
THE ALGEBRA OF PROBABLE INFERENCE



The Algebra of

Probable Inference

by Richard T. Cox
PROFESSOR OF PHYSICS

THE JOHNS HOPKINS UNIVERSITY

BAl TIMORE:

The Johns Hopkins Press



\

.~
(
\c.j. .\~/ , ~-"

..:\ -

(£ 1961 by The Johns Hopkis Press, Baltimore 18, Md.

Distributed in Great Britain by Oxford University Press, London

Printed in the United States of America by Horn-Shafer Co., Baltimore

Library of Congress Catalog Card Number: 61-8039



to my wífe Shelby



Preface

This essay had its beginning in an article of mine published in
1946 in the American Journal of Physics. The axioms of prob-
abilty were formulated there and its rules were derived from

them by Boolean algebra, as in the first part of this book. The
relation between expectation and experience was described, al-
though very scantily, as in the third part. For some years past,
as I had time, I have developed further the suggestions made in
that article. I am grateful for a leave of absence from my duties

at the Johns Hopkis University, which has enabled me to bring

them to such completion as they have here.
Meanwhile a transformation has taken place in the concept of

entropy. In its earlier meaning it was restricted to thermo-

dynamics and statistical mechanics, but now, in the theory of
communication developed by C. E. Shannon and in subsequent

work by other authors, it has become an important concept in
the theory of probability. The second part of the present essay

is concerned with entropy in this sense. Indeed I have proposed
an even broader definition, on which the resources of Boolean
algebra can be more strongly brought to bear. At the end of the

essay, I have ventured some comments on Hume's criticism of
induction.

Writing a preface gives a welcome opportunity to thank my
colleagues for their interest in my work, especially Dr. Albert L.
Hammond, of the Johns Hopkins Department of Philosophy, who
was good enough to read some of the manuscript, and Dr. Theo-
dore H. Berlin, now at the Rockefeller Institute in New York but
recently with the Department of Physics at Johns Hopkins. For
help with the manuscript it is a pleasure to thank Mrs. Mary B.

Vll



Rowe, whose kindness and skill as a typist and linguist have
aided members of the faculty and graduate students for twenty-
five years.

I have tried to indicate my obligations to other writers in the
notes at the end of the book. Even without any such indication,
readers familiar with A Treatise on Probability by the late J. M.

Keynes would have no trouble in seeing how much I am indebted
to that work. It must have been thirty years or so ago that I first
read it, for it was almost my earliest reading in the theory of prob-
ability, but nothing on the subject that I have read since has given
me more enjoyment or made a stronger impression on my mind.

The Johns Hopkins University
BALTIMORE, MARYLAND

R. T. C.
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THE ALGEBRA OF PROBABLE INFERENCE



I

Proba bility

1. Axioms of Probable Inferenc~ 1

A probable inference, in this essay as in common usage, is one
entitled on the evidence to partial assent. Everyone gives fuller
assent to some such inferences than to others and thereby dis-

tinguishes degrees of probability. Hence it is natural to suppose

that, under some conditions at least, probabilities are measurable.
Measurement, however, is always to some extent imposed upon
what is measured and foreign to it. For example, the pitch of a

stairway may be measured as an angle, in degrees, or it may be
reckoned by the rise and run, the ratio of the height of a step to its
width. Either way the stairs are equally steep but the measure-
ments differ because the choice of scale is arbitrary. It is there-

fore reasonable to leave the measurement of probability for dis-
cussion in later chapters and consider first what principles of
probable inerence wil hold however probability is measured.
Such principles, if there are any, wil play in the theory of

probable inference a part like that of carnots principle in ther-

modynamics, which holds for all possible scales of temperature,
or like the parts played in mechanics by the equations of Lagrange
and Hamilton, which have the same form no matter what system
of coordinates is used in the description of motion.

It has sometimes been doubted that there are principles valid
over the whole field of probable inference. Thus Venn wrote in
his Logic of Chance: 2

1
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"In every case in which we extend our inferences by Induc-
tion or Analogy, or depend upon the witness of others, or trust
to our own memory of the past, or come to a conclusion through
conflicting arguments, or even make a long and complicated
deduction by mathematics or logic, we have a result of which
we can scarcely feel as certain as of the premises from which it
was obtained. In all these cases then we are conscious of vary-
ing quantities of belief, but are the laws according to which the
belief is produced and varied the same? If they cannot be re-
duced to one harmonious scheme, if in fact they can at best
be brought to nothing but a number of different schemes, each
with its own body of laws and rules, then it is vain to endeavour
to force them into one science."

In this passage, the first of three sentences distinguishes types
of inference which common usage calls probable, the second asks
whether inferences of these different kinds are subject to the

same laws and the third implies that they are not. Nevertheless,
if we look for them, we can find likenesses among these examples
and likenesses also between these and others which would be
accepted as proper examples of probability by all the schools of
thought on the subject. Venn himself belonged to the school of
authors who define probabilty in statistical terms and restrict its
meaning to examples in which it can be so defined.3 By their
definition, they estimate the probability that an event wil occur
under given circumstances from the relative frequencies with
which it has occurred and failed to occur in past instances of the
same circumstances. Every instance in which it has occurred
strengthens the argument that it wil occur in a new instance and
every contrary instance strengthens the contrary argument.

Thus, whenever they estimate a probability in the restricted
sense their definition allows and the way their theory prescribes,
they "come to a conclusion through conflcting arguments," as do
the advocates of other definitions and theories. The argument,
moreover, which makes one inerence more probable makes the
contradictory inference less probable and thus the two probabili-
ties stand in a mutual relation. In this all schools can agree and
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it may be taken as an axiom on any definition of probabilty that:

The probabilty of an inference on given evidence determines

the probabilty of its contradictory on the same evidence. (1.)

Continuing with Venn's list of varieties of probable inference,
let us consider the probability of the right result in "a long and
complicated deduction in mathematics" and compare it with the
probability of a long run of luck at cards or dice, a classical ex-
ample in the theory of probabilty. In any game of chance, a

long run of luck is, of course, less probable than a short one, be-
cause the run may be broken by a mischance at any single toss of a
die or drawing of a card. Similarly, in a commonplace example
of mathematical deduction, a long bank statement is less likely
to be right at the end than a short one, because a mistake in any
single addition or subtraction wil throw it out of balance.

Clearly we are concerned here with one principle in two examples.
A mathematical deduction involving more varied operations in its
successive steps or a chain of reasoning in logic would provide
only another example of the same principle.

The uncertainties of testimony and memory, also cited by
Venn, come under this principle as w'ell. Consider, for example,
the probabilty of the assertion, made by Sir John Maundeville in
his Travels, that Noah's Ark may stil be seen on a clear day, rest-
ing where it was left by the receding waters of the Flood, on the
top of Mount Ararat. For this assertion to be probable on Sir
John's testimony, it must first of all be probable that he made it
from his recollection rather than his fancy. Then, on the assump-

tion that he wrote as he remembered what he saw or heard told,
it must be probable also that his memory could be trusted against
a lapse such as might have occurred during the long years after
he left the region of Mount Ararat and before he found in his
writing a solace from his "rheumatic gouts" and his "miserable
rest." Finally, on the assumption that his testimony was honest

and his memory sound, it must be probable that he or those on
whom he depended could be sure that they had truly seen Noah's



4 PROBABILITY

Ark, a matter made somewhat doubtful by his other statement
that the mountain is seven miles high and has been ascended only
once since the Flood.

Every assertion which, like this one, involves the transmission
of knowledge by a witness or its retention in the memory is, on
this account, a conjunction of two or more assertions, each of
which contributes to the uncertainty of the joint assertion. For
this reason, it comes under the same principle which we saw in-
volved in the probability of a run of luck at cards and which can
be stated in the following axiom:

The probabilty on given evidence that both of two infer-
ences are true is determined by their separate probabilities,
one on the given evidence, the other on this evidence with the
additional assumption that the first inference is true. (1.i)

Thus the uncertainties of testimony and memory, of long and
complicated deductions and conflcting arguments-all the

specific examples in Venn's list-have traits in common with one
another and with the classical examples provided by games of
chance.

The more general subjects of induction and analogy, also men-
tioned in the quotation from Venn, must be reserved for discus-
sion in later chapters, but the examples already considered may
serve to launch an argument that all kinds of probable inference
can be "reduced to one harmonious scheme."4

For this reduction, the argument wil require only the two
axioms just given, when they are implemented by the logical rules
of Boolean algebra.6

2. The Algebra of Propositions

Ordinary algebra is the algebra of quantities. In our use of it

here, quantities will be denoted by italic letters, as a, b, A, B.
Boolean algebra is the algebra, among other things, of proposi-
tions. Propositions wil be denoted here by small boldface let-
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ters, as a, b, c. The meaning of a proposition in Boolean algebra
corresponds to the value of a quantity in ordinary algebra. For
example, just as, in ordinary algebra, a certain quantity may have
a constant value throughout a given calculation or a variable one,
so, in Boolean algebra, a proposition may have a fixed meaning
throughout a given discourse or its meaning may vary according
to the context within the discourse. Thus "Socrates is a man" is
a familiar proposition of constant meaning in logical discourse,
whereas the proposition, "I agree with all that the previous

speaker has said," has a meaning variable according to the
occasion. For another example of the same correspondence, just

as an ordinary algebraic equation, such as

(a + b)c = ac + bc,

states that two quantities, although different in form, are never-
theless the same in value, so a Boolean equation states that two
propositions of different form are the same in meaning.

Of the signs used for operations peculiar to Boolean algebra, we
shall need only three, "', . and V, which denote respectively not,

and and or.6 Thus the proposition not a, called the contradictory
of a, is denoted by "'a. The relation between a and "'a is a
mutual one, either being the other's contradictory. To deny "'a
is therefore to affm a, so that

"'''a = a.

The proposition a and b, called the conjunction of a and b, is de-
noted by a. b. The order of propositions in the conjunction is the
order in which they are stated. In ordinary speech and writing,

if propositions describe events, it is customary to state them in the
chronological order in which the events take place. So the nur-
sery jingle runs, "Tuesday we iron and Wednesday we mend."
It would have the same meaning, however, if it ran, "Wednesday
we mend and Tuesday we iron." In this example, therefore, and
also in general,

b.a = a.b.
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Similarly the expression a.a means only that the proposition a is
stated twice and not that an event described by a has occurred

twice. Rhetorically it is more emphatic than a, but logically it
is the same. Thus

a.a = a.
Parentheses are used in Boolean as in ordinary algebra to indi-

cate that the expression they enclose is to be treated as a single
entity in respect to an operation with an expression outside.

They designate an order of operations, in that any operations
indicated by signs in the enclosed expression are to be performed
before those indicated by signs outside. The parentheses are
unnecessary if the order of operations is immateriaL. Thus
(a. b). c denotes the proposition obtained by first conjoining a
with b and then conjoining a. b with c, whereas a. (b. c) denotes
the proposition obtained by first conjoining b with c and then
conjoining a with b. c, but the propositions obtained in these two
sequences of operations have the same meaning and the paren-
theses may therefore be omitted. Accordingly,

(a.b).c = a.(b.c) = a.b.c.
The proposition a or b, called the disjunction of a and b, is de-

noted by a V b. It is to be understood that or is used here in the
sense intended by the notice, "Anyone hunting or fishing on this
land wil be prosecuted," which is meant to include persons who
both hunt and fish along with those who engage in only one of
these activities. This is to be distinguished from the sense in-

tended by the item, "coffee or tea," on a bil of fare, which is
meant to offer the patron either beverage but not both. Thus V
has the meaning which the form and/or is sometimes used to
express.

Let us now consider expressions involving more than one of the
signs, "', . and V. In this consideration it should be kept in mind
that ",a is not some particular proposition meant to contradict a

item by item. For example, if a is the proposition, "The dog is
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small, smooth-coated, bob-tailed and white all over except for

black ears," rva is not the proposition, "The dog is large, wire-
haired, long-tailed and black all over except for white ears." To
assert rva means nothing more than to say that a is false at least
in some part. If a is a conjunction of several propositions, to

assert rva is not to say that they are all false but only to say that
at least one of them is false. Thus we see that

rv(a.b) = rva V rvb.

From this equation and the equality of rv rva with a, there is
derived a remarkable feature of Boolean algebra, which has no
counterpart in ordinary algebra. This characteristic is a duality
according to which the exchange of the signs, . and V, in any

equation of propositions transforms the equation into another
one equally valid.7 For example, exchanging the signs in this
equation itself, we obtain

rv(a V b) = rva. rvb,

which is proved as follows:

a vb = rvrva V rvrvb = rv(rva.rvb).

Hence

rv(avb) = rvrv(rva.rvb) = rva.rvb.

From the duality in this instance and the mutual relation of a
and rva, the duality in other instances follows by symmetry. We
have, accordingly, from the equations just preceding,

b V a = a V b,

aVa=a
and

(a V b) V c = a V (b V c) = a V b V c.

The propositions (a V b).c and a V (b.c) are not equal. For,

if a is true and c false, the first of them is false but the second is
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true. Therefore the form a V b.c is ambiguous. In verbal ex-

pressions the ambiguity is usually prevented by the meaning of
the words. Thus, in a weather forecast, "rain or snow and high
winds," would be understood to mean "(rain or snow) and high
winds," whereas "snow or rising temperature and rain" would
mean "snow or (rising temperature and rain)." In symbolic ex-
pressions, on the other hand, the meaning is not given and paren-
theses are therefore necessary.

When we assert (a V b).c, we mean that at least one of the
propositions, a and b, is true, but c is true in any case. This is
the same as to say that at least one of the propositions, a.c and
b. c, is true and thus

(a V b).c = (a. c) V (b. c).

The dual of this equation is

(a. b) V c = (a V c).(b V c).
If, in either of these equations, we let c be equal to b and sub-

stitute b for its equivalent, b. b in the first equation or b V bin
the second, we find that

(a V b).b = (a. b) vb.
In this equation, the exchange of the signs, . and V, has only the
effect of transposing the members; the equation is dual to itself.
Each of the propositions, (a V b). b and (a. b) V b, is, indeed,
equal simply to b. Thus to say, "He is a fool or a knave and he is
a knave," or "He is a fool and a knave or he is a knave," sounds
perhaps more uncharitable than to say simply, "He is a knave,"
but the meaning is the same.

In ordinary algebra, if the value of one quantity depends on the
values of one or more other quantities, the first is called a function
of the others. Similarly, in Boolean algebra, we may call a

proposition a function of one or more other propositions if its
meaning depends on theirs. For example, a V b is a Boolean

function of the propositions a and b as a + b is an ordinary func-
tion of the quantities a and b.
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It may be remarked that the operations of Boolean algebra
generate functions of infinitely less variety than is found among
the functions of ordinary algebra. In ordinary algebra, because

a X a = a2, a X a2 = a3, . . . and a + a = 2a, a + 2a = 3a, . . . ,
there is no end to the functions of a single variable which can be
generated by repeated multiplications and additions. By con-
trast, in Boolean algebra, a.a and a Va are both equal simply to
a, and thus the signs, . and V, when used with a single proposi-
tion, generate no functions.

The only Boolean functions of a single proposition are itself and
its contradictory. In form there are more; thus a V rva has the

form of a function of a, but it is a function only in the trivial sense
in which x - x and x/x are functions of x. In Boolean algebra,

a V rva plays the part of a constant proposition, because it is a
truism and remains a truism through all changes in the meaning
of a. To assert a truism in conjunction with a proposition is no

more than to assert the proposition alone. Thus

(a V rva). b = b

for every meaning of a or b. On the other hand, to assert a
truism in disjunction with a proposition is only to assert the

truism; a V rva V b, being true for every meaning of a or b, is itself
a truism, so that

a V rva V b = a V rva.

Each of these equations has its dual and thus

(a. rva) V b = b
and

a. rva. b = a. rva.

The proposition a. rva is an absurdity for every meaning of a and
is thus another constant proposition. These two constant propo-
sitions, the truism and the absurdity, are mutually contradictory.

It wil be convenient for future reference to have the following

collection of the equations of this chapter.
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a.a = a, (2.2 I)

(2.3 I)

(2.4 I)

b.a = a.b,

"'(a.b) = "'a V ",b,

(a.b).c = a.(b.c) = a.b.c,
(2.5 I)

(a V b).c = (a.c) V (b.c),
(2.6 I)

(2.7 I)

(2.8 I)

(a Vb).b = b,

(a V "'a).b = b,
a V ",a V b = a V "'a,

(2.9 I)

PROBABILITY

"'''a = a, (2.1)

(2.2 II)

(2.3 II)

a V a = a,

b V a = a V b,

"'(a V b) = "'a. ",b,
(2.4 II)

(a V b) V c = a V (b V c)
= a V b V c, (2.5 II)

(a. b) V c = (a V c).(b V c),
(2.6 II)

(2.7 II)

(2.8 II)

(a. b) vb = b,

(a. ",a) V b = b,

a. "'a. b = a. "'a.
(2.9 II)

Each of these equations after the first is dual to the equation on
the same line in the other column, from which it can be obtained
by the exchange of the signs, . and V. In the preceding discus-
sion, the equations on the left were taken as axioms and those on
the right were derived from them and the first equation. If, in-

stead, the equations on the right had been taken as axioms, those
on the left would have been their consequences. Indeed any set
which includes the first equation and one from each pair on the
same line wil serve as axioms for the derivation of the others.

More equations can be derived from these by mathematical
induction. For example, it can be show n, by an induction from

Eq. (2.4 I), that

"'(a1.a2'" ..am) = "'a1 V "'a2 V.. .V "'am, (2.10 I)

w here ai, a2, . . . am are any propositions.
We first assume provisionally, for the sake of the induction,

that this equation holds when m is some number k and thence
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prove that it holds also when m is k + 1 and consequently when
it is any number greater than k.

Replacing 3 in Eq. (2.4 I) by 31'32'.. .'3k and b by 3k+ll we
have

"'((31'32'" ..3k).3k+1J = "'(31'32'" ..3k) V"'3k+1.

By the provisional assumption just made,

"'(31'32'" ..3k) = "'31 V "'32 V... V "'3k,

and thus

"'((31'82'" ,'3k).3k+1J = ("'31 V "'32 V... V "'3k) V "'3k+!.

Therefore, by Eqs. (2.5 I) and (2.5 II)

"'(31'32'" ..3k.3k+1) = "'31 V "'32 V ... V "'3k V "'3k+1'

Thus Eq. (2.10 I) is proved when m is k + 1 if it is true when m
is k. By Eq. (2.4 I), it is true when m is 2. Hence it is proved
when m is 3 and thence when m is 4 and when it is any number,
however great.

By exchanging the signs, . and V, in Eq. (2.10 I), we obtain
its dual, also valid:

'" (31 V 32 V . . . V 3m) = "'31' "'32'. . .' "'3m, (2.10 II)

an equation which can also be derived by mathematical induction
from Eq. (2.4 II).

A mathematical induction from Eq. (2.6 I) gives:

(31 V 32 V... V 3m).b = (31.b) V (32.b) V... V (3m' 
b).

(2.11 I)

By an exchange of signs in this equation or an induction from
Eq. (2.6 II), we obtain

(31'32'" ,'3m) vb = (31 V b). (32 V b)... ,'(3m V b). (2.11 II)
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3. The Conjunctive Inference

Every conjecture is based on some hypothesis, which may con-
sist wholly of actual evidence or may include assumptions made
for the argument's sake. Let h denote an hypothesis and i a

proposition reasonably entitled to partial assent as an inference
from it. The probability is a measure of this assent, determined,

more or less precisely, by the two propositions, i and h. It is

therefore a numerical function of propositions, in contrast with
the functions considered in the preceding chapter, which, being
themselves propositions, may be called propositional functions of
propositions. (Readers familiar with vector analysis may be
reminded of the distinction between scalar and vector functions
of vectors.) 8

Let us denote the probability of the inference i on the hypothe-
sis h by the symbol i I h, which wil be enclosed in parentheses
when it is a term or factor in a more complicated expression.9

The choice of a scale on which probabilties are to be reckoned is
stil undecided at this stage of our consideration. If i I h is a
measure of the assent to which the inference i is reasonably en-
titled on the hypothesis h, it meets all tne requirements of a

probability which our discussion thus far has imposed. But, if
i I h is such a measure, then so also is an arbitrary function of
i I h, such as 100 (i I h), (i I h)2 or In (i I h). The choice among
the different possible scales of probability is made by conventions
which wil be considered later.

The probability on the hypothesis h of the inference formed by
conjoining the two inferences i and j is represented, in the notation
just given, by i. j I h. By the axiom (1.ii), this probability is a
function of the two probabilities: i I h, the probability of the first
inference on the original hypothesis, and j I h.i, the probability

of the second inference on the hypothesis formed by conjoining
the original hypothesis with the first inference. Callng this

function F, we have:

ì;-
t!-

1,'
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¡.j I h = F((¡ I h), (j I h'¡)J. (3.1)

Since the probabilties are all numbers, F is a numerical function
of two numerical variables.

The form of the function F is in part arbitrary, but it can not
be entirely so, because the equation must be consistent with
Boolean algebra. Let us see what restriction is placed on the
form of F by the Boolean equation

(a.b).c = a.(b.c) = a.b.c.
If we let

h = a, ¡ = b, j = c.d,

so that

¡.j = b. (c.d) = b.c.d,

Eq. (3.1) becomes

b.c.d I a = F((b I a), (c.d I a. b)J = F(x, (c.d I a. b)J,

where, for brevity, x has been written for b I a. Also, if we now
let

h = a. b, ¡ = c, j = d,

so that

h.¡ = (a.b).c = a.b.c,

Eq. (3.1) becomes

c.d I a.b = F((c I a.b), (d I a.b.c)J = F(y, z),

where y has been written for cia. band z for d I a. b.c. Hence,

by substitution in the expression just obtained for b.c.d I a, we

find,

b.c.d I a = F(x, F(y, z)J.

Similarly, if, in Eq. (3.1), we let

(3.2)

h = a, ¡ = b.c, j = d,
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we find

b.c.d I a = F((b.c I a), zJ,

and, if we now let

h = a, ¡ = b, j = c,

we have

b.c I a = F(x, y),

so that

b.c.d I a = FrF(x, y), zJ.

Equating this expression for b.c.d I a with that given by Eq.

(3.2), we have

F(x, F(y, z)J = F(F(x, y), zJ, (3.3)

as a functional equation to be satisfied by the function F.10

Let F be assumed differentiable and let àF(u, v)/àu be denoted
by F1(u, v) and àF(u, v)/àv by F2(u, v). Then, by differentiating

this equation with respect to x and y, we obtain the two equations,

F1(x, F(y, z)J = F1(F(x, y), Z)F1(X, y),

F2(x, F(y, Z))F1(y, z) = F1(F(x, y), zJF2(x, y).

Eliminating F1(F(x, y), zJ between these equations gives a result
which may be written in either of the two forms:

G(x, F(y, Z))F1(y, z) = G(x, y),

G(x, F(y, Z))F2(y, z) = G(x, y)G(y, z),

(3.4)

(3.5)

where G(u, v) denotes F2(u, v)/F1(u, v).
Differentiating the first of these equations with respect to z and

the second with respect to y, we obtain equal expressions on the
left and so find

à(G(x, y)G(y, z)J/ày = O.
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Thus G must be such a function as not to involve y in the product
G(x, y)G(y, z). The most general function which satisfies this
restriction is given by

G(u, v) = aH(u)/H(v),

where a is an arbitrary constant and H is an arbitrary function of
a single variable.

Substituting this expression for G in Eqs. (3.4) and (3.5), we
obtain

F1(y, z) = H(F(y, z)JjH(y),

F2(y, z) = aH(F(y, z)JjH(z).

Therefore, since dF(y, z) = F1(y, z) dy + F2(y, z) dz, we find

dF(y,z) = ~ + a~
H(F(y, z)J H(y) H(z) .

Integrating, we obtain

CP(F(y, z)J = P(y)(P(z)Ja, (3.6)

where C is a constant of integration and P is a function of a single
variable, defined by the equation,

f du
In P(u) = H(u) .

Because H is an arbitrary function, so also is P.
Equation (3.6) holds for arbitrary values of y and z and hence

for arbitrary variables of which P and F may be functions. If we
take the function P of both members of Eq. (3.3), we obtain an
equation from which F may be eliminated by successive substitu-
tions of P(F) as given by Eq. (3.6). The result is to show that
a = 1. Thus Eq. (3.6) becomes

CP(F(y, z)J = P(y)P(z).

If, in this equation, we let y be ¡ I hand z bej I h.¡, then, by Eq.
(3.1), F(y, z) = i- I h. Thus
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CP(i.j I h) = P(i I h)P(j I h.i).

The function P, being arbitrary, may be given any convenient
form. Indeed, if we so choose, we may leave its form undeter-
mined for, as was remarked earlier in this chapter, if i I h measures
probability, so also does an arbitrary function of i I h. We could
give the name of probability to P(i I h) rather than to i I hand
never be concerned with the relation between the two quantities,
because we should never have occasion to use i I h except in the
function P(i I h). In effect we should merely be adopting a dif-

ferent symbol of probability. Instead, let us retain the symbol
i I h and take advantage of the arbitrariness of the function P to
let P(u) be identical with u, so that the equation may be written

~
i:

C(i.j I h) = (i I h)(j I h.i).

If, in this equation, we let j = i and note that i.i = i by Eq.

(2.2 I), we obtain, after dividing by (i I h),

C = i I h. i.

Thus, when the hypothesis includes the inference in a conjunc-
tion, the probability has the constant value C, whatever the
propositions may be. This is what we should expect, because an

inference is certain on any hypothesis in which it is conjoined and
we do not recognize degrees of certainty.

The value to be assigned to C is purely a matter of convenience,
and different values may be assigned in different discourses.
When we use the phrase, "three chances in ten," we are, in effect,
adopting a scale of probability on which certainty is represented
by 10 and we are saying that some other probability has the value

3 on this scale. Similarly, if we say that an inference is "95

per cent certain," we are saying that its probability is 95 on a
scale on which certainty has the probability 100. Usually it is
convenient to represent certainty by 1 and, with this convention,
the equation for the probability of the conjunctive inference is

i.j I h = (i I h)(j I h.i). (3.7)
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This equation expresses the familar rule for the probabilty of

a conjunctive inerence or, as it is more often stated, the

probabilty of a compound event. It is indeed the only equation
for this probabilty which is consistent with the ordinary scale.
It is worth remarking, however, that other scales beside the or-
dinary one are consistent with this equation. For, raising its
members to a power r, we have

(i.j I h)r = (i I h)r(j I h.i)r, (3.8)

whence it is evident that the r th powers of the ordinary probabili-
ties satisfy the same equation as the ordinary probabilities them-
selves. It follows that the rule for the probability of the con-

junctive inference would remain the same in any change by which
arbitrary powers of the ordinary probabilities were used, instead
of them, as probabilities on a new scale.

Equation (3.7), when i is the truism, a V "'a, becomes

(a V "'a).j I h = (a V "'a I h)(j I h. (a V "'a)J.

By Eq. (2.8 I), (a V "'a).j = j and similarly h. (a V "'a) = h.

Hence each of the probabilities, (a V "'a). j I hand j I h. (a V "'a),
is equal simply to j I hand

a V "'a I h = 1.

The truism, as we should suppose, is thus certain on every
hypothesis.

It is to be understood that the absurdity, a. "'a, is excluded as
an hypothesis but, at the same time, it should be stressed that not
every false hypothesis is thus excluded. A proposition is false if
it contradicts a fact but absurd only if it contradicts itself. It is

permissible logically and often worth while to consider the prob-
abilty of an inference on an hypothesis which is contrary to fact
in one respect or another.

An hypothesis h, on which an inference i is certain, is said to
imply the inference. Every hypothesis, for example, thus implies

the truism. There are some discourses in which a proposition
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h is common to the hypotheses of all the probabilities considered,
while other propositions, a, b, . . . , are conjoined with h in some
of the hypotheses. In such a discourse it is sometimes con-

venient, and need not be confusing, to omit reference to hand
call an inference "implied by a" if it is implied by a.h. In this

sense, an inference which is certain on the hypothesis h alone,
and therefore certain throughout the discourse, can be said to be
implied by each of the propositions, a, b, . . . , as the truism is
implied by every proposition in any discourse.

Exchanging i andj in Eq. (3.7) and observing thatj.i = i.j by

Eq. (2.3 I), we see that

(i I h)(j I h.i) = (j I h)(i I h.j),

whence

j I h.i - i I h.j

TT - Tj'
If j I h. i = j I h, i is said to be irrelevant to j on the hypothesis h.
The equation just obtained shows that also j is then irrelevant to i
on the same hypothesis. The relation is therefore one of mutual
irrelevance between the propositions i and j on the hypothesis h,
and it is conveniently defined by the condition,

I
i

Ii
ii
II

11

n

i
!

i.j I h = (i I h)(j I h). (3.9)

If h alone implies j, so also does h.i. Then j I hand j I h.i

are both unity and therefore equal, and i and j are mutually

irrelevant. Thus every proposition implied by a given hypothe-

sis is irrelevant on that hypothesis to every other proposition.

4. The Contradictory Inference

By the axiom (1.), the probability of the inference i on the
hypothesis h determines that of the contradictory inference, ",i,
on the same hypothesis. Thus
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",i I h = f(¡ I h), (4.1)

where f is a numerical function of a single variable, which must be
consistent in form both with Boolean algebra and the rule for the
probability of the conjunctive inference, as given in Eq. (3.7).

To see what are the requirements of this consistency, first let
i = "'j in the equation. Thus we find

'" "'j I h = f( "'j I h) = fff(j I h)J.

But "'''j = j by Eq. (2.1) and thus

j I h = fff(j I h)J.

Therefore f must be such a function that

fff(x)J = x. (4.2)

This equation, by itself, imposes only a rather weak restriction
on the form of f. A more stringent condition is found if we re-
place i in Eq. (4.1) by i V j and thus obtain, by the use of Eq.
(2.4 II),

f(i V j I h) = "'(¡ V j) I h = ",i. "'j I h.
By Eqs. (3.7) and (4.1),

",i. "'j I h = (",i I h)( "'j I h. "'i) = f(i I h)f(j I h. ",i).

Thus

f(' I h. ""') = f(i V j I h)J 1 f(i I h) .
Taking the functionf of both members of this equation and using
Eq. (4.2), on the left, we have

. I h.""' = f (f(i V j i h)JJ 1 f(i I h) .
Making use again of Eq. (3.7), we find that

. . ""i.jlh ""i-lh
J I h. ""i = ",i I h = f(i I h) ,
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whence, by the preceding equation,

",'.' I h = fC I h)f (f(i V j i h)Ji J i f(i I h) . .

By Eqs. (2.3 I), (3.7) and (4.1),

",i.j I h = j.",i , h = (j I h)("'i I h.j) = (j I h)f(i I h.j)

= (j I h) f ej j, ~ h) .
wh
an(

With this result the preceding equation becomes

(j I h) fe/I'hh) = f(i I h) f (f(~~ ~ ~)h)J. (4.3)

ani
ob

This equation holds for arbitrary meanings of i and j. Let

i = a. b, j = a V b,
W

so that
grc

eq

i.j = (a. b). (a V b) = a.(b.(a V b)J by Eq. (2.5 I)
= a. b by Eqs. (2.3 I) and (2.7 I) = i,

and, by a similar argument resting on Eqs. (2.5 II), (2.3 I) and
(2.7 II),

i V j = j.

va
TI
to

Thus Eq. (4.3) becomes

. (i I h) . (f(j I h)J
(J i h) f j I h = f(i I h) f f(i I h) . TI

This equation is given in a more concise and symmetrical form if
we denote i I h by fey), so that f(i I h) = y, and j I h by z. In
this way we obtain the equation, w

Zf(f~)J = Yf(f~)J. (4.4)

This equation and the three derived from it by differentiation
with respect to y, to z and to y and z can be written

W

In
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zf(u) = yf(v),

f'(u)f'(y) = f(v) - vf'(v),

feu) - uf'(u) = ¡'(v)¡'(z),
uf" (u)f' (y)/z = vI" (v)¡' (z)/y,

where u denotesf(y)/z, v denotesf(z)/y,f' the first derivative of f
and 1" the second derivative.

Multiplying together the corresponding members of the first
and last of these equations, we eliminate y and z at the same time,
obtaining

uf"(u)f(u)f'(y) = vf"(v)f(v)f'(z).

With this equation and the second and third of the preceding

group, it is possible to elimnate ¡' (y) and ¡' (z). TheresuIting
equation is

uf"(u) feu) - vf"(v) f(v)
(uf'(u) - f(u)J j'(u) - (vf'(v) - f(v)J f'(v) .

Each member of this equation is the same function of a different
variable and the two variables, u and v, are mutually independent.
This function of an arbitrary variable x must therefore be equal
to a constant. Callng this constant c, we have

xf"(x)f(x) = c(xf'(x) - f(x)J!'(x).

This equation may be put in the form

df' /f' = c(df/f - dx/x),

whence, by integration, we find that

f' = A(f/x)c,

where A is a constant.
integration gives

The variables being separable, another

l' = Ax' + B,
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where r has been written for 1 - c, and B is another constant. It

is now found by substitution that this result satisfies Eq. (4.4)
for arbitrary values of y and z only if B = A2. Equation (4.2)
is also to be satisfied and for this it is necessary that A = -1.
No restriction is imposed on r, which thus remains arbitrary.
We have then finally

xr + (¡(x)Jr = 1

or

(i I h)r + (",i I h)r = 1.

We might, if we wished, leave the value of r unspecified by
using (i I h)r as the symbol of probability here and in Eq. (3.8).
With a free choice in the matter, it is more convenient to take r
as unity. By this convention,

(i I h) + ("'i I h) = 1. (4.5)

If, in this equation, we replace h by h.i and recall that
i I h.i = 1, we see that ",i I h.i = O. Thus impossibility has

the fixed probability zero as certainty has the fixed probability

unity.
A theorem frequently useful is obtained as follows. By Eq.

(3.7),

(i.j I h) + (i. "'j I h) = (i I h)((j I h.i) + ("'j I h.i)J,

whence, by Eq. (4.5),

(i. j I h) + (i. "'j I h) = i I h. (4.6)

An immediate consequence of this theorem, obtained by making
j equal to i and noting that i.i = i, is

i. ",i I h = O.

Thus the absurdity, i. ",i, has zero probability on every hypothe-
sis, as we should expect. There would be an inconsistency here
if the absurdity itself were admitted as an hypothesis, for then it
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would appear to be certain as an inference and to have unit
probability. There is, of course, nothing astonishing about this,
because an inconsistency is just what we should expect as the
logical consequence of a self-contradictory hypothesis.

Only the absurdity is impossible on every hypothesis, but every
proposition except the truism is impossible on some hypotheses.
If each of the two propositions, i and j, is possible without the
other on the hypothesis h, but their conjunction, i. j, is impossible,
it follows from Eq. (3.7) directly that

j I h.i = 0
and, by the exchange of i and j, that

i I h.j = O.

The propositions i and j are said in this case to be mutually

exclusive on the hypothesis h, because the conjunction of either of

them with h in the hypothesis makes the other impossible.
If i is impossible on the hypothesis h alone, h.i is self-contradic-

tory and therefore inadmissible as an hypothesis. In this case,
therefore, no meaning can be attached to j I h.i. But i I h.j

has stil a meaning and the value zero, unless j is also impossible
on the hypothesis h alone, and, in any case, i. j I h = O. If both
i I h andj I h are zero, then bothj I h.i and i I h.j are meaning-
less, but, a fortiori, i. j I h = O. It is convenient to comprise all
these cases under a common term and call any two propositions
mutually exclusive on a given hypothesis if their conjunction is
impossible on that hypothesis, whether they are singly so or not.
In this sense, any proposition which is impossible on an hypothe-
sis is mutually exclusive on that hypothesis with every proposi-
tion, including even itself, and the absurdity is mutually exclusive
with every proposition on every possible hypothesis.

It is worth remarking that, if two propositions are mutually
irrelevant on a given hypothesis, then each is irrelevant to the
contradictory of the other and the contradictories of both are

mutually irrelevant. To see this, let i and j be propositions
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mutually irrelevant on the hypothesis h, so that i I h.j = i I h.

Then, by Eq. (4.5), ",i I h.j = ",i I hand j is thus irrelevant to
",i. Exchanging the propositions proves that i is irrelevant to
"'j and repeating the argument proves the mutual irrelevance of
"'i and "'j. Every instance of irrelevance is thus a relation

between pairs of propositions, such as i, "'i and j, "'j, each

proposition of either pair being irrelevant to each of the other
pair.

5. The Disjunctive Inference

The two axioms which, in the two chapters preceding this one,
have been found suffcient for the probabilities of the conjunctive
and contradictory inerences, suffce also for the probability of the'
disjunctive inference. That only two axioms are required is a
consequence of the fact that, among the three operations: con-

tradiction, conjunction and disjunction, there are only two in-
dependent ones: contradiction and either of the others but not

both. For the Boolean equations, "'(i V j) = ",i. "'j and
'" '" (i V j) = i V j, can be combined to give

i V j = "'(",i'''j),

¡

:1
!
.~
r

I

¡

ì
,

I

an equation which defines disjunction in terms of contradiction
and conjunction. Alternatively, conjunction can be defined in
terms of contradiction and disjunction.

By Eq. (4.5), therefore,

i V j I h = 1 - (",i. "'j I h)

and, by Eq. (4.6),

",i'''j I h = (",i I h) - (",i.j I h) = 1 - (i I h) - (",i.j I h).

Thus

i V j I h = (i I h) + (",i.j I h).
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By Eqs. (2.3 I) and (4.6),

",i.j I h = j. ",i I h = (j I h) - (j.i I h) = (j I h) - (i.j I h).

Therefore

i V j I h = (i I h) + (j I h) - (i.j I h). (5.1)

It is worth noticing that the exchange of the signs, V and., in
this equation has only the effect of transposing terms and so leaves
the equation unchanged in meaning and therefore stil valid.

This equation, rewritten with a change of notation whereby i
and j are replaced by a1 and a2, becomes

a1 V a2 I h = (a1 I h) + (a2 I h) - (a1' a2 I h). (5.2)

In this form, it is a special case of the general equation, now to be
proved, for the probability of the disjunction of m propositions.

This is m m-I m
(a1 V a2 V . . . vam I h) = L (ai I h) - L L (ai.aj I h)i=l i=l j=i+1

m-2 m-1 m
+ L L L (ai.aj.ak I h) - . . .

i=l j=HI k=j+1

:: (a1.a2" . ..am I h). (5.3)

The limits of the summations in this equation are such that none
of the propositions, ai, a2, . . . am, is conjoined with itself in any
inference and also that no two inferences in any summation are
conjunctions of the same propositions in different order. In the

three-fold sumation, for example, there is no such term as
a1' a1 . a2 I h, and the only conjunction of ai, a2, and as is in the
term a1.a2.aS I h, because the limits exclude probabilities such as
a2.a1.aS I h, obtained from this one by permuting the proposi-
tions. For the m-fold summation, therefore, there is only one

possible order of the m propositions and the summation is reduced
to a single term. Its sign is positive if m is odd and negative if m

is even.
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The proof of the equation is by mathematical induction and
consists in showing that it holds for the disjunction of m + 1
propositions if it holds for the disjunction of m. If we let
a1 Va2 V . . . V am be i in Eq. (5.1) and am+1 be j, we have

a1 V a2 V . . . Vam+1 I h = (a1 V a2 V . . . Vam I h) + (am+! I h)

- ((a1 V a2 V... V am).am+!1 hJ.

By letting b be am+! in Eq. (2.11 I), we see that

(a1 V a2 V . . . V am).am+! = (a1.am+1) V (a2.am+1) V . . .

V (am.am+1)

and hence

a1 V a2 V . . . Vam+1 I h = (a1 V a2 V . . . Vam I h) + (am+1 I h)

- ((a1.am+!) V (a2.am+1) V .. . V (am, am+!) I hJ. (5.4)

Of the three probabilities now on the right, both the first and the
third are those of disjunctions of m propositions, for which we
assume, for the sake of the mathematical induction, that Eq.
(5.3) is valid. For the first of these probabilities, Eq. (5.3) gives

an expression which can be substituted without change in Eq.

(5.4). The expression to be substituted for the other is obtained

by replacing a1 in Eq. (5.3) by a1.am+!, a2 by a2.am+!, . . . am by

am' am+!. This expression, with the simplification allowed by the
equality of am+1 and am+1.am+1, is given by the equation,

m m-l m
= L (ai.am+1 I h) - L L (ai.aj'3m+1 I h)i=l i=l j=i+1

I

¡

i
i
;

i

i

(a1.am+1) V (a2.am+1) V . . . V (am.am+1) I h

+ '" :: (a1.a2" . ..am+! I h). (5.5)

By making the substitutions just described in Eq. (5.4) and
grouping the terms conveniently, we obtain
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a1 V a2 V . . . V am+1 i h = (%1 (a,; I h) + (3m1 \ h) J

- (~: i%1 (ai.ai I h) + %1 (a,;'3m1 I h)J

(m-2 m-1 m m-1 m J+ r; ik1 k~1 (a,;.aj.ak I h) + r; ill1 (a,;.ai'3m1 I h)
- . . . :f (a1.a2" . ..am+1 \ h).

The fist bracket on the right includes the first summation
taken from Eq. (5.3) with the term am+1 i h of Eq. (5.4). Each
succeeding bracket includes a summation taken from Eq. (5.3)
with the summation of next lower order taken from Eq. (5.5).

It is obvious on sight that, in the first bracket,m m+1
L: (a,; I h) + (am+1\ h) = L: (a,; I h),i=1 i=l

and it is evident on consideration that, in each succeeding bracket,
the change of m to m + 1 in the upper limits of the first summa-
tion makes it include the second. Thus the equation may be
written,

a1 V a2 V . . . V am+! I h
m+1 m m+1

= L: (a,; \ h) - L: L: (a,;.aj I h)i=1 i=1 i=i+1
m-1 m m+1

+ L: L: L: (a,;.aj.ak I h) - . . .
i=1 i=i+1 k=i+1

:f (a1.a2'" ..am+! \ h).

This is the same as Eq. (5.3), except that the number of proposi-
tions appearing in the inferences, which was m in that equation,
is m + 1 in this one. Therefore Eq. (5.3), being valid when m is

2, as in Eq. (5.2), is now proved for all values of m.
The rather elaborate way in which the limits of summation

were indicated in the preceding equations was needed to avoid




