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Preface

This essay had its beginning in an article of mine published in
1946 in the American Journal of Physics. The axioms of prob-
abilty were formulated there and its rules were derived from

them by Boolean algebra, as in the first part of this book. The
relation between expectation and experience was described, al-
though very scantily, as in the third part. For some years past,
as I had time, I have developed further the suggestions made in
that article. I am grateful for a leave of absence from my duties

at the Johns Hopkis University, which has enabled me to bring

them to such completion as they have here.
Meanwhile a transformation has taken place in the concept of

entropy. In its earlier meaning it was restricted to thermo-

dynamics and statistical mechanics, but now, in the theory of
communication developed by C. E. Shannon and in subsequent

work by other authors, it has become an important concept in
the theory of probability. The second part of the present essay

is concerned with entropy in this sense. Indeed I have proposed
an even broader definition, on which the resources of Boolean
algebra can be more strongly brought to bear. At the end of the

essay, I have ventured some comments on Hume's criticism of
induction.

Writing a preface gives a welcome opportunity to thank my
colleagues for their interest in my work, especially Dr. Albert L.
Hammond, of the Johns Hopkins Department of Philosophy, who
was good enough to read some of the manuscript, and Dr. Theo-
dore H. Berlin, now at the Rockefeller Institute in New York but
recently with the Department of Physics at Johns Hopkins. For
help with the manuscript it is a pleasure to thank Mrs. Mary B.

Vll



Rowe, whose kindness and skill as a typist and linguist have
aided members of the faculty and graduate students for twenty-
five years.

I have tried to indicate my obligations to other writers in the
notes at the end of the book. Even without any such indication,
readers familiar with A Treatise on Probability by the late J. M.

Keynes would have no trouble in seeing how much I am indebted
to that work. It must have been thirty years or so ago that I first
read it, for it was almost my earliest reading in the theory of prob-
ability, but nothing on the subject that I have read since has given
me more enjoyment or made a stronger impression on my mind.

The Johns Hopkins University
BALTIMORE, MARYLAND

R. T. C.
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THE ALGEBRA OF PROBABLE INFERENCE



I

Proba bility

1. Axioms of Probable Inferenc~ 1

A probable inference, in this essay as in common usage, is one
entitled on the evidence to partial assent. Everyone gives fuller
assent to some such inferences than to others and thereby dis-

tinguishes degrees of probability. Hence it is natural to suppose

that, under some conditions at least, probabilities are measurable.
Measurement, however, is always to some extent imposed upon
what is measured and foreign to it. For example, the pitch of a

stairway may be measured as an angle, in degrees, or it may be
reckoned by the rise and run, the ratio of the height of a step to its
width. Either way the stairs are equally steep but the measure-
ments differ because the choice of scale is arbitrary. It is there-

fore reasonable to leave the measurement of probability for dis-
cussion in later chapters and consider first what principles of
probable inerence wil hold however probability is measured.
Such principles, if there are any, wil play in the theory of

probable inference a part like that of carnots principle in ther-

modynamics, which holds for all possible scales of temperature,
or like the parts played in mechanics by the equations of Lagrange
and Hamilton, which have the same form no matter what system
of coordinates is used in the description of motion.

It has sometimes been doubted that there are principles valid
over the whole field of probable inference. Thus Venn wrote in
his Logic of Chance: 2

1
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"In every case in which we extend our inferences by Induc-
tion or Analogy, or depend upon the witness of others, or trust
to our own memory of the past, or come to a conclusion through
conflicting arguments, or even make a long and complicated
deduction by mathematics or logic, we have a result of which
we can scarcely feel as certain as of the premises from which it
was obtained. In all these cases then we are conscious of vary-
ing quantities of belief, but are the laws according to which the
belief is produced and varied the same? If they cannot be re-
duced to one harmonious scheme, if in fact they can at best
be brought to nothing but a number of different schemes, each
with its own body of laws and rules, then it is vain to endeavour
to force them into one science."

In this passage, the first of three sentences distinguishes types
of inference which common usage calls probable, the second asks
whether inferences of these different kinds are subject to the

same laws and the third implies that they are not. Nevertheless,
if we look for them, we can find likenesses among these examples
and likenesses also between these and others which would be
accepted as proper examples of probability by all the schools of
thought on the subject. Venn himself belonged to the school of
authors who define probabilty in statistical terms and restrict its
meaning to examples in which it can be so defined.3 By their
definition, they estimate the probability that an event wil occur
under given circumstances from the relative frequencies with
which it has occurred and failed to occur in past instances of the
same circumstances. Every instance in which it has occurred
strengthens the argument that it wil occur in a new instance and
every contrary instance strengthens the contrary argument.

Thus, whenever they estimate a probability in the restricted
sense their definition allows and the way their theory prescribes,
they "come to a conclusion through conflcting arguments," as do
the advocates of other definitions and theories. The argument,
moreover, which makes one inerence more probable makes the
contradictory inference less probable and thus the two probabili-
ties stand in a mutual relation. In this all schools can agree and
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it may be taken as an axiom on any definition of probabilty that:

The probabilty of an inference on given evidence determines

the probabilty of its contradictory on the same evidence. (1.)

Continuing with Venn's list of varieties of probable inference,
let us consider the probability of the right result in "a long and
complicated deduction in mathematics" and compare it with the
probability of a long run of luck at cards or dice, a classical ex-
ample in the theory of probabilty. In any game of chance, a

long run of luck is, of course, less probable than a short one, be-
cause the run may be broken by a mischance at any single toss of a
die or drawing of a card. Similarly, in a commonplace example
of mathematical deduction, a long bank statement is less likely
to be right at the end than a short one, because a mistake in any
single addition or subtraction wil throw it out of balance.

Clearly we are concerned here with one principle in two examples.
A mathematical deduction involving more varied operations in its
successive steps or a chain of reasoning in logic would provide
only another example of the same principle.

The uncertainties of testimony and memory, also cited by
Venn, come under this principle as w'ell. Consider, for example,
the probabilty of the assertion, made by Sir John Maundeville in
his Travels, that Noah's Ark may stil be seen on a clear day, rest-
ing where it was left by the receding waters of the Flood, on the
top of Mount Ararat. For this assertion to be probable on Sir
John's testimony, it must first of all be probable that he made it
from his recollection rather than his fancy. Then, on the assump-

tion that he wrote as he remembered what he saw or heard told,
it must be probable also that his memory could be trusted against
a lapse such as might have occurred during the long years after
he left the region of Mount Ararat and before he found in his
writing a solace from his "rheumatic gouts" and his "miserable
rest." Finally, on the assumption that his testimony was honest

and his memory sound, it must be probable that he or those on
whom he depended could be sure that they had truly seen Noah's



4 PROBABILITY

Ark, a matter made somewhat doubtful by his other statement
that the mountain is seven miles high and has been ascended only
once since the Flood.

Every assertion which, like this one, involves the transmission
of knowledge by a witness or its retention in the memory is, on
this account, a conjunction of two or more assertions, each of
which contributes to the uncertainty of the joint assertion. For
this reason, it comes under the same principle which we saw in-
volved in the probability of a run of luck at cards and which can
be stated in the following axiom:

The probabilty on given evidence that both of two infer-
ences are true is determined by their separate probabilities,
one on the given evidence, the other on this evidence with the
additional assumption that the first inference is true. (1.i)

Thus the uncertainties of testimony and memory, of long and
complicated deductions and conflcting arguments-all the

specific examples in Venn's list-have traits in common with one
another and with the classical examples provided by games of
chance.

The more general subjects of induction and analogy, also men-
tioned in the quotation from Venn, must be reserved for discus-
sion in later chapters, but the examples already considered may
serve to launch an argument that all kinds of probable inference
can be "reduced to one harmonious scheme."4

For this reduction, the argument wil require only the two
axioms just given, when they are implemented by the logical rules
of Boolean algebra.6

2. The Algebra of Propositions

Ordinary algebra is the algebra of quantities. In our use of it

here, quantities will be denoted by italic letters, as a, b, A, B.
Boolean algebra is the algebra, among other things, of proposi-
tions. Propositions wil be denoted here by small boldface let-
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ters, as a, b, c. The meaning of a proposition in Boolean algebra
corresponds to the value of a quantity in ordinary algebra. For
example, just as, in ordinary algebra, a certain quantity may have
a constant value throughout a given calculation or a variable one,
so, in Boolean algebra, a proposition may have a fixed meaning
throughout a given discourse or its meaning may vary according
to the context within the discourse. Thus "Socrates is a man" is
a familiar proposition of constant meaning in logical discourse,
whereas the proposition, "I agree with all that the previous

speaker has said," has a meaning variable according to the
occasion. For another example of the same correspondence, just

as an ordinary algebraic equation, such as

(a + b)c = ac + bc,

states that two quantities, although different in form, are never-
theless the same in value, so a Boolean equation states that two
propositions of different form are the same in meaning.

Of the signs used for operations peculiar to Boolean algebra, we
shall need only three, "', . and V, which denote respectively not,

and and or.6 Thus the proposition not a, called the contradictory
of a, is denoted by "'a. The relation between a and "'a is a
mutual one, either being the other's contradictory. To deny "'a
is therefore to affm a, so that

"'''a = a.

The proposition a and b, called the conjunction of a and b, is de-
noted by a. b. The order of propositions in the conjunction is the
order in which they are stated. In ordinary speech and writing,

if propositions describe events, it is customary to state them in the
chronological order in which the events take place. So the nur-
sery jingle runs, "Tuesday we iron and Wednesday we mend."
It would have the same meaning, however, if it ran, "Wednesday
we mend and Tuesday we iron." In this example, therefore, and
also in general,

b.a = a.b.
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Similarly the expression a.a means only that the proposition a is
stated twice and not that an event described by a has occurred

twice. Rhetorically it is more emphatic than a, but logically it
is the same. Thus

a.a = a.
Parentheses are used in Boolean as in ordinary algebra to indi-

cate that the expression they enclose is to be treated as a single
entity in respect to an operation with an expression outside.

They designate an order of operations, in that any operations
indicated by signs in the enclosed expression are to be performed
before those indicated by signs outside. The parentheses are
unnecessary if the order of operations is immateriaL. Thus
(a. b). c denotes the proposition obtained by first conjoining a
with b and then conjoining a. b with c, whereas a. (b. c) denotes
the proposition obtained by first conjoining b with c and then
conjoining a with b. c, but the propositions obtained in these two
sequences of operations have the same meaning and the paren-
theses may therefore be omitted. Accordingly,

(a.b).c = a.(b.c) = a.b.c.
The proposition a or b, called the disjunction of a and b, is de-

noted by a V b. It is to be understood that or is used here in the
sense intended by the notice, "Anyone hunting or fishing on this
land wil be prosecuted," which is meant to include persons who
both hunt and fish along with those who engage in only one of
these activities. This is to be distinguished from the sense in-

tended by the item, "coffee or tea," on a bil of fare, which is
meant to offer the patron either beverage but not both. Thus V
has the meaning which the form and/or is sometimes used to
express.

Let us now consider expressions involving more than one of the
signs, "', . and V. In this consideration it should be kept in mind
that ",a is not some particular proposition meant to contradict a

item by item. For example, if a is the proposition, "The dog is
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small, smooth-coated, bob-tailed and white all over except for

black ears," rva is not the proposition, "The dog is large, wire-
haired, long-tailed and black all over except for white ears." To
assert rva means nothing more than to say that a is false at least
in some part. If a is a conjunction of several propositions, to

assert rva is not to say that they are all false but only to say that
at least one of them is false. Thus we see that

rv(a.b) = rva V rvb.

From this equation and the equality of rv rva with a, there is
derived a remarkable feature of Boolean algebra, which has no
counterpart in ordinary algebra. This characteristic is a duality
according to which the exchange of the signs, . and V, in any

equation of propositions transforms the equation into another
one equally valid.7 For example, exchanging the signs in this
equation itself, we obtain

rv(a V b) = rva. rvb,

which is proved as follows:

a vb = rvrva V rvrvb = rv(rva.rvb).

Hence

rv(avb) = rvrv(rva.rvb) = rva.rvb.

From the duality in this instance and the mutual relation of a
and rva, the duality in other instances follows by symmetry. We
have, accordingly, from the equations just preceding,

b V a = a V b,

aVa=a
and

(a V b) V c = a V (b V c) = a V b V c.

The propositions (a V b).c and a V (b.c) are not equal. For,

if a is true and c false, the first of them is false but the second is
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true. Therefore the form a V b.c is ambiguous. In verbal ex-

pressions the ambiguity is usually prevented by the meaning of
the words. Thus, in a weather forecast, "rain or snow and high
winds," would be understood to mean "(rain or snow) and high
winds," whereas "snow or rising temperature and rain" would
mean "snow or (rising temperature and rain)." In symbolic ex-
pressions, on the other hand, the meaning is not given and paren-
theses are therefore necessary.

When we assert (a V b).c, we mean that at least one of the
propositions, a and b, is true, but c is true in any case. This is
the same as to say that at least one of the propositions, a.c and
b. c, is true and thus

(a V b).c = (a. c) V (b. c).

The dual of this equation is

(a. b) V c = (a V c).(b V c).
If, in either of these equations, we let c be equal to b and sub-

stitute b for its equivalent, b. b in the first equation or b V bin
the second, we find that

(a V b).b = (a. b) vb.
In this equation, the exchange of the signs, . and V, has only the
effect of transposing the members; the equation is dual to itself.
Each of the propositions, (a V b). b and (a. b) V b, is, indeed,
equal simply to b. Thus to say, "He is a fool or a knave and he is
a knave," or "He is a fool and a knave or he is a knave," sounds
perhaps more uncharitable than to say simply, "He is a knave,"
but the meaning is the same.

In ordinary algebra, if the value of one quantity depends on the
values of one or more other quantities, the first is called a function
of the others. Similarly, in Boolean algebra, we may call a

proposition a function of one or more other propositions if its
meaning depends on theirs. For example, a V b is a Boolean

function of the propositions a and b as a + b is an ordinary func-
tion of the quantities a and b.
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It may be remarked that the operations of Boolean algebra
generate functions of infinitely less variety than is found among
the functions of ordinary algebra. In ordinary algebra, because

a X a = a2, a X a2 = a3, . . . and a + a = 2a, a + 2a = 3a, . . . ,
there is no end to the functions of a single variable which can be
generated by repeated multiplications and additions. By con-
trast, in Boolean algebra, a.a and a Va are both equal simply to
a, and thus the signs, . and V, when used with a single proposi-
tion, generate no functions.

The only Boolean functions of a single proposition are itself and
its contradictory. In form there are more; thus a V rva has the

form of a function of a, but it is a function only in the trivial sense
in which x - x and x/x are functions of x. In Boolean algebra,

a V rva plays the part of a constant proposition, because it is a
truism and remains a truism through all changes in the meaning
of a. To assert a truism in conjunction with a proposition is no

more than to assert the proposition alone. Thus

(a V rva). b = b

for every meaning of a or b. On the other hand, to assert a
truism in disjunction with a proposition is only to assert the

truism; a V rva V b, being true for every meaning of a or b, is itself
a truism, so that

a V rva V b = a V rva.

Each of these equations has its dual and thus

(a. rva) V b = b
and

a. rva. b = a. rva.

The proposition a. rva is an absurdity for every meaning of a and
is thus another constant proposition. These two constant propo-
sitions, the truism and the absurdity, are mutually contradictory.

It wil be convenient for future reference to have the following

collection of the equations of this chapter.
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a.a = a, (2.2 I)

(2.3 I)

(2.4 I)

b.a = a.b,

"'(a.b) = "'a V ",b,

(a.b).c = a.(b.c) = a.b.c,
(2.5 I)

(a V b).c = (a.c) V (b.c),
(2.6 I)

(2.7 I)

(2.8 I)

(a Vb).b = b,

(a V "'a).b = b,
a V ",a V b = a V "'a,

(2.9 I)

PROBABILITY

"'''a = a, (2.1)

(2.2 II)

(2.3 II)

a V a = a,

b V a = a V b,

"'(a V b) = "'a. ",b,
(2.4 II)

(a V b) V c = a V (b V c)
= a V b V c, (2.5 II)

(a. b) V c = (a V c).(b V c),
(2.6 II)

(2.7 II)

(2.8 II)

(a. b) vb = b,

(a. ",a) V b = b,

a. "'a. b = a. "'a.
(2.9 II)

Each of these equations after the first is dual to the equation on
the same line in the other column, from which it can be obtained
by the exchange of the signs, . and V. In the preceding discus-
sion, the equations on the left were taken as axioms and those on
the right were derived from them and the first equation. If, in-

stead, the equations on the right had been taken as axioms, those
on the left would have been their consequences. Indeed any set
which includes the first equation and one from each pair on the
same line wil serve as axioms for the derivation of the others.

More equations can be derived from these by mathematical
induction. For example, it can be show n, by an induction from

Eq. (2.4 I), that

"'(a1.a2'" ..am) = "'a1 V "'a2 V.. .V "'am, (2.10 I)

w here ai, a2, . . . am are any propositions.
We first assume provisionally, for the sake of the induction,

that this equation holds when m is some number k and thence
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prove that it holds also when m is k + 1 and consequently when
it is any number greater than k.

Replacing 3 in Eq. (2.4 I) by 31'32'.. .'3k and b by 3k+ll we
have

"'((31'32'" ..3k).3k+1J = "'(31'32'" ..3k) V"'3k+1.

By the provisional assumption just made,

"'(31'32'" ..3k) = "'31 V "'32 V... V "'3k,

and thus

"'((31'82'" ,'3k).3k+1J = ("'31 V "'32 V... V "'3k) V "'3k+!.

Therefore, by Eqs. (2.5 I) and (2.5 II)

"'(31'32'" ..3k.3k+1) = "'31 V "'32 V ... V "'3k V "'3k+1'

Thus Eq. (2.10 I) is proved when m is k + 1 if it is true when m
is k. By Eq. (2.4 I), it is true when m is 2. Hence it is proved
when m is 3 and thence when m is 4 and when it is any number,
however great.

By exchanging the signs, . and V, in Eq. (2.10 I), we obtain
its dual, also valid:

'" (31 V 32 V . . . V 3m) = "'31' "'32'. . .' "'3m, (2.10 II)

an equation which can also be derived by mathematical induction
from Eq. (2.4 II).

A mathematical induction from Eq. (2.6 I) gives:

(31 V 32 V... V 3m).b = (31.b) V (32.b) V... V (3m' 
b).

(2.11 I)

By an exchange of signs in this equation or an induction from
Eq. (2.6 II), we obtain

(31'32'" ,'3m) vb = (31 V b). (32 V b)... ,'(3m V b). (2.11 II)
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3. The Conjunctive Inference

Every conjecture is based on some hypothesis, which may con-
sist wholly of actual evidence or may include assumptions made
for the argument's sake. Let h denote an hypothesis and i a

proposition reasonably entitled to partial assent as an inference
from it. The probability is a measure of this assent, determined,

more or less precisely, by the two propositions, i and h. It is

therefore a numerical function of propositions, in contrast with
the functions considered in the preceding chapter, which, being
themselves propositions, may be called propositional functions of
propositions. (Readers familiar with vector analysis may be
reminded of the distinction between scalar and vector functions
of vectors.) 8

Let us denote the probability of the inference i on the hypothe-
sis h by the symbol i I h, which wil be enclosed in parentheses
when it is a term or factor in a more complicated expression.9

The choice of a scale on which probabilties are to be reckoned is
stil undecided at this stage of our consideration. If i I h is a
measure of the assent to which the inference i is reasonably en-
titled on the hypothesis h, it meets all tne requirements of a

probability which our discussion thus far has imposed. But, if
i I h is such a measure, then so also is an arbitrary function of
i I h, such as 100 (i I h), (i I h)2 or In (i I h). The choice among
the different possible scales of probability is made by conventions
which wil be considered later.

The probability on the hypothesis h of the inference formed by
conjoining the two inferences i and j is represented, in the notation
just given, by i. j I h. By the axiom (1.ii), this probability is a
function of the two probabilities: i I h, the probability of the first
inference on the original hypothesis, and j I h.i, the probability

of the second inference on the hypothesis formed by conjoining
the original hypothesis with the first inference. Callng this

function F, we have:

ì;-
t!-

1,'
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¡.j I h = F((¡ I h), (j I h'¡)J. (3.1)

Since the probabilties are all numbers, F is a numerical function
of two numerical variables.

The form of the function F is in part arbitrary, but it can not
be entirely so, because the equation must be consistent with
Boolean algebra. Let us see what restriction is placed on the
form of F by the Boolean equation

(a.b).c = a.(b.c) = a.b.c.
If we let

h = a, ¡ = b, j = c.d,

so that

¡.j = b. (c.d) = b.c.d,

Eq. (3.1) becomes

b.c.d I a = F((b I a), (c.d I a. b)J = F(x, (c.d I a. b)J,

where, for brevity, x has been written for b I a. Also, if we now
let

h = a. b, ¡ = c, j = d,

so that

h.¡ = (a.b).c = a.b.c,

Eq. (3.1) becomes

c.d I a.b = F((c I a.b), (d I a.b.c)J = F(y, z),

where y has been written for cia. band z for d I a. b.c. Hence,

by substitution in the expression just obtained for b.c.d I a, we

find,

b.c.d I a = F(x, F(y, z)J.

Similarly, if, in Eq. (3.1), we let

(3.2)

h = a, ¡ = b.c, j = d,
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we find

b.c.d I a = F((b.c I a), zJ,

and, if we now let

h = a, ¡ = b, j = c,

we have

b.c I a = F(x, y),

so that

b.c.d I a = FrF(x, y), zJ.

Equating this expression for b.c.d I a with that given by Eq.

(3.2), we have

F(x, F(y, z)J = F(F(x, y), zJ, (3.3)

as a functional equation to be satisfied by the function F.10

Let F be assumed differentiable and let àF(u, v)/àu be denoted
by F1(u, v) and àF(u, v)/àv by F2(u, v). Then, by differentiating

this equation with respect to x and y, we obtain the two equations,

F1(x, F(y, z)J = F1(F(x, y), Z)F1(X, y),

F2(x, F(y, Z))F1(y, z) = F1(F(x, y), zJF2(x, y).

Eliminating F1(F(x, y), zJ between these equations gives a result
which may be written in either of the two forms:

G(x, F(y, Z))F1(y, z) = G(x, y),

G(x, F(y, Z))F2(y, z) = G(x, y)G(y, z),

(3.4)

(3.5)

where G(u, v) denotes F2(u, v)/F1(u, v).
Differentiating the first of these equations with respect to z and

the second with respect to y, we obtain equal expressions on the
left and so find

à(G(x, y)G(y, z)J/ày = O.
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Thus G must be such a function as not to involve y in the product
G(x, y)G(y, z). The most general function which satisfies this
restriction is given by

G(u, v) = aH(u)/H(v),

where a is an arbitrary constant and H is an arbitrary function of
a single variable.

Substituting this expression for G in Eqs. (3.4) and (3.5), we
obtain

F1(y, z) = H(F(y, z)JjH(y),

F2(y, z) = aH(F(y, z)JjH(z).

Therefore, since dF(y, z) = F1(y, z) dy + F2(y, z) dz, we find

dF(y,z) = ~ + a~
H(F(y, z)J H(y) H(z) .

Integrating, we obtain

CP(F(y, z)J = P(y)(P(z)Ja, (3.6)

where C is a constant of integration and P is a function of a single
variable, defined by the equation,

f du
In P(u) = H(u) .

Because H is an arbitrary function, so also is P.
Equation (3.6) holds for arbitrary values of y and z and hence

for arbitrary variables of which P and F may be functions. If we
take the function P of both members of Eq. (3.3), we obtain an
equation from which F may be eliminated by successive substitu-
tions of P(F) as given by Eq. (3.6). The result is to show that
a = 1. Thus Eq. (3.6) becomes

CP(F(y, z)J = P(y)P(z).

If, in this equation, we let y be ¡ I hand z bej I h.¡, then, by Eq.
(3.1), F(y, z) = i- I h. Thus
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CP(i.j I h) = P(i I h)P(j I h.i).

The function P, being arbitrary, may be given any convenient
form. Indeed, if we so choose, we may leave its form undeter-
mined for, as was remarked earlier in this chapter, if i I h measures
probability, so also does an arbitrary function of i I h. We could
give the name of probability to P(i I h) rather than to i I hand
never be concerned with the relation between the two quantities,
because we should never have occasion to use i I h except in the
function P(i I h). In effect we should merely be adopting a dif-

ferent symbol of probability. Instead, let us retain the symbol
i I h and take advantage of the arbitrariness of the function P to
let P(u) be identical with u, so that the equation may be written

~
i:

C(i.j I h) = (i I h)(j I h.i).

If, in this equation, we let j = i and note that i.i = i by Eq.

(2.2 I), we obtain, after dividing by (i I h),

C = i I h. i.

Thus, when the hypothesis includes the inference in a conjunc-
tion, the probability has the constant value C, whatever the
propositions may be. This is what we should expect, because an

inference is certain on any hypothesis in which it is conjoined and
we do not recognize degrees of certainty.

The value to be assigned to C is purely a matter of convenience,
and different values may be assigned in different discourses.
When we use the phrase, "three chances in ten," we are, in effect,
adopting a scale of probability on which certainty is represented
by 10 and we are saying that some other probability has the value

3 on this scale. Similarly, if we say that an inference is "95

per cent certain," we are saying that its probability is 95 on a
scale on which certainty has the probability 100. Usually it is
convenient to represent certainty by 1 and, with this convention,
the equation for the probability of the conjunctive inference is

i.j I h = (i I h)(j I h.i). (3.7)
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This equation expresses the familar rule for the probabilty of

a conjunctive inerence or, as it is more often stated, the

probabilty of a compound event. It is indeed the only equation
for this probabilty which is consistent with the ordinary scale.
It is worth remarking, however, that other scales beside the or-
dinary one are consistent with this equation. For, raising its
members to a power r, we have

(i.j I h)r = (i I h)r(j I h.i)r, (3.8)

whence it is evident that the r th powers of the ordinary probabili-
ties satisfy the same equation as the ordinary probabilities them-
selves. It follows that the rule for the probability of the con-

junctive inference would remain the same in any change by which
arbitrary powers of the ordinary probabilities were used, instead
of them, as probabilities on a new scale.

Equation (3.7), when i is the truism, a V "'a, becomes

(a V "'a).j I h = (a V "'a I h)(j I h. (a V "'a)J.

By Eq. (2.8 I), (a V "'a).j = j and similarly h. (a V "'a) = h.

Hence each of the probabilities, (a V "'a). j I hand j I h. (a V "'a),
is equal simply to j I hand

a V "'a I h = 1.

The truism, as we should suppose, is thus certain on every
hypothesis.

It is to be understood that the absurdity, a. "'a, is excluded as
an hypothesis but, at the same time, it should be stressed that not
every false hypothesis is thus excluded. A proposition is false if
it contradicts a fact but absurd only if it contradicts itself. It is

permissible logically and often worth while to consider the prob-
abilty of an inference on an hypothesis which is contrary to fact
in one respect or another.

An hypothesis h, on which an inference i is certain, is said to
imply the inference. Every hypothesis, for example, thus implies

the truism. There are some discourses in which a proposition
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h is common to the hypotheses of all the probabilities considered,
while other propositions, a, b, . . . , are conjoined with h in some
of the hypotheses. In such a discourse it is sometimes con-

venient, and need not be confusing, to omit reference to hand
call an inference "implied by a" if it is implied by a.h. In this

sense, an inference which is certain on the hypothesis h alone,
and therefore certain throughout the discourse, can be said to be
implied by each of the propositions, a, b, . . . , as the truism is
implied by every proposition in any discourse.

Exchanging i andj in Eq. (3.7) and observing thatj.i = i.j by

Eq. (2.3 I), we see that

(i I h)(j I h.i) = (j I h)(i I h.j),

whence

j I h.i - i I h.j

TT - Tj'
If j I h. i = j I h, i is said to be irrelevant to j on the hypothesis h.
The equation just obtained shows that also j is then irrelevant to i
on the same hypothesis. The relation is therefore one of mutual
irrelevance between the propositions i and j on the hypothesis h,
and it is conveniently defined by the condition,

I
i

Ii
ii
II

11

n

i
!

i.j I h = (i I h)(j I h). (3.9)

If h alone implies j, so also does h.i. Then j I hand j I h.i

are both unity and therefore equal, and i and j are mutually

irrelevant. Thus every proposition implied by a given hypothe-

sis is irrelevant on that hypothesis to every other proposition.

4. The Contradictory Inference

By the axiom (1.), the probability of the inference i on the
hypothesis h determines that of the contradictory inference, ",i,
on the same hypothesis. Thus
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",i I h = f(¡ I h), (4.1)

where f is a numerical function of a single variable, which must be
consistent in form both with Boolean algebra and the rule for the
probability of the conjunctive inference, as given in Eq. (3.7).

To see what are the requirements of this consistency, first let
i = "'j in the equation. Thus we find

'" "'j I h = f( "'j I h) = fff(j I h)J.

But "'''j = j by Eq. (2.1) and thus

j I h = fff(j I h)J.

Therefore f must be such a function that

fff(x)J = x. (4.2)

This equation, by itself, imposes only a rather weak restriction
on the form of f. A more stringent condition is found if we re-
place i in Eq. (4.1) by i V j and thus obtain, by the use of Eq.
(2.4 II),

f(i V j I h) = "'(¡ V j) I h = ",i. "'j I h.
By Eqs. (3.7) and (4.1),

",i. "'j I h = (",i I h)( "'j I h. "'i) = f(i I h)f(j I h. ",i).

Thus

f(' I h. ""') = f(i V j I h)J 1 f(i I h) .
Taking the functionf of both members of this equation and using
Eq. (4.2), on the left, we have

. I h.""' = f (f(i V j i h)JJ 1 f(i I h) .
Making use again of Eq. (3.7), we find that

. . ""i.jlh ""i-lh
J I h. ""i = ",i I h = f(i I h) ,
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whence, by the preceding equation,

",'.' I h = fC I h)f (f(i V j i h)Ji J i f(i I h) . .

By Eqs. (2.3 I), (3.7) and (4.1),

",i.j I h = j.",i , h = (j I h)("'i I h.j) = (j I h)f(i I h.j)

= (j I h) f ej j, ~ h) .
wh
an(

With this result the preceding equation becomes

(j I h) fe/I'hh) = f(i I h) f (f(~~ ~ ~)h)J. (4.3)

ani
ob

This equation holds for arbitrary meanings of i and j. Let

i = a. b, j = a V b,
W

so that
grc

eq

i.j = (a. b). (a V b) = a.(b.(a V b)J by Eq. (2.5 I)
= a. b by Eqs. (2.3 I) and (2.7 I) = i,

and, by a similar argument resting on Eqs. (2.5 II), (2.3 I) and
(2.7 II),

i V j = j.

va
TI
to

Thus Eq. (4.3) becomes

. (i I h) . (f(j I h)J
(J i h) f j I h = f(i I h) f f(i I h) . TI

This equation is given in a more concise and symmetrical form if
we denote i I h by fey), so that f(i I h) = y, and j I h by z. In
this way we obtain the equation, w

Zf(f~)J = Yf(f~)J. (4.4)

This equation and the three derived from it by differentiation
with respect to y, to z and to y and z can be written

W

In
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zf(u) = yf(v),

f'(u)f'(y) = f(v) - vf'(v),

feu) - uf'(u) = ¡'(v)¡'(z),
uf" (u)f' (y)/z = vI" (v)¡' (z)/y,

where u denotesf(y)/z, v denotesf(z)/y,f' the first derivative of f
and 1" the second derivative.

Multiplying together the corresponding members of the first
and last of these equations, we eliminate y and z at the same time,
obtaining

uf"(u)f(u)f'(y) = vf"(v)f(v)f'(z).

With this equation and the second and third of the preceding

group, it is possible to elimnate ¡' (y) and ¡' (z). TheresuIting
equation is

uf"(u) feu) - vf"(v) f(v)
(uf'(u) - f(u)J j'(u) - (vf'(v) - f(v)J f'(v) .

Each member of this equation is the same function of a different
variable and the two variables, u and v, are mutually independent.
This function of an arbitrary variable x must therefore be equal
to a constant. Callng this constant c, we have

xf"(x)f(x) = c(xf'(x) - f(x)J!'(x).

This equation may be put in the form

df' /f' = c(df/f - dx/x),

whence, by integration, we find that

f' = A(f/x)c,

where A is a constant.
integration gives

The variables being separable, another

l' = Ax' + B,
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where r has been written for 1 - c, and B is another constant. It

is now found by substitution that this result satisfies Eq. (4.4)
for arbitrary values of y and z only if B = A2. Equation (4.2)
is also to be satisfied and for this it is necessary that A = -1.
No restriction is imposed on r, which thus remains arbitrary.
We have then finally

xr + (¡(x)Jr = 1

or

(i I h)r + (",i I h)r = 1.

We might, if we wished, leave the value of r unspecified by
using (i I h)r as the symbol of probability here and in Eq. (3.8).
With a free choice in the matter, it is more convenient to take r
as unity. By this convention,

(i I h) + ("'i I h) = 1. (4.5)

If, in this equation, we replace h by h.i and recall that
i I h.i = 1, we see that ",i I h.i = O. Thus impossibility has

the fixed probability zero as certainty has the fixed probability

unity.
A theorem frequently useful is obtained as follows. By Eq.

(3.7),

(i.j I h) + (i. "'j I h) = (i I h)((j I h.i) + ("'j I h.i)J,

whence, by Eq. (4.5),

(i. j I h) + (i. "'j I h) = i I h. (4.6)

An immediate consequence of this theorem, obtained by making
j equal to i and noting that i.i = i, is

i. ",i I h = O.

Thus the absurdity, i. ",i, has zero probability on every hypothe-
sis, as we should expect. There would be an inconsistency here
if the absurdity itself were admitted as an hypothesis, for then it
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would appear to be certain as an inference and to have unit
probability. There is, of course, nothing astonishing about this,
because an inconsistency is just what we should expect as the
logical consequence of a self-contradictory hypothesis.

Only the absurdity is impossible on every hypothesis, but every
proposition except the truism is impossible on some hypotheses.
If each of the two propositions, i and j, is possible without the
other on the hypothesis h, but their conjunction, i. j, is impossible,
it follows from Eq. (3.7) directly that

j I h.i = 0
and, by the exchange of i and j, that

i I h.j = O.

The propositions i and j are said in this case to be mutually

exclusive on the hypothesis h, because the conjunction of either of

them with h in the hypothesis makes the other impossible.
If i is impossible on the hypothesis h alone, h.i is self-contradic-

tory and therefore inadmissible as an hypothesis. In this case,
therefore, no meaning can be attached to j I h.i. But i I h.j

has stil a meaning and the value zero, unless j is also impossible
on the hypothesis h alone, and, in any case, i. j I h = O. If both
i I h andj I h are zero, then bothj I h.i and i I h.j are meaning-
less, but, a fortiori, i. j I h = O. It is convenient to comprise all
these cases under a common term and call any two propositions
mutually exclusive on a given hypothesis if their conjunction is
impossible on that hypothesis, whether they are singly so or not.
In this sense, any proposition which is impossible on an hypothe-
sis is mutually exclusive on that hypothesis with every proposi-
tion, including even itself, and the absurdity is mutually exclusive
with every proposition on every possible hypothesis.

It is worth remarking that, if two propositions are mutually
irrelevant on a given hypothesis, then each is irrelevant to the
contradictory of the other and the contradictories of both are

mutually irrelevant. To see this, let i and j be propositions
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mutually irrelevant on the hypothesis h, so that i I h.j = i I h.

Then, by Eq. (4.5), ",i I h.j = ",i I hand j is thus irrelevant to
",i. Exchanging the propositions proves that i is irrelevant to
"'j and repeating the argument proves the mutual irrelevance of
"'i and "'j. Every instance of irrelevance is thus a relation

between pairs of propositions, such as i, "'i and j, "'j, each

proposition of either pair being irrelevant to each of the other
pair.

5. The Disjunctive Inference

The two axioms which, in the two chapters preceding this one,
have been found suffcient for the probabilities of the conjunctive
and contradictory inerences, suffce also for the probability of the'
disjunctive inference. That only two axioms are required is a
consequence of the fact that, among the three operations: con-

tradiction, conjunction and disjunction, there are only two in-
dependent ones: contradiction and either of the others but not

both. For the Boolean equations, "'(i V j) = ",i. "'j and
'" '" (i V j) = i V j, can be combined to give

i V j = "'(",i'''j),

¡

:1
!
.~
r

I

¡

ì
,

I

an equation which defines disjunction in terms of contradiction
and conjunction. Alternatively, conjunction can be defined in
terms of contradiction and disjunction.

By Eq. (4.5), therefore,

i V j I h = 1 - (",i. "'j I h)

and, by Eq. (4.6),

",i'''j I h = (",i I h) - (",i.j I h) = 1 - (i I h) - (",i.j I h).

Thus

i V j I h = (i I h) + (",i.j I h).
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By Eqs. (2.3 I) and (4.6),

",i.j I h = j. ",i I h = (j I h) - (j.i I h) = (j I h) - (i.j I h).

Therefore

i V j I h = (i I h) + (j I h) - (i.j I h). (5.1)

It is worth noticing that the exchange of the signs, V and., in
this equation has only the effect of transposing terms and so leaves
the equation unchanged in meaning and therefore stil valid.

This equation, rewritten with a change of notation whereby i
and j are replaced by a1 and a2, becomes

a1 V a2 I h = (a1 I h) + (a2 I h) - (a1' a2 I h). (5.2)

In this form, it is a special case of the general equation, now to be
proved, for the probability of the disjunction of m propositions.

This is m m-I m
(a1 V a2 V . . . vam I h) = L (ai I h) - L L (ai.aj I h)i=l i=l j=i+1

m-2 m-1 m
+ L L L (ai.aj.ak I h) - . . .

i=l j=HI k=j+1

:: (a1.a2" . ..am I h). (5.3)

The limits of the summations in this equation are such that none
of the propositions, ai, a2, . . . am, is conjoined with itself in any
inference and also that no two inferences in any summation are
conjunctions of the same propositions in different order. In the

three-fold sumation, for example, there is no such term as
a1' a1 . a2 I h, and the only conjunction of ai, a2, and as is in the
term a1.a2.aS I h, because the limits exclude probabilities such as
a2.a1.aS I h, obtained from this one by permuting the proposi-
tions. For the m-fold summation, therefore, there is only one

possible order of the m propositions and the summation is reduced
to a single term. Its sign is positive if m is odd and negative if m

is even.
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The proof of the equation is by mathematical induction and
consists in showing that it holds for the disjunction of m + 1
propositions if it holds for the disjunction of m. If we let
a1 Va2 V . . . V am be i in Eq. (5.1) and am+1 be j, we have

a1 V a2 V . . . Vam+1 I h = (a1 V a2 V . . . Vam I h) + (am+! I h)

- ((a1 V a2 V... V am).am+!1 hJ.

By letting b be am+! in Eq. (2.11 I), we see that

(a1 V a2 V . . . V am).am+! = (a1.am+1) V (a2.am+1) V . . .

V (am.am+1)

and hence

a1 V a2 V . . . Vam+1 I h = (a1 V a2 V . . . Vam I h) + (am+1 I h)

- ((a1.am+!) V (a2.am+1) V .. . V (am, am+!) I hJ. (5.4)

Of the three probabilities now on the right, both the first and the
third are those of disjunctions of m propositions, for which we
assume, for the sake of the mathematical induction, that Eq.
(5.3) is valid. For the first of these probabilities, Eq. (5.3) gives

an expression which can be substituted without change in Eq.

(5.4). The expression to be substituted for the other is obtained

by replacing a1 in Eq. (5.3) by a1.am+!, a2 by a2.am+!, . . . am by

am' am+!. This expression, with the simplification allowed by the
equality of am+1 and am+1.am+1, is given by the equation,

m m-l m
= L (ai.am+1 I h) - L L (ai.aj'3m+1 I h)i=l i=l j=i+1

I

¡

i
i
;

i

i

(a1.am+1) V (a2.am+1) V . . . V (am.am+1) I h

+ '" :: (a1.a2" . ..am+! I h). (5.5)

By making the substitutions just described in Eq. (5.4) and
grouping the terms conveniently, we obtain
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a1 V a2 V . . . V am+1 i h = (%1 (a,; I h) + (3m1 \ h) J

- (~: i%1 (ai.ai I h) + %1 (a,;'3m1 I h)J

(m-2 m-1 m m-1 m J+ r; ik1 k~1 (a,;.aj.ak I h) + r; ill1 (a,;.ai'3m1 I h)
- . . . :f (a1.a2" . ..am+1 \ h).

The fist bracket on the right includes the first summation
taken from Eq. (5.3) with the term am+1 i h of Eq. (5.4). Each
succeeding bracket includes a summation taken from Eq. (5.3)
with the summation of next lower order taken from Eq. (5.5).

It is obvious on sight that, in the first bracket,m m+1
L: (a,; I h) + (am+1\ h) = L: (a,; I h),i=1 i=l

and it is evident on consideration that, in each succeeding bracket,
the change of m to m + 1 in the upper limits of the first summa-
tion makes it include the second. Thus the equation may be
written,

a1 V a2 V . . . V am+! I h
m+1 m m+1

= L: (a,; \ h) - L: L: (a,;.aj I h)i=1 i=1 i=i+1
m-1 m m+1

+ L: L: L: (a,;.aj.ak I h) - . . .
i=1 i=i+1 k=i+1

:f (a1.a2'" ..am+! \ h).

This is the same as Eq. (5.3), except that the number of proposi-
tions appearing in the inferences, which was m in that equation,
is m + 1 in this one. Therefore Eq. (5.3), being valid when m is

2, as in Eq. (5.2), is now proved for all values of m.
The rather elaborate way in which the limits of summation

were indicated in the preceding equations was needed to avoid
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ambiguity in the argument. In most discussion, however, no

confusion is made by writing Eq. (5.3) with a simpler indication
of the limits, as follows:

a1 V a2 V . . . V am I h = Li(ai I h) - LiLj;:i(ai' aj I h)

+ LiLj;:iLk;:j(a;. aj' ak I h)

- '" :: (a1.a2'" ..am I h). (5.6)

A review of the induction of Eq. (5.3) or (5.6) from Eq. (5.1)
wil show that every equation used in the argument remains valid
after the exchange of the signs, . and V. We may therefore
make this exchange in Eq. (5.6) and thereby obtain, as a valid
equation,

a1~a2'.. ..am I h = Li(ai I h) - LiLj;:;(ai V aj I h)

+ LiLj;:iLk;:j(ai V aj V ak I h)

- . . . :: (a1 V a2 V . . . Vam I h). (5.7)

If the propositions, ai, a2, . . . am, are all mutually exclusive
on the hypothesis h, so that every conjunction of two or more of
them is impossible, Eq. (5.6) becomes simply

a1 V a2 V . . . Vam I h = Li(ai I h). (5.8)

It is often the case that an argument has to do with a set of
propositions, none of which, it may be, is certain, but which, on
the given hypothesis, can not all be false. Such a set is called

exhaustive on the hypothesis. Let W propositions, ai, a2, . . . aw,
comprise such a set. Then (whether or not the propositions are
mutually exclusive)

a1 V a2 V . . . V aw I h = i

and, if they are mutually exclusive,

w
L (ai I h) = 1.i=l

(5.9)

(5.10)
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If, finally, these propositions are all equally probable on the
hypothesis h, it follows from this equation that each has the
probability I/W. Hence, by Eq. (5.8), the disjunction of any w
propositions of the set has the probability w/W.

6. A Remark on Measurement

It has been the thesis of the preceding chapters that probable
inference of every kind, the casual and commonplace no less than
the formalized and technical, is governed by the same rules, and
that these rules are all derived from two principles, both of them
agreeable to common sense and simple enough to be accepted as
axioms.

It does not follow that all probabilities can be estimated with
the same precision. Some probabilities are well defined, others
are il defined and stil others are scarcely defined at all except that
they are limited, as all probabilities are, by the extremes of cer-
tainty and impossibility. In this respect, however, probability

is not essentially different from other quantities, for example
length. A steel cylinder, carefully faced and polished, has a bet-
ter defied length than a plank. The length of a rope frayed at

the ends is il defined and that of a trail of smoke is very il de-
fied indeed. The differences, however, are differences of degree,
not of kind, and we speak of a trail of smoke two or three miles
long as naturally as we speak of a yardstick. There are always,
as the Bishop in Robert Browning's poemll said in another con-
nection, "clouds of fuzz where matters end," even if the fuzz is
only the attenuation of interatomic forces. The difference be-

tween one of these lengths and another is only that some clouds
are fuzzier than others. There is no length defined with complete
precision, nor is length the only quantity of which this can be
said. Reflection suggests, indeed, that the only perfectly precise

measurement is counting and that the only quantities defined per-
fectly are those defined in terms of whole numbers.12
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In the case of physical measurements, it is sometimes imprac-
tical to discriminate between indeterminacies due to vagueness
of definition on the one hand and mistakes caused by lack of skil
or care on the other. Both are therefore often lumped under the
head of experimental error. There is, however, a significant
distinction in principle between them. Consider, for example,
the counting of children on an enclosed playground. This is an
example of a measurement very much subject to error, because
children wil not stand stil long enough to be counted. The,
number itself, however, is a perfectly defined quantity; if there
are 40 children on the playground, anyone who counts 37 or 42
has made a mistake. By contrast, the length of a trail of smoke
has an intrinsic indeterminacy, which can not be eliminated by
any skill or care in its measurement. It has no one true value
from which every deviation is a mistake.

As a rule, probable inference is more like measuring smoke
than counting children, in that the probabilities themselves are
not well defined. There are some instances, however, in which

the definition is precise and in any such case there are unique
values of the probabilities, from which deviations can occur only
as the result of mistakes in logic or arithmetic. An obvious
example is the case in which the hypothesis logically implies or
contradicts the inference, so that the probability is that of cer-

tainty or impossibility and can be reckoned otherwise only by
false reasoning.

With two or more inferences, it is sometimes possible to make a
judgment variously called one of non-suffcient or insuffcient
reason or indifference.13 This is a judgment of equal probability,
which can be made among several inferences when everything
asserted in the hypothesis in proof or disproof of anyone of them
is equally asserted in proof or disproof of every other. Like the
judgments of certainty and impossibility, it is independent of the
scale of measurement, because inferences equally probable on one
scale are so on all scales.

A combination of these three judgments, when it is possible,



PROBABILITY 31

affords a precise definition of probabilties. We have seen, in the
chapter before this one, if the propositions, ai, a2, . . . aw, form an
exhaustive set and are mutually exclusive and equally probable
on the hypothesis h, that an inference expressible as the disjunc-

tion of w of them has the probabilty wjW on this hypothesis.
That the propositions form an exhaustive set is a judgment of
certainty, according to which a1 V a2 V . . . Vaw I h = 1. That
they are mutually exclusive is a judgment of impossibilty, accord-
ing to which ai.a; r h = 0 for all different values of i and j.
Finally that they are equally probable is a judgment of indif-
ference, according to which a1 i h = a2 I h = . .' = aw I h.

Some writers on probabilty have supposed that two inferences
are equally probable and each has therefore the probability l
when nothing is known about them except that each is the other's
contradictory.14 According to this opinion, for example, a snark
is just as likely as not to be a boojum on the hypothesis which
says nothing about either snarks or boojums except that every
snark either is or is not a boojum.1ó In more formal terms, it is
supposed that a I a V ",a = l for arbitrary meanings of a.

In disproof of this supposition, let us consider the probability
of the conjunction a. b on each of the two hypotheses, a V "'a
and b V ",b. We have

a.b I a V ",a = (a I a V "'a)(b I (a V "'a). 
a).

By Eq. (2.8 I), (a V "'a). a = a and therefore

a.b I a V "'a = (a I a V ",a)(b I a).

Similarly

a.b I b V ",b = (b I b V ",b) (a I b).

But, also by Eq. (2.8 I), a V "'a and b V ",b are each equal to
(a V "'a). (b V ",b) and each is therefore equal to the other.
Thus

a. b i b V ",b = a. b I a V "'a
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and hence

(a I a v "'a)(b I a) = (b I b V ",b) (a I b).
If then a I a V "'a and bIb V ",b were each equal to l, it would
follow that b I a = a I b for arbitrary meanings of a and b. This
would be a monstrous conclusion, because b I a and a I b can'
have any ratio from zero to infinity. Instead of supposing that
a I a V "'a = l, we may more reasonably conclude, when the

hypothesis is the truism, that alI probabilties are entirely un-

defined except those of the truism itself and its contradictory, the
absurdity. This conclusion agrees with common sense and might

perhaps have been reached without the formal argument, because
the knowledge of a probability, though it is knowledge of a par-
ticular and limited kind, is stil knowledge, and it would be sur-
prising if it could be derived from the truisin, which is the ex-
pression of complete ignorance, asserting nothing.

Not only must the hypothesis of a probability assert something,
if the probability is to be defined within any limits narrower

than the extremes of certainty and impossibilty, but also what it
asserts must have some relevance to the inference. For example,
the probability of the inference, "There wil be scattered thunder-
showers tonight in the lower Shenandoah ValIey," is entirely
undefined on the hypothesis, "Dingoes are used as half tamed
hunting dogs by the Australian aborigines," although the hypoth-
esis is by no means without meaning and gives a fairly precise
definition and a value near certainty to the inference, "The
Australian aborigines are not vegetarians."

The instances in which probabilities are precisely defined are
thus circumscribed on two sides. On the one hand, the hypoth-
esis must provide some information relevant to the inferences, for
otherwise their probabilities are not defined at alI. On the other
hand, this information must contain. nothing which favors one of

the inferences more than an.other, for then. the judgment of indif-
ference on which precise definition. rests is impossible. The cases
are exceptional in which our actual knowledge provides an
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hypothesis satisfying these con.dition.s. Although we are apt to
say, especialIy when we are perplexed, that one guess is as good
as an.other, the circumstances are rare in which this is really true.
They are present in games of chance, but there they are pre-
scribed by the rules of the game or result from the design. of its
equipmen.t.16 It is to insure indifference that cards are shufHed
and cut and dice are shaken. For the same reason, the cards of a
pack are made identical except for the designs on their faces and
dice are made symmetrical in shape and homogeneous in composi-
tion. In certain statistical studies also, where indifference is

attained or at least closely approximated, it is attained by inten-
tion and sometimes only by elaborate precautions.

It is mainly, if not indeed only, in cases like these that prob-
abilities can be precisely estimated. Most of the time we are
limited instead to approximations or judgments of more or less.
Someone wil say, for example, in discussing the prospects of a
candidate for political offce, "There are at least three other
candidates more likely than he is to be nominated and, even if he
wins the nomination, he wil have no better than an even chance
of election." Thence it is argued that his chances are very poor.

To see the formal structure of this argument, let ai be the in-
ference that the ith candidate wil be nominated and bi the in-
ference that he wil be elected, and let h be the unstated initial
hypothesis. Then the quoted remark asserts that

'.
ii
'"
"

a1 I h -( ai I h (6.1)

and

b1 I a1" h ~ '" b1 i a1" h, (6.2)

where the subscript 1 refers to the candidate under discussion and
i has each of the values, 2, 3, 4, in reference to the three candidates
mentioned in comparison.

The propositions, ai, a2, a3 and a4, are mutually exclusive but
they do not form an exhaustive set, because the words, "at least",
imply that there are stil more candidates. Therefore
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(81 I h) + (82 I h) + (83 I h) + (a4 I h)

= a1 V 82 V 83 V 84 I h -( 1,

whence it folIows, by the inequality (6.1), that

a1 I h -0 l.

Also, b1 I a1" h = 1 - ('" b1 I 81" h) and thus, by the inequality

(6.2),

b1 I 81"h :s l.

FinalIy, 81" b1 I h = (81 I h)(b1 I 81"h), and thus we find that

81" b1 I h -0 l,

so that the odds against this candidate are more than 7 to 1.
It is seldom worth the time it takes to trace in such detail as

this the steps of probable inference any more than it is ordinarily
worth while to reduce deductive reasoning to syllogisms. This

on.e example is offered to support the argument that, however
much we are obliged to forego numerical precision in probable
inferen.ce, we do n.ot, in reasonable discourse, dispense with the
rules of probabilty, although we may use them so familiarly as
to be unaware of them. When we employ probable inference as a

guide to reasonable decisions, it is by these rules that we judge
that one alternative is more probable than another or that some
inference is so nearly certain that we can take it for granted or
some contingency so nearly impossible that we can leave it out of
our calculation.



II

Entropy

7. Entropy as Diversity and Uncertainty

and the Measure of Information

It is often convenient to consider as a group rather than as
single propositions the inferences which, on some given evidence,
form an exhaustive set. A number of remarks are commonplace
in such consideration, sometimes one, sometimes another, as the
circumstances vary. In some cases, for example, it may be

appropriate to say, "There are many possibilities, one as likely as
another and no two of them the same." By contrast, it may be
said under other circumstances, "There are not many different
possibilities and, of these, only a few are at all probable." Com-
ments such as these show, in a rough way, differences which are
made quantitative by the concept of entropy.u

The meanig of entropy is not the same in all respects as that
of anything which has a familiar name in common use, and it is
therefore impossible to give a simple verbal description of it,
which is, at the same time, an accurate definition. It is evident,
however, that what is aimed at in remarks such as those just
quoted is an estimate of something like the diversity among the
inferences an.d also something like the uncertainty, on the given
hypothesis, of the whole set.

Now, if entropy is to measure the diversity among the infer-
ences, it must depend on their number, increasing as the number
is increased, when other things are kept as far as possible the
same, for a single inference without an alternative obviously has

35
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no diversity. But, if entropy is to measure also their uncertainty,

it can not depend on their number alone but must involve their
probabilities as well, for impossible propositions, no matter how
numerous, add nothing to the uncertainty, and propositions
nearly impossible add little. FinalIy, if entropy is to measure
either diversity or uncertainty, it must depend on the extent to
which the inferences are mutualIy compatible, diminishing

as their compatibility is increased. For compatibility, carried

to the limit, becomes identity, and, if two propositions are identi-
cal, the set which includes both of them is no more diverse or
uncertain than that which includes only one.

With this un.derstan.ding of the meaning of entropy, let us con-
sider first its dependence on the number of inferences. We post-
pone consideration of differences in their probabilties by assum-
ing them alI equalIy probable. In order similarly to avoid con-
sidering the effect of their mutual compatibilty, we choose the
extreme case in which they are completely incompatible and

assume them all mutually exclusive. Thus we consider, as the
simplest example, the entropy of an exhaustive set of equalIy

probable and mutually exclusive propositions.
As a familar hypothesis for such an example, let us suppose

that a card is drawn from a welI shufHed pack. Then the propo-
sitons, "The card drawn is the six of diamonds" and "The card
drawn. is the ten of clubs," are two from an exhaustive set of
fity-two mutually exclusive and equalIy probable propositions.
By the description of entropy just given, it wil be determined in
this example by the number 52.

There is an implication here which should be made explicit,
that entropy measures uncertainty and diversity in a distinct and
quite restricted sense, according to which differences in. meaning
among the propositions of a set are significant only insofar as they
affect the probabilities of the propositions. In another sense,
the uncertainty in the present example would be altered by a
wager placed on the drawing of the card, but the entropy is the
same whether there is a fortune at stake or a trifle or nothing at

\
i

I
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all. Again, there is a sense in which the diversity would depend
on the pictorial contrast among the cards an.d would be greater if
the queen of hearts had red hair and the queen of diamonds golden
hair than. if they were both blondes of the same hue, but
the entropy is un.affected by such differences as long as means re-
main by which each card can be distinguished from the others.
Readers familar with en.tropy in thermodynamics, where it was
first given a clear meaning an.d a name, wil recall, in. further ilus-
tration of the same principle, that the entropy of mixing ideal

gases depends only on the existence of a detectible difference
between the molecules of the several gases and not on the nature

and magnitude of the difference. 
is

Let us note now that the proposition, "The card drawn is the
king of spades," is the conjun.ction of the two propositions, "The
card drawn is a spade" and "The card drawn is a kig.'~ There
are four equally probable propositions for naming the suit of the
card and thirteen for naming the card in the suit. To specify one
proposition among the four and one among the thirteen is the
same as to specify one in the set of fity-two. Thus the diversi-
ties of these two sets jointly make the diversity of the set of con-
junctions. It proves convenient to define entropy in such a way

as to measure the total diversity by the sum of the entropies

which measure the partial diversities. If, therefore, we denote by
7/(w) the en.tropy of an exhaustive set of w equally probable and
mutually exclusive propositions, we have, in this example,

7/(52) = 7/(4) + 7/(13)

and, in general,

7/(XY) = 7/(x) + 7/(Y). (7.1)

Differentiation with respect to x and Y gives

d7/(xy) d7/(x)

y d(xy) = dX
and
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d7/(xy) d7/(y)x-=-
d(xy) dy'

whence we obtain, by eliminating d7/(xy)/d(xy),

x d7/(x)/dx = y d7/(y)/dy.

Since x and yare independent variables, this equation requires
that each of its members be equal to a constant. Callng this
constant k, we have then

d7/(w) = (k/w) dw,

whence we fin.d by integration that

7/(w) = k In w + c,

where C is a constant of integration.
(7.1), we find that C = O. Thus

7/(w) = kIn w.

By substitution in Eq.

In thermodynamics, k is the well known Boltzmann constant and
has a value determined by the unit of heat and the scale of tem-
perature. In the theory of probabilty it is convenient to assign.
it unit value, so that

7/(w) = In. w. (7.2)

Whatever value is assigned to k, when w = 1,7/ = 0; when there
is only one possible inference, there is no diversity or uncertainty.

The special appropriateness of the logarithm rather than some
other function in this expression can. be made plainer by consider-
ing the game of twenty questions, in which one player or one side
chooses a subject and the other player or side asks questions to

find out what it is. The rules vary with the age and skil of the

players, but a usual requirement is that all questions must be
answerable by "yes" or "no." The skill of the questioner is
shown by finding the subject with as few questions as possible.
If one player opens the game by saying, "I am thinking of a
famous person," the other, if it is a child just learning to play,
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may ask, "Is it Christopher Columbus?" or "Is it Pocahontas?"
A bright child soon learns, however, that the game can usualIy be
ended earlier by beginning with general questions, such as "Is it
a man?" or "Is it someone living now?" for which the probabilities
of "yes" and "no" for the answer are somewhere near to being

equal.
As an example of the simplest kind, let one player say, "I am

thinking of a whole number between 1 and 32." If the other
player chooses to go through the numbers one at a time, asking,
"Is it 1? Is it 2?" and so on to "Is it 31?" it is possible that he

wil win on the first question. But he may have to ask thirty-one
questions, whereas he is sure to win in five questions if he asks
first, "Is it greater than 16?" and then, according to the answer,
"Is it greater than 8?" or "Is it greater than 24?" and so con-
tinues, choosing each question so that its answer wil halve the
number of alternatives left by the preceding one. If his oppo-
nent chooses numbers with no systematic preference, no other
strategy wil end the game, on the average, with as small a num-
ber of questions.

The game in this example has the folIowing description in terms
of entropy. The propositions, "The number is 1, the number

is 2, . . . the number is 32," are mutually exclusive and, it was
assumed, equally probable, and they form an exhaustive set, of
which the entropy, therefore, is In 32. The answer to the first
question leaves 16 possible alternatives, forming a set with the
entropy, In 16. At any question, if the number of alternatives is
w, the answer reduces it to lw and thus diminishes the entropy by
In 2. Hence n questions wil diminish the entropy to zero from

an initial value n In 2. With 20 questions it becomes possible to
find a chosen integer between 1 and 220 or 1,048,576.

The usual reason for asking questions, other than rhetorical
ones, is to obtain information, and the more inormation is needed,
the more questions must be asked. We have just seen also that
the greater is the entropy of a set of proposition.s, the more ques-
tions are required to find which one of them is true. Entropy
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thus appears in yet another aspect, as the measure of information.
The amount of information elicited by a question. to which there
are only two possible answers, which are equally probable, is
measured by the entropy of a pair of mutually exclusive and
equally probable proposition.s. In the theory of communication
this is often a convenient unit. It is calIed one bit. In the

strategy just described for twenty questions, each question elicits
one bit of information, and the number of questions required to
end the game is the number of bits in the initial entropy.19

8. Entropy and Probability

Considering entropy as a measure of information, let us now
inquire how it may be expressed when the inferen.ces of which it is
a function are no longer required to be equally probable, though
they are stil assumed to be mutually exclusive and to form an
exhaustive set.

In. order to make use of the result obtained in the preceding
chapter, let us take a case of equal probabilities as a point of de-

parture. For in.stance, we may consider a rafHe in which W equal

chances are offered for sale. By Eq. (7.2), the entropy which
measures the information required to identify the winning chance
is equal to In W.

Let us suppose now that the chan.ces are sold in blocks, so that,
for example, a block of WI chances is sold to the Board of Trade
for resale to its members. Let W2 chan.ces be distributed in the
same way to members of the League of Women Voters, W3 chances

to the Boy Scouts, and so on un.til every chance is sold to a mem-
ber of some one of m societies. It is to be assumed that the
societies are mutualIy exclusive, so that no purchaser belongs to
more than one of them.

Let all of these assumptions be expressed in the hypothesis h
an.d let ai denote the proposition that the winning chance is held
by a member of the i th society. Then, on the hypothesis h, the
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propositions, ai, a2, . . . am, are mutually exclusive and form an
exhaustive set. This is the set of inferences for the entropy of
which we now seek an expression.

If the same number of chances were in every block, the proposi-
tions, ai, 82, . . . 8m, would all be equally probable. Their entropy
could be denoted by 7/(m) and it would be equal to In m. The
case would be formalIy identical with that considered in the pre-
ceding chapter, the number of societies in the present example
corresponding to the number of suits of cards in the former one
and the number of chances held in each society corresponding to
the number of cards in each suit. The entropy, 7/(m), would

measure the information required to find in which society the
winning chance is held, and the additional information required
to find the winning chance among those held there would be
measured by an entropy denoted by 7/(w) and equal to In,w, where
w is the number of chances sold in each block. In this case,
therefore, we should have the equation,

7/(m) + 7/(w) = In m + In w = In (mw) = In W.

When there are different numbers of chances in the various
blocks and the inferences, ai, a2, . . . 8m, are therefore no longer
equally probable, their entropy is n.o longer a function of m alone.
Consequently it can not be denoted by 7/(m) and it is, of course,
not equal to In m. Let us denote it by 7/(81, a2, . . . am I h) until,
in a later chapter, we can explain and justify a simpler notation,
and let us seek an expression for it by asking how much additional
information we shall need to find the winning chance, if we sup-
pose that we first obtain the information which this entropy
measures.

If we find in the first inquiry that a member of the Board of
Trade holds the winning chance, the required additional informa-
tion wil be measured by 7/(W1), whereas it wil be measured by
7/(W2) if we find that the winning chance is held in the League of
Women V oters. We can not know, in advance of the first
inquiry, how much additional information. wil be needed after
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the inquiry is made. We know only that there is a probability,
a1 I h, that it wil be measurable by 7/(W1), a probability, 82 I h,

that it wil be measurable by 7/(W2) and, in gen.eral, a probabilty,

ai I h, that it wil be measurable by 7/(Wi). Our best estimate,
a priori, of the entropy which wil measure this information is
~i(ai I h)7/(Wi), where the summation is over values of i from 1
to m. Therefore we may reasonably require 7/(a1, a2, . . . am I h)
to satisfy the equation,

7/(a1, a2, . . . am I h) + Li(ai I h)7/(Wi) = In W. (8.1)

By Eq. (7.2), 7/(Wi) = In Wi, and, by the familiar rule for the
measurement of probabilties discussed in Chapter 6, ai I h
= Wi/W, so that Wi = (ai I h)W. Hence

Li(ai I h)7(Wi) = L.(a. I h)(In (a. I h) + In W)

= L.(a. I h) In (a. I h) + In W,

because ~i(a. I h) = 1.

find
Substituting this expression above, we

7/(a1, a2, . . . am I h) = - Li(ai I h) In (a. I h). (8.2)

The constant, k, if it had not been given unit value in the preced-
ing chapter, would appear as a factor on the right in this equation.
Except for this omission, the equation gives the most general

expression possible for the entropy of a set of mutually exclusive
propositions.

Because the limits of probabilty are 0 and 1 an.d the logarithm
of any number between these limits is negative, it follows that:

The entropy of a set of mutually exclusive propositions can
not be negative. (8.i)
If any proposition of the set is impossible, the term it con-

tributes to the entropy is equal to the limit, as x approaches zero,
of x In x. This limit is zero and thus we see that the inclusion,

among a set of inferen.ces, of any proposition impossible on the
hypothesis does' n.ot. change the entropy of the set. If any of a

."
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set of mutualIy exclusive propositions is certain, all the others are
impossible. The entropy is thus reduced to that of a single in-
ference with no alternatives, which, as we have seen before, is
zero.

Regarding entropy again as the measure of uncertainty, we
should expect it to have its maximum value when the hypothesis
favors no inference more than another and thus assigns the prob-
ability l/m to each of them and the entropy In m to the set.
That this is true is seen by making infinitesimal variations,
(¡(a1 I h), (¡(a2/ h), . . . (¡(am I h), in the probabilities in Eq. (8.2)
to fin.d the resulting variation in the entropy. Thus we obtain

(¡7/(a1, a2, . . . am I h) = .. L.(ln (a. I h) + l)(¡(ai I h),

which becomes, when the inferences are all equally probable,

(¡7/(ai, a2, . . . am I h) = (In m - 1) Li (¡(ai i h).

Because ~i(ai I h) = 1, it follows that ~i (¡(ai I h) = 0 and thus

(¡7/(a1, a2, . . . am I h) = O.

This vanishing of the variation of the entropy confirms our

expectation and proves the theorem:

The entropy of a set of mutually exclusive propositions is
maximum when they are equally probable and is then equal to
In m, where m is their number.20 (8.ii)
If nothing else, then curiosity alone might urge us here to go

farther and seek an expression. for the en.tropy of inerences which
form an exhaustive set but are not required to be mutually ex-
clusive any more than equally probable.21 For this purpose, the
rafHe we have been con.sidering wil stil serve as an example, if it

is alIowed, in contradiction to what was assumed before, that
some of those who hold chances belong to more than on.e of the
societies. As before, we denote by Wi the number of chances
held by members of the i th society and by ai the proposition that
one of these is the winning chance, but we no longer suppose that
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ai' a; is impossible and we denote by Wi; the number of chances
held by persons who belong to both the i th and j th societies.

Consider the term ~i(ai I h)7(Wi) in Eq. (8.1). When it was
assumed that ai, a2, . . . am were mutually exclusive propositions,
this term measured the information which was not included in
that measured by 7/(a1, a2, ... am I h) and was an.ticipated as
necessary for finding the winnig chance. But on the new as-
sumption it is too large for that purpose, because now there are
chances held by persons who are members of two societies an.d
this summation counts alI of these chan.ces twice. For example,
a chance held by someone who is a member of both the Board of

Trade and the League of Women Voters would be taken. account
of in both of the terms (a1 I h)7/(W1) and (a21 h)7(W2). AlIowance
for the overlapping membership of these two societies requires
the subtraction of a corrective term, (a1.a21 h)7(W12). The cor-
rection for duplicate membership among all pairs of societies is
~i~;;:i(ai'a; I h)7(Wi;), where it is to be understood, as in Chapter
5, that the upper limits of summation are m - 1 for i and m for j
and the restriction of j to values greater than i insures that the
correction is made only once for each pair of societies.

But now, if there are persons holding chances who belong to

three societies, this correction wil be excessive and wil itself
have to be corrected by subtracting from it

LiL,';iLk;:;(ai' a;' ak i h)7(Wi;k),

where Wi;k denotes the number of chances held by those who
are members of the ith, jth and kth societies. The same

reasoning, continued, calls for a series of corrections, which al-
ternate in sign because each one corrects for the excess of the one
preceding it. The series en.ds with the correction required by the
chances held by those who are members of all m societies. The
complete equation, replacing Eq. (8.1), is therefore

7/(a1, a2, . . . am I h) + Li(ai I h)7(Wi)

- LiL;;:i(a..a; i h)7/(Wi;) + L.L,';iLk;:;(ai.a;.ak I h)7(Wi;k)

- ". =' (a1.a2'" ,.am I h)7(w12'" m) = In W.
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From this, by means of the equations,

7/(Wi) = In Wi, 7/(Wi;) = In Wi;' . . .

7/(W12' . 'm) = In W12. . 'm,

and

(ai I h) = Wi/W, ai.a; I h = Wi;/W, . . .

a1.a2'. . ..am I h = W12.. .m/W,

we obtain

7/(ai, a2, . . . am I h) = - Li(ai I h) In (ai I h)

+ LiL;;:i(ai' a; I h) In (ai' a; I h)

- LiL;;:iLk;:;(ai' a;' ak I h) In (ai' a;' ak I h) + . . .

=' (a1.a2'" ..am I h) In (a1.a2'" .:am I h)

- (Li(ai I h) - LiL;;:i(ai' a¡ I h) + . . .
=F (a1.a2', . ..am I h) - 1) In W.

By Eq. (5.6), the expression in brackets on. the right is equal
to (a1 V a2 V . . . V am I h) - 1 and is thus zero, since the set of
inferences is exhaustive. Thus we have finally, as the most
general expression for entropy, the equation,

7/(a1, a2, . . . am I h) = - Li(ai I h) In. (ai I h)

+ LiL;;:i(ai' a¡ I h) In (ai' a; I h)

- LiL,';iLk;:;(ai' a;- 8k I h) In (a;. a;' ak I h) + . . .

=' (a1.a2'" ..am I h) In (a1.a2'" ..am I h). (8.3)

It can be seen that this equation becomes identical with Eq.

(8.2) when the inferences are mutually exclusive, because all the
conjunctions are then impossible and therefore the terms which
involve them vanish. If the inferences appearing in Eq. (8.3)
are not only mutually exclusive but also equally probable, the
equation becomes the same as Eq. (7.2), except that the number
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of inferences is denoted by different letters in the two equations.
For the proof of theorems in this and later chapters, we shall

find it convenient to have an expression for the entropy in which
the terms involving one proposition of the set of inferences are
separated from the rest of the terms. To emphasize the separa-
tion, let us denote the proposition thus singularly treated by b
and the other propositions by ai, a2, . . . am, SO that there are
m + 1 propositions in the set. Equation (8.3), when modified
to express the entropy of this set, becomes

7/(a1, a2, . . . am, b I h)

= - Li(ai I h) In (ai I h) + LiL;;:i(ai' a; I h) In (ai' a; I h)
. . . =' (a1.a2" . ..am I h) In (a1.a2', . ..am I h)

- ((b I h) In (b I h) - Li(ai' b I h) In. (ai' b I h)

+ LiL,';i(ai' a;' b I h) In (ai' a;- b I h) ~ . . .

=' (a1.a2', . ..am. b I h) In (a1.a2', . ..am. b I h)). (8.4)

By this equation we may now prove the theorem:

If one proposition of a set implies another proposition of the
same set, it does not contribute to the entropy of the set. (8.iii)

Let b imply a1. Then a1 I b. h = 1
(a1 I b.h)(b I h), it follows that

a1' b I h = b I h.

and, since a1' b I h =

Similarly,

a1' a;' b I h = a;- b i h, . . .

Therefore, in Eq. (8.4),

Li(ai' b I h) In (ai' b I h) = (b I h) In (b I h)

+ Li;:l(ai' b I h) In (a;, b I h),
and

LiL;;:i(ai.a;. b I h) In (ai.a;. b I h) = L;;:l(a;. b I h) In (a;- b I h)

+ Li;:lL;;:;(ai' a;- b I h) In (ai' a;- b I h).
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A change of subscripts makes the first summation on the right
in this equation identical with the summation on the right in the
preceding equation. Thus, when these and other expressions

similarly obtained are substituted in Eq. (8.4), the quantity in

brackets there becomes a series of pairs of terms equal in magni-
tude an.d opposite in sign. In this way, alI the terms involving

the proposition b vanish from the equation and the theorem is
proved.

From this theorem there follows the one already proved in the
case of mutually exclusive propositions, that:

If any proposition of a set is certain, the entropy of the set iszero. (8.iv)
This is because an inerence which is certain on a given

hypothesis is implied by every proposition. which is possible on the
hypothesis. Therefore, by the theorem just proved, no other
proposition of the set con.tributes to the entropy of the set. The
entropy is thus reduced to a single term, (a1 I h) In (a1 I h), where
a1 is the inference which is certain, and this term is zero because
In 1 = O.

This theorem can also be proved directly, without making
use of the preceding one, by returning to Eq. (8.4) and letting b be

certain. Then ai' b I h = ai i h, ai' a;- b I h = ai' a; I h, . . . and
thus the terms in the brackets are all canceled by those outside,

except (b I h) In (b I h), which is zero.
Equations (7.2), (8.2) and (8.3) express the entropy in three

different cases, of which the first is the most restricted and the
third is the most general, but each gain in generality is accom-
panied by a loss in the formal simplicity of the expression, which
reflects a corresponding loss in the intuitive simplicity of the con-
cept. In Eq. (7.2), which is applicable only to the case in which

the inferences are equally probable and mutualIy exclusive, the
entropy, being given by Inw, measures the diversity of the in-
ferences in the simplest and most immediate sense of their mere
number. Equation (8.2) is the generalization obtained by dis-
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carding the requirement of equal probability while retaining that
of mutual exclusion. The expression so obtained,

- Li(a; I h) In (ai I h),

not only is formally less simple than In w, but also can
not be so immediately interpreted as the measure of diversity.
It is instead more adequately described by the more complex
notion of uncertainty. In Eq. (8.3) the requirement of mutual

exclusion is also discarded and the result is a much more elaborate
expression for the entropy. Moreover; when the inferences are
not mutually exclusive, the certainty of one proposition no longer
implies that all the others are impossible but allows, on the con-
trary, a great deal of uncertainty among them, although, by the
theorem just proved, the entropy is zero when one proposition is
certain, no matter how numerous and uncertain ' the others may
be. Thus the uncertainty does not vanish with the entropy, and
entropy is therefore no longer adequately described as the measure
of uncertainty. The idea of entropy as a measure of information,

however, continues to be useful, and formal simplicity is in
large part regained by introducing the concept of a system of
propositions.

9. Systems of Propositions

The term, system of propositions, wil have here a meaning
different from the usual one and in some respects almost opposite
to it. Ordinarily we think of a system as beginning with a set of

axioms, all of them certain by hypothesis, and including, along
with these axioms, whatever propositions they imply. Since the

axioms are certain, so are all the propositions of the system and
hence also the conjunction of all of them. Such a system, in
contradistinction to the kind we are about to consider, may be
called a "system of consequents" or a "deductive system."

By contrast, we consider here what may be called a "system



ENTROPY 49

of implicants" or an "inductive system." The propositions with
which it begins are any which form an exhaustive set. None of
them, in the general case, is certain and therefore they can not be
called axioms. The complete system comprises these proposi-
tions, together with whatever propositions imply them, but it
does not include the propositions which they imply. The whole
system is exhaustive, because it begins with an exhaustive set,
and the disjunction of all of its propositions is therefore certain,
but their conjunction is never certain and, in general, none of

them is more than probable. This is the only kind of system we
have to consider. We can therefore reserve the name of system
exclusively for it and dispense with further use of the terms, "sys-
tem of implicants" and "inductive system."

Although it was convenient in the preceding discussion to de-
scribe a system as beginning with a particular set of propositions,
it is possible to define it without reference to such a set, and there
is some advantage in doing so. Let us therefore define a system
of propositions by the two following principles:

The propositions of a system form an exhaustive set. (9.i)

Every proposition which implies a proposition of a systemitself belongs to that system. (9.ii)
There is some ambiguity here in that a set of propositions may

be exhaustive, or one proposition may imply another, on some
hypotheses and not on others. In every self-consistent argu-
ment, however, there is an hypothesis common to the whole dis-
course and the more particular hypotheses employed in its various
stages are alI conjunctions of this with other propositions, in

which alone they differ. A set of propositions exhaustive on the
common hypothesis is exhaustive on every special one, and a
proposition implied by another on the common hypothesis is
similarly implied by the special ones as well. It is to be under-

stood in any argument, when propositions are taken as forming a
system, that it is in respect to the common hypothesis of the
argument that they satisfy the two rules just given.
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By the second of these rules, every system includes an un-
limited number of propositions. For, if a is a proposition belong-
ing to a given system and f, g, . . . are arbitrary propositions, then
a.f, a.g, ..., a.f.g, ... if they are possible, all imply a and

therefore alI belong to the system. If they are impossible, the
question whether or not they imply a is left open, because impos-
sible propositions are not admissible in an hypothesis. Happily,
however, the inclusion of impossible propositions in a system or
their exclusion from it proves to be a matter of no consequence.

If a proposition is certain on the common hypothesis, it is
implied by every possible proposition. Hence it follows that:

A system which includes any proposition which is certain
includes all possible propositions. (9.iii)

Let us denote systems of propositions by capital boldface letters,
A, B, C, . . . and let us consider the set of propositions which in-
cludes everyone belonging to either A or B and none which be-
longs to neither of them. Since A and B are exhaustive sets, so
a fortiori is this set. Also it includes every proposition which
implies one belonging to it, since it includes every proposition
which implies a proposition of either A or B. Therefore it is it-
self a system, satisfying, as it does, both of the requirements, (9.i)
and (9.ii). It is appropriately calIed the disjunction of A and B

and denoted by A V B. I t is defined by the rule:

The system A V B includes every proposition belonging to
either A or B and no others. (9.iv)

From the notation it might be supposed, if a is a proposition
belonging to A and b is one belongig to B, that a V b would be a

proposition of A V B. This, however, does not follow from the
definition and is not generally true, for a V b does not belong to
either A or B except in special cases.

It folIows from the rule by which A V B was just defined that
A V A includes the same propositions as A, B V A the same as
A V B, and (A V B) V C the same as A V (B V C). Thus we find

l
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valid for systems of propositions the three equations, familiar in
Boolean algebra:

A V A = A, BvA=AVB
and

(A V B) V C = A V (B V C) = A V B V C.

Next let us consider the set of propositions which includes

everyone belonging to both A and B and none which belongs to
neither of them or only one. If a is any proposition of A, and b

is any proposition of B, a. b belongs to this set, because it implies
both a and b and therefore belongs to both A and B. Now A and
B, being exhaustive sets, must each include one or more true
propositions, although the hypothesis, as a rule, does not show
which ones they are. Consequently there is at least one true
conjunction of propositions of A and B, and the set which includes
all the conjunctions includes this one also and is therefore itself
exhaustive. This set has thus the first characteristic of a system,
as stated in the rule (9.i).

Moreover, every proposition which implies one of this set
thereby implies one which belongs to both A and B. Every such
proposition therefore belongs to both A and B and hence to this set
also. Thus this set has the second characteristic of a system, as
given by the rule (9.ii), and, having both characteristics, is, like
A V B, itself a system. It is appropriately denoted by A.B, so
that we have the conjunction of two systems defined by the rule:

The system A. B includes every proposition which belongs to
both A and B and no others. (9.v)
From this it is evident on consideration that

A.A = A, B.A = A.B,

and

(A.B).C = A. (B. C) = A.B.C.

The propositions which compose the system (A V B). Care
those which belong to either A or B and to C and therefore to both



52 ENTROPY

A and C or else to both Band C. But those which belong to A
and C compose the system A. C, those which belong to Band C
compose the system B. C, and therefore those which belong to
A and C or to Band C compose the system (A. C) V (B. C). Thus

(A V B).C = (A. C) V (B. C)

and, by similar reasoning,

(A.B) V C = (A V C). (B V C).

By making C and B the same in either of these equations, we
find that

(A.B) vB = (A V B).B.

Now (A.B) V B comprises the propositions which belong to both
A and B or to B, but aU of those belonging to both A and B neces-
sarily belong to B. Thus (A.B) V B comprises aU the proposi-
tions which belong to B and no others. Therefore

(A. B) vB = B
and

(A V B). B = B.

A comparison between the equations of this chapter and those
of Chapter 2 wil show that the definitions of this chapter are such
as to make the rules of Boolean algebra hold for systeins as for
individual propositions. To this correspondence, however, there

is a striking exception in that the sign'" has not appeared in this
chapter.

It might be supposed possible to define a system ",A corres-
ponding to every system A and satisfying the pertinent equations
of Boolean algebra, among others,

(A V ",A).B = B.

Because every proposition belonging to the conjunction of two

systems belongs to both of them, this equation would make every
proposition belonging to B belong also to A V '" A. Since B is
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arbitrary, all possible propositions would thus be included in
A V ",A and whatever propositions were not included in A would
be included in ",A, the truism along with the rest. But, by the

theorem (9.iii), a system which includes the truism includes every
proposition, and aU such systems are therefore identicaL. Thus,
if A, B, C, . . . are systems which do not include the truism, it
would follow that ",A = ",B = ",C = ... But then, by the

equation, '" '" A = A, it would foUow that A = B = C = ...
and thus aU systems which do not include the truism would also
be identicaL. Since this is impossible, we may conclude that
there is no analog, or at least no complete analog, in the algebra
of systems, to contradiction in the algebra of propositions. 

22

10. The Entropy of Systems

Among the propositions belonging to any system, there are
some which may be said to form its irreducible set. These propo-
sitions are like alI the rest in being implied by others of the system,
but they are different in that they themselves imply no proposi-
tions of the system except, of course, that each one implies itself.

Every proposition belonging to a system implies at least one
proposition of the irreducible set. If it belongs to the irreducible

set, it stil implies itself. If it does not belong to that set, it
implies at least one other proposition of the system. This, in turn,

either belongs to the irreducible set or implies another, an.d so on
in a chain of implication which can end only with a proposition
of that set.

The irreducible set is exhaustive for, if it were other than an
exhaustive set, aU of its propositions could be false, and then aU
the propositions of the system would be false, because a false
proposition is implied only by a false proposition. But it is

impossible that all the propositions of the system should be false,
for every system is exhaustive by definition.

The irreducible set is thus described by the three foUowing
principles:



54 ENTROPY

No proposition of the irreducible set implies any proposition
of the system except itself. (lO.i)

Every proposition of the system implies a proposition of the
irreducible set. (lO.ii)
The irreducible set is exhaustive. (lO.iii)

The system is composed of the propositions of the irreducible
set, together with every other proposition which, immediately or
remotely, implies one of that set. The irreducible set thus deter-
mines what propositions belong to the system. So also does any
set of propositions which includes the irreducible set and is in-
cluded in the system, because every proposition which implies

one of such a set belongs to the system, and no proposition belongs
to the system without implying one of such a set. It is accurate,
therefore, as it is also convenient, to speak of a set, ai, a2, . . .
am, as defining the system A if these conditions are satisfied, and
to can it a defining set of the system. A defining set is thus
described by the rules:

All the propositions of the irreducible set belong to every
defining set and an the propositions of every defining set belongto the system. (lO.iv)

Every defining set is exhaustive. (10.v)
From these rules and the definitions of the systems, A V Band

A. B, there follows, almost directly, the theorem:

If the set of propositions, ai, a2, ... am,

defines the system A and the set, b1, b2, ... bn,
the system B, then the set,

ai, a2, ... am, b1, b2, ... bn,

defines the system A V B, and the set,
a1' b1, a1' b2, ... a1' bn,

a2' b1, a2' b2, ... a2' bn,

am.b1, 8m.b2, ... am.bn,

defines the system A. B. (lO.vi)
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No relation of this kid holds universally among the irreducible

sets of the systems, A, B, A V Band A.ß. It is for this reason
that defining sets wil playa greater part than irreducible sets in
the discussion to follow.

A system has an unlimited number of defining sets, of which
the irreducible set is the most exclusive and the system itself is the
most inclusive. All the defining sets of a given system, however,

have the same entropy, which is that of the irreducible set. This

is because every proposition of a defining set which does not
belong to the irreducible set implies one of its propositions and
therefore, by the theorem (8.iü), contributes nothing to the en-
tropy. The system being one of its own defining sets, we thus
have the principle:

The entropy of a system is the entropy of any of its definingsets. (lO.vii)
Any exhaustive set of propositions, ai, a2, . . . am, defines a system
A and its entropy may therefore be denoted, in accordance with
this principle, simply by 7/(A I b).

Let us now find an expression for the entropy of A V B, having
recourse for this purpose to Eq. (8.4). In this equation, (ai' b I b)
can be replaced by (a; I b. h) (b I b) and hence In (a.. b I b) by
In (ai I b. b) + In (b I b). All the other terms involving conjunc-
tions of b can be replaced similarly. The resulting equation is

i¡(a1, a2, . . . am, b I b) = - Li(ai I b) In (ai I b)

+ L.L,';i(ai.a; I b) In (ai.a; I b) - . . .

=' (a1.a2" , ,.am I b) In (a1.a2" . ..am I b)

+ (b I b)(Li(ai I b.b) In (a. I b.b)

- L.L;;:i(ai' a; I b. b) In (ai' a; I b. b)

+ . . . =F (a1.a2', . ..am I b.b) In (a1.a2" . ..am i b.b))

- (b I b) In (b i b)(l - L.(ai I b. b) + LiL;;:i(ai.a; I b. b)

- , . . =' (a1.a2', . ..am I b.b)).
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If we now let ai, a2, . . . am be the exhaustive set of propositions
which defines the system A, the series outside the brackets in the
right-hand member is equal simply to 7/(A I h), the coeffcient of
(b I h) to -7/(A I b. h), and the coeffcient of - (b I h) In (b I h) to
1 - (a1 V a2 V . . . Vam I b.h), which is equal to zero. Thus we
have

?I(a1, a2, . . . am, b I h) = 7/(A I h) - (b I h)7(A I b. h).
Any set of propositions which includes an exhaustive set such

as ai, a2, . . . am is itself exhaustive and therefore defines a system.
Let the system defined by ai, a2, . . . am, b1, b2, . . . bk be denoted
by Ck, where k has values from 0 to n and the set, b1, b2, . . . bnn
defines the system B. By the equation just given we see that

7/(CkH I h) = 7/(Ck I h) - (bk+1 I h)7(Ck I bkH. h).

From this it may be proved that

7/(Ck I h) = 7/(Co I h) - ¿i(bi I h)7(Co I bi. h)

+ LiL,';i(bi. b; I h)7(Co I bi. b;- h) - . . .
=' (b1. b2.. . .' bk I h)7(Co I b1. b2.. . .. bk.h).

The proof is by a mathematical induction so similar to the one
given in Chapter 5 that it would be repetitious to give it here.

From the definition of Ck it is evident that Co = A and Cn
= A V B. Thus, by letting k be equal to n in the preceding equa-
tion, we have an equation for 7/(A V B I h) in terms of the system
A and the propositions, b1, b2, . . . bn, which define the system B.
It may be written as

7/(A V B I h) = 7/(A I h) - 7/(A I B.h), (10.1)

where 7/(A I B.h), called a conditional entropy23 or, more specif-
ically, the conditional entropy of the system A on the system B,
is defined by the equation,

7/(A I B.h) = Li(bi I h)7(A I bi.h)

- L.L,';i(b.. b; I h)7/(A I b.. b;- h) + . . ,

=' (b1.b2.., ..bn I h)7(A I bb.b2.,. ,.bn.h). (10.2)
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As the notation implies, the value of 7/(A I B.h) is determined
by the systems A and B independently of the choice of defining
sets. For, according to the theorem (10.vii), the values of
7/(A I h) and 7/(A V B I h) are independent of this choice. It
folIows that so also is their difference, which is equal to 7/(A I B. h)
by Eq. (10.1).

If we exchange A and B in Eq. (10.1), except in A V B, where
their order is immaterial, we obtain the equation,

7/(A V B I h) = 7/(B I h) - 7/(B I A.h). (10.3)

If, in this equation or Eq. (10.1), we make A and B equal, we see
that:

The conditional entropy of a system on itself is zero. (lO.viii)

Other theorems are obtained by combining other rules of
Boolean algebra with these equations. For example, if we re-
place A by A.B in Eq. (10.1), we find, because (A. B) vB = B,

that

7/(A.B I h) = 7/(A.B I B.h) + 7/(B I h).

We may replace h in this equation by A.h without making the
equation invalid. Doing so, we find, because 7/(A.B I B.A. h) is
the conditional entropy of A.B on itself and therefore zero, that

7/(A.B I A.h) = 7/(B I A.h).

The exchange of A and B, except in A. B, gives

7/(A.B I B.h) = 7/(A I B.h).

Combining this result with the equation just obtained for
7/(A.B I h), we have the equation,

r¡(A. B I h) = 7/(A I B. h) + 7/(B I h). (10.4)

By adding to the members of this equation the corresponding
members of Eq. (10.1) and by subtracting from them the corres-
ponding members of Eq. (10.3), we obtain two others:
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7J(A.B I h) + 7/(A V B I h) = 7/(A i h) + 7/(B i h),

7/(A.B I h) - 7/(A V B I h) = 7/(A I B.h) + 7/(B I A.h).

(10.5)

(10.6)

By mathematical induction based on Eq. (10.5), it is now fairly
simple to obtain expressions for the entropies of conjunctions and
disjunctions of any number of systems. The proof wil be
omitted and only the equations given. Let Ai, A2, . . . AM be
any systems. Then

7/(A1. A2.. . .' AM I h) = Li7/(Ai I h) - LiL;;:i7/(Ai V A; I h)

+ LiL;;:iLk;:¡7/(Ai V A; V Ak I h) - . . .

=' 7/(A1 V A2 V . . . V AM I h) (10.7)

and

7/(A1 V A2 V . . . V AM I h) = Li7/(A. I h)

- LiL;;:i7/(Ai.A; I h) + LiL;;:iLk;:;7J(Ai.A,.Ak I h)

- ... =' 7/(A1.A2... ..AM I h). (10.8)

11. Entropy and Relevance

There are many arguments concerned only with systems defin-
able by mutually exclusive propositions or, at most, with such
systems and others which are Boolean functions of them. In

such an argument, let a system A be defined by mutually exclusive
propositions, ai, a2, . . . am. Because they are mutually exclusive,
no more than one of them can be true and, because they define a
system and therefore form an exhaustive set, at least one of them
must be true. The set therefore contains one and only one true
proposition. As a rule, however, the hypothesis of the argument

gives only enough information to assign probabilities to the propo-
sitions and not enough to distinguish the true one from the others.
Although one of them is true and the rest are false, none is or-
dinarily certain on the hypothesis and none is impossible,
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In the same argument, let the system B be defined by mutually
exclusive propositions, b1, b2, . . . bn, so that in this set also there
is one and only one true proposition. Let us observe, moreover,

that the conjunction ai' b; is true only if ai and b; are both true,
and therefore there is one and only one true proposition among all
the conjunctions of a proposition of one set with one of the other.
Hence the system A.B, which these conjunctions define, also is a
system defined by mutually exclusive propositions.

H, starting from the hypothesis h, we fid the true proposition

in the set defining A and then, with whatever help this discovery
may provide, we find the true proposition in the set defining B,
we shall have found the true proposition in the set defining A. B.
The information to be obtained in the first step, in which we are to
find the true proposition among those defining A, is measured by
the entropy 7J(A I h). H ai should be the proposition found true
in this step, the additional information to be obtained in the
second step, in which we are to find the true proposition among
those defining B, would be that measured by the entropy
7J(B I ai.h). The probability that this wil be in fact the required

information is ai I h and the a priori estimate of the information
is therefore ~i(ai I h)7(B I ai' h). This is simply the conditional
entropy, 7J(B I A.h), as may be seen by exchanging the roles of A
and B in Eq. (10.2) and making use of the assumption that A is
defined by mutually exclusive propositions.

Thus the information to be obtained in the two steps is meas-
ured by 7J(A I h) + 7J(B I A.h) and, since we expect with this in-
formation to have found the true proposition among those de-

fining A.B, we infer that

77(A.B I h) = 7J(A I b) + 77(B I A.h).

The equality of A. Band B. A allows us to exchange A and B on
the right without exchanging them on the left and so to obtain
the equation,

7J(A.B I h) = 7J(B I h) + 7J(A I B.h),

which we have already seen as Eq. (10.4).
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Equating these two expressions for 7J(A.B I h), we have

7J(A I h) + 7J(B I A.h) = 7J(B I h) + 7J(A I B.h),

and we see that the amount of information is the same whether we
find first the true proposition among those defining A and then
the one among those defining B or choose the opposite order.

Transposing terms in this equation, we obtain

7J(A I h) - 7J(A I B.h) = 7J(B I h) - 7J(B I A.h).

Comparison with Eq. (10.1) shows that each of these expressions
is equal to the entropy, 7J(A V B I h), of the disjunction, whence
we have

7J(A I h) = 7J(A V B I h) + 7J(A I B.h)

and

7J(B i h) = 7J(A V B I h) + 7J(B I A.h).

The term 7J(A V B i h), common on the right to both of these
equations, measures the information to be obtained whether we
are finding the true proposition among those defining A or B.
The additional information to be obtained is different in the two
cases but is measured in either by one of the conditional entropies.
If we are to find the true proposition among those defining A, we
require the additional inormation measured by 7J(A I B. h) but,
if among those defining B, we require that measured by

7J(B I A.h).
From another point of view, 7J(A V B I h), considered as the dif-

ference, 7J(A I h) - 71(A I B. h), measures the information relevant
to the discovery of the true proposition among those defining A
which we expect to obtain from the corresponding discovery in

respect to B. More briefly, it can be said to measure the rele-
vance of B to A. Alternatively, as the difference, 7J(B I h) -
7J(B I A.h), it measures the relevance of A to B. It measures,
therefore, the mutual relevance of the two systems.

If any of the propositions, ai, a2, . . . am, is certain on the hy-
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pothesis b;. h or, in other words, if b; implies one of these proposi-
tions, then 7J(A I b;- h) = 0 by the theorem (8.iv). Consequently,
if each of the propositions, b1, b2, . . . bn, implies one of the set
defining A, 7J(A I B.h) = 0 and 71(A V B I h) = 7J(A I h). No sys-
tem, not even A itself, can be more relevant to A than B is in this
case. Indeed we may note that 7J(A I h) = 71(A V A I h) and
take the entropy of a single system A as measuring its relevance

to itself.
At the other extreme is the case in which every proposition of

the set defining either system is irrelevant to everyone of the set
defining the other. For the sake of brevity it is convenient to say
in this case that the two systems are mutualIy irrelevant, omitting
reference to the defining sets. However, it should be noticed that
this is only a convenient phrase, which must not be taken to mean
that every proposition belonging to either entire system is irrele-
vant to everyone belonging to the other. The latter condition is
indeed impossible. For, if i is any proposition of one system and
j any proposition of the other, the conjunction, i. j, because it
implies both i and j, is included in both systems and is obviously
relevant to propositions of both. With this explanation of the
irrelevance of systems, we may say, if A and Bare mutual1y
irrelevant, that

7J(A V B I h) = O.

To see this, we obtain, from Eq. (10.5), the equation,

7J(A V B I h) = 7J(A I h) + 7J(B I h) - 7J(A.B I h), (11.1)

which can be written

7J(A V B I h) = - Li(ai I h) In (a. I h)

- L;(b; I h) In (b; I h)

+ LiL;(8.' b; I h) In (ai' b; I h), (11.2)

because each of the systems, A, B and A. B, is defied by a set of

mutual1y exclusive propositions.



62 ENTROIW

The three summations on the right in this equation can be
combined. For

ai.b; I h = (ai I h)(b; I ai.h),

whence, summing over all values of j and noting that ~;(b; I ai.h)
= 1, we find that

ai I h = L;(ai' b; I h).

Similarly,

b; I h = Li(ai' b; I h).

Substituting these expressions for ai I hand b; j h in Eq. (11.2),
we obtain

7J(A V B I h) = LiL;Un (ai' bi I h) - In (ai I h)

- In (b; I h))(ai' b; I h).

When A and Bare mutualIy irrelevant,

ai' b; I h = (ai I h) (b; I h)

and hence

In (ai' b; I h) = In (ai I h) + In (b; I h)

for all values of i and j. Thus 7J(A V B I h) = O.
As might be expected, this is the minimum value. To prove

that it is so, let the probabilities be infinitesimally varied. For
the resulting variations in the entropies, we have

(¡7J(A V B I h) = (¡7J(A I h) + (¡7J(B I h) - (¡17(A.B I h).

By differentiating the members of the equation,

7J(A I h) = - Li(ai I h) In (ai I h),

we obtain

(¡7J(A I h) = - Li(In (ai I h) + l)(¡(ai I h),

~i.((ai I h) = 0 because ~i(ai I h) = 1 and thus we have simply
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(¡7J(A I h) = - Li In (ai I h)(¡(ai I h).

Substituting this and similar expressions for (¡n(B I h) and
(¡7J(A.B I h) in Eq. (11.2), we see that

(¡n(A V B I h) = - Li In (ai I h)(¡(ai I h)

- L; In (b; I h)(¡(b; I h) + LiL; In (ai' b; I h)(¡(ai' b; I h).
In this equation, as in Eq. (11.2), the three summations can be
combined, because (¡(ai I h) = ~; (¡(ai' b; I h) and (¡(b; I h) =
~i (¡(ai' b; I h). Thus

(¡n(A V B I h) = LiL;(ln (ai' b; I h) - In (ai I h)

- In (b; I h))(¡(ai' b; I h).

When A and B are mutually irrelevant, the right-hand member
vanishes and (¡7J(A V B I h) = 0 for all possible variations of the

probabilities. Moreover it is only when they are mutually
irrelevant that this condition is satisfied. Therefore 7J(A V B I h)

has no maximum or minimum value except zero. If zero were its
maximum value, all the other values would be negative, but this
is obviously untrue, since 7J(A V B I h) = 7J(A I h) when B = A.
Therefore zero is the minimum value and we have the theorem:

If each of two systems is definable by a set of mutually ex-
clusive propositions, the entropy of their disjunction is zero if
they are mutually irrelevant and is otherwise positive. (11.)

This theorem justifies a familiar type of inquiry, one in which
the subject is chosen not so much for its intrinsic interest as for its.
relevance to another subject, more immediately interesting but
less accessible to investigation. Let us identify the subject of
principal interest with the system A and suppose that we should
like to know the true proposition in the set, ai, a2, . . . am, but we
are obliged to rely on indirect evidence. We identify the second-
ary subject with the system B, and we propose to find the true
proposition in the set, b, b2, . .. bn, for whatever bearing its dis-
covery may have on thè primary subject. We expect, unless
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there is complete irrelevance between the two subjects, that this

information wil be helpful, at least to some extent. We expect
it to diminish rather than increase our uncertainty about the

primary subject. The symbolic expression of this expectation is
the inequality, 7J(A I B. h) ~ 7J(A I h), which is equivalent to
7J(A V B I h) ~ 0, the symbolic expression of the theorem.

The expectation is reasonable but, like any other which is
based on merely probable inference, it is liable to disappointment
in the event. Such disappointments are common enough to

make it a familiar remark that "we know less now than when we
began.' '

For an artificial but simple example, let the hypothesis h assert
that a blindfolded man puts both hands into a bag containing one
white ball and two black balls and takes out one ball in each hand.
Let us imagine that for some reason we are interested primarily
in the color of the ball in his right hand but we can learn the color
only of the ball in his left.

Information that the ball in his left hand is white wil leave no

uncertainty at all about the color of the ball in his right hand, be-
cause there was only one white ball in the box. By contrast,
information that the ball in his left hand is black wil increase the
uncertainty about the color of the ball in his right hand, because
it wil equalize the probabilties of the two colors and thus pro-

duce an uncertainty as great as any possible with only two alter-
natives. Moreover the increase in the uncertainty is more
proba.ble than the decrease, because the chances are two to one
that the man has a black ball in his left hand.

To discuss this example in formal terms, let a1 assert that the
ba.Il in his right hand is white, a2 that it is black, b1 that the ball
in his left hand is white, b2 that it is black, Then

a1 I h = l, 82 I h = l

and

'l(A I h) = - (a1 I h) In (a1 I h)

- (82 I h) In (a2 I h) = In 3 - l In 2,
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whereas

7J(A I bi.h) = 0 and 7J(A I b2.h) = In 2.
Also

b1 I h = l, b2 I h = l
and

7J(A I B.h) = (b1 I h)7(AI b1.h) + (b21 h)7(A i b2.h) = l In 2.

Therefore

7J(A V B I h) = 7J(A I h) - 7J(A I B.h)

= In 3 - ~ In 2 = l In 2~ )0 O.

The uncertainty about the color of the ball in the man's right
hand is measured in each case by the entropy of A. It is meas-

ured by 7J(A I h) if the color of the ball in his left hand is un-

known, by 7J(A I b1. h) if the balI in his left hand is known to be
white, and by 7J(A I b2.h) if it is known to be black. In the former
case the entropy of A is decreased by the additional information,
whereas in the latter case it is increased. Although the decrease
is only half as probable as the increase, it is more than twice as
great, and it therefore counts for more in the expectation, as is

shown by the fact that 7J(A I B.h) is less than 7J(A I h),
From Eq. (11.1) and the theorem (l1.i), there folIows directly

another theorem:

If each of two systems is definable by a set of mutually ex-
clusive propositions, the entropy of their conjunction is equal to
the sum of their entropies if the systems are mutually irrele-
vant, and otherwise is less.24 (ll.ii)

12. A Remark on Chance

The essentials of chance, or, at any rate, the characteristics
essential to its discussion in this essay, are two in number. One is
the coincidence of two or more events or, more exactly, the con-
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junction of two or more systems of propositions. The other is a
limitation of know ledge, in consequence of which the events or
systems are mutually irrelevant.

Both features are admirably iIustrated by a stanza in one of
Sir Walter Scott's poems:

"0, Richard! if my brother died,

'Twas but a fatal chance,
For darkling was the battle tried,

And fortune sped the lance."2ó

In these lines a lady is trying to console her husband, who has,
as they believe, killed her brother in combat. The coincidence of
events, literal and physical in this example, is between the point
of her husband's lance and a vital part of her brother's person.

The impediment to knowledge, equally literal and physical, is the
darkness in which the battle was fought, and the irrelevance it
imposed on the events is implied in the words, "fortune sped the
lance." The implication is that, because her husband could not

see what he was doing, the fact that he aimed his lance in a cer-
tain direction had no relation to the fact that her brother, at that

instant, was in the way and vulnerable. If this appears to in-
volve the lady in some exaggeration, it is no more than would
readily be allowed under the circumstances to the heroine of a
romantic ballad.

If it was by chance, in this example, that the brother died, it
would have been by chance also if he had lived.26 In a more
familiar example, if it is by chance that a coin falls heads, it is
equally by chance that it falls tails. Although it is convenient

in ordinary speech to associate chance with the actual event, it is
truer to the concept to relate it to a set of possible alternatives, of
which the actual event is one. The set may comprise only two
alternatives, such as lie and death or heads and tails, or it may
include more, but in any case it is exhaustive and the alternatives
are mutually exclusive. Hence the set of propositions, each of
which asserts one of the alternatives, defines a system of the kind
con.sidered in the chapter before this one. It is possible, there-
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fore, and reasonable to associate chance with systems of proposi-
tions rather than with single propositions or events. Indeed
such an association is necessarily implied if, as we have just sup-
posed, an essential feature of chance is irrelevance. For, as was
pointed out at the end of Chapter 4, if two propositions are

mutually irrelevant, each is irrelevant to the contradictory of the
other and the contradictories are also mutually irrelevant. Thus
irrelevance is a relation between a pair, at least, of mutually ex-
clusive propositions and another such pair. It is a relation,

therefore, between systems, because each pair, being exhaustive,
defines a system. Of course there can be irrelevance also between

systems defined by more than two propositions.
It may stil be questioned whether irrelevance is an invariable

characteristic of chance, and indeed it is not explicitly present in
every case. There seems, however, to be at least an implication
of it in every occurrence attributed to chance by common usage.
For example, it wil sometimes be said, "That was only chance,"
when someone has performed an astonishing feat. Although the

assertion of irrelevance is not explicit here, it becomes more evi-
dent if the speaker adds in explanation, "I doubt if he could do it
again." The meaning of the added remark is that the first per-
formance of the feat, if it were a proof of skill, would create a
presumption of success at a second trial, but, if it were a matter
only of chance, there would be no such presumption and success
at the second trial would be as unexpected as it was at the first.
The expression of doubt in the second remark makes explicit an
implication of irrelevance already present in the first.

Chance may therefore be described as a condition under which
two or more systems of propositions are mutually irrelevant. If

A and B are the systems, their mutual irrelevance is expressed by
either of the equations,

7J(A V B I h) = 0

or

7J(A.B I h) = 7J(A I h) + 7J(B I h).



68 ENTROPY

This description is stil incomplete, because irrelevance is not
all we mean when we speak of chance. What else we mean is hard
to say precisely, but we seem always to associate chance with an
irrelevance which is not merely present in the argument but is
produced by an impediment to knowledge inseparable from the
circumstances on which the argument rests. The circumstances
may be brought about intentionally, as they are in games of
chance and in many statistical studies, Thus cards are shufHed
until all knowledge of their prior arrangement becomes irrelevant
to any inference about the order in which they wil be dealt after-
wards. Or, like the darkness in the ballad, the circumstances

may be those of time and place. Or, again, they may be inherent

in the nature of things, as when we call radioactive decay a matter
of chance and mean that no possible observation will enable us to
say in what order the atoms of a radioactive element wil disinte-
grate and no method exists for separating those which wil disin-
tegrate early from the others which wil outlast them.

It has often been said that when we speak of chance, sometimes
of "blind chance", we are only giving an external embodiment to
our own ignorance.27 This may be true, but it should be noted
that we do not ascribe to chance all the coincidences of whose

causes we are ignorant, but only some of them. Moreover we
conceive our ignorance in these cases not as altogether private

and subjective but rather as something which the given situation
imposes on us and would impose equalIy on anyone else who
might be there in our stead.

1\

I



III

Expectation

13. Expectations and Deviations

The idea of expectation began in gambling and may stil be most
easily explained by that example. Consider a prize of value x
put up in a lottery of W chances. The holder of a single chance is
said to have an expectation equal to x/W. In a lottery in which
the prices of all the chances are pooled to make the prize, the
expectation is the price of one chance.

Suppose now that, instead of a single prize, there are numerous
prizes of different values: WI of value Xi, W2 of value X2, and so on;

so that the holder of a single chance has the probability, wT/W, of
winning a prize of value XT. His expectation is said to be
~TXT(WT/W). If each of the W chances is sold at this price, the
total receipts wil be ~TXTWr and wil thus be just enough to pay
for all the prizes.

The definition is easily generalized from this example. Let x
be a quantity which, on the hypothesis h, can have anyone of a
number of values. Let Xi, X2, . . . be an exhaustive set of mutu-
ally exclusive propositions such that x has the value XT if x, is
true. Let the expectation of x on the hypothesis h be denoted by

(x I h). In analogy with the example of the lottery, it is defined
by the equation,

(x I h) = LT X,(XT I h). (13.1)

If, in the set, Xl, X2, . . ., there is a proposition which ascribes
to x the value zero, its probability obviously contributes nothing

69
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to the expectation. It is convenient, however, to consider this

proposition, when it has any probability, as always included in the
set, so that we may employ theorems which are valid only for
exhaustive sets and may refer on occasion to the system X, which
the propositions, if they form an exhaustive set, define.

A quantity which has only one value possible on the hypothesis
h is a constant in every argument from that hypothesis, and the
proposition which asserts that value is certain. If C is any such

quantity, it follows immediately from Eq. (13.1) that

(c I h) = C.
If A is another quantity constant on the hypothesis h and x

is any variable, Ax has the value AXT when XT is true. Hence, by
Eq. (13.1),

(Ax I h) = A (x I h).

Now let y be a quantity to which propositions, Y1, Y2, . . ., as-
cribe values Y1, Y2, . .. Then x + y has the value XT + y. when
XT'Y. is true and, by Eq. (13.1),

((x + y) I h) = LTL.(XT + y,)(XT'Y. I h).
This may be written

((x + y) I h) = LT(XT(XT I h)L.(Y. I xT.h))

+ L.(Y.(Y. I h)LT(XT I y..h)).

The propositions, Y1, Y2, . . ., are mutually exclusive and form an
exhaustive set. Therefore ~.(y. I xT.h) = 1 and, similarly,
~T(XT I y..h) = 1. Hence

((x + y) I h) = LT XT(XT I h) + L. y.(y. i h)

= (x I h) + (y I h).
Thus the expectation of the sum of two quantities is equal to the
sum of their expectations.

By combining the three results just obtained, we see that

((Ax + By + C) I h) = A (x I h) + B (y I h) + c,

i
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where x and yare any quantities and A, Band C are any con-
stants. More generally, we have the theorem,

The expectation of a linear function of any quantities is equal
to the same linear function of the expectations of the quantities.

(13.i)

When all the expectations involved in a given discussion are
reckoned on the same hypothesis, the symbol for the hypothesis
may, without confusion, be omitted from the symbols for the ex-
pectations. Thus, with the omission of the symbol h, the pre-

ceding equation may be written in the form,

(Ax + By + C) = A (x) + B (y) + C.
The simpler notation wil be used henceforth except when refer-
ence to the hypothesis is necessary in order to avoid ambiguityo

For functions which are not linear, there is no theorem corres-
ponding to (13.i). For example, the expectation of the product

of two quantities is not, in general, equal to the product of their
expectations. The expectation of the product xy is given by

(xy) = LTL,XTy,(XTOY.1 h),

whereas the product of the expectations is given by

(X)(y) = LTXT(XT I h)L.Y.(Y.1 h) = LTL,XTY.(XT I h)(y.1 h).

The most frequently encountered case in which these two ex-
pressions are equal is that in which every proposition of the set,
Xl, X2, . . ., is irrelevant to everyone of the set, Yl, Y2, . . " or, as
it may be said more briefly, the systems X and Yare mutually
irrelevant, In this case, xToY.! h = (xT I h)(y.\ h) and the ex-

pectation of the product is given by the same expression as the

product of the expectations. The case in which one of the quan-

tities, x or Y, is constant and the proposition which states its value
is therefore certain, is a special instance of this irrelevance, accord-
ing to the discussion at the end of Chapter 3.

The difference of any quantity from its expectation, for
example, x - (x), is called the deviation of the quantity. The
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product of the deviations of x and y is given by

(x - (x)) (y - (y)) = xy - x (y) - (x)y + (x)(y)
and is therefore a linear function of the quantities, xy, x and y.
Hence it follows, by the theorem (13.i), that

((x - (x))(y - (y))) = (xy) - (x)(y). (13.2)

If the deviations of x, whether positive or negative, are pre-

dominantly associated with deviations of y of the same sign, it
follows from this equation that (xy) is greater than (x) (y),
whereas, with the opposite association of signs, it is less. In the

case of mutual irrelevance, and exceptionally in other cases, (xy)
and (x) (y) are equal.

When x and yare the same quantity, the preceding equation
becomes

((x - (X))2) = (x2) - (x)2. (13.3)

The left-hand member of this equation can not be negative and it
follows therefore that the expectation of the square of a quantity
can not be less than the square of its expectation. They are
equal only in the extreme case in which the quantity is constant,
its expectation is equal to its only possible value and its deviation
is therefore zero. A very small value of ((x - (X))2) indicates

that values of x much different from (x) are very improbable.

On the other hand, if the more probable values of x are widely
different from one another and hence from (x), the probable
values of (x - (x ))2 are large and so also therefore is ((x - (x ))2).
The extreme example of this kind is that in which the only pos-
sible values of x are two constants, C and - C, and these are
equally probable. In this case, (x) = 0 but ((x - (x ))2) = C2.

It is evident from this discussion that the expectation of the

square of the deviation of a quantity is a convenient measure of
the dispersion of its probable values, It is not a very discrim-
inating one, in that it tells us nothing about the probabilities of
sigle values. but it is often adequate, especially when it is small

L
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and our only need is to be assured that the dispersion is within
tolerable limits.

An equation useful as a lemma is

LT XT(XT I h)(a I XT.h) = (a I h) (x I a.h), (13.4)

where a is an arbitrary proposition.
This equation is easily proved. We have

(XT I h)(a I XT.h) = (a I h)(xT I a.h),

since these are both expressions for xT'a I h. Multiplying by XT
and summing with respect to r, we immediately obtain the lemma.

If, in this lemma, we replace a by each in turn of an exhaustive
set of propositions, bi, b2, . . . bn, and sum over all of them, we
obtain

LT(XT(XT I h)Li(bi I xT.h)) = Li(b. I h)(x I bi.h). (13.5)

If the propositions of the set are mutually exclusive, ~i(bi I x..h)
= 1 and the left-hand member is equal simply to (x I h). In this

case, therefore,

(x I h) = Li(bi I h) (x I bi.h). (13,6)

This is a special case of a more general equation, valid for any
exhaustive set of propositions, whether or not they are mutually
exclusive. It is

(x I h)

= L.(bi I h) (x I bi. h) - LiL,;:i(bi. bi I h) (x I bi. bi. h)

+ L.L,;:.Lk~i(bi. bi. bk I h)(x I bi. bi. bk. h) - . . .

:: (bi.b2. ... .bn I h) (x I bi.b2. ... .bn.h). (13.7)

To prove this equation, we replace a in Eq. (13.4) successively
by b.. b" bi. bi. bk, . . . and sum over all the different combinations
of unequal values of i, j, k, . .. The members of the equations
so obtained are alternately subtracted from and added to those of
Eq. (13.5). In this way we obtain an equation of which the right-
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hand member is the same as that of Eq. (13.7) and the left-hand
member is

LTfXT(Xr I h)(Li(bi I xr.h) - LiLi~i(bi. bi I xr.h) + . . .

:: (bi.b2. .,. .bn I xr.hm.
The bracketed quantity, by which Xr(Xr I h) is multiplied, is equal
to bi V b2 V . . . V bn I xT.h and hence to 1, because the set,
bi, b2, . . . bn, is exhaustive, Thus the whole expression is reduced
to ~T Xr(XT I h), which is equal to (x i h), and thus Eq. (13.7) is

proved.
There is an evident likeness between this equation and Eq.

(10,2), which defines the conditional entropy.

14. The Expectation of Numbers

There are times when we have a statistical interest, rather than
an interest in detail, in respect to some group of propositions,

ai, a2, . . . aM, It may be more feasible or it may be more urgent
to concern ourselves with the number of true propositions in the
group than with the question as to which are true and which false,
For example, a body of citizens may be urging their City Council
to enact some ordinance and a1 may be the proposition, "The
Councilman for the Ith District wil vote for the ordinance."
The citizens wil be more interested in the prospect of a majority
vote than in the composition of the majority. Or a public health
offcial, trying to control an epidemic, wil be obliged to forecast
the incidence of the disease. These are examples of the expecta-
tion of numbers. In the ordinary case, as in these examples, the
propositions have some simlarity of meaning which makes it
natural to associate them as members of one group. There are
statistical theorems, however, which do not depend for their
proof on the nature of any such resemblance or even on its exis-
tence but, on the contrary, are valid for propositions assembled in
any way, even a capricious one. .

'1
i
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Let h denote the hypothesis common to all the calculations
and let m be the number of true propositions in the group, ai,
32, . , . 3M. If the propositions were mutually exclusive, m could
not be greater than 1 and, if they formed an exhaustive set, it
could not be less, but neither assumption is to be made here and
all the integers from 0 to M are possible values of m. The first
theorem to be proved is

(m I h) = L¡(a¡ I h), (14.1)

where the summation is over all the propositions in the group.
The proof is by a mathematical induction, in which the expecta-

tion of the number of true propositions in the original group, ai,
a2, . . . aM, is compared with the like expectation in the group,
ai, a2, . , . aM, aM+1, identical with the first except that it includes
one more proposition, aM+l. Let us denote the number of true
propositions in the first group by mM and in the second group by
mM+i, and let mM+1 be substituted for x in Eq. (13.6). Then the

propositions, aM+l and rvaM+l, making, as they do, an exhaustive
set of mutually exclusive propositions, may replace the set, bi,
b2, . . . bn, in the same equation. With these substitutions we
obtain:

(mM+l I h) = (aM+l I h) (mM+1 I aM+l' h)

+ (rvaM+ll h)(mM+11 rvaM+i.h). (14.2)

If aM+1 is true, there is one more true proposition in the group
which includes it than in the group which excludes it. The ex-

pectationof mM+1 on the hypothesis aM+l' h is therefore greater
by 1 than that of mM on the same hypothesis. Thus

(mM+1 I aM+1.h) = (mM I aM+i.h) + 1.

If, on the other hand, aM+l is false, the number of true proposi-
tions is the same in both groups and hence

(mM+l I rvaM+i.h) = (mM I rvaM+i.h).

Substituting these expressions in Eq. (14.2), we obtain
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(mM+l I h) = ((aM+11 h) (mM I aM+i.h)

+ (rvaM+I I h) (mM I rvaM+i.h)) + (aM+1 I h).

By the use of Eq. (13.6) again, we see that the expression

in brackets is equal to (mM I h) and thus we find that

(mM+11 h) = (mM I h) + (aM+11 h).

Assuming now, for the sake of the induction, that Eq. (14.1)
holds for the group of M propositions, we have provisionally

M

(mM I h) = L (ar I h)I-I
and therefore, by the result just obtained,M M+l

(mM+I I h) = L (ar I h) + (aM+l I h) = L (ai I h).1-1 I-I .
Thus, if Eq. (14.1) holds for one value of M, it is proved for the

next higher value and therefore for all higher values. When
M = 1, there is the probabilty ai I h that m = 1 and the prob-
abilty rvai I h that m = O. It follows immediately, by Eq.

(13.1), that (mi I h) = ail h, in agreement also with Eq. (14.1).
Thus the induction is completed and the theorem is proved.

If we denote by n the number of true propositions in a second
group, bi, b2, . . . bN, we have, in analogy to Eq. (14.1),

(n i h) = LJ(bJ I h). (14.3)

Now, among the conjunctions,

ai.bi, ai.b2, '" ai.bN,

a2' bi, a2' b2, . . . a2' bN,

aM' bi, aM' b2, . . . aM' bN,

the number of true ones is mn, because every conjunction of one
of the m true propositions of the first group with one of the n true
propositions of the second group is true. All the others are false,
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because each is a conjunction either of two false propositions or of
one false and one true, and in either case is false itself. Hence it

follows that

(mn i h) = LrLJ(ar.bJ I h). (14.4)

The proof can easily be extended to apply to the product of the

numbers of true propositions in more than two groups.
According to Eq. (13.2), the product of the deviations of m and

n has an expectation given by

((m - (m))(n - (n))) = (mn) - (m)(n),

and therefore, by Eqs. (14.1), (14,3) and (14.4),

((m- (m))(n- (n)))
= LrLA(ar' bJ I h) - (ar I h)(bJ I h)). (14.5)

If the two groups of propositions are mutually irrelevant,

a1" bJ I h = (arl h)(bJ I h) for all values of I and J. In this case,
therefore, the expectation of the product of the deviations is zero.

When the two groups of propositions are identical, the equation
becomes

((m - (m))2) = LrLJ((ar.aJ I h) - (arl h)(aJ I h)) (14.6)

and thus gives the expectation of the square of the deviation of
m. A group of propositions can not be completely irrelevant to
itself (except in the trivial case in which every proposition is
either certain or impossible) but each proposition can be irrele-
vant to everyone except itself. With this degree of irrelevance,
(a¡oaJ I h) = (arl h)(aJ I h) for all unequal values of I and J.
All the terms of the summation on the right in Eq. (14.6) there-
fore vanish, except those in which J = I, and thus the summation
becomes single-fold. Since also ar.ar = ar, the equation becomes

((m - (m))2) = Lr(ar I h) (1 - (ar I h))

= Lr(ar I h)( rvar I h). (14.7)



'1

78 EXPECTATION

The symmetry on the right between the inferences and their
contradictories shows that the square of the deviation in the

number of false propositions has the same expectation as in the
number of true ones. This is a consequence of the fact that
every excess in the number of true propositions above its expecta-
tion is accompanied by an equal deficiency in the number of false
ones, and the squares of the two deviations are thus equal and
equally probable.

If we denote m/ M, the proportion of true propositions to the
total number, by p" Eq. (14.1) becomes

(p,) = Lr(ar I h)/ M. (14.8)

Thus (p,) is equal to the arithmetical average of all the
probabilities,

Let us now denote by Dr the difference, (ar I h) - (p,), between
one probability and the average of all, so that ~rD1 = O. Re-
placing m by p,M and (arl h) by (p,) + Dr in Eq. (14,7), we find
that

((p, - (p,))2) = (p,)(1;; (p,)) - L;Jr2.

Because~rDr2/~ cannot be negative, it follows from this equation
that ((p, - (p,))2) can not be greater than (p,)(1 - (p,))/M, the

value which it attains when all the propositions are equally

probable. Moreover, the maximum value of (p,)(1 - (p,)), at-
tained when (p,) = l, is l. Therefore

1
((p, - (p,))2) ~ 4M' (14.9)

It was remarked in the chapter before this one that the expecta-
tion of the square of the deviation of a quantity measures the
dispersion of its probable values and is small if the quantity is
unlikely to have values appreciably different from its expectation.
We therefore conclude from Eq. (14,8) and the inequality (14.9)
that:
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In any group of mutually irrelevant propositions, the pro-
portion of true ones has an expectation equal to the average of
the probabilties of all the propositions, and an appreciable

difference between this proportion and its expectation is very

improbable if the propositions are very numerous. (14.i)

This is one of a group of theorems which express, with greater
or less precision, the principle known as the law of great numbers,28

15. The Ensemble of Instances

In the preceding chapter, the propositions, ai, a2, . . . aM, were
not required to have any resemblance among themselves in order
to be associated as a group. In the present chapter, we consider
a more restricted case, in which the subjects of all the propositions
have some common characteristic. Singly the subjects are called
instances of this characteristic and collectively they are said to
form an ensemble of instances. For example, a hand at cards is
an instance in the ensemble of all hands dealt according to the
same rules, and a particular inhabitant of North America is an
instance in the ensemble of all North Americans.

Although the instances of the ensemble are all identical in the
respect by which the ensemble is defined, they are not necessarily
so in other respects. We suppose, indeed, that each instance is

distinguishable in some way from every other and each is there-
fore unique in at least one particular. It is to be understood that
both the common characteristic which defines the ensemble and
the singular characteristics which. distinguish the instances are

stated in the hypothesis, h, of the argument. Concerning these
characteristics, therefore, the hypothesis is explicit, whether in
ascribing them to all the instances or in ascribing them to some
or only one and denying them to the rest.

Ordinarily there are also other characteristics, concerning

whose presence in any instance the hypothesis is not explicit but
provides ground only for probable inference. We suppose that
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it is with such a characteristic that the group of propositions,

ai, a2, . . . aM, is concerned and that the proposition ar asserts
that this characteristic is present in the I th instance in the en-
semble. For example, ar may assert that the ace of hearts is in
the I th hand at cards or that the I th North American has studied
Latin, M becomes a number of instances in the ensemble and
m the number of these instances having the characteristic in
question.

Because all the propositions have reference to the same charac-
teristic and differ only in ascribing it to different instances, it is
only the particulars which distinguish the instances that can

cause inequalities among the probabilities, (ai I h), (a2 I h), . . .
(aM I h). If these particulars are all irrelevant to the characteris-

tic in question, the probabilities are all equal and a single symbol
p may stand for any of them. In this case, the expression given
for (m) by Eq. (14.1) becomes simply the sum of M terms each

equal to p and we have the familiar result,

(m) = Mp.

If also the presence of the characteristic in any instance is

irrelevant to its presence in any other, so that the propositions,
ai, a2, . . . aM, are all mutually irrelevant, Eq, (14.7) holds and
becomes

((m - (m))2) = Mp(l - p).
If mj M is denoted by p" these equations take the form,

(p,) = p
and

((p, - (p,))2) = p(l - p)jM.
Thus the probability, p, of the characteristic is not only the ex-
pectation of p" the proportion in which it is present in M instances
in the ensemble, but is also the value which this proportion wil
almost certainly approach as M, the number of instances, be-
comes very large.
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It is a corollary of this principle that the average, over a large
number of instances, of every quantity which satisfies certain
appropriate conditions is almost certain to be nearly equal to the
expectation of that quantity in a single instance. To see that this
is true, let x be a quantity which, in any instance, has one of the
values, Xi, X2, . . . xr, . . ., and let its value in one instance be
irrelevant to its value in any other. Let the probability of any
value, as xr, be the same in every instance, so that we may denote
it always by the same symbol, pro Then the expectation of x in
any instance is given by

(x) = L.xrPr.

Among M instances in the ensemble, let the number in which
x has the value Xr be denoted by mT. The average value of x in
these M instances is then given by .

xav = L.xrmrj M.

If M is a very large number, mrjM is almost certain to be
very nearly equal to PT' Therefore Xav is almost certain to be

very nearly equal to (x).
In such a subject as statistical mechanics, in which the numbers

of instances are ordinarily enormous, it is common practice to
ignore the distinction between the expectation and the average,
as though they were not only equal quantities but also inter-
changeable concepts.

When we say that a true die wil show, on the average, one
deuce in every six throws, we are, in effect, considering an en-
semble not of single throws but of sequences of six. One such
sequence is one instance in this ensemble, and the number of
deuces in the sequence is a quantity whose possible values are the
integers from 0 to 6. Its expectation in a single instance and its

approximate average in a large number are both equal to 1. The
law of great numbers, in the aspect ilustrated by this example, is
often called the law of averages.
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16. The Rule of Succession

The characteristic which the proposition ar ascribes to the I th
instance in an ensemble was supposed, in the chapter before this
one, to satisfy two rather strict conditions of irrelevance. First,

its presence in any instance was assumed irrelevant to the pres-
ence of whatever singular characteristic served in the hypothesis
to distinguish that instance from the others in the ensemble.

Second, its presence in one instance was assumed irrelevant to its
presence in any other instance. Let us now compare this case
with one in which the second of these assumptions is replaced by
a less stringent requirement.

For a rather trivial example, imagine a bag full of dice, all
accurately squared and balanced but carelessly stamped, so that
some of them have two, three or more faces marked with two
spots, After the dice have been thoroughly shaken in the bag,

one of them is to be drawn and thrown a number of times.
On an hypothesis which identifies the die, whether as correctly

stamped or as stamped defectively in a specific way, the condi-
tions of irrelevance assumed in the preceding chapter are satisfied
in respect to throwing deuces, The probability of a deuce in any
single throw is equal to the ratio of the number of faces marked
with two spots to 6, the total number of faces. Moreover, no
inference from the result in one throw can alter the probabilities
of the results possible in any other, for, except for defects in
marking, the dice are true.

If, on the other hand, the die is not identified in the hypothesis
except as having been drawn from the bag of mixed dice, the
results of different throws are not mutually irrelevant, For ex-
ample, if any of the dice in the bag had every face stamped with
two spots, a long run of deuces wil make it very likely that the
die drawn was one of them, and a deuce on the next throw there-

after, though not quite certain, wil be very nearly so. The re-
sult even of a single throw wil contribute something to the iden-
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tification of the die and thus change the probabilty of a deuce on
the next throw. If it is a deuce, it wil somewhat increase the

probability that the die has more than one face with two spots,
If it is not a deuce, it wil eliminate the possibility that all six

faces are so marked and it wil make some changes in the prob-
abilities of the other possible markings.

Generalizing from this example, we consider an ensemble of
instances defined by a common characteristic, which is not itself
identified, however, except as one of a set of mutually exclusive
alternatives. In the example, the ensemble consists in the

throws of the die, the common characteristic is that the same die
is thrown in all the instances, and the alternatives are distin-
guished by the different markings of the dice in the bag
from which one was drawn to be thrown, If we distinguish the
alternatives in the general case by numbers, 1, 2, ... w, and
denote by PT the proposition which names the rth alternative as
the common characteristic of all the instances, then, in the ex-
ample, w = 6 and PT asserts that the die drawn has r faces marked
with two spots. In the general case we suppose that the hy-

pothesis h assigns a probability to each of the propositions, Pi, P2,
. . . pw, and that these propositions form an exhaustive set, so
that ~r(PT I h) = 1. In the example, PT I h is the fraction of the
dice in the bag that have r faces marked with two spots,

We now consider a characteristic which we expect to be present
in some instances in the ensemble and absent from others, and we
denote, as heretofore, by ar the proposition which ascribes this
characteristic to the I th instance. In the example of the dice, ar
asserts that the Ith throw of the die is a deuce. Just as, in the
example, when the marking of the die is specified, the results of
successive throws are mutually irrelevant as well as equally

probable, so, in the generalization, when one of the propositions,

Pi, P2, . . . Pw, is asserted in the hypothesis, we attribute mutual
irrelevance and equal probability to each of the inferences, ai,
a2, . . . ar, . .. If we denote arlPT.h by PT in the generalization,
then PT = r /6 in the example.
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On these assumptions let us seek an expression for aM+l I m.h,
where m asserts that the number of true propositions in the group,
ai, a2, . . . aM, is m. Thus, in the example, we suppose that the die
has been thrown M times and has shown m deuces, and we seek,
with this information, to know the probability of a deuce on the
next throw. In the generalization, we suppose that M instances

in the ensemble have been examined and the characteristic under
consideration has been found present in m of them, and we seek
its probability in the next instance.

Although m states the number of true propositions in the group,
ai, a2, . . . aM, it does not say of any particular proposition whether
it is among the m true ones or the M - m false ones. Let us
denote by m* a more specific proposition, which not only asserts,
as m does, that there are m true propositions in the group but
also, as m does not, specifies which propositions are true and, by
exclusion, which are false. Consider first the probability of m*
on the hypothesis Pr.h. Because, on this hypothesis, each of the

propositions, ai, a2, . . . aM, has the probability Pr and they are all
mutually irrelevant, the probability that two of them, as ar and
aJ, are both true is Pr2 and that they are both false is (1 - Pr)2,

whereas the conjunctions which specify one as true and the other
as false have probabilities given by the equation,

v

I

ar' rvaJ I Pr.h = rvar.aJ I Pr.h = Pr(l - Pr).

We assume irrelevance in all the possible conjunctions by which
some of the propositions are specifed as true and some as false and
thus, continuing the same reasoning, we see that

m* I Pr.h = PTm(l - Pr)M-m.

To find an expression for m* I h, we equate the two expressions
for m*'PT I h and thus have

(m* I h)(Pr I m*.h) = (m* I Pr'h)(Pr I h).

Substituting in this equation the expression just obtained for

m* I Pr.h, we find that
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(m* I h)(Pr I m*.h) = PTm(l - Pr)M-m(Pr I h),

whence, summing over all values of r, we obtain

m* I h = LrPrm(l - Pr)M-m(Pr I h).

The conjunction, aM+l' m*, specifies as false the same M - m
propositions as m* and as true the m propositions so specified by
m* and one more, aM+l. Therefore, by analogy with the equation
just found for m* I h, we have

aM+i.m* I h = LrPrm+l(l - PT)M-m(PT I h).

These two results can be combined to give an expression for
aM+l I m*.h, for

aM+1 I m*.h = (aM+i.m* I h)/(m* I h),

and hence we have

- LrPrm+l(l - Pr)M-m(Pr I h)aM+l I m*.h
- LrPrm(l - Pr)M-m(Pr I h) .

It is to be noted that the expression on the right in this equation
depends on the number of propositions specified as true and false
but not on the way in which they are specified, Thus aM+1 has

the same probability for all the specifications consistent with the
given numbers. Hence it follows that it has this probability also
if the propositions are not specified but only the numbers are
given, as they are by the proposition m. Thus, although the
propositions m and m* are quite different, their difference is
irrelevant to aM+l and therefore they are interchangeable in the
hypothesis when aM+! is the inference. Hence aM+1 I m.h =
aM+1 I m*.h, and the solution of the problem with which we have
been concerned is the equation,

aM+l I m.h = LTPrm+l(l - Pr)M-m(PT I h) ,
LrPTm(l - Pr)M-m(Pr I h)

(16,1)

This equation can be expressed as a relation among expecta-
tions, for we may regard Pi, P2, . . . pw as the possible values of a
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single quantity p and pr as a proposition which ascribes to p the
value pr' In the example of the dice, p is the probability of
throwing a deuce when it is known what die is being thrown. In
general it is the probability of ar (for an arbitrary value of I) when
it is known which of the alternatives, Pi, P2, . . . pw, is true. With
this understanding, the right-hand member of Eq, (16.1) appears
as the ratio of the expectations of two functions of p, To express
aM+l I m.h, the left-hand member, as an expectation also, we
equate the two expressions for aM+1'pr I m.h, and so obtain

(aM+l I m.h)(Pr I aM+i.m.h) = (aM+I i Pr.m.h)(Pr I m.h)
= Pr(Pr I m.h),

whence, summing with respect to r, we see that

aM+1 I m.h = LrPr(Pr I m.h) = (p I m.b).

Thus Eq, (16.1) can be written

(pm+!(l - p)M-m I h)
(p I m.h) = (pm(l - p)M-m I h) . (16.2)

In some examples, p is not limited to discrete values but has a
continuous range. In such a case, Eq. (16.2) requires no change,
but the summations in Eq. (16,1) must be replaced by integrals.
If we denote by f(p) dp the probability on the hypothesis h that
p has a value within the infinitesimal range dp, the equation

becomes

= f pm+l(l - p)M-mf(p) dp

f pm(l - p )M-mf(p) dp

If f(p) is constant in the integrations, the integrals take known
forms and the equation becomes simply

aM+l I m.h (16.3)

m + 1aM+! I m.h = .M+2
This is Laplace's rule of sUCceSSi01.29

(16.4)
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Only in exceptional cases, however, can fCp) reasonably be as-
sumed constant. This assumption requires, if the range of values
of p from 0 to 1 be divided into equal elements, that p is just as
likely, on the hypothesis h, to have a value in one element as
another. Artificial hypotheses can be constructed which satisfy

this requirement, but actual circumstances seldom do so. It is

not from these exceptional cases that the rule of succession derives
its utility but from the much more numerous cases in which the
rule can be shown to hold approxiately when M, the number
of known instances, is very large. It holds in the latter cases,
not because of an assumed indifference of the hypothesis to the
value of p, which is the ground on which it has usually been justi-
fied, but because, when M is very large, the expression given in
Eq. (16.3) for aM+l I m.h is indifferent, or very nearly so, to the
form of fCp). In other words, the rule is useful not because fCp)
has commonly a particular form but because, when M is large
enough, its form hardly matters.

17. Expectation and Experience

To obtain the rule of succession in its wider use, we eliminate
m from Eq. C16.3), denoting m/ M by p" and so find the equation
in the form,

aM+! I m.h =

~l p(¡I(l - p)I-I')Mf(p) dp

~l (p1'C1 - p) l-I')Mf(p) dp

By differentiating the function pl'(l - P )1-1', with respect to p

while keeping p, constant, we find that it has its maximum value
when p = p,. When this function is raised to the power M, as it
is in the integrands in the equation, the maximum stays at the
same value of p and, as M is increased, the factor by which the
maximum exceeds the other values increases exponentially. It
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follows, when M is very large, that the integrands are negligible
except for values of p in the near neighborhood of p" whatever the
form of the function fCp), provided only that it is not very much
smaller in this neighborhood than elsewhere, The values of the
integrals are therefore sensitive to the form of f(P) only in this
neighborhood and, unless it is there a very rapidly varying func-
tion of p, it may be replaced in the integrands by f(p,). As p, is a
constant in the integration, fCp,) can now be taken outside the
integral signs. There, as a common factor of numerator and
denominator, it is eliminated from the equation. The result is
again the rule of succession, which is approximated, when M is
very large, by the equation,

aM+l i m.h = m/M.

Thus, in determining probabilties in the ensemblè, the accumu-
lation of instances prevails, in the long run, over the prior evi-
dence, and the fraction of instances in which a characteristic is
found present becomes, as the instances are multiplied, the prob-
abilty of the characteristic in a new instance.

It is stil important, however, to remember the two require-

ments of irrelevance by which this conclusion was made possible.
The first is that the instances be differentiated from one another
only by particulars irrelevant to the presence of the characteristic
whose probability is in question. The importance of this re-
quirement can be seen in an example taken from Peirce:

"About two per cent of persons wounded in the liver recover,
This man has been wounded in the liver;
Therefore there are two chances out of a hundred that he wil
recover ."30

What counts here is the particular by which "this man" is to
be identified. If he is not identified at all except as somE-one

wounded in the liver, he remains an anonymous, undifferentiated
member of the population whose injury defines the ensemble. In
this case, the statement that "there are two chances out of a
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hundred that he wil recover" is scarcely if at at all more than a
tautology which repeats in other words the statement that "about
two per cent of persons wounded in the liver recover." But, if

he is identifed in any more discriminating way, the statement
about his chances of recovery depends for its validity upon the
irrelevance between the proposition which identifes him and the
inference that he wil recover. If he is identified as the patient
of a skillul surgeon, his chances wil not be the same as if he
were attended by a tribal medicine man. If he is Prometheus, his
chances can be estimated only by comparing the prognosis of
wounds of the liver inflicted by the vultures of Zeus with that of
injuries more conventionally incurred.

The second requirement for proving the rule is that of mutual
irrelevance among the propositions, ai, a2, . . . ar, . . '1 which was
assumed to hold on each of the alternatiye hypotheses, Pl' h, P2' h,

. . . Pw.h. A celebrated calculation by Laplace provides an ex-
ample in which this requirement was not satisfied. Accepting
historical evidence for the past occurrence of 1,826,213 sunrises,

he used the rule of succession to estimate the probability of the

1,826,214
next as 1 826 215 ., ,
sunrise failed to occur as expected, this would, on any credible
hypothesis, change the probability of the one expected to follow

it.3l
In this chapter so far, and the one before it, we have been

concerned with examples at two extremes. In the example of the

dice, considered in the preceding chapter, the required conditions
of irrelevance are fully met. By contrast, in the example of the
sunrise, they are not met at all, and the calculation from the rule
of succession is, in this example, a travesty of the proper use of
the principle. Between these extremes we carryon the familiar

daily reasoning by which we bring our experience to bear on our
expectation. In an ordinary case, we are obliged, under the given

circumstances, whatever they are, to anticipate an unknown
event. We look to experience for occasions in which the circum-

This calculation ignores the fact that, if one
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stances were similar and where we know the event which followed
them, We determine our expectation of a particular event in
the present instance by the frequency with which like events have
occurred in the past, allowing as best we can for whatever dis-
parity we find between the present and the former circumstances.

The ensemble is the conventional form for this reasoning.
Some cases it fits with high precision, others with low, and for
some it is scarcely usefuL. Suppose that someone is reading a
book about a subject which he knows well in some respects but
not in others, and that he finds, among the author's assertions,

instances both true and false in the matters he knows about. If
he finds more truth than error in these matters, he wil judge that

an assertion about an unfamiliar matter is more probably true
than false, other things being equal. His reasoning has the same
character as an application of the rule of succession but not the
same precision. In the algebra of propositions,

a = a V (b.rvb) = (a V b). (a V rvb)

for every meaning of a, and thus there is no proposition so simple
that it can not be expressed as the conjunction of others. Hence
there is no unambiguous way of counting the assertions in a dis-
course. Although it is possible often to recognize true and false
statements and sometimes to observe a clear preponderance of
one kind over the other, yet this observation can not always be
expressed by a ratio of numbers of instances, as it must be if the
rule of succession is to be applicable.

In every case in which we use the ensemble to estimate a prob-
ability, whether with high precision or low, we depend on the
similarity of the circumstances associated with the known and
unknown events. It seems strange, therefore, that Venn, who
defined probability in terms of the ensemble, should have ex-
cluded argument by analogy from the theory, as he did in the
passage quoted in the first chapter. For every estimate of prob-
ability made by that definition is an argument by analogy.
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18. A Remark on Induction

Inductive reasoning, when the term is used broadly, is any
reasoning in which the verification of one or more propositions is
adduced as an argument for the truth, or at least the probability,
of a proposition which implies them. For example, we see leaves
moving and infer that the wind is blowing, or we hear the whistle
of a locomotive and infer that a train is coming.

The argument depends on the equality of the two expressions
for the probability of a conjunctive inference. Let g be a proposi-
tion w.hich, on the hypothesis h, implies another proposition, i.
Equating the two expressions for g.i I h, we have

(g I h.i)(i I h) = (i I h.g)(g I h),

whence

g I h.i - g I h

i I h.g - i I h'
To say that g implies i is to say that i I h. g = 1 and thus

I h' g i hg '1 = i I h .

By this equation, g I h.i ? g I h unless g I h = 0 or i I h = 1.

The reasons for these two exceptions are obvious. If g I h = 0,

g is an impossible inerence to begin with and no accumulation of
evidence wil make it possible. If i I h = 1, i is implied by hand
its verification, since it gives no information which was not al-
ready implicit in h alone, can not change the probability of g.
In all other cases, Eq. (18.1) shows that the verification of any
proposition i increases the probability of every proposition g
which implies it.

Moreover, the smaller is i I h, the prior probability of i, the
greater is (g I h.i)/(g i h), the factor by which its verification in-

(18.1)
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creases the probabilty of g, For example, when Fresnel's

memoir on the wave theory of light was being considered for a
prize of the French Academy, Poisson, who was one of the judges,
pointed out the implication that the circular shadow of a disk,

intercepting light from a fine source, would have a small bright
spot at its center. This had never been seen and its existence

therefore appeared very improbable. When Fresnel performed
the experiment and showed the bright spot, the unexpectedness
of the result made it so much the stronger evidence for the theory
which implied it.32

For another example, we may consider Macbeth's reasoning
about the witches who hailed him on the desolate heath as thane
of Glamis and Cawdor and thereafter king. At first he was in-
credulous and said,

"By Sinel's death I know I am thane of Glamis;
But how of Cawdor? the thane of Cawdor lives,
A prosperous gentleman; and to be king
Stands not within the prospect of belief,
No more than to be Cawdor,"

Farther along the way he met King Duncan's messengers and
learned that he had in truth become thane of Cawdor. So he was
persuaded that the witches knew what they were talking about
and the more so because the prediction just confirmed had been
so improbable before.

Returning to the formal argument, let j be another proposition
implied by g on the hypothesis h but not implied by h alone or by
h.i. Then, by the same reasoning as before, we find that

g I h. i- ? g I h. ¡,
and if k is yet another proposition implied by g.h but not by
h.¡.j,

g I h.¡.j.k ? g I h.¡.j.
Thus g becomes more probable with the verification of each of the
propof'tions, ¡, j, k, which it implies. This cumulative effect of
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successive verifications is important in the special case of induc-
tive reasoning often distinguished by the briefer name induction.

Induction has to do with an ensemble of instances. It is rea-
soning in which the observed presence of a given characteristic in
some instances in the ensemble is made an argument for its
presence in all of them, Because the conclusion expressed by
Eq. (18.1) holds for inductive reasoning generally, it holds in this
special case. Therefore a proposition which ascribes the given
characteristic to all the instances is made more probable by its
verified presence in some, with only the two obvious exceptions
already noted.

The ensemble which is made the subject of an induction is ordi-
narily unlimited in the number of its instances. The argument is
aimed at establishing a universal principle, valid under given cir-
cumstances no matter how many times they are encountered or
produced. Certainty is hardly to be expected in such an argu-
ment, for it would be surprising if a principle could be proved
valid in an infinite number of instances by being verified in a
finite number. In some cases, however, certainty is approxi-
mated when the number of verified instances is very large.

For example, let the subject of the induction be such an en-
semble as was described in Chapter 16. Let the characteristic
whose probabilities on the alternative hypotheses are the possible
values of p be the one which g ascribes to every instance in the
ensemble. Then g is included among the alternative propositions
and p = 1 when g is certain. Let i assert that this characteristic
has been found present in everyone of M instances examined.

Then, in Eq. (16.2), m = ¡and m = M, and the equation becomes

. (pMH I h)
(p I.. h) = (pM I h) .

As M increases indefinitely, pM and pM+! approach zero for all
values of p less than 1, and these values therefore contribute less
and less to the expectations on the right in the equation. By
contrast, the value 1 contributes the amount g I h to each of the
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expectations, whatever the value of M. Hence, unless g I h = 0,
each of the expectations, (pM I h) and (pM+l i h), is nearly equal
to g I h when M is large enough, and (p I i.h), being equal to
their ratio, is nearly equal to 1. Since the maximum value of p
is also 1, it follows, when p has an expectation equal, or nearly
equal, to 1, that g, the proposition which ascribes this value to p,
is certain, or nearly so. Thus, if the characteristic in question is
found present in everyone of a large enough number of instances,
it is almost certainly present in all of them.

All this has a bearing on Hume's criticism of induction. In his

Enquiry Concerning Human Understanding, he asks the question:

"Now where is that process of reasoning which, from one
instance, draws a conclusion so different from that which it
infers from a hundred instances that are nowise different from
that single one?"

and he continues:

"This question I propose as much for the sake of information,
as with an intention of raising diffculties. I cannot find, I can-
not imagine any such reasoning.,,33

The instances differ more among themselves, however, than is
implied in Hume's question. They must differ in some respect
in order to be distinguishable one from another and they may
differ with respect to any characteristic except that by which the
ensemble is defined. Specifically, with respect to the characteris-
tic in question in the induction, the instances are not known to
be alike until their likeness is verifed by observation. This veri-
fication provides a ground for inference which was not present
before, A change in the conclusion, therefore, so far from being
unimaginable, is altogether reasonable, if by reasoning we mean
making inferences appropriate to the premises. It would be

astonishing if nothing could be inferred from the information that
a characteristic is common to a hundred instances when, on prior
evidence, it might have been dispersed among them in any way
numerically possible.
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If the criticism implied in Hume's question, on the one hand,
too much ignores the differences among the instances, on the
other, it stresses too much the difference which the number of
instances makes in the conclusion. Whether the instances are
few or many, the conclusion is the estimate of a probabilty and,
when it changes, the change is not qualitative but quantitative
and appropriate therefore to the quantitative difference between
numbers of instances, of which it is the consequence. If the

principle which an induction is intended to establish is possible
at the beginning, it becomes gradually more probable as the
number of favorable instances increases and no contrary instance
is found; but, unless it is certain at the beginning, it remains un-
certain, at least in some degree, after verification in any finite

number of instances. If it is impossible at the beginning, no
accumulation of instances can make it probable, much less cer-
tain; one instance and a hundred are in this case the same.

Hume's criticism is perhaps useful as a corrective to the opinion,
ocèasionally maintained, that induction can not only approach
certainty but can actually attain it. In any case it is valuable as

emphasizing that induction, along with probable inference in
general, has its own laws, which are not derived from those of
deduction, and that induction therefore can not be justified as a
part of necessary inference. But Hume, not content with show-
ing that induction is not certain and not deductive, went farther
and declared, in effect, that it is also not rationaL. In this, how-
ever, he seems simply to have identified what is rational with what
is deductive and certain. That to him reasoning meant deduc-

tive reasoning and inference meant necessary inference clearly
appears in a remark on argument from experience:

"If there be any suspicion that the course of nature may
change, and that the past may be no rule for the future, all
experience becomes useless and can give rise to no inference or
conclusion."

If we are wiling to deal with probabilties rather than cer-
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tainties and admit the rules of probable inference to the canon of
reason, we should counterphrase this remark and say:

If there be any possibility that the course of nature is uni-

form and that the past may be some rule for the future, all
experience becomes useful and can give support to some
inference:

". . . so that the whole succession of men, during the course of many
ages, should be considered as a single man who subsists forever
and learns continually,"34



Notes

1. (p. 1) Axioms of probabilty have been formulated in many ways by
many authors in the following books and articles, and doubtless in others
which have not come to my attention.

Books

Keynes, J. M., A Treatise on Probability (London: Macmian, 1921).
Reichenbach, Hans, The Theory of Probability: an inquiry into the logical

and mathematical foundtions of the calculus of probability. English transla-
tion by Ernest H. Hutten and Maria Reichenbach. (Berkeley and Los

Angeles: University of California Press, 1949).
Jeffreys, Harold, Theory of Probability (Oxford: Clarendon Press, 1st ed.

1939, 2nd ed. 1948).

von Wright, G. H., A Treatise on Induction and Probability (London:
Routledge and Kegan Paul, 1951).

Article

Bernstein, M. S., "An attempt at an axiomatic exposition of the principles
of the calculus of probabilties" (in Russian) Communications of the M athe-

matical Society of Kharkov, Second Ser., 15 (1917).
Wrinch, Dorothy, and Jeffreys, Harold, "The nature of probabilty,"

Phil. Mag., Sixth Ser., 38 (1919).

Reichenbach, Hans, "Axomatik der Wahrscheinlichkeitsrechnung,"
Math. Z. 34 (1932).

Kolmogorov, A. "Grundbegrife der Wahrscheinlchkeitsrechnung,"

Ergebnisse der Mathematik und ihrer Grenzgebiete 2, 3 (1933).
Evans, H. P., and Kleene, S, C" "A postulational basis for probabilty,"

Amer, Math. Monthly 46 (1939).
Koopman, 0" "The axioms of intuitive probabilty," Annals of Math.

41 (1940).

- "The bases of probabilty," Bull. Amer. Math. Soc. 46 (1940),
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Koopman, 0" "Intuitive probabilties and sequences," Annals of Math.
42 (1941),

Copeland, A. H., "Postulates for the theory of probabilty," Amer. J.

Math. 63 (1941),
von Wright, G. H., "Ueber Wahrscheinichkeit, eine logische und phi-

losophische Untersuchung," Acta Soc. Sci. Fennica Nova Series A, 3, 11
(1945).

Schrödinger, E" "The foundation of the theory of probabilty," I and II,

Proc, Roy. Irish Acad. 51, Sect. A (1947).

Jaynes, E. T" "How does the brain do plausible reasoning?" Report 421,
Microwave Laboratory, Stanford University (1957).

2. (p. 1) Venn, John, The Logic of Chance: an essay on the foundations and

province of the theory of probability, (London and New York: Macmian, 3rd
ed. 1888) p. 124,

3. (p. 2) The opinion that the theory of probabilty should be restricted in
this way had been advocated earlier by R. L. Ells and by A. Cournot and it
has been held since by a number of well known authors. Ells' views were
given in two papers, "On the foundations of the theory o( probabilties" and
"Remarks on the fundamental principles of the theory of probabilities," of
which the fist appeared in voL. 8 (1843) and the second in voL. 9 (1854) of

the Trans. Camh. Phil. Soc. Both were reprinted in his Mathematical and

Other Writings (Cambridge: Deighton, Bell and Co.; London: Bell and Daldy,
1863). The views of Cournot were given in his book, Exposition de la Théorie
des Chances et des Probabilités (Paris: 1843). These works are cited in Keynes'

Treatise in the course of an exposition and critical discussion of the view of
probability which they express. Keynes also quotes from Venn the passage
quoted in this chapter.

A recent exposition of the theory of probabilty as statistical frequency is
that of Richard von Mises in his book, Probability, Statistics and Truth (2nd
revised English ed., London: Alen and Unwi; New York: Macmilan, 1957.
Originally published in German with the title Wahrscheinlichkeit, Statistik und
Wahrheit).

4. (p. 4) The opinion which would comprise all kids of probable inerence
in an extended logic (whether independent of the logic of necessary inerence
or includig it as a special case) is an old one. It was expressed, for example,

by Leibnitz, who wrote: "Opinion, based on probabilty, deserves perhaps the

name knowledge also; otherwise nearly all historic knowledge and many
other kids wil fall. But without disputing about terms, I hold that the

investigation of the degrees of probability is very important, that we are stil

lackig in it, and that this lack is a great defect of our logics." Nouveaux

Essais sur l'Entenemet Humain, book 4, ch, 2, Langley's translation. Similar
statements occur in the same work in book 2, ch. 21, and book 4, ch. 16.
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The development of the calculus of probabilty, which was just getting
nder way when Leibnitz wrote, had an influence unavorable to the ac-
~ptance of this opinon. The calculus found most of its examples in the
roblems fist of gamesters and then of actuaries. The problems of the fist

ind suggested a defiition of probabilties in terms of numbers of chances,

IIose of the second, one in terms of numbers of instances in an ensemble.
reither definition was broad enough to accommodate the idea of a logic of
robabilty which should be the art of reasonig from inconclusive evidence.

The idea persisted, however. It guded De Morgan, for example, in his
'orrnal Logic: or the calculus of inference necessary and probable (London:
:aylor and Walton, 1847). It was systematically developed by Keynes and
~renuously championed by Jeffreys in their books cited in Note 1.

\

5. (p. 4) Rules of logical algebra were given by George Boole in An Investi-
atwn of the Laws of Thought: on which are founded the mathematical theories oj
igic and probabilities (London: Walton, 1854). Others later made changes in
IIeir formulation,

In his discussion of probabilties, Boole employed the defiition in terms of
.umbers of chances, but he described an alternative possibilty in the follow-
ig passage, which ends ch. 17: .

"From the above investigations it clearly appears, 1st, that whether we set
ut from the ordiary numerical defiition of the measure of probabilty, or

rom the defiition which assigns to the numerical measure of probabilty

uch a law of value as shall establish a formal identity between the logical
xpressions of events and the algebraic expressions of their values, we shall
,e led to the same system of practical results. 2dly, that either of these defi-
,itions pursued to its consequences, and considered in connexion with the
elations which it inseparably involves, conducts us, by inference or suggestion,
o the other defiition. To a scientifc view of the theory of probabilties it is
ssential that both principles should be viewed together in their mutual bearing
,nd dependence."

6. (p. 5) Boole hiself used only the signs of ordinary algebra and a num-

ier of later writers have followed his practice, It has the advantage of keeping
is aware of the resemblances between Boolean and ordinary algebra. But it
ias the correspondig disadvantage of helping us to forget their points of
ontrast, and it is besides somewhat inconvenient in a discussion in which the
igns of Boolean and ordinary algebra appear in the same equations. With the
igns used here, which are the choice of many authors, the only required pre-
aution against confusion is to reserve the sign. for conjunction in Boolean
''gebra and avoid its use as the sign of ordinary multiplication.

7. (p. 7) This duality was fist pointed out by Charles S. Peirce in an

,rticle, "On an improvement in Boole's calculus of logic," Proc. Amer. Aca.
1rt8 and Sci., 7, (1867). Later it was emphasized by E. Schröder in Ope:a-
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tiokreis des Logikkalkuls (Leipzig: Teubner, 1877). It was not a feature of

Boole's original algebra, because he employed the exclusive disjunctive,
either-or, and had no sign for the inclusive disjunctive, and/or. The change
from exclusive to inclusive disjunction was made independently by several
authors, of whom W. S. Jevons was the fist in his book, Pure Logic: or the
logic of quality apart from quantity (London: Stanford, 1864).

8. (p. 12) It is interesting that vector algebra and logical algebra were

developed at nearly the same time, Although Boole's Laws of Thought did not
appear until 1854, he had already published a part of its contents some years
earlier in The Mathematical Analysis of Logic. Hamiton's fist papers on
quaternions and Grassmann's Lineale Ausdehnungslehre were published in
1844, and Saint-Venants memoir on vector algebra the next year,

The following quotation from P. G. Taits Quaternions is apt in this
connection:

"It is curious to compare the properties of these quaternion symbols with
those of the Elective Symbols of Logic, as given in Boole's wonderful treatise
on the Laws of Thought; and to thik that the same grand science of mathe-

matical analysis, by processes remarkably simar to each other, reveals to us
truths in the science of position far beyond the powers of the geometer, and
truths of deductive reasoning to which unaided thought could never have ledthe logician." .

9. (p, 12) Many symbols have been used for probabilties. Any wi serve if
it indicates the propositions of which it is a function, distinguishes the in-
ference from the hypothesis and is unikely to be confused with any other
symbol used in the same discourse with it. It should, of course, also be easily
read, written and printed.

10. (p. 14) A functional equation almost the same as this was solved by
AbeL. The solution may be found in Oeuvres Complètes de Niels Henrik Abel,
edited by L. Sylow and S, Lie (Christiania: Impr. de Groendahl & soen, 1881).
I owe this reference to the article by Jaynes cited in Note 1.

11. (p.29) "Bishop Blougram's Apology,"

12. (p. 29) Ths may be the meaning of Kronecker's often quoted remark,
"God made the whole numbers. Everythig else is the work of man."

13. (p. 30) The principle of insuffient reason, invoked to justify this
judgment, was so called early in the development of the theory of probabilty,
in antithesis to the principle of suffient reason. It was meant by the latter
principle that causes identical in all respects have always the same effects. On
the other hand, if it is known only that the causes are alike in some respects,
whereas their likeness or difference in other respects is unknown, the reason
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for expecting the same effect from all is insufcient. Alternatives become

possible and probabilty replaces certainty,
In much of the early theory and some more recent, there is an underlyig

assumption, which does not quite come to the surface, that, in every case of
this kid, alternatives can be found among which there is not only insuffcient
reason for expecting anyone with certainty but even insuffcient reason for
expecting one more than another. This assumption was doubtless derived
from games of chance, in which it is ordiarily valid. Its tacit acceptance,
however, was probably also made easier by the use of the antithetical terms,
suffient reason and insuffcient reason. The antithesis suggests what the
assumption asserts, that there are only two cases to be distinguished, the one
in which there is no ground for doubt and the one in which there is no ground
for preference.

The term principle of indifference, introduced by Keynes, does not carry
this implication and is besides apter and briefer.

14. (p. 31) This opinon is clearly expressed in the followig quotation

from W, S. Jevons:
"But in the absence of all knowledge the probabilty should be coIIsidered

= Yz, for if we make it less than this we incline to believe it false rather than
true. Thus, before we possessed any means of estimating the magnitude of
the fied stars, the statement that Sirius was greater than the sun had a
probabilty of exactly Yz; it was as likely that it would be greater as that it
would be smaller; and so of any other star. . . . If I ask the reader to assign
the odds that a 'Platythliptic Coeffcient is positive' he wi hardly see his
way to doing so, unless he regard them as even." The Principles of Science: a
treatise on logic and scientific metJwd (London and New York, Macmian, 2nd
ed, 1877).

15. (p. 31) This example is, of course, from The Hunt of the Snark by Lewis
Carroll. Readers who wish to pursue the subject farther are referred also to
La Chasse au Snark, une agonie en huit crises, par Lewis Carroll. Traduit pour
la première fois en français en 1929 par Louis Aragon. (Paris: p, Seghers,

1949).

16. (p. 33) The infuence of games of chance on the early development of
the mathematical theory of probabilty is well described in the work of Isaac
Todhunter, A History of the Mathematical Theory of Probability from the time
of Pascal to that of Laplace (Cambridge and London: Macmilan, 1865). The
theory is usually held to have begun in a correspondence on games between
Pascal and Fermat, A hundred years earlier, the mathematician Cardan had
written a treatise on games, De Ludo Aleae, but it was published after Pascal
and Fermat had ended their correspondence. Cardan, according to Todhunter,
was an inveterate gambler, and his interests were thus more practical and less
theoretical than those of the emient mathematicians who followed him in
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the field. It is therefore not surprising that he was less disposed than they
were to take for granted the equality of chances and instructed his readers
how to make sure of the matter when playing with persons of doubtful
character.

17. (p. 35) The word entropy was coined in 1871 by Clausius as the name
of a thermodynamic quantity, which he defined in terms of heat and tempera-
ture but which, he rightly supposed, must have an alternative interpretation
in terms of molecular confguations and motions, This conjecture was con-

fimed as statistical mechanics was developed by Maxwell, Boltzmann and
Gibbs. As this development proceeded, the association of entropy with proba-
bilty became, by stages, more explicit, so that Gibbs could write in 1889:
"In readig Clausius, we seem to be reading mechanics; in readig Maxwell,

and in much of Boltzma1l's most valuable work, we seem rather to be readig
in the theory of probabilties. There is no doubt that the larger ma1ler in
which Maxwell and Boltzmann proposed the problems of molecular science
enabled them in some cases to get a more satisfactory and complete answer,
even for those questions which do not seem at fist sight to require so broad
a treatment." (This passage is quoted from a tribute to Clausius published in

the Proceedings of the American Academy of Arts and Sciences and reprinted
in Gibbs' Collected Works.)

What Gibbs wrote in 1889 of the work of Maxwell and Boltzmann could
not have been said of statistical mechanics as it had been presented the year
before by J. J. Thomson in his Applications of Dynamics to Physics and

Chemistry, but it applies to Gibbs' own work, Elementary Principles in Sta-
tistical Mechanics, published in 1902. Ih the comparison of these two books,
it is worth noticing that Thomson mentioned entropy only to explain that
he preferred not to use it, because it "depends upon other than purely dy-
namcal considerations," whereas Gibbs made it the gudig concept in his

method. As dierent as they are, however, these two books have one very

important feature in common, which they share also with the later works of
Boltzman, This common trait is that the conclusions do not depend on any
particular model of a physical system, whether the model of a gas as a swarm
of colldig spherical particles or any other. Generalied coördiates were

used in all these works and thus entropy was made independent of any par-
ticular structure, although it remained stil a quantity with its meanig defined
only in thermodynamics and statistical mechanics.

There was stil wanting the extension of thought by which entropy would
become a logical rather than a physical concept and could be attributed to a
set of events of any kid or a set of propositions on any subject. It is true that
several writers on probabilty had noted the need of some such concept and
had even partly defied it. In Keynes' Treatise, for example, there is a chapter
on "The weight of arguments," in which the followig passage is found:

"As the relèvant evidence at our disposal increases, the magnitude of the

probabilty of the argument may either decrease or increase, accordig as the



NOTES 105

new knowledge strengthens the unfavourable or the favourable evidence; but
something seems to have increased in either case,-we have a more substantial
basis on which to rest our conclusion. I express this by saying that an accession
of new evidence increases the weight of an argument. New evidence wi some-
times decrease the probabilty of an argument, but it wi always increase its
'weight'. 

"

This description and the attributes of weight, as he describes it in the rest
of the chapter, are suggestive of, though not identical with those which have
since been given to negative entropy in the theory of probabilty. Keynes
cites two German authors, Meinong and Nitsche, as having expressed ideas
on this subject somewhat similar to his.

These suggestions, however, had no influence or, at most, a very indiect

one upon the assimation of entropy in the theory of probabilty. This result
was the product of research in a very dierent subject, the transmission of
messages, It was accomplished by C. E. Shannon in an article, "The mathe-
matical theory of communication," published in 1948 in the Bell System

Tech. J. and reprinted in the book of the same title by Shannon and W.
Weaver (Urbana: Univ, of Ilinois Press, 1949). The transmission of messages
had been the subject of mathematical analysis earlier in sevei:al articles:
Nyquist, H., "Certain factors affecting telegraph speed," Bell System Tech, J.

(1924) and "Certain topics in telegraph transmission theory," Trans. Ame.
Inst. Elect. Eng., 47 (1948); Hartley, R. V. L., "Transmission of inormation,"
Bell System Tech, J. (1928). These authors, however, did not employ the idea
of entropy. Shannon not only introduced entropy in the theory of communi-
cation but also defied it in terms of the probabilities of events without

limting the definition to events of any particular kid. His work has found
application in the most diverse fields and has been followed by a great deal
of research by many authors. Most of this work has dealt with what has
become known as inormation theory rather than with the general theory of
probabilty and has therefore litte diect bearing on the subject of the present

essay. Reference should be made, however, to an article by A. i. Khichi,

"The entropy concept in probabilty theory," Uspekhi Matematichekikh

Nauk, 8 (1953), translated into English by Silverman and Friedman and
published, with a translation of a longer paper, also by Khinchin, in the book
Mathematical Foundtions of Information Theory (New York: Dover Publica-
tions, 1957). Entropy is treated as a concept in probability also in the article
by Jaynes cited in Note 1 and, in a more specialized context, in two articles
by the same author entitled, "Information theory and statistical mechanics,"
Phys. Rev" 106 and 108 (1957).

18. (p. 37) This conclusion was derived from experimentally known proper-
ties of gases by Gibbs in his work, "On the equilbrium of heterogeneous
substances." It is known as Gibbs' paradox.

19. (p. 40) The logarithm of a number of alternatives as a measure of
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information was used by Hartley in the paper already cited, The name bit
as an abbreviation of binary digit was adopted by Shannon on the suggestion
of J. W. Tukey. I do not know who fist used the game of twenty questions
to ilustrate the measurement of inormation by entropy,

20. (p. 43) In statistical mechanics the condition in which the possible
microscopic states of a physical system are all equally probable is called the
microcanonical distribution. It is the condition of equilbrium of an isolated

system with a given energy, and the fact that it is also the condition of maxi-
mum entropy is in agreement with the second law of thermodynamics.

21. (p, 43) A proposal to extend the meaning of such an established term
as entropy calls for some justifcation. There is good precedent, of course, in
the generalizations already made. In the work of Boltzmann and Gibbs
entropy has a broader meaning than Clausius gave it, and it has a broader
meanig stil in the work of Shannon. The further generalization proposed

here does not change its meanig in any case in which it has had a meaning
heretofore. It only defines it where it has been undefied until now and it
does this by reasoning so natural that it seems almost unavoidable. '

22. (p, 53) Boole, in The Laws of Thought, applied his algebra to classes of
things as well as to propositions, and it might be supposed that a system of
propositions, as defined in the chapter just ended, could be considered a class
of thigs in Boole's sense. There is indeed a likeness between them, and it

is this which allows the conjunction and disjunction of systems. But in
respect to contradiction the analogy fails, for the propositions which do not
belong to a system A, although they form a Boolean class, do not constitute a
system, This is because of the rule that every proposition which implies a

proposition of a system itself belongs to that system. Innumerable propositions
belong to the system A but imply propositions which do not belong to it. It
is this fact which keeps the system A from havig a system standig in such
a relation to it as to be denoted by -A,

23. (p. 56) In the case in which each of the systems A and B is defied by
a set of mutually exclusive propositions, the defition of conditional entropy
given in Eq. (10.2) is the same as Shannon's. He also gave Eq, (lOA) for the
entropy of the conjunction.

24. (p. 65) This theorem has its physical counterpart in the fact that the
thermodynamic entropy of a physical system is the sum of the entropies of
its parts, at least so long as the parts are not made too fie. There is a system
of propositions associated in statistical mechanics with every physical system,
and the logical entropy of the one system is identifed with the thermodynamic
entropy of the other. If, in the system of propositions, there is one which is

certain, the microscopic state of the physical system is unquely determed.
In a physical system of several parts, a microscopic state of the whole system
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is a combination of microscopic states of the parts and the system of propo-
sitions associated with the whole system is therefore the conjunction of those
associated with the parts. That the sum of the partial thermodynamic entro-
pies is equal to the thermodynamic entropy of the system therefore implies
that the microscopic state of one part is irrelevant to that of another part.
This is, however, only approxiately true. Insofar as it is true, it is a conse-
quence of the short range of intermolecular forces, in consequence of which
no part of the system has any influence on matter more than a miute distance
beyond its boundaries. Also, in a physical system of ordiary complexity, the
number of possible microscopic states is enormous and so also, therefore, is
the number of propositions required to defie the system of propositions.
Even a high degree of relevance, if it involves only a small part of the propo-
sitions of each system, is inappreciable in the entropy. What Poincaré once
called "the extreme insensibility of the thermodynamic functions" is a conse-
quence of this characteristic.

25. (p. 66) This is a stanza from "Alice Brand," a ballad interpolated in
The Lady of the Lake.

26. (p. 66) If we can believe the ballad, he did neither, but .instead fell
into an intermediate state, whence he was changed by enchantment into a
grisly elf. His sister broke the spell and restored hi to life in his human form,
This complication, although it is essential to the theme of the ballad, seems
unnecessary in the present discussion.

27. (p. 68) This view has been expressed by authors whose opinions on
other subjects were widely dierent, as, for example:

Milton, in Paradise Lost: "That power Whch erring men call Chance."
Hume, in An Enquiry concerning Human Undrstanding: "Though there be

no such thing as chance in the world, our ignorance of the real cause of any
event has the same influence on the understandig and begets a like species
of belief or opinon."

Jevons, in The Principles of Science: "There is no doubt in lightning as to

the point it shall strike; in the greatest storm there is nothing capricious; not
a grain of sand lies upon the beach, but infite knowledge would account for
its lyig there; and the course of every fallg leaf is guded by the principles

of mechanics which rule the motions of the heavenly bodies.
"Chance then exists not in nature, and cannot coexist with knowledge; it is

merely an expression, as Laplace remarked, for our ignora.nce of the causes in
action, and our consequent inabilty to predict the result, or to bring it about
inallbly."

28, (p. 79) This principle was proved, in a more precise form than that
given here, in the Ars Conjectandi of James Bernoull, published in 1713, eight
years after his death. His proof applied only to the case in which all the
probabilties are equal. The general proof was published in 1837 by Poisson
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in a work entitled, Recheches sur la Probabilité des Jugements en Matière

Crimirwlle et en M atière Civile: précédées des règles géné:ales du calcul des

probabilités, The name law of great numbers is due to Poisson also.

29. (p. 86) This rule was published in a memoir of the French Academy of
Sciences in 1774 and again in Laplace's Essai Philosophique sur les Probabilités.
An English translation, by Truscott and Emory, of the Essai has recently
been reprinted by Dover Publications. The name rule of succession was given
to Laplace's principle by Venn in his Logic of Chance. Venn, however, denied
the practical validity of the principle, as many other authors have done
before and since. Todhunter in his Histoy quotes the following passage from
an essay by the mathematician Waring, published in Cambridge in 1794:

"I know that some mathematicians of the fist class have endeavoured to
demonstrate the degree of probabilty of an event's happening n times from
its having happened m precedig times; and consequently that such an event
wi probably take place; but, alas, the problem far exceeds the extent of
human understanding; who can determine the time when the sun wi probably
cease to run its present course?" Keynes in his Treatise concludes a long

discussion of the rule with the remark, "Indeed this is so foolish a theorem
that to entertain it is discreditable." In A Treatise on Induction and Probability,

von Wright calls it "the notorious Principle of Succession." The proper

quarrel, however, is not with the derivation of the principle but only with its
misuse. This, it must be admtted, has sometimes been outrageous.

30. (p. 88) This quotation is from Peirce's essay, "A theory of probable
inerence," which was included in the book, Johns Hopkis Studies in Logic,
edited by Charles S, Peirce (Boston: Little, Brown and Co., 1883). The essay
has been reprinted in Peirce's collected papers published by the Harvard
University Press and the selections from his writings published in London by
Routledge and Kegan Paul and in New York by Dover Publications.

31. (p. 89) So many authors since Laplace have criticized this calculation
that it is only fair to recall his own criticism of it. After quoting odds of
1,826,214 to 1 in favor of the next sunrise, he adds: "But this number is in-
comparably greater for him who, recogniing in the totality of phenomena
the principal regulator of days and seasons, sees that nothig at the present

moment can arrest the course of it." (Translation by Truscott and Emory.)

32. (p. 92) The incident is described (although Poisson is not identifed

by name) in the memoir on Fresnel written by François Arago and published
in his Oeuires Complètes (Paris: Gide et Baudr; Leipzig: Weigel, 1854).

33. (p. 94) Section IV, part II. The quotation which follows this one is

from the same section and part.

34. (p, 96) From New Experiments on the Vacuum by Blaise Pascal, English
translation from The Living Thoughts of Pascal presented by François M auriac

(New York and Toronto: Longmans, Green & Co., 1940).
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