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Estimation and Moment Recursion Relations for

Multimodal Distributions of the Exponential Family
LOREN COBB, PETER KOPPSTEIN, and NENG HSIN CHEN*

Multimodal generalizations of the normal, gamma, in-
verse gamma, and beta distributions are introduced
within a unified framework. These multimodal distribu-
tions, belonging to the exponential family, require fewer
parameters than corresponding mixture densities and
have unique maximum likelihood estimators. Simple mo-
ment recursion relations, which make maximum likeli-
hood estimation feasible, also yield easily computed es-
timators that themselves are shown to be consistent and
asymptotically normal. Lastly, a statistic for bimodality,
based on Cardan’s discriminant for a cubic shape poly-
nomial, is introduced.

KEY WORDS: Bimodality; Catastrophe theory; Param-
eter estimation; Pearson system; Polynomial exponential
distributions; Shape polynomial.

1. INTRODUCTION

The model generally used in the analysis of multimodal
densities is a mixture of normals, or possibly of other
unimodal densities. There is a class of alternatives, how-
ever, that may be appropriate when a mixture assumption
is not required or justified. Four major types of nonmix-
ture multimodal probability densities within this class are
presented here, each of which can arise as the stationary
probability density function of a nonlinear diffusion proc-
ess. Many common unimodal families (e.g., normal,
gamma, beta) are represented as special cases of these
types. This class of probability densities is expressed in
the general form

fi) = &(B)exp[— / "{g(s)/v(s)}ds] SEN(BY

where g(x) = Bo + Bix + - + Bix*, k> 0, and v(x)
has one of the following principal forms (other forms are,
of course, possible):

Type N: v(x) = 1
Type G: v(x) = x

—o < x < oo,

0<x<oo,
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Type I: v(x) = x? 0<x<oo,

Type B: v(x) = x(1 — x)

The integral in (1.1) is to be understood as an indefinite
integral, and the domain of f.(x) is the open interval on
which v(x) is positive. The normalization function &:R**!
— R is chosen so that the integral of f over its domain
is unity. In this article, the terms mode and antimode will
be reserved, respectively, for local maxima and minima
of the density function at which the density’s derivative
vanishes. Modes are thus distinguished from poles and
nonmodal local maxima on the boundaries of the domain
of the density function.

The densities described by (1.1) are a generalization of
the Pearson system. On differentiation with respect to x,
(1.1) yields

0<x<l.

Fr@f&x) = —g)x), 1.2)

which contains Pearson’s differential equation as a spe-
cial case. In the Pearson system (Ord 1972, Johnson and
Kotz 1970), the degree k of the polynomial g is one and
the degree of v is at most two. In this article we are prin-
cipally concerned with the multimodal forms that appear
when the degree of g exceeds one. The polynomial g will
be called the shape polynomial for the density f.

The capacity for multimodality in the class described
by (1.1) is illustrated in Figure 1, which shows a sequence
of densities of Type N, with g(x) = 10x* — Bx — .1, for
various values of 8.

The maximum number of modes possible in a given
family is determined by the degree of its shape polynom-
ial, k. From (1.2) it may be seen that the critical points
of the density (i.e., those points x such that f'(x) = 0)
are exactly the roots of g(x). Whether such a point is a
mode or an antimode (a relative minimum) depends on
the sign of g"(x) — {g'(x)}*. At the roots of v(x) the density
either has a zero (f(x) — 0) or a pole (f(x) — =), depending
on the coefficients of g(x). The only exceptions to this
occur at points that are roots of both g(x) and v(x): these
are degenerate boundary points for the density (Cobb
1981b).

The generalized family of Pearson distributions may
also be characterized in terms of nonlinear diffusion pro-
cesses (see, e.g., Wong 1964). Let 2u(x) = g(x) — v'(x),
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B

L,

Figure 1. A sequence of Type N densities with cubic shape po-
lynomial g(x) = 10x® — Bx — .3, for various values of B.

and o%(x) = v(x). Then f(x) is the stationary density of
a stochastic process x, that is governed by the stochastic
differential equation (Soong 1973)

dx, = —plx)dt + olx,)dw,, (1.3)
where w, is a standard Wiener process. Consider the de-
terministic version of this system, namely dx/dt = — p(x).

It has equilibria at the solutions of g(x) — v'(x) = 0. In
the Type N cases (v(x) = 1) these equilibria are exactly
the modes and antimodes of the corresponding probabil-
ity density function. In the other types the modes and
antimodes are shifted away from the equilibria of the de-
terministic system (Cobb and Watson 1980). In these four
cases, modes correspond to stable equilibria, while an-
timodes correspond to unstable equilibria. Thus multi-
modality in these models is generally a result of multiple
stable states in a dynamical system, rather than of het-
erogeneous populations as in the usual interpretation of
mixture densities. Note, however, that bimodal station-
ary densities, for example, can arise when there is but
one corresponding stable equilibrium, as discussed at the
end of the following section.

The estimation problem for these multimodal densities
can be stated this way: given the type and degree of the
density, estimate the coefficient vector § = (Bo, B1,. - - »
Bx). If it is assumed that the underlying model is the non-
linear stochastic system (1.3), as, for example, in ele-
mentary catastrophe theory (Poston and Stewart 1978),
then these estimates lead indirectly to an identification
of the deterministic component of the system.

2. THE PRINCIPAL TYPES

Each distinct specification of the function v(x) in (1.1)
leads to a distinct family of distributions, each family
being indexed by the degree of the polynomial g(x). To
simplify the notation, let N.(x) refer to the density of the
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Type N family of degree k for permissible k and similarly
for Gk, Ik, and Bk.

The N, densities have as their principal member the
normal density, N;. The bimodal density N5 (Figure 1)
was first discussed by Fisher (1922) but has received only
occasional attention since that time (e.g., O’Toole 1933,
Aroian 1948, Matz 1978). The relevance of N3 and indeed
G3 and I to statistical analyses of the cusp catastrophe
model (Cobb 1978, 1981a,b, Cobb and Watson 1980,
Koppstein 1980) has recently spurred interest in the
whole generalized Pearson family. The general form for
an N, density is

Nk(X) = §exp[6;x + 62)(72 + -+ 0k+,xk+‘], (21)
where 8; = —B;_1/j. Ny has finite moments of all orders
if k is odd and 6441 < 0.

The G, densities have as their principal member the
gamma density, G, and include the exponential and Ray-
leigh densities. The general form for the G, density is

Gi(x) = £x*Texp[0ix + -+ + 0xx*1, 2.2

where o = 1 — Bo and 6, = — B;/j. G« has moments of
all orders if o > 0 and 6, < 0.

The I, densities have as their principal member the
inverse gamma density, I, (Pearson Type V). The I, den-
sity is a generalized inverse Gaussian density. The gen-
eral form for the I, density is
Li(x) = Ex%explyx ™' + 01x + -+ + 61 x*71], (2.3)
where @« = —B;, ¥y = Bo, and 6, = — B;1/j. The I
densities have finite moments all orders if y < 0 and 6,
<0.

The B, densities have as their principal member the
beta density, B,. The Bs density has been used in pop-
ulation genetics (e.g., Ludwig 1974) to describe the fre-
quency of a gene with heterozygotic advantage, such as
the gene for sickle-cell anemia. The B; density is partic-
ularly interesting because it can adopt the W shape shown
in Figure 2, which exhibits a central mode surrounded by
two antimodes and two poles. Qualitatively, the B; den-
sity has much in common with the Sz system (Johnson
and Kotz 1970, p. 25). The general form for the B, density
is

Bi (x) = &x*7'(1 — x)" " 'exp[0ix + -+ + Ox—1xk-1]

2.4)
where a = 1 — Bo, vy = 1 + 2,';0 B:;, and 6; =
Efsz Bi/j,forj=1,...,k — 1.B,has finite moments

of all orders if « > 0 and y > 0.

The four classes of distributions identified above may
together be referred to as the multimodal Pearson system:
the restriction that v(x) be a polynomial of degree at most
two is preserved, but the degree of the polynomial g(x)
is arbitrary. Further generalizations are, of course, pos-
sible. We mention in particular the closely related class
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DENSITY

X

Figure 2. A Type B density with cubic shape polynomial chosen
so that the density has two poles, two antimodes, and one mode.
The shape polynomial is g(x) = —14(x — .1)(x — .5)(x — .9).

of distributions on (0, 1) defined as above but with v(x)
= x2(1 — x)2. This class of distributions stands in relation
to Type B as Type I stands to Type G, and thus should
perhaps be included in our enumeration of principal
types; certainly the discussion that follows applies
equally to this class as well. We shall, however, simply
remark here that this class arises in the study of logistic
growth and is noteworthy because the stationary densities
of the related stochastic differential equations may ex-
hibit bimodality even when the deterministic dynamic has
only one stable equilibrium (Lefever 1981).

Finally, we observe that not all distributions defined
by (1.1) have finite moments of all orders. For example,
g(x) = (1 + rx and v(x) = r + x? yields Student’s ¢
density with r degrees of freedom.

3. ESTIMATION
34 Maximum Likelihood Estimation (MLE)

Since the densities N, Gx, I, and B, belong to the well-
known exponential family, we shall be brief. If (Xi, . . .,
X,) is a random sample of a random variable with one of
these densities, then the minimal sufficient statistic for
is

Type N: X, X2, ..., XX,

Type G: S In(X), DX, ..., 2 X5.

TypeI: CX~ 1, 3InX), XX, ..., XX,

Type B: CIn(X), SIn(d - X), 2 X, ..., 2X).
It is not difficult to show that the Hessian of the neg-

ative log-likelihood function is a positive definite matrix.

Joumnal of the American Statistical Association, March 1983

Thus the unique MLE’s can in principle be readily com-
puted. The numerical integrations involved, however,
can be quite formidable. Nevertheless, as O’Toole’s
paper (1933b) suggests, the simplest quadrature methods
may be expected to yield good results. Further, as we
show in Section 3.2, simple moment recursion formulas
enable a trivial calculation of consistent estimators.
These recursion formulas also enable straightforward cal-
culation of the Hessian once the numerical integrations
required for calculation of the gradient vector of the log-
likelihood function have been performed. For N3, for ex-
ample, only three integrations are required to calculate
the gradient (and Hessian).

3.2 Consistent Estimators From Moment Recursion
Relations

Pearson’s method of parameter estimation depends on
the existence of a linear system of equations relating the
k + 1 parameters to the first X + 1 moments of the den-
sity. If such a system can be found, then sample moment
estimates are inserted and the system is solved for the
parameters. The direct application of this method to the
multimodal exponential families discussed here fails be-
cause of the lack of a general formula relating the first &
+ 1 moments to the parameters. However, a formula
relating 2k moments to the parameters can be found,
based on the following theorem.

Theorem 1. Let X be arandom variable with probability
density function f(x) of Type N, G, I, or B, with k > 0.
For any j = 0, :

E[X’g(X)] = E[{X'v(X)}'],

where (') denotes differentiation.
Proof. Use (1.2) and integration by parts. Let the do-
main of f be denoted by (a, b). Then

. b .
ELX/g0) = [ #/gftods

fa * (= v f WM ()

i

- f ’ xJv(x)f' (x)dx.

a 5

Now integrate this expression by parts:

- L bva(x)f '(x)dx

b b
=~ | + [ el fds.

Note that x/v(x)f(x) = 0 as x = a and as x — b for each
of the principal densities (2.1-2.4).

Remark. This theorem applies to any density in the
class (1.1) for which the first term in the integration by
parts vanishes, even if not all moments are finite. In the
case of Student’s ¢, for example, it implies that (r — j —
Dwj+1 = rjmi—1, where r denotes the degrees of freedom.
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The moment recursion relations and the estimators de-
rivable from them are direct consequences of Theorem
1:

Corollary 1. For each of the principal types of densities
in (1.1) there is a recursion relation for the noncentral
moments p.,-'

TYPeN E BI’LI-!'M = Mpyn—1. (3'1)
i=0
k

Type G: >, Bipicm = (Mgt Dpm. (3.2
i=0
k

Type I D> Bibtiem = (M + Dpmar. (3.3)
i=0
k

Type B: 3 Bibism = (M + D — (M + Dpomsy.

i=0

3.4

These moment relations have long been well known in
the special case £ = 1.

In 1948, Aroian used the recursion formula for N; to
obtain parameter estimates for the quartic exponential
distribution. The following corollary generalizes his pro-
cedure.

Corollary 2. Let M be the (kK + 1) X (k + 1) matrix
of moments for the random variable X: [M];; = wi+j—2.
Then MB = a, where o; = E[{X/~'v(X)}'].

This corollary provides a relationship between mo-
ments and parameters that is useful for estimation. Sim-
ply use B M ~'&, where the entries of M and & are the
ordinary sample moments The entries of & depend on
the type of density: in the case of Type N, for example,
o; = (j — 1) wj—2. The following lemma is needed:

Lemma I. Let X1, . . . , X, be independent and iden-
tically distributed random variables. Let [M];; = 27—,
X<&*=2/n. Then M is positive definite with probability
one.

Proof. Lety = (yo, . . . , Y&) be an arbitrary nonzero
vector. Note that ny'My = 271 (Yo + viXi + - +
v X¥)?. But, since X has a continuous density, we have
Prob{yo + - + wX* =0} = 0fori = 1,..., n. The
result follows immediately.

The bias and relative efficiency of the estimator f =
M '& are not as yet known, but it can be shown that
B is consistent and asymptotically normal.

Theorem 2. The estimator f = M~ 'a is consistent,
and Vn(B — PB) is asymptotically multivariate normal
with covariance matrix V, such that

[MVM],; = E{(& — [MBl)(@&; — [MB])}. ¢

_ Proof. Consistency: it has already been established that
M is invertible (w.p.1). The function that takes an inver-
tible matrix into its inverse is differentiable with respect
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to each of its entries, and M —2> M, soM~! 2> M~
Furthermore, & —2- a, therefore § —2- B.

Normality: we have Va(M — M) = O,(1) and ( —
B) = o,(1). Consider the identity

VrM(B — B)
= Vn(& — MB) — VaM — M) - B).

Each entry of the second term on the right side is

0,'(1)o,(1) = 0,(1), where here ( ) denotes matrix trans-
position. Thus Vr[(f — B) - M~ (& - MB)] - 0.
The vector VaM~'(& — MB) can be written as >,/
h(X;)/\/n, where h(x) is a vector of polynomials in x. Note
that E[h(X)] = 0. Let [V]; = E[h(X)hi(X)]. Then
V(B — B) is asymptotically N(0, V), by the multivariate
Central Limit Theorem.

The (k + 1) x (k + 1) asymptotic covariance matrix
V of Vn(B — PB) can be written in the form V =
M~ 'BGB'M !, where G is the (2k) x (2k) covariance
matrix with [G];; = cov(X), X)) fori,j =1,..., 2k,
and Bis a (k + 1) X (2k) matrix that depends on the type
and order of the density. The pattern of the matrix B for
each of the principal types, Ny, Gy, Iz, and B,, is estab-
lished by the form of B for k& = 3, as follows:

(81 B2 B O g 0

.n_|Bo Bi B2 B3 0
N: B -2 Bo B1 B2 Bs O
| 0 =3 Bo B1 B2 Bs

B8, B2 Bs 0 0 0
. — BO—Z Bl Bz Bz 0 0
Gs:B=10 " Bo—3 B B Bs 0
L0 0 Bo—4 Bi Bz Bs
(Bi—2 B2 B O .0 0
I.:B = BO 61_3 B2 Bs 0 0
3 0 Bo Bi—4 B2 Bs 0
K 0 Bo Bi—5 B2 Bs
(Bi+2 B2 B3 0 0 0
B::B = BO_Z Bl+3 BZ Bs 0 0
3 0 Bo—3 PBi1+4 B2 Bs 0

i -4 Bi1+5 B2 Bs

It is not difficult to show that V has full rank for each of
the principal types.

0 0 Bo

3.3 Approximation Theory

The estimators derived in the previous section can be
given an additional justification within the framework of
approximation theory. In this context the task is to find
a polynomial g(x) that comes as close as possible to an
unknown shape function, g(x) = —v(x)f’ (x)/f(x), as de-
fined in (1.2). We show that the estimator derived in the
previous section provides a polynomial of fixed degree
that is closest to g(x) in a natural sense (Cheney 1966).

Consider the space L(X) of functions #:R — R for
which E[h*(X)] < «, where X is a random variable with
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density f(x) in the class (1.1). A natural norm for L(X)
is | A | = VE[h*(X)]. Thus in this space the squared dis-
tance between any two functions 4; and A, is

| by = k2 2 = El(mi(X) — ha(X))*].

The approximation problem is to find a polynomial oy +
-+ + azx* that is as close as possible to g(x) in the sense
of this norm.

Let Q(a) = | ap + =+ + axx® — g(x) |*. This quadratic
criterion has a global minimum at the point, say B, at
which the gradient of Q is zero. This calculation yields

E[BoX’ + -+ + BiX'**] = E[X/g(X)],
j=01,..., k.

An application of Theorem 1 to the right side produces
k

2 BiE[Xi+j] = E[{va(X)}’]’ j = 0’ 19 e ey k’

i=0
which are exactly the same as the moment relations (3.1-
3.4) from which the estimators were derived. Thus the
estimated g(x) = Bo + B1 + -+ + Bux* is the closest
polynomial of degree k to the unknown g(x) in the space
L(X), given a specified form for v(x).

4. BIMODAL DENSITIES

Among all the distributions of the four principal types
as described by (1.1), the relevant ones for bimodal data
are those of order three, the minimum order necessary
for bimodality. Obtaining consistent estimates for the
four coefficients is as easy as solving four simultaneous
linear equations, as provided by Corollary 2.

However, as Figure 3 suggests, the Aroian estimates
for the N5 density for small sample size may be noticeably
inferior to the maximum likelihood estimates. Further, as
suggested by the characterization given in Section 3.3,
the Aroian estimates may be quite misleading if the actual
distribution in fact has more than two modes. Figure 3

NUMBER OF
COUNTRIES

10 20 ” 30 - 20 50
CRUDE BIRTH RATE

Figure 3. A comparison of the N3 and Gg densities as fitted to the
data for annual crude birth rates of 59 countries (Weinstein 1966).
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displays the histogram for the crude birth rates of 59 coun-
tries (Weinstein 1976, p. 88). Parameter estimates are
given in Table 1. The density Ns is also contrasted with
G; in Figure 3, since birth rates are always positive.

Whether an exponential family in the class (1.1) is mul-
timodal depends on the number of roots possessed by the
shape polynomial. If the shape polynomial is cubic, then
it is possible to construct a statistic that is negative if
there are three distinct roots and positive if there is only
one real root. This construction was first described by
the 16th century mathematician Cardan, for whom it is
named. Let g(x) = bo + b1 ¥+ byx*> + bsx>, and let A
= —b,/(3b3). Then

d = [g(\)IP/4 + (b1 + b2N)*/(27b3)

is Cardan’s Discriminant, which will serve as our statistic
for bimodality. In the case of the Type N5 density this
statistic is particularly useful. If we let

o= b}—.zs’
a —aog(\), and
B —Uz(bl + bz}\)y

then 8 = (a/2)*> — (B/3)?, and the density can be repar-
ameterized as

Ns(x) = &explaz + Bz%/2 — z%/4],

where z = (x — \)/o.

4.1

Thus A is a location parameter and o is a scale parameter,
and the modes and antimode of the density are at the
solutions to @ + Bz — z°> = 0. If 8 < 0 the density is
bimodal, and if 8 = 0 the density is unimodal. The pa-
rameters a (asymmetry) and B (bifurcation) are invariant
with respect to changes in location and scale (as is 9),
and they have the following approximate interpretations:

asymmetry: if 8 > 0 then a is a measure of skewness,
while if & < 0 then « indicates the relative heights of the
two modes.

bifurcation: if 8 > 0 then B is a measure of kurtosis,
while if 8 < 0 then B indicates the relative separation of
the two modes. '

The relationship between a and B and the modes and
antimodes of the N; family is shown in Figure 4. The

Table 1. Parameter Estimation for Fitting the
Quartic Exponential Distribution (N3) to the Data on
Annual Crude Birth Rates Displayed in Figure 3

MLE S.E. of MLE Aroian Estimates
A 31.65 .46 32.47
o 7.83 .37 7.42
a -.007 .078 —.64
B 3.28 .30 3.78
S -1.3 -1.9

NOTE: S.E. signifies estimated standard error of the MLE and & denotes Cardan’s dis-
criminant. The standard errors were estimated using the Hessian matrix of the log like-
lihood function. The parameters are as defined in (4.1).
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Figure 4. The location of the roots of a cubic shape polynomial,
g(x) = x> — bx — a, graphed in the vertical dimension as a function
of the parameters a and b. These roots are the modes and antimodes
of the corresponding density. A trajectory parallel to the b-axis is
shown together with its image in the surface above. The densities
of Figure 1 follow this trajectory.

ﬂ Skewness

[

Kurtosis

2 4

34

Figure 5. The asymmetry-bifurcation coordinate system of the
Type N5 family mapped into the Pearson 31 — B2 coordinate system.
The bimodal region (shaded) corresponds roughly to the U-shaped
Pearson Type | family. The map has a singularity at (81, B2) = (0,
3), which is the normal density. (Cf. Johnson and Kotz 1970, p. 14).
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relationship between these parameters and Pearson’s B
and B, is shown in Figure 5.

In the cases G3, Iz, and B3, Cardan’s discriminant is
not quite as useful. This is because the interpretation de-
pends on how many of the real roots are actually located
within the domain of the density. In addition, even when
B; has three distinct real roots within its domain it may
still be unimodal: this possibility is the case depicted in
Figure 2.

An approximate standard error for 8 can be calculated
by the usual methods, based on the covariance matrix of
the estimators for the coefficients of the shape polynom-
ial. This covariance matrix depends on the type of the
density and on which method of estimation was used. In
each case a test for bimodality can be constructed.

6. CONCLUSIONS

There is a single moment relationship, expressed in
Theorem 1, that is valid for a very large class of proba-
bility density functions. This class is a generalization of
the Pearson system, and it includes many types of mul-
timodal exponential distributions. Consistent estimates
may be obtained simply by solving a linear system of
moment relations. If maximum likelihood is to be used,
then these estimates may serve as the initial vector for
the Newton-Raphson iterative procedure.

Except when the mixture assumption is justifiable, the
multimodal densities described above are preferable to
the class of mixture densities in several respects. The
typical mixture density with j modes requires 3j — 1 pa-
rameters, whereas the equivalent multimodal exponential
family requires only 2j parameters, for which the maxi-
mum likelihood method yields unique estimates. In the’
case j = 2, Cardan’s discriminant can be used as an in-
dicator of bimodality.

[Received November 1978. Revised May 1982.]
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