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SUMMARY
We consider inference for a scalar parameter ¢ in the presence of one or more
nuisance parameters. The nuisance parameters are required to be orthogonal to the
parameter of interest, and the construction and interpretation of orthogonalized
parameters is discussed in some detail. For purposes of inference we propose a
likelihood ratio statistic constructed from the conditional distribution of the observa-
tions, given maximum likelihood estimates for the nuisance parameters. We consider
to what extent this is preferable to the profile likelihood ratio statistic in which the
likelihood function is maximized over the nuisance parameters. There are close
connections to the modified profile likelihood of Barndorff-Nielsen (1983). The
normal transformation model of Box and Cox (1964) is discussed as an illustration.

Keywords: ASYMPTOTIC THEORY; CONDITIONAL INFERENCE; LIKELIHOOD RATIO TEST;
NORMAL TRANSFORMATION MODEL; NUISANCE PARAMETERS; ORTHOGONAL
PARAMETERS

1. INTRODUCTION

The primary objective of this paper is to explore the connection between orthogonality of
parameters and the asymptotic theory of conditional inference. Orthogonality is defined with
respect to the expected Fisher information matrix as described in Section 2. In general it is not
possible to have total parameter orthogonality at all parameter values but it is possible to
obtain orthogonality of a scalar parameter of interest Y to a set of nuisance parameters. The
concept of orthogonal parameters seems to have fairly broad implications and is discussed in
some detail in Section 2 and illustrated with several examples in Section 3.

A widely used procedure for inference about a parameter in the presence of nuisance
parameters is to replace the nuisance parameters in the likelihood function by their maximum
likelihood estimates and examine the resulting profile likelihood as a function of the parameter
of interest. This procedure is known to give inconsistent or inefficient estimates for problems
with large numbers of nuisance parameters, which suggests that it may not be close to optimal
for a small number of nuisance parameters, even though the likelihood ratio statistic with no
nuisance parameters is in some sense optimal. We consider an approach to inference based on
the conditional likelihood given maximum likelihood estimates of the orthogonalized para-
meters. To the extent that the maximum likelihood estimates of the nuisance parameters are
complete sufficient statistics for the nuisance parameters, this conditional likelihood procedure
generalizes the usual procedure for obtaining similar tests, described for example in Cox and
Hinkley (1974, p. 134). There are close connections to the modified profile likelihood of
Barndorff-Nielsen (1983, 1985b).

The conditional profile likelihood function is discussed and illustrated in Section 4, and a
possible justification for preferring it to the usual profile likelihood function is presented in
Section 4.3. Inference for the normal transformation model is discussed separately in Section 5.
In Section 6 some further points and open questions are discussed.
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2. ORTHOGONAL PARAMETERS

2.1. Introduction

We deal throughout with parametric problems for which the vector of observations is
represented by an n x 1 vector Y of random variables having density fy(y; 6) depending on a
1 x p vector 6 of unknown parameters. We write /() for the log-likelihood; depending on the
context this will be either log fy(y; ) for given observations y, or the random variable log
Sfy(Y; 0). Occasionally we write Iy (0) to emphasize that the log-likelihood is derived from the
density of Y. Our arguments will be informal without explicit attention to regularity
conditions, these being essentially those required for the expansions needed for maximum
likelihood theory in regular estimation problems.

If 0 is partitioned into two vectors 6, and 6, of length p, and p, respectively, p, + p, = p, we
define 6, to be orthogonal to 6, if the elements of the information matrix satisfy

. 1 /ol al 1 2%l
o= E(aes 36, 0) =n E( 36,30, 0) =0 M
fors=1,...,p,,t =p, +1,...,p; + p,; thisis to hold for all § in the parameter space, and is
sometimes called global orthogonality. Note that i refers to information per observation,
which will be assumed to be O(1) as n — co. If (1) holds at only one parameter value 6°, then
the vectors 6, and 6, are said to be locally orthogonal, at #°. The most direct statistical
interpretation of (1) is that the relevant components of the score statistic are uncorrelated.
The definition of orthogonality can be extended to more than two sets of parameters, and in
particular 0 is totally orthogonal if the information matrix is diagonal. While orthogonality

can always be achieved locally, global orthogonality is possible only in special cases (Jeffreys,
1961, p. 208; Huzurbazar, 1950; Mitchell, 1962; Amari, 1985).

2.2 Consequences of Orthogonality
There are a number of statistical consequences of orthogonality which we now outline. For

simplicity, suppose 6 = (¥, 4) has just two components. Then orthogonality of i and A implies
that

(i) the maximum likelihood estimates i and 2 are asymptotically independent;

(ii) the asymptotic standard error for estimating i is the same whether A is treated as known
or unknown; _

(iii) there may be simplifications in the numerical determination of (, 1); see Ross (1970) in
the context of nonlinear regression.

A further property related to (iii) and of particular relevance for the present paper is

(iv) ¥, = ¥(J), the maximum likelihood estimate of y when A is given, varies only slowly
with A.

To study (iv), we write the log-likelihood function near the maximum (J, 1) as
165, 2) + 3{—njyy b — ) = 2nj,.(6 — YA — D — mju(A = D2 + 0,10 - 8113,

where, for example, nj,,,, = [ — 02I(W, 1)/0Y*Tg=5. Writefyy = iy, + Zy,/\/1, etc., where Z,,,, ...
are random variables of zero mean and O,(1) as n — co. The dependence of i, Z on 6 is
suppressed. We rewrite (2) in terms of i and Z, differentiate (2) with respect to i so that
¥, satisfies

~ A PO PN 0Z s ng OF
iy W1 = D)+ nZyy (B = D) + 30 = 0P n G+ 40— B G+ =0, ()

where derivatives are evaluated at (i, ). Provided that random variables such as 6ZW /0, are
0,(1) and quantities such as di,,, /0y are O(1), and noting that yy, — y = 0,,(1/\/n), then if and
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only if iy; = 0, the first term of (3) is O (,/n), whereas the remaining terms are 0,(1) as A varies
by an amount that is 0(1/\/n). It follpows that the first term is in fact O (1), requiring that
Y1 — ¥ is O,(1/n). A similar proof holds if the parameters are not scalars. The argument is of
course symmetric in (¥, ):), and we will use also the result 1,,, = 0,(1/n) in later sections.

It is easy to see that if §/, =y for all 4, then A and y are orthogonal parameters. Examples of
families for which this holds are discussed in Barndorff-Nielsen (1978), an important class
being regular exponential models with i as part of the canonical parameter and A as the
complementary part of the expectation parameter; see Example 3.2. It would, of course, be
possible to have , functionally independent of A and at the same time for the distribution and,
in particular the standard error, of ; to depend strongly on A.

Property (iv) is discussed also by Sweeting (1984b) in the context of location-scale models. A
numerical illustration is provided in Section 3.5.

Note that from a pair (i, 1) of orthogonal parameters other pairs could be obtained by
suitable transformation. However, in this paper we shall regard y as a preassigned parameter
of particular relevance.

2.3. Construction of Orthogonal Parameters

As noted above, it is not in general possible to find a totally orthogonal parametrization. We
now discuss the special case in which a scalar parameter i is orthogonal to the remaining
parameters 4y, ..., 4,. Typically y will be the parameter of interest and 4,, ..., 4, will be
nuisance parameters, although it is possible that i is the nuisance parameter and one or all
components of A are the parameters of interest; see Example 3.5 below. In the notation of
equation (1), 0, =y, 0, = (44, ..., 4.

The following argument generalizes Huzurbazar (1950); see also Jeffreys (1961, p. 208) and
Amari (85, p. 254). Suppose that initially the likelihood is specified in terms of (y, ¢,, ..., ¢,).

We then write ¢, = ¢y, 1), ¢, =, (0, 4), ..., ¢, = ¢, (¥, A), where A=(4,, ..., 4,), and
I, 1) = l*{'/” &1, A), ... ¢q(¢9 j')}’
regarding [* as a function of (y, ¢, ..., ¢,)- Then
ol o _ ol* 3¢,
=yt Lag o
o2 %1% 3¢, OU* 09,00, < OI* 9%,
593%, ~ L 5y2d, 04 L 54,08, 04 o + 226, yoi,

On taking expectations the last term in the second derivative vanishes, so that the orthogona-
lity equations are

0, (. v 00,
Za—lx(l%ﬁzl;‘m a¢)=0, t=1,...,4,

where the i* are the information measures calculated in the (i, ¢) parametrization. We require
that the transformation from (¥, ¢) to (¥, 1) have nonzero Jacobian; hence

o, .
Z izr%bs% = —l$¢s’ §= 1, oo (. (4)

These partial differential equations determine the dependence of ¢ on W, but there is
considerable arbitrariness in the dependence of ¢ on A; see the examples. It is often
convenient to take ¢, to depend only on (¢, 1,), ¢, to depend on (), 4,, 4,), etc., and to aim to
give the 1 meaningful interpretation in the context of the particular problem.

From (4) it is clear why in general we cannot obtain global orthogonality when ¢ is not a
scalar. If Y = (¥, ¥,), we can use (4) independently to calculate d¢,/dy, and 0¢,/0Y,, and
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there is no guarantee that in general the compatability condition 6%¢,/0y 0, = 02, /0,0,
is satisfied.

3. EXAMPLES

3.1. Exponential Distribution

Let Y, and Y, be exponential random variables with means ¢ and Y ¢ respectively; the
parameter of interest is the ratio of the means. The differential equation corresponding to (4) is

20 _ 1
¢* oy Yo’
with solution ¢y!/? = a(4), where a(4) is an arbitrary function of A. A convenient choice is

a(%) = 4; in the new parametrization Y; and Y, have means Ay ~!/2 and Ay'/2, respectively.
Note that for n independent replications of (Y], Y,),

A, = WTRWE 45, A=GaYA A, —1=0,0/n),

and 71,,, has a distribution depending only on A.

The extension to exponential regression has Y, ..., Y, independent exponential random
variables with EY;= 1 exp(—z;), where z; are given constants. Requiring Xz; =0 ensures
that 2 and y are orthogonal. If we add on another explanatory variable to give EY,= 1
exp(—y¥z; — Bx;) and also require Xx; = 0, then 4 and y are still orthogonal, as are 1 and S.
Assuming ¥ is still the parameter of interest, we need the orthogonal expression of the nuisance
parameter f with respect to . This is obtained by subtracting from z; its regression on x;
giving, in the new parametrization,

EK =4 exp[_'ll{zi - xl'(sz/Sxx)} - nxi:L
where S,, = x;z; and S, = Zx2
A different version of the two-sample problem concerns inference about the difference
between two exponential means. Let Y;, Y, be independent exponential random variables with
means ¢ and (¢ + ) respectively. The differential equation (4) gives

S S N N U
{(4» Ty ¢2} W@+
this can be solved by separation of variables, leading to a(d) = ¢(¥ + ¢)/(¥ + 2¢), where

again a(4) is an arbitrary function of 1. In most of our examples we choose a(d) = 4; in this
example a(1) = ¢* might be more suitable.

3.2. Regular Exponential Families

Write f(y; 6) = exp{0,t, + 6,t, — c(8) — d(y)}, where (0, 0,) are components of the
canonical parameter and {t,(y), t,(y)} are the corresponding components of the sufficient
statistic. Let n = (n,, n,) = (Et,, Et,) be the expectation parameter. It is easy to verify directly,
and is implicit in Amari (1982) and Barndorff-Nielsen (1983), that 0, is orthogonal to n, and 0,
is orthogonal to 7,.

As a simple example the normal distribution with mean u and variance T has canonical
parameter (u/t, —1/(27)) and expectation parameter (u, u®> + 7). Thus u is orthogonal to
—1/(27), hence to 7, and u/t is orthogonal to u? + 7. The normal distribution will be studied
separately as Example 3.3.

Another example is the gamma distribution with shape parameter y and scale parameter ¢

S ¥, ) = ¢7¥yY 1 exp(—y/d)/T(WY).

The canonical parameter is (— 1/¢, ) corresponding to (y, log y) and we have immediately
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that EY = y/¢ is orthogonal to y. The new parametrization is
fO3 ¥, 4) = Q=)™ = exp{ —Wy/DYT ).

In this example 71,,, = ¥ does not depend on ¥, although its distribution does.
These results are discussed in Barndorff-Nielsen (1978, p. 184), where he shows also that the
dispersion parameter of a generalized linear model is orthogonal to the expectation parameter.

3.3. Normal Distribution

As noted above, the (y, ) parametrization of the normal distribution is orthogonal. Note
that ji, =7 does not depend on the nuisance parameter t, whereas %u=n"‘{2(y,~—j))2 +
n(y — p)?} differs from % by O (n™ ). In the regression setting, the variance 7 is orthogonal to
the regression coefficients f; if the components of f are to be orthogonal to each other the
design matrix must be orthogonalized, as in the exponential regression example.

More generally, when Y has a multivariate normal distribution with mean vector X and
covariance matrix V(y), then B and Y are orthogonal, so long as they are functionally
unrelated. This generalisation includes, in particular, components of variance models (Patter-
son and Thompson, 1971).

As an example of nonorthogonal parameters take t and ¢ = (u — a)/t'/?, the latter
determining the probability of an observation falling below the fixed tolerance level a. Then
&, = (y — )/« differs from & = &, by O(1/,/n). The parameter that is orthogonal to ¢ is an
arbitrary function of (¢2 + 2)r.

3.4. Weibull Distribution
We take the index of the Weibull distribution as the parameter ¥, writing

y\! v
f05 ¥, ) = (%)(5) exp{—(;,y;) }
Then iy, = W/d)% isy = —T'(2)/Y, and the orthogonal nuisance parameter 4 = ¢ exp(I''(2)/
¥). The survivor function in the new parametrization is

1 — F(y) = exp{— (/) exp(I"'(2))}-
The value of T''(2) is 1 — y, where y = .577215 ... is Euler’s constant, so 1 — F(4) >~ 0.22.

In practice it may be of more interest to estimate the rate parameter, treating i as a nuisance
parameter. A statistical interpretation of the above parametrization is that maximum
likelihood estimation of the 80th percentile of the distribution depends very little on ¥; in
particular A will be nearly the same whether we assume an exponential distribution (y = 1),
or estimate both parameters by maximum likelihood, provided that the true value is not very
different from 1. Thus the maximum likelihood estimate of this percentile is in a rather special
sense robust. This interpretation of orthogonality is discussed in more detail in the context of
the normal transformation model.

3.5. Normal Transformation Model

We assume that for some non-zero ¥, Y¥ has a normal distribution with mean y, variance 7.
(The case ¥ = 0 will be taken to correspond to log Y;.) The usual formulation of this model
involves i ~}(YY — 1) (Box and Cox, 1964) but the argument for that family is essentially the
same. Although in practice interest will usually focus on the mean, and possibly the variance,
for the present we look for a reparametrization of u and 7 to make them orthogonal to the
transformation parameter ¥. In this model it is necessary that Y be non-negative; this could be
achieved by truncation but we will assume that the variance is sufficiently small relative to the
mean that nonpositive observations have negligible probability.

To extend the argument more easily to the regression setting we change the notation for u
and 7 to ¢, and ¢,, respectively. The ¢ part of the information matrix, i,,, is orthogonal, as in
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Example 3.4, but iy , and i, can only be evaluated approximately, using
E(YYlog Y) = ¢, log ¢,/¢ + O(¢o),
E{Y'log Y(Y" — ¢)} = ¢o(l + log ¢,)/ + O(¢3).
The pair of differential equations to be solved is, approximately,
1 0¢, _ ¢, log ¢,

o W by
1 ¢y _ ¢o(l +log ¢,)
203 oy oW

From the first equation ¢, = exp{a(4,, 1o)¢}, and from the second equation ¢{/> = YyA¥b(4,,
Ao), where a and b are arbitrary functions of (1,, 4,). We choose a(4,, 1o) = log 4, and b(4,,
Ao) = Ay*/A,, so the model is represented in the form

YV ~ N, 23722 A).

Note that if Y; has mean A, and variance A,, then Y¥ has approximately the normal
distribution just given; this was the motivation for the particular choice of a, b above.

We can use this for a simple numerical illustration of property (iv) of Section 2.2, the
stability of maximum likelihood estimates of one parameter as another parameter varies. We
have taken the set of 15 systolic blood pressures recorded by Cox and Snell (1981, Table E.1,
col. 1). The mean is 176.9 mm Hg and the standard deviation is 20.56 mm Hg. As y varies from
2 to —2 there is a large change in the estimated means and variances; in fact the means change
by a factor of 10°. On the other hand the estimated A, and 4, vary respectively from 178.0 to
173.6 and from 424 to 411, illustrating the considerable stability of the estimates of 4, and 4,
with respect to changes in y.

The extension of this model to the regression setting proceeds as follows. Assume
YY ~ N(Zx; ¢, ¢o); then

1
U, s ) = —glogqﬁo—T%Z(y?—zxm,)’+nlog~//+(t/f—I)Zlogyi,

the last two terms being derived from the Jacobian of the transformation from y¥ to y;. The
computations are simplified if we assume that the matrix of explanatory variables has been
standardized; then i, = diag(1/,, ..., 1/¢o, 3/¢3), where the variance component iy 4, is
last. Approximating E(Y¥ log Y) as before, we have

iy = — 2 {108(Y Xisbs) + 1}/ (Y o),
i¢r¢ = _Zi (Z xis¢s) log(z xis¢s)xir/('/’¢o)-

A further simplification is to take x;; = 1, X,x;, = 0, so that ¢, is an overall mean. Assuming
other effects to be relatively small, we have

lOg(Z xis¢s) = IOg ¢l + .=Zz xis¢s/¢l + 0(¢l_2)’

giving approximately
ipoy = (1 + log ¢,)/(¥ o),

ipw = @1 108 ¢1/(Y o),
iy =0, (1 +10g 9)/(Yo), r=2,...,4.
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One solution of the set of equations (4) gives

¢l = '1’{’ ¢0 = A%w_z'llzlo’
o, =y, r=2...,q

The orthogonal expression of the model is thus

q
Yt~ N(Af YR Y xeks w-zwo). )

§s=2

Note that 4, and Ay/? have the dimensions of Y and 4,, ..., 4, are dimensionless. Analysis of
this model will be discussed in Section 5.

To discuss the statistical interpretation of these results we take a slightly broader setting.
Suppose we have a model f(y; ¢) involving an unknown parameter ¢ of interest and the model
is enriched by a nuisance parameter ¥ in order to produce a more realistic model. One
possibility is that there is a second model g(y; ¢) and that i indexes the exponential mixtures
with density proportional to

{f(; O {a(; o)} V.

We concentrate on estimating ¢, treating i as essentially totally unknown. For this problem to
have a clear meaning, ¢ should be defined so as to have an interpretation in some sense
independent of .

In some problems the components of ¢ may have a descriptive interpretation that is
unaffected by the value of y; two examples are the components of the mean response vector
and regression coefficients on some fixed scale. Then direct comparison of estimates of ¢ from
different analyses is possible, even if different values of  are used. In general such an
interpretation is not available, and then a basis for comparison can be provided by expressing
¢ = ¢(y, A), choosing A to be orthogonal to . Estimates of y for different values of i can be
compared via conversion to the corresponding estimate of A. In particular, we might consider

(i) the overall maximum likelihood estimates (, ¢);

(ii) the maximum likelihood estimate of ¢ at § = Y, say ¢,;
(iii) afhe maximum likelihood estimate of ¢ at some other, possibly data dependent, value ¥,
say ¢.

By the parameter orthogonality, we have that ¢, $,, and ¢ are approximately equivalent in the
sense that if

b=, D, do=0W%2) &=, 1)

then 1, 1, and 7 are exactly or nearly the same. Whatever the choice of ¥ we would have
reached nearly the same inference about ¢, after re-expressing the two estimates on the same ¥
scale.

For the normal transformation model the orthogonal parameters are the components of the
mean vector and the variance for the untransformed observations: the above argument says
that inference on two different i scales should be compared via transformation to these
parameters. Hinkley and Runger (1984) make essentially the same argument from a slightly
different point of view: they rescale the observations in order that the maximum likelihood
estimates of the regression coefficients § do not depend strongly on the transformation
parameter . By property (iv) of Section 2.2 this implies that f and i are approximately
orthogonal.
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4. APPLICATION TO CONDITIONAL INFERENCE

4.1. Introduction

Conditioning plays at least two roles in the sampling theory of statistical inference; one to
induce relevance of the probability calculations to the particular data under analysis, and the
other to eliminate or reduce the effect of nuisance parameters. We concentrate here on the
latter.

We deal only with problems in which the parameter y of interest is a scalar. This is a
nontrivial restriction, although it may be argued that at each stage of interpretation attention
can often profitably be focussed on a single parameter describing one aspect of the system
under study.

Suppose then that the nuisance parameters 4,, ..., 4, have been defined to be orthogonal to
Y, as described in Section 2.3. Confidence intervals for y, the usual objective, are approached
via consideration of tests of the null hypothesis Y = y°, where y° is a fixed but arbitrary value
of Y. An important general procedure for testing = y/° is based on the generalized likelihood
ratio statistic

w(y®) = 2{IJ, ) — IY°, A,0)}, (6)

treated as having an asymptotic chi-squared distribution with one degree of freedom, when
¥ = y°. The approximation to the null distribution can be improved by dividing by a suitable
constant, the Bartlett adjustment, (Barndorff-Nielsen and Cox, 1984) or, if equi-tailed tests are
desired, by an adjustment for skewness (McCullagh, 1984; Barndorff-Nielsen, 1986). To obtain
confidence intervals, it is useful to consider (6) as a function of y/°; the term I(/°, 4,0) in (6) is
the log-profile likelihood function.

In simple cases the problem can be reduced to one without nuisance parameters. If for each
fixed y° there is a complete sufficient statistic for 4, the likelihood ratio statistic (6) can be
constructed from the conditional distribution of the observations given this statistic (Bartlett,
1937; Cox and Hinkley, 1974, p. 134). If the conditional distribution is free of A, even when
¥ # YO, then the problem has been reduced to a one-parameter problem, and the optimality of
(6) for such problems now holds among asymptotically equivalent procedures not depending
on i Unfortunately, this approach typically only works in important but rather special
problems in regular exponential families, with § a component of the canonical parameter.

We now explore the extension of the conditional approach to more general problems. We
will condition on the observed value of 1,0, the maximum likelihood estimate of 1 given
¥ = y°. Because 4 is required to be orthogonal to ¥, the dependence of 1,,,0 on ° is reduced.
The resulting likelihood is closely related to Barndorff-Nielsen’s modified profile likelihood
(Barndorff-Nielsen, 1983, p. 351), especially when his approximation to the distribution of the
maximum likelihood estimator is used. There are also connections with a long chain of work
on conditional and marginal inference (Bartlett, 1936, 1937; Kalbfleisch and Sprott, 1970;
Patterson and Thompson, 1971; Godambe and Thompson, 1974; Godambe, 1976; Lindsay,
1982). Note that for those normal theory problems in which the conditioning statistics are
linear, conditional and marginal inference are equivalent. In full exponential families the usual
approach is to condition on the components of the sufficient statistic that correspond to the
nuisance parameters. These of course are just the maximum likelihood estimates of the
expectation parameters, which are orthogonal to the canonical parameters.

We wish to derive a conditional profile likelihood for ¥ using Iw as the conditioning
statistic. We write A, when no possibility of confusion exists. Transform y to (4o, h), where h is
any convenient function of the observations, and write J(1,) for the Jacobian of the
transformation. The conditional density given 4, is then

s, J (Io)/fAO(j:o; ¥, A),

where the denominator is the marginal density of 1,,. This leads to a conditional version of the
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likelihood ratio statistic (6), still a function of 4, in the form
Z[Sup {ly(W, ) — LaoW, D} — {ly @O, 1) — Ixo¥°, '1)}]-
v

Note that the Jacobian J(1,) no longer appears, the precise choice of & is irrelevant, and the
answer is invariant under one-to-one transformations of A. Finally replace 4 by 4, to get the
conditional profile likelihood

WEYO) = 2[s3p (y @ Fo) — Laor o)} — {1y 9%, o) — Lo, io)}]. %

To calculate this expression it is necessary to compute the marginal distribution of 2, for
values of y different from y° and this typically involves a noncentral distribution. An
alternative statistic can be derived from (7) by conditioning in the first term on Zw rather than
Ag, leading to

2 [sup {ly(, 1) — LW, 3,) + log det J(4,) — log det J(A,)}
v

(W0 o) — L, 10)}],

which is frequently much easier to calculate exactly or approximately. The J acobian term is log
det(d4, /d’,) and (because ¥ and A are orthogonal) is O,(1/n). We shall therefore ignore this
term in what follows, defining

Wc('/’o) =2 [S‘ip {ly('/’, 1,,,) — (Y, zw)} - {lr('lfo, 'To) - lAO('/’Oa 20)}] ®

A further advantage of (8) is that the first half of the formula does not depend on y°. A
disadvantage of (8) is its non-invariance under transformation of 4, although this non-
invariance has been reduced by using the orthogonal parametrization. It is perhaps best to
regard w, as defined in some reference A parametrization. A conceptually curious feature is that
two different conditioning events are used, although again the orthogonal parametrization has
reduced the difference between them. The same feature arises in the discussion of locally most
powerful similar tests; see Cox and Hinkley (1974, p. 146). -

Applying the formula in Barndorff-Nielsen (1983) for the marginal distribution of 4, under
¥ and of 4, under /°, we have the further approximation

w.(¥°) = 2( sup [ly (¥, 4,) — 3 log det{nj (¥, 4,)}]
v

— [y (¥°, j:o) — 3 log det{nj,, (", j:o)}]) )]

In (9) j;, is the per observation observed information matrix for the A components. Equation
(9) implies that we can regard the effect of conditioning as modifying the objective function for
computing the profile likelihood from Iy (¥, 4,) to

Ly (¥, 4,) — 3 log det{nj;, (¥, 4)}. (10)

The effect of the second term is to penalize values of  for which the information about 4 is
relatively large. It can be shown that the value ¥¢ at which the supremum of (9) or (8) is
achieved satisfies ¢ — y = O ,(1/n), so that, for some purposes, we write instead of (9),

2{l, (P, A) — L, (¥°, Zo)} — log det{nj,,(J, D)} + log det{nj,,(¥°, 1o)}. 11)
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Note that the term det(nj, ;) can be computed as the product of the information determinant in
the (¢, ) parametrization and the square of the determinant of the transformation matrix
from (¢, ¥) to (4, ¥).

There is a complication in the derivation of (9) to (11) in that Barndorff-Nielsen’s formula
for the distribution of the maximum likelihood estimator requires in general conditioning on
appropriate ancillary statistics. In the special case when no ancillary is needed for fixed y the
above argument applies directly. The same holds true if the ancillary statistic does not depend
on . These two possibilities cover many common cases, and all the examples in this paper.

Otherwise there is an additional term in the approximate density and hence in (9) to (11)
arising from the log-likelihood ratio of the distribution of the ancillary at ¢ and y°. It is
possible that these ancillary statistics can be approximated by maximum likelihood estimators
of constructed orthogonal parameters, possibly by embedding the model in a suitable
exponential family. This would imply that the omitted terms are O,(1/n). We have not,
however, explored this in detail.

The difference of (9) from Barndorff-Nielsen’s modified profile likelihood is the use of
orthogonal parameters which allows us to ignore the term | 04,/04,|. Parameter orthogona-
lity is also essential in the asymptotic expansion of W, in Section 4.3. Although the factor
| 84,,/02, | may be difficult to compute, its inclusion ensures that the modified profile likelihood
is parametrization invariant. In the special case (for example full exponential families) where
the double saddlepoint approximation of Barndorff-Nielsen and Cox (1984) can be applied to
approximate the conditional density, the conditional profile likelihood and modified profile
likelihood are both equal to this approximation; see Barndorff-Nielsen (1983, p. 353) and
Jorgensen and Pedersen (1979, p. 309). For discussion of the modified profile likelihood
derived from a marginal or conditional point of view, see Barndorff-Nielsen (1985b).

The expressions (7)-(11) are in decreasing order of preference from an intuitive point of
view, although in many applications W, is the version most easily implemented. If w, = W, this
implies that the ancillary statistic discussed above does not depend on ¥, so that Barndorff-
Nielsen’s formula does give an approximation to the appropriate conditional density.

4.2. Examples
We now discuss a number of examples, to illustrate the implementation of the conditional
likelihoods discussed in Section 4.1.

4.2.1. Normal Distribution

We first consider the parameter of interest to be the variance, 7. In this case w}= w,, and the
conditional profile likelihood is simply proportional to the y2_, density of S/r, where
S = X(y; — y)?, and % = S/(n — 1). Both the approximate conditional likelihood and the
modified profile likelihood are also proportional to the xZ_, density, as the approximation
formula is exact (Barndorff-Nielsen, 1983, Example 3.1). No new considerations arise in
replacing the mean with a linear regression; w*, w,, and W, are all proportional to the log of the
x2-, density of S/tr, where now S is the residual sum of squares after regression on g
explanatory variables.

Of more interest for illustrating some of the general points of Section 4.1 is the case where
the mean u is the parameter of interest. Computation of w, is fairly straightforward. We reduce
by sufficiency to the joint density of (3, S), and transform the joint distribution to that of (3, ,),
with Jacobian 1/n. The marginal density of £, is proportional to a xZ density, and the required
conditional density is proportional to 7, /=1, This gives w.(u°) = (n — 2) log{1 + n(y — u°)?/
S}, a monotone function of the usual t-statistic. Note that the profile likelihood for this problem
is w(u®) = n log{1 + n(y — u°?/S}. Again w, and W, are identical.

Analysis using the conditional distribution given %, leads to the same result, i.e. w*(u°) is a
monotone function of the usual t-statistic, but the derivation is somewhat more difficult. The
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marginal density of %, is noncentral x* with n degrees of freedom and noncentrality parameter
n(u — p°)?/1. The required conditional density is a function of u and t, although it can be
shown to lead to a similar test of the null value u° against values u > u° for all positive t (Cox
and Hinkley, 1974 p. 143). This approach can be extended to normal theory regression,
although the details are somewhat more complicated.

A normal theory problem where the profile likelihood fails is the problem of weighted means
(Neyman and Scott, 1948). Assume y;, j =1, ..., g, are independently normally distributed
with mean p and variance 7,/n;. The conditional density of y,, ..., j,, given %,,, ..., T, 18
proportional to I1;z,(/?"~ Y, where n;t,; = S; + n;(j;, — p)? and S; is the residual sum of
squares from the jth sample. This gives

w (1) = 3, (n; — 2) log[{S; + n;(3; — u)*}/{S; + n;(3; — 1)?}],

where [i° satisfies

("j — 2)nj()_’j — 1) A
2 S+ n(y; — i) %

this is the estimate derived by Bartlett (1936). This solution can again be obtained via the
modified profile likelihood by ignoring the term |9%,/0%| (Barndorfi-Nielsen, 1983, Example
3.6). Since w, = W,, the approximate ancillary appearing in Barndorff-Nielsen’s discussion of
this example does not depend on u. The above estimating equation is also derived in Cox and
Hinkley (1974, p. 147) from a slightly different point of view; see also Lindsay (1982). Note that
w, leads directly to the “correct” answer, whereas the expression for w} involves the product of
q noncentral x* densities and is quite complicated.

4.2.2. Exponential Regression

We consider here the regression model with one covariate; EY;= A exp(—yz,), where
2z; = 0. Then

I, )) = —nlog A — 471} y; exp(yz))

from which 7, = n~'Zy, exp(yz,) and ¥ satisfies Zy,z; exp(¥z;) = 0. The profile log-likelihood
ratio evaluated at y° = 0 is

w(0) = 2{—nlog(}. (y;/n) exp(¥z)) + n log ¥}
= —2n(log 1 — log 1,),

where 1 = 7; and 1, = A,0. Both expressions (8) and (9) for the conditional profile likelihood
have a one degree of freedom adjustment but lead to the same estimate of y:

W(0) = w(0) = —2(n — 1) log(3/2,). (12)

The modified profile likelihood, by including the term |d1/d4, |, in this case proportional to
2,1, gives

—2(n — 2) log(2/2,). (13)

To compute w¥ we need the marginal density of y = 1, for an arbitrary value of ¥ ; then the
conditional density needs to be maximized over . Since the marginal density can only be
evaluated approximately, it is quite cumbersome to compare the resulting expression for w* to
w(0), w.(0) and (13). A simpler approach is to approximate

2[{1y (b, Zo) — IaoW, L)} — (WO, Zo) — Iao¥®, Z0)}1, (14

which corresponds to the definition of w* in (7), but ¥/ is regarded as fixed at 0 and (14) is a
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function of y. The approximation to (14) is, letting ¢ — y° = 6/\/n and writing m, for

n- lzzgty i
—n a(ﬂ_z) Sy B om0 mg 5_(2_) " ?_“(sz’)’. )
y 2y 6/ny 24ny " 2n\ n 8n\ n

The corresponding expansions for the unmaximized analogues of w, w, and W, are actually
quite straightforward to obtain from the above expressions, substituting Iw for 2 and
expanding in terms of  — y° = 6/,/n. All three expressions agree with (15) in the leading,
0,(1) term, and differ in the 0 ,(1/n) terms.

In the two-sample version, letting z, = ... =z, = —nyand z,,,, =... = z,,4,, = n;, an
exact solution is available. Writing y, for the first sample total and y__for the combined
sample total gives

R D O T Sl i
= . = < s N
f()’1.|)~o y../na '//’ '1) B(nl, nz)Yfl._lC(y",o, /1) ’ 0 < ). Y.

where 0 = e™¥ and c is a normalizing constant. For A > 0 this distribution has monotone
likelihood ratio and gives a most powerful similar test of the null hypothesis 8 = 1 against
alternatives 0 > 1, for all A > 0. The two sample version of (14) can also be obtained by
approximating this density directly. Curiously, the same uniformly most powerful similar test
can be obtained by conditioning on 2, under the alternative and 1, under the null; ie. by
computing the exact version of w, rather that the exact version of w¥.

4.2.3. Gamma Distribution

The parameter of interest is taken to be the shape parameter y; as 1, is independent of Y
there is no difference between w¥ and w, and W, differs from these only in the approximation of
the normalizing constant. The methods are best compared via the estimating equations for y.
The profile likelihood gives the following equation for the maximum likelihood estimate:

log y — T'(P)T(P) = log(y./n) —n~' ¥ log y;.

The conditional profile likelihood gives

L'y T/ -

— = =logy —n~') log y;

Tny) ~ TP gy —n"'Ylogy
the comparison of the two is clarified by writing I'(n)/T'(n)) ~ log(nj) — 1/(2n°), which
gives

. 1T -1

log * — 5 3¢ — Ty = lo80./m —n™! Ylog .

This is the same estimating equation that is obtained from the modified profile likelihood. In
both cases one “degree of freedom™ has been lost, in analogy with the normal variance

example. This adjustment is motivated from a different point of view in McCullagh and Nelder
(1983, p. 157); see also Sweeting (1981).

4.3. Comparison of Conditional and Unconditional Profile Likelihood Functions

We now consider how to assess whether the conditional profile likelihood statistic is
preferable to the unconditional form. There are several bases for comparison, no one of which
is wholly convincing in itself. ~

As noted in Section 4.1, in special problems of the exponential family conditioning on 4,
generates uniformly most powerful similar tests. We can expect this optimality to be nearly
retained for distributions close to the exponential family.

Two possibilities we shall not consider in detail are to compare the approximate distribu-
tions of w and w}*under the null hypothesis and under an appropriate one-sided alternative.
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With regard to the first, it would be of some interest as a matter of convenience rather than
fundamental principle to examine whether or not the distribution of w¥ is more nearly
approximated by x? than that of w. It is known that the y? approximation to the distribution of
w can be improved by application of a Bartlett adjustment, but we have not investigated such
adjustments for w, or w*.

Note, however, that in the normal theory linear model with the variance as the parameter of
interest the Bartlett adjustment essentially allows for the loss of degrees of freedom due to
estimating the regression parameters; this adjustment is automatically made by the condition-
al construction of w*. In general the need for a large adjustment factor, i.e. n~' correction,
would make the use of one or two terms of the asymptotic expansion suspect.

With regard to the second, we have not explored higher order approximations to power. The
calculations involved are complex and unlikely to lead to a definitive answer.

Comparison with Bayesian calculations is likely to be helpful, and in this regard the results
of Sweeting (1981, 1984a, 1984b) are particularly relevant. Sweeting’s approximate posterior
distributions for location and scale parameters lead to inferences very similar to those here,
although the basis of the argument is quite different.

In the development below we examine directly the first two terms of the stochastic
expansion of w and w,.

We will in our discussion concentrate on the conditional statistic w,, although our original
motivation was in terms of w¥. It seems likely that w, — w} = 0,(1/n), but we have not proved
this.

We assume that, if 1 is known, the optimality results mentioned in Section 4.1 justify the use
of the ordinary likelihood ratio statistic which we denote by

we(¥®) = 2{I(f, 1) — 1°, D)}.

We shall compare w, to the profile likelihood w defined in (6) and to the approximate version
of the conditional profile likelihood, W, defined in (10).

All three statistics have asymptotically a y? distribution under the null hypothesis. The
differences w, (¥°) — w(y°) and w,(y°) — w.(y°) represent the loss from not knowing 4. We
want this loss to be stochastically small. A major advantage of this approach is that the
adoption of a very specific measure of the loss is unnecessary, at least for the analysis here.
Note that we have defined w,(/°) in terms of the orthogonalized nuisance parameter A rather
than in terms of an arbitrary nuisance parameter, ¢. This seems compelling, however, in that to
regard ¢ as known would in general add appreciably to the information about v, whereas
specification of 1 affects only second-order aspects of inference about y.

We begin by comparing w(/°) and w,(y°) via suitable Taylor series expansions, calculating
the term that is O,(1/4/n). On expansion about (¥, 4) and W°, 1,), we have

w — w = 2[{I(;, A) — I(J, D} — {IY°, A — 1°, Lo)}]
= —n(4 — }b{iaa('/;, /D — ja(¥’, j[o)}(/‘L - Z)T
+ 202 — 20)j2:(0° 20)(A — DT + 0,(1/n). (16)
The terms retained in (16) are 0,(1//n). In deriving this we have used orthogonality
repeatedly to give both (1, — 1) = 0,(1/n) and (¥, — ¥) = O,(1/n), and in the expansion of

IW°, A) — I(y°, 1) we have written A — Ao = A — 2 + 2 — 1,. It follows from expansion of 1,
as a function of y that

A-Jo=@ - YOZ,, (0, i (WO, A)//n — 10 - ¥°)20iy, (Y°, A)/04 + 0,(n™>?),

where Z,,; is a random vector of order 1 in probability and i, (°, )/04 is a fixed vector. After
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some further expansion we have
we —w = —n(l — )4 — DI, ¥° H/oy1(A — DT
+ {2 — YONZya /it — @ — ¥ Biy, (b°, DR} (0, YA — DT
+ 0,(1/n). an
To examine the structure of (17) we write
U —y° = —V,igt?\n, A —1=V,i;%//n,

where i;, = i}/?(i}?)", all the is are evaluated at (y°, 1) and (V,,, V;)isa 1 x (q + 1) vector of
asymptotically independent standard normal random variables. Then

Wy — V*\’# [V {01,000, Do)V T]

Vi
NG

Zys oo
— 2, iy _ﬁ G2V + 0,(1/n). (18)

{9y (WO, D)/0M}i, (i) TV

The corresponding term in the expansion of w, — W, has one extra term, arising from
log det j; (¥, 2) — log det j,,(¥°, 4o)
= () — Y°) {0 log det iy, (¥, D)/0Y}y =yo + 0,(1/n)
= — ¥°) trace {i;;'(3i22/0%)y =yo} + O,(1/n)

—V,i,, e qa.
= —*f*— trace {i3;'(8i3:/00)} + O,(1/n). (19)
n
The trace in this expression is the expected value of the quadratic form in V; in (18).
The interpretation is probably most easily seen from the case where A is a scalar, when we
can write

Wy — w = @V, V2 + b2V, + c¥, V)//n + O,(1/n), (20)
w, — W, ={aV,(V: — 1) + bVLV, + cV, V;}//n + O, (1/n). 1

Note that to first order any of the w statistics is equal to V7.

Suppose that we have collected some data and calculated one or other of w and w.. We
would like to have calculated w, but this is not possible, essentially because V, is totally
unknown. We therefore consider the conditional representation of w, given w or W,; these are
respectively of the form

w+ (@ Vi+bV)/n+ 0,1/n),
and
w.+ {a'(V2— 1) + b'V;}/\/n + O, (1/n).
On average, W, is closer to w, because EV?2 =1, although there is no uniform domination.
The 0,(1/\/n) terms are a kind of bias, and the mean squares of these terms in (22) are
respectlvely (3a’? + b'*)/nand (2a’* + b”)/n Further, among all linear combinations of w and
W,, the minimum possible mean square is (2a’2 + b’z)/n and in general, unless |a| < | b|, the

probability that the unknown V, contributes a large discrepancy from the ‘optimal’ w, is
greater for the unconditional version w than for the conditional version w,.



1987] Parameter Orthogonality and Inference 15

An incidental comment is that the addition of an 0 (1/,/n) term to, say, w,, only affects its
distribution to order 1/n, provided that the additional terms have conditional mean zero, given
w;, and mild regularity conditions are satisfied (Cox and Reid, 1987).

When Ais a vector the more complicated formulae (18) and (19) hold. In the special case that
the components of 4 are mutually orthogonal and all components have the same value of d log
i5.4,/0y, then expressions corresponding to (22) are

wH{d(Vi+...+ Vi) + b)Y ¢V, }/\/n+ 0,(1/n),
et {a (Vi +...+ V3, —@+bY eV, }/n+0,(1/n)

and the amount of ‘bias’ removed by W, is proportional to g.

In general a simple characterization of the amount of ‘bias’ does not seem possible. Note,
however, that if i,, does not depend on y, then w and W. have the same expansions to
0,(1/\/n).

In work unpublished at the time of writing, M. A. Aitkin and J. Hinde have proposed
another method for deriving a likelihood function in the presence of nuisance parameters via a
notion of canonical likelihood. It would be of interest to compare their method with the
present ones via an expansion of the form (22).

5. TRANSFORMATIONS IN NORMAL THEORY REGRESSION

5.1. Introduction

We now discuss in more detail some aspects of inference in the normal transformation
model introduced in Example 3.5. For some unknown y, the random variables (YY, ..., Y¥)
are assumed to be independent and normally distributed with mean ¢, and variance ¢, in the
one sample case, and mean Xx; @, in the regression model. An approximately orthogonal
parametrization of the model is given in equation (5) of Section 3.5, and a possible
interpretation of the statistical implications of this parametrization is outlined. It is essentially
the same parametrization developed by Hinkley and Runger (1984) from a different route.

5.2. Bayesian and Conditional Likelihood Analysis

The Bayesian analysis of Box and Cox (1964) used a data dependent prior for (¥, A),
proportional to the nth root of the Jacobian of the transformation from y to y¥. This was
necessary because the relative sizes of the regression coefficients and variance depend strongly
on the value of Y, so that in the absence of any assumptions regarding ¥ it does not make sense
to assign uniform improper priors for them. The logical status of data-dependent priors is
unclear; see, for example, Nelder’s contribution to the discussion of Box and Cox (1964). One
method of avoiding them was suggested by Pericchi (1981) and modified by Sweeting (1984a)
by an argument similar to that below, although expressed differently; see also Hinkley and
Runger (1984).

Since the approximately orthogonal parameters are by construction weakly dependent on
V¥, it seems reasonable to assign uniform improper priors for them. Since 4, is constrained to be
positive, it is given the prior di,/4,; similarly the prior for the orthogonal variance component
Ao is dAo/Ao. The remaining components (4,, . . ., 4,) are assigned the joint prior I1d4;. For the
one-sample problem the likelihood is proportional to

SO, Ay, Ao)oc AT™¥ ™ Vag2TIyY ™ expl —{n(Fy — A9)* + S,}/2A1¥ ~*Y?A0)),

where y, and S, are the mean and residual sum of squares calculated from y¥. Integration over
the prior di,/A, gives

S, Ay) o YY1 Y [ "{n(Fy — A0)* + S}~ (23)
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and to obtain the contribution of the observations to the posterior density of  we integrate
(23) over di,/4,:

w dA
. V=1, in 1
fosw it w1 [ g sy

After some computation this reduces to

S ) cc Iy Y |"Sy @ V2 (F,) 7L + {8, /(nyg)in~" + O(n™ ).
Note that S, /(ny}) is the squared coefficient of variation of the Y.
The computation for the linear regression model proceeds similarly, giving

myv-1? n—qg—(n—gq)/2 1 S
Sy a2 "llllywl.,‘” {1 2(3(3’;_)2) ;ﬁ"+0(n-2)},

the leading term agreeing with Sweeting (1984a, eq. (6)). In the corresponding expression using
the data dependent prior (Box and Cox, 1964, equation 22), the term in braces in (24) is equal
to 1, and the term

24

YUY Y@ = 11"y 7 53)

J(lﬁ y)(n qQ/n _ N,In qny(w 1)(n— q)/n

The simplest direct route to the computation of the conditional profile likelihood is to use
the version corresponding to W, (equation (9)); i.e. the expression to be compared to (2) is
exp{l(u// ,lw) 1log det(n] A ,1)} The transformation matrix from (P, ¥)to (4, ) is dlagonal with

is replaced by

entries (YA~ s , WA, ..., YAY, Y242¥"2). The resulting expression for exp{i(y, 4,) — % log
det(nj, )}, is, 1gnor1ng terms not depending on ¥,
Iy~ 1y In—q-ZS';(n—q-Z)/z/ | 7y |(a+ 2 =33, (25)

The conditional profile likelihood defined by w, in equation (8) gives the same expression.
Expressions (24) and (25) were evaluated as functions of y for the 3 x 4 x 4 factorial design

discussed by Box and Cox (1964, Table 1). The Bayesian posterior density (24) has its mode at

Y = —0.71 and an equitailed 0.95 posterior interval is (— 1.14, —0.27). The conditional profile

likelihood (25) is maximized at y = —0.68 and a 0.95 confidence interval obtained from the y?

approximation is (—1.09, —0.26). Box and Cox obtained —0.75 for the Bayesian and

likelihood estimates of Y and corresponding intervals (—1.18, —0.32) and —1.13, —0.37).
One advantage of the parameter orthogonalization is the approximate result

{var()} ~! = E(—d%l/dy?), (26)

so the inversion of the full information matrix is unnecessary. The value of (26) can be used to
measure the transformation potential of a set of data (Box and Cox, 1982), i.e. the extent to
which it is feasible to determine a suitable transformation from the data. A complicated but
elementary calculation gives that (26) is equal to

5 1Cvy
{ CV2 + 3 CVA 2 CV’ (1 + CA)}
Here

t 2
CVien=1Y A2 = n~! z,.(z xis,ls)

is the squared coefficient of variation from the regression component, c, is defined by
n~'Z A} = CVi(1 + c,),and CV? = I, var Y,/(EY)? is the coefficient of variation of the error

component aty =1, CV3i/CV2isa kmd of signal to noise ratio. In the one-sample problem
CV,=0.
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6. DISCUSSION

The above development leaves open a number of issues some of which we raise in the form of
questions.
(i) In Section 4 we concentrated on the relation between w,, w, and w, rather than on the null
distribution. The first two statistics can be modified by a Bartlett adjustment factor to have a
x? distribution to O(1/n*2) (Barndorff-Nielsen and Cox, 1984). Is the same true of w, and can
the adjustment factor be calculated via that of w or w,? Is an adjustment for skewness of w,
available, to produce nearly equitailed confidence limits for y (McCullagh, 1984; Barndorff-
Nielsen, 1985a)?
(ii) Can stronger justification for the use of w, or w¥ or some other statistic, be produced,
including perhaps asymptotic calculations to higher order?
(iii) Has conditioning on exact or approximate ancillary statistics been achieved by the
proposed procedure ?
(iv) Do the results in Sections 2 and 4 have a useful, possibly simpler, formulation in curved
exponential families ?
(v) Are there special problems for discrete data ?
(vi) Can the discussion be extended to nonregular problems, for example those connected with
the terminal of a distribution, and to general problems with a large number of nuisance
parameters ?
(vii) Are there implications when the objective is the prediction of future observations, rather
than estimation?
(viii)) Can the discussion usefully be extended to vector parameters of interest, where in
general only local orthogonality is possible ?
(ix) How should the differential equations determining A be handled when simple explicit
solution is not feasible? What further conditions can usefully be imposed on A in general?
(x) What general implications for model and parameter definition and robustness can be
drawn from the notion of parameter orthogonality ?

This paper was substantially completed while both authors were visiting the Department of
Statistics at the University of Waterloo, and we thank the department warmly for its
hospitality. We especially thank the departmental secretary Lynda Hohner. We are grateful
also to referees for constructive comments.
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DISCUSSION OF THE PAPER BY PROFESSORS COX AND REID

Professor O. E. Barndorff-Nielsen (Aarhus University): The subject of inference on interest parameters
in the presence of nuisance parameters is at the core of statistics, and the paper before us adds substantially
to our understanding of and methodology for this subject.

The main points of the paper are the discussion of parameter orthogonality and its relevance for
inference, and the definition and investigation of a new concept of conditional likelihood. Below I
comment on these in turn.

Let y, of dimension r, denote the parameter of interest. As the authors demonstrate—and use
extensively—if i is one-dimensional it is generally possible to find a complementary parameter 4 = (4,,
..., Ag) such that i and 1 are orthogonal relative to expected information metric i on the parametric
model #. It is illuminating to view this result from a general geometric vantage point.

For this purpose, suppose .# is an arbitrary differentiable manifold of dimension g + 1 and with metric
tensor y, and let i be a real valued function on .#, the level sets .#,, of f being g-dimensional submanifolds
of 4. At each point p of each submanifold .#, we may place an infinitesimal line segment which contains
p and is y-is orthogonal to .# . It is intuitively plausible, and on account of Frobenius’ theorem generally
true, that these infinitesimal line segments connect up to form a bundle of one-dimensional differentiable
curves, each curve cutting orthogonally through the submanifolds .#,. Now, let A=(4,, ..., 4) be a
parameter which is complementary and y-orthogonal to , ie. (4, ) parametrizes .# and when 7 is
expressed in the (4, ) coordinates its mixed type elements are 0, i.e. y,_,(4, ¢)=0fors=1,..., q. Any
such parameter 4 may be conceived as determining a coordinate system on a fixed, but arbitrary, of the
submanifolds,.# ;0 say, the (4, ) coordinates of an arbitrary point p in.# being obtained by finding the
¥ such that p belongs to .#,, and the A such that p lies on that of the above-mentioned curves whose
intersection point with .# 0 has coordinate 1. Thus the freedom in choice of orthogonal parameter A
consists solely in the arbitrariness with which one may define a coordinate system on .# 0. If (¢, ¥) = (¢,
..+» ¢4, ¥) is any parametrization of .# then an orthogonal complementary parameter A can be found
by solving the system of equations

0os _
e

I have benefitted from discussing this geometrical setting with Professor Suresh Moolgavkar.

'}’¢,¢,(¢, ¥) _7¢,w(¢, ¥), t=1,...,4. 1)
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Returning to the case of .# being a parametric statistical model it follows, in particular, that when y
is one-dimensional we can equally find a complementary parameter 4 which is orthogonal to ¥ relative
to the observed information metric #, as defined in Barndorff-Nielsen (1986a,b).

For example, suppose X, ..., X, is a sample from the location-scale model ¢! f((x — p)/0), let a
be the configuration ((x, — i1)/d, ..., (x, — i1)/6) and consider u as the parameter of interest. Then, letting
g(x) = —log f(x) and solving (1) with y =j and

g F@) Zag'@)
Za,g'@) n+Zalg'@) |

one finds that A = ¢ + up is ~orthogonal to u, where

u={Za,g"(a,)}/{n+Za}g"(a,)}.

A general remark is that, whether one considers expected or observed information, as a point of
principle the inference on Y ought not to depend on the choice of orthogonal parameter A.

Let o, of dimension d = g + r, be any parametrization of the statistical model .#. In their discussion
of conditional likelihood Professors Cox and Reid refer to the formula p(@; w|a) = p*(®; w|a) where
p¥(@; wla)=c\/|jlexp(l —17), which provides an expression for the conditional distribution of the
maximum likelihood estimator @ given a complementary ancillary a, and to the related concept of the
modified profile likelihood for ¥, i.e.

L=

-
— 2
73, 17 Lw) @
where w = (¢, W), L) = L($w, y) is the profile likelihood for ¥, j¥ is observed information given ¥, and
¢ is considered as a function of (&w, ¥, a). Before commenting on the Cox-Reid definition of conditional
likelihood I wish to make a few remarks on modified profile likelihood and parameter orthogonality.

If ¢ and ¢ are orthogonal then, by (iv) of Section 2.2, we may often ignore the factor |6$/6$w|,
which may be a considerable simplification. However, the parametrization invariance of (2) is lost by
this approximation.

The expression (2) was derived, using p* above, by two routes in Barndorff-Nielsen (1983, 1985b): by
reasoning of marginal inference on the assumptton that p(, ¥; ¢, ¥|a) factorizes as p(J; ¥ | a)p(¢; ¢,
V| ¥, a) and by reasoning of conditional inference on the assumption that p($, ¥; ¢, | a) factorizes as
p(@; ¢, V|a)pW; |, a). In the light of tonight’s paper two other routes are now apparent. First, if
pldy, U5 &, Y |a) factorizes as p(@,; ¢, ¥ |a)p(¥; ¥ |y, a), ie. if for every fixed y the statistic (@, a),
rather than &, is sufficient for ¢, then again (2) emerges by applying p*, separately to the numerator and
the denominator of p(¢,, ¥; ¢, ¥|a)/p(d,; ¢, ¥|a). (We illustrate this further below, by an example
based on the I'-distribution.) This argument is rather similar to that leading to formula (9) of the paper.
Second, suppose n(¢) is a prior probability density function for ¢. Then the posterior likelihood for y is

L) = '[ e'®Vn(¢)dg.
In wide generality we may apply Laplace’s approximation method to this integral and we thus obtain

) = @npn(,) |1~ 2 L).

Provided ¢ and y are orthogonal this is generally close to L°(§) on account of 2.2(iv) (and ignoring
constant factors).

The idea of conditional profile likelihood as defined by (7) or (8) is certainly appealing, although the
lack of parametrization invariance of (8) is somewhat disconcerting.

However, it is not clear to me to what extent (7) or (8) offer an advantage in practice over the modified
profile likelihood. An inherent difficulty lies in the need to calculate the marginal distribution of Zw,
either exactly or to the appropriate order of approximation. One possibility, when working conditionally
on the ancillary g, is to derive an approximate expression for the distribution of 71,,, by integrating p*(4,,
U; A Wla)y=p*Q, ¥; A, ¥ |a)| 82/04, | with respect to ), this being feasible to sufficient approximation
by means of an asymptotic expansion for p*, given in section 3 of Barndorff-Nielsen (1986a). As another
point of comparison with modified profile likelihood one may note that (7) and (8) are tied to the
conditionality viewpoint whereas, as mentioned above, exactly the same expression (2) for 1? is arrived
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at by an argument of marginal inference, when that is relevant, and by an argument of conditional
inference, when that is relevant. To illustrate this, suppose x,; and x, are independent Poisson variates
with means p; and p,, respectively, and let ¢ = u; + p, and A= u, /(1 + p,). Then ¢ and A are orthogonal
and Y =x; + x,, wal=x1/ (x, + x,). Inference on ¥ should clearly be performed in the marginal
(Poisson) model for y, and the modified profile likelihood for ¥ is equal to the likelihood from that
model. However, calculation of w* or w, would proceed via the distributon of 2, which is quite complicated,
and the result would not be equal to the marginal likelihood based on V.

Quite a different way of defining a likelihood-like function for y alone would be to consider the
function ¢(r}) where ¢ is the standard normal density and r}} is the standardized signed log likelihood ratio
for y as defined in Barndorff-Nielsen (1986—see main paper’s reference list).

An instructive example is provided by the I'-distribution {(1/y)*/T(2)}x* ! exp{ —(4/)x}, whose mean
value is . Here y and 4 are orthogonal and (for sample size n > 1) we have that 4,,, but not 4, is sufficient
for 1 given y. Thus, in this case; only the second of the above-mentioned two derivations of modified
profile likelihood from a viewpoint of conditional inference applies. One finds

LW)=n""2(Q)~"(3,)"*L)

where {(4) = 82 log I'(1)/0A> — 2~ 1. In the present case the factor |92/02, | in (2) is equal to {(4,)/(Q),
and one would not discard this. Calculation of w¥ or of w, is not very tractable in the present example
(although the null distribution of Zw does not depend on ), but one might compare () =T() + 4 log
{(4y) to log ¢(r}). It was shown in Barndorff-Nielsen (1986) that r} = r, — (log X ,)/r, where X, = {(C(%)/
L2~ 2y — 1)

It has been possible here to touch only upon the most basic aspects of the paper. No doubt the paper
will generate considerable further discussion and investigations. It is a pleasure and a privilege to propose
a strong vote of thanks to Professors Cox and Reid for a very stimulating and interesting paper.

Dr T. J. Sweeting (University of Surrey): I am very pleased to have been asked to second the vote of
thanks for tonight’s paper, which for me has been very thought provoking. In my discussion I should
like to concentrate on the use of orthogonal parameters in Bayesian inference and discuss some
relationships with the present work.

There are several reasons for wishing to consider an orthogonal parametrization. I can identify four
main reasons, all of which are mentioned by Professors Cox and Reid; they are used as an aid to (i)
computation (ii) approximation (iii) interpretation and (iv) elimination of nuisance parameters.
Orthogonal parameters are also useful in Bayesian inference for the same reasons. The first part of my
discussion concerns the relationship between the conditional profile likelihood (CPL) and an approximate
Bayesian integrated likelihood, and amplifies remarks already made by Professor Barndorff-Nielson
tonight. In the second part I consider the question of prior independence of orthogonal parameters.

Let y be a scalar parameter of interest and ¢ a vector of nuisance parameters. Let L(y, ¢) be the
likelihood function and (¢ | ) the conditional prior density of ¢ given . The integrated likelihood

L(y) of ¥ is
L(y) = '[L(l//, ¢) (e |¥)do

and by taking appropriate expansions of log L(y, ¢) and log n(¢ | ) about &w one obtains (under suitable
regularity conditions)

L) = Py [ VILW, &) liseW, @) 712 (14 0,(n™ ). ey

This is essentially a Laplace approximation to the above integral, and may be compared with formula
(4.1) in Tierney and Kadane (1986) for a marginal posterior density. In that paper however, L is
expanded about the conditional posterior mode of ¢, rather than ¢,,. When ¢ and ¢ are orthogonal,
the Cox-Reid CPL (10) is just formula (1) without the first term. But then we can replace &w in 7(@y | )
by ¢ to the same order of aproximation. It follows that to 0,(n~"), the CPL is equal to the integrated
likelihood whenever the orthogonal parameters i and ¢ are taken to be a priori independent. An
interesting feature in this case is that, to O,(n™!), the posterior distribution of y is free from the prior
adopted for the nuisance parameter ¢.

The above analysis explains the agreement between the CPL in Cox and Reid and the approximate
marginal posterior density for the Gamma index in Sweeting (1981). Formula (1) also explains the
discrepancy between formulae (24) and (25) for the integrated likelihood and CPL respectively. The
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leading term in (24) is precisely (1), but the CPL cannot be the same to O »(n~") here since ¢ = (4o, 4,)
is not exactly orthogonal to ¥ and n(¢) is not constant. It is readily checked here that

m(y) oS, eI
and on multiplying (25) by this factor we recover (24).

Returning to the question of whether a priori independence is sensible for orthogonal parameters, we
have seen that when this is the case things work out nicely to O,,(n~!); the CPL agrees with the Bayesian
likelihood for every smooth prior for ¢. Although one cannot argue that orthogonal parameters should
always be taken a priori independent, in certain problems it does seem very natural to take them at
least approximately independent.

Consider again the normal transformation model. As the transformation index y varies, one can
identify directions in (y, ¢) space along which there is very little local change in the model. Reparametrize
so that these directions correspond to 4 = constant. If our prior opinion about A given ¥ is formed by
considering the type of data we would expect to see, then we can argue that our beliefs about A given
Y =y, should hardly be affected when y moves to a neighbouring value = y,. No compensation in
4 is required for this small change in ¥ to preserve the model. Such an argument is made in Sweeting
(1984a), and it turns out that the resulting parametrization agrees with Cox and Reid’s approximate
orthogonal parametrization. This is not so surprising when one views the process of orthogonalizing to
¥ as one of finding directions of least model change under the information metric. Omitting details,
local distance in model space is minimized at each point of the parameter space by moving in a direction
$(y) satisfying the orthogonality equation (4). In model space, this amounts to moving from My, $,)
in a direction orthogonal to the space M(f, + dy,, ¢).

A direct “compensation” argument applies quite generally to arbitrary transformations and error
distributions (Sweeting, 1985), and for the reasons given above the resulting parametrization should
approximate the orthogonal parametrization, which will normally be complex. It would be interesting
to find other models for which a simple compensation argument can be made when an exact orthogonal
parametrization is difficult. I am sure there will be many other interesting avenues of research arising
from tonight’s paper, and it gives me very great pleasure to second the vote of thanks.

The vote of thanks was passed by acclamation.

Professor R. L. Smith (University of Surrey): The three-parameter Weibull distribution
F(x; 0, ¢, ) =1 —exp{—((x— O)/d)"}  (x>0),

with 0 the parameter of interest is an inference problem harder than those in the paper, although within
the domain of the theory, the problem being regular for o > 2.

J. Naylor and I, in a paper as yet unpublished, have compared sampling-theory and Bayesian analyses,
a difficulty with the former being that the profile likelihood for 6 ends to be very flat. To try to improve
on profile likelihood inference, one may solve the orthogonalization equations o = (0, 4, p), ¢ =(0, A,
1) such that

0¢ Oa fr(®)
- =f1(®), % = s

0
1 2
=2 r<2 - ){va —y)—"—}{l oy —y)‘P(l —1)},
i1 o 6 o
2 1 2 1
S =2 r(z —&){V(l —)-% 4 —v)‘P<1 —;)}.

Here y is Euler’s constant, I' the gamma function, and ¥ the digamma function.
The solution of (1) is of course quite straightforward. Defining

_ [0 = fi(®)
fil@)= W’

4(o) = f exp {— f ' fs(u)du}dv
b b

(Y]

where
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where b > 1 is arbitrary, we have one solution of (1) in the form

. oa)g'(a
g(a)=19+u,¢=£2(ﬁqi, ()}
and another, putting the contants of integration in a different place, in the form
0—
9g0)=——, ¢=pnfr(@)g'(@). 3

u

This defines two orthogonal parametrizations. A third suggested by analogy with the generalized
extreme value parametrization (Prescott and Walden, 1980, 1983) is

F(x; 0, 4, Wy=1— exp[— {A(x#— 0)}1/1], x=0. @)

The resulting five forms of log profile likelihood, namely (a) the original, (b) the modified log profile
likelihood, i.e. equation (10) of Cox and Reid, without any reparametrization, and (c}e) the modified
profile likelihoods defined with respect to the three new parametrizations (2)«4), have been tried on
some data on strengths of glass fibre analyzed by Naylor and me. In Fig. D1, the unmodified log profile
likelihood (a) is very flat but (b) and (c) are even worse, having no local maximum within the range of
values calculated. In contrast, (d) and (e) appear to do better in discriminating among the various values
of 6. Preliminary results from a simulation study confirm the picture suggested by Fig. D1, i.e. that, in
terms of sampling properties, (d) and (e) are best with (b) and (c) worse than (a).
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Fig. D1. Profile likelihoods for Weibull distribution (based on 63 fibre strengths).

This example may be very specialised and badly behaved but allows some general observations. Cox
and Reid have performed valuable work in drawing attention to the importance of orthogonality, thereby
extending Barndorff-Nielsen’s definition of modified profile likelihood. However, the example, specially
the bad performance of (c) contrasted with (d), shows that orthogonality is by no means the whole story.
In particular, two different orthogonal parametrizations may have very different properties.

Mr D. Firth (Imperial College, London): My remarks concern the important property (iv) of Section
2.2, and perhaps have some relevance to question (x) of Section 6.
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Observe first a slightly different, apparently more direct route to property (iv), based on the
approximation

5. O 5 0
Ga=W | =G-Dz| +0,10-01?)
)

W @ @.2
derived by expandng the score function u(y, A)= oy, A)/0y rather than Iy, A) itself. Orthogonality
implies (0u/04) | .3 = O,(y/n), and arguments like those following (3) apply: provided 1 — A= 0,(1//n)
all terms are O (1), hence , — U= O,(1/n). Note that the result is ‘local’ in that 4 is required to be within
O(1/,/n) of the true value; in particular, if 1 is fixed it must be the true value.
The result may be extended in two stages. First it may be ‘delocalized’ by restricting attention to
likelihoods that satisfy

E, {0* Wy, A)/oYor} =0 for all §, &, A.

This is a stronger condition than orthogonality and implies, in particular, that the score equation u(y,
A)=0is an unbiased estimating equation for i at every A. Now consider arbitrary 4, no longer required
to be near the true value; and suppose that A, rather than being the maximum likelihood estimate, is
such that 1 — 2= 0,(1/,/n). Then, with § = {3, the behaviour of all quantities in the above expansion
is as before, and in particular y; — y = 0,(1/n).

An immediate further extension is to the situation where {u(y, 4): 1€ R} is a more general family of
estimating functions for y, not necessarily likelihood-based score functions; the required condition is still

E,{u(y, )} =0 for all y, 4,

ie. u(y, A)=0 is an unbiased estimating equation for y at every value of 1. The result ¢, — ) = 0,(1/n)
implies in particular that the asymptotic (normal) distribution of a solution based on any fixed value A
is the same as that of a solution based on a data-dependent value 1, provided 1 — 1 =0 A1/4/n). Consider
two examples:

@) Yy, ..., Y, independent, E(Y}) =yx;, var(Y}) = {E(Y)}* and w(y, 1) = Z(y; — ¥x,)/(¥x,)*. Within this
class, u(y, 4,) maximizes asymptotic efficiency; the same first-order efficiency is achieved if 4, is replaced
by a \/n-consistent estimate.

(i) Yy, ...., Y, iid, E(Y) =y, var(Y) =1 and u(y, 1) = Z[A(y; — ¥) + (1 — H{(y; — ¥)* — 1}]. Provided
third and fourth moments exist, asymptotic efficiency here is maximized by the choice 1 =(2+ k,)/
(2 + k4 — k3); again (/n-consistent estimates of k5 and «x, allow the same first-order efficiency to be
achieved. This example is non-robust in the sense that the estimating equation is not generally unbiased
under failure of the variance assumption.

Ms S. E. Hills (Nottingham University): I would like to make a practical point concerning the
construction of orthogonal parameters. The authors have noted the problem that simple explicit solution
of the differential equations for the orthogonal parameters may not be feasible, but there is also the case
when an explicit solution is possible but the original nuisance parameters can not be expressed in terms
of the orthogonal parameters. An example is the Michaelis-Menton model in nonlinear regression. This
model is usually specified as

+&, (i=1,...,n

where ¢; ~ N(0, 62) (assume ¢ known).
If B is the parameter of interest, then a transformation of the form (8, o) — (B, 4) is required so that
p and A are orthogonal. The differential equation to be solved will be

x2  Oa x2
a

.; B+x)?of .=zl B+x)’

with solution

n xi2

& B+ x)?

a(A) = a? .
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It is trivial to write « (and hence the likelihood function) in terms of § and A.
If o is the parameter of interest, then a transformation of the form (a, f) — (o, A) is required so that o
and 4 are orthogonal. The differential equation to be solved will be

nox B &
* ;:Z‘l B+ x)* oo i=zl B+ x)?
with solution
v
bit)=a =1 (B+x)*

The inverse of this transformation is not explicit and therefore it is not possible to write the likelihood
in the form (o, A).
Can the authors give any guidance as to when this type of situation will occur and how to overcome it ?

Dr C. J. Skinner (University of Southampton): I should like to comment on the role of the concept
of parameter orthogonality in model robustness, with particular reference to the regression example.

Let M°={f(y; ¢, ¥°); ¢ € ®} denote a specified model. Then it appears to be of some interest to
study ‘orthogonal perturbations’ of M° within broader models of the form M = {f(y; ¢, ¥); p e D, Y € ¥}
where y°€¥, y is orthogonal to ¢ locally on M° and ¢ retains an interpretation in M free of ¥ (cf.
3.5). For if /", indexing the true model assumed to lie in M, is within 0(n~/2) of y° then, as in 2.2, Pyo,
&d,r, and @ are all within O »(n~1)and the MLE of ¢ within M° is, in this sense, robust to local perturbations
of M° in M.

For example, let M be the class of regression models Y¥ ~ N(¢, + X x,,, ¢,) in Section 3.5 and let
M3}, refer to a specific choice ¥ = y°. Then ¢* =(¢3/b2, ..., ¢,/¢,) has an interpretation free of y
(increasing x, by ¢,/¢, has the same effect on Y as increasing x, by one unit, whatever the value of ¥)
and, being a function of 1,, ..., 4, in (5), is approximately orthogonal to . Hence, in the sense above,
MLE of ¢* in M} is robust to local perturbations of M$ in M.

This property may be compared with a seemingly stronger result for global perturbatons of M 2 within
the wider class Gy of generalised linear models, in which Y depends on x = (x,, .. ., x,) only via a linear
combination ¢, + X x,¢, = ¢, + x¢, and for the wider class of point estimators of (¢,, ¢) which solve
a maximisation problem max(a, b) £ y(Y;, a + x;b), where the function (., .) is essentially arbitrary.
Subject to a suitable law of large numbers such estimators converge to (@1, §), the solution of max(a, b)
Ey(Y, a + xb) with an implied estimating equation:

cov[yy(Y, ¢, +x§), x]=0 M

where y, (4, v) = dy(u, v)/0v. Under Gy, (1) reduces to an equation of form cov[hp, + xb, d, +x§), x]=0
which, assuming || & || /¢,, | ¢ || /@, small as in 3.5, gives a first-order approximation cov[h,x¢ + h,x,
x] =050 that § oc ¢.if var(x) > 0 and ¢* = ¢*. Hence the global robustness property that ¢* is estimated
consistently under misspecification of M} in Gg. Solomon (1984) gives a special case of this result. The
small || ¢ || condition may be replaced by a condition of elliptical symmetry on the marginal distribution
of x (cf. Brillinger, 1982; Ruud, 1986).

Mr N. G. Polson (Nottingham University): Tonight we have heard how to make inferences about
the parameter of interest, 0, in the presence of a nuisance parameter, . The authors propose to use a
conditional profile likelihood. We have also heard from Professor Barndorfi-Nielsen who advocates the
modified profile likelihood.

When the model possesses a group structure, the latter can be represented as a marginal likelihood
(as mentioned on p. 10), the measure for 1|0 being the induced right invariant Haar measure.

This can be used to unify some of the comments about the Bayesian approach already made by
Professor Cox, Professor Barndorff-Nielsen and Dr Sweeting. The Bayesian methodology is totally
general—integrate out prior beliefs about 1|6. An appealing choice of prior when there are nuisance
parameters is a reference prior, as defined by Bernardo (1979). It is used as a reference point for other
inferences, also as an approximation to weak a priori information about 1|8. Applying Bernardo’s
criterion, orthogonality simplifies the asymptotic posterior for 1|6, yielding the result that the above
measure is precisely the reference prior for 1|6. We therefore have the important theorem that the
modified profile likelihood is precisely the Bayesian marginal likelihood with a reference prior for 40.
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The methods of this paper are therefore essentially Bayesian. If the authors were to be consistent and
also use a reference prior for 0, they would find complete numerical agreement with reference Bayesian
solutions.

This has several important implications. First, we note that such priors avoid the marginalisation
paradoxes of Dawid et al. (1973). Secondly, all of tonight’s examples and previous ones given in the
literature permit analytic computations for reference priors, extremely useful for Bayesians. Thirdly,
questions raised in Bernardo’s paper are also applicable here.

Two examples where the group structure is not present are the hyberboloid model of order 3 and the
inverse Gaussian model (Barndorff-Nielsen 1983). I would like to ask the authors how their methods
apply here and if there are corresponding links with a Bayesian answer ?

Finally, one of the most important applications of nuisance parameters is to model elaboration (for
example, the Box-Cox transformation model). The Bayesian framework allows us to view such questions
in a unified manner. Do the authors think their methods can be applied in as unified a manner, for
example with 4 discrete or continuous, as the Bayesian methodology ?

Dr Frank Critchley (University of Warwick): My reaction on reading this paper was one of awe and
wonder. “Or” because the authors propose w¥ or w, or W, and wonder because I found myself genuinely
wondering: “What does it all add up to?” In particular:

(i) Choice: How are we to choose among the various measures proposed ? Are they all the same to
0,(n™")? If so, may there be important differences in their leading coefficients (this being the basis put
forward for preferring W, to w)? If so, when?

(i) Practice:  What are the relative and, indeed, absolute values of the measures in practice? By
parameter orthogonality, the asymptotic conditional distribution of §, given the observed 0, is just the
asymptotic marginal distribution N, (8,, n™ i, 5 ). In going beyond this simple case, the authors appear to
be considering sub-asymptotic situations. In any event, this is the common practical situation. The key
question here is: Which values of  are sufficiently sub-asymptotic to make the more elaborate procedures
worthwhile and yet sufficiently large to retain enough accuracy in the crucial approximation (2) on which
rests the key advantage (iv) of parameter orthogonality ?

(iii) Operation: How operational is it all? What about vector parameters of interest? How often are
the differential equations (4) soluble analytically? When must the invariant w* be abandoned for the
more pragmatic w, or W, ? Professor Smith’s contribution contains a graphic illustration of the potential
losses associated with using these alternative measures.

It would be churlish to not also offer some neutral or positive remarks:

(i) The choice among the measures is indeed a multivariate one. No one measure dominates on all
criteria. There are conflicts both between and within matters of principle and matters of practice.
Within this latter set, we note the criterion of communicability to the client. Not all of the entries
in the criteria by measures array are known (how close is w* to w,?, ...). Further work would be
valuable here.

(i) Noting the localness of the approximation (2), might it be worth exploring multi-parameter extensions
based on approximate global orthogonality in which the (average) size of ig,0, 1s minimized over some
neighbourhood of 6 =67

(iif) Can the freedom in choosing an orthogonal parameterisation be turned to good effect (e.g. by
optimising the accuracy of (2) or the robustness in some sense of the overall procedure)?

(iv) In recently submitted papers, Critchley, Ford and co-workers have shown how strong Lagrangian
theory both illuminates the theoretical properties of w and gives substantial computational benefits in
calculating interval estimates based on it. It will be of great interest to see how this theory applies to
tonight’s paper and, in particular, to (10).

(v) There are close links between tonight’s paper and the local influence work of Cook (1986).

Answers to any of the above questions would be of value. Without doubt, many of these answers will
depend on the context, as with the probable advantage of W, over w which depends upon both |a| > |b|
and i, being mathematically independent of .

In sum, I found tonight’s paper a valuable and thought-provoking contribution to what is one of
our subject’s major problems. It is, therefore, not surprising that much work remains to be done.
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Dr Anmn F. S. Mitchell (Imperial College, London): Amari (1982, 1985) produces the orthogonal
parameters of Section 3.2. for regular exponential families by a different approach to that of this paper.
For parameter space ®, the family of densities {p(y; 0), 0 € ®}, satisfying the usual regularity conditions,
is considered as a manifold in which the parameters 6 =(6,0,, ..., 0,) play the role of co-ordinates, the
information matrix entries {g;;()} form the metric tensor and the connections are the family of
a-connections of Amari (1982, 1985). If the manifold is +a,-flat for some real a,, there exist dual
co-ordinate systems (6, ) such that 6; and #; are orthogonal for i # j;i,j = 1,2, ..., r. The dual co-ordinates
are related by Legendre transformations

b5} 0
0;= a—n' o), n;= 6_0, v(0),

where the potential functions ¥(0) and ¢(n) are such that
2

gij(o) 60 60

2
voy g =z o
and

WO)+ 40— 3. Oin,=0,

{g"(n)} being the entries of the inverse of the information matrix in terms of the parameters #.

Since regular exponential families are +1 flat, the results in Section 3.2 for the case r =2 follow at
once in general and for the particular case of the normal distribution.

The normal distribution can also be regarded as belonging to an alternative class of distributions,
namely the class of elliptic distributions with densities of the form

1 _ 2
p(y; 1, 0) =5 h((y . ”) )

for some function h and location and scale parameters, u and o (¢ > 0), respectively. The class also
includes, for example, the Cauchy, Student’s ¢t on k d.f. (k> 1) and the logistic distributions. In the
multivariate context it has received much attention in studies of robustness of standard multivariate
normal procedures.

The Cauchy distribution has constant negative curvature for all a-values and recent numerical work
by Kyriakidis indicates that the logistic is not flat for any value of a. However, when flatness can be
demonstrated, the dual co-ordinate systems are

u 1
0= (?, - W) and 5 =(ayp, ayu* + b,0?),

where a, and b, are constants depending on the family under consideration. In particular, the Student’s

t family on k d.f. is i('f—f) flat with

a,=(k+1)/(k+3), b,=k/(k+3)

Full details of the differential geometry properties of the class of elliptic distributions is given by Mitchell
(1986).

The following contributions were received in writing, after the meeting.

Professor Shun-ichi Amari (University of Tokyo): A statistical model M = {f;(y; ¥, ¢)} forms a
geometric manifold with a coordinate system (, @) to specify a point (a distribution) in M. When one
has interests only in Y but not in ¢, the set of distributions S(Yo) = {fy | ¥ = ¥o; ¢: arbitrary} forms a
submanifold embedded in M. In such a case wrth nuisance parameters, geometry is more explicit in
statistical inference, because the shape (more precrsely the m- and e-curvatures) of S(¥,) plays an important
role. The present paper raises an interesting issue relating to the conditionality principle and geometry.

The authors propose new test statistics w¥* and its simplified version w,. It is interesting and important
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to study their characteristics. They are subject to an asymptotic chi-squared distribution, and the tests
based on them are first-order efficient, and hence are automatically second-order efficient. The problem
is to know the deficiency curve

Pr(0)= lim n[P*®)— P1 (0],
n—o0
of such a test T, where P*(t) is the envelope power function and P.(f) is the power function of
test T at Y =y +t/\/n.
Let us consider the problem in a curved exponential family for simplicity’s sake. Then, the
critical region of the test based on w¥ (of w.) is bounded by a hypersurface determined from

w¥ =const. (w,= const.)

in the enveloping manifold which is identified with the sample space, where the constant is to be
determined from the level condition. In the case of a two-sided test, it is bounded by two submanifolds,
where we use the signed root of w}. The characteristics of the test depends on the geometric features
(angle and curvatures) of a family of submanifolds w* = const. (Kumon and Amari, 1983; Amari 1985).
Here, we should distinguish two problems. One is how to choose the constant. Since w* (or w,) is not
subject to an exact chi-squared distribution, we need to adjust w* (w,) (or equivalently the constant),
such that the level condition (and bias condition in a two-sided case) are satisfied up to the term of
order n™', as we do in the Bartlett adjustment. The other problem is concerned with the deficiency
curve of a test after the adjustment has been done. The deficiency curve, when we do not know the true
value of ¢, include two additional terms; one being proportional to the square of the mixture curvature
of (o) and the other proportional to the square of the exponential curvature of M itself. Although we
do not yet know the characteristic of the proposed tests, I believe that the differential geometrical
methods developed in Amari and Kumon (1982), Kumon and Amari (1983) and Amari (1985), provide
us with sufficient means of analysing these problems.

A final comment is that, even when there does not exist a global orthogonal parametrization,
a locally orthogonal parmeter 4, being orthogonal at only ¥ =,, may be sufficient for the
present asymptotic purpose. Such one is easily derived as

A=+ kZ (i*).;,};,(iim,)('//k —Yon)-

We can add quadratic terms ( — ,)? such that not only the cross terms of the Fisher information but
also its derivatives with respect to ¥ vanish at .

Professor A. C. Atkinson (Imperial College, London: A major part of my interest in the work described
in tonight’s paper centres on the normal transformation model which Box and Cox (1964) write
y* =(y* — 1)/A. With this background it is a nuisance that Cox and Reid choose 1 to be the nuisance
parameter.

1. The numerical example in Section 3.5 demonstrates the advantage of the orthogonal parameteriza-
tion compared with the form investigated by Bickel and Doksum (1981). However, Box and Cox
introduced the normalized transformation z'¥=y"/j*~1 where y is the geometric mean of the
observations. An appealing property of this transformation is that the dimensions of z® is that of y.
The resulting parametrization is approximately orthogonal. Are there other examples where physical
arguments lead to a near orthogonal parametrization?

2. The profile loglikelihood for the factorial experiment of Section 5.2 is pleasingly parabolic,
as are those for several other examples plotted by Cook and Weisberg (1982, Section 2.4). Asymptotic
procedures can then be expected to behave well. The other example given by Box and Cox, a factorial
experiment on the failure of worsted yarn, however yields a profile loglikelihood which is concave around
4 =0 but convex near 1= +1 (Atkinson, 1985, Fig. 6.2). What results are available on the concavity
of profile loglikelihoods? Do the corrections of Section 4.3 improve this curve?

3. There s a striking similarity between (26) and the extremely useful result of Patefield (1977), obtained
without the use of parameter orthogonality. Lawrance (1987) uses Patefield’s result to obtain a score
statistic for transformations which has good distributional properties in the neighbourhood of the null
hypothesis. Since this result uses observed information, rather than the expected information of (26), it
gives a negative variance when A, = —1 in the worsted data.
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Mr B. J. R. Bailey (University of Southampton): 1 should like to compliment the authors
on their generous provision of examples and here add yet another, but one based on discrete
variates. Suppose X and Y have independent binomial distributions such that X ~ b(m, 6,) and Y ~ b(n,
0,). If the parameter of interest is the odds ratio y = 0,(1 — 6,)/(1 — 6,)0,, then the application of equation
(4) leads to the orthogonal parameter a(1) = m6, + n,. Setting a(1) = A, and maximizing the likelihood
over 4, for fixed ¥, yields the conditioning statistic 71,,, = x + y, the usual ancillary statistic for this problem.

On the other hand, in epidemiology, the parameter of particular interest is the risk ratio ¥ = 6,/0,.
Orthogonal to this is 1 =(1—6,)"(1 — 6,)", or any function of A such as the logarithm, and 'Alw can be
found explicitly as a slightly cumbersome function of y. However, conditioning on 1, is extremely severe
in that the possible values of the pair (x, y) generally lead to different values of Zd,, for fixed y. This is,
of course, a problem likely to arise in many discrete cases. Grouping values of flw, and then conditioning
on the particular group observed, does not seem to be practical if this has to be done for several values
of i and for values of m and n typically in the range 100-200. Is there an easier alternative?

Professor G. A. Barnard (Retired): There can be no general method for “elimination” of “nuisance
parameters”. The very term harks back to the idea that statistical inference involves an act of will. In a
decision problem the form of answer may be governed by our wishes. But the inferences which may be
drawn from a data-model combination must be dictated by the data available, along with the logical
features of this combination. We may well wish to infer something about u without reference to A, but the
data may not permit this. And if the data do not permit it, we owe it to our clients to say so.

Logical features may smplify a problem. For example we may be interested in the correlation between
scores in a verbal test and in a mathematical test. Such scores are often reasonably taken to be bivariate
normal, but the means and variances of each score are clearly affected by irrelevant factors, so that analysis
of the data must logically be invariant under location and scale changes. Thus invariance considerations
lead directly to the sample correlation coefficient as the only quantity of interest, with its marginal
distribution providing the relevant likelihood function. Similar invariance features are relevant to the
Neyman-Scott problem referred to by the authors, and to other cases.

In location-scale problems, conditioning on the configuration allows us to reduce the data to two
pivotals, t = (X — p)/s, and z = s, /o, with known joint density ¢(t, z). The failure of ¢(t, z) to factorize means
that inference about u using the marginal distribution of ¢ is subject to the implicit assumption, often
overlooked, that the data provide the only usable information about ¢. By suitable choice of u (noting the
brief hint on p. 339 of Fisher’s 1922 Phil. Trans. paper), u and ¢ can be made orthogonal, so that possession
of alittle information concerning o, in addition to the data, does not seriously affect inferences about p. But
the case is quite otherwise with the Behrens-Fisher and weighted mean problems. Here the variance ratio
parameter p should perhaps be called a “confounded nuisance parameter”, since inferences about the
parameter of interest cannot be separated from statements about p. Insistence on rigour requires making
inferences conditional on p; but it will often be justifiable to introduce a range of priors for p. Then so long
as we make clear to our clients the assumptions involved, and so long as the problems have enough of a
routine character to allow some check on the priors used, inferences in which p does not occur explicitly
will be permissible.

The “top down” approach of the authors, working down from the asymptotic case, will be very useful in
complex cases as indicating the kinds of assumption needed to make inferences of the form required. But an
extension to several parameters of the “bottom up” approach of Sprott and Viveros (1984), who attempt to
match the log-likelihood function up to the fourth term of its Taylor expansion, would also seem worth
exploring.

Dr A. C. Davison (Imperial College, London): Professors Cox and Reid refer in the final section of
their thought-provoking paper to the prediction of future observations. I would like to point out a
curious similarity between the modified profile log likelihood (10) and recent work on predictive
likelihood.

Suppose that the random variable Y = y, with probability density function f(y|6) has been observed,
and that the unobserved random variable Z with conditional density f(z|y, 0) is to be predicted. The
parameter 0 is unknown. In Davison (1986, equation 6) I suggest as an approximate predictive likelihood
for the predictand the exponent of

log f(z, y18,) — 4 log det jgo(D,), *
regarded as a function of z. Here 8, and jg, are the maximum likelihood estimate of 6 and observed
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information based on both y and z. Expression (*) looks very like the modified profile log likelihood
(10) with z and 0 replacing the ¥ and A of Cox and Reid—though of course the logical status of the
unknown value z of the random variable Z differs from that of the unknown but fixed parameter .

In replying to the discussion of his paper, Butler (1986a) shows how to make (*) invariant to
reparametrization of 6 by adding to it

log det jgy(D,) — } log det KK, )

where K = d? log f(z, y|0)/d0d(y, z), evaluated at §=1,.

The first term of (*) is the profile predictive log likelihood suggested by Mathiasen (1979) and Lejeune
and Faulkenbery (1982). In many situations the relative extra contributions to the predictive log likelihood
from the second term of (*) and from (t) are small. Fig. D2 shows such a case, comparing the 3 terms
for the prediction of the maximum of m = 10 annual maximum daily river flows, based on a sample of
35 such flows of the River Nidd at Hunsingore Weir. The model is that the annual maxima are a
sequence of independent observations with a common generalized extreme-value distribution.- The
modifications to the profile predictive likelihood from (f) and the second term of (*) are in this case
negligible, though as m increases so does the effect of ().

As far as I know it it not yet clear how in general to base predictive confidence regions for Z on (*),
though some progress in this direction has recently been made by Butler (1986b). Perhaps soon a first-
and second-order asymptotic theory for prediction, as well as estimation, will be available for the
likelihood function.
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Fig. D2 Information comparison for River Nidd data, m = 10. Shown are profile predictive log likelihood (solid
line), information matrix contribution —% log det jg4(8,) (small dashes), and Jacobian contribution log det jg(d,) — &
log det KK’ (longer dashes).

Professor D. A. S. Fraser (York University; Universities of Toronto and Waterloo): Conditional
inference, introduced by Fisher, generally neglected, but nurtured tenuously through connections to
fiducial, ancillarity, and structural, is now receiving the attention it has seemingly long deserved and
the present paper is a welcome and thorough examination of aspects of the topic.

The first three sections propose the information orthogonalization of nuisance parameters to a primary
real parameter in order to obtain asymptotic independence for the corresponding m.l.e. estimates; this
leads to the analysis of the primary parameter conditional on estimates of the nuisance parameters.
Unfortunately, the authors do not directly pursue such conditional inference, which involves a real
variable and real parameter with some minimum effect from nuisance parameters. Such inference
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on-the-real line is direct and straight forward leading to tests and confidence regions, and a likelihood
criterion is not needed.

Some recent work on conical tests (Massam and Fraser, 1985; Skovgaard, 1986) and on fibre analysis
(Fraser, 1986) lead (in joint work with a Toronto colleague) to a sample space development of
one-dimensional conditional tests; these seem to show agreement with the orthogonal-parameter
approach when it is available. The majority of the examples in Section 3 are location/transformation
models; some compounding of conditional distributions shows promise for further reducing the effect
of nuisance parameters.

Sections 4 and 5 develop modifications to profile likelihood to obtain a likelihood assessment of
parameter values, but do not provide conditional tests or confidence regions in any direct sense: the
‘conditional inference’ in the title of the paper might reasonably be changed to ‘conditional likelihood’.
The modifications to profile likelihood represent an insightful use of conditional distributions to address
the difficulties found with profile likelihood itself.

The vectors for the regression model as given in Section 3.5 are of length n which indicates a modification
to some formulas. The log-likelihood ratio statistic is essentially a negative of log likelihood; thus in
several places ‘conditional (profile) likelihood’ needs to have ‘ratio statistic’ added to be correct and not
misleading.

Dr P. Harris (Liverpool Polytechnic): I have enjoyed reading this paper, and would like to make two
brief comments. The first concerns discussion point (i) of Section 6 of the paper, namely the possibility
that a Bartlett adjustment factor might exist for the test statistics introduced in Section 4. In particular
consider the test statistic, W (¥/°) say, given at (11)

We(Y©) = w(y) + S,

where w(y°) is given at (6) and S = log det{j;,(¥°, 20)} — log det{j,,(J, 2)}.
For convenience let A be a scalar parameter, and expand S about the true parameter value (/°, 1) to give

S=01)" "Warthy + Gz yuaus+ Y + 0,(n~%?

where u, = \/n(f — ¥), uy = \/n( — o), yyar=n">20*(@YdA?), y;2,=n"*?3%/02° and Y denotes all of
the O, (n™ ') terms arising in the expansion.

The term v = (j;,) 'y, 4> Which remains O,(n~ /%) when ¢ and 4 are orthogonal, appears to introduce
into the O(n~1!) part of the null distribution of W (¥°), a quantity which not only prevents the calculation
of a Bartlett factor, but also prevents the O(n~!) terms in the null distribution of W(¥°) being expressed
as sums of chi-squared variables. The difficulty arises because the O,(n~"/) part of the expansion of §
contains a term linear in u;(i = ¥ or 1), rather than the more usual wu;u, (i, j, k= or A).

Assuming the orthogonality of ¥ and A, the moment generating function of Ww.(°) has the form
M(t) = (1 —2t)"">{1 +(24n)~ Y(¢P +tpQ)} where Q = 6(iu.,,)2i{fi¢7.p‘, by = \/"E(y/uw), ¢=21(1-21)""
and P is a complicated function of the cumulants of the derivatives of the log likelihood function. The
term Q prevents the calculation of a Bartlett adjustment factor, p; if @ =0 then p=1+(12n)" 1pP. For
0 to be zero we need i;;, =0, so that the array of expected values of the third derivatives of the log
likelihood function needs to satisfy an orthogonality condition for a Bartlett factor to be available.

My second comment is that if ¥ is orthogonal to A, then in testing Hy: ¢ = §°

wa(¥°) = 2{IJ, ) — Iy°, D)} 4y

has the asymptotic chi-squared distribution with one degree of freedom when the null hypothesis is
true. Have the authors any comments upon the use of (1), or a conditional version based upon the
conditional distributions of y given 1, in testing ¥ = y°?

As the restricted maximum likelihood estimator 1, is not used in either test statistic they may be
convenient in situations where 1, is awkward to estimate.

Dr C. J. Lloyd (University of Melbourne): Barndorff-Nielsen’s (1983) modified profile likelihood

~

04  ~ -
L) = j
W) 52,,, [ jaa | L)
has the nice property that it can be seen as an approximation to either a suitable conditional or marginal
likelihood function. In particular, if we condition on 1, then the approximate conditional likelihood is
I°()) as discussed in 4.1. The orthogonal parametrisation corresponds to choosing A so that
82/02, =1+ 0(n"') and j,, is the A information either for fixed ¥ or ignoring . This alone would seem
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to justify the idea of orthogonality for giving the profile likelihood a standard form. It would be nice
to look at the conditional profile likelihood from the dual/marginal point of view. The most likely course
is to let Z(J, 4, ¥, A) = F(J | A,; ¥, A) where F is a conditional distribution function and substitute 2,
for 1 and consider the marginal likelihood of Z.

The distribution of ¥ given 71,,, does not generally lead to an unbiased score function as pointed out
by Lindsay (1983). The bias term is in fact log(d4/04,) so that bias is reduced when ¥, 4 are orthogonal.
(This term is omitted in w¥*). There is also a problem of ambiguous inference in choosing the free statistic
to be conditioned on. For example if (X, Y) are independent normal with means (4 cos ¥, 4 sin ) and
variances 1 then A(})=X cos ¥ + Y sin  and Z() = X sin ¢ — Y cos ¢ with N(0, 1/n) distribution.
Now 4 and ¢ are orthogonal and it turns out

we () = —nZ(p)?

so the estimating equation is Z(y) =0 which is unbiased. The density of X given A(y) is N(A(Y) cos ¥,
n~ ! sin%y) giving the conditional loglikelihood

—2 log|sin ¥ | — nZ(})?
so the estimating equation is
20 log|sin y | /oy + nZ(Y)A) =0

which is not unbiased. Also, if we use the density of Y given A(y) a different likelihood results. The
distribution of ¢ given A(Y) leads to a conditional likelihood which differs from w, by the term cos(y — V)
which is the 0(n~ 1) term log(dA(y)/d3). Finally, an unbiased equation can be obtained by substituting
for A(Y) after differentiation of the conditional likelihood and this gives

—23, log|sin y | [Z*(Y) — 1] — nZ(W)AW)

in the present example. This procedure always gives an unbiased equation under regularity, however it
is not clear whether its solution corresponds to maximising any sensible objective function.

Professor T. A. Louis (Harvard School of Public Health): Whoever invented the label “nuisance
parameter” was right on the mark. Parameters that are not of direct interest plague the analyst, whatever
approach is taken. The frequentist needs to condition, profile, or ignore; the Bayesian requires priors
that may be difficult to pin down. Cox and Reid have helped expose these difficulties and the simplification
provided by parameter orthogonality. For example, their analysis of the normal transformation model
helps clarify the controversy concerning the decision to incorporate or ignore the uncertainty in estimating
¥ (the transformation parameter). I read their message as suggesting that any reasonable approach will
work just fine if the parameters of interest are orthogonal to y. Individuals may have philosophical
arguments, but their inferences will be similar.

Divorced from computational issues, these results imply that putting weak (ignorance) priors on
nuisance parameters, and marginalizing should produce reasonable frequentist inferences, when
(approximate) orthogonality holds. When it does not hold, uncertainty due to the nuisance parameters
gets incorporated but results depend to a greater degree on the prior. Generally, the applied context
dictates parameters of interest, though (approximate) orthogonality may have a role in teaching us how
to think about the application, much as do natural parameters in exponential families. This viewpoint
makes the vector parameter case similar to the scalar case. Either approximate orthogonality holds or
inferences are more difficult.

The paper succeeds at identifying an important research agenda. Section 4.1 presents the technical
development underlying a radical form of double conditioning that should generate research intensity
similar to that following Cox’s 1972 approach to survival analysis. The relation among profile,
conditional, marginal, partial, and canonical likelihoods begs further study, as does the success of the
new approach in incorporating the effects of vector nuisance parameters, and analysing parametric
empirical Bayes models. Though this report is unlikely to have immediate impact on statistical practice,
it adds to our understanding of the issues and approaches for inference in the presence of nuisance
parameters. Generated research should have a large impact, and the authors are to be congratulated.

Dr J. N. S. Matthews (University of Oxford): I would like to raise a couple of issues from an area
where the methods of this paper may find application.

In the analysis of continuous data from crossover trials (n subjects, p periods with p typically between
3 and about 10), a model that is frequently used is:
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Here X p includes period and treatment effects and, crucially, a parameter for each subject. Moreover
it is usually assumed that ¢ ~ N(0, 621,,). However, it is often felt that this could lead to an inefficient
analysis as there is likely to be within-subject dependence in the error term, making

var(e) =’ 1, @ V(py, - - -» p1)

more realistic.

As was pointed out in the paper, f and (d2, py, ..., py) are orthogonal. This gives some comfort to
users of the simpler model, as it means that changes in the specification of the dispersion matrix will
have little effect on estimates of treatment contrasts. However we need estimates of the standard errors
of these contrasts; can the authors clarify how much comfort they can offer on this point ?

The second issue concerns the estimation of the parameters in the dispersion matrix, in particular
when k=1 and V = V(p) corresponds to a stationary first-order autoregressive process.

The need to estimate subject effects leads profile likelihood methods astray, giving badly biassed
estimates of p. Patterson and Thompson (1971, 1974) overcame a similar problem in the estimation of
variance components by using their method of restricted maximum likelihood. Applying this type of
approach to the problem of estimating p gives some interesting results, but there is room for considerable
improvement, especially for larger positive values of the true autocorrelation coefficient and smaller
values of p.

As the root of the problem is the presence of so many nuisance parameters, it seems possible that
conditional profile likelihood methods may be able to contribute to this problem; I would be interested
in the authors’ views.

Dr P. McCullagh (University of Chicago): This is a comprehensive and detailed paper that deserves
careful study. I have only two comments to make at this stage, both very brief.

First, the orthogonality of the canonical parameter and the complementary expectation parameter in
exponential families was demonstrated by Huzurbazar (1956), at least for two-parameter families.

Second, I’d be grateful if the authors would elaborate on the non-invariance of (8) under transformation
of A. How much leeway for transformation does orthogonality permit?

Professor Donald A. Pierce (Oregon State University): There is one general point, which though
simple, may have some significant and practical bearing on the issues here. This has to do with extensions
where the parameter of interest y is of more than one dimension and includes comparative effects. For
example, consider the Weibull setting of Section 3.4, extended to the case of samples from several Weibull
populations with the same shape parameter. It is easily seen that the vector of parameters consisting of
ratios of the various scale parameters is orthogonal to the shape parameter. This is an instance of a
more general result on location-scale parameter models, and those such as the Weibull which may
transformed to such. By the method of Section 2.3 a conventional location parameter y of any
location-scale family can be replaced by a certain quantile, say ¥ + ko, which is orthogonal to the scale
parameter ¢. But then for a multi-sample problem with common scale parameter, differences of these
new quantiles are the same as differences of the original ones.

This remains true, I believe, if there are additional nuisance parameters defining the “shape” of the
location-scale family. That is, the vector of differences of location parameters is orthogonal to both the
scale and shape parameters. The result also extends to more general regression models in that if the
location parameters are modelled as y; = u + z; §, where Zz; = 0, then the vector f is orthogonal to the
scale and shape parameters.

I suspect that these observations, which have been made in special cases before, if not more generally,
are of practical importance in the general consideration of orthogonality. It would be helpful for the
authors to comment on whether they might be of any particular theoretical interest in the relation to
their interesting results on conditional inference.

Mr G. J. S. Ross (Rothamsted Experimental Station): In advocating parameter transformations I
have regarded orthogonality in itself as being of minor importance. The shape of the log likelihood
function may deviate dramatically from the quadratic approximation on which many optimisation
procedures depend, whereas these procedures compute their own local orthogonalisations. For a Normal
sample in the space of (1, o) likelihood contours are rounded triangles: a cube root transformation on a?
creates symmetry if u =X but not elsewhere; a better transformation is based on the 8th and 92nd
percentiles which are also orthogonal. For Negative Binomial samples the parameters y and k are
orthogonal but contours are extremely skew with respect to the MLE: a reciprocal transformation of
Kk is a great improvement (Ross and Preece, 1985).
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In anticipating suitable transformations to improve numerical estimability a concept of ‘unrelatedness’
rather than of orthogonality is invoked. True orthogonality may depend on both the model and the
data, and cannot be achieved until it is too late to be of use, after the M LE has been found. Unrelatedness
is like property (iv) of (2.2): a qualitative description of the expected shape of the likelihood function
because there is no reason why the estimate of  should be seriously affected by the estimate of 1. With
three or more parameters it is essential to think in this way because graphical aids are of little use. In
fitting non-linear curves use can be made of widely spaced points on the curve representing the local
position of the curve: they may not be perfectly orthogonal but they are a great improvement on the
algebraic defining parameters. In fitting a mixture of two Normal distributions with equal variances but
unknown means and proportions we can anticipate that a set of unrelated parameters would take
account of (i) the general location of the data, (ii) the overall spread, (iii) the asymmetry relative to a
single Normal, and (iv) the separation of the modes. Within the qualitative framework the actual
parameters chosen are those that lead to tractable algebraic or algorithmic procedures. (Ross 1970, 1975).

The property (ii) of (2.2) is related to measures of ill-conditioning of the dispersion matrix which are
more helpful than a simple inspection of correlation coefficients but less complicated than an eigenvector
analysis. The product of i}, with the corresponding element of the dispersion matrix gives an absolute
quantity which is 1 for orthogonal parameters and infinity for totally dependent parameters. It is the
ratio by which the variance of ¢, would be reduced if the values of the other parameters were known
and is thus a very important diagnostic quantity. Provisionally I call this a ‘variance multiplier’.

Dr D. A. Sprott (University of Waterloo): It is worth mentioning that Fisher (1922) defined the centre
of location of a location-scale (6, o) family to be ¢ = 0 + ko such that (1) is satisfied by (¢, o).

Fisher (1961a, 1961b) also presented an “exact” solution to the weighted means problem for g =2
samples. In this solution, the factor n;—2 in the expression for w,(1°) is replaced by n;. The likelihood
produced by Kalbfleisch and Sprott (1970) has n; — 1. Thus both of these solutions avoid the logical
difficulty of being unable to cope with samples of size n; = 2. It would be therefore of some interest to
compare the frequency properties of these three solutions.

The solution involving n; —2 seems to have gained support because of Neyman and Scott’s (1948)
demonstration that it is more “efficient”. However, their definition of the efficiency of an estimate i is
in terms of its asymptotic variance ¢3, a function of the < ;’s. This is relevant only for asymptotic N(0, 1)
pivotals (& — p)/o;, which, being functions of the 7,’s, are appropriate for estimating x only when the
7;’s are known. Such pivotals, and their efficiencies, would seem irrelevant for estimating p when the 7;’s
are unknown, as in the weighted means problem. Thus the problem of assessing the behaviour of various
solutions to this problem still seems open.

Finally, Viveros (1985) and Viveros and Sprott (1986) have used a different approach based on
approximating the observed family of log likelihoods, up to the quartic term of their Taylor expansion,
by simple functions like t or log F. This results in pivotals like () — 0)I}/> having approximate log F
distributions, where I, is the observed Fisher information. This has produced very accurate results in
small samples. In fact, in a location-scale model similar to that of Section 4.2.2, the approximating log
F distribution of one of the pivotals is graphically indistinguishable from its exact conditional distribution.

Mr Jonathan Tawn (University of Surrey): I would like to congratulate the authors on this interesting
and motivating paper. The aspect of the paper which has particularly interested me is the use of orthogonal
parameters.

The authors suggest that we orthogonalise the nuisance parameters to the parameter of interest by
using global orthogonality with respect to expected Fisher informaton. The key property of this
orthogonality for conditional inference being

Vi—v= 0,,<;ll~) if 1-i= op<~\;—;). ™

The obvious practical problem with this form of orthogonality being equations (4) are often impossible
to solve in closed form. This suggests that maybe we should look for another concept of reparametrization
which has property (*).

An interesting example which motivates the rest of my discussion arises in the non-regular estimation
problem when the parameter of interest is the endpoint of a distribution. Suppose that the probability
density f(x; y, A) is the form

acx—y)*~ ! asxly, l<a<?2

f(x”””l)z{ 0 if x <.
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Here the endpoint of the distribution exhibits ‘orthogonality’ properties, namely
b= =0,

and § and 1 are asymptotically independent (Smith, 1985). This situation is not unique, similar
orthogonality is obtained in bivariate extreme value theory involving a parameter on the boundary of
the parameter space. In each case no concept of orthogonality in the expected information is possible
as this is infinite.

What the examples suggest is that we work with orthogonality of the observed information, leading
to data dependent parametrization. If we had global orthogonality of the observed information then

'%.=$

unfortunately such a situation can rarely be achieved. One particular case in which this can be achieved
is example 3.1 in the paper.

- Y, . Y.
Here e
As 4, does not tend to the authors parametrization this leads us to question the optimality of their
parametrization. R
I suggest the use of local orthogonality of the observed information at (i}, 2). Under certain conditions
property (*) still holds, hence we obtain an equivalent of (4)

0,
j*r s(';’ &)_ =_j* ,('Z’ &)S=1,~~~,q-
Z': s o |l@d ve

We illustrate the flexibility of the solution is the two parameter case

a L A, a

—d) = M =5Y)= % S*(Y) say.

oy .9 ]¢¢('/’, &) v
Hence, if a # 1, B # 1.

1

1
e e~ Yl B S¥(Y)+ A,. say.
T=g? TV S WA sy
where « and f can be chosen to make the parametrization a valid one, and to satisfy the conditions on A.

With such flexibility in the solution can other conditions be imposed on the parametrization to make
it more optimal?

Drs S. H. Moolgavkar and R. L. Prentice (Fred Hutchinson Cancer Research Centre, Washington
State, USA): The problem of parameter orthogonalization has a general solution provided by the theorem
of Frobenius in differential geometry (Boothby, 1975, page 159). Let (i, ¢) be a parametrization with
¥ the k-dimensional parameter of interest, ¢ a (n — k)-dimensional nuisance parameter.

Then, it follows from Frobenius’ theorem that a necessary and sufficient condition for the existence of
a parametrization (i, 4) (with y orthogonal to 4 is that the (vector) space of all vector fields orthogonal
to ¢ (with respect to the Fisher information metric) be a Lie algebra. When y is one-dimensional this
condition is trivially satisfied. As an example, consider an exponential family with density f(y, 8) = g(y)
exp{y- 0 — K(0)}, and suppose y =(0,, 0,, ..., 60,), d =(0x4 1, - - - , 0,)). Then, for any (coordinate) tangent
vector d/00; and any arbitrary vector field X, the inner product with respect to the Fisher information
metric, <X, 9/00;, is given by (X, 0/00,> = {0/00;, Xy = X 8/80;(K(0)). Now consider vector fields Xy,
X, such that (X, 0/00,> =<(X,, 06/00,>=0for i=k+1, ..., n. Then {[X,, X,], 6/00,> = {(X, X, —
X,X,),0/00,> =X (X,0/00,K) — X,(X,0/00;K) = 0. Thus the vector fields orthogonal to ¢ form a Lie
algebra and by Frobenius’ theorem there exists a parametrization (y, 4) with  orthogonal to 4, which
is a well known result.

In general, of course, in an orthogonal parametrization (i, A), the Fisher information for ¥ will depend
upon A. The theorem of de Rham (Kobayashi and Nomizu, 1963, page 187) provides necessary and
sufficient conditions for the Fisher information for each parameter to be independent of the other
parameter.

The asymptotic distribution theory for ordinary profile likelihood procedures can be thought of as
deriving from the asymptotic marginal distribution of . Inference procedures deriving instead from the
asymptotic distribution of § given 2 may provide more accurate approximations in moderate-sized
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samples since such conditioning makes an accommodation for the difference between the estimated and
the true A-values. Orthogonality is a natural requrement in this setting in order to minimize any loss of
information on . Condltlonmg on 1 leads to a likelihood ratio statistic which differs from Cox and
Reid’s expression (8) only in the final term; that is,

0@ =20y (b, D — 3@, 2) — {1y (O, o) — lA(°, o)} 1.
This statistic behaves like (8) for Cox and Reid’s examples, but is also invariant under transformations of 1.
Another approach would be to improve the approximation to the marginal distribution of . For

example, suppose that the score S(,) = dly (o, 0)/6://0 has mean E, = E(y,) and variance V, = V()
at 1 =1,. One can then readily obtain an asymptotic y2 distribution for

CUM('I/O) = 2{’}'(‘/’» A) - ly('lfo’ 2o)} +EVy lEo-

Calculation of, or approximation to, E, and V, leads to another possibility for adjusting profile likelihood
ratio tests.

The authors replied briefly at the meeting and subsequently more fully in writing as follows:

We are very grateful to all those who took part in the discussion for their thoughtful and wide-ranging
comments.

Orthogonality of parameters is a major theme of the paper and the discussion contains many valuable
comments on this. As we stressed in Section 2.2 a number of distinct, if interrelated, ideas are involved.

Global orthogonality is helpful for interpreting the model, and in particular for studying the important
topic of model robustness (Sweeting, Skinner, Atkinson, Barnard, Pierce). For example, the orthogonal-
ized expression of the Behrens-Fisher model clearly indicates that the variance ratio is what Professor
Barnard calls a confounded nuisance parameter. We agree with Mr Ross’s valuable points and particularly
that orthogonality on its own may not provide definitive solutions.

We agree with Professor Atkinson that ultimately physical interpretability is more important and
that from this point of view approximate orthogonality may often be enough. But from the point of
view of interpreting models, data dependent and local definitions are less than ideal, which is one reason
for preferring our formulation of the transformation problem to that based on a data dependent scale
of measurement. It is clear from Mr Tawn’s discussion of Example 3.1 that either observed or expected
information orthogonality is more important than property (iv).

As suggested by Professor Amari, for the more technical details involved in deriving “improved”
inference for y it is likely that local orthogonality is enough, and this may well be the basis of any
numerical method of implementing the procedures in generality.

A version of approximate orthogonality based on local expansions can be used to study Miss Hills’s
question about the second formulation of the Michaelis-Menten model. We write x; =X +d;, c2=n""
¥ d?/x? and assume in the expansions that c? is small. One finds with the particular choice in Miss
Hills’s notation of «3b() = nx2A? that we may take

B =XM1 — A+ 21— 64+ 6i2)}.

Note that for some purposes, such as computing w,, an explicit expression for f is not needed. From
the point of view of model interpretation the dependence of the parameterization on the design is a
misfortune.

An important aspect of orthogonality that we did not discuss is its interpretation via estimating
equations and the comments of Mr Firth and Dr Lloyd on this topic are most welcome. In a recent
paper Liang (1986) discusses this in some detail; he shows that |dA,/dy/| =o,(1) and that the score
function based on the conditional profile likelihood is, at least in special cases, more nearly unbiased
than the score function from the profile likelihood.

As a number of contributors (Barndorff-Nielsen, Critchley, Smith and McCullagh) emphasize, and as
we mentioned in the paper, our discussion is not exactly invariant under nonlinear changes in the
orthogonalized nuisance parameter 4, although it is invariant to the order considered in the asymptotic
expansions. Professor Smith’s example is one where the choice does affect inference about i, presumably
because there is so much uncertainty in the data that the form of the O,(n™!) term is important. Nearness
of the problem to nonregularity may also be relevant. It is natural to aim to resolve this nonuniqueness
by higher order expansions. While we have explored a number of such possibilities none we have found
so far is totally satisfactory and easily implemented. From one point of view the inclusion of the term
|62 /02| is the natural way to restore invariance, thus leading to Barndorff-Nielsen’s modified profile
llkellhOOd although, as we discuss below, it is not clear that this is the most appropriate objective. As
161 /7| is often very difficult to calculate, we have investigated a transformation of A to make the term



36 Discussion of the Paper by Professors Cox and Reid [No. 1

vary as slowly as possible with . This leads for one-dimensional A to a differential equation for the
preferred parameterization with solution

A* =J {iu(‘/” X)/iw;.('//’ X)}dX,

where iy, =n"'E(0°l/0y*d7). For multidimensional A there results a system of g partial differential
equations to be solved by the method of characteristics.

We do not know the answer to Professor Barndorff-Nielsen’s question whether or when modified
profile likelihood is preferable to one of the conditional versions we proposed. It is possible to compute
our (8) or (9) from the data without explicitly assuming that one of the four sufficiency reductions holds,
and if (8) is used the resulting likelihood is constructed from an exact conditional density. However, it
may be important for the general theory to be rather explicit about the transformation from the minimal
sufficient statistic to the maximum likelihood estimate; furthermore the error in using the approximation
to the conditional likelihood in deriving modified profile likelihood may be negligible for all practical
purposes. In at least two examples the conditional likelihood seems to give better results than modified
profile likelihood. The first is the weighted means example of Section 4.2.1, begging Professor Sprott’s
pertinent query about the “correct” solution for this, and the second is the very interesting example
suggested by Dr Lloyd a version of Fieller’s problem concerning the ratio of normal means. In this
example the exact versions of w, w,, W, and w¥ give identical likelihoods for ¥, whereas the modified
profile likelihood, calculated from p(r{lllw) gives a different and apparently inferior version; see Dr
Lloyd’s remarks. However, w, and W, must be calculated in the A parameterization in which the problem
is formulated.

With the current strong interest in the differential geometric aspects of statistics it is pleasing, although
not surprising, that there were a number of comments on geometry (Barndorfi-Nielsen, Mitchell, Amari,
Moolgavkar and Prentice). It seems likely that such considerations will be qualitatively helpful over the
general second-order choice of test statistics, and hopefully on the issue discussed below concerning the
particular version of orthogonalized nuisance parameter most appropriate. Some aspects of this are
described by Amari (1985, Ch. 8). Our discussion, however, has been strongly influenced by the desire
to handle particular examples, and here the role of differential geometry is less clear. The complexity
of the calculations behind Dr Mitchell’s interesting results serves to emphasize the difficulty of handling
statistically simple situations. Thus in discussing multidimensional parameters of interest, it is probably
easier to check the compatability equations directly to investigate the possible existence of orthogonalized
nuisance parameters than to use the geometric considerations so clearly summarized by Professors
Moolgavkar and Prentice.

Professor Amari also raises the possibility of studying the characteristics of the proposed test statistics
via differential geometric techniques. We find this a rather daunting task but look forward to further
important results from him and his associates. One key queston is whether w, can be adjusted by a
Bartlett factor to satisfy Professor Amari’s level condition. Dr Harris has summarized his very detailed
calculations on this matter and it seems that the form of the O (n"‘/z) term in (21) means that w, in
general cannot be simply adjusted to improve the x2 approx1matlon in the required way. In fact it can
be shown that the addition of an O,(n~'/?) term to a chi-squared random variable can be corrected by
a Bartlett factor only under a very special condition on the conditional variance of the added term.

Several contributions, especially those of Dr Sweeting, Mr Polson and Professor Louis, deal with the
relation between our results and a Bayesian approach. Such parallels are valuable and are a natural
extension of the work of Welch and Peers (1963). It must always be of interest to examine problems
from different viewpoints, but if the notion of a prior distribution is taken seriously as a way of injecting
further knowledge into a discussion, the treatment of orthogonal parameters as independent will be far
from inevitable. It would take us too far afield to treat Mr Polson’s final question as other than rhetorical.
Clearly the Bayesian formalism is very appealing.

Dr Bailey gives an interesting discrete example: see also Cox (1984), where the difference of probabilities,
also of epidemiological interest, is briefly discussed. A slightly simpler version concerns the comparison
of two Poisson variables, where interest in the difference of the means demands an approximate discussion,
the orthogonal parameter being the ratio of the means. This would be appropriate if the first Poisson
variable represented background emission alone and the second source plus background. The question
raised by Dr Bailey concerning the degree of conditioning appropriate in discrete problems is important
and puzzling. In a more general setting the amount of conditioning involved in determining the probability
of some specified event is settled by a balance between the selectivity achieved in conditioning and the
“noise” introduced by overconditioning, but it is hard to make that notion precise in the present context.

We agree with Professor Barnard that certain questions may have to be regarded as unanswerable,
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or that there may be virtually no relevant information in the data; Professor Smith’s flat likelihood
may be an expression of this. Nevertheless we would be very reluctant to draw a strong distinction
between questions that have an “exact” answer within some mathematical formalism and those that
have only an approximate answer. Indeed one goal of our paper is to extend somewhat the availability
of good approximations and to treat these and exact cases in a way that is unified. The example mentioned
above concerning the difference of Poisson means is a case in point. Recent work shows that this is a
case where the adjustment needed to ordinary profile likelihood is for most purposes negligible and that
the confidence intervals obtained from the profile likelihood are satisfactory.

On the other hand, Dr Matthews’s application is an important one where direct use of profile likelihood
may be grossly misleading. Ms Marie Cruddas has investigated the simpler problem of estimating the
autoregressive parameter p in a first-order autoregressive process on the basis of m small samples, the
samples having different means but common p and variance. Confidence intervals from the modified
likelihood procedures perform well in simulations even for m as small as 10, whereas intervals based
on unmodified profile likelihood are strongly negatively biased.

We are grateful to Professor Fraser for his sympathetic comments on alternative but related viewpoints.
We agree that if a reasonably simple one-dimensional statistic can be found whose distribution,
conditional or otherwise, depends only on the parameter of interest then that provides an attractively
direct and readily interpreted route to inference. One of the features of the use of confidence intervals
via likelihood in such problems as the normal transformation model is that the search for such statistics
is by-passed.

Several people (Barndorff-Nielsen, Mitchell, Barnard, Pierce and Sprott) pointed out the interesting
orthogonality of x + ko and o for suitable k in the location-scale model. As k is a fairly complicated
function of the distribution of the ancillary statistic (or of the ancillary statistic itself if observed
information is used) Dr Pierce’s observation that contrasts in the means are also orthogonal to o is
particularly relevant. In the case of just two samples this is a special case of Dr Mitchell’s result, because
taking differences induces symmetry in the underlying distribution. We are not clear how this applies
to the problem of more than two samples.

One motivation for our work was to extend methods that work well for exponential models and it
would be interesting to examine their success for transformation models. Related to this are Mitchell’s
(1986) discussion of the geometry of elliptical models and the intriguing result that Barndorff-Nielsen’s
formula for the distribution of the maximum likelihood estimate is exact in transformation models and
accurate to O(n~ %) in full exponential families. This relates to Mr Polson’s question on the hyperboloid
and inverse Gaussian models: the group structure is not needed to derive the modified profile and
conditional profile likelihood from the saddlepoint approximation.

We are grateful to Dr Davison for a clear summary of the predictive likelihood approach. Formally
at least one can identify the random variable to be predicted with the parameter to be estimated and
obtain a correspondence between various approximate predictive likelihoods and modified or conditional
profile likelihoods. This identification may prove valuable for clarifying aspects of both inference and
prediction, and the relationship between them.

Finally it may help, in particular partly to assuage Dr Critchley’s anxieties, to set out the broad
qualitative objectives of our paper.

(i) Many problems of formal inference can be tackled only via approximate arguments. There are
many different procedures equivalent to the first order of asymptotic theory. Often these procedures
will in practice give virtually the same answer, but this is not always so and there is thus a need for a
second-order approach to clarify the choice.

(ii) We are guided in part by the conditioning procedure that is often effective in exponential family
problems, and in part by the need to adjust ordinary profile likelihood for its defects when there are
appreciable numbers of nuisance parameters. In some examples the modification of ordinary profile
likelihood is negligible, but in others such modification leads to improved likelihood-based inference
procedures.

(iii) These considerations lead first to a formulation of the model in which nuisance parameters A are
orthogonal to the parameter of interest, and then to a variety of conditional test statistics. Major
outstanding questions include whether a requirement in addition to orthogonality can sensibly define
A uniquely, and under what conditions any of the conditional procedures can be shown to have good
statistical properties. We have concentrated on version (11), w,, because it is often straightforward to
calculate, and because its stochastic expansion can be directly compared with that of the profile likelihood
ratio. The justification put forth is that among procedures equivalent to the first order (11) is in a certain
sense as close as possible to the likelihood procedure for a known value of the nuisance parameters.

While further work is certainly needed before the central objectives are fully met in a simple, easily
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implemented and conceptually compelling way, we have been much encouraged by the breadth and
depth of the comments on our paper.

One of us (D.R.C\) is grateful for the hospitality of Department of Statistics, University of Toronto,
during some of the work on the reply.
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