For n ≥ 1, let

(Y k
n )∞k=0 and (Zk

n)∞k=0 be random variables on (Zan)n satisfying

Y k+1
n = Y k

n + Uk+1
n en,Sk+1

n
, Zk

n = sSk
n(Y k

n ), ∀k ≥ 0.

where, s is the function defined in Example 2.3 with the inverse s−1 and si denotes

the composition of s with itself for i times if i > 0. For i < 0, si = (s−1)−i and

s0 stands for the identity map on (Zan)n. Then the transition matrix K̃n can be

specified by

K̃n(x, y) = P
{
Zk+1

n = y|Zk
n = x

}
.
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Note that, for k ≥ 1, P{Zk
n ∈ {en,1, en,n}|Z0

n = 0} > 0.

To finish the proof, we need the following fact. Let X1, X2, ... be a sequence

of i.i.d. random variables satisfying P{X1 = 1} = P{X1 = −1} = 1/2 and

Sn = X1 + · · · + Xn. For n ≥ 1, let An = {max1≤k≤n2/20 |Sk| ≤ n/4}. By

Kolmogorov’s inequality, one has

P{An} ≥ 1

5
, ∀n ≥ 8.

For n ≥ 1, let m = bn2/20c and for j ≥ 1, let Wn,j = max{|Si
n| : 1 ≤ i ≤ j} and

Bn = {Wn,m ≤ n/4}. It is clear that P(An) = P(Bn). Without loss of generality,

one may assume that (X i
n)∞i=1 are independent of Y 0

n . In the above setting, we have

that, for 1 ≤ j ≤ m,

K̃j
n(0, en,1) + K̃j

n(0, en,n) = P{Zj
n ∈ {en,1, en,n}|Z0

n = 0}

≥
bn/4c∑

l=1

P{Zj
n ∈ {en,1, en,n}|Wn,j = l, Z0

n = 0}P{Wn,j = l}

≥a−n/2
n P{Bn} ≥ a

−n/2
n

5

This implies that for n ≥ 8,

h̃0
n,m(en,1) + h̃0

n,m(en,n) ≥ an
ne−m

m∑
j=1

mj

j!

[
K̃j

n,0(en,1) + K̃j
n,0(en,n)

]

≥ a
n/2
n e−m

5

m∑
j=1

mj

j!
.

By the above computation, we have

‖h̃0
n,m − 1‖p ≥ ‖h̃0

n,m‖p − 1 ≥ a−n/p
n

(
h̃0

n,m(en,1)
p + h̃0

n,m(en,1)
p
)1/p

− 1

≥ a−n/p
n 21/p−1

(
h̃0

n,m(en,1) + h̃0
n,m(en,n)

)
− 1

≥ an(1/2−1/p)
n 21/p−15−1

(
e−m

m∑
j=1

mj

j!

)
.
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Hence, by Lemma 2.5, one may choose, for ε > 0 and 2 < p ≤ ∞, N = N(p, ε)

such that

T c
p (K̃n, ε) > n2/20, ∀n ≥ N.

2.1.4 Comparing the `p and `q cutoffs

By the monotonicity(in p) of the `p-norm, one may relate the `p-cutoff and `q-cutoff

for 1 < p, q < ∞ in the following way.

Theorem 2.3. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains

and λn and µn be the spectral gap and the second largest singular value of Kn.

Assume that

lim
n→∞

πn,∗ = 0.

If Fc presents a (T c
p (Kn, ε), λ

−1
n ) `p-cutoff for some 1 ≤ p ≤ ∞, then

(1) for p < q < ∞, the family Fc presents a (T c
q (Kn, ε), λ

−1
n ) `q-cutoff.

(2) for 1 < q < p, there exist a sequence (in)∞1 tending to infinity such that, by

setting

F (1) = {(Xin , Kin , πin)}∞n=1, F (2) = {(Xin , K∗
in , πin)}∞n=1,

we have either F (1)
c presents a (T c

q (Kin , ε), λ−1
in

) `q-cutoff or F (2)
c presents a

(T c
q (K∗

in , ε), λ−1
in

) `q-cutoff.

In discrete-time cases, assume that, for n ≥ 1, Kn is aperiodic and µn ∈ (0, 1).

Set bn = min{− log µn, 1}. If Fd has a (T d
p (Kn, ε), b

−1
n ) `p-cutoff for some 1 ≤ p ≤

∞, then
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(3) for p < q < ∞, the family Fd presents a (T d
q (Kn, ε), b

−1
n ) `q-cutoff.

(4) for 1 < q < p, there exist an increasing sequence (jn)∞1 such that, by setting

F (3) = {(Xjn , Kjn , πjn)}∞n=1, F (4) = {(Xjn , K∗
jn

, πjn)}∞n=1,

we have either F (3)
d presents a (T d

q (Kjn , ε), b−1
in

) `q-cutoff or F (4)
d presents a

(T d
q (K∗

jn
, ε), b−1

in
) `q-cutoff.

Proof. By applying Proposition 2.2, Theorem 2.1 and Theorem 2.2.

The following corollary improves the above results for some specific Markov

kernel K with Tp(K, ε) = Tp(K
∗, ε).

Corollary 2.2. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains

with πn,∗ → 0 and λn and µn be the spectral gap and the second largest singu-

lar value of Kn. Assume that, for n ≥ 1, there exists a finite group Gn acting

transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn.

Let ε > 0, then

(1) for 1 < p < q < ∞,

Fc has a (T c
p (Kn, ε), λ−1

n ) `p-cutoff ⇔ Fc has a (T c
q (Kn, ε), λ−1

n ) `q-cutoff.

(2) If Kn is aperiodic and there exist 1 < r < ∞ and η > 0 such that T d
r (Kn, η)

tends to infinity, then for 1 < p < q < ∞,

Fd has a (T d
p (Kn, ε), b−1

n ) `p-cutoff ⇔ Fd has a (T d
q (Kn, ε), b−1

n ) `q-cutoff,

where bn = min{− log µn, 1}.



64

In particular, if Fc presents a `p-cutoff for some p > 1, then, for 1 < q < ∞, the

`q-critical time and the `p-critical time are of the same order. This also holds for

discrete-time cases if one assumes further that T d
r (Kn, ε) →∞ for some 1 < r < ∞

and ε > 0.

Proof. By Theorem 2.1, Theorem 2.2 and Corollary 2.1.

Example 2.4. (The `p-cutoff for the random transposition in discrete-time

cases with p ∈ (1,∞).) Let F = {(Xn, Kn, πn)}∞1 be the family of random

transpositions, where n denotes the number of cards in a deck. In [21], the `2-

mixing time of Kn was proved to satisfy T d
2 (Kn, ε) ∼ 1

2
n log n for ε ∈ (0, 1) and the

spectral gap of Kn is equal to 2/n. Recall a simple but useful fact modified from

[16, Lemma 1]: If K is a reversible and irreducible Markov kernel on X and β is

an eigenvalue of K, then

β ≥ −1 + 2 max
x∈X

{K(x, x)}. (2.20)

In addition to this fact, we have bn = − log(1 − 2
n
) ∼ 2

n
. This implies that,

by Theorem 2.2, the family Fd presents a (T d
2 (Knε), n) `2-cutoff and hence, by

Corollary 2.2, it has a (T d
p (Kn, ε), n) `p-cutoff for 1 < p < ∞. It has been proved

by Diaconis and Shahshahani in [21] that T d
p (Kn, ε) ∼ 1

2
n log n for 1 ≤ p ≤ 2. For

2 < p < ∞, the `p-critical time is open and a conjecture is T d
p (Kn, ε) ∼ 1

2
n log n,

for 2 < p ≤ ∞.

The following is a corollary of Proposition 1.12 which gives an upper bound on

the window size of a `p-cutoff if a family presents a strongly optimal `q-cutoff with

the same critical time.
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Proposition 2.4. Let F be a family of irreducible Markov chains. Assume that,

for some 1 ≤ p ≤ ∞ and 1 < q ≤ ∞, F presents a strongly optimal (tn, bn)

`p-cutoff and a (sn, cn) `q-cutoff with |tn − sn| = O(bn). Then bn = O(cn).

When a family presents a `p and a `q cutoff with the same critical time, a

question arises from the monotonicity of the `p-norm in p : Does the family present

a `r-cutoff for p < r < q? The following gives part of the answer.

Proposition 2.5. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov

chains. Assume that, for 1 < p < q ≤ ∞, Fc presents a (tn, bn) `p-cutoff and a

(sn, cn) `q-cutoff with tn ∼ sn and |tn − sn| = o(tn). Then, for p < r < q, the

family Fc has a (tn, dn) `r-cutoff, where

dn = max{bn, cn, |tn − sn|}.

The above remains true for discrete-time cases if one assumes further that tn

tends to infinity and sets

dn = max{1, bn, cn, |tn − sn|}

Proof. By definition, we may choose C > 0 and N > 0 such that, for c ≥ C and

n ≥ N ,

max
x∈Xn

dπn,p(H
x
n,tn−cbn

, πn) ≥ 1/2 ≥ max
x∈Xn

dπn,q(H
x
n,sn+ccn

, πn).

This implies that

tn − Cbn ≤ T c
r (Kn, 1/2) ≤ sn + Ccn, ∀n ≥ N.

Then one can prove the desired cutoff by following the definition.

For discrete-time cases, a similar statement as above can only show that, for

some C > 0 and N > 0,

btn − Cbnc ≤ T d
r (Kn, 1/2) ≤ dsn + Ccne, ∀n ≥ N.
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To take care of the floor and ceiling, we need assume further that the window size

is bounded from below by a positive number.

2.1.5 The `p-cutoff for normal and reversible Markov chains

In Example 2.3, one can check that the family F contains no normal matrices.

The following theorem gives a positive answer on the reverse statement of (2.12)

with the assumption of normal Markov kernels.

Theorem 2.4. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains

and λn be the spectral gap of Kn. Assume that Kn is normal for all n ≥ 1 and

πn,∗ → 0. Then, for 1 < p < ∞, the following are equivalent.

(1) For all ε > 0, Fc has a (T c
p (Kn, ε), λ

−1
n ) `p-cutoff.

(2) Fc presents a `p-cutoff.

(3) Fc presents a weak `p-cutoff.

(4) λ−1
n = o(T c

p (Kn, ε)) for some ε > 0.

Proof. By Theorem 2.1 and Definition 1.4, it remains to prove (3)⇒(4). By the

normality of Kn, one has

max
x∈Xn

‖hx
n,t − 1‖p = ‖Hn,t − πn‖p′→∞ ≥ ‖Hn,t − πn‖p′→p′ ≥ e−λnt

for 1 < p < ∞ and p−1 + (p′)−1 = 1. Assume that Fd presents a weak `p-cutoff

with critical time tn. By Corollary 1.3, there exists ε > 0 such that tn ∼ T c
p (Kn, ε).

Putting t = 2T c
p (Kn, ε) in the above inequality implies

0 = lim
n→∞

max
x∈Xn

‖hx
n,3tn/2 − 1‖p

≥ lim
n→∞

max
x∈Xn

‖hx
n,2T c

p (Kn,ε) − 1‖p ≥ lim sup
n→∞

e−2λnT c
p (Kn,ε).
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This proves the desired limit λnT c
p (Kn, ε) →∞ as n →∞.

Example 2.5. (The `p-cutoff for the random insertion in continuous-time

cases with 1 < p ≤ ∞) The random insertion is a card shuffling done by

randomly drawing out a card from a deck and randomly inserting it back. Let

F = {(Xn, Kn, πn)}∞1 be a family of random insertions, where n denotes that num-

ber of cards in a deck. It has been proved in Example 2.2 that the spectral gap

λn of Kn is bounded from below by c/n, where c is a constant independent of n.

By applying Lemma 2.7, the `p-mixing time is bounded from below by p−1
2p

n log n

for n large enough. Then, Theorem 2.4 gives the `p-cutoff for the family Fc for all

1 < p ≤ ∞. The `p-critical time is an open problem.

Similarly, one can obtain a discrete version of the above theorem. Note that the

assumption of µn 6= 1 is not needed in this case since the normality and ergodicity

of Kn implies the irreducibility of KnK
∗
n.

Theorem 2.5. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains

and bn = min{− log µn, 1}, where µn is the second largest singular value of Kn.

Fix 1 < p < ∞ and assume that Kn is normal and

lim
n→∞

πn,∗ = 0, lim
n→∞

T d
p (Kn, η) = ∞

for some η > 0. Then the following are equivalent.

(1) For all ε > 0, Fd has a (T d
p (Kn, ε), b

−1
n ) `p-cutoff.

(2) Fd presents a `p-cutoff.

(3) Fd presents a weak `p-cutoff.

(4) There exists ε > 0 such that b−1
n = o(T d

p (Kn, ε)).
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Proof. As in the proof of Theorem 2.4, it remains to show (3)⇒(4). By the nor-

mality of Kn, we have

max
x∈Xn

‖km
n,x − 1‖p = ‖Km

n − πn‖q→∞ ≥ ‖Km
n − πn‖q→q ≥ e−m(− log µn).

Assume that Fd presents a weak `p-cutoff with critical time tn. By Corollary 1.3,

one has tn ∼ T d
p (Kn, ε) for some ε > 0. Then a similar argument as in the proof of

Theorem 2.4 implies (− log µn)T d
p (Kn, ε) →∞ and hence bnT

d
p (Kn, ε) →∞.

Based on the above theorems, we may relate the `p-cutoff and `q-cutoff as

follows.

Corollary 2.3. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains. Assume that limn→∞ πn,∗ = 0. If Fc presents a `p-cutoff for some

1 < p ≤ ∞, then

(1) for p < q < ∞, Fc presents a `q-cutoff.

(2) for all 1 < q < p, there exist a sequence (in)∞1 tending to infinity such that,

setting

F (1) = {(Xin , Kin , πin)}∞n=1, F (2) = {(Xin , K∗
in , πin)}∞n=1,

we have that either F (1)
c or F (2)

c presents a `q-cutoff.

In discrete-time cases, assume that Kn is aperiodic. If, for some 1 < p ≤ ∞,

Fd presents a `p-cutoff with critical time tending to infinity, then

(3) for p < q < ∞, the family Fd presents a `q-cutoff.

(4) for 1 < q < p, there exist a sequence (jn)∞1 tending to infinity such that, by

setting

F (3) = {(Xjn , Kjn , πjn)}∞n=1, F (4) = {(Xjn , K∗
jn

, πjn)}∞n=1,
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we have that either F (3)
d or F (4)

d presents a `q-cutoff.

Proof. By Proposition 2.2, Theorem 2.4 and Theorem 2.5.

As the group structure of Xn and a specific Markov kernel Kn equates Tp(Kn, ε)

and Tp(K
∗
n, ε), one may derive a stronger version of Corollary 2.3 as follows.

Corollary 2.4. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains. Assume that πn,∗ → 0 and, for n ≥ 1, there exists a finite group

Gn acting transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn.

Then:

(1) For 1 < p < q < ∞,

Fc presents a `p-cutoff ⇔ Fc presents a `q-cutoff.

(2) If Kn is aperiodic and there exist 1 < r < ∞ and ε > 0 such that

T d
r (Kn, ε) →∞, then for 1 < p < q < ∞,

Fd presents a `p-cutoff ⇔ Fd presents a `q-cutoff.

In particular, if Fc presents a `p-cutoff for some p > 1, then, for 1 < q < ∞, the

`q-critical time and the `p-critical time are of the same order. This also holds for

discrete-time cases if one assumes further that T d
r (Kn, ε) →∞ for some 1 < r < ∞

and ε > 0.

Proof. By Corollary 2.1, Theorem 2.4 and Theorem 2.5.

As a consequence of the above corollary, one always has the `p-cutoff for all

1 < p < ∞, if it is proved for some specific p. In this case, it is natural to consider
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the case p = 2. Then, by Lemma 3.1, we may obtain a sufficient condition for the

`p-cutoff by considering only the multiplicity of the spectral gap, for continuous-

time cases, or the second largest singular value, for the discrete-time cases.

Corollary 2.5. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains. For n ≥ 1, let λn and µn be the spectral gap and the second largest

singular value of Kn whose multiplicities are mn and m′
n respectively. Assume that,

for n ≥ 1, there exists a finite group Gn acting transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn.

Then:

(1) If mn →∞, then Fc presents a `p-cutoff for all 1 < p < ∞.

(2) If 0 < µn < 1 for all n ≥ 1 and

lim
n→∞

m′
n = ∞, lim

n→∞
log m′

n

log µ−1
n

= ∞, (2.21)

then Fd presents a `p-cutoff for all 1 < p < ∞.

Proof. By Lemma 3.1, one has

max
x∈Xn

‖hn,t(x, ·)− 1‖2
2 ≥ mne−2tλn , max

x∈Xn

‖km
n (x, ·)− 1‖2

2 ≥ m′
nµ2m

n .

This implies that

T c
2 (Kn, 1) ≥ log mn

2
λ−1

n , T d
2 (Kn, 1) ≥ log m′

n

2
(− log µn)−1.

Then, for 1 < p < ∞, the `p-cutoff for Fc is proved by Theorem 2.4 and Corollary

2.4. For the discrete-time cases, the assumption in (2.21) implies that T d
2 (Kn, 1)

tends to infinity and hence (min{− log µn, 1})−1 = o(T d
2 (Kn, 1)). Then, by Theo-

rem 2.5 and Corollary 2.4, the family Fd presents a `p-cutoff for all 1 < p < ∞.
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By Proposition 2.1, one can find a connection between the `2-mixing time and

the `∞-mixing time when a Markov kernel is assumed to be reversible. This is

sufficient to show the `∞-cutoff.

Theorem 2.6. Let F = {(Xn, Kn, πn)}∞1 be a family of reversible and irreducible

Markov chains. Then Theorem 2.4 and Theorem 2.5 also hold for p = ∞.

In particular, if Fc(resp. Fd) presents a `∞-cutoff, then, for any ε > 0, Fc(resp.

Fd) presents a (2T c
2 (Kn, ε), λ−1

n )(resp. (2T d
2 (Kn, ε), b

−1
n )) `∞-cutoff, where λn is

the spectral gap of Kn, µn is the second largest singular value of Kn and bn =

min{− log µn, 1}.

Proof. By Theorem 2.4 and Theorem 2.5, we only need to deal with the case

p = ∞. According to Definition 1.4, it remains to prove (3)⇒(4)⇒(1).

For (3)⇒(4), assume that Fc presents a weak `∞-cutoff with critical time tn.

Then there exists ε > 0 such that tn ∼ T c
∞(Kn, ε). By Proposition 2.1, one has

tn ∼ 2T c
2 (Kn, ε1/2) and by Theorem 2.4, we get the desired property.

To prove (4)⇒(1), we assume that λnT
c
∞(Kn, ε) → ∞. By Proposition 2.1,

one has λnT2(Kn, ε
1/2) → ∞ and then, by Theorem 2.4, the family Fc has a

(T c
2 (Kn, ε

1/2), λ−1
n ) `2-cutoff, or equivalently(by Proposition 1.10(4)),

|T c
2 (Kn, ε

1/2)− T c
2 (Kn, η)| = Oη(λ

−1
n ), ∀η > 0.

Again, by Proposition 2.1, the above identity is equivalent to

|T c
∞(Kn, ε)− T c

∞(Kn, η2)| = Oη(λ
−1
n ), ∀η > 0.

Hence Fc has a (T c
∞(Kn, ε), λ

−1
n ) `∞-cutoff.

The discrete-time case can be proved in a similar way with almost the same

statements as above.
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Since the reversibility of K also makes Tp(K, ε) and Tp(K
∗, ε) equal, we have

an implication similar to Corollary 2.4.

Corollary 2.6. Let F = {(Xn, Kn, πn)}∞1 be a family of reversible and irreducible

Markov chains and assume that πn,∗ → 0.

(1) For 1 < p < q ≤ ∞,

Fc presents a `p-cutoff ⇔ Fc presents a `q-cutoff.

(2) If Kn is aperiodic and there exist 1 < r < ∞ and ε > 0 such that

T d
r (Kn, ε) →∞, then for 1 < p < q ≤ ∞,

Fd presents a `p-cutoff ⇔ Fd presents a `q-cutoff.

In particular, if Fc presents a `p-cutoff for some p > 1, then, for 1 < q ≤ ∞, the

`q-critical time and the `p-critical time are of the same order. This also holds for

discrete-time cases if one assumes further that T d
r (Kn, ε) →∞ for some 1 < r < ∞

and ε > 0.

Proof. Using Corollary 2.1 and Theorem 2.6.

By the above fact, one may obtain a similar result as in Corollary 2.5.

Corollary 2.7. Let F = {(Xn, Kn, πn)}∞1 be a family of reversible and irreducible

Markov chains. For n ≥ 1, let λn and µn be the spectral gap and the second

largest singular value of Kn with multiplicities mn and m′
n respectively. Then the

conclusion in Corollary 2.5 holds for all 1 < p ≤ ∞.

Example 2.6. (The `∞-cutoff for the random transposition in discrete-

time cases.) Let F = {(Xn, Kn, πn)}∞1 be the family of random transpositions.

Recall that we have previously proved that Fd presents a `p-cutoff with critical
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time tending to infinity. By Corollary 2.6 and Theorem 2.6, the family Fd also has

a (2T d
2 (Kn, ε), n) `∞-cutoff. It is known in [21] that |T d

2 (Kn, ε)− 1
2
n log n| = O(n).

Hence, Fd has a (n log n, n) `∞-cutoff.

Note that the equivalence given in Corollary 2.6 is not necessary true for p = 1.

In fact, one direction must hold and is given in the following theorem, and a

counterexample for the other direction is presented in section 4.2.

Theorem 2.7. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains.

(1) If Fc presents a weak total variation cutoff, then, for 1 < p < ∞, the family

Fc presents a `p-cutoff.

(2) If F contains ergodic Markov kernels and Fd presents a weak total variation

cutoff with critical time tending to infinity, then, for 1 < p < ∞, Fd presents a

`p-cutoff.

Furthermore, if Kn is reversible for n ≥ 1, then the above also holds for p = ∞.

Proof. The proof is done by applying Theorem 2.4, Theorem 2.5, Theorem 2.6,

Proposition 2.1 and the following inequalities.

max
x∈Xn

‖Hn,t(x, ·)− πn‖TV =
1

2
‖Hn,t − πn‖∞→∞ ≥ 1

2
e−λnt

and

max
x∈Xn

‖Km
n (x, ·)− πn‖TV =

1

2
‖Km

n − πn‖∞→∞ ≥ 1

2
e−m(− log µn)

where λn and µn are the spectral gap and the second largest singular value of

Kn.

Remark 2.7. Assume that F is a family containing normal and irreducible Markov

kernels. If Fc presents a weak `1-cutoff, then one has

λ−1
n = o(T c

1 (Kn, ε)), for ε small enough,
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and if Fd presents a weak `1-cutoff with critical time tending to infinity, then

b−1
n = o(T d

1 (Kn, ε)), for ε small enough.

We end this subsection by giving a complementary result for Proposition 2.5 if

a family consists of normal Markov chains.

Proposition 2.6. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains and λn be the spectral gap of Kn. Assume that, for 1 < p ≤ ∞, Fc

has a (tn, bn) `p-cutoff and a (sn, cn) `1-cutoff with tn ∼ sn and |tn − sn| = o(tn).

Then, for 1 < r < p, Fc has a (tn, dn) `r-cutoff, where

dn = max{bn, cn, |tn − sn|, λ−1
n }.

The above also holds for discrete-time cases if one assume further that tn ≥ ∞
and set

dn = max{bn, cn, |tn − sn|, b−1
n },

where bn = min{1,− log µn} and µn is the second largest singular value of Kn.

2.1.6 The `p-cutoff for normal random walks on symmetric

groups

For an illustration of the theorems in the previous subsection, we consider a family

F = {(Sn, Kn, πn)}∞1 of irreducible Markov chains, where Sn is the symmetric

group of degree n and π ≡ 1/n!. Suppose that, for n ≥ 1, the Markov kernel Kn

is given by

Kn(x, y) = pn(x−1y), ∀x, y ∈ Sn,

where pn is a probability measure on Sn. In this setting, by Lemma 2.2, the `p-

distances ‖km
n (x, ·)−1‖p and ‖hn,t(x, ·)−1‖p are independent of the initial state x.
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If the reversibility of Kn is assumed further, then, by Corollary 2.6, for 1 < p ≤ ∞,

the existence of the `p-cutoff is equivalent to that of the `2-cutoff.

For any representation ρ of Sn, we define the Fourier transform of pn at ρ as

follows.

p̂n(ρ) =
∑
σ∈Sn

pn(σ)ρ(σ).

Let e be the identity of Sn and {ρn,0, ρn,1, ...} be the set of all irreducible represen-

tations of Sn, where ρn,0 is the trivial representation, that is, ρn,0 ≡ 1. Then, the

`2-distance can be expressed by

‖km
n (e, ·)− 1‖2

2 =
∑
i≥1

dρn,i
tr

(
p̂∗mn (ρn,i)p̂∗mn (ρn,i)

∗
)

(2.22)

and

‖hn,t(e, ·)− 1‖2
2 =

∑
i≥1

dρn,i
tr

(
Ĥe

n,t(ρn,i)Ĥe
n,t(ρn,i)

∗
)

, (2.23)

where p∗mn denotes the convolution pn ∗pn ∗ · · · ∗pn of pn for m times, tr is the trace

of matrices and dρi
is the dimension of ρi. A proof of the above two identities can

be found in [9].

We now assume that Kn is normal, that is,

∑
z

pn(x−1z)pn(y−1z) =
∑

z

pn(z−1x)pn(z−1y), ∀x, y ∈ Sn.

By the normality of Kn, one may easily check that for any irreducible representa-

tion ρ of Sn,

p̂n(ρ)p̂n(ρ)∗ = p̂n(ρ)∗p̂n(ρ).

This means that p̂n(ρ) is a normal matrix. Let Dρ = {βρ,1, ..., βρ,dρ} be the spec-

trum of p̂n(ρ). In addition to the following fact,

p̂∗mn (ρ) = (p̂n(ρ))m ,
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the matrices p̂∗mn (ρ)p̂∗mn (ρ)∗ and Ĥe
n,t(ρn,i)Ĥe

n,t(ρn,i)
∗ can be diagonalized with re-

spective diagonals, regardless of the order,

[|βρ,1|2m, ..., |βρ,dρ|2m] and [e−2t(1−Reβρ,1), ..., e−2t(1−Reβρ,dρ )].

For convenience, we let βn,i,j denote βρn,i,j for 1 ≤ j ≤ dρn,i
, i ≥ 0, and set

R(Sn) be the set of all irreducible representations of Sn. By the discussion in the

previous paragraph, (2.22) and (2.23) can be rewritten in the following way.

‖km
n (e, ·)− 1‖2

2 =
∑
i≥1

dρn,i∑
j=1

dρn,i
|βn,i,j|2m, ∀m ≥ 0 (2.24)

and

‖hn,t(e, ·)− 1‖2
2 =

∑
i≥1

dρn,i∑
j=1

dρn,i
e−2t(1−Reβn,i,j), ∀t ≥ 0. (2.25)

Let us consider the alternating representation of Sn. Recall that in algebra

a permutation can be decomposed into a product of either an even number or

an odd number of transpositions, and it is called respectively even or odd. Then

the alternating representation of Sn is a one-dimensional representation (sgn,C),

where

∀z ∈ C, sgn(σ)(z) =





z if σ is even

−z if σ is odd

.

Let p be a probability measure on Sn, K be a Markov kernel on Sn defined by

K(x, y) = p(x−1y), ∀x, y ∈ Sn,

and λ and µ be the spectral gap and the second largest singular value of K.

Consider the following sets.

R(λ) = {ρ ∈ R(Sn) : 1− λ ∈ D(1)
ρ , }
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and

R(µ) = {ρ ∈ R(Sn) : µn ∈ D(2)
ρ },

where Dρ = {βρ,1, ..., βρ,dρ} is the spectrum of p̂(ρ) and D
(1)
ρ and D

(2)
ρ contain

respectively the real parts and the absolute values of elements in Dρ. In this

setting, we have the following theorem.

Theorem 2.8. Let F = {(Sn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains, where Sn is the symmetric group of degree n and πn ≡ 1/n!. For

n ≥ 1, let pn be a probability measure on Sn and Kn be given by

Kn(x, y) = pn(x−1y), ∀x, y ∈ Sn.

Let λn and µn be the spectral gap and the second largest singular value of Kn.

Then:

(1) Assume that, for n ≥ 1, R(λn) contains irreducible representations other

than the alternating one. Then the family Fc presents a `p-cutoff for all

1 < p < ∞.

(2) Assume that infn µn > 0 and, for n ≥ 1, Kn is aperiodic and R(µn) contains

irreducible representations other than the alternating one. Then the family

Fd presents a `p-cutoff for 1 < p < ∞.

In particular, if Kn is assumed further reversible, then the above conclusions

also holds for p = ∞.

Remark 2.8. A well-known result stated in [30, Proposition 2.3] is the following:

Let p be a probability measure on a finite group X with support E and K be a

Markov kernel given by

K(x, y) = p(x−1y), ∀x, y ∈ X .
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Assume that K is irreducible. Then K is aperiodic if and only if E is not contained

in any coset of a proper normal subgroup of X . Note also that, for n ≥ 5, the

alternating group An is the only proper normal subgroup of Sn. Hence, if X = Sn

with n ≥ 5, then the Markov kernel K is aperiodic if and only if

∑
σ∈Sn

p(σ)sgn(σ) ∈ (−1, 1).

Moreover, as An is simple, if X = An and K is irreducible, then K is aperiodic.

The following corollary is an immediate consequence from Theorem 2.8 and

Remark 2.8.

Corollary 2.8. Let F = {(Sn, Kn, πn)}∞1 be the family of normal Markov chains

in Theorem 2.8 and λn and µn be the spectral gap and the second largest singular

value of Kn. Set

βn =
∑
σ∈Sn

pn(σ)sgn(σ).

Then:

(1) Assume that

Reβn < 1− λn, ∀n ≥ 1. (2.26)

Then Fc presents a `p-cutoff for all 1 < p ≤ ∞.

(2) Assume that infn µn > 0 and

|βn| < µn, ∀n ≥ 1. (2.27)

Then Fd presents a `p-cutoff for all 1 < p ≤ ∞.

To prove Theorem 2.8, we need the following lemma.
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Lemma 2.6. Let Sn be the symmetric group of degree n and ρ be an irreducible

representation of Sn with degree dρ. Assume that ρ is neither a trivial representa-

tion nor an alternating representation. Then dρ ≥ n− 1 for n ≥ 5.

Remark 2.9. (1) By Lemma 2.6, one can easily see that, in Theorem 2.8, the

assumption that R(λn)(resp. R(µn)) contains irreducible representations other

than the alternating one is equivalent to the requirement that the multiplicity of

λn(resp. µn) is at least 2.

(2) The fact in (1) implies that the inequalities (2.26) and (2.27) in Corollary

2.8 are stronger than the assumptions given in Theorem 2.8.

Proof of Lemma 2.6. It is well-known that there is a one to one correspondence

between the set of all irreducible representation and the Young diagrams. The

following is a Young diagram of S9

For a short hand, we write (5, 3, 1) for the above diagram, which indicates the

numbers of boxes in each row from the top. Note that the trivial representation

and the alternating representation of Sn are associated respectively to (n) and

(1, 1, ..., 1).

In the above setting, the dimension of ρ is the number of ways putting the

integers 1, 2, ..., 9 into each box such that the numbers in each row and column is

increasing. For example, one can fill in the tableau in the following way.

9

3 6 7

1 2 4 5 8
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One can see that flipping a diagram by changing the rows into columns does

not change the dimension. For example, irreducible representations associated to

(5, 3, 1) and (3, 2, 2, 1, 1) have the same dimension.

We first prove this lemma for rectangular Young diagrams. Note that the

irreducible representation of S5 which has a rectangular Young diagram is either

the trivial one or the alternating one. For n ≥ 6, let (m,m, ..., m), where m repeats

for l times, be a rectangular Young diagram with m ≥ 2 and l ≥ 2. Then, by Hook

formula, the dimension of the irreducible representation is

(ml)!∏l
k=1[k × (k + 1)× · · · × (k + m− 1)]

. (2.28)

Without loss of generality, one may assume further that m ≥ l. In this case, the

assumption n ≥ 6 implies that m ≥ 3. Consider first the case l = 2. A simple

computation show that ml−m + 1 ≥ l + 3 and, by (2.28, the dimension bounded

from below by

(ml −m + 1)(ml −m + 2) · · · (ml)

(l + 1)(l + 2) · · · (l + m)
≥ ml(ml − 1)

l(l + 1)
≥ ml − 1.

For l ≥ 3, the dimension is bounded from below by

2(ml −m + 1)(ml −m + 2) · · · (ml)

(l + 1)(l + 2) · · · (l + m)
≥ 2ml(ml − 1)

l(l + 1)
≥ ml − 1.

This proves the lemma for rectangular Young diagrams.

For the general case, we prove this lemma by induction. Consider first the case

n = 5. The diagrams to be checked are (4, 1), (3, 2) and (3, 1, 1), and they have

respective dimensions 4, 5 and 6. Now assume that this lemma is true for n ≥ 5.

Let D = (d1, ..., dk) be a diagram, where di ≥ di+1 for 1 ≤ i < k and
∑

i di = n+1.

The case that D is a rectangle has be proved in the previous paragraph. We assume

further that di > dj for some i < j. Since D is not rectangular, there are at least

two boxes for n to fill in. For example, in the following diagram,
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X

X

X

one can put the integer n + 1 in any one the three boxes marked by X. Let D′ be

the diagram(of n boxes) obtained by removing one marked box from D. Then the

inductive assumption implies that the irreducible representation associated to D′

has at least dimension n − 1. Hence, the irreducible representation associated to

D has dimension at least 2(n− 1) > n.

Remark 2.10. Note that Lemma 2.6 is not true if n = 4, since the irreducible

representation associated to the diagram (2, 2) has dimension 2.

Proof of Theorem 2.8. By comparing the identities in (2.24) and (2.25) with those

in Lemma 3.1, one can see that the eigenvalue βn,i,j has multiplicity at least dρn,i

for 1 ≤ j ≤ dρn,i
. Let mn and m′

n be the multiplicities of the spectral gap and the

second largest singular value of Kn. Then, by Lemma 2.6, we have mn ≥ n − 1

and m′
n ≥ n− 1 for n ≥ 5. With these facts, one can easily prove this theorem by

applying Corollary 2.5 and 2.7.

Example 2.7. (The `p-cutoff for the random inversion with 1 < p ≤ ∞.)

This model is first introduced by Durrett in [23] for the study of chromosome

rearrangements and called an n reversal chain in that paper. For a description of

the random inversion, let n be a positive integer and Sn be the symmetric group

of degree n. The transition kernel is driven by the probability measure pn on Sn

defined by

pn(id) =
2

n + 1
, pn(ci,j) =

2

n(n + 1)
, ∀1 ≤ i < j ≤ n,
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where

ci,j = (i, j)(i + 1, j − 1)(i + 2, j − 2) · · · ( bi+jc
2

, di+je
2

).

From the view point of biology, the arrangements of numbers 1, ..., n denote the

arrangements of genomes in a chromosome of length n. In that setting, the inver-

sion ci,j represents a rearrangement of a chromosome which reverses the order of

genomes in the segment ranging from the ith position to the jth one.

From the above definition, one can see that ci,i+4j and ci,i+4j+3 are even per-

mutations and ci,i+4j+1 and ci,i+4j+2 are odd permutations. This implies that, for

0 ≤ j ≤ bn/4c − 1,

∑
1≤i≤n−4j

pn(ci,i+4j)−
∑

1≤i≤n−4j−1

pn(ci,i+4j+1)

−
∑

1≤i≤n−4j−2

pn(ci,i+4j+2) +
∑

1≤i≤4j−3

pn(ci,i+4j+3) = 0.

A simple computation then shows

βn =
∑
σ∈Sn

pn(σ)sgn(σ) =
2

n + 1
+

2

n(n + 1)
δ{1,2}(n mod 4).

To apply Corollary 2.8, we need to determine the spectral gap λn and the

second largest singular value µn of the n reversal chain. For n ≥ 1 and 1 ≤ i < n,

let φi be a function on Sn defined by

φn,i(σ) =





n− 2 if |σ(i)− σ(i + 1)| = 1

−2 otherwise

,

where σ(i) denotes the position of the card whose face value is i. Let Kn be the

transition kernel of the n reversal chain. By the above definition, it has been

proved in [23] that

∀1 ≤ i ≤ n− 1, Knφn,i =
n− 1

n + 1
φn,i.
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Hence, we have for n ≥ 4,

λn ≤ 2

n + 1
< 1− βn, µn ≥ 1− 2

n + 1
>

1

2
≥ βn.

Let F = {(Sn, Kn, πn)}∞1 be the family of the random inversion. By Corollary 2.8,

both families Fc and Fd present a `p-cutoff for 1 < p ≤ ∞. It has been proved by

Durrett in [23] using the comparison technique that the `1 and `2 mixing times are

both of order n log n. By Corollary 2.6, the `p-critical time is of order n log n for

1 < p ≤ ∞.

Example 2.8. (The `p-cutoff for the random insertion with 1 < p ≤ ∞) Let

F be the family of the random insertion introduced in Example 2.5. By Example

2.2 and (2.20), one may choose c2 > c1 > 0 such that

c1

n
≤ 1− µn ≤ λn ≤ c2

n
, ∀n ≥ 1.

To compute β defined in Theorem 2.8, we need to explicitly describe the probability

measure pn. In details, let

ci,j = (j, j − 1, ..., j + i, i), ∀i ≤ j,

and ci,j = c−1
j,i if i > j. Then one has

pn(ci,j) = n−2, ∀1 ≤ i, j ≤ n,

and a simple computation shows

β =
∑

1≤i,j≤n

pn(ci,j)sgn(ci,j) =
∑

1≤i,j≤n

(−1)i+j

n2
=

1 + (−1)n+1

2n2
.

This implies that (2.26) and (2.27) are satisfied for large n. Hence, for 1 < p ≤ ∞,

the families Fc and Fd present `p-cutoffs.
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As one can see from Theorem 2.8, if the alternating representation is not the

only irreducible representation contributing to the multiplicity of the spectral gap

or, in discrete-time cases, the second largest singular value of the Markov kernel,

then the `p-cutoff exists for 1 < p ≤ ∞. Hence, if one can get rid of the alternating

representation from the summation in the `2-distance(see (2.22) and (2.23)), then

there is almost no requirement for the `p-cutoff for all 1 < p ≤ ∞.

In the following, we consider a random walk on the alternating group An of

degree n, which is the normal subgroup containing all even permutations in Sn.

Let p be a probability measure on An, K be a Markov kernel defined by K(x, y) =

p(x−1y) for x, y ∈ An, and π ≡ 1/|An|. By definition, one has

‖k(e, ·)− 1‖2
2 = ‖p/π‖2

2 − 1 = |An|
∑
x∈An

p(x)2 − 1. (2.29)

Note that one may also consider p as a probability measure on Sn whose support

generates An. Let {ρn,i : i ≥ 0} be the set of all irreducible representations of Sn,

where ρn,0 is the trivial representation and ρn,1 is the alternating representation.

Since ρn,1(σ) = 1 if σ is even and ρn,1(σ) = −1 if σ is odd, we have p̂(ρn,1) = 1.

Then, by the representation theory and (2.29), one has

‖k(e, ·)− 1‖2
2 =

|An|
|Sn|

(
|Sn|

∑
x∈Sn

p(x)2

)
− 1

=
1

2

∑
i≥2

dρn,i
tr (p̂(ρn,i)p̂(ρn,i)

∗) .

As before, for any irreducible representation ρ, let {βρ,1, ..., βρ,dρ} be all the

eigenvalues of the matrix p̂(ρ). If p is assumed further normal on Sn, then the

above identity can be rewritten as

‖k(e, ·)− 1‖2
2 =

1

2

∑
i≥2

dρn,i∑
j=1

dρn,i
|βn,i,j|2, (2.30)
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where βn,i,j = βρn,i,j. By the above identity, we have the following theorem for

random walks on alternating groups.

Theorem 2.9. Let F = {(An, Kn, πn)}∞1 be a family of irreducible Markov chains,

where An is the alternating group of degree n and πn = 2/n!. For n ≥ 1, let pn be

a probability measure on An and Kn(x, y) = pn(x−1y) for x, y ∈ An. Assume that

pn, as a function defined on Sn, is normal for n ≥ 1. That is,

∑
z∈Sn

pn(xz)pn(yz) =
∑
z∈Sn

pn(zx)pn(zy), ∀x, y ∈ Sn.

Then:

(1) For 1 < p < ∞, the family Fc presents a `p-cutoff.

(2) Let µn be the second largest singular value of Kn. If infn µn > 0, then, for

1 < p < ∞, the family Fd presents a `p-cutoff.

In particular, if Kn is assumed further reversible, then the above also holds for

p = ∞.

Proof. Let {ρn,i : i ≥ 0} be the set of all irreducible representation of Sn, where

ρn,0 is the trivial representation and ρn,1 is the alternating representation. By

(2.30), we have

‖km
n (e, ·)− 1‖2

2 =
∑
i≥2

dρn,i∑
j=1

dρn,i
|βn,i,j|2m, for m ≥ 0,

and

‖hn,t(e, ·)− 1‖2
2 =

∑
i≥2

dρn,i∑
j=1

dρn,i
e−2t(1−βn,i,j), for t ≥ 0.

In discrete-time cases, Remark 2.8 implies that the Markov kernel Kn is aperiodic

and then βn,i,j ∈ (−1, 1) for 1 ≤ j ≤ dρn,i
and i ≥ 2. This is equivalent to saying

that the second largest singular value of Kn is less than 1. By the above facts, the

theorem is then proved by Corollary 2.5, 2.7 and Lemma 2.6.
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2.2 Comparison between continuous-time and discrete-time

`p-cutoffs

In this section, we discuss how the mixing time T d
p (K, ε) affects T c

p (K, ε). To

illustrate the difference between them, we first consider the following example.

Example 2.9. Let F = {(Xn, Kn, πn)}∞1 be a family of Markov chains, where |Xn| ≥
2, πn is a positive probability measure on Xn and Kn(x, y) = πn(y) for all x, y ∈ Xn.

It is obvious that any Markov chain in F are perfectly mixed once the transition

starts, and hence T d
p (Kn, ε) ≤ 1 for all n ≥ 1.

For continuous-time cases, a simple computation shows that

Hn,t(x, y) = 1 + e−t(δx(y)− 1),

where δx(·) is a function taking value 1 at x and 0 otherwise. This implies

max
x∈Xn

‖hx
n,t − 1‖p =





e−t

(
(π−1

n,∗−1)
p
+(π−1

n,∗−1)
π−1

n,∗

)1/p

for 1 ≤ p < ∞

e−t
(
π−1

n,∗ − 1
)

for p = ∞
,

where πn,∗ = minx∈Xn πn(x). Hence the `p-mixing time is given by

T c
p (Kn, ε) = max{fp(π

−1
n,∗)− log ε, 0},

where fp(s) = 1
p
log

(
(s−1)p+s−1

s

)
for 1 ≤ p < ∞ and f∞(s) = log(s− 1).

Assume that πn,∗ → 0, then for ε > 0,

T c
p (Kn, ε) =

p− 1

p
log

(
π−1

n,∗
)− log ε + op(1) ∀1 ≤ p ≤ ∞,

which implies

|T c
p (Kn, ε)− T c

p (Kn, δ)| = | log ε− log δ|+ op(1) = o
(
log

(
π−1

n,∗
))

.

Hence, by Proposition 1.10, the family Fc presents an optimal
(

p−1
p

log
(
π−1

n,∗
)
, 1

)

`p-cutoff for 1 < p ≤ ∞. However, one can prove that Fc does not have a `1-cutoff.
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By this example, one can find that if the discrete-time Markov chain mixes fast

enough, then the mixing time of the continuous Markov process depends mostly

on the stationary distribution, not the transition matrix. The same idea can also

be applied to Markov chains which mix slow enough. In the following subsections,

we discuss the relations between T c
p (K, ε) and T d

p (K, ε).

2.2.1 Discrete-time Markov chains with small `p-mixing

time for p > 1

In this subsection, we are concerned with the case where the family Fd consists

Markov chains mixing fast(compared with the quantity πn,∗ = minx∈Xn πn(x)).

Before stating the theorems, we first make some observations on the continuous-

time semigroup Ht.

Let (X , K, π) be an irreducible Markov chain with stationary distribution π

and Ht = e−t(I−K) be the continuous-time semigroup associated to K. Denote hx
t

to be the density of Ht(x, ·) with respect to π. By the triangle inequality, one has,

for 1 < p ≤ 1 and m ∈ Z,

max
x∈X

‖hx
t − 1‖p ≥ (π∗)

1−p
p e−t − 1 (2.31)

and

max
x∈X

‖hx
t − 1‖p ≤ e−t

∞∑
j=0

tj

j!
max
x∈X

‖kj
x − 1‖p

≤ 2(π∗)
1−p

p

(
e−t

m−1∑
j=0

tj

j!

)
+ max

x∈X
‖km

x − 1‖p

(2.32)

where π∗ = minx∈X π(x) and p−1
p

= 1 if p = ∞. Note that the last inequality in



88

the above is implied by the fact that for any |X | × |X | stochastic matrix A,

‖A(x, ·)/π(·)− 1‖p =

(∑
x∈X

|A(x, y)− π(y)|p(π(y))1−p

)1/p

≤
(∑

x∈X
|A(x, y)− π(y)|(π(y))1−p

)1/p

≤ 2(π∗)
1−p

p

It seems that if one can control both terms
∑m

j=0
tj

j!
and maxx∈X ‖km

x − 1‖p,

then the `p-distance ‖hx
t − 1‖p depends only on the stationary distribution. This

derives the following lemma.

Lemma 2.7. Let (X , K, π) be an irreducible Markov chains, π∗ = minx∈X π(x)

and set tp = p−1
p

log(π−1
∗ ) for 1 < p ≤ ∞. Then, for all ε > 0,

T c
p (K, ε) ≥ tp − log(ε + 1).

Furthermore:

(1) If T d
p (K, ε) < tp, then for δ ∈ (0, 1),

T c
p (K, 2δ + ε) ≤ tp

tp − T d
p (K, ε)

(
tp + T d

p (K, ε) log
tp

T d
p (K, ε)

+ log
1

δ

)
.

(2) It T d
p (K, ε) > tp, then for δ ∈ (0, etp)

T c
p (K, δ + ε) ≤

[
1 + f−1

(
tp − log δ

T d
p (K, ε)

)]
T d

p (K, ε),

where f(r) = r − log(1 + r) for r > 0.

Proof. The first inequality can be obtained by (2.31). For the second one, let

X1, X2, ... be a sequence of i.i.d. exponential(1) random variable and Yn = X1 +

· · ·+ Xn. Then for m, t > 0,

P{Ym > t} = e−t

m−1∑
j=0

tj

j!
.
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By the large deviation estimate, one has

P{Ym > t} ≤ exp

{
mγ

(
t

m

)}
, (2.33)

where γ(a) = 1− a + log a for a > 1. For a proof on this useful fact, please confer

[22, Section 1.9]. With this inequality and (2.32), one has

max
x∈X

‖hx
t − 1‖p ≤2 exp

{
p− 1

p
log(π−1

∗ )− t + m

(
1 + log

t

m

)}

+ max ‖km
x − 1‖p

Let tp = p−1
p

log(π−1
∗ ) and t = tp + cm log(tp/m) with c > 0. A simple computation

shows

tp − t + m

(
1 + log

t

m

)

=m

{
1 + (c− 1) log

m

tp
+ log

(
1− c

m

tp
log

m

tp

)}

≤m

{
1− log

m

tp
+ c

(
1− m

tp

)
log

m

tp

}

Letting m = T d
p (K, ε) and c = [(1−m/tp) log(m/tp)]

−1[log(m/tp) + 1
m

log δ − 1] in

the above inequality implies

max
x∈X

‖hx
t − 1‖p ≤ 2δ + ε.

Hence, for δ ∈ (0, 1),

T c
p (K, 2δ + ε) ≤ tp

tp −m

(
m log

tp
m

+ tp + log
1

δ

)

For the last identity, letting r > 0, ε > 0 and replacing t and m with (1 +

r)T d
p (K, ε) and T d

p (K, ε) into the first term of (2.33), we get

tp − t + m

(
1 + log

t

m

)
= tp −m(r − log(1 + r))
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and

tp −m(r − log(1 + r) < log δ ⇔ r > f−1

(
tp − log δ

m

)
.

Example 2.10. (The `p-cutoff for the random transposition in continuous-

time cases with 1 < p ≤ ∞) Let F = {(Xn, Kn, πn)}∞1 be the family of random

transposition introduced in Example 2.4. It has been shown in [21] that the spectral

gap λn is equal to 2/n. Note that Lemma 2.7 implies that

lim inf
n→∞

T c
p (Kn, ε)

n log n
≥ p− 1

p
, ∀1 < p ≤ ∞.

Thus, by Theorem 2.1, the family Fc presents a `p-cutoff for all 1 < p ≤ ∞.

By Lemma 2.7, one can easily obtain the following theorem.

Theorem 2.10. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains.

Set πn,∗ = minx∈Xn πn(x). Assume that πn,∗ → 0 and, for some 1 < p ≤ ∞ and

ε ∈ (0, 1),

T d
p (Kn, ε) = o

(
log(π−1

n,∗)
)
. (2.34)

Then, for 1 < q ≤ p, the family Fc has (tq(n), bq(n)) `q-cutoff, where

tq(n) =
q − 1

q
log(π−1

n,∗), bq(n) = T d
q (Kn, ε) log

tq(n)

T d
q (Kn, ε)

.

Proof. Note that it suffices to prove only the `p-cutoff. Obviously, one has bp(n) =

o(tp(n)). By Lemma 2.1, we have

T d
p (Kn, δ) = o(log(π−1

n,∗)) ∀δ > 0

and then, by Lemma 2.7,

|T c
p (Kn, 3δ)− tp(n)| ≤ tp(n)

tp(n)− T d
p (Kn, δ)

×
{

T d
p (Kn, δ)

∣∣∣∣log
tp(n)

T d
p (Kn, δ)

∣∣∣∣

+ T d
p (Kn, δ) + | log δ|+ | log(3δ + 1)|

}
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This implies that for all δ > 0, there exists an integer N = N(δ) > 0 such that

|T c
p (Kn, 3δ)− tp(n)| ≤ 2T d

p (Kn, δ)

∣∣∣∣log
tp(n)

T d
p (Kn, δ)

∣∣∣∣ ≤ 2C(δ)bp(n),

where C(δ) = 1 if δ ≥ ε, and C(δ) =
⌈

log δ
log ε

⌉
if 0 < δ < ε.

Example 2.11. Recall Example 2.3. For n ≥ 1, let an > 1, Xn = Zn
an

and Kn be

the Markov kernel on Xn given by (2.13). Note that the stationary distribution

is given by πn ≡ a−n
n , which implies πn,∗ = a−n

n . Assume that an → ∞. Since

T d
p (Kn, ε) ∼ n = o(n log an) for all ε > 0 and 1 < p ≤ ∞, the family Fc, by

Theorem 2.10, presents a
(

p−1
p

n log an, n log log an

)
`p-cutoff for 1 < p ≤ ∞.

Example 2.12. Recall Example 2.9. For n ≥ 1, let πn be a positive probability

measure on Xn and Kn(x, y) = πn(y) for all x, y ∈ Xn. Assume that πn,∗ →
0. Since T d

∞(Kn, ε) ∼ 1 = o
(
log(π−1

n,∗)
)

for all ε > 0, the family Fc presents a
(

p−1
p

log(π−1
n,∗), log log(π−1

n,∗)
)

`p-cutoff for 1 < p ≤ ∞.

Remark 2.11. Let (X , K, π) be an ergodic Markov chain and m be a positive integer

such that

ζ = max
x∈X

Km(x, x) > 0.

Note that the irreducibility of K implies ζ < 1. Then for 1 < p ≤ ∞ and ε > 0,

we have

max
x∈X

‖kn
x − 1‖ ≥ ζdn/me(π∗)(1−p)/p − 1,

where π∗ = maxx∈X π(x). This implies

T d
p (K, ε) ≥ m

{
(1− 1/p) log(1/π∗)− log(1 + ε)

log(ζ−1)
− 1 + δ1(m)

}
,

where δ1(x) is a function taking value 1 if x = 1 and 0 otherwise.
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By the above remark, the following lemma provides a necessary condition of

(2.34) for some specific Markov chains, which include random walks on finite groups

and the simple random walks on finite graphs..

Lemma 2.8. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains with

πn,∗ → 0, π∗n = max
x∈Xn

πn(x) = O(πn,∗).

If (2.34) holds, then one has, for any sequence (mn)∞1 such that mn = o(π−1
n,∗) and

ζn = maxx∈Xn Kmn
n (x, x) > 0,

lim
n→∞

log(ζ−1
n )

mn

= ∞.

By the above lemma, the family of lazy walks {(Xn, 1
2
(I + Kn), πn)}∞1 does not

fit the requirement (2.34). In fact, the `p-mixing time is bounded by

T d
p (Kn, ε) ≥ (log 2)(p− 1)

p

(
log(π−1

n,∗)− log(1 + ε)
)
.

The next corollaries are applications of Theorem 2.10 with further assumptions

on the transition matrices.

Corollary 2.9. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains

with πn,∗ = minx∈Xn πn(x) → 0. Assume that either F contains reversible chains

or, for n ≥ 1, there exists a finite group Gn acting transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn.

If there are 1 < p ≤ ∞ and ε ∈ (0, 1) such that

T d
p (Kn, ε) = o

(
log(π−1

n,∗)
)
,

then, for 1 < q ≤ ∞, the family Fc has a (tq(n), bq(n)) `q-cutoff, where

tq(n) =
q − 1

q
log(π−1

n,∗), bq(n) = T d
q (Kn, ε) log

tq(n)

T d
q (Kn, ε)

.
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Proof. Proved by Theorem 2.10 and Corollary 2.1.

Recall (2.11) in the proof of Theorem 2.2: For 1 < p < ∞,

‖km
x − 1‖p ≤ 2θpµm(1−θp)π(x)(1−p)/p,

where θp = |1 − 2/p| and µ is the second largest singular value of K. Set π∗ =

minx∈X π(x). If µ < 1, then the `p-mixing time is given by

T d
p (K, ε) ≤

⌈
(1− 1/p) log(π−1

∗ ) + θp log 2 + log(ε−1)

(1− θp) log(µ−1)

⌉
. (2.35)

This implies that if µ is close to 0, then the `p-mixing time is much smaller than

log(π−1
∗ ).

Corollary 2.10. Let Xn = {(Xn, Kn, π)}∞1 be a family of ergodic Markov chains

with πn,∗ → 0. Assume that the second largest singular value µn of Kn converges

to 0. Then, for 1 < p ≤ ∞, Fc presents a (tp(n), bn) `p-cutoff, where

tp(n) =
p− 1

p
log(π−1

n,∗), bn =
log(π−1

n,∗)

log(µ−1
n )

log log(µ−1
n ).

Proof. By (2.35), one has T d
p (Kn, 1/2) = o

(
log(π−1

n,∗)
)

for all 1 < p < ∞ and by

Theorem 2.10, Fc has a (tp(n), bp(n)) `p-cutoff with

tp(n) =
p− 1

p
log(π−1

n,∗), bp(n) = T d
p (Kn, 1/2) log

tp(n)

T d
p (Kn, 1/2)

.

Note that

T d
p (Kn, 1/2) ∼ (1− 1/p) log(π−1

n,∗)

(1− θp) log(µ−1
n )

and then

log
tp(n)

T d
p (Kn, 1/2)

∼ log log(µ−1
n ).

Hence bp(n) ∼ 1−1/p
1−θp

bn.

For p = ∞, note that (2.35) also holds for the adjoint Markov kernel. Then,

by Proposition 2.1, we have T d
2 (Kn, 1/2) ≤ T d

∞(Kn, 1/4) ≤ 2T d
2 (Kn, 1/2), which

implies b∞(n) = O(bn).
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2.2.2 Discrete-time Markov chains with large `p-mixing time

for p > 1

In this section, we deal with the case where the `p-mixing time T d
p (K, ε) is large,

that is, the Markov chain mixes slowly. First, we start from the following obser-

vation which says that T c
2 (K, ε) can’t be of smaller order than T d

2 (K, ε) for some

specific K.

Lemma 2.9. Let (X , K, π) be a reversible Markov chain and c > 0 be the following

constant

c =
1

2

(
min
m≥0

{
e−m

m∑
j=0

mj

j!

})2

.

Then for all ε > c−1/2 such that T d
p (K, ε) ≥ 1,

T c
2 (K, (cε2 − 1)1/2) ≥ T d

2 (K, ε)− 1.

Proof. By a simple computation, one has

‖km
x − 1‖2

2 = ‖km
x ‖2

2 − 1 = k2m(x, x)− 1,

and

‖hx
t − 1‖2

2 = ‖hx
t ‖2

2 − 1 = h2t(x, x)− 1,

for all m, t ≥ 0. Note that

h2t(x, x) = e−2t

∞∑
j=0

(2t)j

j!
kj(x, x) ≥ e−2t

m∑
j=0

(2t)2j

(2j)!
k2j(x, x).

Let X, Y be independent Poisson random variables with intensity t. Then X + Y

is of Poisson distribution with intensity 2t and, for t ≥ m,

2e−2t

m∑
j=0

(2t)2j

(2j)!
≥ P{X + Y ≤ 2m} ≥ P{X ≤ m}2.
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Hence we have, for m ≥ 0,

max
x∈X

‖hx
m − 1‖2

2 ≥ c

(
max
x∈X

‖km
x − 1‖2

2

)
− 1,

where c is the constant defined in the lemma. The desired identity is then proved

by taking m = T d
p (K, ε)− 1 for ε > c−1/2.

Remark 2.12. A simple observation from Lemma 2.9 is: Let {(Xn, Kn, πn)}∞1 be

a family of reversible and ergodic Markov chains with πn,∗ → 0. If (sn)∞1 is a

sequence of positive integers such that

lim
n→∞

max
x∈Xn

‖ksn
x − 1‖2 = ∞,

then

lim
n→∞

max
x∈Xn

‖hx
sn−1 − 1‖2 = ∞.

Theorem 2.11. Let F = {(Xn, Kn, πn)}∞1 be a family of reversible and ergodic

Markov chains with πn,∗ = minx∈Xn πn(x) → 0. For n ≥ 1, let µn and λn be the

second largest singular value and the spectral gap of Kn. Assume that there exist

1 ≤ p ≤ ∞ and ε0 > 0 such that log(π−1
n,∗) = o(T d

p (Kn, ε0)). Then:

(1) If Fd presents a `q-cutoff for some 1 < q ≤ ∞, then both Fd and Fc present

a `q-cutoff for all 1 < q ≤ ∞.

(2) If Fc presents a `q-cutoff for some 1 < q ≤ ∞ and λn = O(1−µn), then both

Fd and Fc present a `q-cutoff for all 1 < q ≤ ∞.

In particular, if any one of the above two conditions holds, then for all δ >

0, ε > 0,

|T c
2 (Kn, ε)− T d

2 (Kn, δ)| = Oδ,ε(cn),
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and

|T c
∞(Kn, ε)− T d

∞(Kn, δ)| = Oδ,ε(cn),

where η is any fixed positive number and

cn = max

{
(− log(µn))−1,

√
(log π−1

n,∗)T d
2 (Kn, η)

}
= o(T d

2 (Kn, η)).

Proof. By Corollary 2.6, it suffices to prove the `2-cutoff of Fc in case (1) and of Fd

in case (2). Note that by Proposition 2.2, we have log(π−1
n,∗) = o

(
T d

2 (Kn, ε
1/mp

0 )
)
,

where mp =
⌈

2(p−1)
p

⌉
. Set tn = T d

2 (Kn, ε
1/mp

0 ).

In case (1), since Fd presents a `2-cutoff, we have, by Proposition 1.11(3),

T d
2 (Kn, δ) ∼ tn for all δ > 0 and, by Theorem 2.6,

b−1
n = o(T d

2 (Kn, ε)) ∀δ > 0.

Recall the fact bn ≤ 2λn in Lemma 2.4. Then, by Lemma 2.9, we obtain

λ−1
n = o(T c

2 (Kn, δ)) ∀δ > 0,

and hence, by Theorem 2.6, Fc presents a `2-cutoff.

In case (2), since Fc presents a `2-cutoff, one has λ−1
n = o(T c

2 (Kn, δ)) for all

δ > 0. By Lemma 2.7(2), the fact log(π−1
n,∗) = o

(
T d

2 (Kn, ε
1/mp

0 )
)

implies that for n

large enough,

T c
2 (Kn, 2ε

1/mp

0 ) ≤ 2T d
2 (Kn, ε

1/mp

0 ).

Hence we have, by Lemma 2.4,

b−1
n = O(λ−1

n ) = o
(
T d

2 (Kn, ε
1/mp

0 )
)

,

and, by Theorem 2.6, Fd presents a `2-cutoff.

For the last part, by Theorem 2.6, it suffices to prove the desired identity with

any specified ε, δ. Let f(r) = r − log(1 + r) for r ≥ 0 and denote g as the inverse
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function of f . A simple computation shows

lim
s↓0

g(s)√
s

= lim
r↓0

r√
f(r)

=
√

2.

By Lemma 2.7, we may choose N1(ε) > 0 such that

T c
2 (Kn, 2ε) ≤


1 + 2

√
log(π−1

n,∗)
T d

2 (Kn, ε)


 T d

2 (Kn, ε) ∀n ≥ N1(ε).

For the other direction, let c > 0 be the constant defined in Lemma 2.9. Then one

has, for ε > c−1/2,

T c
2 (Kn, 2ε) ≥ T d

2 (Kn, ε1),

where ε1 =
√

(4ε2 + 1)/c. This implies that we may choose N2(ε) > 0 and C(ε) > 0

such that

T c
2 (Kn, 2ε) ≥ T d

2 (Kn, ε)− C(ε)bn ∀n ≥ N2(ε).

Combining both inequalities derives

|T c
2 (Kn, 2ε)− T d

2 (Kn, ε)| ≤ C(ε)bn + 2
√

log(π−1
n,∗)T d

2 (Kn, ε).

This proves the case of `2-mixing time. For the `∞-mixing time, one needs only

the proved result and Proposition 2.1.

Example 2.13. (The `p-cutoff for adjacent transpositions with p ∈ (1,∞].)

An adjacent transposition is a card shuffling made by choosing two contiguous

cards from a deck of n cards(there are entirely n − 1 choices) uniformly with

probability 1/n and doing nothing with the remaining probability, which is 1/n.

This model has been studied by many authors. In [16], Diaconis and Saloff-Coste

derived an upper bound on the total variation mixing time by their comparison

technique and the result was improved later by Wilson in [36] in the way that the

obtained upper bound on the total variation mixing time has the correct order. It
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is worth noting that in [16], comparing the adjacent transposition with the random

transposition though the following path

(i, j) = (i, i + 1) · · · (j − 2, j − 1)(j, j − 1) · · · (i + 2, i + 1)(i + 1, i),

one obtained that the spectral gap of the adjacent transposition on a deck of n

cards is bounded from below by c/n3, where c is a universal constant. In [5],

Bacher proved that the bound is of the correct order.

Let F = {(Xn, Kn, πn)}∞1 be the family of adjacent transpositions, where the

index indicates the number of cards. In [5], Bacher showed that the spectral gap

λn of Kn is equal to 2(1−cos(π/n))
n

with multiplicity at least n − 1. By Lemma 2.2,

the `2-distance is bounded by

d2
πn,2(K

m
n , πn) ≥ (n− 1)

(
1− 2(1− cos(π/n))

n

)2m

, ∀n,m ≥ 1,

which is sufficient to find a constant c > 0 such that T d
2 (Kn, πn) ≥ cn3 log n for

n ≥ 1. Since λ−1
n is of order 1/n3, by Theorem 2.2, the family Fd presents a `2-

cutoff. Note that log π−1
n,∗ ∼ n log n = o(T d

2 (Kn, ε)). Hence, by Theorem 2.11, both

Fd and Fc present a `p-cutoff for 1 < p ≤ ∞, and furthermore

T d
2 (Kn, ε) ∼ T c

2 (Kn, ε), ∀ε > 0.

The `p-critical time is an open problem for 1 < p ≤ ∞.

Note that the `1-cutoff for the adjacent transposition is still open. In discrete-

time cases, the exact order of the total variation mixing time is determined by

Wilson in [36]. In that paper, he gave a bound on the mixing time whose coefficients

are the tightest so far.

The following corollary is a simple implication of the proof of Theorem 2.11.
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Corollary 2.11. Let F = {(Xn, Kn, πn)}∞1 be a family of reversible and ergodic

Markov chains with πn,∗ = minx∈Xn πn(x) → 0. Assume that Fd present a `2-cutoff

and

log(π−1
n,∗) = o(T d

2 (Kn, ε)).

Then the family Fc presents a `2-cutoff with critical time T d
2 (Kn, ε).

At last, we consider the case where T d
p (K, ε) is comparable to log(π−1

∗ ). By

Lemma 2.7, one may easily conclude that T c
p (K, ε) is also comparable to log(π−1

∗ ).

However, the cutoff phenomenon is hard to obtain because knowing the order of

mixing-time is not enough. Please refer to Proposition 1.10 and Proposition 1.11.

Here, we give a result on the pre-cutoff.

Proposition 2.7. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains

with πn,∗ → 0. Assume that, for some 1 < p ≤ ∞, Fd presents a `p-pre-cutoff in

the following way: There exist ε0 > 0 and c2 > c1 > 0 satisfying either c1 > 1 or

c2 < 1 such that

c1 ≤ lim inf
n→∞

T d
p (Kn, ε)

tp(n)
≤ lim sup

n→∞

T d
p (Kn, ε)

tp(n)
≤ c2 ∀ε ∈ (0, ε0),

where tp(n) = p−1
p

log(π−1
n,∗). Then Fc presents a `p-pre-cutoff.

Proof. We prove the case c1 > 1 while the case c2 < 1 is done in a similar way. In

this case, for ε ∈ (0, ε0), one may choose an integer N(ε) > 0 such that

c1tp(n) ≤ T d
p (Kn, ε) ≤ c2tp(n).

Then, by Lemma 2.7, we have

1

2
tp(n) ≤ T c

p (Kn, 2ε) ≤ c3tp(n) ∀n ≥ N(ε),

where c3 =
(
1 + f−1(c−1

1 )
)
c2. This implies that Fc presents a `p-pre-cutoff.
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2.3 The `p-cutoff for standard riffle shuffle with 1 < p ≤ ∞

The first two subsections provide methods to examine the `p-cutoff and some mod-

els introduced in chapter 1 are shown to have such a phenomenon. One can see

from those theorems that the exact order of the `p-mixing time is sufficient to

determine the `p-cutoff but, to obtain a critical time, further tricks need to be

developed. Whatever the transition kernels are, if a cutoff is proved to possess by

a family of Markov chains, then we should, theoretically, be given a critical time.

However, it is never an easy work even the explicit distribution of a chain at any

time is well understood.

In this section, we consider the well-known card shuffling, the riffle shuffle,

which models the way a good card-player shuffles cards. For a detailed introduction

on this model, please go to chapter 5 and the references there. A generalization of

the standard riffle shuffle is given as follows. For any integer a ≥ 2 and n ≥ 1, an

a-shuffle is a card shuffling done by cutting a deck of n cards into a piles according

to a multinomial random variable. That is, the probability of cutting a deck of

n cards into a piles with sizes from top to bottom n1, .., na is a−n
(

n!
n1!···na!

)
. Then

forming a deck by dropping cards one by one from the bottoms of each pile with

probability proposition to its size. For example, if these a piles have sizes n1, ..., na,

then the bottom card in pack i is dropped with probability ni

n1+···+na
.

For n ≥ 1, let Xn be the set of all deck arrangements of n cards(which can

be identified with the symmetric group Sn of n elements) and πn be the uniform

distribution on Sn. Fix an integer a ≥ 2 and let, for n ≥ 1, Qn,a be the distribution

of card arrangements after one a-shuffles starting from a deck in order. This

distribution is explicitly determined by Bayer and Diaconis in [6] in the following

way.
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Lemma 2.10. Let n, a ≥ 1. Then, starting for a deck of n cards in order, the

probability distribution Qn,a of the deck arrangements after one a-shuffle is equal

to

Qn,a(σ) = a−n

(
n + a− r

n

)
,

where r is the number of rising sequence in σ.

For an example on the rising sequence, suppose that n = 9 and

σ = 7, 1, 3, 4, 2, 6, 5, 9, 8.

Then the rising sequences of σ are {1, 2}, {3, 4, 5}, {6}, {7, 8}, {9} and r = 5. Since

Qn,a(σ) depends only the number of rising sequences of σ, we also denote Qn,a(r)

as the quantity a−n
(

n+a−r
n

)
.

The following is another important observation in [6].

Lemma 2.11. In distribution, an a-shuffle followed by a b-shuffle is equivalent to

an ab-shuffle.

Combining the above two lemmas, the distribution of Sn after m a-shuffles

starting from a deck in order is equal to

Qm
n,a(σ) = Qn,am(σ) = a−mn

(
n + am − r

n

)
,

where r is the number of rising sequence in σ.

To compute the `p-distance, we need to know how many permutations of r rising

sequences in Sn. Tanny gave in [35] the following estimation of that quantity.

Lemma 2.12. For n ≥ 1 and 1 ≤ r = n
2

+ h ≤ n, let Rnh be the number of

permutations in Sn with r rising sequences. Then

Rnh

n!
=

e−6h2/n

√
πn/6

(
1 + o

(
1√
n

))
uniformly in h.
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Based on the above results, we may prove the `p-cutoff for the riffle shuffle.

Theorem 2.12. For fixed integer a ≥ 2, let F = {(Sn, Qn,a, πn)}∞1 be a family

of a-shuffles. Then, for 1 < p ≤ ∞, Fd presents a strongly optimal (tp(n), 1)

`p-cutoff, where

tp(n) =





3
2
loga n for 1 < p < ∞

2 loga n for p = ∞
,

and Fc presents a (sp(n), bn) `p-cutoff, where

sp(n) =
p− 1

p
(n log n− n), bn = (log n)2.

The following lemma is needed for the proof of Theorem 2.12.

Lemma 2.13. For a ≥ 2, let Qn,a and πn be as in Theorem 2.12 and denote qn,a

to be the density of Qn,a with respect to πn. Then, for fixed c > 0, if p ≥ 2 is an

even integer, one has

∀k > c, ‖q
n,n

3
2 k
− 1‖p

p =

p∑

l=2

(
p

l

)
(−1)p−le

l(l−1)

24k2 + Oc,p(n
−1/2), (2.36)

where Oc,p is uniform for k > c. For 1 < p < 2, one has that for 0 < k < c,

‖q
n,n

3
2 k
− 1‖p

p ≥
(

exp

{
1

24k2
+ Oc

(
n−

1
4

)}
− 1

)p−1

×
[
Φ

(
1

2
√

3k

)
− 1

2
+ O

(
n−

1
4

)]
,

(2.37)

where Oc(·) and O(·) are uniform for 0 < k < c.

Proof of Theorem 2.12. We first prove the `p-cutoff for the family Fd with 1 < p <

∞. Let p1 ∈ (1, 2) and p2 be a positive even number such that p1 < p < p2. Note

that for m ≥ 0 Qm
n,a=Qn,am . Fix θ ∈ R and let m = b3

2
loga n + θc = loga

(
n3/2cn

)
.

Then aθ−1 ≤ cn ≤ aθ. Let qm
n,a be the density of Qm

n,a with respect to πn. By
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Lemma 2.13, one has

‖qm
n,a − 1‖p ≤ ‖qm

n,a − 1‖p2 =

{
p2∑

l=2

(
p2

l

)
(−1)p2−le

l(l−1)

24aθ−1 + Oθ,p2

(
n−1/2

)
}1/p2

and

‖qm
n,a − 1‖p ≥ ‖qm

n,a − 1‖p1 ≥
(

exp

{
1

24a2θ
+ Oθ

(
n−

1
4

)}
− 1

)1−1/p1

×
[
Φ

(
1

2
√

3aθ

)
− 1

2
+ O

(
n−

1
4

)]1/p1

.

Then the functions f and underlinef defined in Definition 1.4 satisfy

f(θ) ≤
{

p2∑

l=2

(
p2

l

)
(−1)p2−le

l(l−1)

24aθ−1

}1/p2

< ∞, ∀θ ∈ R,

and

f(θ) ≥
(
e

1

24a2θ − 1
)1−1/p1 ×

{
Φ

(
1

2
√

3aθ

)
− 1

2

}1/p1

> 0, ∀θ ∈ R.

This proves the strongly optimal `p-cutoff for Fd with 1 < p < ∞.

For p = ∞, note that, by Lemma 2.10, Qn,a(r) is monotone decreasing in r.

The following fact

k∏
i=1

(1 + ai)− 1 ≥ 1−
k∏

i=1

(1− ai), ∀a1, ..., ak ≥ 0,

then implies that

‖qm
n − 1‖∞ = Qn,am(1)n!− 1, ∀m ≥ 0.

Hence we have, for m ≥ 0,

‖qm
n − 1‖∞ =

n∏
i=1

am + i− 1

am
− 1 = exp

{
n−1∑
i=1

log

(
1 +

i

am

)}
− 1.

Observe that x− x2

2
< log(1+x) < x, for 0 < x < 1. Standard summation formulas

then give
n−1∑
i=1

i

am
=

n(n− 1)

2am
,

n−1∑
i=1

i2

a2m
=

n(n− 1)(2n− 1)

6a2m
.
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For θ ∈ R, set m = b2 loga n + θc = 2 loga n + θn and let N > 0 be such that

θn + loga n > 0 for n ≥ N . In the above setting, it is clear that θ − 1 ≤ θn ≤ θ.

By the previous computation, we get

‖qm
n − 1‖∞ ≤ exp

{
n(n− 1)

2n2aθn

}
− 1 ≤ exp

{
a1−θ

}− 1,

and

‖qm
n − 1‖∞ ≥ exp

{
n(n− 1)

2n2aθn
+ Oθ

(
1

n

)}
− 1 ≥ exp

{
a−θ−2 + Oθ

(
1

n

)}
− 1.

This implies that, for the `∞-distance, the functions f and f in Definition 1.4

are bounded as follows.

f(θ) ≤ ea1−θ − 1 < ∞, f(θ) ≥ ea−θ−2 − 1 > 0, ∀θ ∈ R.

This proves the desired `∞-cutoff.

The `p-cutoff can be easily obtained by Theorem 2.10.

Proof of Lemma 2.13. Note that if p is an even number, then the `p-distance can

be rewritten as follows.

‖qn,a − 1‖p
p =

p∑

l=2

(
p

l

)
(−1)p−ldn,l(a),

where Rnh is the quantity in Lemma 2.12 and

dn,l(a) =

n
2∑

h=−n
2
+1

[
n!Qn,a

(
n
2

+ h
)]l Rnh

n!
.

To bound dn,l, we need the following two identities which are modified from

the proof of Proposition 1 in [6]. Let a = n
3
2 k ∈ Z.

(1) Assume that k ≥ c for some c > 0. Then

Qn,a

(
n
2

+ h
)

=
1

n!
exp

{
− h

k
√

n
− 1

24k2
− 1

2

(
h

kn

)2

+ Oc

(
1

k
√

n

) }
,

(2.38)
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where Oc(·) is uniform for all h and k ≥ c.

(2) Assume that k ≥ n
−1
16 and |h| ≤ n

3
4 . Then one has

Qn,a

(
n
2

+ h
)

=
1

n!
exp

{
− h

k
√

n
− 1

24k2
− 1

2

(
h

kn

)2

+ O

(
1

k
√

n

) }
,

(2.39)

where O(·) is uniform for all |h| ≤ n
3
4 and k ≥ n

−1
16 .

Now letting a = n
3
2 k ∈ Z and considering the following two regions,

I1 =
{

h : |h| ≤ n3/4, h +
n

2
∈ Z

}

and

I2 =
{

h : −n

2
+ 1 ≤ h ≤ n

2
, h +

n

2
∈ Z

}
\ I1.

By Lemma 2.12 and (2.38), one has, for k ≥ c > 0,

∑

h∈I1

[
n!Qn,a

(
n
2

+ h
)]l Rnh

n!

=

√
1

2π(n/12)

∑

h∈I1

exp

{
− 1

2

(
h√
n/12

+
l√
12k

)2

+
l(l − 1)

24k2
+ Oc

(
n−

1
2

) }

=Φ

(√
3n +

l√
12k

)
exp

{
l(l − 1)

24k2
+ Oc

(
n−

1
2

)}

and
∑

h∈I2

[
n!Qn,a

(
n
2

+ h
)]l Rnh

n!
= oc,p

(
e−6

√
n
)

,

where Oc(·) is uniform for k ≥ c. Combining both bounds implies that for k > c

and a = n3/2k ∈ Z,

dn,l(a) = e
l(l−1)

24k2 + Oc,p(n
−1/2),
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and then

‖qn,a − 1‖p
p =

p∑

l=2

(
p

l

)
(−1)p−le

l(l−1)

24k2 + Oc,p(n
−1/2).

For p ∈ (1, 2), (2.39) implies that one may choose N > 0 such that, for n
−1
16 <

k < n
1
9 and −n

3
4 ≤ h ≤ −

√
n

12k
,

Q
n,n

3
2 k

(n

2
+ h

)
≥ 1

n!
exp

{
1

24k2
+ O

(
n−

1
4

)}
>

1

n!
, ∀n ≥ N.

Then a similar computation as before derives, for 0 < k < c,

‖q
n,n

3
2 k
− 1‖p

p ≥
−
√

n
12k∑

h=−n
3
4

[
n!Q

n,n
3
2 k

(
n
2

+ h
)− 1

]p Rnh

n!

≥
(

exp

{
1

24k2
+ O

(
n−

1
4

)}
− 1

)p−1 −
√

n
12k∑

h=−n
3
4

[
n!Q

n,n
3
2 k

(
n
2

+ h
)− 1

] Rnh

n!

and

−
√

n
12k∑

h=−n
3
4

[
n!Q

n,n
3
2 k

(
n
2

+ h
)− 1

] Rnh

n!

=
1√

2π(n/12)

−
√

n
12k∑

h=−n
3
4

exp



−

1

2

(
h√
n/12

+
1√
12k

)2

+ o
(
n−

1
4

)




− 1√
2π(n/12)

−
√

n
12k∑

h=−n
3
4

exp





1

2

(
h√
n/12

)2

+ o
(
n−

1
2

)




=Φ

(
1

2
√

3k

)
− 1

2
+ O

(
n−

1
4

)

Combining both estimation implies the desired bound.



Chapter 3

The `2-cutoff for random walks on finite

groups
As Theorem 2.4 and Theorem 2.5 say, the `p-cutoff for a family of normal Markov

chains can be determined by looking at the `p-mixing time and the spectral gap

or, in discrete-time cases, the second largest singular value. However, the order

of magnitude of these quantities is not easy to obtain. Under the assumption of

reversibility, Corollary 2.1 implies that the `p-mixing time is of the same order as

the `2-mixing time and, for 1 < p ≤ ∞, a cutoff in `p occurs if and only if a cutoff

in `2 occurs. This section focuses on the `2-cutoff.

Spectral theory is a standard tool to study the `2-convergence of Markov chains

to their stationarity. Under the assumption of reversibility, the `2-distance can be

expressed as a function of eigenvalues and eigenvectors of a transition matrix.

In particular, by Lemma 2.2, if the state space X possesses a group structure

and the Markov kernel K is driven by a probability measure p on X satisfying

K(x, y) = p(x−1y), then the `2-distance is independent of the initial starting state

and involves only the spectrum of the transition matrix. To determine the `2-cutoff,

one needs to analyze the distribution of these eigenvalues.

In this chapter, we develop methods for a more general class of Markov kernels

which contains random walks on finite groups. In section 3.1, we introduce a

class of transition matrices, whose `2-distances depend only on their spectrum,

and derive some basic results for them. In section 3.3 and 3.4, by partitioning the

spectrum into small subsets, we obtain a criterion for testing the `2-cutoff, which

also gives a formula for the `2-mixing time. In section 3.5, we use this method

107
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to study the `2-cutoff for specific Markov chains, e.g. direct products of Markov

chains.

3.1 Basic results and settings

Let K be an irreducible Markov kernel on a finite set X with stationary distribution

π. Recall that K is normal if KK∗(x, y) = K∗K(x, y) for all x, y ∈ X , where

AB denotes the multiplication of matrices A and B. A classical result in matrix

analysis shows that if K is normal, then it is unitarily diagonalizable. Let β0 =

1, β1, ..., β|X |−1 be eigenvalues of K and ψ0 ≡ 1, ψ1, ..., ψ|X |−1 be the corresponding

orthonormal eigenvectors. Then the `2-distance is given by

‖hx
t − 1‖2

2 =

|X |−1∑
i=1

e−2t(1−Reβi)|ψi(x)|2

and

‖km
x − 1‖2

2 =

|X |−1∑
i=1

|βi|2|ψi(x)|2.

For a proof on the above facts, please refer to [29].

By Lemma 2.2, one has

Lemma 3.1. Let (X , K, π) be an irreducible Markov chain. Assume that there is

a finite group G acting transitively on X such that

K(gx, gy) = K(x, y), ∀x, y ∈ X , g ∈ G,

and K is normal with eigenvalues β0 = 1, β1, ..., β|X |−1. Then for t,m ≥ 0,

‖hx
t − 1‖2

2 =

|X |−1∑
i=1

e−2t(1−Reβi), ‖km
x − 1‖2

2 =

|X |−1∑
i=1

|βi|2 ∀x ∈ X .

Remark 3.1. Note that the invariance requirement in the above lemma is satisfied

if X is a group and K(x, y) = P (x−1y) for all x, y ∈ X , where P is a probability

measure on X whose support generates X (with positive power).
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With the above observation, we may rewrite, for p = 2, Theorem 2.4 and

Theorem 2.5 as follows.

Theorem 3.1. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains

with |Xn| → ∞. Assume that, for n ≥ 1, there exists a finite group Gn acting

transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn, (3.1)

Suppose that Kn is normal and λn,0 = 0 < λn,1 ≤ · · · ≤ λn,|Xn|−1 are the real parts

of eigenvalues of I −Kn. Then the spectral gap λn of Kn is equal to λn,1 and the

following are equivalent.

(1) Fc presents a `2-cutoff.

(2) For some ε > 0, λ−1
n,1 = o(T c

2 (Kn, ε)).

Furthermore, if any of these two conditions holds, then, for any fixed k ≥ 1,

the family Fc has a
(
T c

2 (Kn, ε), λ
−1
n,k∧(|Xn|−1)

)
`2-cutoff.

Proof. The first part is the special case, p = 2, of Theorem 2.4. For the second

part, let tn = T c
2 (Kn, ε) and assume that λ−1

n = o(tn). This implies λ−1
n,i = o(tn) for

all 1 ≤ i < |Xn|. By Lemma 3.1, we have

max
x∈Xn

‖hx
n,t − 1‖2

2 =

|Xn|−1∑
i=1

e−2λn,it.

Then replacing t with tn + cλ−1
n,k implies

max
x∈Xn

‖hx
n,t − 1‖2

2





≤ ε2e−2c + bn if c > 0

≥ e−2c(ε2 − bn) if c < 0
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where bn = e−2tnλn,1 + · · · + e−2tnλn,k . Then the functions f and f defined in

Definition 1.4 satisfy

f(c) ≤ εe−c, ∀c > 0, f(c) ≥ εe−c, ∀c < 0.

This proves the desired cutoff.

The same line of reasoning gives the almost word for word proof derives the

following theorem for discrete-time Markov chains.

Theorem 3.2. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and ergodic Markov

chains with |Xn| → ∞, and, for n ≥ 1, there exists a finite group Gn acting

transitively on Xn such that (3.1) holds. Let βn,0 = 1 > βn,1 ≥ · · · ≥ βn,|Xn|−1 be

the absolute values of eigenvalues of Kn. Assume that T d
2 (Kn, ε) → ∞ for some

ε > 0. Then the following are equivalent.

(1) Fd presents a `2-cutoff.

(2) For some ε > 0, b−1
n = o(T d

2 (Kn, ε)), where bn = min{− log βn,1, 1}.

Moreover, if any of the above two conditions holds, then, for k ≥ 1, Fd has a

(T d
2 (Kn, ε), b

−1
n,k) `2-cutoff, where bn,k = min{− log βn,k∧(|Xn|−1), 1}

For an equivalence between `p-cutoffs, please refer to Theorem 2.6, Corollary

2.4 and Corollary 2.6.

3.2 Triangular arrays of positive numbers

Under the assumption of Lemma 3.1, one can find that the `2-cutoff for F is

determined by a sequence of positive numbers(or strictly, of numbers in (0, 2)).

However, even knowing the spectrum of Kn, it is not an easy job to determine the
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`2-mixing time. We will give an idea of how to compute such a quantity in the

next section. Here, we introduce a more general setting as follows.

Definition 3.1. Let A = {an,i > 0 : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of

positive numbers and, for n ≥ 1, dAn be a function defined by

dAn (t) =
kn∑
i=1

e−2tan,i ∀t ∈ R.

Then A is said to present:

(1) A cut-off with critical time tn > 0 if

lim
n→∞

dAn ((1 + ε)tn) =





0 if ε ∈ (0, 1)

∞ if ε ∈ (−1, 0)

.

(2) A (tn, bn) cut-off if there exist positive numbers tn, bn such that bn = o(tn)

and the following functions

f(c) = lim sup
n→∞

dAn (tn + cbn), f(c) lim inf
n→∞

dAn (tn + cbn)

satisfy

lim
c→∞

f(c) = 0, lim
c→−∞

f(c) = ∞.

Remark 3.2. Note that a necessary condition for a triangular array A to have a

cutoff(in Definition 3.1) is kn →∞.

Definition 3.2. Let A and dAn be the same as in Definition 3.1. For ε > 0, the

mixing time of A is defined to be a sequence of nonnegative numbers {tAn (ε)}∞n=1,

where

tAn (ε) = inf{s ≥ 0 : dAn (s) ≤ ε}.



112

One can easily derive the following relation between the cutoff and the mixing

time. This is similar to Proposition 1.10 and Theorem 3.1.

Proposition 3.1. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of

positive numbers. Assume that kn →∞. Then:

(1) A presents a cutoff with critical time tn if and only if

tAn (ε) ∼ tn, ∀ε > 0.

(2) A has a (tn, bn) cutoff if and only if

|tAn (ε)− tn| = O(bn), ∀ε > 0.

In particular, if an,i ≤ an,i+1 for all 1 ≤ i < kn and n ≥ 1, then

A presents a cutoff ⇔ for some ε > 0, a−1
n,1 = o

(
tAn (ε)

)
.

Furthermore, if A presents a cutoff, then, for any ε > 0 and fixed j ≥ 1, the family

A has a (tn, bn) cutoff, where

tn = tAn (ε), bn = a−1
n,j∧kn

.

Definition 3.3. Let A, f and f be the same as in Definition 3.1. Then a (tn, bn)

cutoff for A is called

(1) weakly optimal if, for any (tn, cn) cutoff, one has bn = O(cn).

(2) optimal if, for any (sn, cn) cutoff, one has bn = o(cn). In this case, bn is called

an optimal window size of the cutoff.

(3) strongly optimal, if

f(c) < ∞, ∀c < 0, f(c) > 0, ∀c > 0.
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By Proposition 3.1, one can derive the same result as in Corollary 1.6.

Corollary 3.1. Let A be a triangular array of positive numbers. Assume that A
presents a cutoff. Then the following are equivalent.

(1) The cutoff for A has an optimal window size bn.

(2) For some ε > 0, the family A presents a weakly optimal
(
tAn (ε), bn

)
cutoff.

In particular, if A presents a weakly optimal
(
tAn (ε), bn

)
cutoff, then it is optimal.

The following is a useful fact to bound the optimal window size of a cutoff.

Corollary 3.2. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive

numbers satisfying an,i ≤ an,i+1 for 1 ≤ i < kn and n ≥ 1. Assume that A presents

a cutoff with an optimal window size bn. Then there are constants c1 > 0, c2 > 0

such that

c1a
−1
n,kn

≤ bn ≤ c2a
−1
n,1 ∀n ≥ 1.

Proof. The second inequality is proved by the definition of an optimal window

size(in Definition 3.3(2)) and Proposition 3.1. For the first one, by Corollary 3.1,

A has an optimal (tAn (ε), bn) cutoff. Note that if tAn (ε) > 0, then

dAn (tAn (ε) + s) ≥ εe−2san,kn , ∀s ≥ 0.

Replacing s = cbn with c > 0 implies

0 = lim
c→∞

lim sup
n→∞

e−2can,knbn = lim
c→∞

exp
{
−c lim inf

n→∞
an,knbn

}
,

or equivalently,

lim inf
n→∞

an,knbn > 0.
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The following is a fact similar to Lemma 1.3 which compares the optimal win-

dow sizes when two triangular arrays present cutoffs with the same critical time.

Lemma 3.2. Let A and B be two triangular arrays that present cutoffs with the

same critical time. Assume that both arrays have optimal window sizes. Then the

following are equivalent.

(1) A and B have the same optimal window size(in the sense of order), if any.

(2) A has a (tn, bn) cutoff if and only if B has a (tn, bn) cutoff.

Proof. Immediate from Definition 3.3.

3.3 Cutoff for triangular arrays

Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive numbers and

dAn (t) =
kn∑
i=1

e−2tan,i ∀t ∈ R, n ≥ 1. (3.2)

For n ≥ 1, let Pn = {xn,0, xn,1, ..., xn,ln} be a partition of (0,∞) satisfying

xn,0 ≤ min
1≤i≤kn

an,i ≤ max
1≤i≤kn

an,i < xn,ln (3.3)

and, for 1 ≤ j < ln, define

NA
j (Pn) = {1 ≤ i ≤ kn : xn,j ≤ an,i < xn,j+1}

and

τA(Pn) = sup
0≤j<ln

{
log |NA

j (Pn)|
2xn,j

}
, ξA(Pn) = sup

0≤j<ln

{
log |NA

j (Pn)|
2xn,j+1

}
. (3.4)

A relation between the above two quantities is

τA(Pn)

1 + εA(Pn)
≤ ξA(Pn) ≤ τA(Pn)

1 + ηA(Pn)
≤ τA(Pn), (3.5)
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where

εA(Pn) = sup
0≤j<ln

xn,j+1

xn,j

− 1, ηA(Pn) = inf
0≤j<ln

xn,j+1

xn,j

− 1. (3.6)

By the above definitions, one has

dAn (t) ≤
ln∑

j=0

|NA
j (Pn)|e−2txn,j ≤

ln∑
j=0

exp{2xn,j(τA(Pn)− t)} (3.7)

and

dAn (t) ≥
ln∑

j=0

|NA
j (Pn)|e−2txn,j+1 ≥ exp{2xn,mn+1(ξA(Pn)− t)}, (3.8)

where 0 ≤ mn < ln satisfies

ξA(Pn) =
log |NA

mn
(Pn)|

2xn,mn+1

. (3.9)

Remark 3.3. Note that if P ′n = Pn∪P is another partition where P∩ [xn,0, xn,ln) =

φ, then τA(P ′n) = τA(Pn) and ξA(P ′n) = ξA(Pn).

By this remark, it suffices to consider partitions (Pn)∞1 satisfying

xn,0 ≤ min{an,i : 1 ≤ i ≤ kn} ≤ xn,1 ∀n ≥ 1. (3.10)

The following two lemmas derive respectively an upper and a lower bound on dAn

by partitioning the entries of A in a proper way.

Lemma 3.3. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive

numbers with an,1 = min{an,i : 1 ≤ i ≤ kn}, and dAn , τA, ηA be quantities defined

in (3.2), (3.4) and (3.6). For n ≥ 1, let Pn = {xn,0, xn,1, ..., xn,ln} be a partition

of (0,∞) satisfying (3.3) and (3.10). Assume that an,1 = O(xn,0). Then for any

function f : R+ → R+ satisfying

inf
t>0

f(t) > 0, log
1

t
= O(f(t)) as t ↓ 0,

one has

lim
c→∞

lim sup
n→∞

dAn (tn + cbn) = 0,
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where

tn = τA(Pn), bn =
f(ηA(Pn))

an,1

.

Proof. For convenience, let tn = τA(Pn), εn = εA(Pn) and ηn = ηA(Pn). Note that

xn,j ≥ xn,0(1 + ηn)j for j ≥ 0. By (3.7), if t > tn, then

dAn (t) ≤
∞∑

j=0

e2xn,0(1+ηn)j(tn−t) ≤ e−2xn,0(t−tn)

min{ηnxn,0(t− tn), 1/2} , (3.11)

where the last inequality is based on the following facts.

e−2t ≤ max{1− t, 1/2}, (1 + t)j ≥ 1 + tj ∀t ≥ 0.

Let c1 > 0 be a constant such that

xn,0 ≥ c1xn,1 ∀n ≥ 1, f(t) ≥ c1 max{1, log t−1} ∀t > 0.

Replacing t = tn + cbn with bn = f(ηn)/an,1 in the above inequality, we get

dAn (tn + cbn) ≤ max

{
e−2cc1f(ηn)

cc2
1ηn

, 2e−2cc21

}

≤ (cc2
1)
−1 min{(ηn)2cc21−1, e−2cc21η−1

n }+ 2e−2cc21 .

Note that for c > (2c2
1)
−1, min{(ηn)2cc21−1, e−2cc21η−1

n } ≤ e−2cc21+1, which implies

dAn (tn + cbn) ≤ (cc2
1e + 2)e−2cc21 ∀c > (2c2

1)
−1.

This proves the desired property.

Lemma 3.4. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive

numbers with an,1 = min{an,i : 1 ≤ i ≤ kn}, and dAn , τA, εA be quantities defined in

(3.2), (3.4) and (3.6). For n ≥ 1, let Pn = {xn,0, xn,1, ..., xn,ln} be a partition of

(0,∞) satisfying (3.3) and (3.10), and denote mn to be a number such that (5.13)

holds. Then one has

lim
c→−∞

lim inf
n→∞

dAn (tn + cbn) = ∞, (3.12)



117

where

tn = τA(Pn), bn = max{x−1
n,mn+1, εA(Pn)τA(Pn)}.

Proof. For convenience, we denote tn = τA(Pn), ξn = ξA(Pn) and εn = εA(Pn). By

(3.8), one can easily check that

lim
c→−∞

lim inf
n→∞

dAn (ξn + cx−1
n,mn+1) = ∞,

and by (3.5), we have ξn ≥ (1 + εn)−1tn. Letting bn = max{x−1
n,mn+1, εntn} implies

ξn + cx−1
n,mn+1 ≥ tn + (c− 1)bn for c < 0.

Hence, (3.12) is proved by the above discussion and the monotonicity of dAn (·).

Remark 3.4. Note that in Lemma 3.4 the term tn + cbn in (3.12) need not be

positive.

The next theorem is a combination of Lemma 3.3 and Lemma 3.4.

Theorem 3.3. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive

numbers satisfying

an,1 = min{an,i : 1 ≤ i ≤ kn}, kn →∞,

and τA, εA, ηA be quantities defined in (3.4) and (3.6). For n ≥ 1, let Pn =

{xn,0, xn,1, ..., xn,ln} be a partition satisfying

an,1 < xn,1, an,1 = O(xn,0), max
1≤i≤kn

an,i < xn,ln . (3.13)

Assume that

lim
n→∞

εA(Pn) = 0, lim
n→∞

− log(ηA(Pn))

an,1τA(Pn)
= 0.

Then A presents a (tn, bn) cutoff, where

tn = τA(Pn), bn = max

{− log (ηA(Pn))

an,1

, εA(Pn)τA(Pn)

}
.
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Proof. By applying Lemma 3.3 with f(t) = max{− log t, 1} for t > 0 and Lemma

3.4.

Remark 3.5. Note that the first two of (3.13) are not too hard to be satisfied. For

example, one may choose xn,0 = an,1.

The following theorem says that the assumption and the result in the above

theorem are roughly equivalent.

Theorem 3.4. Let A, τA be the same as in Theorem 3.3 and an,1 = min{an,i : 1 ≤
i ≤ kn}. Assume that A presents a cutoff, then there exists a sequence (εn)∞1 of

positive numbers converging to 0 such that

lim
n→∞

− log(εn)

an,1τA(Pn)
= 0,

where Pn = {an,1(1 + εn)i : i ≥ 0}.
In particular, if {an,i : 1 ≤ i ≤ kn, n ≥ 1} are bounded, then the above statement

also holds for partitions of the form Pn = {an,1(1 + iεn) : i ≥ 0}.

Proof. For n ≥ 1, let Pn(ε) = {an,1(1 + ε)i : i ≥ 0} and define

δn = sup
{
ε ∈ (0, 1) : 1 + an,1τA(Pn(ε)) ≤ (eε)−1 log ε−1

}
.

Note that δn is defined with 0 < δn < e−1 and, by the left-continuity of τA(Pn(·)),
one has

1 + an,1τA(Pn(δn)) ≤ (eδn)−1 log δ−1
n .

Set εn = 2δn, then εn ∈ (0, 1) and

1 + an,1τA(Pn(εn)) > (eεn)−1 log ε−1
n .

It remains to show that εn → 0, or equivalently δn → 0. To prove this, consider

partitions Pn(δn) and the function f(t) = max{log t−1, 1}. By Lemma 3.3, one
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may choose C > 0 such that

tAn (1) ≤ τA(Pn(δn)) + Cbn = τA(Pn(δn)) + C(log δ−1
n )a−1

n,1.

This implies

an,1t
A
n (1) ≤ (e−1δ−1

n + C) log δ−1
n − 1.

Note also that by Proposition 3.1, we have an,1t
A
n (1) →∞, which derives δn = o(1).

The last part can be proved almost word for word.

Note that Theorem 3.3 gives a sufficient condition(which is also necessary in

some sense by Theorem 3.4) for the cutoff of A. However, it is not easy to compute

the quantity τA(Pn), let alone to select an optimal partition. The following theorem

provides another method to determine the cutoff which also gives the same window

size(up to a constant) as Theorem 3.3.

Theorem 3.5. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of positive

numbers with an,i ≤ an,i+1 for 1 ≤ i < kn and n ≥ 1. Assume that kn →∞. Then

A has a cutoff if and only if

a−1
n,1 = o(τn),

where τn = max
{

log i
2an,i

: 1 ≤ i ≤ kn

}
. If the above identity holds, then the `2-cutoff

has a critical time τn.

Moreover, if A presents a cutoff and Pn is a partition satisfying (3.13) such

that

lim
n→∞

εA(Pn) = 0, lim
n→∞

− log(ηA(Pn))

an,1τA(Pn)
= 0.

Then A has a (tn, bn) cutoff, where

tn = τn, bn = max

{− log (ηA(Pn))

an,1

, εA(Pn)τn)

}
.
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Proof. Let Pn be any partition satisfying (3.13). A simple computation shows

[1 + εA(Pn)]τA(Pn) ≤ ξA(Pn) ≤ τn ≤ tAn (1).

Then the first part is proved by Proposition 3.1 and Theorem 3.4. Note that if A
has a cutoff, then

τA(Pn) ∼ tAn (1) ∼ τn

and |tn − τA(Pn)| = O(bn). This proves the second part.

Remark 3.6. Note that one can easily check the existence of a cutoff for a triangular

array A and obtain a critical time from Theorem 3.5, but it’s still hard to find a

proper partition for a window size. Theorem 3.5 gives a clue on choosing partitions,

that is, a necessary and sufficient condition for such a partition Pn is

lim
n→∞

εA(Pn) = 0, lim
n→∞

− log(ηA(Pn))

an,1τn

= 0, τA(Pn) ∼ τn.

It is clear that none of the above theorems yields a weakly optimal cutoff. To

fill in this gap, one may use the following proposition.

Proposition 3.2. Let A be a triangular of positive numbers satisfying an,i ≤ an,i+1

for 1 ≤ i < kn, n ≥ 1, and dAn be the function defined in (3.2). Assume that A
presents a cutoff and tn is a sequence of positive numbers such that

0 < lim inf
n→∞

dAn (tn) ≤ lim sup
n→∞

dAn (tn) < ∞.

Then, for any fixed k > 0, A has a
(
tn, a−1

n,k∧kn

)
cutoff.

Proof. Let

c1 =
1

2
lim inf
n→∞

dAn (tn), c2 = 2 lim sup
n→∞

dAn (tn).

Then one may choose N ≥ 1 such that

tAn (c2) ≤ tn ≤ tAn (c1) ∀n ≥ N.
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By Proposition 3.1, the above proves the desired cutoff.

Proposition 3.1 gives a necessary and sufficient condition for a triangular array

A to have a cutoff of (that is, a−1
n,1 = o(tAn (ε))). Note that it allows us to get rid of

k, any fixed number, entries in A and not to change the result itself. The following

is a fact based on this idea.

Proposition 3.3. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of

positive numbers and dAn be the function defined in (3.2). Assume that A has a

cutoff with critical time sn and

lim
n→∞

[
dAn (δsn)− dA

′
n (δsn)

]
= 0, for some δ ∈ (0, 1],

where A′ is a sub-array of A and dA
′

n is the function associated to A′ and defined

in (3.2). Then:

(1) If δ ∈ (0, 1), then A′ has a (tn, bn) cutoff if and only if A has a (tn, bn) cutoff.

In this case, both A and A′ have the same(up to a constant) optimal window

size.

(2) If δ = 1 and A′ has a (tn, bn) cutoff with |tn − sn| = O(bn), then A has a

(tn, bn) cutoff.

Proof. For two triangular arrays A1 = {a(1)
n,i : 1 ≤ i ≤ k

(1)
n , n ≥ 1} and A2 = {a(2)

n,i :

1 ≤ i ≤ k
(2)
n , n ≥ 1}, we define A1 t A2 = {bn,i : 1 ≤ i ≤ k

(1)
n + k

(2)
n , n ≥ 1} by

letting

bn,i = a
(1)
n,i, ∀1 ≤ i ≤ k(1)

n , b
n,k

(1)
n +i

= a
(2)
n,i, ∀1 ≤ i ≤ k(2)

n .

Then the corresponding distance function satisfies

dA1tA2
n (t) = dA1

n (t) + dA2
n (t).
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This implies that, for ε > 0 and δ > 0,

max
{
tA1
n (ε + δ), tA2

n (ε + δ)
} ≤ tA1tA2

n (ε + δ) ≤ max
{
tA1
n (ε), tA2

n (δ)
}

.

Letting A1 = A′ and A2 be a triangular array such that A = A1tA2(regardless

of the arrangement of elements in each row). For (1), one may choose N ≥ 1 such

that for ε > 0 and n ≥ N ,

tA
′

n (2ε) ≤ tAn (2ε) ≤ tA
′

n (ε).

This proves the first result.

For (2), since A′ presents (tn, bn) cutoff and |sn − tn| = O(bn), we may choose

C > 0 and N ≥ 1 such that, for ε > 0 and n ≥ N ,

tn − Cbn ≤ tA1
n (2ε) ≤ tA1

n (ε) ≤ tn + Cbn,

and

tA2
n (ε) ≤ sn ≤ tn + Cbn.

This implies |tAn (2ε)− tn| = O(bn) for all ε > 0 and hence proves the (tn, bn) cutoff

for A.

Remark 3.7. Let A and A′ be arrays in Proposition 3.3 and kn, k′n be numbers of

entries in the respective nth rows. Assume A presents a cutoff. Then the identity

in Proposition 3.3 always holds if |kn − k′n| = O(1).

Because this section is not our goal, we only use the following simple examples

to illustrate how these theorems go.

Example 3.1. Consider a triangular array A of positive numbers an,i, where

an,1 =
1

log log n
, an,i =

1 + 1/
√

log n

log log n
for 2 ≤ i ≤ n + 1
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and dAn (t) =
∑n+1

i=1 e−2tan,i . We deal with this problem in the following three ways.

(1) The first way is to bound dn(t) as follows.

(n + 1)e−2tan,2 ≤ dn(t) ≤ (n + 1)e−2tan,1 ,

which implies

log(n + 1)− log c

2an,2

≤ tAn (c) ≤ log(n + 1)− log c

2an,1

.

Since
∣∣∣ log(n+1)

2an,1
− log(n+1)

2an,2

∣∣∣ ∼ 1
2

√
log n log log n, the array A has a (tn, bn) cut-off,

where

tn =
1

2
(log n) log log n, bn =

√
log n log log n.

Note that the above inequality is not enough to obtain a lower bound on the

optimal window size.

(2) The second way is done by applying Theorem 3.5. It can be easily computed

that

τn =
log(n + 1) log log n

2(1 + 1/
√

log n)
=

log n

2an,2

+ o(1).

Since a−1
n,1 = o(τn), A has a cutoff. To get a window size, choosing εn = 1/

√
log n

and Pn = {an,1(1 + εn)i : i ≥ 0} derives

τA(Pn) = τn, εA(Pn) = ηA(Pn) = 1/
√

log n.

This implies that A has a (t′n, b′n) cutoff, where

t′n = τn, b′n =
√

log n log log n.

This gives the same result as in (1).

(3) The third way is by applying Proposition 3.2. It is reasonable to investigate

whether tn(in (1)) or t′n(in (2)) satisfies the assumption. A simple computation

then shows

dAn (tn) = e− log n + e−
√

log n = o(1), dAn (t′n) ∼ 1.
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By Proposition 3.2 and Corollary 3.2, A presents an optimal (t′′n, b′′n) cutoff, where

t′′n = τn, b′′n = log log n.

Note that |tn − t′′n| ∼ 1
2
bn, which is the reason why the window size in (1) can’t

be any smaller. In fact, A presents a weakly (tn, bn) cutoff, and neither optimality

possesses by the (t′n, b
′
n) cutoff since t′n is a correct choice of the critical time.

Example 3.2. Let A = {an,i : 1 ≤ i ≤ n + 1, n ≥ 1}, where

an,1 =
1

n log log n
, an,i =

1

n
for 2 ≤ i ≤ n + 1.

Note that

τn =
n log(n + 1)

2
=

n log n

2
+ O(1).

This implies a−1
n,1 = o(τn) and, by Theorem 3.5, A presents a cutoff. For a window

size, consider a partition Pn = {an,1(1 + εn)i : i ≥ 0}, where εn = 1/ log n. A

simple calculation shows that

τA(Pn) ∼ τn,
− log εn

an,1τn

= o(1).

By Theorem 3.5, A has a (tn, bn) cutoff, where

tn =
n log n

2
, bn = n(log log n)2.

Let A′ = {a′n,i : 1 ≤ i ≤ n, n ≥ 1}, where a′n.i = an,2 for all 1 ≤ i ≤ n. Then

A = {an,1 : n ≥ 1}∪A′. As mentioned in Remark 3.7, it can be easily proved that

the requirement in Proposition 3.3 is satisfied with δ < 1, and hence A and A′

share the same optimal cutoff, which is the (tn, n) cutoff. It is worth noting that

a−1
n,1 is not the optimal window size for the cutoff.

When using Theorem 3.5 to examine the cutoff for a triangular array, one needs

to determine the value τn or at least provide a lower bound which is not too small.
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In the computation of τn, one can find that the smallest term is always ignored.

This is reasonable because τn is supposed to be a critical time and, if there is a

cutoff, it makes the first term(in fact, any term or any k terms for fixed k) in the

summation of dAn (cτn) tend to 0 for all c > 0. The following provides some other

choices on the selection of critical time and is useful in bounding the mixing time

if a triangular array does not present a cutoff.

Proposition 3.4. Let A = {an,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of

positive numbers satisfying an,i ≤ an,i+1 for 1 ≤ i < kn and n ≥ 1. Let dAn (·) be the

function defined in (3.2) and tAn (·) be the quantity defined in Definition 3.2. For

n ≥ 1 and α ≥ 0, set

τn(α) = max
1≤i≤kn

{
log(i + α)

2an,i

}
.

Then τn(α) ≤ τn(β) for 0 ≤ α < β, and

c−1tAn
(
(c− 1)−1α1−c

) ≤ τn(α) ≤ tAn
(
(1 + α)−1

) ∀c > 1, α > 0,

where the second inequality also holds for α = 0.

Proof. Let α ≥ 0 and, for n ≥ 1, 1 ≤ in ≤ kn be such that τn(α) = log(in+α)
2an,in

. Then

a calculation shows

dAn (τn(α)) =
kn∑
i=1

e−2τn(α)an,i ≥
in∑

i=1

exp

{
−an,i log(in + α)

an,in

}

≥ in
in + α

≥ 1

1 + α

This proves the second inequality.

For the first inequality, by definition, τn(α) ≥ log(i+α)
2an,i

for all 1 ≤ i ≤ kn. This

implies that for c > 1 and α > 0,

dAn (cτn(α)) ≤
kn∑
i=1

e−c log(i+α) ≤
∫ ∞

α

t−cdt =
1

(c− 1)αc−1
.
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Corollary 3.3. For α ≥ 0, let τn(α) be the quantity defined in Proposition 3.4.

Then Theorem 3.5 remains true as τn is replaced by τn(α).

3.4 The `2-cutoff for normal Markov chains

In this section, we translate all results in the previous sections into the case of

Markov chains through the following lemma.

Lemma 3.5. Let F = {(Xn, Kn, πn)}∞1 be a family of normal and irreducible

Markov chains and set

Λ = {λn,i : 1 ≤ i ≤ |Xn| − 1, n ≥ 1}, B = {bn,i : 1 ≤ i ≤ |Xn| − 1, n ≥ 1}

be triangular arrays, where bn,i = − log βn,i, λn,0 = 0 < λn,1 ≤ · · · ≤ λn,|Xn|−1 are

the real parts of eigenvalues of I − Kn and βn,0 = 1 ≥ βn,1 ≥ · · · ≥ βn,|Xn|−1 are

the absolute values of eigenvalues of Kn. Assume that |Xn| → ∞ and, for n ≥ 1,

there exists a finite group Gn acting transitively on Xn such that

Kn(gx, gy) = Kn(x, y), ∀x, y ∈ Xn, g ∈ Gn. (3.14)

Then:

(1) The family Fc presents a `2-cutoff if and only if the array Λ presents a cutoff.

(2) Assume further that Kn is aperiodic and tBn(ε) → ∞ for some ε > 0. Then

the family Fd presents a `2-cutoff if and only if the array B presents a cutoff.

In particular,

(3) Fc presents a (tn, bn) `2-cutoff if and only if B has a (tn, bn) cutoff.

(4) Assume that infn≥1 bn > 0. Then Fd presents a (tn, bn) `2-cutoff if and only

if B has a (tn, bn) cutoff.
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Proof. (1) and (3) are immediate from the first result of Lemma 3.1. For (2), note

that the `2-distance in discrete-time cases is given by

‖km
n,x − 1‖2

2 =

|Xn|−1∑
i=1

e−2mbn,i = dBn(m).

One direction of the second part is then an immediate result of the above iden-

tity(that is, B presents a cutoff ⇒ Fd has a `2-cutoff). For the other direction,

assume that F presents a `2-cutoff with critical time tn. By assumption, one has

tn →∞ and then, for any δ ∈ (0, 1), we may choose N = N(δ) > 0 such that

dtn(1 + δ/2)e ≤ tn(1 + δ), btn(1− δ/2)c ≥ tn(1− δ), ∀n ≥ N.

This implies that for δ ∈ (0, 1),

lim
n→∞

dBn(tn(1 + δ)) ≤ lim
n→∞

‖kdtn(1+δ/2)e
n,x − 1‖2

2 = 0

and

lim
n→∞

dBn(tn(1− δ)) ≤ lim
n→∞

‖kbtn(1−δ/2)c
n,x − 1‖2

2 = ∞.

(4) can be proved by a similar argument as above.

For a detailed discussion of the cutoff for an array, please refer to section 3.3.

The following theorem is implied by Lemma 3.5 and Theorem 3.5.

Theorem 3.6. Let F and Λ be as in Lemma 3.5 and set

tn = max

{
log i

2λn,i

: 1 ≤ i ≤ |Xn| − 1

}
.

Assume that |Xn| → ∞ and, for n ≥ 1, there exists a finite group acting transitively

on Gn such that (3.14) holds. Then the family Fc presents a `2-cutoff if and only

if

lim
n→∞

tnλn,1 = ∞.
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If Fc presents a `2-cutoff, then the critical time is tn.

Moreover, assume further that (εn)∞1 is a sequence converging to 0 such that,

for some sequence (jn)∞1 ,

lim
n→∞

λn,jn log(ε−1
n )

λn,1 log Njn(n, εn)
= 0,

where

Nj(n, ε) = {j ≤ i ≤ |Xn| − 1 : λn,i < (1 + ε)λn,j}.

Then Fc presents a (tn, bn) `2-cutoff with

bn = max

{
εntn,

− log εn

λn,1

}
.

The next theorem is a version of Theorem 3.6 for discrete-time cases.

Theorem 3.7. Let F and B be as in Lemma 3.5 and set

tn = max

{
log i

2bn,i

: 1 ≤ i ≤ |Xn| − 1

}
.

Assume that |Xn| → ∞, T d
2 (Kn, ε) → ∞ for some ε > 0 and, for n ≥ 1, there

exists a finite group Gn acting transitively on Xn such that (3.14) holds. Then

Theorem 3.6 remains true for Fd if one replaces λn,i with bn,i for 1 ≤ i ≤ |Xn| − 1

and n ≥ 1.

The following corollary treats the case where the Markov kernel possesses a

large multiplicity of the spectral gap.

Corollary 3.4. Let F and Λ be as in Lemma 3.5 and mn be the multiplicity of the

spectral gap of Kn. Assume that mn tends to infinity. Then Fc presents a `2-cutoff

with critical time tn = max
{

log i
2λn,i

: 1 ≤ i ≤ |Xn| − 1
}
.

In particular, for any sequence εn > 0 satisfying

εn → 0, log(ε−1
n ) = o(log mn),
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the family Fc has a (tn, bn) `2-cutoff, where

bn = max

{
εntn,

− log εn

λn,1

}
.

The above conclusion also applies for Fd if one assumes T d
2 (Kn, ε) → ∞ for

some ε > 0, redefines mn as the multiplicity of bn,1 and replaces λn,i with bn,i,

where B = {bn,i : 1 ≤ i ≤ |Xn| − 1, n ≥ 1} is the array in Lemma 3.5.

In the following, we use the random walk on a hypercube as an illustration of

the above results.

Example 3.3. For n ≥ 1, let Xn = (Z2)
n, πn ≡ 2−n and Kn is a Markov kernel on

Xn given by

Kn(x, y) =





1
n+1

if x− y = en,i, 0 ≤ i ≤ n

0 otherwise

where en,i is an element in Xn whose entries are all zero except the ith coordinate

and en,0 = 0. By the theory of group representations, the functions {φx}x∈Xn ,

which are defined by

φx(y) = (−1)x·y ∀y ∈ Xn,

where x · y =
∑n

i=1 xiyi for x = (x1, ..., xn) and y = (y1, ..., yn), are eigenfunctions

of Kn with corresponding eigenvalues {βx}x∈Xn given by

1− βx =
2(x1 + · · ·+ xn)

n + 1
.

This implies that {λn,i : 1 ≤ i ≤ 2n − 1} contains 2j
n+1

with multiplicity
(

n
j

)
for

1 ≤ j ≤ n. Since the spectral gap of Kn has multiplicity n, by Corollary 3.4,

the family Fc presents a `2-cutoff. For a critical time and a window size, a simple

computation shows
(

n
1

)
+ · · ·+ (

n
j

) ≤ nj and

tn = max
1≤i≤2n−1

{
log i

2λn,i

}
=

(n + 1) log n

4
.
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This implies

‖hx
n,tn − 1‖2

2 =
2n−1∑
i=1

e−2λn,itn =

(
1 +

1

n

)n

− 1 ∼ e− 1.

By Proposition 3.2, Fc has a (tn, n) `2-cutoff.

For Fd, note that, by the above computation, the absolute values of nonzero

eigenvalues of Kn are contained in the set {1− 2j
n+1

: 0 ≤ j < n+1
2
}, where 1− 2j

n+1

has multiplicity
(

n+1
j

)
for 1 ≤ j < n+1

2
. One can easily check that T d

2 (Kn, 1) →∞.

Then, by Corollary 3.4, Fd presents a `2-cutoff. By the concavity of the logarithmic

function, one has

log

(
1− 2j

n + 1

)
≤ − 2j

n + 1
.

Furthermore, it has been shown in the previous paragraph that
(

n+1
1

)
+

(
n+1

2

)
+

· · · + (
n+1

j

) ≤ (n + 1)j. Then, by Theorem 3.7, the `2-critical time for Fd is given

by

max
1≤i≤2n−1

{
log i

2bn,i

}
=

(n + 1) log n

4
+ O(log n).

For a window of the `2-cutoff for Fd, let tn be the quantity defined above. A

simple computation shows that

max
x∈Xn

‖kdtnen,x − 1‖2
2 =

bn+1
2
c∑

j=1

(
n + 1

j

)(
1− 2j

n + 1

)tn

≤
(

1 +
1

n

)n

− 1 ∼ e− 1.

Since Fd is proved in [14] to present a strongly optimal (tn, n) `1-cutoff. This

implies that

lim inf
n→∞

max
x∈Xn

‖kbtncn,x − 1‖2 ≥ lim inf
n→∞

max
x∈Xn

‖Kbtnc
n,x − πn‖TV > 0.

Combining all above, one has |T d
2 (Kn, e − 1) − tn| = O(1). By Theorem 2.2, the

family Fd presents a (tn, n) `2-cutoff.
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From the above discussion, Fd and Fc both present a (tn, n) `p-cutoff for 1 <

p ≤ 2. By the strong optimality of the `1-cutoff and Proposition 2.4, these cutoffs

are optimal.

Example 3.4. For n ≥ 1, let (Xn, Kn, πn) be a finite Markov chain, where Xn = Z2n

and πn ≡ 2−n. Let κn be a probability measure on Xn defined by

κn(±2i) =
1

2n
∀1 ≤ i ≤ n,

and Kn be a Markov kernel given by Kn(x, y) = κn(x−1y) for all x, y ∈ Xn. By

group representation theory, these functions (ρx)x∈Xn , where ρx(y) = e2πixy/2n
for

y ∈ Xn and i =
√−1, are eigenvectors of Kn. For x ∈ Xn, we denote βx as the

eigenvalue corresponding to the eigenvector ρx. Then βx can be determined by

βx =
∑
y∈Xn

κn(y)ρx(y) =
1

n

n∑
j=1

cos
(
2πx2j−n

)
.

An observation from the above formula is that if x, y ∈ Xn and x + y = 2n, then

βx = βy. This implies that except β0 and β2n−1 , every eigenvalue has multiplicity

at least 2.

For convenience, we identify x ∈ Xn with (xn, ..., x1) if x =
∑n

i=1 xi2
i−1. Then,

for x = (xn, ..., x1) ∈ Xn,

1− βx =
1

n

n∑
j=1

[
1− cos

(
π

n∑
i=1

xi2
i+j−n

)]

=
1

n

n−1∑
j=1

[
1− cos

(
π

j∑
i=1

xi2
i−j

)]

=
2

n

n−1∑
j=1

sin2

(
π

j∑
i=1

xi2
i−j−1

)
(3.15)

Note that for x, y ∈ Xn \ {0, 2n−1}, if x + y = 2n, then either x or y(but not both)

has the most right two 1s are contingent. In addition to the formula, one can see
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that for x ∈ Xn \ {0, 2n−1}, 1 − βx ≥ 3
n
. Since 1 − β0 = 0 and β2n−1 = 2

n
, the

spectral gap of Kn is equal to 2
n
.

To determine the `2-cutoff, we need to study the distribution of eigenvalues.

Note that if x = (xn, ..., x1) ∈ Xn satisfies xl = 1 and xl+1 = xl+2 = · · · = xk−1 =

xk = 0, then

2l−j−1 ≤
j∑

i=1

xi2
i−j−1 ≤ 2l−j ∀l + 2 ≤ j ≤ k.

This implies, for k ≥ l + 2,

1

8
≤

k∑

j=l+2

sin2

(
π

j∑
i=1

xi2
i−j−1

)
≤ 1,

where the first inequality uses the concavity of the sine function on (0, π/2) and

the second inequality uses the convexity of sin2 t on the region (0, π/4). Hence we

have, for l ≥ 1,

k∑

j=l+1

sin2

(
π

j∑
i=1

xi2
i−j−1

)
∈





(5/8, 2) if k ≥ l + 2

(1/2, 1) if k = l + 1

.

A similar proof also applies for the case xl = 0 and xl+1 = xl+2 = · · · = xk−1 =

xk = 1.

For x ∈ Xn, let N(x) to be the nonnegative number
∑n−1

i=1 |xi+1−xi|. Then the

above calculations show that, for x 6= 0,

N(x) + 2x1

n
≤ 1− βx ≤ 4N(x) + 2x1

n
.

Let λn,0 = 0 < λn,1 ≤ · · · be an arrangement of {1 − βx : x ∈ Xn}. Since

{x ∈ Xn : N(x) = i} = 2
(

n−1
i

)
for 0 ≤ i ≤ n− 1, one has λn,n ≤ 4/n. Combining

all above, we get

λn,1 max
i≥1

{
log i

λn,i

}
≥ log n

2
→∞, as n →∞.
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By Theorem 3.6, the family Fc, where F = {(Xn, Kn, πn)}∞1 , presents a `2-cutoff.

For the discrete-time case, applying the fact in (2.20) implies |βx| ≤ 1− 2
n

for

x 6= 0. Let B = {bn,i : 1 ≤ i ≤ |Xn| − 1, n ≥ 1} be the triangular array defined

in Lemma 3.5. Then, by the above fact and the computation in the previous

paragraph, one has bn,1 = − log(1 − 2
n
) and bn,n ≥ − log(1 − 4

n
). Combining both

facts, we get, by Lemma 3.1, T d
2 (Kn, 1) ≥ (n

4
− 1) log n for all n ≥ 4 and

bn,1 max
i≥1

{
log i

bn,i

}
≥ log(1− 2/n) log n

log(1− 4/n)
→∞, as n →∞.

By Theorem 3.7, Fd presents a `2-cutoff, and by Theorem 2.11, Fd and Fc have

the same `2-critical time.

3.5 The continuous-time Random walk on a product space

In this section, the underlying Markov chains are of the following form. For n ≥ 1,

let kn be a positive integer and, for 1 ≤ i ≤ kn, let Xn,i be a finite set and Kn,i

be an irreducible Markov kernel on Xn,i with stationary distribution πn,i. Let

Yn =
∏kn

i=1Xn,i and Pn be a Markov kernel on Yn defined by

Pn(x, y) = pn,0δ(x, y) +
kn∑
i=1

pn,iδi(x, y)Kn,i(xi, yi), (3.16)

where
kn∑
i=0

pn,i = 1, δi(x, y) =
kn∏
j=1
j 6=i

δ(xj, yj)

for x = (x1, ..., xkn), y = (y1, ..., ykn) ∈ Yn, 1 ≤ i ≤ kn, and δ(u, v) equals to 1 if

u = v and 0 otherwise. In this case, the probability measure µn =
⊗kn

i=1 πn,i on

Yn is a stationary distribution of Pn. Note that Pn is irreducible if and only if

pn,i > 0 for all 1 ≤ i ≤ kn. The following proposition, which can be found in [30],
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is a useful fact in dealing with the `2-norm and the `2-distance for a Markov kernel

satisfying (3.16).

Proposition 3.5. Let {(Xi, Ki, πi)}n
1 be irreducible Markov chains and set X =

∏n
1 Xi, π =

⊗n
1 πi and

K(x, y) = p0δ(x, y) +
n∑

i=1

piδi(x, y)Ki(xi, yi),

where p0 + · · · + pn = 1, δi(x, y) =
∏

j 6=i δ(xj, yj), and δ(u, v) = 1 if u = v and

δ(u, v) = 0 otherwise. Let Hi,t and Ht be the associated continuous-time semigroups

of Ki and K. Then for t ≥ 0 and x = (x1, ..., xn), y = (y1, ..., yn) ∈ X ,

Ht(x, y) =
n∏

i=1

Hn,pit(xi, yi)

In particular, the `2-norm of hx
t satisfies ‖hx

t ‖2
2 =

∏n
i=1 ‖hxi

n,pit‖2
2, or equivalently,

‖hx
t − 1‖2

2 =
n∏

i=1

(
1 + ‖hxi

n,pit − 1‖2
2

)− 1,

and the `2-mixing time is bounded by

T c
2

(
K,

√
(1 + ε)n − 1

)
≤ max

1≤i≤n

{
T c

2 (Ki, ε)

pi

}
≤ T c

2 (K, ε),

if pi > 0 for all 1 ≤ i ≤ n.

Proof. By a direct computation on Ht(x, y).

Remark 3.8. Note that the lower bound of the mixing time given in Proposition

3.5 can be much smaller than T c
2 (K, ε) if n is large.

3.5.1 The `2-cutoff for product chains

We use the following setting for the remaining of this chapter. For any finite

sequences A = {a1, .., an} and B = {b1, ..., bm}, we define A t B as a sequence
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{c1, .., cn+m}, where ci = ai for 1 ≤ i ≤ n and cn+j = bj for 1 ≤ j ≤ m. For finite

sequences (Ai)
n
1 , we define A1 t · · · t An by iterating the following identity

A1 t · · · t An = (A1 t · · · t An−1) t An,

and for a short hand, we set

n⊔
i=1

Ai = A1 t · · · t An.

Let c ∈ R and A = {a1, ..., an}. We define cA = {ca1, ..., can}. If A is a triangular

array, we denote, for n ≥ 1, An as the nth row of A.

Note that, by the discussion before Lemma 3.1, the normality of a Markov

kernel is sufficient for us to express the `2-distance as a function of its eigenvalues

and eigenvectors. For n ≥ 1 and 1 ≤ i ≤ kn, suppose that Kn,i satisfies the

assumption of Lemma 3.1 and let, for 0 ≤ j ≤ |Xn,i| − 1, λn
i,j be the real parts of

eigenvalues of I −Kn,i. Let Pn be the Markov kernel given in (3.16) and H̃n,t be

the continuous-time semigroup associated to Pn. Then, by Proposition 3.5, one

has

max
y∈Yn

‖h̃y
n,t − 1‖2

2 =
∑

(j1,··· ,jkn )∈Qkn
i=1 Z|Xn,i|

exp

{
−2t

kn∑
i=0

pn,iλ
n
i,ji

}
.

Determining the `2-cutoff for the family {(Yn, Pn, µn)}∞1 by using Theorem 3.5 with

the above identity can be very complicated since there are |Xn,1|× · · ·× |Xn,kn |− 1

terms needed to be considered for the chain Pn. The following theorem gives a

reduction on the above summation by ignoring a bunch of eigenvalues of Pn, where

in the end, there are only |Xn,1|+ · · ·+ |Xn,kn | − kn terms remained.

Theorem 3.8. Let F = {(Xn,i, Kn,i, πn,i) : 1 ≤ i ≤ kn, n ≥ 1}∞1 be a family

of normal and irreducible Markov chains, and G = {(Yn, Pn, µn)}∞1 be a family

induced from F by setting Yn =
∏n

i=1Xn,i, µn =
⊗∞

i=1 πn,i and defining Pn by
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(3.16) with pn,i > 0 for 1 ≤ i ≤ kn, n ≥ 1 and
∑kn

i=0 pn,i = 1. For n ≥ 1 and

1 ≤ i ≤ kn, let Λn
i = {λn

i,j : 1 ≤ j ≤ |Xn,i| − 1} be the set consisting of the real

parts of nonzero eigenvalues of I −Kn,i, and Γ be a triangular array defined by

Γn =
kn⊔
i=1

(pn,iΛ
n
i ) ∀n ≥ 1.

Assume that

lim
n→∞

kn∏
i=1

|Xn,i| = ∞

and, for n ≥ 1 and 1 ≤ i ≤ kn, there is a finite group Gn,i acting transitively on

Xn,i such that

Kn,i(gx, gy) = Kn,i(x, y), ∀x, y ∈ Xn,i, g ∈ Gn,i. (3.17)

Then:

(1) Gc presents a `2-cutoff if and only if Γ presents a cutoff. In particular, if both

Gc and Γ presents a cutoff, then their critical times are the same.

(2) Gc has a (tn, bn) `2-cutoff if and only if Γ has a (tn, bn) cutoff.

(3) Gc has a strongly optimal (tn, bn) `2-cutoff if and only if Γ has a strongly

optimal (tn, bn) `2-cutoff.

Remark 3.9. Let G and Γ be as in Theorem 3.8. By Lemma 3.2, if one of Gc and

Γ has an optimal window size, then the other has, too, and their optimal window

sizes are of the same order.

Proof of Theorem 3.8. Let Hn,t be the continuous-time semigroup associated to Pn

and set dn(t) = maxy∈Yn ‖hy
n,t − 1‖2

2. By Lemma 2.2 and Proposition 3.5, one has

dn(t) =
kn∏
i=1


1 +

|Xn,i|−1∑
j=1

e−2pn,iλ
n
i,jt


− 1.



137

Then a simple computation with the fact, 1 + x ≤ ex for x ∈ R, implies that

∀t ≥ 0, dΓ
n(t) ≤ dn(t) ≤ edΓ

n(t) − 1,

where the function dΓ
n is defined in (3.2). This is sufficient to (2) and (3). For (1),

let tΓn(·) be the mixing time defined in Definition 3.2. Then, for ε > 0, one may

choose N(ε) > 0 such that

tΓn(ε2) ≤ T c
2 (Pn, ε) ≤ tΓn(log(1 + ε2)) ∀n ≥ N(ε).

Hence, by Theorem 2.4 and Proposition 3.1, the above inequality proves (1).

Remark 3.10. Note that, in Theorem 3.8, the `2-distance of the chain (Yn, Pn, µn)

and the function dΓ
n defined in (3.2) are related as follows.

dΓ
n(t) ≤ max

y∈Yn

dµn,2(H
y
n,t, µn) ≤ edΓ

n(t) − 1, ∀t ≥ 0,

where Hn,t = e−t(I−Pn).

Example 3.5 (Continuation of Example 3.3). Note that those Markov chains in

Example 3.3 are of the form (Yn, Pn, µn) in Theorem 3.8, with kn = n and, for

1 ≤ i ≤ n, Xn,i = Z2, pn,i = 1
n+1

and

Kn,i =




0 1

1 0


 .

In this case, Γn = {γn,1, ..., γn,n}, where γn,i = 2
n+1

for all 1 ≤ i ≤ n. Clearly,

one has dΓ
n(t) = ne−4t/(n+1). This implies that Γ has a strongly optimal (n log n

4
, n)

`2-cutoff and, by Theorem 3.8, so does Gc.

In the following, we consider a generalization of the model in Example 3.3. Let

Xn,i ≡ Z2 and Yn =
∏n

i=1Xn,i = (Z2)
n. Note that, for any 2× 2 stochastic matrix
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K, the identity in (3.17) is satisfied if and only if K is symmetric. For n ≥ 1 and

1 ≤ i ≤ n, let an,i ∈ (0, 1], bn,i = 1− an,i and

Kn,i =




bn,i an,i

an,i bn,i


 . (3.18)

Let Λn
i = {λn

i : 1 ≤ i ≤ n, n ≥ 1} and Γ = {γn,i : 1 ≤ i ≤ n, n ≥ 1} be as in

Theorem 3.8. Then a simple computation shows λn
i = 2an,i and γn,i = 2pn,ian,i for

1 ≤ i ≤ n.

Theorem 3.9. Let F = {(Xn, Kn, πn) : 1 ≤ i ≤ n, n ≥ 1} and G = {(Yn, Pn, µn)}∞1
be families of Markov chains, where

Xn,i ≡ Z2, Yn = (Z2)
n, πn ≡ 2−1, µn = 2−n.

Let Kn,i be a matrix of the form in (3.18) with an,i > 0 and Pn be given by (3.16)

with infi pn,i > 0 for n ≥ 1. Assume that bn,1 ≤ · · · ≤ bn,n is a rearrangement of

pn,1an,1, ..., pn,nan,n. Then the family Gc presents a `2-cutoff if and only if

lim
n→∞

max
1≤i≤n

{
bn,1 log i

bn,i

}
= ∞.

In particular, if the above limit holds, then Gc presents a `2-cutoff with critical

time

max
1≤i≤n

{
log i

4bn,i

}
.

Proof. By Theorem 3.5 and Theorem 3.8.

Most of the time, the underlying Markov kernels are restricted to some specific

cases. The following two corollaries concern two of them.

Corollary 3.5. Let G be as in Theorem 3.9. Assume that an,i ≡ a > 0 and

pn,i ≤ pn,i+1 for 1 ≤ i < n and n ≥ 1. Then Gc presents a `2-cutoff if and only if

lim
n→∞

max
1≤i≤n

{
pn,1 log i

pn,i

}
= ∞.
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Moreover, if the above limit holds, then the family Gc presents a `2-cutoff with

critical time

max

{
log i

4apn,i

: 1 ≤ i ≤ n

}
.

Proof. Immediate from Theorem 3.8.

Corollary 3.6. Let G be the same as in Theorem 3.9. Assume that

max
1≤i≤n

{pn,ian,i} = O

(
min

1≤i≤n
{pn,ian,i}

)
.

Then Gc has a `2-cutoff whose critical time is of the same order as (log n)/(pn,nan,n).

Proof. By Theorem 3.8.

Remark 3.11. Note that the above theorem and corollaries do not provide any

window for the cutoff. To obtain one, we may apply Theorem 3.5 or Proposition

3.2 on the triangular array Γ. To refine the size, one may use Proposition 3.3. For

the optimality of a window size, Corollary 3.1, Corollary 3.2 and Proposition 2.4

provide some criterions to examine the obtained window size.

The following are two simple examples for an illustration of the previous results.

Example 3.6. Let G be the family in Theorem 3.9 and

pn,i =
1

4n

(
1 +

1

n

)i−1

∀1 ≤ i ≤ n,

where pn,0 = 1− (pn,1 + · · ·+ pn,n). Assume that an,i ≡ a for some a ∈ (0, 1].

By Corollary 3.6, Gc presents a `2-cutoff. To find a critical time, let sn be the

solution of the following equation.

(t + 1)n = tn+1 ∀t > 0.
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Then dsne = cnn
log n

, where cn is a sequence bounded from above and below by

positive numbers. A simple computation shows that the critical time is given by

max
1≤i≤n

{
log i

4apn,i

}
=

log(dsne)
4apn,sn

∼ n(log n− log log n)

a
.

Letting dΓ
n(t) be the function defined in (3.2) and tn = a−1n(log n − log log n)

implies that, for 1 ≤ i ≤ n,

e−4apn,itn =

(
log n

n

)(1+n−1)i−1





≤ (
log n

n

)1+ i−1
n

≥ (
log n

n

)1+
2(i−1)

n

where the inequalities use the facts log(1+t) ≤ t for t > 0 and et ≤ 2t for t ∈ (0, 1).

Note also that for c > 0,

n∑
i=1

(
log n

n

)1+
c(i−1)

n

= (log n)×
{

1

n

n∑
i=1

(
log n

n

)c i−1
n

}

= (log n)

{∫ 1

0

(
log n

n

)ct

dt + O(n−1)

}

∼ c−1 as n →∞.

This implies

1

2
≤ lim inf

n→∞
dΓ

n(tn) ≤ lim sup
n→∞

dΓ
n(tn) ≤ 1.

By Proposition 3.2 and Corollary 3.2, Gc has an optimal (tn, n) `2-cutoff, where

tn =
n(log n− log log n)

a
.

Example 3.7. Let G be the family in Theorem 3.9 with pn,i = n−1 for 2 ≤ i ≤ n

and

n ≤ p−1
n,1 = o(n log n), pn,0 = 1− (pn,1 + · · ·+ pn,n).

Assume that an,i(the quantity defined in (3.18)) and (log i)/an,i are both increasing

in i for 1 ≤ i ≤ n, and infn an,1 > 0. With these assumptions, we have

max
1≤i≤n

{
an,1pn,1 log i

an,ipn,i

}
=

an,1pn,1n log n

an,n

→∞ as n →∞.
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By Theorem 3.9, the family Gc presents a `2-cutoff with critical time

tn =
n log n

4an,n

.

To find a window for the `2-cutoff, we treat the simplest case. Assume that

an,i ≡ a for some a ∈ (0, 1]. Let Γ be the same as in Theorem 3.9 and dΓ
n(·)

be the function defined in (3.2). A simple computation implies dΓ
n(tn) ∼ 1. By

Theorem 3.8, Proposition 3.2 and Corollary 3.2, the family Gc has an optimal

(tn, n) `2-cutoff.

Note that the spectral gap of Pn is 2apn,1. If pn,1 = (n log log n)−1, then the

family Gc has an optimal window size for the `2-cutoff, which is of smaller order

than the reciprocal of the spectral gap.

3.5.2 The `2 cutoff for some specific product chains

In the previous section, almost without any rigid assumption, Theorem 3.8 trans-

lates the `2-cutoff for a family of product chains(defined in (3.16)) to the cutoff

of a triangular array Γ. The usefulness of Γ comes from that fact that it has

fewer entries and is simpler than the triangular array containing the eigenvalues

of (Pn)∞1 . That indeed saves us a lot of time on the determination of cutoffs, but

not all families have the luck as in Example 3.5, where only the spectral gaps are

involved. In this section, we will put some further assumption on the chains, which

is not too difficult to examine, so that the cutoff can be determined by using only

the spectral gaps.

Lemma 3.6. For n ≥ 1 and 1 ≤ i ≤ kn, let An
i = {an

i,j : 1 ≤ j ≤ ln,i} be a finite

sequence of positive numbers, where kn and ln,i are positive integers, and B be a
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triangular array defined by

Bn =
kn⊔
i=1

(pn,iA
n
i ), ∀n ≥ 1.

where pn,1, ..., pn,kn are positive numbers. Assume that there exists a constant C ≥ 1

such that, for n ≥ 1 and 1 ≤ i ≤ kn, the following inequality

fn,ie
−2an

i,1t ≤
ln,i∑
j=1

e−2an
i,jt ≤ Cfn,ie

−2an
i,1t, (3.19)

holds for t ≥ (C + log fn,i)(2a
n
i,1)

−1. Let C be a triangular array whose nth row has

entries

cn,i = pn,ja
n
j,1, for

j−1∑

l=1

dfn,le+ 1 ≤ i ≤
j∑

l=1

dfn,le, 1 ≤ j ≤ kn.

Assume that dfn,1e+ · · ·+ dfn,kne → ∞ as n →∞. Then:

(1) B presents a cutoff if and only if C presents a cutoff. In particular, if both B
and C have a cutoff, then their critical time is the same.

(2) If C presents a (tn, bn) cutoff, then B has a (tn, bn) cutoff.

Moreover, if, for some δ > 2, (3.19) holds for t ≥ (C + log fn,i)(δa
n
i,1)

−1, then:

(3) B presents a (tn, bn) cutoff if and only if C has a (tn, bn) cutoff.

(4) B has a strongly optimal (tn, bn) cutoff if and only if C has a strongly optimal

(tn, bn) cutoff.

Remark 3.12. (1) Let mn,i be the multiplicity of an
i,1 in An

i . Then the assumption

in (3.19) implies that, for 1 ≤ i ≤ kn and n ≥ 1,

an
i,1 = min

j
an

i,j, fn,i ≤ mn,i ≤ Cfn,i.
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(2) Note that the cutoff for a triangular array A is equivalent to the cutoff for

cA, where c is a positive number(This property can be seen from the equivalence

of the `1-cutoff and the total variation cutoff). By this observation and the as-

sumption inf{fn,i : 1 ≤ i ≤ kn, n ≥ 1} > 0, one may always restrict fn,i to positive

integers.

(3) In Lemma 3.6, if the set {fn,i : 1 ≤ i ≤ kn, n ≥ 1} is bounded, then

one may always choose fn,i ≡ 1. In this case, the requirement (3.19) for t ≥
(C − log fn,i)(δa

n
i,1)

−1 with δ > 2 is equivalent of that with δ = 2.

(4) For an example on the setting in Lemma 3.6, we consider the triangular

Γ in Theorem 3.8. Recall that: For n ≥ 1 and 1 ≤ i ≤ kn, the set of non-zero

eigenvalues of I −Kn,i is denoted by Λn
i = {λn

i,j : 1 ≤ j ≤ |Xn,i| − 1}, where λn
i,1 is

the spectral gap of Kn,i. Then the nth row of Γ is defined by

Γn = {pn,iλ
n
i,j : 1 ≤ j ≤ |Xn,i| − 1, 1 ≤ i ≤ kn},

where pn,i is positive. If one replaces B with Γ in Lemma 3.6, then the nth row of

the triangular array C is equal to

{pn,iλ
n
i,1 : 1 ≤ i ≤ kn}.

This means that only the spectral gap of Kn,i is considered.

Proof of Lemma 3.6. By the above remark, one has an
i,1 = minj an

i,j and then, for

n ≥ 1, the smallest entries of Bn and Cn are the same. Without loss of generality,

we assume that fn,i is a positive integer for 1 ≤ i ≤ kn and n ≥ 1. Note that

∀t ≥ 0, dCn(t) =
kn∑
i=1

fn,ie
−2pn,ia

n
i,1t ≤

kn∑
i=1

ln,i∑
j=1

e−2pn,ia
n
i,jt = dBn(t). (3.20)

To get an upper bound on dBn(t), we fix ε ∈ (0, e−C) and let tn = tBn(ε) > 0 be the

mixing time of B defined in Definition 3.2. By (3.20), one has dCn(tn) ≤ ε < e−C ,
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which implies that pn,itn ≥ (C + log f(n, i))(2an
i,1)

−1 for all 1 ≤ i ≤ kn. Hence, we

obtain from (3.19) that for ε ∈ (0, e−C),

∀t ≥ tBn(ε), dBn(t) ≤ CdCn(t). (3.21)

By (3.20) and (3.21), one has

∀ε > 0, tCn(ε) ≤ tBn(ε) and ∀ε ∈ (0, e−C), tBn(ε) ≤ tCn(ε/C). (3.22)

In addition to the fact bn,1 = cn,1, (1) is proved by Proposition 3.1. Note that (2)

can be easily obtained from (3.20) and (3.21).

For (3), assume that B has a (tn, bn) cutoff. By (3.20), one has

lim
c→∞

lim sup
n→∞

dCn(tn + cbn) = 0.

For the lower bound, since B has a (tn, bn) cutoff, we may choose c1 > 0 and N > 0

such that

dBn(tn + cbn) ≤ e−C , ∀c > c1, n ≥ N.

This implies that for all 1 ≤ i ≤ kn,

pn,i(tn + cbn) ≥ (C + log fn,i)(2a
n
i,1)

−1.

In this case, since bn = o(tn), we may choose a N1 ≥ N , such that for c ≥ c1 and

n ≥ N1,

pn,i(tn − cbn) ≥ (1 + o(1))(C + log fn,i)(2a
n
i,1)

−1 ≥ (C + log fn,i)(δa
n
i,1)

−1,

for all 1 ≤ i ≤ kn. Hence,

dBn(tn − cbn) ≤ CdCn(tn − cbn), ∀n ≥ N1, c > c1, (3.23)

which implies

lim
c→∞

lim inf
n→∞

dCn(tn − cbn) ≥ C−1 lim
c→∞

lim inf
n→∞

dBn(tn − cbn) = ∞.
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For (4), note that, by Proposition 3.1, the inequalities, (3.20) and (3.21), are

sufficient to prove the strongly optimal cutoff for C from that for B. The inverse

direction is obtained by applying (3.20) and (3.23).

With the above lemma, we can improve the result of Theorem 3.8 as follows.

Theorem 3.10. Let G and {Λn
i : 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 3.8.

Assume that (3.17) holds and there exist a positive number C > 0 and, for 1 ≤
i ≤ kn and n ≥ 1, such that

fn,ie
−2λn

i,1t ≤
|Xn,i|−1∑

j=1

e−2λn
i,jt ≤ Cfn,ie

−2λn
i,1t, (3.24)

for t ≥ (C + log fn,i)(2λ
n
i,1)

−1. Let Σ be a triangular array whose nth row consists

of entries

σn,i = pn,jλ
n
j,1, for

j−1∑

l=1

dfn,le+ 1 ≤ i ≤
j∑

l=1

dfn,le, 1 ≤ j ≤ kn.

Assume that dfn,1e+ · · ·+ dfn,kne → ∞ as n →∞. Then:

(1) Gc presents a `2-cutoff if and only if Σ presents a cutoff. Furthermore, if any

of Gc and Σ presents a cutoff, then their critical time is the same.

(2) If Σ has a (tn, bn) cutoff, then Gc has a (tn, bn) `2-cutoff.

If there exists δ > 2 such that (3.24) holds for t ≥ (C + log fn,i)(δλ
n
i,1)

−1 and

for all 1 ≤ i ≤ kn, n ≥ 1, then:

(3) Gc has a (tn, bn) `2-cutoff if and only if Σ has a (tn, bn) cutoff.

(4) Gc has a strongly optimal (tn, bn) `2-cutoff if and only if Σ has a string optimal

(tn, bn) cutoff.
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Proof. By replacing B and C in Lemma 3.6 with Γ and Σ and applying Theorem

3.8.

Remark 3.13. Note that, by (3.22) in the proof of Lemma 3.6, one has

tΣn (ε) ≤ tΓn(ε) ≤ tΣn (ε/C), ∀ε ∈ (0, e−C).

By the above remark and Remark 3.10, we may bound the `2-mixing time of

the product chain Pn from above and below by using the mixing of the triangular

array Σ. The following states this fact and gives a correct order of the mixing time,

which is useful when the family of product chains does not present a `2-cutoff.

Proposition 3.6. Let G = {(Yn, Pn, µn)}∞1 and Σ be as in Theorem 3.10 satisfying

(3.24) and C be the constant given there. Then, for 0 < ε <
√

ee−C − 1,

tΣn (ε) ≤ T c
2 (Pn, ε) ≤ tΣn

(
1

C
log(1 + ε2)

)
.

In particular, for 0 < ε <
√

ee−C − 1, one may choose c2(ε) > c1(ε) > 0 such

that

c1(ε)tn ≤ T c
2 (Pn, ε) ≤ c2(ε)tn,

where

tn = max

{
log(i + 1)

σn,i

: 1 ≤ i ≤ kn

}

and σn,1 ≤ σn,2 ≤ · · · ≤ σn,kn is a rearrangement of the nth row of Σ.

Proof. Immediate from Remark 3.10, Remark 3.13 and Proposition 3.4.

3.5.3 The `1-cutoff for products of random walks on finite

abelian groups

From Theorem 3.10, one can see that, for specific Markov kernels, the criterion

for testing the `2-cutoff depends only on the spectral gaps. In particular, if the
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coefficient fn,i in (3.24) is the multiplicity of an eigenvalue whose real part is λn
i,1,

then one should be able to bound the total variation distance from below by using

the spectrum. In this subsection, we will concentrate on products of chains on

finite abelian groups. The following is an important fact for the lower bound of

total variation.

Lemma 3.7. Let X be a set and µ, ν be two probability measures on X . Assume

that ψ is a complex-valued function contained in `1(µ)∩ `1(ν) with Eµ(ψ) 6= 0 and

Eν(ψ) = 0, where Eµ(f) is the expectation of f with respect to µ. Then

‖µ− ν‖TV ≥ 1− 4(Varµ(ψ) + Varν(ψ))

|Eµ(ψ)|2 (3.25)

Proof. Denote s = |Eµ(ψ)|/2 and A = {x ∈ X : |ψ(x)| ≥ s}. Then, for x ∈ Ac,

|ψ(x)− Eµ(ψ)| ≥ s. This implies

µ(Ac) = Eµ1Ac ≤ Eµ

(
1Ac

|ψ(x)− Eµ(ψ)|2
s2

)
≤ Varµ(ψ)

s2
.

By Chebyshev’s inequality, we have

‖µ− ν‖TV ≥ µ(A)− ν(A) ≥ 1− Varµ(ψ) + Varν(ψ)

s2
.

By the above lemma, we may bound the total variation distance from below

by using the spectrum of a Markov kernel.

Proposition 3.7. Let (X , K, π) be an irreducible Markov chain, where X is a finite

group, p is a probability measure on X and K(x, y) = p(x−1y) for all x, y ∈ X .

Assume that K is normal and β1, ..., βn are eigenvalues of K whose corresponding

orthonormal eigenvectors φ1, ..., φn satisfy

|φi| ≡ 1, φi(id) = 1, ∀1 ≤ i ≤ n,
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and
∑

i6=j

Ht(id, e−t(2−βi−βj)φiφj) ≤
(

n∑
i=1

e−2t(1−Reβi)

)2

, (3.26)

where id denotes the identity of G. Then, for x ∈ X ,

‖Hx
t − π‖TV ≥ 1− 8∑n

i=1 e−2t(1−Reβi)
.

Proof. Let ψ = e−t(1−β1)φ1 + · · · + e−t(1−βn)φn. By the assumption |φi| ≡ 1 and

φi(id) = 1, we have

Ht(id, |ψ|2) =
n∑

i=1

e−2t(1−Reβi) +
∑

i6=j

Ht(id, e−t(2−βi−βj)φiφj),

and

|Ht(id, ψ)|2 =

(
n∑

i=1

e−2t(1−Reβi)

)2

, Varπ(ψ) =
n∑

i=1

e−2t(1−Reβi).

Then the desired identity is proved by (3.26) and Lemma 3.7.

The following lemma is an interesting observation of the random walk on a

finite abelian group.

Lemma 3.8. Let X be a finite group and K be a Markov kernel on X given by

K(x, y) = p(x−1y) for x, y ∈ X , where p is a probability measure on X . Assume

that X is abelian. Then K is normal.

Note that if X is a finite abelian group, then it is isomorphic to a direct sum

of cycles. In this case, the group representation theory implies that X is self-

dual, that is, there exists a group isomorphism from X to its characters(or ir-

reducible representations). For instance, if X is isomorphic to
∏n

1 Zki
, then, for

x = (x1, ..., xn) ∈ X , the character ρx associated to x is given by

ρx(y) =
n∏

j=1

e2πixjyj/kj , ∀y = (y1, ..., yn) ∈ X .
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It is worth noting that if a transition matrix K on X satisfies

K(x, y) = p(x−1y), ∀x, y ∈ X ,

where p is a probability measure on X , then the eigenvalues of K are given by

βx = p̂(ρx) =
∑
y∈X

p(y)ρx(y), ∀x ∈ X . (3.27)

Remark 3.14. Let {φi = φxi
: ∀1 ≤ i ≤ n} be eigenvectors of K whose correspond-

ing eigenvalues are βx1 , ..., βxn defined in (3.27). Then a sufficient condition for

(3.26) is

1− Reβxix
−1
j
≥ (1− Reβxi

) + (1− Reβxj
) ∀i 6= j.

By Proposition 3.7 and Remark 3.14, we my bound the total variation distance

for products of chains as follows.

Theorem 3.11. Let {(Xi, Ki, πi)}n
1 be irreducible Markov chains, where Xi is a

finite group, κi is a probability measure on Xi and Ki(x, y) = κi(x
−1y) for x, y ∈ Xi.

Let (Y , P, µ) be a Markov chain, where Y =
∏n

1 Xi and µ =
⊗n

1 πi. The transition

matrix P is given by

K(x, y) = p0δ(x, y) +
n∑

i=1

piδi(x, y)Ki(xi, yi),

where p0 + · · · + pn = 1, δi(x, y) =
∏

j 6=i δ(xj, yj), and δ(u, v) = 1 if u = v

and δ(u, v) = 0 otherwise. Assume that, for 1 ≤ i ≤ n, Xi is abelian and βi

is an eigenvalue of Ki. Then the total variation distance for the continuous-time

semigroup Ht associated to P satisfies

∀y ∈ Y , ‖Hy
t − µ‖TV ≥ 1− 8∑n

i=1 e−2t(1−Reβi)
.
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Proof. For 1 ≤ i ≤ n, let ρi be a character such that βi = κ̂i(ρi)(defined in (3.27))

and set

ui =

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ρi ⊗

n−i︷ ︸︸ ︷
1⊗ · · · ⊗ 1 .

Then one may choose y1, ..., yn ∈ Y such that ρyi
= ui. This implies that, for i < j,

ρyiy
−1
j

=

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ρi ⊗

j−i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ρj ⊗

n−j︷ ︸︸ ︷
1⊗ · · · ⊗ 1 .

Hence we have

1− βyi
= P̂ (ui) = pn,i − pn,iβi

and

1− βyiy
−1
j

= P̂ (ρyiy
−1
j

) = pn,i + pn,j − pn,iβi − pn,jβj.

By the above computation, one has

1− Reβyiy
−1
j

= 1− Reβyi
+ 1− Reβyj

, ∀i 6= j,

and, by Proposition 3.7, this proves the desired inequality.

The following theorem says that, in some specific cases, the equivalence of

cutoffs given in Theorem 3.10 can be applied to the `1-cutoff.

Theorem 3.12. Let G and {Λn
i : 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 3.8, where

Xn,i is abelian, κn,i is a probability measure on Xn,i and Kn,i(x, y) = κn,i(x
−1y) for

x, y ∈ Xn,i. Assume that kn → ∞ and there exists a positive number C ≥ 1 such

that, for 1 ≤ i ≤ kn and n ≥ 1,

e−2λn
i,1t ≤

|Xn,i|−1∑
j=1

e−2λn
i,jt ≤ Ce−2λn

i,1t, ∀t ≥ C(λn
i,1)

−1. (3.28)

Let Σ be a triangular array whose nth row consists of pn,1λ
n
1,1, ..., pn,knλn

kn,1. Then

the following are equivalent.
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(1) Gc presents a `2-cutoff.

(2) Gc presents a `1-cutoff.

(3) Σ presents a cutoff.

In particular, if any of these conditions holds, then the `1 and `2 critical time

for Gc and the critical time for Σ are the same. Moreover, if Σ has a (tn, bn) cutoff,

then Gc has a (tn, bn) `1 and `2 cutoff.

Proof. Immediate from Theorem 3.10 and Theorem 3.11.

The following is a fact based on Theorem 3.12 and the monotonicity of the

`p-norm in p.

Corollary 3.7. Let Σ and G be as in Theorem 3.12. Assume that (3.28) holds and

Σ presents a (tn, bn) cutoff. Then, for 1 ≤ p ≤ 2, Gc presents a (tn, cn) `p-cutoff,

where

cn = max{bn, σ−1
n,1}

and σn,1 ≤ σn,2 ≤ · · · ≤ σn,kn is a rearrangement of the nth row of Σ for n ≥ 1.

Proof. Immediate from Theorem 3.12 and Proposition 2.6.

3.5.4 An application: A product of simple random walks

on cycles

Here, we apply the results in the previous subsection to the special case, where the

state spaces are products of cycles and transition matrices are products of simple

random walks. First, consider the following setting. Let F = {(Zmn,i
, Kn,i, πn,i) :
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1 ≤ i ≤ kn, n ≥ 1} be a family of irreducible Markov chains, where the Markov

kernel is given by

Kn,i(j, j + 1) = an,i, Kn,i(j, j − 1) = 1− an,i, ∀1 ≤ j ≤ mn,i, (3.29)

and an,i ∈ (0, 1]. Let G = {(Yn, Pn, µn)}∞1 be a family induced from F , where

Yn =
∏kn

i=1 Zmn,i
, µn =

⊗kn

i=1 πn,i and Pn is defined in (3.16). The following is an

observation on the Markov chain we consider.

Lemma 3.9. For a, b ∈ [0, 1] and n ≥ 2, let (Zn, Ka,b, π) be a Markov chain with

π ≡ 1/n and

Ka,b(j, j + 1) = a, Ka,b(j, j) = b, Ka,b(j, j − 1) = 1− a− b ∀1 ≤ j ≤ n.

Let Ha,b,t be the continuous-time semigroup associated to K. Then, for fixed b ∈
[0, 1],

(1) ‖Ha,b,t(x, ·)/π − 1‖2 is independent of a for a ∈ [0, 1− b].

(2) ‖Km
a,b(x, ·)/π − 1‖2 is decreasing for a ∈ [0, (1− b)/2].

Proof. Note that all eigenvalues of Ka,b are ae2πij/n + (1 − a − b)e−2πij/n + b for

1 ≤ j ≤ n, where i =
√−1. Since Ka,b is normal, one can easily compute the

`2-distance by using the spectrum of Ka,b as follows.

‖Ha,b,t(x, ·)/π − 1‖2
2 =

n−1∑
j=1

e−2t(1−b)(1−cos(2πj/n)) (3.30)

and

‖Km
a,b(x, ·)/π − 1‖2

2 =
n−1∑
j=1

∣∣ae2πij/n + (1− a− b)e−2πij/n + b
∣∣2m

=
n−1∑
j=1

(
1 + 2b(b− 1)[1− cos(2πj/n)]

+ 2a[a− (1− b)][1− cos(4πj/n)]
)m
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For fixed b, it is obvious that ‖Ha,b,t(x, ·)/π − 1‖2 is independent of a. For the

second part, note that

1 + 2b(b− 1) [1− cos(2πj/n)] + 2a[a− (1− b)] [1− cos(4πj/n)] ≥ 0

and a[a− (1− b)] is strictly decreasing on [0, (1− b)/2]. Hence ‖Km
a,b(x, ·)/π− 1‖2

is decreasing on [0, (1− b)/2].

Remark 3.15. Note that one may generalize the kernel in (3.29) by adding up a

weight on the identity like the kernel in Lemma 3.9. However, this does not change

the `2-distance that much since the difference between them is the re-scaling of time

by multiply a constant factor. This factor can be seen from (3.30).

The following corollary generalizes part of the result in Lemma 3.9 to a product

of chains.

Corollary 3.8. Let F = {(Zmn,i
, Kn,i, πn,i) : 1 ≤ i ≤ kn, n ≥ 1} and G =

{(Yn, Pn, µn)}∞1 be families defined by (3.16) and (3.29). For n ≥ 1, let H̃n,t be the

continuous-time semigroup associated to Pn. Then the `2-distance ‖H̃n,t(x, ·)/µn−
1‖2 is independent of the set {an,i : 1 ≤ i ≤ kn, n ≥ 1}.

Proof. Immediate from Lemma 3.9 and Proposition 3.5.

By Corollary 3.8, there is no loss of generality in assuming that an,i ≡ 1/2

in Corollary 3.8. The following theorem is our main result for the application of

Theorem 3.12.

Theorem 3.13. Let F = {(Zmn,i
, Kn,i, πn,i) : 1 ≤ i ≤ kn, n ≥ 1} and G =

{(Yn, Pn, µn)}∞1 be families defined above whose kernels are defined respectively by

(3.29) and (3.16), where an,i ≡ 1/2 and mn,i ≥ 2. For n ≥ 1 and 1 ≤ i ≤ kn, let

λn
i be the spectral gap of Kn,i and set Σ to be a triangular array whose nth row Σn
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consists of elements pn,1λ
n
1 , ..., pn,knλn

kn
. Assume that kn →∞. Then the following

are equivalent.

(1) Gc presents a `2-cutoff.

(2) Gc presents a `1-cutoff.

(3) Σ presents a cutoff.

(4) σ−1
n,1 = o(τn), where, for n ≥ 1, σn,1 ≤ σn,2 ≤ · · · ≤ σn,kn is a rearrangement

of pn,1λ
n
1 , ..., pn,knλn

kn
and

τn = max

{
log i

2σn,i

: 1 ≤ i ≤ kn

}
.

If any of these conditions holds, then, for 1 ≤ p ≤ 2, the family Gc presents a

`p-cutoff with critical time τn.

Moreover, one has

Σ has a (tn, bn) cutoff ⇔ Gc has a (tn, bn) `2-cutoff ⇒ Gc has a (tn, bn) `1-cutoff.

and

Σ has a strongly optimal (tn, bn) cutoff ⇔ Gc has a strongly optimal (tn, bn)

`2-cutoff.

In particular, if Σ presents a (tn, bn) cutoff, then, for 1 < p < 2, the family Gc has

a (tn, cn) `p-cutoff, where cn = max{bn, λ
−1
n } and λn = min{pn,iλ

n
i,1 : 1 ≤ i ≤ kn}

is the spectral gap of Pn.

Theorem 3.13 is proved by Theorem 3.5, Theorem 3.12 and the following lemma.

Lemma 3.10. For n ≥ 2, let λn = 1− cos(2π/n) and

dn(t) =
n−1∑
i=1

e−2t(1−cos(2πi/n)).
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Then one has, for t ≥ 0,

d2(t) = e−4t, d3(t) = 2e−3t, d4(t) = 2e−2t + e−4t,

and for odd n ≥ 5,

2
(
1 + f1(n, 12π2t)

)
e−2tλn ≤ dn(t) ≤ 2

(
1 + f1(n, π2t/2)

)
e−2tλn ,

and for even n ≥ 6,

2
(
1 + f1(n, 12π2t)

)
e−2tλn + f2(n, t) ≤ dn(t)

≤ 2
(
1 + f1(n, π2t/2)

)
e−2tλn + f2(n, t),

where cn = 1
n

(dn/2e − 1) and

f1(n, t) = n

∫ cn

1/n

e−tx2

dx, f2(n, t) = e−4t.

In particular, there exist positive numbers c1, c2 such that

2(1 + c1g(n, t))e−2tλn ≤ dn(t) ≤ 2(1 + c2g(n, t))e−2tλn , (3.31)

for all t > 0 and n ≥ 5, where

g(n, t) =





n if t ∈ (0, 1)

nt−1/2 if t ∈ (1, n2)

n2t−1e−t/n2
if t > n2

.

Proof. Note that

dn(t)− f2(n, t) = 2

dn/2e−1∑
i=1

e−2t(1−cos(2πi/n))

= 2e−2tλn


1 +

dn/2e−1∑
i=2

e−2t(cos(2π/n)−cos(2πi/n))
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To bound the difference among values taking by a cosine function, we use the

following fact. For 0 ≤ s ≤ π/2 and 0 ≤ t ≤ π, if s < t, then

1

8
(t2 − s2) ≤ cos s− cos t ≤ 1

2
(t2 − s2). (3.32)

This implies

π2

4

(
i

n

)2

≤ cos(2π/n)− cos(2πi/n) ≤ 6π2

(
i− 1

n

)2

,

where both inequalities also use the fact i2/2 ≤ i2 − 1 ≤ 3(i− 1)2 for i ≥ 2. Since

e−x is a decreasing function, the above computation derives

dn/2e−1∑
i=2

e−2t(cos(2π/n)−cos(2πi/n))





≤ f1(n, π2t/2)

≥ f1(n, 12π2t)

For the last part, assume that n ≥ 5. By changing the variable in the integral,

one has

f1(n, t) =
n√
t

∫ √
tcn

√
t/n

e−y2

dy





≤ ∫ √t/2√
t/n

e−x2
dx

≥ ∫ √t(1/2−1/n)√
t/n

e−x2
dx

.

This implies that, for n ≥ 5,

f1(n, t) ∼ n2

2t
e−t/n2

, as

√
t

n
→∞,

and

n

10e
≤ f1(n, t) ≤ n

2
, ∀t ≤ 1, n

∫ 3/2

1

e−xdx ≤ f1(n, t) ≤ n, ∀1 ≤ t ≤ n2.

Combining the above computations, we may choose two positive numbers c1, c2

such that

c1g(n, t) ≤ f1(n, t) ≤ c2g(n, t), ∀n ≥ 5, t > 0,
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where g(n, t) be the function defined in Lemma 3.10. Then, the desired inequality

in (3.31) is proved by the following fact.

e−4te2tλn ≤ e−2t ≤





1 if t ∈ (0, n2)

e−t/n2
e−

√
t/n if t > n2

.

Proof of Theorem 3.13. Let c2 be the quantity given by Lemma 3.10. A simple

computation show that (3.28) is satisfied with C = max{20, 2(1+c2)}. By Theorem

3.12, one has (1)⇔(2)⇔(3), and by Theorem 3.5, we get (3)⇔(4). The last part

is proved by Theorem 3.10 and Theorem 3.12.

We consider a specific example for an illustration of Theorem 3.12. Let F =

{(Zn+1, Kn, πn)}∞1 be a family of finite Markov chains, where

Kn(j, j + 1) = Kn(j, j − 1) =
1

2
, ∀1 ≤ j ≤ n + 1, n ≥ 1. (3.33)

Let G = {(Yn, Pn, µn)}∞1 be another family of Markov chains given by

Yn =
n∏

i=1

Zi+1, µn =
n⊗

i=1

πi, (3.34)

and for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Yn,

Pn(x, y) = pn,0δ(x, y) +
n∑

i=1

pn,iδi(x, y)Ki(xi, yi), (3.35)

where pn,0 + · · · + pn,n = 1, δi(x, y) =
∏

j 6=i δ(xj, yj), and δ(u, v) = 1 if u = v and

δ(u, v) = 0 otherwise.

Remark 3.16. It is well-known that the above family F does not have a `1 or `2

cutoff. In this dissertation, the introduced techniques are sufficient to prove that
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there is no `p-cutoff for Fc with 1 < p ≤ ∞. In details, by Lemma 3.10, one may

choose a constant C > 0 such that

T c
2 (Kn, 1) < Cλ−1

n , ∀n ≥ 1,

where λn is the spectral gap of Kn. By Theorem 2.4, this implies that Fc does not

present a `2-cutoff. Then, by Corollary 2.6, Fc does not present any `p-cutoff for

1 < p ≤ ∞.

An interpretation of the above Markov kernel Pn is that, for n ≥ 1, one coordi-

nate of Yn is chosen according to a probability measure (pn,i)
n
0 . Then changing the

state by adding up or subtracting 1 from that coordinate with probability 1/2. In

the following, we consider three examples whose probability measures (pn,i)
n
0 are

in order uniform, decreasing geometrically in i and decreasing arithmetically in i.

From the results, one can see how the mixing time evolves as (pn,i)
n
0 changes.

Example 3.8 ({pn,i}n
i=1 is a uniform probability measure). In this example, the

nth Markov chain of the family G defined by (3.33), (3.34) and (3.35) transits its

current state by first randomly choosing a digit and then randomly adding up or

subtracting 1 in that digit. In order to examine the cutoff for Gc by using Theorem

3.13, one needs to check the following quantity.

max
0≤i≤n−1

{
[1− cos(2π/(n + 1))] log(i + 1)

1− cos(2π/(n− i + 1))

}

By (3.32), letting i = dn/2e in the above implies that for n ≥ 4,

1− cos(2π/(n + 1))

1− cos(2π/(n− i + 1))
≥ 1− cos(2π/(n + 1))

1− cos(4π/(n + 1))
≥ 1

16
.

Then the above quantity tends to infinity as n → ∞ and, by Theorem 3.13, Gc

presents a `p-cutoff with critical time

tn =
n

2
max

0≤i≤n−1

{
log(i + 1)

1− cos(2π/(n− i + 1))

}
,
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for 1 ≤ p ≤ 2.

To determine an asymptotic value of tn, note that

tn ≤ sn =
n log n

2[1− cos(2π/(n + 1))]
.

For the lower bound, let j ∈ (0, 1) and replace i with djne. This implies that for

n large,

tn ≥ sn(j) =
n log(nj + 1)

2[1− cos(2π/(n− nj))]

Since 1− cos θ ∼ θ2

2
as θ → 0, one can easily conclude that for j ∈ (0, 1),

lim inf
n→∞

tn
sn

≥ lim inf
n→∞

sn(j)

sn

= (1− j)2.

Letting j → 0 implies tn ∼ sn.

To select a window size, let Pn = {n−1λn(1 + εn)i : i = 0, 1, ...} be a partition

of (0,∞) with

εn =
cos(2π/(n + 1))− cos(2π/[n− n(log n)−1])

1− cos(2π/(n + 1))
.

By Taylor’s expansion of the cosine function at 0, one can compute that

εn ∼ n−2 − [n− n(log n)−1]−2 + O(n−4)

n−2

=
1

log n− 1
+ O(n−2) ∼ 1

log n
= o(1)

Let Σn = {n−1λ1, ..., n
−1λn} and τΣ(Pn) be the quantity defined in (3.4). Then we

have

τΣ(Pn) ≥ sn − n log log n

2[1− cos(2π/(n + 1))]
,

which implies

lim sup
n→∞

− log εn

n−1λnτΣ(Pn)
≤ lim sup

n→∞

log log n

log n
= 0.
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By Theorem 3.3 and Theorem 3.5, Σ presents a (τΣ(Pn), bn) and (tn, bn) cutoff,

where

bn =
n log log n

1− cos(2π/n)
.

Since tn ≤ sn ≤ τΣ(Pn) + bn, Σ also has a (sn, bn) cutoff. Finally, a standard

computation shows that

1

1− cos(2π/(n + 1))
=

1

2π2(n + 1)−2 + O(n−4)
=

(n + 1)2

2π2
+ O(1).

Because n log n ≤ n2 log n = o(bn), Σ presents a (t′n, b
′
n) cutoff, where

t′n =
n3 log n

4π2
, b′n = n3 log log n.

Since the spectral gap of Pn is equal to 1
n
[1− cos(2π/(n + 1))] ∼ 4π2

n3 , by Theorem

3.13, the family Gc has a (t′n, b
′
n) `p cutoff for 1 ≤ p ≤ 2. Note that the window

(b′n) given above is not optimal, since, by Theorem 2.4, one can has a cutoff whose

window has size n3.

Example 3.9 ({pn,i}n
i=1 is a decreasing arithmetic sequence). Let F and G be as in

Example 3.8, with pn,i = an(n+1−i) for 1 ≤ i ≤ n, where an = (1+2+· · ·+n)−1 =

2
n(n+1)

. In order to apply Theorem 3.13, we need to examine the following quantity.

sn = max
0≤i≤n−1

{
[1− cos(2π/(n + 1))] log(i + 1)

(i + 1)[1− cos(2π/(n + 1− i))]

}

Note that for t ≥ 0, log(1 + t) ≤ t. This implies that for i ≥ 3,

log(i + 1)

log i
= 1 +

log(1 + 1/i)

log i
≤ 1 + i−1,

that is, log(i+1)
i+1

≤ log i
i

for i ≥ 3. Since 21/2 ≤ 31/3, we may choose N > 0 such that

sn =
[1− cos(2π/(n + 1))] log 3

3[1− cos(2π/(n− 1))]
∀n ≥ N.
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Hence sn ∼ (log 3)/3. By Theorem 3.13, Gc does not present a `2-cutoff. By

Proposition 3.6, we may choose c > 0 and, for ε ∈ (0, c), c2(ε) > c1(ε) > 0 such

that

c1(ε)tn ≤ T c
2 (Pn, ε) ≤ c2(ε)tn,

where

tn =
n(n + 1)

2
max

0≤i≤n−1

{
log(i + 2)

(i + 1)[1− cos(2π/(n + 1− i))]

}

A similar analysis as before, we have log(i+2)
i+1

≤ log(i+1)
i

for all i ≥ 1. This implies

tn =
(log 2)n(n + 1)

2[1− cos(2π/(n + 1))]
∼ log 2

4π2
n4.

Example 3.10 ({pn,i}n
i=1 is a decreasing geometric sequence). Let F ,G be the same

as in Example 3.8 except that pn,i is replaced by

pn,i = anri−1 ∀1 ≤ i ≤ n,

where r ∈ (0, 1) is a fixed constant and an = (1+r1+· · ·+rn−1)−1 = (1−r)/(1−rn).

To determine the `2-cutoff for Gc via Theorem 3.13, we need to see whether the

following limit is true.

lim
n→∞

max
1≤i≤n

{
ri[1− cos(2π/(n + 1))] log(i + 1)

1− cos(2π/(n− i + 1))

}
= ∞.

Note that 1− cos(2π/(n + 1)) ≤ 1− cos(2π/(n− i + 1)) for 0 ≤ i ≤ n− 1. Since

the function log t + t log r is concave and has its maximum at t = (log r−1)−1, we

have

ri log(i + 1) ≤ iri ≤ (e log(1/r))−1 < ∞. (3.36)

This implies that Gc has no `2-cutoff.

For a bound on the `2-mixing time, by Proposition 3.6, one may choose c > 0

and, for ε ∈ (0, c), c2(ε) > c1(ε) > 0 such that

c1(ε)tn ≤ T c
2 (Pn, ε) ≤ c2(ε)tn, ∀ε ∈ (0, c),
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where

tn =

(
1− rn

(1− r)rn−1

)
max

0≤i≤n−1

{
ri log(i + 2)

[1− cos(2π/(n− i + 1))]

}
.

Since, for fixed r ∈ (0, 1), the map t 7→ trt is increasing in (0, (log r−1)−1) and

decreasing in ((log r−1)−1,∞), one may choose C > 1 such that

en log(1/r)

Cn2
≤ tn ≤ Cen log(1/r)

n2
, ∀n ≥ 1.

3.5.5 The cutoff for the product of random walks on abelian

groups with a bounded number of generators

In this section, we consider a specific class of Markov kernels on finite abelian

groups. Let (X , K, π) be an irreducible Markov chain, where X is a finite abelian

group, p is a probability measure on X with support E, and K is given by K(x, y) =

p(x−1y) for x, y ∈ X . By Lemma 3.8, the Markov kernel K is normal. Let λ be the

spectral gap of K. Assume that E is a symmetric set, in the sense that x−1 ∈ E

if x ∈ E, which contains the identity and generates X , and p is supported on E

satisfying

p(x) = p(x−1), ∀x ∈ E.

In this case, K is reversible and there exist positive constants c1, c2, c3, c4 depending

only on the cardinality of E and the minimum probability of p on its support such

that

‖he
t − 1‖2 ≤ c1e

−s/(c2γ2), ∀t ≥ c2γ
2 + s,

and

c3

γ2
≤ λ ≤ c4

γ2
,

where γ is the diameter of X with respect to E, that is, the smallest integer n such

that En = X . The above facts are obtained from the discussions of the moderate
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growth, the doubling property and the Poincaré inequality in [17, 20] and the local

Poincaré inequality and the Nash inequality in [20]. For details, please confer

Lemma 5.1, Theorem 5.2 and the proof of Theorem 3.1 in [17] and look at Lemma

5.4 and Theorem 5.3 in [20].

Note that, by the operator theory, one has

‖he
t1+t2

− 1‖2 = ‖Ht1+t2 − π‖2→∞





≤ ‖Ht1 − π‖2→∞e−t2λ

≥ ‖Ht1+t2 − π‖2→2 = e−(t1+t2)λ

.

Letting t ≥ cλ−1, t1 = c2γ
2 and t2 = t− t1 with c > c2c4 implies that

‖he
t − 1‖2 ≤ c1e

−(t−t1)λ ≤ c1e
t1λe−tλ ≤ (c1e

c2c4)e−tλ.

Hence, the identity in (3.28) is satisfied with C = max{c2c4, c
2
1e

2c2c4}. The following

theorem is a consequence obtained from the above facts.

Theorem 3.14. Let F = {(Xn,i, Kn,i, πn,i) : 1 ≤ i ≤ kn, n ≥ 1} be a family of

irreducible Markov chains, where Xn,i is a finite abelian group, κn,i is a probability

measure on Xn,i which is supported on a symmetric set En,i containing the identity

and

Kn,i(x, y) = κn,i(x
−1y), ∀x, y ∈ Xn,i.

Let G = {(Yn, Pn, µn)}∞1 be a family induced from F , where Yn =
∏kn

i=1Xn,i and

Pn is the Markov kernel defined in (3.16). Set Σ to be a triangular array whose

nth row contains the following elements

pn,1λ
n
1 , ..., pn,knλn

kn
,

where λn
i is the spectral gap of Kn,i for 1 ≤ i ≤ kn and n ≥ 1. Assume that

kn →∞ and, for 1 ≤ i ≤ kn and n ≥ 1, the probability measure κn,i satisfies

κn,i(x) = κn,i(x
−1) ≥ ε, ∀x ∈ En,i,
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where ε is a positive constant. Then the following are equivalent.

(1) Gc presents a `2-cutoff.

(2) Gc presents a `1-cutoff.

(3) Σ presents a cutoff.

In particular, if any of these conditions holds, then the `1 and `2 critical time

for Gc and the critical time for Σ are the same. Moreover, if Σ has a (tn, bn) cutoff,

then Gc has a (tn, bn) `1 and `2 cutoff.

For an application, we consider the following example.

Example 3.11. Let F = {(Xn,i, Kn,i, πn,i) : 1 ≤ i ≤ kn, n ≥ 1} be a family of finite

Markov chains, where Xn,i = Zi and πn,i ≡ 1/i. For n ≥ 1 and 1 ≤ i ≤ kn, let κn,i

be a probability measure on Zi and Kn,i(x, y) = κn,i(x
−1y) for x, y ∈ Zi. Assume

that L is a positive integer and

κn,i(ai,`) = κn,i(−ai,`) > 0, ∀0 ≤ ` ≤ L,

where ai,` = bi`/Lc. In this setting, it can be easily checked that the order of the

diameter of Zi with respect to the support of κn,i, that is {±ai,j : 0 ≤ j ≤ L}, is

the same as i1/L as i →∞. Assume that

inf{κn,i(ai,`) : 0 ≤ ` ≤ L, 1 ≤ i ≤ kn, n ≥ 1} > 0.

Then, by the discussion in front of Theorem 3.14, there exist constants c2 > c1 > 0

such that the spectral gap λn
i of Kn,i satisfies

c1i
−2/L ≤ λn

i ≤ c2i
−2/L, ∀1 ≤ i ≤ kn, n ≥ 1.
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Let G = {(Yn, Pn, µn)}∞1 be a family induced from F , where Yn =
∏kn

i=1Xn,i

and Pn is the Markov kernel given by (3.16). Then, by Theorem 3.14, the family

Gc presents a `2-cutoff if and only if it presents a `1-cutoff. Moreover, if any of the

`1 and `2 cutoffs exists, then the `1-critical time and the `2-critical time are the

same.(In fact, the `p-critical time is the same for 1 ≤ p ≤ 2) For the special case

pn,i = 1/kn for 1 ≤ i ≤ kn, let an,1 ≤ an,2 ≤ · · · ≤ an,kn−1 be a rearrangement of

λn
2 , ..., λ

n
kn

and

tn = max
1≤i≤kn−1

{
kn log i

2an,i

}

Assume that kn > 1 for all n and kn → ∞. It can be proved that there exist

c2 > c2 > 0 such that

c1k
−2/L
n ≤ an,1 ≤ an,kn/2 ≤ c2k

−2/L
n , ∀n ≥ 1,

which implies

k
1+2/L
n log kn

4c2

≤ tn ≤ k
1+2/L
n log kn

2c1

, ∀n ≥ 1.

For example, if kn = n, then the family Gc presents `2 and `1 cutoffs with the same

critical time whose correct order is n1+2/L log n.



Chapter 4

The total variation cutoff
In this chapter, we will compare the total variation mixing time and the total

variation cutoff between discrete-time and continuous-time cases. In Definition 1.4

and 1.5, a family F is said to present a total variation cutoff(in any sense) if U = 1

and

ρn(A) = max
x∈Xn

‖A(x, ·)− πn‖TV.

Note that a total variation cutoff is equivalent to a `1-cutoff, which is defined by

letting U = 2 and

ρn(A) = max
x∈Xn

‖A(x, ·)/πn − 1‖1.

In the above setting, the mixing time defined in Definition 1.3 is called respectively

a total variation mixing time and a `1-mixing time. We denote them as TTV(Kn, ε)

and T1(Kn, ε). Note also that the `1-distance and the total variation distance are

related by

‖µ/π − 1‖1 = 2‖µ− π‖TV,

for any probability measure µ. This implies that TTV(K, ε) = T1(K, 2ε) for all

ε > 0. According to this fact and Proposition 1.10 and 1.11, we may identify a

total variation cutoff and a `1-cutoff without any change on the critical time and

its window size.

In section 4.1, we compare the total variation distance between the discrete-time

and continuous-time Markov chains. In section 4.2, we introduce Peres’ conjecture

and construct a counterexample for that conjecture by following Aldous’ idea.

166
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4.1 The total variation cutoff for finite Markov chains

The following Lemma gives a simple relation of the total variation distances be-

tween discrete-time and continuous-time cases.

Lemma 4.1. Let (X , K, π) be an irreducible finite Markov chain and Ht = e−t(I−K)

be the associated continuous-time semigroup with respect to K. For m, t ≥ 0, set

a(m, t) = e−t
∑m

j=0
tj

j!
. Then, for t,m ≥ 0, the maximum total variation distance

max
x∈X

‖Hx
t − πn‖TV

is bounded from above by

max
x∈X

‖Km
x − π‖TV + a(m, t),

and bounded from below by

e−t

m∑
j=0

tj

j!

(
Kj(x,A)− π(A)

)− [1− a(m, t)] min

{
π(A), max

x∈Xn

‖Km
x − π‖TV

}
,

where A ⊂ X .

Proof. Note that for t ≥ 0, one has

Ht(x, y)− π(y) = e−t

∞∑
j=0

tj

j!

(
Kj(x, y)− π(y)

)
, ∀x, y ∈ X .

By this identity, the upper bound of maxx∈X ‖Ht(x, ·)− π‖TV is proved by Lemma

2.1 and the triangle inequality.

For the lower bound, let A be a subset of X . Note that

‖Hx
t − π‖TV ≥Ht(x, A)− π(A) = e−t

m∑
j=0

tj

j!

(
Kj(x,A)− π(A)

)

+ e−t

∞∑
j=m+1

tj

j!

(
Kj(x,A)− π(A)

)
.

Then the desired inequality is proved by the fact

Kj(x,A)− π(A) ≥ max{−π(A),−‖Kj
x − π‖TV}.
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By the above lemma, the total variation distances for a family of finite Markov

chains can be related in the following asymptotic way.

Proposition 4.1. Let F = {(Xn, Kn, πn)}∞1 be a family of finite Markov chains

and Hn,t = e−t(I−Kn) be the associated continuous-time semigroup w.r.t. Kn. As-

sume that (tn)∞n=1 and (sn)∞1 are sequences of positive numbers and tn tends to

infinity. Then

lim sup
n→∞

(
max
x∈Xn

‖Hx
n,tn+sn

− πn‖TV −max
x∈Xn

‖K [tn]
n,x − πn‖TV

)
≤ Φ(−L),

where [·] denotes either the floor b·c or the ceiling d·e and

L = lim inf
n→∞

sn√
tn + sn

, Φ(t) =
1√
2π

∫ t

−∞
e−x2/2dx.

In particular,

(1) For c ∈ (0, 1), one has

lim sup
n→∞

max
x∈Xn

‖Hx
n,tn − πn‖TV ≤ lim sup

n→∞
max
x∈Xn

‖Kdctne
n,x − πn‖TV,

and

lim inf
n→∞

max
x∈Xn

‖Hx
n,tn − πn‖TV ≤ lim inf

n→∞
max
x∈Xn

‖Kbctnc
n,x − πn‖TV.

(2) Let (bn)∞n=1 be a sequence of positive numbers satisfying bn = o(tn) and
√

tn =

O(bn). Then there exists a constant C > 0 such that, for c > 0,

lim sup
n→∞

max
x∈Xn

‖Hx
n,tn+2cbn

− πn‖TV

≤ lim sup
n→∞

max
x∈Xn

‖Kx
n,dtn+cbne − πn‖TV + Φ(−cC),

and for c < 0

lim inf
n→∞

max
x∈Xn

‖Hx
n,tn+cbn

− πn‖TV

≤ lim inf
n→∞

max
x∈Xn

‖Kx
n,btn+2cbnc − πn‖TV + Φ(−cC).
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Proof. The first inequality is immediately implied by Lemma 4.1 and Lemma 2.5

and the others are proved by applying the first inequality and the fact that for

bounded sequences (pn)∞1 and (qn)∞1 ,

sup
n≥1

{pn + qn} ≥ sup
n≥1

pn + inf
n≥1

qn.

The next corollary is a simple application of Proposition 4.1.

Corollary 4.1. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov chains.

Assume that, T c
TV(Kn, ε) tends to infinity for some ε > 0. Then, for δ ∈ (0, 1) and

η ∈ (0, ε), there exists an integer N = N(δ, η) such that

(1− δ)T c
TV(Kn, ε) ≤ T d

TV(Kn, η), ∀n ≥ N.

In particular, if Fc and Fd present a total variation cutoff with respective critical

time tn and sn, and tn →∞, then

lim inf
n→∞

sn

tn
≥ 1.

Proof. The first part is an immediate result of the second inequality in Proposition

4.1(1). For the second part, note that tn → ∞ implies sn → ∞. By Proposition

1.10 and Proposition 1.11, one has

tn ∼ T c
TV(Kn, ε), sn ∼ T d

TV(Kn, ε/2).

Then by the first part, we get

lim sup
n→∞

tn
sn

≤ 1

1− δ
, ∀δ ∈ (0, 1).

This proves the desired inequality.
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Most of the results obtained above deal with the upper bound for the total

variation distance of continuous-time Markov chains to their stationarity. In the

following, we give a lower bound on the total variation distance by assuming further

a limiting property on the discrete-time Markov chains, which is natural for cutoffs

on Fd.

Proposition 4.2. Let F = {(Xn, Kn, πn)}∞1 be a family of irreducible Markov

chains. For m,n ≥ 1, let xm,n ∈ Xn, Am,n ⊂ Xn and tn > 0, bn > 0 be positive

numbers satisfying tn →∞,
√

tn = O(bn), and bn = o(tn). Set

lim
m→∞

lim sup
n→∞

πn(Am,n) = ε, (4.1)

lim inf
m→∞

lim inf
n→∞

min
{
Kj

n(xm,n, Am,n) : (1− 2
m

)tn ≤ j ≤ (1− 1
m

)tn
}

= ε1, (4.2)

and

lim inf
m→∞

lim inf
n→∞

min
{
Kj

n(xm,n, Am,n) : tn − 2mbn ≤ j ≤ tn −mbn

}
= ε2. (4.3)

Then, we have

∀δ ∈ (0, 1), lim inf
n→∞

max
x∈Xn

‖Hx
n,(1−δ)tn − πn‖TV ≥ ε1 − ε

and

lim inf
c→−∞

lim inf
n→∞

max
x∈Xn

‖Hx
n,tn+cbn

− πn‖TV ≥ ε2 − ε.

Proof. Note that, by Lemma 4.1, one has

‖Hx
n,t − πn‖TV ≥ (a(j2, t)− a(j1 + 1, t)) min

{
Kj

n(x,A) : j1 ≤ j ≤ j2

}

−πn(A),

(4.4)

where a(m, t) = e−t
∑m

i=0
ti

i!
.
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For the first inequality, since tn →∞, by Lemma 2.5, one has, for c1 > 0, c2 > 0

lim
n→∞

a(c1tn, c2tn) =





1 if c1 > c2

0 if c1 < c2

.

Replacing t = (1 − 3
2m

)tn, j1 = b(1 − 2
m

)tnc, j2 = b(1 − 1
m

)tnc, x = xm,n and

A = Am,n in (4.4) implies that

lim inf
m→∞

lim inf
n→∞

max
x∈Xn

‖Hx
n,(1− 3

2m
)tn
− πn‖TV ≥ ε1 − ε.

The desired limit is then proved by the monotonicity of maxx ‖Hx
n,t − πn‖TV in t.

For the second inequality, note that, by Lemma 2.5, one may choose C > 0

such that

lim inf
n→∞

(
a(tn −mbn, btn − 3m

2
bnc)− a(tn − 2mbn,btn − 3m

2
bnc)

)

≥ Φ(Cm)− Φ(−Cm),

where Φ(t) = 1√
2π

∫ t

−∞ e−x2/2dx. Letting m → ∞ then proves the second identity.

Remark 4.1. By Proposition 1.10, it is equivalent in Proposition 4.2 if one replaces

tn with sn, where sn ∼ tn in (4.2) and |sn − tn| = O(bn) in (4.3).

Corollary 4.2. Let F = {(Xn, Kn, πn)}∞1 be a family of ergodic Markov chains

and, for n,m ≥ 1, xm,n ∈ Xn and Am,n ⊂ Xn. Assume that tn is a sequence of

positive numbers tending to infinity and ε = 0 in (4.1).

(1) If Fd presents a total variation cutoff with critical time tn and ε1 = 1 in

(4.2), then Fc presents a total variation cutoff with critical time tn.

(2) If Fd presents a (tn, bn) total variation cutoff and ε2 = 1 in (4.3), then Fc

presents a (tn, cn) total variation cutoff, where cn = max{bn,
√

tn}.
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Proof. Immediate from Proposition 4.1 and Proposition 4.2.

Example 4.1. Recall Example 2.3: For n ≥ 1, let (Xn, Kn, πn) be an irreducible

Markov chain, where Xn = Zan with an > 1, πn ≡ a−n
n and the Markov kernel is

given by

Kn(x, y) =





1
an

if y = s(x) + (0, ..., 0, i) for some i ∈ Zan

0 otherwise

,

where s(x) = (x2, x3, ..., xn, x1) for all x = (x1, ..., xn) ∈ Xn. It is clear that Fd

presents a (n, 1) total variation cutoff.

To apply Corollary 4.2, we choose, for m ≥ 1, n ≥ m, xm,n = 0 ∈ Xn and

Am,n = {(0, ..., 0, z1, ..., zn−m)|zi ∈ Zan ,∀1 ≤ i ≤ n−m} .

and set bn =
√

n. In the above setting, we have

lim
n→∞

πn(Am,n) = a−m
n ≤ 2−m → 0,

as m →∞, and

min
{
Kj

n(0, Am,n) : n− 2mbn ≤ j ≤ n−mbn

}
= 1 ∀n,m ≥ 1.

Hence, by Corollary 4.2, the family Fc presents a (n,
√

n) total variation cutoff.

Concerning the optimality of the window size
√

n, we claim first that

lim
n→∞

max
x∈Xn

‖Hx
n,n − 1‖TV =

1

2
.

By the first part of Lemma 4.1 and Lemma 2.5, one has

lim sup
n→∞

max
x∈Xn

‖Hx
n,n − 1‖TV ≤ 1

2
.
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For the lower bound, let Am,n be the set defined above. Then the second part of

Lemma 4.1 implies

max
x∈Xn

‖Hx
n,t − 1‖TV ≥ a(n−m, t)− 2−m. (4.5)

Hence we have

lim inf
n→∞

max
x∈Xn

‖Hx
n,n − 1‖TV ≥ 1

2
− 2−m, ∀m ≥ 1.

Letting m →∞ then derives the desired identity.

Now let cn be a positive number satisfying cn ≥ 1 and cn = o(
√

n). By (4.5),

we get

lim inf
n→∞

max
x∈Xn

‖Hx
n,n+ccn

− 1‖TV ≥ 1

2
− 2−m, ∀m ≥ 1, c > 0.

Letting m ≥ 2 implies that Fc can’t have a (n, cn) total variation cutoff. By

Corollary 1.6, the family Fc presents an optimal (n,
√

n) total variation cutoff.

4.2 Peres’ conjecture and Aldous’ counterexample

At an ARCC workshop held by AIM in Palo Alto, December 2004, Peres for-

mulated a conjecture as follows. Consider a family of finite Markov chains F =

{(Xn, Kn, πn)}∞1 with `1(πn)-mixing time T1(Kn, ε) and spectral gap λn of Kn. The

conjecture is: the family F has a `1-cut-off if and only if

λ−1
n = o(T1(Kn, 1)). (4.6)

As we mentioned in Chapter 2, if the distance is measured with the `p-norm for

1 < p < ∞ and the transition matrix is normal, then this conjecture is true for

continuous-time cases which is proved in Theorem 2.4. For p = 1, we know from

Remark 2.7 and Lemma 2.4 that if F has a total variation cutoff, then (4.6) holds.
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At the workshop mentioned above, Aldous presented a counterexample to Peres’

conjecture. In the following, we build on Aldous’ idea and describe a series of

examples satisfying (4.6) but failing to present a `1-cut-off both in discrete-time

and continuous-time cases. Note that there is no known counterexample for Peres’

conjecture in the case of random walks on finite groups.

Consider a family F = {(Xn, Kn, πn)}∞1 of finite Markov chains, where

Xn = {0, 1, x1, ..., xn, y1, ..., y2n, z1, ..., z3n}, (4.7)

and the Markov kernel is given by

Kn(zi, zi+1) =
pn,1 + pn,2

2
, Kn(zi+1, zi) =

qn,1 + qn,2

2
∀1 ≤ i < 3n,

Kn(z1, z1) = Kn(0, z3n) =
qn,1 + qn,2

2
, Kn(z3n, 0) =

pn,1 + pn,2

2

Kn(xi, xi+1) = pn,1, Kn(xi+1, xi) = qn,1 ∀1 ≤ i < n,

Kn(0, x1) =
pn,1

2
, Kn(x1, 0) = qn,1,

Kn(xn, 1) = pn,1, Kn(1, xn) =
qn,1

2
,

Kn(yi, yi+1) = pn,2, Kn(yi+1, yi) = qn,2 ∀1 ≤ i < 2n,

Kn(0, y1) =
pn,2

2
, Kn(y1, 0) = qn,2, Kn(y2n, 1) = pn,2,

Kn(1, y2n) =
qn,2

2
, Kn(1, 1) =

pn,1 + pn,2

2
,

(4.8)

with 0 < pn,j < 1 and pn,j + qn,j = 1 for j ∈ {1, 2} and n > 0. Clearly, Kn is

ergodic. Assume that

(
pn,1

qn,1

)n+1

=

(
pn,2

qn,2

)2n+1

, ∀n ≥ 1. (4.9)
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Then the stationary distribution πn is given by

πn(zi) = Z−1

(
pn,1 + pn,2

qn,1 + qn,2

)i−1

∀1 ≤ i ≤ 3n,

πn(0) = Z−1

(
pn,1 + pn,2

qn,1 + qn,2

)3n

,

πn(xi) =
1

2

(
pn,1

qn,1

)i

πn(0), πn(yj) =
1

2

(
pn,2

qn,2

)j

πn(0) ∀i, j ≥ 1

πn(1) =

(
pn,1

qn,1

)n+1

πn(0) =

(
pn,2

qn,2

)2n+1

πn(0),

(4.10)

where Z is a normalizing constant for πn. In the above setting, one can easily check

that Kn is reversible and pn,1 > pn,2 if pn,1 > 1/2 and pn,1 < pn,2 if pn,1 < 1/2.

Here, we restrict ourselves to the case pn,1 > 1/2 for all n ≥ 1.

From Proposition 4.3 and Proposition 4.4(in the following), it is clear that F is

the desired family for a counterexample of Peres’ conjecture if one assumes (4.11).

Proposition 4.3. Let F = {(Xn, Kn, πn)}∞1 be a family of finite Markov chains

satisfying (4.7), (4.8) and (4.10). Assume that

lim inf
n→∞

pn
n,2 > 0. (4.11)

Then there is no total variation cutoff for Fc and Fd.

The following remark says that the sequence of total variation mixing time for

F is of order at least n.

Remark 4.2. Clearly, one has that for 0 ≤ j ≤ 4n,

max
x∈Xn

‖Kj
n,x − πn‖TV ≥ πn(1)−Kj

n(z1, 1) = πn(1),

and for t ≥ 0,

max
x∈Xn

‖Hx
n,t − πn‖TV ≥ πn(1)−Hn,t(z1, 1) ≥ πn(1)− e−t

∞∑
j=4n+1

tj

j!
.
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Under the assumption of (4.11), the above implies

lim
n→∞

max
x∈Xn

‖K4n
n,x − πn‖TV = 1

and, by Lemma 2.5,

∀c ∈ (0, 4), lim
n→∞

max
x∈Xn

‖Hx
n,cn − πn‖TV = 1.

Hence, we may choose, for ε ∈ (0, 1), an integer N(ε) such that

∀n ≥ N(ε), T d
TV(Kn, ε) ≥ n, T c

TV(Kn, ε) ≥ n.

Proposition 4.4. Let F = {(Xn, Kn, πn)}∞1 be as in Proposition 4.3 and, for

n ≥ 1, λn and µn be the spectral gap and the second largest singular value of Kn.

Assume that

inf
n≥1

pn,2 ≥ 2

3
. (4.12)

Then λn and 1− µ2
n are bounded from below by a positive number.

Remark 4.3. It is worth noting that, by Lemma 2.4, the above two propositions

are also sufficient for a counterexample of the following statement

b−1
n = o

(
T d

TV(Kn, ε)
) ⇒ Fd presents a total variation cutoff,

where bn = min{− log µn, 1}.

Proof of Proposition 4.3. By considering the transition path

n−i+1︷ ︸︸ ︷
xi, xi+1, ..., xn,

3n+i+1︷ ︸︸ ︷
1, 1, ..., 1,

one has

K4n+1
n (xi, 1) ≥ pn−i+1

n,1

(
pn,1 + pn,2

2

)3n+i

≥ p4n+1
n,2 .
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A similar argument by considering the following paths

n+1︷ ︸︸ ︷
0, x1, ..., xn,

3n+1︷ ︸︸ ︷
1, ..., 1,

4n+2︷ ︸︸ ︷
1, ..., 1,

3n−k+1︷ ︸︸ ︷
zk, .., z3n, 0,

n︷ ︸︸ ︷
x1, ..., xn,

k︷ ︸︸ ︷
1, ..., 1,

2n−j+1︷ ︸︸ ︷
yj, yj+1, ..., y2n,

2n+j+1︷ ︸︸ ︷
1, 1, ..., 1,

3n︷ ︸︸ ︷
z1, ..., z3n, 0,

2n︷ ︸︸ ︷
y1, ..., y2n,

we have

min
x∈Xn

{K4n+1
n (x, 1)} ≥ p4n+1

n,2

2
, K5n

n (z1, 1) ≤ 1− p5n
n,2

2
,

which implies

max
x∈Xn

‖K4n+1
n,x − πn‖TV ≤ 1−min

{
πn(1),

p4n+1
n,2

2

}
(4.13)

and

max
x∈Xn

‖K5n
n,x − πn‖TV ≥ πn(1)− 1 +

p5n
n,2

2
. (4.14)

Let C = lim infn→∞ pn
n,2 ∈ (0, 1]. For discrete-time cases, it suffices to prove

that

lim sup
n→∞

max
x∈Xn

‖K4n+1
n,x − πn‖TV < 1, lim inf

n→∞
max
x∈Xn

‖K5n
n,x − πn‖TV > 0.

By (4.11), one has

lim
n→∞

pn,2 = 1, lim
n→∞

πn(1) = 1. (4.15)

Then, in addition to the facts in (4.13) and (4.14), we have

lim sup
n→∞

max
x∈Xn

‖K4n+1
n,x − πn‖TV ≤ 1− C4

2
< 1,

and

lim inf
n→∞

max
x∈Xn

‖K5n
n,x − πn‖TV ≥ C5 > 0.

This proves that Fd does not present a total variation cutoff.
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For continuous-time cases, by applying Proposition 4.1(1) with tn = 10(4n +

1)/9 and c = 9/10, one has

lim sup
n→∞

max
x∈Xn

‖Hx
n,9n/2 − πn‖TV < 1.

To prove that Fc does not present a total variation cutoff, it remains to show that

lim inf
n→∞

max
x∈Xn

‖Hx
n,cn − πn‖TV > 0,

for some c > 9/2. By considering the following paths

j+1︷ ︸︸ ︷
z1, ..., zj+1 for 0 ≤ j ≤ 3n− 1,

3n+1︷ ︸︸ ︷
z1, ..., z3n, 0 for j = 3n,

3n︷ ︸︸ ︷
z1, ..., z3n, 0,

j−3n︷ ︸︸ ︷
y1, ..., yj−3n for 3n + 1 ≤ j ≤ 5n,

we get

Kj
n(z1, 1) ≤ 1− C5

2
∀0 ≤ j ≤ 5n.

Then, applying Proposition 4.2 with xn,m ≡ z1, An,m = Xn \ {1}, tn = 5n and

δ = 1/20 implies

lim inf
n→∞

max
x∈Xn

‖Hx
n,19n/4 − πn‖TV ≥ C5

2
> 0.

Proof of Proposition 4.4. Here we use Cheeger’s inequality to prove this proposi-

tion. To state that inequality, we need the following setting. Let (X , K, π) be an

irreducible Markov chain. For any set A ⊂ X , we define

∂A = {(x, y) ∈ X × X|x ∈ A, y ∈ Ac or y ∈ A, x ∈ Ac},

and

Q(∂A) =
1

2

∑
x∈A,y∈Ac

[π(x)K(x, y) + π(y)K(y, x)] =
∑

x∈A,y∈Ac

π(x)K(x, y).
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An isoperimetric constant, or the conductance, of the chain (X , K, π) is given by

I = I(K, π) = min
A⊂X :

π(A)≤1/2

{
Q(∂A)

π(A)

}
.

Cheeger’s inequality. Let (X , K, π) be a finite Markov chain and λ and I be

the spectral gap and the isoperimetric constant of K. Then, one has

I2

8
≤ λ ≤ I.

Here we will use the first inequality in the above to give a lower bound on λn

and 1−µ2
n. First, assume that pn,1 > 1/2 and set rn = pn,2/qn,2. Then rn > 1 and,

by (4.9),

rn = min

{
pn,2

qn,2

,
pn,1

qn,1

,
pn,1 + pn,2

qn,1 + qn,2

}
.

By the formula of the stationary distribution πn in (4.10), a bunch of computations

implies that for 1 ≤ j ≤ 3n,

j∑
i=1

πn(zi) ≤ rn

rn − 1
πn(zj),

3n∑
i=1

πn(zi) + πn(0) ≤ rn

rn − 1
πn(0),

and for 1 ≤ j ≤ n, 1 ≤ k ≤ 2n,

3n∑
i=1

πn(zi) + πn(0) +

j∑
i=1

πn(xi) +
k∑

i=1

πn(yi)

≤πn(xj)

2

(
rn

rn − 1

(
qn,1

pn,1

)j

+

j−1∑
i=0

(
qn,1

pn,1

)i
)

+
πn(yk)

2

(
rn

rn − 1

(
qn,2

pn,2

)k

+
k−1∑
i=0

(
qn,2

pn,1

)i
)

≤ rn

rn − 1
max{πn(xj), πn(yk)}.

Now assume further that rn ≥ 2 or equivalently pn,2 ≥ 2/3, which implies

πn(1) > 1/2. Let A ⊂ Xn with πn(A) ≤ 1/2 and x ∈ A be such that πn(x) =
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max{πn(z)|z ∈ A}. Since 1 /∈ A, there is always a vertex y connecting to x such

that πn(y) > πn(x). By this observation and the above computation, one has

Q(∂A) ≥ πn(x)Kn(x, y) ≥ 2

3
πn(x) ≥ 1

3
πn(A),

and then, In = I(Kn, πn) ≥ 1/3. Hence, by Cheeger’s inequality, we get

λn ≥ I2
n

8
≥ 1

72
.

For the lower bound of 1 − µ2
n, note that this quantity is the spectral gap of

KK∗ = K2. Let A ⊂ Xn be such that πn(A) ≤ 1/2 and x, as before, the element

in A maximizing πn(z) for z ∈ A. Note that one can always choose a one-step

neighbor y 6= A of x under the transition kernel K2
n such that πn(y) > πn(x). By

this observation, a similar computation as before derives Q(∂A) ≥ 2
9
πn(A). Then

the isoperimetric constant satisfies I(K2
n, πn) ≥ 2/9 and

1− µ2
n ≥

I2
n

8
≥ 1

182
.



Chapter 5

Randomized riffle shuffle
In this chapter we consider some generalizations of the standard riffle shuffle of

Gilbert, Shannon and Reeds (GSR-shuffle for short). The GSR-shuffle models

the way typical card players shuffle cards. First, the deck is cut into two packs

according to an (n, 1
2
)-binomial random variable where n is the number of cards

in the deck. Next, cards are dropped one by one from one or the other pack with

probability proportional to the relative sizes of the packs. Hence, if the left pack

contains a cards and the right pack b cards, the next card drops from the left pack

with probability a/(a + b).

The history of this model is described in [9, Chap. 4D] where the reader will

also find other equivalent definitions and a discussion of how the model relates to

real life card shuffling. The survey [12] gives pointers to the many developments

that arose from the study of the GSR model.

Early results concerning the mixing time (i.e., how many shuffles are needed

to mix up the deck) are described in [1, 2, 9]. In particular, using ideas of Reeds,

Aldous proved in [1] that, asymptotically as the number n of cards tends to infinity,

it takes 3
2
log2 n shuffles to mix up the deck if convergence is measured in total

variation (we use loga to denote base a logarithms and log for natural, i.e., base e,

logarithms).

In [6], Bayer and Diaconis obtained an exact useful formula for the probability

distribution describing the state of the deck after k GSR-shuffles. Namely, suppose

that cards are numbered 1 through n and that we start with the deck in order.

Let σ denote a given arrangement of the cards and let Qk
n(σ) be the probability

181
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that the deck is in state σ after k GSR-shuffles. Then

Qk
n(σ) = 2−kn

(
n + 2k − r

n

)
(5.1)

where r is the number of rising sequences in σ. Given an arrangement of the

deck, a rising sequence is a maximal subset of cards consisting of successive face

values displayed in order. For instance, the arrangement 3, 1, 4, 5, 7, 2, 8, 9, 6 has

rising sequences (1, 2), (3, 4, 5, 6), (7, 8, 9). See [2, 6] for details. Using this formula,

Bayer and Diaconis gave a very sharp version of the fact that the total variation

mixing time is 3
2
log2 n for the GSR-shuffle.

Theorem 5.1 (Bayer and Diaconis [6]). Fix c ∈ (−∞, +∞). For a deck

of n cards, the total variation distance between the uniform distribution and the

distribution of a deck after k = 3
2
log2 n + c GSR-shuffles is

1√
2π

∫ 2−c/4
√

3

−2−c/4
√

3

e−t2/2dt + Oc(n
−1/4).

This result illustrates beautifully the so-called cutoff phenomenon discussed

in [1, 2, 3, 9, 11, 29, 33]. Namely, there is a sharp transition in convergence to

stationarity. Indeed, the integral above becomes small very fast as c tends to +∞
and gets close to 1 even faster as c tends to −∞.

The aim of this chapter is to illustrate further the notion of cutoff using some

generalizations of the GSR-shuffle. Along this way we will observe several phenom-

ena that have not been, to the best of our knowledge, noticed before. For a deck of

n cards and a given integer m, a m-riffle shuffle is defined as follows. Cut the deck

into m packs whose sizes (a1, . . . , am) form a multinomial random vector. In other

words, the probability of having packs of sizes a1, . . . , am is m−n n!
a1!...am!

. Then form

a new deck by dropping cards one by one from these packs with probability propor-

tional to the relative sizes of the packs. Thus, if the packs have sizes (b1, . . . , bm)
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then the next card will drop from pack i with probability bi/(b1 + · · · + bm). We

will refer to an m-riffle shuffle simply as an m-shuffle in what follows. Obviously

the GSR-shuffle is the same as a 2-shuffle.

These shuffles were considered in [6] where the following two lemmas are proved.

Lemma 5.1. In distribution, an a-shuffle followed by an independent b-shuffle

equals an ab-shuffle.

Lemma 5.2. For a deck of n cards in order, the probability that after an m-shuffle

the deck is in state σ depends only of the number r = r(σ) of rising sequences of

σ and equals Qn,m(r) where

Qn,m(r) = m−n

(
n + m− r

n

)
.

For instance, formula (5.1) for the distribution of the deck after k GSR-shuffles

follows from a direct application of these two lemmas since k consecutive indepen-

dent 2-shuffles equal a 2k-shuffle in distribution. These lemmas will play a crucial

role in this paper as well.

The model we consider is as follows. Let p = (p(1), p(2), . . . ) be the probability

distribution of an integer valued random variable X, i.e.,

P (X = k) = p(k), k = 1, 2, . . . .

A p-shuffle proceeds by picking an integer m according to p and performing an

m-shuffle. In other words, the distribution of a p-shuffle is the p-mixture of the

m-shuffle distributions. Note that Casinos use multiple decks for some games and

that these are shuffled in various ways (including by shuffling machines). The

model above (for some appropriate p) is not entirely unrealistic in this context.
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Because of Lemma 5.2, the probability that starting from a deck in order we

obtain a deck in state σ depends only on the number of rising sequences in σ and

is given by

Qn,p(r) =
∞∑
1

p(m)Qn,m(r) = E(Qn,X(r)). (5.2)

Abusing notation, if σ denotes a deck arrangement of n cards with r rising se-

quences, we write

Qn,p(σ) = Qn,p(r).

Very generally, if Q is a probability measure on deck arrangements (hence describes

a shuffling method), we denote by Qk the distribution of the deck after k such

shuffles, starting from a deck in order. For instance, Lemma 5.1 yields

Qk
n,m = Qn,mk .

Let Un be the uniform distribution on the set of deck arrangements of n cards.

Although this will not really play a role in this work, recall that deck arrangements

can be viewed as elements of the symmetric group Sn in such a way that Qk, the

distribution after k successive Q-shuffles, is the k-fold convolution of Q by itself.

See, e.g., [1, 6, 9, 30]. Each of the measure Qn,p generates a Markov chain on deck

arrangements (i.e., on the symmetric group Sn) whose stationary distribution is

Un. These chains are ergodic if p is not concentrated at 1. They are not reversible.

Note that [13] studies a similar but different model based on top m to random

shuffles. See [13, Section 2].

The goal of this paper is to study the convergence of Qk
n,p to the uniform distri-

bution in total variation as k tends to infinity and, more precisely, the occurrence

of a total variation cutoff for families of shuffles {(Sn, Qn,pn , Un)}∞1 as the number

n of cards grows to infinity and pn is a fixed sequence of probability measures on
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the integers. To illustrate this, we state the simplest of our results.

Theorem 5.2. Let p be a probability on the integers such that

µ =
∞∑
1

p(k) log k < ∞. (5.3)

Fix ε ∈ (0, 1). Then, for any kn > (1 + ε) 3
2µ

log n, we have

lim
n→∞

‖Qkn
n,p − Un‖TV = 0

whereas, for kn < (1− ε) 3
2µ

log n,

lim
n→∞

‖Qkn
n,p − Un‖TV = 1.

In words, this theorem establishes a total variation cutoff at time 3
2µ

log n (see

the definition of cutoff in Section 5.1 below). If p is concentrated at 2, i.e., Qn,p

represents a GSR-shuffle, then µ = log 2 and 3
2µ

log n = 3
2
log2 n in accordance with

the results of Aldous [1] and Bayer-Diaconis [6] (e.g., Theorem 5.1).

The results we obtain are more general and more precise than Theorem 5.2 in

several directions. First, we will consider the case where the probability distri-

bution p = pn depends on the size n of the deck. This is significant because we

will not impose that the sequence pn converges as n tends to infinity. Second, and

this may be a little surprising at first, (5.3) is not necessary for the existence of

a cutoff and we will give sufficient conditions that are weaker than (5.3). Third,

under stronger moment assumptions, we will describe the optimal window size of

the cutoff. For instance, Theorem 1 says that, for the GSR-shuffle, the window size

is of order 1 with a normal shape. This result generalizes easily to any m-shuffle

where m is a fixed integer greater or equal to 2. See Remark 5.1 and Theorem 5.10

below. Suppose now that instead of the GSR-shuffle we consider the p-shuffle with

p(2) = p(3) = 1/2. In this case, µ = log
√

6. Theorem 5.2 gives a total variation
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cutoff at time 3
2
log√6 n. We will show that this cutoff has optimal window size of

order
√

log n. Thus picking at random between 2 and 3 shuffles changes the window

size significantly when compared to either pure 2-shuffles or pure 3-shuffles.

We close this introduction with a remark concerning the spectrum of these gen-

eralized riffle shuffles and how it relates to the window of the cutoff. As Lemma 5.1

makes clear, all riffle shuffles commute. Although riffle shuffles are not reversible,

they are all diagonalizable with real positive eigenvalues and their spectra can be

computed explicitly (this is another algebraic “miracle” attached to these shuf-

fles!). See [6, 7, 8]. In particular, the second largest eigenvalue of an m-shuffle

is 1/m. Thus, the second largest eigenvalue of a p-shuffle is β =
∑

k−1p(k). By

definition, the relaxation time of a finite Markov chain is the inverse of the spectral

gap (1 − β)−1 and one might expect that, quite generally, for families of Markov

chains presenting a cutoff, this quantity would give a good control of the window

of the cutoff. The generalized riffle shuffles studied here provided interesting (al-

beit non-reversible) counterexamples: Take, for instance, the case discussed earlier

where p(2) = p(3) = 1/2. Then β = 5
12

and (1 − β)−1 = 12
7
, independently of the

number n of cards. However, as mentioned above, the optimal window size of the

cutoff for this family is
√

log n. For generalized riffle shuffles, the window size of

the cutoff and the relaxation time appear to be disconnected.

5.1 The cutoff phenomenon

Given two probability distributions µ, ν on a set S, the total variation distance

between µ and ν is defined by

‖µ− ν‖TV = sup
A⊂S

{µ(A)− ν(A)}.
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The next definition introduces the notion of cutoff for a family of ergodic

Markov chains.

Definition 5.1. Let {(Sn, Kn, πn)}∞1 be a family of ergodic Markov chains where

Sn denotes the state space, Kn the Markov kernel, and πn the stationary distribu-

tion. This family satisfies a total variation cutoff with critical time tn > 0 if, for

any fixed ε ∈ (0, 1),

lim
n→∞

sup
x∈Sn

‖Kkn
n (x, ·)− πn‖TV =





0 if kn > (1 + ε)tn

1 if kn < (1− ε)tn.

This definition was introduced in [2]. A more thorough discussion is in [11]

where many examples are described. Note that this definition does not require

that the critical time tn tends to infinity (in [11], the corresponding definition

requires that tn tends to infinity). The positive times tn can be arbitrary and thus

can have several limit points in [0,∞]. Examples of families having a cutoff with

a bounded critical time sequence will be given below. Theorem 5.2 above states

that, under assumption (5.3), a p-shuffle has a total variation cutoff with critical

time tn = 3
2µ

log n.

Informally, a family has a cutoff if convergence to stationarity occurs in a time

interval of size o(tn) around the critical time tn. The size of this time interval can

be thought of as the “window” of the cutoff. The next definition carefully defines

the notion of the window size of a cutoff.

Definition 5.2. Let {(Sn, Kn, πn)}∞1 be a family of ergodic Markov chains as in

Definition 5.1. We say that this family presents a (tn, bn) total variation cutoff if

the following conditions are satisfied:

1. For all n = 1, 2, . . . , we have tn > 0 and lim
n→∞

bn/tn = 0.
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2. For c ∈ R− {0} and n ≥ 1, set

k = k(n, c) =





dtn + cbne if c > 0

btn + cbnc if c < 0

.

The functions f, f defined by

f(c) = lim sup
n→∞

sup
x∈Sn

‖Kk
n(x, ·)− πn‖TV for c 6= 0

and

f(c) = lim inf
n→∞

sup
x∈Sn

‖Kk
n(x, ·)− πn‖TV for c 6= 0

satisfy

lim
c→∞

f(c) = 0, lim
c→−∞

f(c) = 1.

Definition 5.3. Referring to Definition 5.2, a (tn, bn) total variation cutoff is said

to be optimal if the functions f, f satisfy f(c) > 0 and f(−c) < 1 for all c > 0.

Note that this definition is the same as the strong optimality given in Definition

1.6. As mentioned in Remark 1.8, any family having a (tn, bn) cutoff (Definition

5.2) has a cutoff with critical time tn (Definition 5.1). The sequence (bn)∞1 in

Definition 5.2 describes an upper bound on the optimal window size of the cutoff.

For instance the main result of Bayer and Diaconis [6], i.e., Theorem 5.1 above,

shows that the GSR-shuffle family presents a (tn, bn) total variation cutoff with

tn = 3
2
log2 n and bn = 1. Theorem 5.1 actually determines exactly “the shape”

of the cutoff, that is, the two functions f, f of Definition 5.2. Namely, for the

GSR-shuffle family and tn = 3
2
log2 n, bn = 1, we have

f(c) = f(c) =
1√
2π

∫ 2−c/4
√

3

−2−c/4
√

3

e−t2/2dt.

This shows that this cut-off is optimal (Definition 5.3).
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The optimality introduced in Definition 5.3 is very strong. If a family presents

an optimal (tn, bn) total variation cut-off and also a (sn, cn) total variation cut-off,

then tn ∼ sn and bn = O(cn). In words, if (tn, bn) is an optimal cut-off then there

are no cut-offs with a window significantly smaller than bn. For a more detailed

discussion of the cutoff phenomena and their optimality, see Chapter 1 and Chapter

2.

5.2 Cutoffs for generalized riffle shuffles

In this section we state our main results and illustrate them with simple examples.

They describe total variation cutoffs for generalized riffle shuffles, that is, for the

p-shuffles defined in the introduction. More precisely, for each n (n is the number

of cards), fix a probability distribution pn = (pn(1), pn(2), . . . ) on the integers and

consider the family of Markov chains (i.e., shuffles)

{(Sn, Qn,pn , Un)}∞1 .

Here Sn is the set of all deck arrangements (i.e., the symmetric group) and Un is

the uniform measure on Sn, i.e., Un(A) = |A|
n!

where |A| is the number of elements

in the set A ⊂ Sn. For any x ∈ [0,∞], set

Ψ(x) =
1√
2π

∫ x/4
√

3

−x/4
√

3

e−t2/2dt.

We start with the simple case where the probability distributions pn is concen-

trated on exactly one integer mn and use the notation Qn,mn for an mn-shuffle.

Theorem 5.3. Let (mn)∞1 be any sequence of integers all greater than 1 and set

µn = log mn, tn =
3 log n

2µn

.

Then the family {(Sn, Qn,mn , Un)}∞1 presents a (tn, µ−1
n ) total variation cutoff.
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Remark 5.1. When mn = m is constant Theorem 5.3 gives a (3
2
logm n, 1) total

variation cutoff. In this case, for k = 3
2
logm n + c, one has the more precise result

that ‖Qk
n,m − Un‖TV = Ψ(m−c) + Oc(n

−1/4). In particular, for m = 2, this is the

Theorem of Bayer and Diaconis stated as Theorem 1 in the introduction.

Next we give a more explicit version of Theorem 5.3 which requires some ad-

ditional notation. For any real t > 0, set

{t} =





1/2 if 0 < t < 1/2

k if k − 1/2 ≤ t < k + 1/2 for some k = 1, 2, . . . ,

(this is a sort of “integer part” of t) and

d(t) =





1/2 if 0 < t < 1/2

t− {t} if 1/2 ≤ t < ∞.

Theorem 5.4. Let (mn)∞1 be any sequence of integers all greater than 1. Consider

the family of shuffles {(Sn, Qn,mn , Un)}∞1 and let µn, tn be as in Theorem 5.3.

(A) Assume that lim
n→∞

mn = ∞, that is, lim
n→∞

µn = ∞. Then, we have:

(1) The family {(Sn, Qn,mn , Un)}∞1 always has a ({tn}, bn) cutoff for any

positive bn = o(1), that is,

lim
n→∞

inf
k<{tn}

‖Qk
n,mn

− Un‖TV = 1, lim
n→∞

sup
k>{tn}

‖Qk
n,mn

− Un‖TV = 0.

(2) If lim
n→∞

|d(tn)|µn = ∞ then there is a (tn, 0) cutoff, that is,

lim
n→∞

inf
k≤tn

‖Qk
n,mn

− Un‖TV = 1, lim
n→∞

sup
k≥tn

‖Qk
n,mn

− Un‖TV = 0.

(3) If lim inf
n→∞

|d(tn)|µn < ∞ then there exists a sequence (ni)
∞
1 tending to

infinity such that

0 < lim inf
i→∞

‖Q{tni}
ni,mni

− Uni
‖TV ≤ lim sup

i→∞
‖Q{tni}

ni,mni
− Uni

‖TV < 1.

In particular, there is no (tn, 0) total variation cutoff.
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(4) If lim
n→∞

d(tn)µn = L ∈ [−∞,∞] exists then

lim
n→∞

‖Qb{tn}c
n,mn

− Un‖TV = Ψ(eL). (5.4)

(B) Assume that (mn)∞1 is bounded. Then tn tends to infinity, there is a (tn, 1)

total variation cutoff and, for any fixed k ∈ Z, we have

0 < lim inf
n→∞

‖Q{tn}+k
n,mn

− Un‖TV ≤ lim sup
n→∞

‖Q{tn}+k
n,mn

− Un‖TV < 1.

In particular, the (tn, 1) cutoff is optimal.

Example 5.1. To illustrate this result, consider the case where mn = bnαc for some

fixed α > 0. In this case, we have

µn ∼ α log n, tn =
3 log n

2µn

∼ 3

2α
as n tends to infinity.

(a) Assume that 3
2α
∈ (k, k + 1) for some k = 0, 1, 2, . . . . Then |d(tn)|µn → ∞

and

lim
n→∞

‖Qk
n,mn

− Un‖TV = 1, lim
n→∞

‖Qk+1
n,mn

− Un‖TV = 0.

(b) Assume that 3
2α

= k for some integer k = 1, 2, . . . . Then |d(tn)| = O(n−α).

Hence |d(tn)|µn → 0 as n tends to infinity. Theorem 5.4(1) shows that we

have a (k, bn) cutoff where bn is an arbitrary sequence of positive numbers

tending to 0. That means that

lim
n→∞

‖Qk−1
n,mn

− Un‖TV = 1, lim
n→∞

‖Qk+1
n,mn

− Un‖TV = 0.

Moreover Theorem 5.4(4) gives limn→∞ ‖Qk
n,mn

− Un‖TV = Ψ(1).

Example 5.2. Consider the case where mn = b(log n)αc, α > 0. Then

µn ∼ α log log n, tn ∼ 3 log n

2α log log n
as n tends to infinity.

Note that tn tends to infinity and the window size µ−1
n goes to zero.
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We now state results concerning general p-shuffles. We will need the following

notation. For each n, let pn be a probability distribution on the integers. Let Xn

be a random variable with distribution pn. Assume that pn is not supported on a

single integer and set

µn = E(log Xn), σ2
n = Var(log Xn), ξn =

log Xn − µn

σn

.

Consider the following conditions which may or may not be satisfied by pn:

lim
n→∞

log n

µn

= ∞. (5.5)

∀ ε > 0, lim
n→∞

E
(
ξ2
n1{ξ2

n>εµ−1
n log n}

)
= 0. (5.6)

Condition (5.6) should be understood as a Lindeberg type condition. We will prove

in Lemma 5.9 that (5.6) implies (5.5).

Theorem 5.5. Referring to the notation introduced above, assume that

0 < µn, σn < ∞

and set

tn =
3 log n

2µn

, bn =
1

µn

max

{
1,

√
σ2

n log n

µn

}
.

Assume that the sequence (pn) satisfies (5.6). Then the family {(Sn, Qn,pn , Un)}∞1
presents a (tn, bn) total variation cutoff. Moreover, if the window size bn is bounded

from below by a positive real number, then the (tn, bn) total variation cut-off is

optimal.

Example 5.3. Assume pn = p is independent of n and

µ =
∞∑
1

p(k) log k < ∞, σ2 =
∞∑
1

|µ− log k|2p(k) < ∞.
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Then condition (5.6) holds and

tn =
3

2µ
log n, bn ≈

√
log n

where bn ≈
√

log n means that the ratio bn/ log n is bounded above and below by

positive constants. Thus Theorem 5.5 yields an optimal ( 3
2µ

log n,
√

log n) total

variation cutoff.

Example 5.4. Assume that pn is concentrated equally on two integers mn < m′
n

and write m′
n = mnk2

n. Thus pn(mn) = pn(mnk2
n) = 1/2 and

µn = log mnkn, σn = log kn.

In this case, Condition (5.6) is equivalent to (5.5), that is

µn = log(mnkn) = o(log n).

Assuming that (5.5) holds true, Theorem 5.5 yields a total variation cutoff at time

tn =
3 log n

2 log mnkn

with window size

bn =
1

log mnkn

max

{
1,

√
(log kn)2 log n

log mnkn

}
.

For instance, assume that m′
n = mn + 1 with mn tending to infinity. Then (5.5)

becomes log mn = o(log n) and we have

bn =
1

log mn

max

{
1,

(log n)1/2

mn(log mn)1/2

}
.

For instance, take mn ≈ (log n)α with α ∈ (0,∞). Then

tn ∼ 3 log n

2α log log n
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and

bn ≈





(log log n)−1 if α ∈ [1/2,∞)

(log n)1/2−α(log log n)−3/2 if α ∈ (0, 1/2).

In particular, bn = o(1) when α ≥ 1/2 but tends to infinity when α ∈ (0, 1/2).

Compare with Example 5.2 above.

Regarding Theorem 5.5, one might want to remove the hypothesis of existence

of a second moment concerning the random variables log Xn. It turns out that it

is indeed possible but at the price of losing control of the window of the cutoff.

What may be more surprising is that one can also obtain results without assuming

that the first moment µn is finite.

Theorem 5.6. Referring to the notation introduced above, assume that µn > 0

(including possibly µn = ∞). Assume further that there exists a sequence an

tending to infinity and satisfying

an = O(log n), lim
n→∞

(log n)EZ2
n

a2
nEYn

= 0, lim
n→∞

log n

EYn

= ∞, (5.7)

where Yn = Zn = log Xn if log Xn ≤ an, and Yn = 0, Zn = an if log Xn > an. Then

the family {(Sn, Qn,pn , Un)}∞1 presents a total variation cutoff with critical time

tn =
3 log n

2EYn

.

Remark 5.2. In Theorem 5.6, if (5.7) holds for some sequence (an) then it also

holds for any sequence (dan) with d > 0. Moreover, for all d > 0,

E
(
(log Xn)1{log Xn≤dan}

) ∼ EYn.

This is proved in Lemma 5.10 below.

Example 5.5. Assume pn(beic) = c−1
n i−2 for all 1 ≤ i ≤ blog nc, where cn =

1 + 2−2 + 3−2 + · · · + (blog nc)−2. Note that cn → c = π2/6 as n → ∞. In this
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case, µn ∼ c−1 log log n, σ2
n ∼ c−1 log n and for ε > 0

E
[
ξ2
n1{ξ2

n<εµ−1
n log n}

]
∼

√
ε

log log n
.

Hence the Lindeberg type condition (5.6) does not hold and Theorem 5.5 does not

apply. However, if we consider an = log n and try to apply Theorem 5.6, we have

EYn = µn ∼ c−1 log log n and EZ2
n ∼ c−1 log n. This implies that (5.7) holds and

yields a total variation cutoff with critical time π2 log n
4 log log n

.

The untruncated version of this example is pn(beic) = p(beic) = c−1i−2, i =

1, 2, . . . and c = π2/6. In this case, µn = µ = ∞. Theorem 5.6 applies with

an = log n and yields a total variation cutoff with critical time π2 log n
4 log log n

.

We end this section with a result which is a simple corollary of Theorem 5.6

and readily implies Theorem 5.2.

Theorem 5.7. Let Xn, pn, µn be as above. Assume that

µn = E(log Xn) = o(log n) (5.8)

and that, for any fixed η > 0,

E[(log Xn)1{log Xn>η log n}] = oη(µn). (5.9)

Then the family {(Sn, Qn,pn , Un)}∞0 has a total variation cutoff at time tn = 3 log n
2µn

.

Example 5.6. Suppose pn = p and 0 < µn = µ < ∞ as in Theorem 5.2. Then

condition (5.8)-(5.9) are obviously satisfied. Thus Theorem 5.2 follows immediately

from Theorem 5.7 as mentioned above.

Remark 5.3. Condition (5.9) holds true if Xn satisfies the (logarithmic) moment

condition that there exists ε > 0 such that

E([log Xn]1+ε)

(log n)ε
= o(µn).
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5.3 An application: Continuous-time card shuffling

In this section, we consider the continuous-time version of the previous card shuf-

fling models where the waiting times between two successive shuffles are inde-

pendent exponential(1) random variables. Thus, the distribution of card arrange-

ments at time t starting from the deck in order is given by the probability measure

Hn,t = e−t(I−Qn,pn ) defined by

Hn,t(σ) = Hn,t(r) = e−t

∞∑

k=0

tk

k!
Qk

n,pn
(r) for σ ∈ Sn, (5.10)

where r is the number of rising sequences of σ.

The definition of total variation cutoff and its optimality for continuous time

families is the same as in Definitions 5.1, 5.2 and 5.3 except that all times are

now taken to be non-negative reals. To state our results concerning the family

{(Sn, Hn,t, Un)}∞1 of continuous time Markov chains associated with pn-shuffles,

n = 1, 2, . . . , we keep the notation introduced in Section 5.2. In particular, we set

µn = E(log Xn), σ2
n = Var(log Xn), tn =

3 log n

2µn

,

where Xn denotes a random variable with distribution pn, and, if µn, σn ∈ (0,∞),

ξn =
log Xn − µn

σn

.

We will obtain the following theorems as corollaries of the discrete time results of

Section 5.2. Our first result concerns the case where each pn is concentrated on

one integer as in Theorem 5.3.

Theorem 5.8. Assume that for each n there is an integer mn such that p(mn) = 1

Then µn = log mn, tn = 3 log n
2 log mn

and the family F = {(Sn, Hn,t, Un)}∞1 presents a

total variation cutoff if and only if

lim
n→∞

log n

log mn

= ∞.
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Moreover, if this condition is satisfied then F has an optimal
(
tn,
√

tn
)

total vari-

ation cutoff.

Compare with the discrete time result stated in Theorem 5.3 and with Example

5.1 which we now revisit.

Example 5.7. Assume that P (Xn = bnαc) = 1 for a fixed α > 0 as in Example 5.1.

According to Theorem 5.8, the continuous time family F does not present a total

variation cutoff in this case since limn→∞
log n
µn

= α < ∞. Recall from Example 5.1

that the corresponding discrete time family has a cutoff.

Assume that P (Xn = b(log n)αc) = 1 for some fixed α > 0 as in Example

5.3. In this case, the family F presents a (tn,
√

tn) total variation cutoff with

tn = 3 log n
2α log log n

. Note that the window of the continuous time cutoff differs greatly

from the window of the discrete time cutoff in this case.

Next we consider the general case under various hypotheses paralleling Theo-

rems 5.5 and 5.6.

Theorem 5.9. Consider the continuous time family F = {(Sn, Hn,t, Un)}∞1 as-

sociated to a sequence (Xn)∞1 of integer valued random variables with probability

distributions (pn)∞1 .

(1) Assume that µn, σn ∈ (0,∞) for all n ≥ 1 and that (5.6) holds. Then the

family F presents an optimal (tn, bn) total variation cutoff, where

tn =
3 log n

2µn

, bn =
1

µn

max

{
(µn + σn)

√
log n

µn

, 1

}
.

(2) Assume that µn > 0 (including possibly µn = ∞) and there exists a sequence

(an)∞1 tending to infinity such that (5.7) holds. Then F presents a total
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variation cutoff with critical time

tn =
3 log n

2EYn

where Yn = (log Xn)1{log Xn≤an}.

Remark 5.4. Theorem 5.9(2) applies when pn = p is independent of n and µ =

∑∞
1 p(k) log k < ∞. In this case, the family F = {(Sn, Hn,t, Un)}∞1 presents a total

variation cutoff with critical time tn = 3 log n
2µ

as in Theorem 5.2. If in addition we

assume that σ2 =
∑∞

1 |µ−log k|2p(k) < ∞ then Theorem 5.9(1) applies and shows

that F has a (tn,
√

log n) total variation cutoff. Compare with Example 5.3.

We now describe how Theorem 5.9 applies to Examples 5.4-5.5 of Section 5.2.

Example 5.8. Assume, as in Example 5.4, that pn(mn) = pn(mnk
2
n) = 1/2. Assume

further that µn = log(mnkn) = o(log n). Then, by Theorem 5.9(2), F presents a

(tn,
√

tn) total variation cutoff, where

tn =
3 log n

2 log mnkn

.

Finally, for Example 5.5, both in truncated and untruncated cases, Theorem

5.9(2) implies that the family presents a total variation cutoff with critical time

π2 log n
4 log log n

.

5.4 Technical tools

Two of the main technical tools we will use have already been stated as Lemma

5.1 and 5.2 in the introduction. In particular, Lemma 5.2 gives the probability

distribution describing a deck of n cards after an m-shuffle, namely,

Qn,m(r) = m−n

(
n + m− r

n

)
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where r is the number of rising sequences in the arrangement of the deck. The next

three known lemmas give further useful information concerning this distribution.

Lemma 5.3 (Tanny, [35]). Let Rn,h be the number of deck arrangements of n

cards having r = n/2 + h rising sequences, 1 ≤ r ≤ n. Then, uniformly in h,

Rn,h

n!
=

e−6h2/n

√
πn/6

(
1 + o

(
1√
n

))

Lemma 5.4 (Bayer and Diaconis, [6, Proposition 1]). Fix a ∈ (0,∞). For

any integers n,m such that c = c(n,m) = mn−3/2 > a and any r = n
2

+ h ∈
{1, 2, . . . , n}, we have

Qn,m

(n

2
+ h

)
=

1

n!
exp

{
1

c
√

n

(
− h +

1

2
+ Oa

(
h

n

))

− 1

24c2
− 1

2

(
h

cn

)2

+ Oa

(
1

cn

)}

as n goes to infinity.

Lemma 5.5 (Bayer and Diaconis, [6, Proposition 2]). Let h∗ be the unique

integer such that Qn,m

(
n
2

+ h
) ≥ 1

n!
if and only if h ≤ h∗. Fix a ∈ (0,∞). For any

integers n,m such that c = c(n,m) = mn−3/2 > a, we have

h∗ =
−√n

24c
+ Oa (1)

as n tends to ∞.

The statements of Lemmas 5.4 and 5.5 are somewhat different from the state-

ment in Propositions 1 and 2 in [6] but the same proofs apply. The following

theorem generalizes [6, Theorem 4], that is, Theorem 5.1 of the introduction. The

proof, based on the three lemmas above, is the same as in [6]. It is omitted.
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Theorem 5.10. Fix a ∈ (0,∞). For any integers n,m such that c = c(n,m) =

mn−3/2 > a we have

‖Qn,m − Un‖TV =
1√
2π

∫ 1/(4
√

3 c)

−1/(4
√

3 c)

e−t2/2dt + Oa

(
n−1/4

)
.

Theorem 5.10 provides sufficient information to obtain good upper bounds on

the cutoff times of generalized riffle shuffles. It is however not sufficient to obtain

matching lower bounds and study the cutoff phenomenon. The reminder of this

section is devoted to results that will play a crucial role in obtaining sharp lower

bounds on cutoff times for generalized riffle shuffles. It is reasonable to guess that

shuffling cards with an (m + 1)-shuffle is more efficient than shuffling cards with

an m-shuffle . The following Proposition which is crucial for our purpose says

that this intuition is correct when convergence to stationarity is measured in total

variation.

Proposition 5.1. For any integers n,m, we have

‖Qn,m+1 − Un‖TV
≤ ‖Qn,m − Un‖TV

.

Proof. Let Am = {σ ∈ Sn|Qn,m(σ) < 1
n!
} for m ≥ 1. By Lemma 5.6 below, we

have Am+1 ⊂ Am and Qn,m(σ) ≤ Qn,m+1(σ) for σ ∈ Am+1. This implies

‖Qn,m − Un‖TV
= Un(Am)−Qn,m(Am) ≥ Un(Am+1)−Qn,m(Am+1)

≥ Un(Am+1)−Qn,m+1(Am+1) = ‖Qn,m+1 − Un‖TV
.

Lemma 5.6. For any integers, n,m and r ∈ {1, . . . , n}, we have:

(1) Qn,m(r) ≤ Qn,m+1(r), if Qn,m(r) ≤ 1
n!

.
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(2) Qn,k(r) > 1
n!

for all k ≥ m, if Qn,m(r) > 1
n!

.

In particular, if n, m, r are such that Qn,m(r) ≤ 1
n!

, then

k 7→ Qn,k(r)

is non-decreasing on {1, . . . , m}.

Proof. We prove this lemma by fixing n and 1 ≤ r ≤ n, and considering all possible

cases of m. For 1 ≤ m < r, the first claim holds immediately from Lemma 5.2

since Qn,m(r) = 0, and no Qn,m(r) satisfies the assumption of the second claim.

For m ≥ r, consider the following map

x
f7−→ n log

(
x + 1

x

)
+ log

(
x− r + 1

x− r + 1 + n

)
∀x ∈ [r,∞).

The formula of the distribution of deck arrangements in Lemma 5.2 implies

f(m) = log

(
Qn,m(r)

Qn,m+1(r)

)
.

A direct computation on the derivative of f shows that

f ′(x) =
n[(2r − n− 1)x− (r − 1)(r − 1− n)]

x(x + 1)(x− r + 1)(x− r + 1 + n)
.

Here we consider all possible relation between r and n. If r, n satisfy n+1
2
≤

r ≤ n, then the derivative f ′ is positive on [r,∞). This implies that f(x) is strictly

increasing for x ≥ r. As

lim
x→∞

f(x) = 0, (5.11)

it follows that the function f is negative for x ≥ r and hence Qn,m(r) ≤ Qn,m+1(r)

for m ≥ r. This proves the first claim. Moreover, as

lim
m→∞

Qn,m(r) =
1

n!
, (5.12)
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we have Qn,m(r) ≤ 1
n!

for all m ≥ r and n+1
2
≤ r ≤ n.

If r, n satisfy 1 ≤ r < n+1
2

, let x0 = (r−1)(r−1−n)
2r−n−1

. In this case, the derivative f ′

satisfies

f ′(x)





≥ 0 if r ≤ x ≤ x0

< 0 if x > x0

.

This implies that f is either decreasing on [r,∞) or increasing on [r, x0] and de-

creasing on (x0,∞) according to whether x0 < r or x0 ≥ r.

On one hand, if x0 < r, that is, f is decreasing on [r,∞), then (5.11) implies

that f is positive on [r,∞), which means, in particular, that Qn,m(r) ≥ Qn,m+1(r)

for m ≥ r. In this case, (5.12) implies that Qn,m(r) ≥ 1
n!

for m ≥ r.

On the other hand, if x0 ≥ r, that is, f increases on [r, x0) and decreases on

[x0,∞), then (5.11) implies that f has at most one zero in [r,∞). If f has no zero,

then f is positive on [r,∞) and thus (by (5.12))

Qn,m(r) ≥ Qn,m+1(r) ≥ 1

n!
∀m ≥ r,

This proves claim (2) (claim (1) is empty in this case).

If f has a zero, say z, then (5.11) implies that f < 0 on [r, z) and f > 0 on

(z,∞). Assume that Qn,m(r) attains its maximum at m0 = bzc+1. Then Qn,m(r)

is increasing for m ∈ [r,m0] and decreasing for m ∈ [m0,∞). In the region [m0,∞),

(5.12) implies as before that Qn,m(r) > 1
n!

for m ≥ m0. In the region [r,m0], let

m1 ≥ r be the largest integer m such that Qn,m(r) ≤ 1
n!

. Then m1 < m0 and

thus Qn,m(r) is increasing on [r,m1 + 1], which proves the first claim. Moreover,

Qn,m(r) > 1
n!

on [m1 + 1,∞), which proves the second claim.

Lemma 5.7. Consider all deck arrangements of a deck of n cards.

(1) For 1 ≤ r ≤ n, let Ar be the set of deck arrangements with number of rising
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sequences in {r, . . . , n}. Then for all integers n,m and r ∈ {1, . . . , n}, we

have

Un(Ar)−Qn,m(Ar) ≥ 0.

(2) Fix a > 0. For any integer n,m, let c = c(n, m) = mn−3/2 > a. Let Bc be the

set of deck arrangements with number of rising sequences in [n
2
−

√
n

24c
+n

1
4 , n].

Then

inf
k≤m

(
Un(Bc)−Qn,k(Bc)

)
=

1√
2π

∫ 1/(4
√

3 c)

−1/(4
√

3 c)

e−t2/2dt + Oa

(
n−

1
4

)
.

Proof. As Qn,m(r) is non-increasing in r, we have either Qn,m(σ) ≤ 1
n!

for all σ ∈ Ar

or Qn,m(σ) ≥ 1
n!

for all σ ∈ Sn−Ar. The inequality stated in (1) thus follows from

the obvious identity

Un(Ar)−Qn,m(Ar) = Qn,m(Sn − Ar)− Un(Sn − Ar).

To prove (2), let h0 = −
√

n
24c

+ n
1
4 . By Lemma 5.5, since h0 ≥ h∗ for large n, we

have Qn,m(σ) ≤ 1
n!

for σ ∈ Bc. Lemma 5.6 then implies

inf
k≤m

(
Un(Bc)−Qn,k(Bc)

)
= Un(Bc)−Qn,m(Bc) for n large.

By Lemmas 5.3, 5.5, we have
∣∣∣∣
(

Un(Bc)−Qn,m(Bc)

)
− ‖Qn,m − Un‖TV

∣∣∣∣ ≤
h0∑

h=h∗

Rn,h

n!

=
1√
2π

∫ h0

√
12/n

h∗
√

12/n

e−t2/2dt + O
(
n−

1
2

)
= Oa

(
n−

1
4

)
.

The equality in (2) then follows from Theorem 5.10.

5.5 Proof of Theorem 5.3, 5.4

The following lemma is a corollary of Theorem 5.10. It is the main tool used to

prove Theorems 5.3 and 5.4.
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Lemma 5.8. For n ∈ N, let mn ∈ N and cn = mnn
−3/2. Set

lim inf
n→∞

cn = L, lim sup
n→∞

cn = U.

(1) If L > 0(including possibly the infinity), then

lim sup
n→∞

‖Qn,mn − Un‖TV ≤ Ψ(L−1).

(2) If U < ∞(including possibly 0), then

lim inf
n→∞

‖Qn,mn − Un‖TV ≥ Ψ(U−1).

(3) If U = L ∈ [0,∞], then

lim
n→∞

‖Qn,mn − Un‖TV = Ψ(U−1).

Proof. Note that (3) follows immediately from (1) and (2). As the proofs of (1)

and (2) are similar, we only prove (1). Assume first that 0 < L < ∞. Let ε ∈ (0, L)

and choose N = N(ε) such that cn ≥ L−ε for n ≥ N . This implies that for n ≥ N ,

‖Qn,mn − Un‖TV ≤ sup
k≥(L−ε)n3/2

‖Qn,k − Un‖TV

= Ψ((L− ε)−1) + OL

(
n−1/4

)
,

where the last equality follows from Theorem 5.10. Letting n tend to infinity first

and then ε to 0 gives (1).

If L = ∞, let C ∈ (0,∞) and choose N = N(C) so large that cn ≥ C if n ≥ N .

As in the previous case, for n ≥ N ,

‖Qn.mn − Un‖TV ≤ Ψ(C−1) + OC

(
n−1/4

)
.

Now letting n,C tend to infinity yields (1) again.
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Proof of Theorem 5.3. For n ≥ 1 and c ∈ R, let tn = 3 log n
2µn

and

mn(c) =





dtn + cµ−1
n e if c > 0

btn + cµ−1
n c if c < 0

.

This implies

µmn(c)
n n−3/2





≥ ec if c > 0

≤ ec if c < 0

.

Let f, f be the functions introduced in Definition 5.2. By Lemmas 5.1 and 5.8, we

have

f(c) ≤ Ψ(e−c) if c > 0,

and

f(c) ≥ Ψ(e−c) if c < 0.

Letting c tend respectively to ∞ and −∞ proves Theorem 5.3. ¤

Proof of Theorem 5.4. In this proof, k always denotes a non-negative integer.

We first assume that mn tends to infinity. Note that

k





≥ t + 1/2 if k > {t}

≤ t− 1/2 if k < {t} and t ∈ [1/2,∞)

= 0 if k < {t} and t ∈ (0, 1/2)

.

This implies

mk
nn

−3/2





≥ m
1/2
n if k > {tn}

≤ m
−1/2
n if k < {tn} and tn ≥ 1/2

= n−3/2 if k < {tn} and tn ∈ (0, 1/2)

.

Theorem 5.4(1) thus follows from Lemmas 5.1 and 5.8.
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The proof of Theorem 5.4(2) is similar to the proof of (1) but depends on the

observation that

k





≥ t + |d(t)| if k > t

≤ t− |d(t)| if k < t

for k ∈ N,

which implies

mk
nn

−3/2





≥ exp{|d(tn)|µn} if k > tn

≤ exp{−|d(tn)|µn} if k < tn.

For Theorem 5.4(3), by assumptions

lim inf
n→∞

|d(tn)|µn < ∞, lim
n→∞

µn = ∞.

Thus we can choose M > 0 and a sequence (ni)
∞
1 tending to infinity such that

|d(tni
)|µni

≤ M and tni
≥ 1/2 for all i ≥ 1. Since {t} = t − d(t) for t ≥ 1/2, we

have that for all i ≥ 1,

e−M ≤ m
{tni}
ni n

−3/2
i ≤ eM .

By Lemmas 5.1 and 5.8, this implies that

lim sup
i→∞

‖Q{tni}
ni,mni

− Uni
‖TV ≤ Ψ(eM) < 1,

and

lim inf
i→∞

‖Q{tni}
ni,mni

− Uni
‖TV ≥ Ψ(e−M) > 0.

For Theorem 5.4(4), if L < ∞, then the fact, limn→∞ µn = ∞, implies that

tn ≥ 1/2 for large n. In this case, {tn} = tn − d(tn) ∈ Z and

m{tn}
n = n3/2e−d(tn)µn . (5.13)

Then the desired inequality (5.4) follows from Lemmas 5.1 and 5.8.

If L = ∞, let (ni)
∞
1 be a sequence such that tn ≥ 1/2 if and only if n = ni

for some i. Observe that if n /∈ {ni|i = 1, 2, ...}, then b{tn}c = 0, and hence (5.4)
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follows immediately. For the sequence (tni
)∞1 , since (5.13) holds in this case, the

discussion for L < ∞ is applicable for tni
and hence (5.4) holds. This finishes the

proof of (4).

We now assume that (mn)∞1 is bounded and let N be an upper bound of mn.

The proof in this case is similar to the proof of (3) after observing that

tn + k − 1 < {tn}+ k < tn + k + 1,

and

min{2k−1, Nk−1} ≤ m{tn}+k
n n−3/2 ≤ max{2k+1, Nk+1}.

¤

5.6 Proof of Theorem 5.5

We start with the following elementary but crucial lemma.

Lemma 5.9. Let {Yn}∞n=1 be a sequence of nonnegative random variables. Set

µn = E[Yn], σ2
n = Var(Yn), ξn =

Yn − µn

σn

.

Suppose that (an)∞n=1 is a sequence of positive numbers such that the Lindeberg type

condition

∀ ε > 0, lim
n→∞

E
[
ξ2
n1{ξ2

n>εan}
]

= 0, (5.14)

holds. Then

lim
n→∞

an = ∞ and lim
n→∞

σ2
n

µ2
nan

= 0.

Proof. Note that E
[
ξ2
n1{ξ2

n≤εan}
] ≤ εan for all ε > 0. By (5.14), this implies

lim inf
n→∞

an ≥ ε−1E[ξ2
n] = ε−1.
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Hence limn→∞ an = ∞. Next, fix ε > 0. As Yn is nonnegative, we have

E
[
ξ2
n1{ξn<0}

] ≤ µ2
n

σ2
n

≤
√

εµ2
nan

σ2
n

,

for all n large enough, and

E
[
ξ2
n1{0<ξn≤√εan}

] ≤ σ−1
n

√
εanE

[
(Yn − µn)1{0<ξn≤√εan}

] ≤
√

εµ2
nan

σ2
n

.

Let L = lim inf
n→∞

µ2
nan/σ2

n ∈ [0,∞]. Combining both inequalities and letting n →∞
imply

1 ≤ √
ε(L +

√
L).

Letting ε → 0 shows that L = ∞, that is, σ2
n/(µ2

nan) → 0.

Besides Lemma 5.9, the central limit theorem for sums of independent but not

necessarily equidistributed random variables also plays an important role in the

proof of Theorem 5.5. The following version is taken from [32].

Theorem 5.11. (Central Limit Theorem) For n > 0, let ξn,1,...,ξn,n be a sequence

of independent random variables with mean mn,k = E[ξn,k] and variance σ2
n,k =

V ar(ξn,k). Let

ζn,k =
ξn,k −mn,k√

σ2
n,1 + · · ·+ σ2

n,n

, ∀1 ≤ k ≤ n.

If the Lindeberg condition holds, that is,

lim
n→∞

n∑

k=1

E
[
ζ2
n,k1{ζ2

n,k≥ε}
]

= 0, ∀ε > 0, (L)

then
n∑

k=1

ζn,k
D−→ N (0, 1).
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Recall the generalized model of riffle shuffle defined in (5.2). For n ≥ 1, let

pn be the distribution of an integer-valued random variable Xn and consider the

family {(Sn, Qn,pn , Un)}∞1 where

Qn,pn(·) = E(Qn,Xn(·)) =
∞∑

m=1

pn(m)Qn,m(·).

Let Xn,1, Xn,2, ... be a sequence of i.i.d. random variables sharing the same distri-

bution as Xn. Then, for a, k > 0,

‖Qk
n,pn

− Un‖TV ≤
∞∑

m=1

P

(
k∏

i=1

Xn,i = m

)
‖Qn,m − Un‖TV

≤P

(
k∏

i=1

Xn,i ≤ n3/2a

)
+ P

(
k∏

i=1

Xn,i ≥ n3/2a

)
(
Ψ(a−1) + Oa

(
n−1/4

))

=(Ψ(a−1)− 1)P

{
k∏

i=1

Xn,i ≥ n3/2a

}
+ 1 + Oa

(
n−1/4

)
,

(5.15)

where the first inequality comes from the triangle inequality and the second in-

equality follows from Theorem 5.10.

Consider the set Ba defined in Lemma 5.7, that is, the subset of Sn containing

permutations with numbers of rising sequences in [n
2
−

√
n

24a
+ n1/4, n]. Lemma 5.7

then implies that

‖Qk
n,pn

− Un‖TV ≥
∑

m≤n3/2a

P

{
k∏

i=1

Xn,i = m

}
(Un(Ba)−Qn,m(Ba))

≥Ψ(a−1)P

{
k∏

i=1

Xn,i ≤ n3/2a

}
+ Oa

(
n−1/4

)
.

(5.16)

Proof of Theorem 5.5. For c ∈ R− {0}, let

k = k(n, c) =





dtn + cbne if c > 0

btn + cbnc if c < 0

,
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where tn = 3 log n
2µn

and bn = 1
µn

max
{

1,
√

σ2
n log n
µn

}
. By hypothesis, (5.6) holds. Thus

Lemma 5.9 implies

lim
n→∞

tn = ∞, bn = o(tn). (5.17)

By Definition 5.2, to prove a (tn, bn) total variation cut-off, we have to show that

lim
c→∞

f(c) = 0 lim
c→−∞

f(c) = 1,

where

f(c) = lim sup
n→∞

‖Qk
n,pn

− Un‖TV, f(c) = lim inf
n→∞

‖Qk
n,pn

− Un‖TV.

Note that bn ≥ 1
2µn

(
1 +

√
σ2

n log n
µn

)
. This implies

log(n3/2ec/2)− kµn +
c

2

√
σ2

n log n

µn





≤ 0 if c > 0

≥ 0 if c < 0

.

Hence, we have

P

{
k∏

i=1

Xn,i ≥ n
3
2 ec/2

}
≥ P

{∑k
i=1 log Xn,i − kµn

σn

√
k

≥ − c

2

√
log n

kµn

}
for c > 0

and

P

{
k∏

i=1

Xn,i ≤ n
3
2 ec/2

}
≥ P

{∑k
i=1 log Xn,i − kµn

σn

√
k

≤ − c

2

√
log n

kµn

}
for c < 0.

For fixed c ∈ R− {0}, consider the sequence

log Xn,1, log Xn,2, ..., log Xn,k,

as the k-th row of a triangular array of random variables. As k ∼ tn and (5.6)

holds, the Lindeberg condition (L) is satisfied. Hence Theorem 5.11 yields

lim inf
n→∞

P

{
k∏

i=1

Xn,i ≥ n
3
2 ec/2

}
≥ 1

2

(
1 + Ψ(2

√
2c)

)
if c > 0,
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and

lim inf
n→∞

P

{
k∏

i=1

Xn,i ≤ n
3
2 ec/2

}
≥ 1

2

(
1 + Ψ(−2

√
2c)

)
if c < 0.

Then, by (5.15) and (5.16), we have

f(c) ≤ 1− 1

2

(
1−Ψ(e−c/2)

) (
1 + Ψ(2

√
2c)

)
for c > 0,

and

f(c) ≥ 1

2
Ψ(e−c/2)

(
1 + Ψ(−2

√
2c)

)
for c < 0.

Hence the (tn, bn)-cutoff is proved by letting c tend to ∞ and −∞ respectively.

For the optimality of such total variation cutoff, we need to estimate f(c) for

c < 0 and f(c) for c > 0. Assume that bn ≥ b > 0 for all n ≥ 1. Then we have

k =





btn + cbnc > tn + cbn − 1 ≥ tn + (c− b−1)bn if c < 0

dtn + cbne < tn + cbn + 1 ≤ tn + (c + b−1)bn if c > 0

.

Arguing as in the proof of cutoff above, we obtain

lim inf
n→∞

P

{
k∏

i=1

Xn,i ≥ n
3
2 e(c−b−1)

}
≥ 1

2

(
1−Ψ(4

√
2(b−1 − c))

)
for c < 0,

and

lim inf
n→∞

P

{
k∏

i=1

Xn,i ≤ n
3
2 e(c+b−1)

}
≥ 1

2

(
1−Ψ(4

√
2(b−1 + c))

)
for c > 0.

Hence, the functions f, f are bounded by

∀ c < 0, f(c) ≤ 1− 1

2

(
1−Ψ(e(b−1−c))

) (
1−Ψ(4

√
2(b−1 − c))

)
< 1,

and

∀ c > 0, f(c) ≥ 1

2
Ψ(e−(b−1+c))

(
1−Ψ(4

√
2(b−1 + c))

)
> 0.

By Definition 5.3, the family {(Sn, Qn,pn , Un)}∞1 has an optimal (tn, bn) total

variation cutoff.

¤
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5.7 Proof of Theorems 5.6, 5.7

To work without assuming the existence of µn, we need the following weak law of

large numbers for triangular arrays. See, e.g., [22].

Theorem 5.12. (Weak law of large numbers) For each n, let Wn,k, 1 ≤ k ≤ n, be

independent. Let bn > 0 with bn →∞, and W̄n,k = Wn,k1{|Wn,k|≤bn}. Suppose that

(1)
∑n

k=1 P{|Wn,k| > bn} → 0, and

(2) b−2
n

∑n
k=1 EW̄ 2

n,k → 0 as n →∞.

If we set Sn = Wn,1 + ... + Wn,n and put sn =
∑n

k=1 EW̄n,k, then

Sn − sn

bn

→ 0 in probability.

Proof of Theorem 5.6. For 0 < |ε| < 1, let

k = k(n, ε) =





d(1 + ε)tne if ε > 0

b(1 + ε)tnc if ε < 0

.

By (5.15) and (5.16), to prove a total variation cutoff with critical time tn, it

suffices to prove that for all a > 0

lim
n→∞

P

{
k∏

i=1

Xn,i ≥ n
3
2 a

}
= 1, if ε > 0, (5.18)

and

lim
n→∞

P

{
k∏

i=1

Xn,i ≤ n
3
2 a

}
= 1, if ε < 0. (5.19)

Indeed, if these limits holds true then (5.15) and (5.16) give

lim sup
n→∞

‖Qk
n,pn

− Un‖TV ≤ Ψ(a−1) for ε > 0

and

lim inf
n→∞

‖Qk
n,pn

− Un‖TV ≥ Ψ(a−1) for ε < 0.
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The total variation cutoff is then proved by letting a tend to infinity and 0 respec-

tively.

To prove (5.18)-(5.19), note that EZ2
n = EY 2

n + a2
nP{log Xn > an}. By the

second part of assumption (5.7), we have

(1 + ε)tnP{log Xn > an} → 0 and (1 + ε)tna−2
n EY 2

n → 0, as n →∞. (5.20)

In order to apply Theorem 5.12, for fixed ε ∈ (−1, 1), consider

Wk,1 = log Xn,1, ...,Wk,k = log Xn,k

as the k-th row of a triangular array of random variables. Then (5.20) shows that

the hypotheses (1) and (2) in Theorem 5.12 hold. Hence

a−1
n

(
k∑

i=1

log Xn,i − (1 + ε)tnEYn

)
→ 0 in probability. (5.21)

Note also that for a > 0, a−1
n

(
log(n3/2a)− (1 + ε)tnEYn

) ∼ −3ε log n
2an

. Hence the

first part of assumption (5.7) implies that

lim sup
n→∞

a−1
n

(
log(n3/2a)− (1 + ε)tnEYn

)
< 0 if ε > 0,

lim inf
n→∞

a−1
n

(
log(n3/2a)− (1 + ε)tnEYn

)
> 0 if ε < 0.

(5.22)

Combining both (5.21) and (5.22) proves (5.18) and (5.19). ¤

Proof of Theorem 5.7. Let Xn be integer valued random variables such that

P{Xn = k} = pn(k) for k = 1, 2, ...

and satisfying (5.8), (5.9). Let an = log n in Theorem 5.6 so that

Yn = (log X)1{log X≤log n}, Zn = Yn + (log n)1{log X>log n}.

Set Ln = log Xn. By (5.9), we have E(Ln1{Ln>log n}) = o(µn). Hence E(Yn) ∼ µn

and the third condition of (5.7) follows from (5.8). To apply Theorem 5.6, it
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remains to show

lim
n→∞

EY 2
n

EYn log n
= 0, lim

n→∞
P{Ln > log n} log n

EYn

= 0,

or equivalently,

lim
n→∞

EY 2
n

µn log n
= 0, lim

n→∞
P{Ln > log n} log n

µn

= 0.

The hypothesis (5.9) gives

P{Ln > log n} log n

µn

≤ E(Ln1{Ln>log n})
µn

= o(1)

which proves the second desired limit. For the first limit, for any η ∈ (0, 1), write

EY 2
n = E[L2

n1{Ln≤η log n}] + E(L2
n1{η log n<Ln≤log n})

≤ ηµn log n + E(Ln1{Ln>η log n}) log n

≤ (η + oη(1))µn log n

where we have used (5.9) again to obtain the last inequality. Thus

EY 2
n

µn log n
≤ η + oη(1).

Letting n tend to infinity and then η tend to 0 shows that the left-hand side tends

to 0 as desired. ¤

The next lemma deals with condition (5.7) appearing in Theorem 5.6 and plays

a role in the proof of Theorem 5.9(2).

Lemma 5.10. For n ≥ 1, let an, bn > 0 and Xn be a non-negative random variable.

According to the sequence (an)∞1 and c > 0, set Yn = Xn1{Xn≤can} and Zn =

Yn + can1{Xn>can}. Consider the following conditions.

an = O(bn), lim
n→∞

bnEZ2
n

a2
nEYn

= 0, lim
n→∞

bn

EYn

= ∞. (5.23)

Then (5.23) holds for some c > 0 if and only if it holds for any c > 0.
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Proof. On direction is obvious. For the other direction, we assume that (5.23)

holds for some c > 0. The second condition in (5.23) implies

P{Xn > can} = o

(
EYn

bn

)
,

EY 2
n

a2
n

= o

(
EYn

bn

)
. (5.24)

Let d > 0 and Y ′
n = Xn1{Xn≤dan} and Z ′

n = Y ′
n + dan1{Xn>dan}. Then (5.24)

and Chebyshev inequality imply

|EY ′
n − EYn| ≤





canP{Yn > dan} if d < c

danP{Xn > can} if d > c

= o

(
anEYn

bn

)
= o(EYn),

and

|EZ ′2
n − EZ2

n| ≤ |d2 − c2|a2
nP{Xn > (d ∧ c)an}

=|d2 − c2|a2
n (P{Yn > (d ∧ c)an}+ P{Xn > can})

≤|d2 − c2|a2
n

(
EY 2

n

(d ∧ c)2a2
n

+ P{Xn > can}
)

= o

(
a2

nEYn

bn

)
.

Hence we have EY ′
n ∼ EYn and bnE(Z′n)2

d2a2
nEY ′n

→ 0.

5.8 Proofs of Theorems 5.8 and 5.9

In this section we are concerned with the continuous time process whose distribu-

tion at time t, Hn,t, is given by (5.10), that is

Hn,t = e−t

∞∑

k=0

tk

k!
Qk

n,pn
.

Let Xn,1, Xn,2, ... be a sequence of independent random variables with probability

distribution pn. Let X̃n be an integer valued random variable whose probability
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distribution p̃n is given by

p̃n(l) = P{X̃n = l} =





e−P{Xn,1 6=1} if l = 1

e−1
∑∞

1
1
j!
P

{∏j
1 Xn,i = l

}
if l > 1

. (5.25)

With this notation , we have

Hn,1 = E(Qn,X̃n
) = Qn,p̃n

and

Hn,k = E(Qk
n,X̃n

) = Qk
n,p̃n

, k = 1, 2, . . . .

Let h be any nonnegative function defined on [0,∞) satisfying h(0) = 0. Fu-

bini’s Theorem yields

E(h(log X̃n)) = e−1

∞∑
j=1

1

j!
E(h(X̄n,j)), (5.26)

where X̄n,j = log Xn,1 + · · · + log Xn,j. Thus, if we assume that µn, σn < ∞ and

let h(t) = t (resp. h(t) = t2), we obtain

E(log X̃n) = µn and Var(log X̃n) = σ2
n + µ2

n.

Proof of Theorem 5.8. Here, we deal with the case where, for each n, pn(mn) = 1

for some integer mn. Observe that for any integers n,M and time t > 0,

‖Hn,t − Un‖TV
≥ Hn,t(id)− 1

n!
≥ e−t − 1

n!

‖Hn,t − Un‖TV ≤ e−t

M∑
i=0

ti

i!
+ ‖QM

n,pn
− Un‖TV,

where id is the identity of Sn, that is, represents the deck in order.

Assume that

lim inf
n→∞

log n

µn

< ∞.
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Let M be an integer and (nk)
∞
1 be an increasing sequence such that supk≥1

2 log nk

µnk
<

M . Let (tk)
∞
1 be an arbitrary sequence of positive numbers. Then, by Theorem

5.3 and the observation above, we have

lim
k→∞

‖Hnk,tk − Unk
‖TV = 0 ⇐⇒ lim

k→∞
tk = ∞.

This means that the subfamily {(Snk
, Hnk,t, Unk

)}∞1 , and thus F itself, does not

present a total variation cutoff.

Assume now that

lim
n→∞

log n

µn

= ∞.

Then tn = 3 log n
2µn

tends to infinity and thus tn ∼ btnc. Clearly, a (tn,
√

tn) cutoff for

Hn,t is equivalent to a (tn,
√

tn) cutoff for Qk
n,p̃n

. We now prove the desired cutoff

by applying Theorem 5.5 to Qn,p̃n . To this end, we need to show that (5.6) holds

for X̃n. Set ξ̃n = log X̃n−µn√
σ2

n+µ2
n

. Then (5.26) implies

E
(
ξ̃2
n1{ξ̃2

n>ε log n
µn
}
)

=
∞∑

j>
q

ε log n
µn

e−1j2

(j + 1)!
→ 0 as n →∞,

for any ε > 0 and n ≥ m
1/ε
n . Hence (5.6) holds for X̃n and, by Theorem 5.5, the

family {(Sn, Qn,p̃n , Un)}∞1 presents, as desired, an optimal (tn, bn) total variation

cutoff with bn =
√

log n/µn. ¤

Proof of Theorem 5.9(1). As in the proof of Theorem 5.8, the desired cutoff for

the family {(Sn, Hn,t, Un)}∞1 is equivalent to the same cutoff for {(Sn, Qn,p̃n , Un)}∞1
because cutoff time and window size tend to infinity. Hence, the desired conclusion

will follow from Theorem 5.5 if we can show that X̃n at (5.25) satisfies (5.6). Set

ξ̃n = log X̃n−µn√
σ2

n+µ2
n

. Then (5.26) implies

E
(
ξ̃2
n1{ξ̃2

n>ε log n
µn
}
)

= e−1

∞∑
j=1

1

j!
E




(
X̄n,j − µn

)2

σ2
n + µ2

n

18<:(X̄n,j−µn)
2

σ2
n+µ2

n
>ε log n

µn

9=;

 , (5.27)
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if εµ−1
n log n > 1. Fix ε, δ > 0 and let M = M(δ) ∈ N, N = N(ε,M) ∈ N such that

2
∑∞

M+1
j2

j!
< δ and

√
ε log n

µn
≥ 2M if n ≥ N . In this case, (5.27) implies that

E
(
ξ̃2
n1{ξ̃2

n>ε log n
µn
}
)
≤ δ + e−1

M∑
j=1

1

j!
E




(
X̄n,j − µn

)2

σ2
n + µ2

n

1(
X̄n,j−µn√

σ2
n+µ2

n

>
q

ε log n
µn

)

 . (5.28)

To bound the expectation in the right hand side, we consider the following sets.

For 1 ≤ i ≤ j ≤ M , let

An,i,j =

{
log Xn,i >

1

j

(
µn +

√
ε(σ2

n + µ2
n) log n

µn

)}

Bn,i =

{
(log Xn,i − µn)2

σ2
n

>
ε log n

4M2µn

}
.

Then {
X̄n,j − µn√

σ2
n + µ2

n

>

√
ε log n

µn

}
⊂

j⋃
i=1

An,i,j (5.29)

and

An,i,j ⊂ Bn,i if
√

ε log n
µn

≥ 2M.

This implies that for n ≥ N, 1 ≤ i ≤ j ≤ M ,

E

((
X̄n,j − µn

)2

σ2
n + µ2

n

1An,i,j

)

≤2E

(
(X̄n,j − log Xn,i)

2

σ2
n + µ2

n

1Bn,i

)
+ 2E

(
(log Xn,i − µn)2

σ2
n

1Bn,i

)

=
2 ((j − 1)σ2

n + (j − 1)2µ2
n)

σ2
n + µ2

n

P{Bn,i}+ 2E

(
ξ2
n1
n

ξ2
n> ε log n

4M2µn

o)

≤3E

(
ξ2
n1
n

ξ2
n> ε log n

4M2µn

o) if n is large.

Now, using (5.29) and these estimates in (5.28), and applying the hypothesis

that Xn satisfies (5.6), we obtain

lim sup
n→∞

E
(
ξ̃2
n1{ξ̃2

n>ε log n
µn
}
)
≤ δ ∀δ, ε > 0.
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Hence (5.6) holds for X̃n. By Theorem 5.5, the family {(Sn, Hn,t, Un)}∞1 presents

an optimal
(

3 log n
2µn

, bn

)
total variation cutoff, where

bn =
1

µn

max

{√
(σ2

n + µ2
n) log n

µn

, 1

}

(note that bn always tends to infinity). ¤

Proof of Theorem 5.9(2). The proof is similar to that of part (1) except that

we will use Theorem 5.6 instead of Theorem 5.5. Let

Ỹn = (log X̃n)1{log X̃n≤an}, Z̃n = Ỹn + an1{log X̃n>an}.

By (5.26), we have

EỸn = e−1

∞∑
j=1

1

j!
E

[(
j∑

i=1

log Xn,i

)
1{Pj

1 log Xn,i≤an}

]
.

It is apparent that EỸn ≤ EYn. For j > 0, we have

E

[(
j∑

i=1

log Xn,i

)
1{Pj

1 log Xn,i≤an}

]
≥

j∑
i=1

{
E

(
log Xn,i1{log Xn,i≤an

j }
)

×
j∏

k=1
k 6=i

P

(
log Xn,k ≤ an

j

)}
.

By Lemma 5.10 (or Remark 5.2) and (5.24), we have

lim inf
n→∞

E

[(
j∑

i=1

log Xn,i

)
1{Pj

1 log Xn,i≤an}

]/
EYn ≥ j.

Hence, for k > 0

lim inf
n→∞

EỸn

EYn

≥ e−1

k∑
j=0

1

j!
.

Letting k →∞ implies EỸn ∼ EYn.

To apply Theorem 5.6, it remains to prove that the second part of (5.7) holds

for Ỹn and Z̃n, that is,

E(Ỹ 2
n ) = o

(
a2

nEYn

log n

)
, P

{
log X̃n > an

}
= o

(
EYn

log n

)
.
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Note that, by the hypothesis that Xn satisfies (5.7), we have

E(Y 2
n ) = o

(
a2

nEYn

log n

)
, P {log Xn > an} = o

(
EYn

log n

)
.

Then (5.26), Lemma 5.10 and the above observation imply

E(Ỹ 2
n ) = e−1

∞∑
j=1

1

j!
E




(
j∑

i=1

log Xn,i

)2

1{Pj
1 log Xn,i≤an}




≤ e−1

∞∑
j=1

1

j!
E

(
j∑

i=1

(log Xn,i)1{log Xn,i≤an}

)2

= EY 2
n + (EYn)2 ≤ 2EY 2

n = o

(
a2

nEYn

log n

)
,

and

P{log X̃n > an} = e−1

∞∑
j=1

1

j!
P

{
j∑

i=1

log Xn,i > an

}

≤ e−1

∞∑
j=1

1

(j − 1)!
P

{
log Xn >

an

j

}
.

Since, for j ≥ 1,

P

{
log Xn >

an

j

}
= P{log Xn > an}+ P

{
Yn >

an

j

}

= P{log Xn > an}+
j2EY 2

n

a2
n

= j2 × o

(
EYn

log n

)
,

we have

P{log X̃n > an} = o

(
EYn

log n

)
.

By Theorem 5.6, the family {(Sn, Qn,p̃n , Un)}∞1 presents a total variation cutoff

with critical time 3 log n
2EYn

. Hence the same holds for {(Sn, Hn,t, Un)}∞1 . ¤



Appendix A

Techniques and proofs

A.1 Fundamental results of analysis

Lemma A.1. Let (X , µ) and (Y , ν) be measure spaces and T : Lp(µ) → Lr(ν) be

a bounded linear operator with 1 ≤ p, r ≤ ∞. Let T ∗ : (Lr(ν))∗ → (Lp(µ))∗ be the

adjoint operator of T . Then the operator norms of T and T ∗, denoted by ‖T‖p→r

and ‖T ∗‖s→q with p−1 + q−1 = 1 and r−1 + s−1 = 1, satisfy

‖T ∗‖s→q = ‖T‖p→r.

Proof. Note that for f ∈ (Lr(ν))∗ and u ∈ Lp(µ),

|(T ∗f)(u)| = |f(Tu)| ≤ ‖T‖p→r‖f‖(Lr(ν))∗‖u‖p,

which implies ‖T ∗‖s→q ≤ ‖T‖p→r.

Conversely, for v ∈ Ls(ν), define Tv(w) =
∫
Y v(y)w(y)dν(y) for all w ∈ Lr(ν).

It is obvious that Tv ∈ (Lr(ν))∗, ‖Tv‖(Lr(ν))∗ = ‖v‖s and for u ∈ Lp(µ),

∫

Y
v(y)(Tu)(y)dν(y) = Tv(Tu) = (T ∗Tv)(u) ≤ ‖T ∗‖s→q‖v‖s‖u‖p,

which implies ‖T‖p→r ≤ ‖T ∗‖s→q.

Lemma A.2. Let (X , µ) and (Y , ν) be measure spaces and T : Lp(µ) → Lr(ν)

be a bounded linear operator with 1 ≤ p, r ≤ ∞. Assume that K is the kernel of

T , that is, K is a Y × X -measurable function such that for f ∈ Lp(µ), Tf(·) =

∫
Y K(·, x)f(x)dµ(x) almost everywhere in ν. Set h(y) = ‖K(y, ·)‖Lq(µ) for y ∈ Y.

Then

‖T‖p→r ≤ ‖h‖Lr(ν).
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In particular, if X is a countable set, µ > 0 and r = ∞, then

‖T‖p→∞ = ‖h‖∞.

Proof. Note that for f ∈ Lp(µ) and g ∈ Ls(ν),

∫

Y
(Tf)(y)g(y)dν(y) =

∫∫

Y×X
K(y, x)f(x)g(y)dν(y)dµ(x)

≤ ‖f‖Lp(µ)‖g‖Ls(ν)‖h‖Lr(ν)

The inequality is then proved by taking supremum over the set {f ∈ Lp(µ), g ∈
Ls(ν) : ‖f‖p ≤ 1, ‖g‖s ≤ 1}.

For the second identity, by the definition of the operator norm, one has

‖T‖p→∞ = sup
‖f‖Lp(µ)≤1

sup
y∈Y

|Tf(y)|

= sup
y∈Y

sup
‖f‖Lp(µ)≤1

∫

X
K(y, x)f(x)dµ(x) = ‖h‖∞.

Theorem A.1. (Riesz-Thorin interpolation theorem) Let T be a bounder linear

operator from Lp1(µ) to Lq1(ν) and from Lp2(µ) to Lq2(ν), where 1 ≤ p1, p2, q1, q2 ≤
∞. For θ ∈ (0, 1), set p−1 = θp−1

1 + (1− θ)p−1
2 and q−1 = θq−1

1 + (1− θ)q−1
2 . Then

the operator T : Lp(µ) → Lq(ν) is bounded and its norm satisfies

‖T‖p→q ≤ ‖T‖θ
p1→q1

‖T‖1−θ
p2→q2

.

Proof. Refer to Theorem 1.3 on p.179 of [34].

Lemma A.3. Let T be a bounded linear operator from L1(µ) to Ls′(ν) and from

Ls(µ) to L∞(ν), where s−1 +s′−1 = 1 and 1 ≤ s ≤ ∞. Then, for any 1 ≤ r, q ≤ ∞
satisfying q−1 = r−1 + s−1, the norm ‖T‖q→r is bounded by

‖T‖q→r ≤ ‖T‖s′/q′
s→∞‖T‖1−s′/q′

1→s′ ,
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where q−1 + q′−1 = 1.

Moreover, if S is a bounded linear operator from Lr(ν) to L∞(π), then ‖ST‖q→∞

is bounded and satisfies

‖ST‖q→∞ ≤ ‖T‖s′/q′
s→∞‖T‖1−s′/q′

1→s′ ‖S‖r→∞.

Proof. Note that for θ = s′/q′,

θ

s
+

1− θ

1
=

1

q
,

θ

∞ +
1− θ

s′
=

1

r
.

The first part is then proved by Theorem A.1. The second inequality is obtained

by the follow fact.

‖ST‖q→∞ ≤ ‖T‖q→r‖S‖r→∞.
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