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Preface

These notes are concerned with applications of information theory con�

cepts in statistics
 They originated as lectures given by Imre Csisz�ar at

the University of Maryland in ���� with later additions and corrections by

Csisz�ar and Paul Shields


Attention is restricted to �nite alphabet models
 This excludes some cele�

brated applications such as the information theoretic proof of the dichotomy

theorem for Gaussian measures� or of Sanov�s theorem in a general setting�

but considerably simpli�es the mathematics and admits combinatorial tech�

niques
 Even within the �nite alphabet setting� no e�orts were made at

completeness
 Rather� some typical topics were selected� according to the

authors� research interests
 In all of them� the information measure known

as information divergence �I�divergence� or Kullback�Leibler distance or rel�

ative entropy plays a basic role
 Several of these topics involve �information
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geometry�� that is� results of a geometric �avor with I�divergence in the role

of squared Euclidean distance


In Section �� a combinatorial technique of major importance in informa�

tion theory is applied to large deviation and hypothesis testing problems


The concept of I�projections is addressed in Sections � and �� with appli�

cations to maximum likelihood estimation in exponential families and� in

particular� to the analysis of contingency tables
 Iterative algorithms based

on information geometry� to compute I�projections and maximum likelihood

estimates� are analysed in Section 

 The statistical principle of minimum

description length �MDL� is motivated by ideas in the theory of universal

coding� the theoretical background for e�cient data compression
 Sections �

and 	 are devoted to the latter
 Here� again� a major role is played by con�

cepts with a geometric �avor that we call I�radius and I�centroid
 Finally�

the MDL principle is addressed in Section �� based on the universal coding

results


Reading these notes requires no prerequisites beyond basic probability

theory
 Measure theory is needed only in the last three sections� dealing

with processes
 Even there� no deeper tools than the martingale convergence

theorem are used
 To keep these notes self�contained� the information theo�

retic prerequisites are summarized in Section �� and the statistical concepts

are explained where they are �rst used
 Still� while prior exposure to informa�

tion theory and�or statistics is not indispensable� it is certainly useful
 Very

little su�ces� however� say Chapters � and � of the Cover�Thomas book ��� or

Sections �
�� �
�� �

 of the Csisz�ar�K�orner book ����� for information theory�

and Chapters ��
 and Sections �
���
� of the book of Cox and Hinckley ����

for statistical theory


�



� Preliminaries�

The symbol A � fa�� a�� � � � � ajAjg denotes a �nite set of cardinality jAj�
xnm denotes the sequence xm� xm��� � � � � xn� where each xi � A� An denotes

the set of all xn� � A
� denotes the set of all in�nite sequences x � x�� � with

xi � A� i � �� and A� denotes the set of all �nite sequences drawn from A


The set A� also includes the empty string  
 The concatenation of u � A�

and v � A� �A� is denoted by uv
 A �nite sequence u is a pre�x of a �nite

or in�nite sequence w� and we write u � w� if w � uv� for some v


The entropy H�P � of a probability distribution P � fP �a�� a � Ag is
de�ned by the formula

H�P � � �X
a�A

P �a� logP �a��

Here� as elsewhere in these notes� base two logarithms are used and � log � is

de�ned to be �
 Random variable notation is often used in this context
 For

a random variable X with values in a �nite set� H�X� denotes the entropy

of the distribution of X
 If Y is another random variable� not necessarily

discrete� the conditional entropy H�XjY � is de�ned as the average� with

respect to the distribution of Y � of the entropy of the conditional distribution

of X� given Y � y
 The mutual information between X and Y is de�ned by

the formula

I�X � Y � � H�X��H�XjY ��
If Y �as well as X� takes values in a �nite set� the following alternative

formulas are also valid


H�XjY � � H�X� Y ��H�Y �

I�X � Y � � H�X� !H�Y ��H�X� Y �

� H�Y ��H�Y jX��

�



For two distributions P andQ on A� information divergence �I�divergence�

or relative entropy is de�ned by

D�PkQ� � X
a�A

P �a� log
P �a�

Q�a�
�

A key property of I�divergence is that it is nonnegative and zero if and only

if P � Q
 This is an instance of the log�sum inequality� namely� that for

arbitrary nonnegative numbers p�� � � � � pt and q�� � � � � qt�

tX
i��

pi log
pi
qi
�
� tX
i��

pi

�
log

Pt
i�� piPt
i�� qi

with equality if and only if pi � cqi� � � i � t
 Here p log p
q
is de�ned to be �

if p � � and !	 if p � q � �


Convergence of probability distributions� Pn 
 P � means pointwise con�

vergence�that is� Pn�a� 
 P �a� for each a � A
 Topological concepts for

probability distributions� continuity� open and closed sets� etc
� are meant

for the topology of pointwise convergence
 Note that the entropy H�P � is

a continuous function of P � and the I�divergence D�PkQ� is a lower semi�
continuous function of the pair �P�Q�� continuous at each �P�Q� with strictly

positive Q


A code for symbols in A� with image alphabet B� is a mapping C�A �
 B�


Its length function L�A �
 N is de�ned by the formula

C�a� � b
L�a�
� �

In these notes� it will be assumed� unless stated explicitly otherwise� that

the image alphabet is binary� B � f�� �g� and that all codewords C�a�� a � A�

are distinct and di�erent from the empty string  
 Often� attention will be

restricted to codes satisfying the pre�x condition that C�a� � C�"a� never






holds for a �� "a in A
 These codes� called pre�x codes� have the desirable

properties that each sequence in A� can be uniquely decoded from the con�

catenation of the codewords of its symbols� and each symbol can be decoded

#instantaneously�� that is� the receiver of any sequence w � B� of which

u � C�x�� � � � C�xi� is a pre�x need not look at the part of w following u in

order to identify u as the code of the sequence x� � � � xi


Of fundamental importance is the following fact


Lemma � A function L�A �
 N is the length function of a pre�x code if

and only if it satis�es the so�called Kraft inequality

X
a�A

��L�a� � ��

Proof� Given a pre�x code C�A
 B�� associate with each a � A the number

t�a� whose dyadic expansion is the codeword C�a� � b
L�a�
� � that is� t�a� �

��b� � � � bL�a�
 The pre�x condition implies that t�"a� �� �t�a�� t�a� ! ��L�a�� if
"a �� a� thus the intervals �t�a�� t�a�!��L�a��� a � A� are disjoint
 As the total

length of disjoint subintervals of the unit interval is at most �� it follows thatP
��L�a� � �


Conversely� suppose a function L�A
 N satis�es
P
��L�a� � �
 Label A

so that L�ai� � L�ai���� i � jAj
 Then t�i� �
P

j�i �
�L�aj� can be dyadically

represented as t�i� � ��b� � � � bL�ai�� and C�ai� � b
L�ai�
� de�nes a pre�x code

with length function L


A key consequence of the lemma is Shannon�s noiseless coding theorem�

�



Theorem � Let P be a probability distribution on A� Then each pre�x code

has expected length

E�L� �
X
a�A

P �a�L�a� � H�P ��

Furthermore� there is a pre�x code with length function L�a� � d� logP �a�e�
its expected length satis�es

E�L� � H�P � ! ��

Proof� The �rst assertion follows by applying the log�sum inequality to

P �a� and ��L�a� in the role of pi and qi and making use of
P
P �a� � �

and
P
��L�a� � �
 The second assertion follows since L�a� � d� logP �a�e

obviously satis�es the Kraft inequality


By the following result� even non�pre�x codes can not #substantially�

beat the entropy lower bound of Theorem �
 This justi�es the practice of

restricting theoretical considerations to pre�x codes


Theorem � The length function of a not necessarily pre�x code C�A
 B�

satis�es X
a�A

��L�a� � log jAj� ���

and for any probability distribution P on A� the code has expected length

E�L� �
X
a�A

P �a�L�a� � H�P �� log log jAj�

	



Proof� It su�ces to prove the �rst assertion� for it implies the second asser�

tion via the log�sum inequality as in the proof of Theorem �
 To this end�

we may assume that for each a � A and i � L�a�� every u � Bi is equal to

C�"a� for some "a � A� since otherwise C�a� can be replaced by an u � Bi�

increasing the left side of ���
 Thus� writing

jAj �
mX
i��

�i ! r� m � �� � � r � �m���

it su�ces to prove ��� when each u � Bi� � � i � m� is a codeword� and the

remaining r codewords are of length m!�
 In other words� we have to prove

that

m! r���m��� � log jAj � log��m�� � � ! r��

or

r���m��� � log�� ! �r � ����m��
This trivially holds if r � � or r � �
 As for the remaining case r � �� the

inequality

���m��� � log��� ��m�
is veri�ed by a trite calculation for m � �� and then it holds even more for

m � �


The above concepts and results extend to codes for n�length messages or

n�codes� that is� to mappings C�An 
 B�� B � f�� �g
 In particular� the
length function L�An 
 N of an n�code is de�ned by the formula C�xn� � �

b
L�xn� �
� � xn� � An� and satis�es

X
xn��A

n

��L�x
n
� � � n log jAj�

�



and if C�An 
 B� is a pre�x code� its length function satis�es the Kraft

inequality X
xn��A

n

��L�x
n
� � � � �

Expected length E�L� �
P

xn��A
n
Pn�x

n
� �L�x

n
� � for a probability distribution Pn

on An� of a pre�x n�code satis�es

E�L� � H�Pn� �

while

E�L� � H�Pn�� logn� log log jAj
holds for any n�code


An important fact is that� for any probability distribution Pn on A
n� the

function L�xn� � � d� logPn�xn� �e satis�es the Kraft inequality
 Hence there
exists a pre�x n�code whose length function is L�xn� � and whose expected

length satis�es E�L� � H�Pn� ! �
 Any such code is called a Shannon code

for Pn


Supposing that the limit

H � lim
n��

�

n
H�Pn�

exists� it follows that for any n�codes Cn�A
n 
 B� with length functions

Ln�A
n 
 N � the expected length per symbol satis�es

lim inf
n��

�

n
E�Ln� � H �

moreover� the expected length per symbol of a Shannon code for Pn converges

to H as n
	


�



We close this introduction with a discussion of arithmetic codes� which

are of both practical and conceptual importance
 An arithmetic code is a

sequence of n�codes� n � �� �� � � � de�ned as follows


Let Qn� n � �� �� � � � be probability distributions on the sets An satisfying

the consistency conditions

Qn�x
n
� � �

X
a�A

Qn���x
n
�a��

in other words� Qn is the marginal distribution on A
n of a probability distri�

butionQ on A�
 For each n� partition the unit interval ��� �� into subintervals

J�xn� � � ���xn� �� r�x
n
� �� of length r�xn� � � ��xn� � � Qn�x

n
� � in a nested man�

ner� i
 e
� such that fJ�xn�a�� a � Ag is a partitioning of J�xn� �� for each
xn� � An
 Two kinds of arithmetic codes are de�ned by setting C�xn� � � zm�
if the endpoints of J�xn� � have binary expansions

��xn� � � �z�z� 
 
 
 zm� 
 
 
 � r�xn� � � �z�z� 
 
 
 zm� 
 
 
 �

and eC�xn� � � zem� if the midpoint of J�xn� � has binary expansion

�

�

�
��xn� � ! r�xn� �

�
� �z�z� 
 
 
 zem 
 
 
 � fm � d� logQ�xn� �e! �� ���

Since clearly ��xn� � � �z�z� 
 
 
 zem and r�xn� � � �z�z� 
 
 
 zem ! ��em� we always
have that C�xn� � is a pre�x of

eC�xn� �� and the length functions satisfy L�xn� � �eL�xn� � � d� logQ�xn� �e ! �
 The mapping C�An �
 B� is one�to�one �since

the intervals J�xn� � are disjoint� but not necessarily a pre�x code� while
eC�xn� �

is a pre�x code� as one can easily see


In order to determine the codeword C�xn� � or
eC�xn� �� the nested partitions

above need not be actually computed� it su�ces to �nd the interval J�xn� �


This can be done in steps� the i�th step is to partition the interval J�xi��� �

into A subintervals of length proportional to the conditional probabilities

�



Q�ajxi��� � � Qi�x
i��
� a��Qi���x

i��
� �� a � A
 Thus� providing these conditional

probabilities are easy to compute� the encoding is fast �implementation issues

are relevant� but not considered here�
 A desirable feature of the �rst kind

of arithmetic code is that it operates on�line� i
e
� sequentially� in the sense

that C�xn� � is always a pre�x of C�x
n��
� �
 The conceptual signi�cance of the

second kind of codes eC�xn� � is that they are practical pre�x codes e�ectively
as good as a Shannon code for the distribution Qn� namely the di�erence in

length is only � bit� whereas a strict sense Shannon code may be of prohibitive

computational complexity if the message length n is large


� Large deviations� hypothesis testing�

��� Large deviations via types�

An important application of information theory is to the theory of large

deviations
 A key to this application is the theory of types
 The type of a

sequence xn� � An is just another name for its empirical distribution $P � $Pxn� �

that is� the distribution de�ned by

$P �a� �
jfi� xi � agj

n
� a � A�

A distribution P on A is called an n�type if it is the type of some xn� � An


The set of all xn� � An of type P is called the type class of the n�type P and

is denoted by T n
P 


Lemma � The number of possible n�types is

�
n! jAj � �
jAj � �

�
�

Proof� Left to the reader


��



Lemma � For any n�type P�
n! jAj � �
jAj � �

���
�nH�P � � jT n

P j � �nH�P ��

Proof� Let A � fa�� a�� � � � � atg� where t � jAj
 By the de�nition of types
we can write P �ai� � ki�n� i � �� �� � � � � t� with k� ! k� ! � � �! kt � n� where

ki is the number of times ai appears in xn� for any �xed xn� � T n
P 
 Thus we

have

jT n
P j �

n%

k�%k�% 
 
 
kt% �
Note that

nn � �k� ! � � �! kt�
n �

X n%

j�% 
 
 
 jt%k
j�
� 
 
 
kjtt �

where the sum is over all t�tuples �j�� � � � � jt� of nonnegative integers such

that j�! � � �!jt � n
 The number of terms is

�
n! jAj � �
jAj � �

�
� by Lemma ��

and the largest term is

n%

k�%k�% 
 
 
kt%k
k�
� k

k�
� 
 
 
kktt �

for if jr � kr� js � ks then decreasing jr by � and increasing js by � multiplies

the corresponding term by

jr
kr

ks
� ! js

� jr
kr

� ��

The lemma now follows from the fact that the sum is bounded below by

its largest term and above by the largest term times the number of terms�

and noting that

nn

kk�� k
k�
� 
 
 
kktt

�
tY

i��

�
ki
n

��ki
�

tY
i��

P �ai�
�nP �ai� � �nH�P ��

��



The next result connects the theory of types with general probability

theory
 For any distribution P on A� let P n denote the distribution of n

independent drawings from P � that is P n�xn� � �
Qn
i�� P �xi�� x

n
� � An


Lemma � For any distribution P on A and any n�type Q

P n�xn� �

Qn�xn� �
� ��nD�QkP �� if xn� � T n

Q ��
n! jAj � �
jAj � �

���
��nD�QkP � � P n�T n

Q � � ��nD�QkP ��

Corollary � Let $Pn denote the empirical distribution �type� of a random

sample of size n drawn from P � Then

Prob�D� $PnkP � � �� �
�
n! jAj � �
jAj � �

�
��n�� �� � ��

Proof� If xn� � T n
Q the number of times xi � a is just nQ�a�� so that

P n�xn� �

Qn�xn� �
�
Y
a

�
P �a�

Q�a�

�nQ�a�
� ��n

P
a
Q�a� log

P �a�
Q�a�� � ��nD�QkP ��

that is�

P n�T n
Q � � Qn�T n

Q ��
�nD�QkP ��

Here Qn�T n
Q � �

�
n! jAj � �
jAj � �

���
� by Lemma � and the fact that Qn�xn� � �

��nQ�Q� if xn� � T n
Q � The probability in the Corollary equals the sum of

��



P n�T n
Q � for all n�types Q with D�QkP � � �� thus Lemmas � and 
 yield the

claimed bound


The empirical distribution $Pn in the Corollary converges to P with prob�

ability � as n 
 	� by the law of large numbers� or by the very Corollary

�and Borel�Cantelli�
 The next result� the �nite alphabet special case of the

celebrated Sanov theorem� is useful for estimating the �exponentially small�

probability that $Pn belongs to some set & of distributions that does not

contain the true distribution P 


We use the notation D�&kP � � infQ��D�QkP ��

Theorem � �Sanov�s Theorem�	 Let & be a set of distributions on A

whose closure is equal to the closure of its interior� Then for the empiri�

cal distribution of a sample from a strictly positive distribution P on A�

� �
n
log Prob

�
$Pn � &

�

 D�&kP ��

Proof� Let Pn be the set of possible n�types and let &n � &�Pn
 Lemma 


implies that

Prob � $Pn � &n� � P n
�
�Q��nT n

Q

�
is upper bounded by �

n! jAj � �
jAj � �

�
��nD��nkP �

and lower bounded by �
n! jAj � �
jAj � �

���
��nD��nkP ��

��



Since D�QkP � is continuous in Q� the hypothesis on & implies that D�&nkP �
is arbitrarily close to D�&kP � if n is large
 Hence the theorem follows


Example � Let f be a given function on A and set & � fQ�PaQ�a�f�a� �

	g where 	 � maxa f�a�
 The set & is open and hence satis�es the hypothesis

of Sanov�s theorem
 The empirical distribution of a random sampleX�� ���� Xn

belongs to & i� ���n�
P

i f�Xi� � 	� since
P

a
$Pn�a�f�a� � ���n�

P
i f�Xi��

Thus we obtain the classical large deviations result

� �
n
log Prob

�
�

n

nX
i��

f�Xi� � 	

�

 D�&kP ��

In this case� D�&kP � � D�cl�&�kP � � minD�QkP �� where the minimum is

over all Q for which
P
Q�a�f�a� � 	� In particular� for 	 �

P
P �a�f�a� we

have D�&kP � � �� so that� the probability that ���n�
Pn

� f�Xi� � 	 goes to

� exponentially fast


It is instructive to see how to calculate the exponent D�&kP � for the pre�
ceding example
 Consider the exponential family of distributions "P of the

form "P �a� � cP �a��tf�a�� where c � �
P

a P �a��
tf�a����
 Clearly

P
a
"P �a�f�a�

is a continuous function of the parameter t and this function tends to max f�a�

as t
	
 �Check%� As t � � gives "P � P � it follows by the assumptionX
a

P �a�f�a� � 	 � max
a

f�a�

that there is an element of the exponential family� with t � �� such thatP "P �a�f�a� � 	� Denote such a "P by Q�� so that�

Q��a� � c�P �a��t
�f�a�� t� � ��

X
a

Q��a�f�a� � 	�

We claim that

D�&kP � � D�Q�kP � � log c� ! t�	� ���

�




To show that D�&kP � � D�Q�kP � it su�ces to show that D�QkP � �
D�Q�kP � for every Q � &� i
 e
� for every Q for which

P
aQ�a�f�a� � 	� A

direct calculation gives

D�Q�kP � �X
a

Q��a� log
Q��a�

P �a�
�

�
X
a

Q��a� �log c� ! t�f�a�� � log c� ! t�	 �
�

and

X
a

Q�a� log
Q��a�

P �a�
�
X
a

Q�a� �log c� ! t�f�a�� � log c� ! t�	�

Hence

D�QkP ��D�Q�kP � � D�QkP ��X
a

Q�a� log
Q��a�

P �a�
� D�QkQ�� � ��

This completes the proof of ���


Remark � Replacing P in �
� by any "P of the exponential family� i
 e
�
"P �a� � cP �a��tf�a�� we get that

D�Q�k "P � �
log

c�

c
! �t� � t�	 � log c� ! t�	� �log c! t	��

Since D�Q�k "P � � � for "P �� Q�� it follows that

log c! t	 � � logX
a

P �a��tf�a� ! t	

attains its maximum at t � t�
 This means that the #large deviations expo�

nent�

lim
n��

�
� �
n
logProb

�
�

n

nX
i��

f�Xi� � 	�

�	

��



can be represented also as

max
t��

�
� logX

a

P �a��tf�a� ! t	

	
�

This latter form is the one usually found in textbooks
 Note that the restric�

tion t � � is not needed when 	 �
P

a P �a�f�a�� because� as just seen� the

unconstrained maximum is attained at t� � �
 However� the restriction to

t � � takes care also of the case when 	 � P
a P �a�f�a�� when the exponent

is equal to �


��� Hypothesis testing�

Let us consider now the problem of hypothesis testing
 Suppose the

statistician� observing independent drawings from an unknown distribution

P on A� wants to test the #null�hypothesis� that P belongs to a given set &

of distributions on A
 A �nonrandomized� test of sample size n is determined

by a set C � An� called the critical region� the null�hypothesis is accepted if

the observed sample xn� does not belong to C
 Usually the test is required to

have type � error probability not exceeding some 
 � �� that is� P n�C� � 
�

for all P � &
 Subject to this constraint� it is desirable that the type � error
probability� that is P �An � C�� when P �� &� be small� either for a speci�ed
P �� & �#testing against a simple alternative hypothesis�� or� preferably� for

all P �� &


Theorem � Let P� and P� be any two distributions on A� let 	 be a positive

number� and for each n � � suppose Bn � An satis�es P n
� �Bn� � 	� Then

lim inf
n��

�

n
logP n

� �Bn� � �D�P�kP���

�	



Remark � The assertion of Theorem 
 and the special case of Theorem ��

below� that there exists sets Bn � An satisfying

P n
� �Bn�
 ��

�

n
logP n

� �Bn� � �D�P�kP���

are together known as Stein	s lemma


Proof of Theorem 
� With �n �
jAj log n

n
� say� Corollary � gives that the em�

pirical distribution $Pn of a sample drawn from P� satis�es Prob�D� $PnkP�� �
�n�
 �
 This means that the P n

� �probability of the union of the type classes

T n
Q with D�QkP�� � �n approaches � as n 
 	
 Thus the assumption

P n
� �Bn� � 	 implies that the intersection of Bn with the union of these type

classes has P n
� �probability at least 	�� when n is large� and consequently

there exists n�types Qn with D�QnkP�� � �n such that

P n
� �Bn � T n

Qn
� � 	

�
P n
� �T n

Qn
��

Since samples in the same type class are equiprobable under P n for each

distribution P on A� the last inequality holds for P� in place of P�
 Hence�

using Lemma 
�

P n
� �Bn� � 	

�
P n
� �T n

Qn
� � 	

�

�
n! jAj � �
jAj � �

�
��nD�QnkP���

As D�QnkP�� � �n 
 � implies that D�QnkP��
 D�P�kP��� this completes

the proof of Theorem 



Theorem 
 For testing the null�hypothesis that P � &� where & is a closed

set of distributions on A� the tests with critical region

Cn �


xn� � inf

P��
D� $Pxn� kP � � �n

�
� �n �

jAj logn
n

�

have type � error probability not exceeding 
n� where 
n 
 �� and for each

P� �� &� the type � error probability goes to 
 with exponential rate D�&kP���

��



Proof� The assertion about type � error follows immediately from Corol�

lary �
 To prove the remaining assertion� note that for each P� �� &� the type
� error probability P��A

n �Cn� equals the sum of P n
� �T n

Q� for all n�types Q

such that inf
P��

D�QkP � � �n� Denoting the minimum of D�QkP�� for these

n�types by �n� it follows by Lemmas � and 
� that

P n
� �A

n � Cn� �
�
n! jAj � �
jAj � �

�
��n�n�

A simple continuity argument gives lim
n��

�n � inf
P��

D�PkP�� � D�&kP��� and

hence

lim sup
n��

�

n
logP n

� �A
n � Cn� � �D�&kP���

As noted in Remark �� below� the opposite inequality also holds� hence

lim
n��

�

n
logP n

� �A
n � Cn� � �D�&kP���

which completes the proof of the theorem


Remark � On account of Theorem 
� for any sets Cn � An� such that

P n�Cn� � 
 � �� for all P � &� n � �� we have

lim inf
n��

�

n
logP n

� �A
n � Cn� � �D�&kP��� �P� �� &�

Hence� the tests in Theorem � are asymptotically optimal against all alterna�

tives P� �� &
 The assumption that & is closed guarantees that D�&kP�� � ��

whenever P� �� &
 Dropping that assumption� the type � error probability

still goes to � with exponential rate D�&kP�� for P� not in the closure of

&� but may not go to � for P� on the boundary of &
 Finally� it should be

mentioned that the criterion inf
P��

D� $Pxn� kP � � �n de�ning the critical region

of the tests in Theorem � is equivalent� by Lemma 
� to

supP�� P
n�xn� �

Qn�xn� �
� ��n�n � n�jAj� Q � $Pxn� �

��



Here the denominator is the maximum of P n�xn� � for all distributions P on A�

thus the asymptotically optimal tests are likelihood ratio tests in statistical

terminology


� I�projections�

Information divergence of probability distributions can be interpreted as

a �nonsymmetric� analogue of squared Euclidean distance
 With this inter�

pretation� several results in this section are intuitive #information geometric�

counterparts of standard results in Euclidean geometry� such as the inequality

in Theorem 	 and the identity in Theorem �


The I�projection of a distribution Q onto a �non�empty� closed� convex

set & of distributions on A is the P � � & such that

D�P �kQ� � min
P��

D�PkQ��

In the sequel we suppose that Q�a� � � for all a � A
 The function D�PkQ�
is then continuous and strictly convex in P � so that P � exists and is unique


The support of the distribution P is the set S�P � � fa�P �a� � �g
 Since
& is convex� among the supports of elements of & there is one that contains

all the others� this will be called the support of & and denoted by S�&�


Theorem � S�P �� � S�&�� and D�PkQ� � D�PkP �� ! D�P �kQ� for all

P � &�

Of course� if the asserted inequality holds for some P � � & and all P � &

then P � must be the I�projection of Q onto &


��



Proof� For arbitrary P � &� by the convexity of & we have Pt � ��� t�P �!

tP � &� for � � t � �� hence for each t � ��� ���

� � �

t
�D�PtkQ��D�P �kQ�� � d

dt
D�PtkQ� jt�	t �

for some "t � ��� t�
 But
d

dt
D�PtkQ� �

X
a

�P �a�� P ��a�� log
Pt�a�

Q�a�
�

and this converges �as t � �� to �	 if P ��a� � � for some a � S�P �� and

otherwise to X
a

�P �a�� P ��a�� log
P ��a�

Q�a�
� ���

It follows that the �rst contingency is ruled out� proving that S�P �� � S�P ��

and also that the quantity ��� is nonnegative� proving the claimed inequality


Now we examine some situations in which the inequality of Theorem 	 is

actually an equality
 For any given functions f�� f�� � � � � fk on A and numbers

	�� 	�� � � � � 	k� the set

L � fP �X
a

P �a�fi�a� � 	i� � � i � kg�

if non�empty� will be called a linear family of probability distributions
 More�

over� the set E of all P such that

P �a� � cQ�a� exp

�
kX
�

�ifi�a�

�
� for some ��� � � � � �k�

will be called an exponential family of probability distributions� here Q is any

given distribution and

c � c���� � � � � �k� �

�X
a

Q�a� exp

�
kX
�

�ifi�a�

����
�

��



We will assume that S�Q� � A� then S�P � � A for all P � E 
 Note that
Q � E 
 The family E depends on Q� of course� but only in a weak manner�

for any element of E could play the role of Q
 If necessary to emphasize this
dependence on Q we shall write E � EQ


Linear families are closed sets of distributions� exponential families are

not
 Sometimes it is convenient to consider the closure cl�E� of an exponential
family E


Theorem � The I�projection P � of Q onto a linear family L satis�es the

Pythagorean identity

D�PkQ� � D�PkP �� !D�P �kQ�� �P � L�

Further� if S�L� � A then L�EQ � fP �g� and� in general� L�cl�EQ� � fP �g�

Corollary � For a linear family L and exponential family E� de�ned by

the same functions f�� ���� fk� the intersection L � cl�E� consists of a single

distribution P �� and

D�PkQ� � D�PkP �� !D�P �kQ�� �P � L� Q � cl�E��

Proof of Theorem �� By the preceding theorem� S�P �� � S�L�
 Hence for
every P � L there is some t � � such that Pt � �� � t�P � ! tP � L

Therefore� we must have �d�dt�D�PtkQ�jt�� � �� that is� the quantity ��� in

the preceding proof is equal to �� namely�

X
a

�P �a�� P ��a�� log
P ��a�

Q�a�
� �� �P � L� �	�

��



This proves that P � satis�es the Pythagorean identity


By the de�nition of linear family� the distributions P � L� regarded as jAj�
dimensional vectors� are in the orthogonal complement F� of the subspace

F of RjAj� spanned by the k vectors fi�
�� 	i� � � i � k
 If S�L� � A then

the distributions P � L actually span the orthogonal complement of F �any

subspace of RjAj that contains a strictly positive vector is spanned by the

probability vectors in that subspace� the proof is left to the reader
� Since

the identity �	� means that the vector

log
P ��
�
Q�
� �D�P �kQ�

is orthogonal to each P � L� it follows that this vector belongs to �F��� � F 

This proves that P � � E � if S�L� � A


Next we show that any distribution P � � L � cl�EQ� satis�es �	�
 Since
�	� is equivalent to the Pythagorean identity� this will show that L� cl�EQ��
if nonempty� consists of the single distribution equal to the I�projection of Q

onto L
 Now� let Pn � E � Pn 
 P � � L
 By the de�nition of E�

log
Pn�a�

Q�a�
� log cn ! �log e�

kX
i��

�i�nfi�a��

As P � L� P � � L implies
P
P �a�fi�a� �

P
P ��a�fi�a�� i � �� � � � � k� it

follows that X
a

�P �a�� P ��a�� log
Pn�a�

Q�a�
� �� �P � L�

Since Pn 
 P �� this gives �	�


To complete the proof of the theorem it remains to show that L � cl�E�
is always nonempty
 Towards this end� let P �

n denote the I�projection of Q

onto the linear family

Ln �


P �
X
a�A

P �a�fi�a� �
�
�� �

n

�
	i !

�

n

X
a�A

Q�a�fi�a�� i � �� � � � � k
�
�

��



Since ��� �
n
�P ! �

n
Q � Ln if P � L� here S�Ln� � A and therefore P �

n � E 

Thus the limit of any convergent subsequence of fP �

ng belongs to L� cl�E�


Proof of Corollary �� Only the validity of the Pythagorean identity for

Q � cl�E� needs checking
 Since that identity holds for Q � E� taking limits
shows that the identity holds also for the limit of a sequence Qn � E � that
is� for each Q in cl�E�


Remark � A minor modi�cation of the proof of Theorem � shows that the

I�projection P � of Q to a linear family with S�L� � B � A is of the form

P ��a� �

�
cQ�a� exp

�Pk
� �ifi�a�

�
if a � B

� otherwise

���

This and Theorem � imply that cl�EQ� consists of distributions of the form
���� with B � S�L� for suitable choice of the constants 	�� � � � � 	k in the

de�nition of L
 We note without proof that also� conversely� all such distri�
butions belong to cl�EQ��

Next we show that I�projections are relevant to maximum likelihood es�

timation in exponential families


Given a sample xn� � An drawn from an unknown distribution supposed

to belong to a feasible set & of distributions on A� a maximum likelihood

estimate �MLE� of the unknown distribution is a maximizer of P n�xn� � subject

to P � &� if the maximum is not attained the MLE does not exist


Lemma 
 An MLE is the same as a minimizer of D� bPkP � for P in the set

of feasible distributions� where bP is the empirical distribution of the sample�

��



Proof� Immediate from Lemma 



In this sense� an MLE can always be regarded as a #reverse I�projection�


In the case when & is an exponential family� the MLE equals a proper I�

projection� though not of $P onto &


Theorem 
 Let the set of feasible distributions be the exponential family

E �


P �P �a� � c���� � � � � �k�Q�a� exp�

kX
i��

�ifi�a��� ���� � � � � �k� � Rk
�
�

where S�Q� � A� Then� given a sample xn� � An� the MLE is unique and

equals the I�projection P � of Q onto the linear family

L � fP �X
a

P �a�fi�a� �
�

n

nX
j��

fi�xj�� � � i � kg�

provided S�L� � A� If S�L� �� A� the MLE does not exist� but P � will be

the MLE in that case if cl�E� rather than E is taken as the set of feasible

distributions�

Proof� The de�nition of L insures that $P � L
 Hence by Theorem � and its

Corollary�

D� $PkP � � D� $PkP �� !D�P �kP �� �P � cl�E��
Also by Theorem �� P � � E if and only if S�L� � A� while always P � � cl�E�

Using this� the last divergence identity gives that the minimum of D� $PkP �
subject to P � E is uniquely attained for P � P �� if S�L� � A� and is not

attained if S�L� �� A� while P � is always the unique minimizer of D� $PkP �
subject to P � cl�E�
 On account of Lemma �� this completes the proof of
the theorem


We conclude this section with a counterpart of Theorem 	 for #reverse

I�projections
� The reader is invited to check that the theorem below is also

an analogue of one in Euclidean geometry


�




Let us be given a distribution P and a closed convex set & of distributions

on A such that S�P � � S�&�
 Then there exists Q� � & attaining the ��nite�
minimum minQ��D�PkQ�� this Q� is unique if S�P � � S�&�� but need not

be otherwise


Theorem � A distribution Q� � & minimizes D�PkQ� subject to Q � & if

and only if for all distributions P 	 on A and Q	 � &�

D�P 	kQ	� !D�P 	kP � � D�P 	kQ���

Proof� The #if� part is obvious �take P 	 � P 
� To prove the #only if� part�

S�P 	� � S�Q	��S�P � may be assumed else the left hand side is in�nite
 We
claim that X

a�S�P �

P �a�
�
�� Q	�a�

Q��a�

�
� �� ���

Note that ��� and S�P � � S�P 	� imply

X
a�S�P ��

P 	�a�
�
�� P �a�Q	�a�

P 	�a�Q��a�

�
� ��

which� on account of log �
t
� ��� t� log e� implies in turn

X
a�S�P ��

P 	�a� log
P 	�a�Q��a�

P �a�Q	�a�
� ��

The latter is equivalent to the inequality in the statement of the theorem�

hence it su�ces to prove the claim ���


Now set Qt � ��� t�Q� ! tQ	 � Q� � � t � �
 Then

� � �

t
�D�PkQt��D�PkQ��� �

d

dt
D�PkQt�




t�	t� � � "t � t�

��



With t
 � it follows that

� � lim
	t��

X
a�S�P �

P �a�
�Q��a��Q	�a�� log e

��� "t�Q��a� ! "tQ	�a�
�

X
a�S�P �

P �a�
Q��a��Q	�a�

Q��a�
log e�

This proves the claim ��� and completes the proof of Theorem �


� f�divergence and contingency tables�

Let f�t� be a convex function de�ned for t � �� with f��� � �
 The

f �divergence of a distribution P from Q is de�ned by

Df �PkQ� �
X
a

Q�x�f

�
P �x�

Q�x�

�
�

Here we take �f��
�
� � �� f��� � limt�� f�t�� �f�a

�
� � limt�� tf�

a
t
� �

a limu��
f�u�
u



Some examples include the following


��	 f�t� � t log t � Df �PkQ� � D�PkQ��

��	 f�t� � � log t� Df�PkQ� � D�QkP ��

��	 f�t� � �t� ���

� Df�PkQ� �
X
a

�P �a��Q�a���

Q�a�
�

��	 f�t� � ��p
t

� Df�PkQ� � ��X
a

q
P �a�Q�a��

�
	 f�t� � jt� �j � Df�PkQ� � jP �Qj �X
a

jP �a��Q�a�j�

�	



The analogue of the log�sum inequality is

X
i

bif
�
ai
bi

�
� bf

�
a

b

�
� a �

X
ai� b �

X
bi� ���

where if f is strictly convex at c � a�b� the equality holds i� ai � cbi�

for all i
 Using this� many of the properties of the information divergence

D�PkQ� extend to general f�divergences� as shown in the next lemma
 Let
B � fB�� B�� � � � � Bkg be a partition of A and let P be a distribution on A


The distribution de�ned on f�� �� � � � � kg by the formula

P B�i� �
X
a�Bi

P �a��

is called the B�lumping of P 


Lemma � Df�PkQ� � � and if f is strictly convex at t � � then Df�PkQ� �
� only when P � Q� Further� Df �PkQ� is a convex function of the pair

�P�Q�� and the lumping property� Df �PkQ� � Df�P
BkQB� holds for any

partition B of A�

Proof� The �rst assertion and the lumping property obviously follow from

the analogue of the log�sum inequality� ���
 To prove convexity� let P � 	P�!

���	�P�� Q � 	Q�!���	�Q�
 Then P andQ are lumpings of distributions eP
and eQ de�ned on A�f�� �g by eP �a� �� � 	P��a�� eP �a� �� � ���	�P��a�� and

similarly for eQ
 Hence by the lumping property� Df�PkQ� � Df� eP jj eQ� �
	Df�P�jjQ�� ! ��� 	�Df�P�jjQ���

A basic theorem about f�divergences is the following approximation prop�

erty� where we denote by 
��P�Q� the f�divergence for f�t� � �t � ���� that
is� 
��P�Q� �

P
�P �a��Q�a����Q�a�


��



Theorem �� If f is twice di�erentiable at t � � and f 		��� � � then for any

Q with S�Q� � A and P � close� to Q we have

Df�PkQ� � f 		���

�

��P�Q��

Formally� Df �PkQ��
��P�Q�
 f 		����� as P 
 Q�

Proof� Since f��� � �� Taylor�s expansion gives

f�t� � f 	����t� �� ! f 		���

�
�t� ��� ! 
�t��t� ����

where 
�t�
 � as t
 �� Hence

Q�a�f

�
P �a�

Q�a�

�
�

f 	����P �a��Q�a�� !
f 		���

�

�P �a��Q�a���

Q�a�

!


�
P �a�

Q�a�

�
�P �a��Q�a���

Q�a�
�

Summing over a � A then establishes the theorem


Remark 
 The same proof works even if Q is not �xed� replacing P 
 Q by

P � Q 
 �� provided that no Q�a� can become arbitrarily small
 However�

the theorem �the #asymptotic equivalence� of f�divergences subject to the

di�erentiability hypotheses� does not remain true if Q is not �xed and the

probabilities of Q�a� are not bounded away from �


Corollary � Let f� � �� f�� � � � � fjAj�� be a basis for RjAj �regarded as the

linear space of all real�valued functions on A�� orthonormal with respect to

��



the inner product � g� h �Q�
P

aQ�a�g�a�h�a�� Then� under the hypotheses

of Theorem �
�

Df�PkQ� � f����

�

jAj��X
i��

�X
a

P �a�fi�a�

��

�

and� for the linear family

L�	� � fP � X
a

P �a�fi�a� � 	i� � � i � kg�

with 	 � �	� � � � � 	k� approaching the zero vector�

min
P�L���

Df�PkQ� � f����

�

kX
i��

	�
i �

Proof� On account of Theorem ��� it su�ces to show that


��P�Q� �
jAj��X
i��

�X
a

P �a�fi�a�

��

����

and� at least when 	 � �	� � � � � 	k� is su�ciently close to the zero vector�

min
P�L���


��P�Q� �
kX
i��

	�
i � ����

Now� 
��P�Q� �
P

aQ�a�
�
P �a�
Q�a�

� �
��
is the squared norm of the function

g de�ned by g�a� � P �a�
Q�a�

� � with respect to the given inner product� and

that equals
PjAj��

i�� � g� fi �
�
Q
 Here

� g� f� �Q �
X
a

�P �a��Q�a�� � �

� g� fi �Q �
X
a

�P �a��Q�a��fi�a� �
X
a

P �a�fi�a�� � � i � jAj � ��

��



the latter since � f�� fi �Q� � means that
P

aQ�a�fi�a� � �
 This proves

����� and ���� then obviously follows if some P � L�	� satis�esPa P �a�fi�a� �

�� k!� � i � jAj��
 Finally� the assumed orthonormality of �� f�� � � � � fjAj��
implies that P de�ned by P �a� � Q�a��� !

Pk
i�� 	ifi�a�� satis�es the last

conditions� and this P is a distribution in L�	� provided it is nonnegative�
which is certainly the case if 	 is su�ciently close to the zero vector


One property distinguishing information divergence among f�divergences

is transitivity of projections� as summarized in the following lemma
 It can�

in fact� be shown that the only f�divergence for which either of the two

properties of the lemma holds is the informational divergence


Lemma � Let P � be the I�projection of Q onto a linear family L� Then

�i	 For any convex subfamily L	 � L the I�projections of Q and of P � onto

L	 are the same�

�ii	 For any �translate� L	 of L� the I�projections of Q and of P � onto L	
are the same� provided S�L� � A�

L	 is called a translate of L if it is de�ned in terms of the same functions
fi� but possibly di�erent 	i


Proof� By the Pythagorean identity

D�PkQ� � D�PkP �� !D�P �kQ�� P � L�

It follows that on any subset of L the minimum of D�PkQ� and of D�PkP ��

are achieved by the same P 
 This establishes �i�


The exponential family corresponding to a translate of L is the same as

it is for L
 Since S�L� � A� we know by Theorem � that P � belongs to

��



this exponential family
 But every element of the exponential family has the

same I�projection onto L	� which establishes �ii�


In the following theorem� $Pn denotes the empirical distribution of a ran�

dom sample of size n from a distribution Q with S�Q� � A� that is� the

type of the seqeunce �X�� � � � � Xn� where X�� X�� � � � are independent random

variables with distribution Q


Theorem �� Given arbitrary functions f�� � � � � fk� �� � k � jAj � �� on A

such that f� � �� f�� � � � � fk are linearly independent� let P
�
n be the I�projection

of Q onto the �random� linear family

Ln � fP � X
a

P �a�fi�a� �
�

n

nX
j��

fi�Xj�� � � i � kg�

Then

D� $PnkQ� � D� $PnkP �
n� !D�P �

nkQ��
each term multiplied by �n

log e
has a 
� limiting distribution with jAj � �� jAj �

� � k� respectively k� degrees of freedom� and the right hand side terms are

asymptotically independent�

The 
� distribution with k degrees of freedom is de�ned as the distribution

of the sum of squares of k independent random variables having the standard

normal distribution


Proof of Theorem ��� The decomposition of D� $PnkQ� is a special case of the
Pythagorean identity� see Theorem �� since clearly $Pn � Ln� To prove the

remaining assertions� assume that f� � �� f�� � � � � fk are orthonormal for the

inner product de�ned in Corollary �
 This does not restrict generality since

the family Ln depends on f�� � � � � fk through the linear span of �� f�� � � � � fk�

only

 Further� take additional functions fk��� � � � � fjAj�� on A to obtain a

��



basis for RjAj� orthonormal for the considered inner product
 Then� since
$Pn 
 Q in probability� Corollary � applied to f�t� � t log t� with f���� �

log e� gives

D� $PnkQ� � log e

�

jAj��X
i��

�X
a

$Pn�a�fi�a�

��

�
log e

�

jAj��X
i��

�� �
n

nX
j��

fi�Xj�

�A�

�

D�P �
nkQ� � min

P�Ln

D�PkQ� � log e

�

kX
i��

���
n

nX
j��

fi�Xj�

�A�

�

Here� asymptotic equivalence � of random variables means that their ratio

goes to � in probability� as n
	


By the assumed orthonormality of f� � �� f�� � � � � fjAj��� for X with dis�

tribution Q the real valued random variables fi�X�� � � i � jAj � �� have

zero mean and their covariance matrix is the �jAj � �� � �jAj � �� identity

matrix
 It follows by the central limit theorem that the joint distribution of

the random variates

Zn�i �
�p
n

nX
j��

fi�Xj�� � � i � jAj � �

converges� as n
	� to the joint distribuiton of jAj�� independent random
variables having the standard normal distribution


As the asymptotic relations established above give

�n

log e
D� $PnkQ� �

jAj��X
i��

Z�
n�i�

�n

log e
D�P �

nkQ� �
kX
i��

Z�
n�i�

and these imply the Pythagorean identiy that

�n

log e
D� $PnkP �

n� �
jAj��X
i�k��

Z�
n�i�

all the remaining claims follow


��



Remark � D� $PnkP �
n� is the preferred statistic for testing the hypothesis

that the sample has come from a distribution in the exponential family

E �
�
P � P �a� � cQ�a� exp

�
kX
i��

�ifi�a�

�
� ���� � � � � �k� � Rk

�
�

Note that D� $PnkP �
n� equals the in�mum of D� $PnkP �� subject to P � E � by

Corollary � in Section �� and the test rejecting the above hypothesis when

D� $PnkP �
n� exceeds a threshold is a likelihood ratio test� see Remark � in

Section �
�
 In this context� it is relevant that the limiting distribuiton of
�n
log e

D� $PnkP �
n� is the same no matter which member of E the sample is coming

from� as any P � E could play the role of Q in Theorem ��


Notes also that Theorem �� easily extends to further decompositions

of D� $PnkQ�
 For example� taking additional functions fk��� � � � � f� with

�� f�� � � � � f� linearly independent� let P
��
n be the common I�projection of Q

and P �
n to

L� �

���P �X
a

P �a�fi�a� �
�

n

nX
j��

fi�Xj�� � � i � �

��� �

Then

D� $PnkQ� � D� $PnkP ��
n � !D�P ��

n kP �
n� !D�P �

nkQ��
the right hand side terms multiplied by �n

log e
have 
� limiting distributions

with degrees of freedom jAj � �� �� �� k� k respectively� and these terms are

asymptotically independent


Now we apply some of these ideas to the analysis of contingency tables


A ��dimensional contingency table is indicated in Table �
 The sample data

��



Table �� A ��dimensional contingency table


x��� �� x��� �� 
 
 
 x��� r�� x��
�
x��� �� x��� �� 
 
 
 x��� r�� x��
�










 
 











x�r�� �� x�r�� �� 
 
 
 x�r�� r�� x�r�
�
x�
�� x�
�� 
 
 
 x�
r�� n

have two features� with categories �� � � � � r� for the �rst feature and �� � � � � r�

for the second feature
 The cell counts

x�j�� j��� � � j� � r�� � � j� � r�

are nonnegative integers� thus in the sample there were x�j�� j�� members

that had category j� for the �rst feature and j� for the second
 The table

has two marginals with marginal counts

x�j�
� �
r�X

j���

x�j�� j��� x�
j�� �
r�X

j���

x�j�� j���

The sum of all the counts is

n �
X
j�

x�j�
� �
X
j�

x�
j�� �
X
j�

X
j�

x�j�� j���

The term contingency table comes from this example� the cell counts

being arranged in a table� with the marginal counts appearing at the mar�

gins
 Other forms are also commonly used� e
 g
� the counts are replaced by

the empirical probabilities $p�j�� j�� � x�j�� j���n� and the marginal counts

are replaced by the marginal empirical probabilities $P �j��� � x�j����n and
$P ��j�� � x��j���n


In the general case the sample has d features of interest� with the ith

feature having categories �� �� � � � � ri
 The d�tuples � � �j�� � � � � jd� are called

�




cells� the corresponding cell count x��� is the number of members of the

sample such that� for each i� the ith feature is in the jith category
 The

collection of possible cells will be denoted by '� The empirical distribution

is de�ned by $p��� � x����n� where n �
P

� x��� is the sample size
 By

a d�dimensional contingency table we mean either the aggregate of the cell

counts x���� or the empirical distribution $p� or sometimes any distribution

P on ' �mainly when considered as a model for the #true distribution� from

which the sample came
�

The marginals of a contingency table are obtained by restricting attention

to those features i that belong to some given set � � f�� �� � � � � dg
 Formally�
for � � �i�� � � � � ik� we denote by ���� the ��projection of � � �j�� � � � � jd��

that is� ���� � �ji� � ji� � � � � � jik�
 The ��marginal of the contingency table is

given by the marginal counts

x������ �
X

��
���	����	�

x��	�

or the corresponding empirical distribution $p������ � x�������n
 In general

the ��marginal of any distribution fP ����� � 'g is de�ned as the distribu�
tion P	 de�ned by the marginal probabilities

P	������ �
X

��
���	����	�

P ��	��

A d�dimensional contingency table has d one�dimensional marginals� d�d�
���� two�dimensional marginals� 


� corresponding to the subsets of f�� � � � � dg
of one� two� 


� elements


For contingency tables the most important linear families of distributions

are those de�ned by �xing certain ��marginals� for a family ( of sets � �
f�� � � � � dg
 Thus� denoting the �xed marginals by )P	 � � � (� we consider

L � fP �P	 � )P	� � � (g�

��



The exponential family �through any given Q� that corresponds to this linear

family L consists of all distributions that can be represented in product form
as

P ��� � cQ���
Y
	��

a	������� ����

In particular� if L is given by �xing the one�dimensional marginals �i
 e
�

( consists of the one point subsets of f�� � � � � dg� then the corresponding
exponential family consists of the distributions of the form

P �i�� � � � � id� � cQ�i�� � � � � id�a��i�� 
 
 
ad�id�

The family of all distributions of the form ���� is called a log�linear family

with interactions � � (
 In most applications� Q is chosen as the uniform dis�

tribution� often the name #log�linear family� is restricted to this case
 Then

���� gives that the log of P ��� is equal to a sum of terms� each represent�

ing an #interaction� � � (� for it depends on � � �j�� � � � � jd� only through

���� � �ji� � � � � � jik�� where � � �i�� � � � � ik�


A log�linear family is also called a log�linear model
 It should be noted that

the representation ���� is not unique� because it corresponds to a represen�

tation in terms of linearly dependent functions
 A common way of achieving

uniqueness is to postulate a	������ � � whenever at least one component of

���� is equal to �
 In this manner a unique representation of the form ����

is obtained� provided that with every � � ( also the subsets of � are in (


Log�linear models of this form are also called hierarchical models�

Remark � The way we introduced log�linear models shows that restricting

to the hierarchical ones is more a notational than a real restriction
 Indeed�

if some ��marginal is �xed then so are the �	�marginals for all �	 � ��

�	



In some cases of interest it is desirable to summarize the information

content of a contingency table by its ��marginals� � � (� In such cases it is
natural to consider the linear family L consisting of those distributions whose
��marginals equal those of the empirical distribution� $P 
 If a prior guess Q

is available� then we accept the I�projection P � of Q onto L as an estimate of
the true distribution
 By Theorem �� this P � equals the intersection of the

log�linear family ����� or its closure� with the linear family L
 Also� P � equals

the maximum likelihood estimate of the true distribution if it is assumed to

belong to ����


By Theorem �� an asymptotically optimal test of the null�hypothesis that

the true distribution belongs to the log�linear family E with interactions

� � ( consists in rejecting the null�hypothesis if

D� $PkP �� � min
p�E

D� $PkP �

is #large�
 Unfortunately the numerical bounds obtained in Theorem �

appear too crude for most applications� and the rejection criterion there�

namely D�PkP �� � j'j log n
n
� admits false acceptance too often
 A better

criterion is suggested by the result in Theorem �� �see also Remark �� that
�n
log e

D� $PkP �� has 
� limit distribution� with speci�ed degrees of freedom� if

the null hypothesis is true
 Using this theorem� the null�hypothesis is re�

jected if ��n� log e�D� $PkP �� exceeds the threshold found in the table of the


� distribution for the selected level of signi�cance
 Of course� the type �

error probability of the resulting test will be close to the desired one only

when the sample size n is su�ciently large for the distribution of the test

statistic to be close to its 
� limit
 The question of how large n is needed is

important but di�cult� and will not be entered here


Now we look at the problem of outliers
 A lack of �t �i
 e
� D� $PkP ��

#large�� may be due not to the inadequacy of the model tested� but to

��



outliers
 A cell �� is considered to be an outlier in the following case� Let

L be the linear family determined by the ��marginals �say � � (� of the

empirical distribution $P� and let L	 be the subfamily of L consisting of those
P � L that satisfy P ���� � $P ����
 Let P

�� be the I�projection of P � onto

L	
 Ideally� we should consider �� as an outlier if D�P
��kP �� is #large��

for if D�P ��kP �� is close to D� $PkP �� then D� $PkP ��� will be small by the

Pythagorean identity
 Now by the lumping property �Lemma 	��

D�P ��kP �� � $P ���� log
$P ����

P �����
!
�
�� $P ���

�
log

$P ����

P �����
�

and we declare �� as an outlier if the right�hand side of this inequality is

#large�� that is� after scaling by ��n� log e�� it exceeds the critical value of 
�

with one degree of freedom


If the above method produces only a few outliers� say ��� ��� � � � � ��� we

consider the subset "L of L consisting of those P � L that satisfy P ��j� �
$P ��j� for j � �� � � � � �
 If the I�projection of P � onto "L is already #close� to
$P � we accept the model and attribute the original lack of �t to the outliers


Then the #outlier� cell counts x��j�� j � � � � � � � are deemed unreliable and

they may be adjusted to nP ���j�� j � � � � � � �


Similar techniques are applicable in the case when some cell counts are

missing


	 Iterative algorithms�

In this section we discuss iterative algorithms to compute I�projections

and to minimize I�divergence between two convex sets of distributions


��



��� Iterative scaling

The I�projection to a linear familyL is very easy to �nd if L is determined
by a partition B � �B�� � � � � Bk� of A and consists of all those distributions P

whose B�lumping is a given distribution �	�� � � � � 	k� on f�� � � � � kg
 Indeed�
then D�PkQ� � D�PBkQB� � P

	i log	i�Q�Bi� for each P � L� by the
lumping property �see Lemma 	�� and here the equality holds for P � de�ned

by

P ��a� � ciQ�a�� a � Bi� where ci �
	i

Q�Bi�
� ����

It follows that P � obtained by #scaling� Q as above is the I�projection of Q

to L


In the theory of contingency tables� see Section �� lumpings occur most

frequently as marginals
 Accordingly� when L is de�ned by prescribing some
��marginal of P � say L	 � fP �P	 � P 	g� where � � f�� � � � � dg� the I�
projection P � of Q to L	 is obtained by scaling Q to adjust its ��marginal�

P ���� � Q���P 	�������Q	������
 Suppose next that L can be represented

as the intersection of families Li� i � �� � � � � m� each of form as above
 Then�

on account of Theorem ��� below� and the previous paragraph� I�projections

to L can be computed by iterative scaling
 This applies� in particular� to I�

projections to families de�ned by prescribed marginals� required in the anal�

ysis of contingency tables� For L � fP	 � P 	 � � � (g�( � f��� � � � � �mg�
the I�projection of Q to L equals the limit of the sequence of distribu�

tions P �n� de�ned by iterative scaling� that is� P ��� � Q� and P �n���� �

P �n������P 	n����n���P
�n���
	n ����n��� where ��� ��� � � � is a cyclic repetition of

(


Suppose L�� � � � �Lm� are given linear families and generate a sequence of

distributions Pn as follows� Set P� � Q �any given distribution with support

��



S�Q� � A�� let P� be the I�projection of P� onto L�� P� the I�projection of

P� onto L�� and so on� where for n � m we mean by Ln that Li for which

i � n �mod m�� i
 e
� L�� � � � �Lm is repeated cyclically


Theorem �� If �m
i��Li � L �� � then Pn 
 P �� the I�projection of Q onto

L�

Proof� By the Pythagorean identity� see Theorem �� we have for every

P � L �even for P � Ln� that

D�PkPn��� � D�PkPn� !D�PnkPn���� n � �� �� � � �

Adding these equations for � � n � N we get that

D�PkQ� � D�PkP�� � D�PkPN� !
NX
n��

D�PnkPn����

By compactness there exists a subsequence PNk

 P 	� say� and then from

the preceding inequality we get for Nk 
	 that

D�PkQ� � D�PkP 	� !
�X
n��

D�PnkPn���� ��
�

Since this series is convergent we have D�PnkPn���
 �� and hence also jPn�
Pn��j 
 �� where jPn � Pn��j denotes the variational distance Pa jPn�a� �
Pn���a�j
 This implies that together with PNk


 P 	 we also have

PNk�� 
 P 	� PNk�� 
 P 	� � � � � PNk�m 
 P 	�

Since by the periodic construction� among the m consecutive elements�

PNk
� PNk��� � � � � PNk�m��

there is one in each Li� i � �� �� � � � � m� it follows that P 	 � �Li � L



�



Since P 	 � L it may be substituted for P in ��
� to yield

D�P 	kQ� �
�X
i��

D�PnkPn����

With this� in turn� ��
� becomes

D�PkQ� � D�PkP 	� !D�P 	kQ��

which proves that P 	 equals the I�projection of Q onto L
 Finally� as P 	

was the limit of an arbitrary convergent subsequence of the sequence Pn� our

result means that every convergent subsequence of Pn has the same limit P
�


Using compactness again� this proves that Pn 
 P � and completes the proof

of the theorem


In the general case when L � �m
i��Li but no explicit formulas are available

for I�projections to the families Li� Theorem �� need not directly provide a

practical algorithm for computing the I�projection to L
 Still� with a twist�
Theorem �� does lead to an iterative algorithm� known as generalized iterative

scaling �or the SMART algorithm� to compute I�projections to general linear

families and� in particular� MLE�s for exponential families� see Theorem �


Generalized iterative scaling requires that the linear family

L �
�
P �
X
a�A

P �a�f�a� � 	i� � � i � k

�

be given in terms of functions fi that satisfy

fi�a� � ��
kX
i��

fi�a� � �� a � A � ����

accordingly� �	�� � � � � 	k� has to be a probability vector
 This does not restrict

generality� for if L is initially represented in terms of any functions efi� these
can be replaced by fi � C efi !D with suitable constants C and D to make


�



sure that fi � � and
Pk

i�� fi�a� � �� if the last inequality is strict for some

a � A� one can replace k by k ! �� and introduce an additional function

fk�� � ��Pk
i�� fi


Theorem �� Assuming ����� the nonnegative functions bn on A de�ned re�

cursively by

b��a� � Q�a�� bn���a� � bn�a�
kY
i��

�
	i
�n�i

�fi�a�
� �n�i �

X
a�A

bn�a�fi�a�

converge to the I�projection P � of Q to L� that is� P ��a� � lim
n��

bn�a�� a � A�

Proof� Consider the product alphabet eA � A� f�� � � � � kg� the distributioneQ � fQ�a�fi�a�� �a� i� � eAg� and the linear family eL of those distributionseP on eA that satisfy eP �a� i� � P �a�fi�a� for some P � L
 Since for sucheP we have D� ePk eQ� � D�PkQ�� the I�projection of eQ to eL equals eP � �

fP ��a�fi�a�g where P � is the I�projection of Q to L


Note that eL � eL��eL� where eL� is the set of all distributions eP � f eP �a� i�g
whose marginal on f�� � � � � kg is equal to �	�� � � � � 	k�� and

fL� � f eP � eP �a� i� � P �a�fi�a�� P any distribution on Ag�

It follows by Theorem �� that the sequence of distributions fP�� fP�
	
� fP�� fP�

	
� � � �

on eA de�ned iteratively by

fP� � eQ� fP 	
n � I�projection to eL� of fPn� ePn�� � I�projection to eL� of fPn	

converges to fP �
 In particular� writing fPn�a� i� � Pn�a�fi�a�� we have Pn 

P �
 The theorem will be proved if we show that Pn�a� � cnbn�a�� where

cn 
 � as n
	



�



Now� by the �rst paragraph of this subsection� fP 	
n is obtained from

fPn by
scaling� thus

fP 	
n�a� i� �

	i
�n�i

Pn�a�fi�a�� �n�i �
X
a�A

Pn�a�fi�a� �

To �nd ePn��� note that for each eP � fP �a�fi�a�g in eL� we have� using

�����

D� ePkfP 	
n� �

X
a�A

kX
i��

P �a�fi�a� log

�
P �a�

Pn�a�

�
	i
�n�i

�

�
X
a�A

P �a� log
P �a�

Pn�a�
�X

a�A

P �a�
kX
i��

fi�a� log
	i
�n�i

�
X
a�A

P �a� log
P �a�

Pn�a�
kQ
i��

�
�i
	n�i

�fi�a� �
This implies� by the log�sum inequality� that the minimum of D� ePk eP 	

n� sub�

ject to eP � fL� is attained by ePn�� � fPn���a�fi�a�g with

Pn���a� � cn��Pn�a�
kY
i��

�
	i
�n�i

�fi�a�
where cn�� is a normalizing constant
 Comparing this with the recursion

de�ning bn in the statement of the theorem� it follows by induction that

Pn�a� � cnbn�a�� n � �� �� � � �


Finally� cn 
 � follows since the above formula for D� ePk eP 	
n� gives

D� ePn��k eP 	
n� � log cn��� and D� ePn��k eP 	

n�
 � as in the proof of Theorem ��


��� Alternating divergence minimization

In this subsection we consider a very general alternating minimization

algorithm which� in particular� will �nd the minimum divergence between


�



two convex sets P and Q of distributions on a �nite set A


In the general considerations below� P and Q are arbitrary sets and

D�P�Q� denotes an extended real�valued function on P � Q which satis�es

the following conditions


�a	 �	 � D�P�Q� � !	� P � P� Q � Q


�b	 �P � P� �Q� � Q��P � � Q such that min
Q�QD�P�Q� � D�P�Q��


�c	 �Q � Q� �P � � P ��Q� � P such that min
P�PD�P�Q� � D�Q�P ��


A problem of interest in many situations is to determine

Dmin
def
� inf

P�P �Q�QD�P�Q�� ��	�

A naive attempt to solve this problem would be to start with some Q� � Q
and recursively de�ne

Pn � P ��Qn���� Qn � Q��Pn�� n � �� �� � � � ����

hoping that D�Pn� Qn�
 inf
P�P �Q�QD�P�Q�� as n
	


We show that� subject to some technical conditions� the naive iteration

scheme ���� determines the in�mum in ��	�
 This is stated as the following

theorem


Theorem �� Suppose there is a nonnegative function ��P� P 	� de�ned on

P � P with the following properties�

�i	 �three�points property��

��P� P ��Q�� !D�P ��Q�� Q� � D�P�Q�� �P � P� Q � Q�







�ii	 �four�points property�� for P � P with min
Q�QD�PkQ� �	�

D�P 	� Q	� ! ��P 	� P � � D�P 	� Q��P ��� �P 	 � P� Q	 � Q�

�iii	 ��P ��Q�� P�� �	 for Q � Q with min
P�P

D�P�Q� �	�

Then� if min
P�P

D�P�Q�� � 	� the iteration ���� produces �Pn� Qn� such

that

lim
n��

D�Pn� Qn� � inf
P�P�Q�Q

D�P�Q� � Dmin� ����

Under the additional hypotheses� �iv� P is compact� �v� D�P�Q��P �� is

a lower semi�continuous function of P � and �vi� ��P� Pn�
 � i� Pn 
 P � we

also have Pn 
 P�� where D�P�� Q
��P��� � Dmin� moreover� ��P�� Pn� � �

and

D�Pn��� Qn��Dmin � ��P�� Pn�� ��P�� Pn���� ����

Proof� We have� by the three�points property�

��P� Pn��� !D�Pn��� Qn� � D�P�Qn��

and� by the four�points property

D�P�Qn� � D�P�Q� ! ��P� Pn��

for all P � P� Q � Q
 Hence

��P� Pn��� � D�P�Q��D�Pn��� Qn� ! ��P� Pn� ����

We claim that the iteration ���� implies the basic limit result ����
 Indeed�

since

D�P�� Q�� � D�P�� Q�� � D�P�� Q�� � D�P�� Q�� � � � �


�



by de�nition� if ���� were false there would exist Q and 
 � � such that

D�Pn��� Qn� � D�P ��Q�� Q� ! 
� n � �� �� � � �
 Then the inequality ����

applied with this Q and P ��Q� would give ��P ��Q�� Pn��� � ��P ��Q�� Pn��
�
for n � �� �� � � �� contradicting assumption �iii� and the nonnegativity of �


Supposing also the assumptions �iv���vi�� pick a convergent subsequence

of fPng� say Pnk 
 P� � P
 Then by �v� and �����
D�P�� Q

��P��� � lim inf
k��

D�Pnk� Qnk� � Dmin�

and by the de�nition of Dmin� here the equality must hold
 By ���� applied

to D�P�Q� � D�P�� Q
��P��� � Dmin� it follows that

��P�� Pn��� � Dmin � ��Pn��� Qn� ! ��P�� Pn��

proving ����
 This last inequality also shows that ��P�� Pn��� � ��P�� Pn��

n � �� �� � � � � and� since ��P�� Pnk�
 �� by �vi�� this proves that ��P�� Pn� �
�
 Finally� again by �vi�� the latter implies that Pn 
 P�


Next we want to apply the theorem to the case when P and Q are con�

vex� compact sets of measures on a �nite set A �in the remainder of this

section by a measure we mean a nonnegative� �nite�valued measure� equiva�

lently� a nonnegative� real�valued function on A�� and D�P�Q� � D�PkQ� �P
a P �a� log�P �a��Q�a��� a de�nition that makes sense even if the measures

do not sum to �
 The existence of minimizers Q��P � and P ��Q� of D�PkQ�
with P or Q �xed is obvious


We show now that with

��P� P 	� � ��PkP 	�
def
�
X
a�A

�
P �a� log

P �a�

P 	�a�
� �P �a�� P 	�a�� log e

�
�

which is nonnegative term�by�term� all assumptions of Theorem �
 are sat�

is�ed� with the possible exception of assumption �iii� to which we will return

later



	



Indeed� the three�points and four�points properties have already been

established in the case when the measures in question are probability dis�

tributions� see Theorems 	 and �
 The proofs of these two theorems easily

extend to the present more general case


Of assumptions �iv���vi�� only �v� needs checking� that is� we want to

show that if Pn 
 P then minQ�QD�PkQ� � lim infn��D�PnkQn�� where

Qn � Q��Pn�
 To verify this� choose a subsequence such that D�PnkkQnk�

lim infn��D�PnkQn� and Qnk converges to some Q

� � Q
 The latter and
Pnk 
 P imply that D�PkQ�� � limk��D�PnkkQnk�� and the assertion

follows


Returning to the question whether assumption �iii� of Theorem �
 holds

in our case� note that ��P ��Q�kP�� � ��P ��Q�kP ��Q��� is �nite if the diver�

gence D�P ��Q�kP ��Q��� is �nite on account of the three�points property �i�


Now� for each Q � Q with inf
P�P D�PkQ� �	 whose support is contained

in the support of Q�� the inclusions S�P
��Q�� � S�Q� � S�Q�� imply that

D�P ��Q�kP ��Q�� is �nite
 This means that assumption is always satis�ed if

Q� has maximal support� that is� S�Q�� � S�Q�
 Thus we have arrived at

Corollary � Suppose P and Q are convex compact sets of measures on

a �nite set A such that there exists P � P with S�P � � S�Q�� and let

D�P�Q� � D�PkQ�� ��P�Q� � ��PkQ�� Then all assertions of Theorem �


are valid� provided the iteration ���� starts with a Q� � Q of maximal sup�

port�

Note that under the conditions of the corollary� there exists a unique mini�

mizer of D�PkQ� subject to P � P� unless D�PkQ� � !	 for every P � P 

There is a unique minimizer of D�PkQ� subject to Q � Q if S�P � � S�Q��
but not necessarily if S�P � is a proper subset of S�Q�� in particular� the


�



sequences Pn� Qn de�ned by the iteration ���� need not be uniquely deter�

mined by the initial Q� � Q
 Still� D�PnkQn� 
 Dmin always holds� Pn

always converges to some P� � P with min
Q�QD�P�kQ� � Dmin� and

each accumulation point of fQng attains that minimum �the latter can be

shown as assumption �v� of Theorem �
 was veri�ed above�
 If D�P�� Q� is

minimized for a unique Q� � Q� then Qn 
 Q� can also be concluded


The following consequence of ���� is also worth noting� for it provides a

stopping criterion for the iteration ����


D�Pn��kQn��Dmin � ��P�kPn�� ��P�kPn��� �
�
X
a�A

P��a� log
Pn���a�

Pn�a�
!
X
a�A

�Pn�a�� Pn���a�� log e

�
�
max
P�P P �A�

�
max
a�A

log
Pn���a�

Pn�a�
! �Pn�A�� Pn���A�� log e

where P �A�
def
�
P

a�A P �a�� using this� the iteration can be stopped when the

last bound becomes smaller than a prescribed 
 � �
 The criterion becomes

particularly simple if P consists of probability distributions


Corollary 
 can be applied� as we show below� to minimizing I�divergence

when either the �rst or second variable is �xed and the other variable ranges

over the image of a #nice� set of measures on a larger alphabet
 Here #nice�

sets of measures are those for which the divergence minimization is #easy
�

For a mapping T �A
 B and measures P on A� write P T for the image

of P on B� that is� P T �b� �
P

a
Ta�b P �a�� For a set P of measures on A write

PT � fP T �P � Pg


Problem �
 Given a measure P on B and a convex set Q of measures on

A� minimize D�PkQ� subject to Q � QT 



�



Problem �
 Given a measure Q on B and a convex set P of measures on

A� minimize D�PkQ� subject to P � PT 


Lemma 
 The minimum in Problem � equals Dmin � min
P�P �Q�Q for P �

fP �P T � Pg and the given Q� and if �P �� Q�� attains Dmin then Q�T attains

the minimum in Problem ��

A similar result holds for Problem �� with the roles of P and Q inter�

changed�

Proof� The lumping property of Lemma 	� which also holds for arbitrary

measures� gives

D�P TkQT � � D�PkQ�� with equality if P �a�
Q�a�

�
P T �b�

QT �b�
� b � Ta�

From this it follows that if P � fP �P T � Pg for a given P � then the

minimum of D�PkQ� subject to P � P �for Q �xed� is attained for P � �

P ��Q� with

P ��a� �
Q�a�

QT �b�
P �b�� b � Ta ����

and this minimum equals D�PkQT �
 A similar result holds also for minimiz�

ing D�PkQ� subject to Q � Q �for P �xed� in the case when Q � fQ�QT �

Qg for a given Q� in which case the minimizer Q� � Q��P � is given by

Q��a� �
P �a�

P T �b�
Q�b�� b � Ta ����

The assertion of the lemma follows


On account of Lemma �� an e�cient solution to Problem � is available via

the iteration in Corollary 
 applied to P � fP �P T � Pg and the given Q�
provided that the steps of minimizing D�PnkQ� subject to Q � Q are #easy


�



to perform�� indeed� the steps of minimizing D�PkQn��� subject to P � P
are very simple� see ����
 A similar e�cient solution to Problem � is also

available� provided the minimization of D�PkQ� subject to P � P is #easy�


Problem � arises� in particular� in maximum likelihood estimation from

incomplete data
 Suppose the maximum likelihood estimation of an un�

known probability distribution Q� supposed to be a member of a known

family Q� is not feasible� for instead of a full sample xn� � x�� � � � � xn drawn

fromQ� only an incomplete sample yn� � Tx�� � � � � Txn fromQT is observable


By Lemma �� the MLE from yn� equals the minimizer of D� )PkQ�� subject
to Q � QT � where )P is the empirical distribution of the incomplete sam�

ple yn� 
 This MLE can be determined by the iteration of Corollary 
� with

P � fP �P T � Pg as discussed above� provided the family Q is convex and

compact
 The resulting iteration is known in statistics as the expectation�

maximization or EM algorithm� The E�step consists of determining Pn from

Qn�� via equation ����� which can be interpreted as taking the conditional

expectation with respect to Qn�� of the empirical distribution of the unob�

served xn� � conditioned on the observed yn� 
 The M�step is to determine Qn

by minimizing D�PnkQ� subject to Q � Q which� by Lemma �� is the same

as taking the MLE in the complete model pretending that the empirical dis�

tribution of xn� is Pn
 It should be noted that in most situations where the

EM algorithm is used in statistics� the set Q of feasible distributions is not

convex
 Then Corollary 
 does not apply� and the EM algorithm may not

converge to the MLE from the observed data� indeed� the iteration often gets

stuck at a local optimum


Example � �Decomposition of mixtures�	 Let P be a probability dis�

tribution and let ��� � � � � �k be arbitrary measures on a �nite set B
 The goal

is to minimizeD�PkPk ci�i� for weight vectors �c�� � � � � ck� with nonnegative

components that sum to �
 If ��� � � � � �k are probability distributions and P

��



is the empirical distribution of a sample drawn from the mixture
P

i ci�i then

the goal is identical to �nding the MLE of the weight vector �c�� � � � � ck�


This example �ts into the framework of Problem �� above� by setting A �

f�� � � � � kg�B� T �i� b� � b� Q � fQ�Q�i� b� � ci�i�b�g
 Thus we consider the
iteration ���� as in Corollary 
� with P � fP �Pi P �i� b� � P �b�� b � Bg and
Q above� assuming for nontriviality that S�P � � �iS��i� �equivalent to the

support condition in Corollary 
 in our case�
 As Corollary 
 requires starting

with Q� � Q of maximal support� we assume Q��i� b� � c�i�i�b�� c
�
i � �� i �

�� � � � � k
 To give the iteration explicitly� note that if Qn���i� b� � cn��i �i�b�

is already de�ned then Pn is obtained� according to ����� as

Pn�i� b� �
Qn���i� b�

QT
n���b�

P �b� �
cn��i �i�b�P
j c

n��
j �j�b�

P �b��

To �nd Qn � Q minimizing D�PnkQ�� put Pn�i� � P
b�B Pn�i� b� and use

Q�i� b� � ci�i�b� to write

D�PnkQ� �
kX
i��

X
b�B

Pn�i� b� log
Pn�i� b�

ci�i�b�

�
kX
i��

Pn�i� log
Pn�i�

ci
!

kX
i��

X
b�B

Pn�i� b� log
Pn�i� b�

Pn�i��i�b�
�

This is minimized for cni � Pn�i�� hence the recursion for c
n
i will be

cni � cn��i

X
b�B

�i�b�P �b�P
j c

n��
j �j�b�

�

Finally� we show that �cn� � � � � � c
n
k� converges to a minimizer �c

�
�� � � � � c

�
k� of

D�PkPk ci�i�
 Indeed� Pn converges to a limit P� by Corollary 
� hence cni �

Pn�i� also has a limit c
�
i and Qn 
 Q� with Q��i� b� � c�i�i�b�
 By the passage

following Corollary 
� �P�� Q
�� attains Dmin � min

P�P �Q�QD�PkQ�� and
then� by Lemma �� Q�T �

P
i c

�
i�i attains minQ�QT D�PkQ� � Dmin


��



Remark 
 A problem covered by Example � is that of �nding weights ci � �

of sum � that maximize the expectation of log
P

i ciXi� where X�� � � � � Xk

are given nonnegative random variables de�ned on a �nite probability space

�B�P �
 Indeed� then

E�log
X
i

ciXi� � �D�PkX
i

ci�i��

for �i�b� � P �b�Xi�b�
 In this case� the above iteration takes the form

cni � cn��i E�
XiP
j c

n
jXj

��

which is known as Cover�s portfolio optimization algorithm
 We note without

proof that the algorithm works also for nondiscrete X�� � � � � Xk


Remark � The counterpart of the problem of Example �� namely� the min�

imization of D�
P

k ci�ikQ� can be solved similarly
 Then the iteration of

Corollary 
 has to be applied to the set P consisting of the measures of the

form P �i� b� � ci�i�b� and to Q � fQ�PiQ�i� b� � Q�b�� b � Bg
 Actu�

ally� the resulting iteration is the same as that in the proof of Theorem ���

�assuming the �i and Q are probability distributions�� with notational dif�

ference that the present i� b� ci� �i�b�� Q�b�� Pn � P � Qn � Q correspond to

a� i� P �a�� fi�a�� 	i� ePn � eL�� eP 	
n � eL� there
 To see this� note that while the

even steps of the two iterations are conceptually di�erent divergence mini�

mizations �with respect to the second� respectively� �rst variable� over the set

denoted by Q or eL��� in fact both minimizations require the same scaling�

see ����� ����


This observation gives additional insight into generalized iterative scaling�

discussed in the previous subsection
 Note that Theorem �� involves the

assumption L �� � �as linear families have been de�ned to be non�empty� see
Section ��� and that assumption is obviously necessary
 Still� the sequence

��



fPng in the proof of Theorem �� is well de�ned also if L � �� when eL� andeL� in that proof are disjoint
 Now� the above observation and Corollary 


imply that Pn converges to a limit P
� also in that case� moreover� P � P �

minimizes the I�divergence from �	�� � � � � 	k� of distributions ���� � � � � �k� such

that �i �
P

a P �a�fi�a�� � � i � k� for some probability distribution P on A



 Universal coding

A Shannon code for a distribution Pn on An has the length function

d� logPn�xn� �e and produces expected length within � bit of the entropy lower
bound H�Pn�� it therefore provides an almost optimal method for coding

if it is known that the data xn� is governed by Pn
 In practice� however�

the distribution governing the data is usually not known� though it may be

reasonable to assume that the data are coming from an unknown member

of a known class P of processes� such as the i
i
d
 or Markov or stationary

processes
 Then it is desirable to use #universal� codes that perform well

no matter which member of P is the #true process�
 In this section� we

introduce criteria of #good performance� of codes relative to a process� and

describe universal codes for the classes of i
i
d
 and Markov processes� and

for some others� which are almost optimal in a strong sense and� in addition�

are easy to implement


By a process with alphabet A we mean a Borel probability measure P on

A�� that is� a probability measure on the ��algebra generated by the cylinder

sets

�an� � � fx�� � xn� � an�g� an� � An� n � �� �� � � � �

see the Appendix for a summary of process concepts
 The marginal distri�

��



bution Pn on A
n of a process P is de�ned by

Pn�a
n
� � � P ��an� ��� an� � An�

we also write brie�y P �an� � for Pn�a
n
� �


Simple examples are the i
i
d
 processes with

P �an� � �
nY
t��

P �at�� an� � An�

and the Markov chains with

P �an� � � P��a��
nY
t��

P �atjat���� an� � An�

where P� � fP��a�� a � Ag is an initial distribution� and fP �aj"a�� a � A�

"a � Ag is a transition probability matrix� that is� P �
j"a� is a probability
distribution on A for each "a � A
 Stationary processes are those that satisfy

P �fx�� � xi�ni�� � an�g� � P ��an� ��� for each i� n� and an� � An�

��� Redundancy

The ideal codelength of a message xn� � An coming from a process P

is de�ned as � logP �xn� �
 For an arbitrary n�code Cn�A
n 
 B�� B �

f�� �g� the di�erence of its length function from the #ideal� will be called the

redundancy function R � RP�Cn�

R�xn� � � L�xn� � ! logP �x
n
� ��

The value R�xn� � for a particular x
n
� is also called the pointwise redundancy


One justi�cation of this de�nition is that a Shannon code for Pn� with

length function equal to the rounding of the #ideal� to the next integer�

�




attains the least possible expected length of a pre�x code Cn�A
n 
 B�� up

to � bit �and the least possible expected length of any n�code up to logn

plus a constant�� see Section �
 Note that while the expected redundancy

EP �R� � EP �L��H�Pn�

is non�negative for each pre�x code Cn�A
n 
 B�� the redundancy function

takes also negative values� in general
 The next theorem shows� however�

that pointwise redundancy can never be #substantially� negative for large n�

with P �probability �
 This provides additional justi�cation of the de�nition

above


In the sequel� the term code will either mean an n�code Cn�A
n 
 B�� or

a sequence fCn�n � �� �� � � �g of n�codes
 The context will make clear which
possibility is being used
 A code fCn�n � �� �� � � �g is said to be a pre�x code
if each Cn is one� and strongly pre�x if Cm�y

m
� � � Cn�x

n
� � can hold only when

ym� � xn� 


Theorem �
 Given an arbitrary process P and code fCn�n � �� �� � � �g �not

necessarily pre�x��

R�xn� � � �cn eventually almost surely�

for any sequence of numbers fcng with
P
n��cn � !	� e�g�� for cn � � logn�

Moreover� if the code is strongly pre�x� or its length function satis�es L�xn� � �
� logQ�xn� � for some process Q� then

EP �inf
n
R�xn� �� � �	�

Proof� Let

An�c� � fxn� �R�xn� � � �cg � fxn� � �L�x
n
� �P �xn� � � ��cg�

��



Then

Pn�An�c�� �
X

xn��A
n�c�

P �xn� � � ��c
X

xn��An�c�

��L�x
n
� � � ��c log jAnj

where� in the last step� we used Theorem �
 Hence

�X
n��

Pn�An�cn�� � log jAj 

�X
n��

n ��cn�

and the �rst assertion follows by the Borel�Cantelli principle


The second assertion will be established if we show that for codes with

either of the stated properties

P �fx�� � inf n R�xn� � � �cg� � ��c� � c � � �

or in other words�
�X
n��

Pn�Bn�c�� � ��c

where

Bn�c� � fxn� �R�xn� � � �c� R�xk�� � �c� k � ng�
As in the proof of the �rst assertion�

Pn�Bn�c�� � ��c
X

xn��Bn�c�

��L�x
n
� ��

hence it su�ces to show that
�X
n��

X
xn��Bn�c�

��L�x
n
� � � ��

If fCn�n � �� �� � � �g is a strongly pre�x code� the mapping C� ���n��Bn�c��

B� de�ned by C�xn� � � Cn�x

n
� �� x

n
� � Bn�c�� satis�es the pre�x condition�

and the claim holds by the Kraft inequality
 If L�xn� � � � logQ�xn� �� we haveX
xn��Bn�c�

��L�x
n
� � � X

xn��Bn�c�

Q�xn� � � Qn�Bn�c���

�	



and the desired inequality follows since

�X
n��

Qn�Bn�c�� � Q�fx�� � inf n R�xn� � � �cg� � ��

In the literature� di�erent concepts of universality� of a code fCn�n �

�� �� � � �g for a given class P of processes� have been used
 A weak concept

requires the convergence to � of the expected redundancy per symbol�

�

n
EP �RP�Cn�
 �� for each P � P� ����

stronger concepts require uniform convergence to � of either ���n�EP �RP�Cn�

or ���n� max
xn��A

n
RP�Cn�x

n
� �� for P � P 


In the context of #strong� universality� natural �gures of merit of a code

Cn�A
n 
 B� �for a given class of processes� are the worst case expected

redundancy

RCn � sup
P�P

EP �RP�Cn�

and the worst case maximum redundancy

R�
Cn � sup

P�P
max
xn��A

n
RP�Cn�x

n
� ��

Example � For the class of i
i
d
 processes� natural universal codes are ob�

tained by �rst encoding the type of xn� � and then identifying x
n
� within its type

class via enumeration
 Formally� for xn� of type Q� let Cn�x
n
� � � C�Q�CQ�x

n
� ��

where C�Pn 
 B� is a pre�x code for n�types �Pn denotes the set of all

n�types�� and for each Q � Pn� CQ�T
n
Q �
 B� is a code of �xed length

dlog jT n
Qje
 This code is an example of what are called two�stage codes
 The

redundancy function RP�Cn � L�Q� ! dlog jT n
Qje ! logP �xn� � of the code Cn

��



equals L�Q� ! logP n�T n
Q�� up to � bit� where L�Q� denotes the length func�

tion of the type code C�Pn 
 B�
 Since P n�T n
Q� is maximized for P � Q�

it follows that for xn� in T Q� the maximum pointwise redundancy of the code

Cn equals L�Q� ! logQ
n�T n

Q�� up to � bit


Consider �rst the case when the type code has �xed length L�Q� �

dlog jPnje
 This is asymptotically equal to �jAj � �� logn as n 
 	� by
Lemma � and Stirling�s formula
 For types Q of sequences xn� in which

each a � A occurs a fraction of time bounded away from �� one can see

via Stirling�s formula that logQn�T n
Q� is asymptotically ���jAj������ logn


Hence for such sequences� the maximum redundancy is asymptotically ��jAj�
����� logn
 On the other hand� the maximum for xn� of L�Q� ! logQ

n�T n
Q�

is attained when xn� consists of identical symbols� when Qn�T n
Q� � �� this

shows that R�
Cn is asymptotically �jAj � �� logn in this case


Consider next the case when C�Pn 
 B� is a pre�x code of length

function L�Q� � dlog�cn�Qn�T n
Q��e with cn �

P
Q�Pn

Qn�T n
Q� � this is a

bona��de length function� satisfying the Kraft inequality
 In this case L�Q�!

logQn�T n
Q� di�ers from log cn by less than �� for each Q in Pn� and we obtain

that R�
Cn equals log cn up to � bits
 We shall see that this is essentially best

possible �Theorem �	�� and in the present case R�
Cn � ��jAj � ����� logn !

O��� �Theorem ���


Note that to any pre�x code Cn�A
n 
 B�� with length function L�xn� ��

there is a probability distribution Qn or A
n such that L�xn� � � � logQn�x

n
� �

�one can take Qn�x
n
� � � c��L�x

n
� �� with c � �� using the Kraft inequality�


Conversely� to any distribution Qn on An there exists a pre�x code with

length function L�xn� � � � logQn�x
n
� �!� �a Shannon code for Qn�
 It follows

that for any class P of processes with alphabet A� the least possible value of

��



RCn or R
�
Cn for pre�x codes Cn�A

n 
 B� exceeds

Rn � min
Qn

sup
P�P

X
xn��A

n

P �xn� � log
P �xn� �

Qn�xn� �
��
�

or

R�
n � min

Qn

sup
P�P

max
xn��A

n
log

P �xn��

Qn�xn� �
����

by less than �� moreover a Shannon code for Qn attaining the minimum in

��
� or ���� yields the least possible RCn or R
�
Cn � up to � bit
 In particular� for

a class P of processes� there exist #strongly universal codes� with expected

or maximum redundancy per symbol converging to � uniformly for P � P �
if and only if Rn � o�n� or R�

n � o�n�� respectively


Our next theorem identi�es the minimizer in ���� and the value R�
n
 The

related problem for Rn will be treated in Section 	


We use the following notation
 Given a class P of processes with alphabet

A� we write

PML�x
n
� �

def
� sup

P�P
P �xn� �� xn� � An�

where the subscript on PML emphasizes its interpretation as the maximizer

of P �xn� � subject to P � P �if it exists�� that is� as the maximum likelihood

estimate of the process P � P that generates xn� 
 The normalized form

NMLn�a
n
� �

def
� PML�a

n
� ��

X
xn��A

n

PML�x
n
� �� an� � An�

is called the the normalized maximum likelihood distribution�

Theorem �� For any class P of processes with �nite alphabet A� the mini�

mum in ���� is attained for Qn � NMLn� the normalized maximum likelihood

distribution� and the minimax redundancy is given by

R�
n � log

X
xn��A

n

PML�x
n
� ��

��



Proof� For arbitrary Qn�

sup
P�P

max
xn��A

n
log

P �xn� �

Qn�xn� �
� log max

xn��A
n

PML�x
n
� �

Qn�xn� �
�

Here

max
xn��A

n

PML�x
n
� �

Qn�xn� �
� X

xn��A
n

Qn�x
n
� �
PML�x

n
� �

Qn�xn� �
�

X
xn��A

n

PML�x
n
� ��

with equality if Qn � NMLn
 �

��� Universal codes for certain classes of processes

While Shannon codes for the distributions NMLn� n � �� �� � � � are opti�

mal for the class P within � bit� with respect to the maximum redundancy

criterion� by Theorem �	� they are typically not practical from the imple�

mentation point of view
 We will show that for some simple but important

classes P there exist easily implementable arithmetic codes fCn�n � �� �� � � �g
which are nearly optimal� in the sense that

R�
Cn � R�

n ! constant� n � �� �� � � � ��	�

Recall that an arithmetic code determined by a process Q �of the second kind�

see see eq
��� in Section �� is a pre�x code fCn�n � �� �� � � �g with length
function L�xn� � � d� logQ�xn� �e ! �
 Note that the obvious idea to take a

process Q with marginals Qn � NMLn does not work� since such a process

typically does not exist �that is� the distributions NMLn� n � �� �� � � �� do not

meet the consistency criteria for a process�


Below we describe suitable #coding processes� Q� and for the correspond�

ing arithmetic codes we prove upper bounds to R�
Cn 
 For the class of i
i
d

processes� we also determine R�
n� up to a constant� and establish the bound

��	� for our code
 For other classes� the proof of the claimed near optimality

	�



will be completed in the next section� where we also prove near optimality

in the expected redundancy sense


In the rest of this section� we assume with no loss of generality that

A � f�� � � � � kg


Consider �rst the case when P is the class of i
i
d
 processes with alpha�

bet A
 Let the #coding process� be the process Q whose marginal distribu�

tions Qn � fQ�xn� �� xn� � Ang are given by

Q�xn� � �
nY
t��

n�xtjxt��� � ! �
�

t� � ! k
�

�

where n�ijxt��� � denotes the number of occurrences of the symbol i in the

#past� xt��� 
 Equivalently�

Q�xn� � �

Qk
i�� ��ni � �

�
��ni � �

�
� 
 
 
 �

�
�

�n� � ! k
�
��n� � ! k

�
� 
 
 
 k

�

� ����

where ni � n�ijxn� �� and �ni � �
�
��ni � �

�
� � � � �

�
� �� by de�nition� if ni � �


Note that the conditional probabilities needed for arithmetic coding are

given by the simple formula

Q�ijxt��� � �
n�ijxt��� � ! �

�

t� � ! k
�

�

Intuitively� thisQ�ijxt��� � is an estimate of the probability of i from the �past�

xt��� � under the assumption that the data come from an unknown P � P 

The unbiased estimate n�ijxt��� ���t � �� would be inappropriate here� since

an admissible coding process requires Q�ijxt��� � � � for each possible xt���

and i


Remark �� It is not intuitively obvious at this point in our discussion why

exactly ��� is the �right� bias term that admits the strong redundancy bound

	�



below
 Later� in Section 	� we establish a deep connection between minimax

expected redundancy )Rn and mixture distributions with respect to priors

�which is closely connected to Bayesian ideas�� the ��� then arises from using

a speci�c prior
 For now we note only that replacing ��� by � in formula

���� leads to the coding distribution Q�xn� � �
Qn

�
ni


�n���k��n���k�


k
which equals

�

jPnj
jT Qj
� if xn� � T Q� see Lemma �
 In this case� the length function is the

same �up to � bits� as the �rst� suboptimal� version of the two�stage code in

Example �


We claim that the arithmetic code determined by the process Q satis�es

R�
Cn �

k � �
�

logn ! constant� ����

Since the length function is L�xn� � � dlogQ�xn� �e ! �� our claim will be

established if we prove

Theorem �� For Q determined by ����� and any i�i�d� process P with al�

phabet A � f�� � � � � kg�
P �xn� �

Q�xn� �
� K� n

k��
� � � xn� � An�

where K� is a constant depending on the alphabet size k only�

Proof� We begin by noting that given xn� � An� the i
i
d
 process with

largest P �xn� � is that whose one�dimensional distribution equals the empirical

distribution �n��n� � � � � nk�n� of x
n
� � see Lemma 
� and hence

P �xn� � � PML�x
n
� � �

kY
i��

�
ni
n

�ni
�

In a moment we will use a combinatorial argument to establish the bound

kY
i��

�
ni
n

�n
�

Qk
i�� ��ni � �

�
��ni � �

�
� 
 
 
 �

�
�

�n� �
�
��n� �

�
� 
 
 
 �

�

� ����

	�



This is enough to yield the desired result� for if it is true� then we can use

P �xn� ��Q�x
n
� � � PML�x

n
� ��Q�x

n
� � and the Q�formula� ����� to obtain

P �xn� �

Q�xn� �
�

nY
j��

n! k
�
� j

n! �
�
� j

� � xn� � An� ����

If the alphabet size k is odd� the product here simpli�es� and is obviously of

order n
k��
� 
 If k is even� using

�n� �
�
��n� �

�
� 
 
 
 �

�
�

��n� ����n� �� 
 
 
�
�n

�
��n�%

��nn%
�
�n��n� �� 
 
 
 �n! ��

��n
� ����

the product in ���� can be rewritten as

�n! k
�
� ��%��k

�
� ��%

��n�%���nn%
�

and Stirling�s formula gives that this is of order n
k��
� 
 Hence� it indeed su�ces

to prove ����


To prove ����� we �rst use ���� to rewrite it as

kY
i��

�
ni
n

�n
�

Qk
i����ni��ni � �� 
 
 
 �ni ! ���
�n��n! �� 
 
 
 �n! �� � ����

which we wish to establish for k�tuples of non�negative integers ni with sum n


This will be done if we show that it is possible to assign to each � � �� � � � � n

in a one�to�one manner� a pair �i� j�� � � i � k� � � j � n� such that

ni
n
� ni ! j

n! �
� ����

Now� for any given � and i� ���� holds i� j � ni��n
 Hence the number of

those � � j � ni that satisfy ���� is greater than ni � ni��n� and the total

number of pairs �i� j�� � � i � k� � � j � n� satisfying ���� is greater than

kX
i��

�
ni � ni

n
�
�
� n� ��

	�



It follows that if we assign to � � n any �i� j� satisfying ���� �i
 e
� i may be

chosen arbitrarily and j � ni�� then recursively assign to each � � n��� n���
etc
� a pair �i� j� satisfying ���� that was not assigned previously� we never

get stuck� at each step there will be at least one #free� pair �i� j� �because the

total number of pairs �i� j� satisfying ���� is greater than n� �� the number

of pairs already assigned
� This completes the proof of the theorem


Remark �� The above proof has been preferred for it gives a sharp bound�

namely� in equation ���� the equality holds if xn� consists of identical symbols�

and this bound could be established by a purely combinatorial argument
 An

alternative proof via Stirling�s formula� however� yields both upper and lower

bounds
 Using equation ����� the numerator in equation ���� can be written

as Y
i
ni ���

��ni�%

��nin%
�

which� by Stirling�s formula� is bounded both above and below by constant

times e�n
Q
i
ni ��� n

ni
i 
 The denominator in equation ���� can also be expressed

by factorials �trivially if k is even� and via equation ���� if k is odd�� and

Stirling�s formula shows that it is bounded both above and below by a con�

stant times e�nnn�
k��
� 
 This admits the conclusion that PML�x

n
� ��Q�x

n
� � is

bounded both above and below by a constant times n
k��
� � implying

Theorem �
 For the class of i�i�d processes�

R�
n � log

X
xn��A

n

PML�x
n
� � �

k � �
�

logn !O����

Consequently� our code satisfying equation ���� is nearly optimal in the sense

of equation ��	�


	




Next� let P be the class of Markov chains with alphabet A � f�� � � � � kg

We claim that for this class� the arithmetic code determined by the process

Q below satis�es

R�
Cn � k�k � ��

�
logn ! constant� ��
�

Let the #coding process� be that Q whose marginal distributions Qn �

fQ�xn� �� xn� � Ang are given by

Q�xn� � �
�

k

kY
i��

Qk
j�� ��nij � �����nij � ���� � � � ����

�ni � � ! k����ni � � ! k��� � � � k��
� ����

here nij is the number of times the pair i� j occurs in adjacent places in x
n
� �

and ni �
P

j nij
 Note that ni is now the number of occurrences of i in the

block xn��� �rather than in xn� as before�
 The conditional Q�probabilities

needed for arithmetic coding are given by

Q�jjxt��� � �
nt���i� j� !

�
�

nt���i� !
k
�

� if xt�� � i�

where nt���i� j� and nt���i� have similar meaning as nij and ni above� with

xt��� in the role of xn� 


Similarly to the i
i
d
 case� to show that the arithmetic code determined

by Q above satis�es ��
� for the class of Markov chains� it su�ces to prove

Theorem �� For Q determined by ���� and any Markov chain with alphabet

A � f�� � � � � kg�
P �xn� �

Q�xn� �
� K� n

k�k���
� � � xn� � An�

where K� is a constant depending on k only�

	�



Proof� For any Markov chain� the probability of xn� � An is of form

P �xn� � � P��x��
nY
t��

P �xtjxt��� � P��x��
kY
i��

kY
j��

P �jji�nij �

This and ���� imply that

P �xn� �

Q�xn� �
� k

kY
i��

�
kY

j��

P �jji�nij
�Qk

j����nij � �����nij � ���� � � � ����
�ni � � ! k����ni � � ! k��� � � � k��

	
�

Here� the square bracket is the same as the ratio in Theorem �� for a se�

quence xni� � Ani with empirical distribution �ni��ni� � � � � nik�ni�� and an

i
i
d
 process with one�dimensional distribution P �
ji�
 Hence� it follows from
Theorem �� that

P �xn� �

Q�xn� �
� k

kY
i��

�
K� n

k��
�

i

�
� �k Kk

� �n
k�k���

� �

�

Consider next the class of Markov chains of order at most m� namely of

those processes P �with alphabet A � f�� � � � � kg� for which the probabilities
P �xn� �� x

n
� � An� n � m can be represented as

P �xn� � � Pm�x
m
� �

nY
t�m��

P �xtjxt��t�m��

where P �
jam� � is a probability distribution for each an� � An
 The Markov

chains considered before correspond to m � �
 To the analogy of that case

we now de�ne a #coding process� Q whose marginal distributions Qn� n � m�

are given by

Q�xn� � �
�

km
Y

am� �A
m

Qk
j����nam� j � �����nam� j � ���� � � � ����

�nam� � � ! k����nam� � � ! k��� � � � k��
� ��	�

where nam� j denotes the number of times the block am� j occurs in xn� � and

nam� �
P

j nam� j is the number of times the block a
m
� occurs in xn��� 


		



The same argument as in the proof of Theorem �� gives that for Q de�

termined by ��	�� and any Markov chain of order m�

P �xn� �

Q�xn� �
� Km n

km�k���
� � Km � km Kkm

� � ����

It follows that the arithmetic code determined by Q in ��	� is a universal

code for the class of Markov chains of order m� satisfying

R�
Cn �

km�k � ��
�

logn ! constant
 ����

Note that the conditional Q�probabilities needed for arithmetic coding are

now given by

Q�jjxt��� � �
nt���a

m
� � j� !

�
�

nt���am� � !
k
�

� if xt��t�m � am� �

where nt���a
m
� � j� and nt���a

m
� � are de�ned similarly to nam� j and nam� � with

xt��� in the role of xn� 


A subclass of the Markov chains of order m� often used in statistical

modeling� is speci�ed by the assumption that the transition probabilities

P �jjam� � depend on am� through a #context function� f�am� � that has less

than km possible values� say �� � � � � s
 For m � t � n� the t�th symbol in a

sequence xn� � An is said to occur in context � if f�xt��t�m� � �
 A suitable

coding process for this class� determined by the context function f � is de�ned

by

Q�xm� � �
�

km

sY
���

Qk
j�� ��n��j � �����n��j � ���� � � � ����
�n� � � ! k����n� � � ! k��� � � � k��

�

where n��j denotes the number of times j occurs in context � in the sequence

xn� � and n� �
kP

j��
n��j
 The arithmetic code determined by this process Q

satis�es� for the present class�

R�
Cn �

s�k � ��
�

logn ! constant� ����

	�



by the same argument as above
 The conditional Q�probabilities needed for

arithmetic coding are now given by

Q�jjxt��� � �
nt����� j� !

�
�

nt����� !
k
�

� if f�xt��t�m� � ��

Finally� let P be the class of all stationary processes with alphabet A �

f�� � � � � kg
 This is a #large� class that does not admit strong sense universal
codes� that is� the convergence in ���� can not be uniform for any code� see

Example 	 in Section �
 We are going to show� however� that the previous

universal codes designed for Markov chains of order m perform #reasonably

well� also for the class P of stationary processes� and can be used to obtain

universal codes for P in the weak sense of ����


To this end� we denote by Q�m� the coding process de�ned by ��	� tailored

to the class of Markov chains of order m �in particular� Q��� is the process

de�ned by ������ and by fCm
n �n � �� �� � � �g the arithmetic code determined

by the process Q�m�


Theorem �� Let P � P have entropy rate H � limn��Hm where� with

fXng denoting a representation of P � Hm � H�Xm��jX�� � � � � Xm�� Then

�

n
EP �RP�Cm

n
� � Hm �H !

km�k � ��
�

logn

n
!
cm
n
�

where cm is a constant depending only on m and the alphabet size k� with

cm � O�km� as m
	�

Corollary 
 For any sequence of integers mn 
 	 with mn � 	 logn�

	 � �� log k� the pre�x code fCmn
n �n � �� �� � � �g satis�es ����� Moreover� the

arithmetic code determined by the mixture process

Q �
�X

m��

	mQ
�m� �with 	m � ��

X
	m � ��

	�



also satis�es �����

Proof� Given a stationary process P � let P �m� denote its m�th Markov

approximation� that is� the stationary Markov chain of order m with

P �m��xn� � � P �xm� �
nY

t�m��

P �xtjxt��t�m�� xn� � An�

where

P �xtjxt��t�m� � PrfXt � xtjX t��
t�m � xt��t�mg�

The bound ���� applied to P �m� in the role of P gives

log
P �xn��

Q�m��xn� �
� log

P �xn� �

P �m��xn� �
! log

P �m��xn� �

Q�m��xn� �
�

� log
P �xn� �

P �m��xn� �
!
km�k � ��

�
logn ! logKm�

where logKm � O�km�


Note that the expectation under P of logP �xn� � equals �H�Pn�� and that
of logP �xtjxt��t�m� equals �Hm 
 Hence for the code Cm

n with length function

L�xn� � � d� logQ�m��xn� �e! �� the last bound gives that

EP �RP�Cn� � EP

�
log

P �xn� �

Q�m��xn� �

�
! � �

� �H�Pn� !H�Pm� ! �n�m�Hm !
km�k � ��

�
logn! logKm ! ��

Since

H�Pn��H�Pm� � H�Xn
� ��H�Xm

� � �
n��X
i�m

H�Xi��jX i
�� � �n�m�H�

the assertion of the theorem follows


	�



The corollary is immediate� noting for the second assertion that Q�xn� � �
	mQ

�m��xm� � implies

log
P �xn��

Q�xn� �
� log

P �xn� �

Q�m��xn� �
� log	m�

�

Remark �� The last inequality implies that for Markov chains of any order

m� the arithmetic code determined by Q �
�P

m��
	mQ

�m� performs e�ectively

as well as that determined by Q�m�� the coding process tailored to the class of

Markov chains of order m� the increase in pointwise redundancy is bounded

by a constant �depending on m�
 Of course� the situation is similar for other

�nite or countable mixtures of coding processes
 For example� taking a mix�

ture of coding processes tailored to subclasses of the Markov chains of order

m corresponding to di�erent context functions� the arithmetic code deter�

mined by this mixture will satisfy the bound ���� whenever the true process

belongs to one of the subclasses with s possible values of context function


Such codes are sometimes called doubly universal
 Their practicality depends

on how easily the conditional probabilities of the mixture process� needed for

arithmetic coding� can be calculated
 This issue is not entered here� but

we note that for the case just mentioned �with a natural restriction on the

admissible context functions� the required conditional probabilities can be

calculated via a remarkably simple #context weighting algorithm�


� Redundancy bounds

In this section� we address code performance for a class of processes

with respect to the expected redundancy criterion
 We also show that the

universal codes constructed for certain classes in the previous section are

��



optimal within a constant� both for the maximum and expected redundancy

criteria


As noted in the previous section� the least possible worst case expected

redundancy RCn � for a given class P of processes attainable by a pre�x code

Cn�A
n 
 B�� exceeds by less than � bit the value

Rn � min
Qn

sup
P�P

D�PnkQn�� �
��

see ��
�
 Moreover� a distribution Q�
n attaining this minimum is e�ectively

an optimal coding distribution for n�length messages tailored to the class P �
in the sense that a Shannon code for Q�

n attains the least possible worst case

expected redundancy within � bit


Next we discuss a remarkable relationship of the expression �
�� to the

seemingly unrelated concepts of mutual information and channel capacity


As process concepts play no role in this discussion� we shall simply consider

some set & of probability distributions on A� and its I�divergence radius�

de�ned as the minimum for Q of supP��D�PkQ�
 Later the results will be
applied to An and the set of marginal distributions on An of the processes

P � P � in the role of A and &


��� I�radius and channel capacity

The I�radius of a set & of distributions on A is the minimum� for distri�

butions Q on A� of supP��D�PkQ� 
 If the minimum is attained by a unique

Q � Q� �as we shall show� this is always the case�� the minimizer Q� is called

the I�centroid of the set &


��



In the following lemma and theorems� we consider #parametric� sets of

probability distributions & � fP
� � � *g� where * is a Borel subset of Rk�

for some k � �� and P
�a� is a measurable function of � for each a � A


In information theory parlance� fP
� � � *g de�nes a channel with input
alphabet * and output alphabet A� when an input � � * is selected� the

output is governed by the distribution P
 � fP
�a�� a � Ag
 If the input is
selected at random according a probability measure � on *� the information

that the output provides for the input is measured by the mutual information

I��� � H�Q���
Z
H�P
���d���

where Q� � fQ��a�� a � Ag is the #output distribution� on A corresponding

to the #input distribution� �� that is�

Q��a� �
Z
P
�a���d��� a � A�

The supremum of the mutual information I��� for all probability measures �

on * is the channel capacity
 A measure �� is a capacity achieving distribution

if I���� � sup� I���


Lemma � For arbitrary distributions Q on A and � on *�Z
D�P
kQ���d�� � I��� !D�Q�kQ��

Proof� Both sides equal !	 if S�Q�� the support of Q� does not contain

S�P
� for ��almost all � � *
 If it does we can writeZ
D�P
kQ���d�� �

Z �X
a�A

P
�a� log
P
�a�

Q�a�

�
��d��

�
Z �X

a�A

P
�a� log
P
�a�

Q��a�

�
��d�� !

Z �X
a�A

P
�a� log
Q��a�

Q�a�

�
��d���

��



Using the de�nition of Q�� the �rst term of this sum is equal to I���� and

the second term to D�Q�kQ��

Theorem �� For arbitrary distributions Q on A and � on *�

sup

��

D�P
kQ� � I����

with equality if and only if � is a capacity achieving distribution and Q � Q��

Proof� The inequality follows immediately from Lemma �� as does the

necessity of the stated condition of equality
 To prove su�ciency� suppose

on the contrary that there is a capacity achieving distribution �� such that

D�P
�kQ��� � I����� for some �� � *
 Setting �t � ���t���!tP
� � � � t � ��

we have� by the de�nition of I����

I��t� � H�Q�t�� ��� t�
Z
H�P
����d��� tH�P
���

so that�
d

dt
I��t� �

d

dt
H�Q�t� !

Z
H�P
����d���H�P
���

Since Q�t � ��� t�Q�� ! tP
� � simple calculus gives that

d

dt
H�Q�t� �

X
a

�Q���a�� P
��a�� logQ�t�a��

It follows that

lim
t��

d

dt
I��t� � �I���� !D�P
�kQ��� � ��

contradicting the assumption that �� is capacity achieving �which implies

that I��t� � I�����
 The proof of the theorem is complete


��



Note that any set & of distributions on A which is a Borel subset of RjAj

�with the natural identi�cation of distributions with points in RjAj� has a

natural parametric representation� with * � & and � 
 P
 the identity

mapping
 This motivates consideration� for probability measures � on &� of

the mutual information

I��� � H�Q���
Z
�
H�P ���dP �� Q� �

Z
�
P��dP �� �
��

Lemma �� For any closed set & of distributions on A� there exists a prob�

ability measure �� concentrated on a �nite subset of & of size m � jAj that
maximizes I���� If a parametric set of distributions fP
� � � *g is closed�

there exists a capacity achieving distribution �� concentrated on a �nite subset

of * of size m � jAj�

Proof� If & is a closed �hence compact� subset of RjAj� the set of all proba�

bility measures on & is compact in the usual topology of weak convergence�

where �n 
 � means that
R
�
+�P ��n�dP �
 R

�
+�P ���dP � for every continu�

ous function + on &
 Since I��� is continuous in that topology� its maximum

is attained


Theorem �� applied with the natural parametrization of & gives that

if �� maximizes I��� then Q� � Q�� satis�es D�PkQ�� � I���� for each

� � *
 Since I���� �
R
�
D�PkQ�����dP �� by Lemma �� it follows that

D�PkQ�� � I���� for ���almost all P � &� thus Q� �
R
�
P���dP � belongs to

the convex hull of the set of those P � & that satisfy D�PkQ� � I����
 Since

the probability distributions on A belong to an �jAj � ���dimensional a�ne
subspace of RjAj� this implies by Caratheodory�s theorem that Q� is a convex

combination ofm � jAjmember of the above set� that is� Q� �
mP
i��

	iPi where

the distributions Pi � & satisfy D�PikQ�� � I����� i � �� � � � � m
 Then the

�




probability measure �� concentrated on fP�� � � � � Pmg that assigns weight 	i
to Pi� satis�es I���� � I����� completing the proof of the �rst assertion


The second assertion follows by applying the one just proved to & �

fP
� � � *g� because any probability measure � on * and its image � on &

under the mapping � 
 P
 satisfy I��� � I���� and any measure concen�

trated on a �nite subset fP
�� � � � � P
mg of & is the image of one concentrated
on f��� � � � � �mg � *


Corollary � Any set & of probability distributions on A has an I�centroid�

that is� the minimum of sup
P��

D�PkQ� is attained for a unique Q��

Proof� For & closed� the existence of I�centroid follows from the fact that

the maximum of I��� is attained� by Theorem �� applied with the natural

parametrization of &
 For arbitrary &� it su�ces to note that the I�centroid

of the closure of & is also the I�centroid on &� since supP��D�PkQ� �
supP�c����D�PkQ�� for any Q
 �

Theorem �� For any parametric set of distributions fP
� � � *g� the I�

radius equals the channel capacity sup I���� and Q�n converges to the I�

centroid Q� whenever I��n�
 sup I����

Proof� Let & denote the closure of fP
� � � *g
 Then both sets have

the same I�radius� whose equality to sup I��� follows from Theorem �� and

Lemma �� if we show that to any probability measure �� concentrated on

a �nite subset fP�� � � � � Pmg of &� there exist probability measures �n on *
with I��n�
 I����


Such �n�s can be obtained as follows
 Take sequences of distributions in

fP
� � � *g that converge to the Pi�s� say P
i�n 
 Pi� i � �� � � � � m
 Let �n

��



be the measure concentrated on f���n� � � � � �m�ng� giving the same weight to
�i�n that �� gives to Pi
 �

Finally� we establish a lower bound to channel capacity� more exactly� to

the mutual information I��� for a particular choice of �� that will be our

key tool to bounding worst case expected redundancy from below
 Given a

parametric set fP
� � � *g of distributions on A� a mapping $��A 
 * is

regarded as a good estimator of the parameter � if the mean square error

E
k� � $�k� � X
x�A

P
�x�k� � $��x�k�

is small for each � � *
 We show that if a good estimator exists� the channel
capacity can not be too small


Theorem �� If the parameter set * � Rk has Lebesgue measure � � ��*� �

	� and an estimator $��A
 * exists with

E
k� � $�k� � � for each � � * �

then for � equal to the uniform distribution on *�

I��� � k

�
log

k

��e�
! log��*��

To prove this theorem� we need some standard facts from information

theory� stated in the next two lemmas
 The di�erential entropy of a random

variable X with values in Rk that has a density f�x�� is de�ned as

H�X� � �
Z
f�x� log f�x�dx�

�	



thus H denotes entropy as before in the discrete case� and di�erential entropy

in the continuous case
 The conditional di�erential entropy of X given a

random variable Y with values in a �nite set A �more general cases will not

be needed below�� is de�ned similarly as

H�XjY � � X
a�A

P �a�
�
�
Z
f�xja� log f�xja�dx

�
�

where P �a� is the probability of Y � a� and f�xja� is the conditional density
of X on the condition Y � a


Lemma �� For X and Y as above� I�X�Y � � H�X��H�XjY �� Moreover�

if Z is a function of Y then H�XjY � � H�XjZ� � H�X��

Proof� By the de�nition of mutual information of random variables� one

with values in a �nite set and the other arbitrary� see Section ��

I�X � Y � � H�Y ��H�Y jX� � H�P ��
Z
H�P �
jx��f�x�dx�

where P �
jx� denotes the conditional distribution of Y on the condition X �

x
 Substituting the formula for the latter� P �ajx� � P �a�f�xja��f�x�� into
the above equation� the claimed identity

I�X � Y � � �
Z
f�x� log f�x�dx!

X
a�A

P �a�
Z
f�xja� log f�xja�dx

follows by simple algebra


Next� if Z is a function of Y � for each possible value c of Z let A�c� denote

the set of possible values of Y when Z � c
 Then the conditional density of

X on the condition Z � c is given by

g�xjc� �
P

a�A�c� P �a�f�xja�P
a�A�c� P �a�

�

��



and Jensen�s inequality for the concave function �t log t yields that
X

a�A�c�

P �a���f�xja� log f�xja�� � �
X

a�A�c�

P �a����g�xjc� log g�xjc���

Hence� by integrating and summing for all possible c� the claim H�XjY � �
H�XjZ� follows
 Finally� H�XjZ� � H�X� follows similarly


Lemma �� A k�dimensional random variable V � �V�� � � � � Vk� with EkV k� �
k�� has maximum di�erential entropy if V�� � � � � Vk are independent and have

Gaussian distribution with mean 
 and variance ��� and this maximum en�

tropy is k
�
log���e����

Proof� The integral analogue of the log�sum inequality isZ
a�x� log

a�x�

b�x�
dx � a log

a

b
� a �

Z
a�x�dx� b �

Z
b�x�dx�

valid for any non�negative integrable functions on Rk
 Letting a�x� be any

k�dimensional density for which EkV k� � k��� and b�x� be the Gaussian

density
Q
i����

����
�e��x
�
i 
��

��� the log�sum inequality givesZ
a�x� log a�x�dx�

Z
a�x�

�
�k��� log������ !

X
�x�i ���

�� log e
�
dx � ��

Here
R
a�x��

P
x�i �dx � k�� by assumption� hence the assertion

�
Z
a�x� log a�x�dx � �k��� log���e���

follows� with equality if a�x� � b�x�


Proof of Theorem ��
 Let X be a random variable uniformly distributed

on *� and let Y be the channel output corresponding to input X� that is�

��



a random variable with values in A whose conditional distribution on the

condition X � � equals P

 Further� let Z � $��Y �
 Then� using Lemma ���

I��� � I�X � Y � � H�X��H�XjY �
� H�X��H�XjZ� � H�X��H�X � ZjZ�
� H�X��H�X � Z�� �
��

The hypothesis on the estimator $� implies that

EkX � Zk� � E�EkX � Zk�jX� �
Z
E
k� � $�k���d�� � ��

Hence� by Lemma �� applied with �� � ��k�

H�X � Z� � k

�
log

��e�

k
�

On account of the inequality �
��� where H�X� � log��*�� this completes

the proof of the theorem


��� Optimality results

Returning to the problem of least possible worst case expected redun�

dancy� it follows from Corollary 	 that for any class P of processes with

alphabet A� there exists� for each n� a unique Q�
n attaining the minimum

in �
��
 As discussed before� this I�centroid of the set fPn�P � Pg of the
marginals on An of the processes in P is e�ectively an optimal coding distri�

bution for n�length messages� tailored to the class P
 When P is a parametric

class of processes� that is� P � fP
� � � *g where * is a Borel subset of Rk�

for some k � �� and P
�a
n
� � is a measurable function of � for each n and

an� � An� Theorem �� identi�es the I�centroid Q�
n as

Q�
n�x

n
� � �

Z
P
�n�x

n
� ��n�d��� xn� � An

��



where �n is a capacity achieving distribution for the channel determined

by fP
�n� � � *g provided that a capacity achieving distribution exists� a
su�cient condition for the latter is the closedness of the set fP
�n� � � *g of
the marginal distributions on An� see Lemma ��


Typically� �n does depend on n� and no process exists of which Q
�
n would

be the marginal on An for n � �� �� � � � �a similar inconvenience occurred

also in the context of Theorem �	�
 Still� for important process classes P �

fP
� � � *g� there exists a probability measure � on * not depending on n�

such that the marginals Qn � fQ�xn� �� xn� � Ang of the #mixture process�
Q �

R
P
��d�� given by

Q�xn� � �
Z
P
�n�x

n
� ���d��� xn� � An� n � �� �� � � � �
��

attain the minimum of sup
��D�P
�nkQn� within a constant
 Then Q is

a #nearly optimal coding process�� the arithmetic code determined by Q

attains the least possible worst case redundancy for P � within a constant

Typical examples are the coding processes tailored to the classes of i
i
d
 and

Markov processes� treated in the previous section
 We now show that these

are mixture processes as in �
��
 Their #near optimality� will be proved later

on


First� let P be the class of i
i
d
 processes with alphabet A � f�� � � � � kg�
parametrized by * � f�p�� � � � � pk���� pi � ��

k��P
i��

pi � �g� with

P
�x
n
� � �

kY
i��

pnii � ni � jf� � t � n� xt � igj�

here� for � � �p�� � � � � pk���� pk � �� �p� ! � � �! pk���


Let � be the Dirichlet distribution on * with parameters 	i � �� i �

�� � � � � k� whose density function� with the notation above� is

��



f��������k���
def
�
(�

kP
i��

	i�

kQ
i��
(�	i�

kY
i��

p�i��i �

where (�s� �
�R
�
xs��e�xdx
 Then �
�� gives

Q�xn� � �
Z
�

P
�x
n
� �f��������k���d� �

(�
kP
i��

	i�Qk
i�� (�	i�

Z
�

kY
i��

pni��i��i d�

�
(�

kP
i��

	i�

kQ
i��
(�	i�



kQ
i��
(�ni ! 	i�

(�
kP
i��
�ni ! 	i��



Z
�
fn���������nk��k��� d�

�

kQ
i��
��ni ! 	i � ���ni ! 	i � �� � � � 	i�

�n!
kP
i��

	i � ���n!
kP
i��

	i � �� � � � �
kP
i��

	i�
�

where the last equality follows since the integral of a Dirichlet density is ��

and the (�function satis�es the functional equation (�s ! �� � s(�s�� In

particular� if 	� � � � � � 	k �
�
�
� the mixture process Q �

R
P
��d�� is

exactly the coding process tailored to the i
i
d
 class P � see ����


Next� let P the class of Markov chains with alphabet A � f�� � � � � kg� with
initial distribution equal to the uniform distribution on A� say� parametrized

by * � f�pij��
i
k��
j
k��� pij � ��
k��P
j��

pij � �g�

P
�x
n
� � �

�

jAj
kY
i��

kY
j��

p
nij
ij � nij � jf� � t � n� �� xt � i� xt�� � jgj�

where� for � � �pij�� pik � ���pij! � � �!pik���
 Let � be the Cartesian prod�
uct of k Dirichlet ��

�
� � � � � �

�
� distributions� that is� a distribution on * under

��



which the rows of the matrix �pij� are independent and Dirichlet �
�
�
� � � � � �

�
�

distributed
 The previous result implies that the corresponding mixture pro�

cess Q �
R
P
��d�� equals the coding process tailored to the Markov class

P� see ����


Similarly� the coding process tailored to the class of m�th order Markov

chains� see ��	�� or to its subclass determined by a context function� can also

be represented as Q �
R
P
��d��� with � equal to a Cartesian product of

Dirichlet ��
�
� � � � � �

�
� distributions


To prove �near optimality� of any code� a lower bound to Rn in equation

�
�� is required
 Such bound can be obtained applying Theorems �� and ���

with An in the role of A


Theorem �� Let P � fP
� � � *g be a parametric class of processes� with

* � Rk of positive Lebesgue measure� such that for some estimators $�n�A
n 


*

E
k� � $�nk� � c���

n
� � � * � n � �� �� � � � �

Then� for a suitable constant K�

Rn � k

�
logn�K� n � �� �� � � � �

Moreover� if ��*� � !	� then to any � � � there exists a constant K such

that for each n and distribution Qn on An

��f� � *�D�P
�nkQn� �
k

�
logn�Kg� � ��

Proof� It su�ces to prove the second assertion
 Fixing � � � � ��*�� take

C so large that *	 � f� � *� c��� � Cg has ��*	� � ���
 Then� for arbitrary

��



*� � * with ��*�� � �� Theorem �� applied to fP
�n� � � *� n *	g with
� � C�n gives

I��� � k

�
log

kn

��eC
! log��*� n*	�

where � is the uniform distribution on *� n*	


Since here ��*�n*	� � ���� this and Theorem �� applied to fP
�n� � � *�g
yield

sup

���

D�P
kQn� � I��� � k

�
log

kn

��eC
! log

�

�

�
k

�
logn�K� K �

k

�
log

��eC

k
! log

�

�
�

whenever ��*�� � �
 This proves that the set f� � *�D�P
�nkQn� �
k
�
logn�

Kg can not have Lebesgue measure � �� as claimed


Corollary � For P as above� if the expected redundancy of a pre�x code

fCn�n � �� �� � � �g satis�es

EP �RP�Cn��
k

�
logn
 �	� P � P
� � � *�

for some subset *� of * then ��*�� � ��

Proof� Note that EP �RP�Cn�� k
�
logn
 �	 implies D�PkQn�� k

�
logn 


�	 for the distributionsQn associated with Cn by Qn�x
n
� � � c��L�x

n
� �
 Hence

it su�ces to show that for no *� � * with ��*�� � � can the latter limit

relation hold for each P � P
 with � � *�


Now� if such *� existed� with ��*�� � ��� say� Theorem �
 applied to *�

in the role of * would give ��f� � *�� D�P
�nkQn� � k
�
logn�Kg� � �� n �

�� �� � � � � contradicting D�P
�nkQn�� k
�
logn
 �	� � � *�


��



Theorem �


�i� For the class of i�i�d� processes with alphabet A � f�� � � � � kg�
k � �
�

logn�K� � Rn � R�
n �

k � �
�

logn!K��

where K� and K� are constants� The worst case redundancies R�
Cn and

RCn of the arithmetic code determined by the coding process Q given by

���� are the best possible for any pre�x code� up to a constant�

�ii� For the class of m	th order Markov chains with alphabet A � f�� � � � � kg�
�k � ��km

�
logn�K� � Rn � R�

n �
�k � ��km

�
logn!K�

with suitable constants K� and K�� The arithmetic code determined by

the coding process Q given by ���� is nearly optimal in the sense of �i��

Proof� �i� The class P of i
i
d
 processes satis�es the hypothesis of The�

orem �
� with k replaced by k � �
 Suitable estimators $�n are the natu�

ral ones� for xn� � An with empirical distributions $P � �$p�� � � � � $pk�� set
$�n�x

n
� � � �$p�� � � � � $pk���
 Thus the lower bound to Rn follows from Theo�

rem �

 Combining this with the bound in ���� completes the proof


�ii� To prove the lower bound to Rn� consider the m�th order Markov

chains with uniform initial distribution� say� restricting attention to the irre�

ducible ones
 The role of � is now played by the �k���km�tuple of transition
probabilities P �jjam� �� am� � Am� j � �� � � � � k � �
 It is not hard to see that
estimating P �jjam� � from xm� � An by the ratio nam� j�nam� �with the notation

in equation ��	�� gives rise to estimators $�n of � that satisfy the hypothesis of

Theorem �
� with �k� ��km in the role of k
 Then the claimed lower bound

follows� and combining it with the bound in ���� completes the proof


�




Remark �� Analogous results hold� with similar proofs� for any subclass

of the m�th order Markov chains determined by a context function� see Sec�

tion �


� Redundancy and the MDL principle

Further results about redundancy for processes are discussed in this

section� with applications to statistical inference via theminimum description

length �MDL� principle


As in the last sections� the term code means either an n�code Cn�A
n 


f�� �g�� or a sequence of n�codes fCn�n � �� �� � � �g
 Codes fCn�n � �� �� � � �g
determined by a #coding process� Q will play a distinguished role
 For con�

venience� we will use the term Q�code for an #ideal code� determined by

Q� with length function L�xn� � � � logQ�xn� �� whose redundancy function
relative to a process P is

R�xn� � � log
P �xn� �

Q�xn� �
�

The results below stated for such ideal codes are equally valid for real �Shan�

non or arithmetic� codes whose length and redundancy functions di�er from

those of the ideal Q�codes by less than � bits


Theorem �� If P and Q are mutually singular probability measures on A��

the P �redundancy of a Q�code goes to in�nity� with P �probability ��

Proof� Let Fn be the ��algebra generated by the cylinder sets �x
n
� �� x

n
� � An


Then


Zn �

Q�xn� �

P �xn� �
� n � �� �� � � �

�
is a non�negative martingale with respect

��



to the �ltration fFng� with underlying probability measure P� hence the
almost sure limit

lim
n��

Zn � Z � �

exists
 We have to show that Z � � �a
s
�� or equivalently that E�Z� � �


By the singularity hypothesis� there exists a set "A � F � ���Fn� such

that P � "A� � �� Q� "A� � �
 De�ne a measure � by

��B� � Q�B� !
Z
B

ZdP� B � F �

Since F � ���Fn�� to every � � � and su�ciently large m there exists
"Am � Fm such that the symmetric di�erence of "A and "Am has ��measure

less than �� thus�

Q� "Am� !
Z
	An 	Am

ZdP � � �

Since the de�nition of Zn implies
R
	Am

ZndP � Q� "Am� for n � m� Fatou�s

lemma gives Z
	Am

ZdP � lim inf
n��

Z
	Am

ZndP � Q� "Am� �

Combining these two bounds� we obtain

E�Z� �
Z
	Am

ZdP !
Z
	An 	Am

ZdP � � �

Since � � � was arbitrary� E�Z� � � follows


��� Codes with sublinear redundancy growth

While by Theorem �	 the redundancy of a Q�code relative to a process

P typically goes to in�nity� the next theorem gives a su�cient condition for

a sublinear growth of this redundancy� that is� for the per letter redundancy

to go to zero


�	



For this� we need the concept of divergence rate� de�ned for processes P

and Q by

D�PkQ� � lim
n��

�

n
D�PnkQn��

provided that the limit exists
 The following lemma gives a su�cient con�

dition for the existence of divergence rate� and a divergence analogue of the

entropy theorem
 For ergodicity� and other concepts used below� see the

Appendix


Lemma �� Let P be an ergodic process and Q a Markov chain of order m

with D�Pm��kQm��� � !	� Then

�

n
log

P �xn� �

Q�xn� �

 D�PkQ� � �H�P �� X

xm��
� �Am��

P �xm��
� � logQ�xm�� j xm� ��

both P �almost surely and in L��P �� with Q�xm�� j xm� � denoting the transition
probabilities of the Markov chain Q�

Proof� Since Q is Markov of order m�

log
P �xn� �

Q�xn� �
� logP �xn� �� logQ�xm� ��

n�mX
i��

logQ�xm�i j xm�i��
i �� n � m�

here logQ�xm� � is �nite with P �probability �� and so is logQ�xm�� j xm� ��
since D�Pm��kQm��� � !	


By the entropy theorem� and the ergodic theorem applied to f�x�� � �

logQ�xm�� j xm� �� we have
�
n
logP �xn� �
 �H�P �

�
n
log

Pn�m
i�� logQ�xm�i j xm�i��

i �
 EP �logQ�xm�� j xm� ���

both P �almost surely and in L��P �
 The lemma follows


��



Theorem �� Let P be an ergodic process� and let Q �
R
U���d�� be a mix�

ture of processes fU�� � � *g such that for every � � � there exist an m and

a set *	 � * of positive ��measure with

U� Markov of order m and D�PkU�� � � � if � � *	�

Then for the process P � both the pointwise redundancy per symbol and the

expected redundancy per symbol of the Q�code go to zero as n 
 	� the

former with probability ��

Remark �� Here Q need not be the mixture of a parametric class of pro�

cesses� that is� unlike in Section 	� the index set * need not be a subset of

an Euclidean space
 It may be any set� endowed with a ��algebra , such

that U��a
n
� � is a measurable function of � for each an� � An� n � �� �� � � ��

and � is any probability measure on �*�,�
 All subsets of * we consider are

supposed to belong to ,


Proof of Theorem ��� We �rst prove for the pointwise redundancy per

symbol that
�

n
R�xn� � �

�

n
log

P �xn��

Q�xn� �

 � � P �a
s
 �

�

To establish this� on account of Theorem ��� it su�ces to show that for every

� � �

lim sup
n��

�

n
R�xn� � � �� P �a
s
�

This will be established by showing that

��nQ�xn� �

P �xn� �

 !	� P �a
s


Since

Q�xn� � �
Z
�

U��x
n
� ���d�� �

Z
��

U��x
n
� ���d��� �
��

��



we have

��nQ�xn� �

P �xn� �
�
Z
��

��nU��x
n
� �

P �xn� �
��d�� �

Z
��

�
n��� �

n
log

P �xn� �

U��x
n
�
�
�
��d���

If � � *	� Lemma �� implies

�

n
log

P �xn� �

U��xn� �

 D�PkU�� � �

for P �almost all x�� � A� �the exceptional set may depend on ��
 It follows

that the set of pairs �x�� � �� � A��*	 for which the last limit relation does

not hold� has P � � �measure �� and consequently for P �almost all x�� � A�

the set of those � � *	 for which that limit relation does not hold� has

��measure � �both by Fubini�s theorem�


Thus� for P �almost all x�� � the integrand in the above lower bound to

��nQ�xn� ��P �x
n
�� goes to in�nity for ��almost all � � *	
 Hence� by Fatou�s

lemma� the integral itself goes to !	� completing the proof of �

�


To prove that also the expected redundancy per symbol �
n
EP �R�x

n
� �� goes

to zero� we have to show that

�

n
EP �logQ�x

n
� ��
 �H�P ��

On account of the entropy theorem� the result �

� is equivalent to

�

n
logQ�xn� �
 �H�P � P �a
s
�

hence it su�ces to show that �
n
logQ�xn� � is uniformly bounded �P �a
s
�


Since for � � *	 the Markov chains U� of order m satisfy D�PkU�� � ��

their transition probabilities U��xm�� j xm� � are bounded below by some � � �

whenever P �xm��
� � � �� see the expression of D in Lemma ��
 This implies

by �
�� that Q�xn� � is bounded below by a constant times �n� P �a
s
 The

proof of Theorem �� is complete


��



Example � Let Q �
P�

m�� 	mQ
�m�� where 	�� 	�� � � � are positive numbers

with sum �� and Q�m� denotes the process de�ned by equation ��	� �in par�

ticular� Q��� and Q��� are de�ned by ���� and �����
 This Q satis�es the

hypothesis of Theorem ��� for each ergodic process P � on account of the

mixture representation of the processes Q�m� established in Section 	
 In�

deed� the divergence rate formula in Lemma �� implies that D�PkU�� � �

always holds if U� is a Markov chain of order m whose transition proba�

bilities U�xm�� j xm� � are su�ciently close to the conditional probabilities
PrfXm�� � xm�� j Xm

� � xm� g for a representation fXng of the process
P � with m so large that H�Xm�� j Xm

� � � H�P � ! ���� say
 It follows by

Theorem �� that the Q�code with Q �
�P

m��
	mQ

�m� is weakly universal for

the class of ergodic processes� in the sense of ����� and also its pointwise

redundancy per symbol goes to zero P �a
s
� for each ergodic process P 


Recall that the weak universality of this Q�code has already been estab�

lished in Section �� even for the class of all stationary processes


Example 
 Let fU	 � � � (g be a countable family of Markov processes �of
arbitrary orders�� such that for each ergodic process P �

inf
	��

D�PkU	� � � � �
	�

Then for arbitrary numbers 		 � � with
P
		 � �� the process Q �

P
	��

		U	

satis�es the conditions of Theorem ��� for every ergodic process P 
 Hence

the Q�code is weakly universal for the class of ergodic processes
 Note that

the condition �
	� is satis�ed� for example� if the family fU	� � � (g consists
of all those Markov processes� of all orders� whose transition probabilities are

rational numbers


While the last examples give various weakly universal codes for the class

��



of ergodic processes� the next example shows the non�existence of strongly

universal codes for this class


Example � Associate with each am� � Am a process P � the probability mea�

sure onA� that assigns weights ��m to the in�nite sequences ami a
m
� a

m
� � � � � i �

�� � � � � m� Clearly� this P is an ergodic process
 Let P�m� denote the class of

these processes for all am� � Am
 We claim that for the class P equal to the

union of the classes P�m�� m � �� �� � � �

Rn � inf
Qn

sup
P�P

D�PnkQn��

see equation �
��� is bounded below by n log jAj � logn�

Denote by Pam� the marginal on Am of the process P associated with am�
as above� and by �m the uniform distribution on Am� Since P�n� is a subset

of P� Theorem �� implies

Rn � inf
Qn

sup
P�P �n�

D�PnkQn� � I��n� � H
�
�

jAjn
X

an��A
n

Pan�

�
� �

jAjn
X

an��A
n

H�Pan� ��

As Pan� is concentrated on the cyclic shifts of a
n
� � implying H�Pan� � � logn�

and the �output distribution� jAj�nPan��A
n Pan� equals the uniform distribu�

tion on An� this establishes our claim
 In particular� no strongly universal

codes exist for the class P� let alone for the larger class of all ergodic pro�
cesses


Next we consider a simple construction of a new code from a given ��nite

or� countable family of codes fC	� � � (g� where C	 � fC	
n�A

n 
 B�� n �

�� �� � � �g� B � f�� �g
 Let the new code assign to each xn� � An one of the

codewords C	
n�x

n
� �� with � � ( chosen depending on xn� � preambled by a code

C��� of the chosen � � (
 Here C� ( 
 B� can be any pre�x code� the

��



preamble C��� is needed to make the new code decodable
 We assume that

� above is chosen optimally� that is� to minimize L���!L	�x
n
� �� where L	�x

n
� �

and L��� denote the length functions of the codes C	 and C
 Then the new

code has length function

L�xn� � � min
	��

�L��� ! L	�x
n
� ���

If the family fC	� � � (g consists of Q	�codes for a list of processes fQ	 � � �
(g� the code constructed above will be referred to as generated by that list


Lemma �� A code generated by a list of processes fQ	� � � (g is e�ectively

as good as a Q�code for a mixture Q of these processes� namely its length

function satis�es

� logQ����xn� � � L�xn� � � � logQ����xn� � ! log c��

where

Q��� � c�
X
	��

��L�	�Q	 � Q��� � c�
P

	�� �
��L�	�Q	 �

c� �

��X
	��

��L�	�

�A��

� c� �
�P

	�� �
��L�	�

���
�

Proof� The Q	�code C	 has length function L	�x
n
� � � � logQ��x

n
� �� hence

L�xn� � � min
	�L

�L���� logQ	�x
n
� �� � � logmax

	�L
��L�	�Q	�x

n
� ��

Since

Q����xn� � �
X
	��

��L�	�Q	�x
n
� � � max	�L �

�L�	�Q	�x
n
� � �

� P
	�� �

��L�	�Q	�x
n
� � �

Q����xn� �

c�
�

��



where the �rst and third inequalities are implied by Kraft�s inequalityP
	�� �

�L�	� � �� the assertion follows


Recalling Examples 
 and �� it follows by Lemma �
 that the list of

processes fQ�m�� m � �� �� � � �g� with Q�m� de�ned by equation ��	�� as well

as any list of Markov processes fU	 � � � (g with the property �
	�� generates
a code such that for every ergodic process P � the redundancy per symbol goes

to � P �a
s
� and also the mean redundancy per symbol goes to �


��� The minimum description length principle

The idea of the above construction of a new code from a given ��nite

or countable� family of codes underlies also the minimum description length

�MDL� principle of statistical inference that we discuss next


MDL principle� The statistical information in data is best extracted

when a possibly short description of the data is found� The statistical model

best �tting to the data is the one that leads to the shortest description� taking

into account that the model itself must also be described�

Formally� in order to select a statistical model that best �ts the data xn� �

from a list of models indexed with elements � of a ��nite or� countable set

(� one associates with each candidate model a code C	� with length function

L	�x
n
� �� and takes a code C� ( 
 B� with length function L��� to describe

the model
 Then� according to the MDL principle� one adopts that model

for which L��� ! L	�x
n
� � is minimum


For a simple model stipulating that the data are coming from a speci�

�ed process Q	 � the associated code C	 is a Q	�code with length function

��



L	�x
n
� � � � logQ	�x

n
� �
 For a composite model stipulating that the data

are coming from a process in a certain class� the associated code C	 should

be universal for that class� but the principle admits a freedom in its choice


There is also a freedom in choosing the code C� (
 B�


To relate the MDL to other statistical principles� suppose that the can�

didate models are parametric classes P	 � fP�� � � *	g of processes� with
� ranging over a ��nite or� countable set (
 Suppose �rst that the code C	

is chosen as a Q	�code with

Q	 �
Z
��

P��	�d��� �
��

where �	 is a suitable probability measure on *	 � see Section 	
 Then MDL

inference by minimizing L��� ! L	�x
n
� � � L���� logQ	�x

n
� � is equivalent to

Bayesian inference by maximizing the posterior probability �conditional prob�

ability given the data xn� � of �� if one assigns to each � � ( a prior probability
proportional to ��L�	�� and regards �	 as a prior probability distribution on

*	
 Indeed� with this choice of the priors� the posterior probability of � is

proportional to ��L�	�Q	�x
n
� �


Suppose next that the codes C	 associated with the models P	 as above

are chosen to be NML codes� see Theorem �	� with length functions

L	�x
n
� � � � logNML	�x

n
� � � � logP �	�

ML�x
n
� � ! log

X
an��A

n

P
�	�
ML�a

n
� ��

where

P
�	�
ML�x

n
� � � sup

����

P��x
n
� � �

Then the MDL principle requires minimizing

L��� ! L	�x
n
� � � � logP �	�

ML�x
n
� � !Rn���

�




where

Rn��� � L��� ! log
X

an��A
n

P
�	�
ML�a

n
� � �

In statistical terminology� this is an instance of penalized maximum likelihood

methods� that utilize maximization of logP
�	�
ML�x

n
� � � Rn���� where Rn��� is

a suitable #penalty term�


Remark �
 We note without proof that� under suitable regularity condi�

tions� L��� !L	�x
n
� � is asymptotically equal �as n
	� to � logP �	�

ML�x
n
� � !

�
�
k	 logn� for both of the above choices of the codes C	� where k	 is the di�

mension of the model P	 �meaning that *	 is a subset of positive Lebesgue

measure of Rk� �
 When ( is �nite� this admits the conclusion that MDL

is asymptotically equivalent to penalized maximum likelihood with the so�

called BIC �Bayesian information criterion� penalty term� Rn��� �
�
�
k	 logn


This equivalence� however� need not hold when ( is in�nite� as we see later


The next theorems address the consistency of MDL inference� namely�

whether the true model is always recovered� eventually almost surely� when�

ever one of the candidate models is true


Theorem �
 Let fQ	� � � (g be a ��nite or� countable list of mutually

singular processes� and let L��� be the length function of a pre�x code C� (

B�� If the true process P is on the list� say P � Q	�� the unique minimizer

of L���� logQ	�x
n
� � is �

�� eventually almost surely as n
	�

Remark �� The singularity hypothesis is always satis�ed if the processes

Q	 � � � (� are �distinct and� ergodic


��



Proof� Consider the mixture process

Q � c
X

	��nf	�g

��L�	�Q	

where c � � �due to Kraft�s inequality�
 Then

Q�xn� � �
X

	��nf	�g

��L�	�Q	 � max
	��nf	�g

��L�	�Q	�x
n
� � �

The hypothesis implies that Q and Q	� are mutually singular� hence by

Theorem �	

logQ	��x
n
� �� logQ�xn� �
 !	 Q	� � a�s�

This and the previous inequality complete the proof


Theorem �� Let fP	 � � � (g be a ��nite or� countable list of parametric

classes P	 � fP�� � � *	g of processes� let Q	 � � � (� be mixture processes as

in equation �
��� supposed to be mutually singular� and let L��� be the length

function of a pre�x code C� ( 
 B�� Then� with possible exceptional sets

N	 � *	 of �	�measure �� if the true process is a non�exceptional member

of either class P	� say P � Q�� � � *	� n N	�� the unique minimizer of

L���� logQ	�x
n
� � is �

�� eventually almost surely as n
	�

Remark �� A necessary condition for the singularity hypothesis is the es�

sential disjointness of the classes P	� � � (� that is� that for no � �� �	 can

*	 � *	� be of positive measure for both �	 and �	� 
 This condition is also

su�cient if all processes P� are ergodic� and processes with di�erent indices

are di�erent


Proof of Theorem ��� By Theorem ��� the set of those x�� � A� for which

there exist in�nitely may n with

L����� logQ	��x
n
� � � inf

	��nf	�g
�L���� logQ	�x

n
� ��

�	



has Q	��measure �� for any �� � (
 By the de�nition of Q	� � see �
��� this

implies that the above set has P��measure � for all � � *	� except possibly

for � in a set N	� of �	��measure �


As an application of Theorem ��� consider the estimation of the order

of a Markov chain� with alphabet A � f�� � � � � kg
 As in Example 
 de�

note by Q�m� the coding process tailored to the class of Markov chains of

order m
 According to the MDL principle� given a sample xn� � An from a

Markov chain P of unknown order m�� take the minimizer cm � cm�xn� � of
L�m� � logQ�m��xn� � as an estimate of m

�� where L�
� is the length func�
tion of some pre�x code C�N 
 B�
 Recall that Q�m� equals the mixture

of m�th order Markov chains with uniform initial distribution� with respect

to a probability distribution which is mutually absolutely continuous with

the Lebesgue measure on the parameter set *m� the subset of k
m�k � �� di�

mensional Euclidean space that represents all possible transition probability

matrices ofm�th order Markov chains
 It is not hard to see that the processes

Q�m�� m � �� � � � � are mutually singular� hence Theorem �� implies that

cm�xn� � � m� eventually almost surely� �
��

unless the transition probability matrix of the true P corresponds to some

� � Nm� where Nm� � *m� has Lebesgue measure �
 �Formally� this follows

for Markov chains P with uniform initial distribution� but events of proba�

bility � for a Markov chain P with uniform initial distribution clearly have

probability � for all Markov chains with the same transition probabilities

as P 
�

Intuitively� the exceptional sets Nm � *m ought to contain all parameters

that do not represent irreducible chains� or represent chains of smaller order

than m
 It might appear a plausible conjecture that the exceptional sets

Nm are thereby exhausted� and the consistency assertion �
�� actually holds

��



for every irreducible Markov chain of order exactly m�
 Two results �stated

without proof� that support this conjecture are that for Markov chains as

above� the MDL order estimator with a prior bound to the true order� as

well as the BIC order estimator with no prior order bound� are consistent


In other words� equation �
�� will always hold if cm�xn� � is replaced either
by the minimizer of L�m�� logQ�m��xn� � subject to m � m�� where m� is a

known upper bound to the unknown m�� or by the minimizer of

� logP �m�
ML �x

n
� � !

�

�
km�k � �� logn �

Nevertheless� the conjecture is false� and we conclude this section by a

counterexample
 It is unknown whether also other counterexamples exist


Example � Let P be the i
i
d
 process with uniform distribution� that is�

P �xn� � � k�n� xn� � An� A � f�� � � � � kg�

Then m� � �� and as we will show�

L���� logQ����xn� � � inf
m��

�L�m�� logQ�m��xn� ��� eventually a
s
� �
��

provided that L�m� grows sublinearly with m� L�m� � o�m�
 This means

that �
�� is false in this case
 Actually� using the consistency result with a

prior bound to the true order� stated above� it follows that cm�xn� � 
 !	�
almost surely


To establish equation �
��� note �rst that

� logQ����xn� � � � logP ���
ML�x

n
� � !

k � �
�

logn !O����

where the O��� term is uniformly bounded for all xn� � A�
 Here

P
���
ML�x

n
� � � sup

fp������pkg

kY
i��

pnii �
kY
i��

�
ni
n

�ni

��



is the largest probability given to xn� by i
i
d
 processes� with ni denoting

the number of times the symbol i occurs in xn� � and the stated equality holds

since P
���
ML�x

n
� ��Q

����xn� � is bounded both above and below by a constant times

n
k��
� � see Remark ��� after Theorem ��


Next� since P is i
i
d
 with uniform distribution� the numbers ni above

satisfy� as n
	�

ni �
n

k
!O�

q
n log logn �� eventually a
s
�

by the law of iterated logarithm
 This implies

� logP ���
ML�x

n
� � �

kX
i��

ni log
�
n

ni

�
� n log k !O�log logn��

since

log
n

ni
� log k ! log

�
� !

n

kni
� �

�
�

� log k !
�
n

kni
� �

�
log e!O

�
n

kni
� �

��
�

It follows that the left hand side of equation �
�� equals n log k! k��
�
logn!

O�log logn�� eventually almost surely as n
	


Turning to the right hand side of equation �
��� observe that if no m�

block am� � Am occurs in xn��� more than once then Q�m��xn� � � k�n
 Indeed�

then nam� is non�zero for exactly n�m blocks am� � Am in the de�nition ��	�

of Q�m�� for these� nam� � � and there is exactly one j � A with nam� j nonzero�

necessarily with nam� j � �
 Hence equation ��	� gives Q�m��xn� � � k�n as

claimed


The probability that there is anm�block occurring in xn��� more than once

is less than n�k�m
 To see this� note that for any � � j � � � n �m ! ��

the conditional probability of xj�m��j � x��m��� � when x���� � A��� is �xed

��



is k�m� as for exactly one of the km equiprobable choices of x��m��� � Am

will x��m��� � xj�m��j hold
 Hence also the unconditional probability of this

event is k�m� and the claim follows
 In particular� taking mn �
�

log k
logn�

the probability that some mn�block occurs in xn��� more than once is less

than n��
 By Borel�Cantelli� and the previous observation� it follows that

� logQ�mn��xn� � � n log k� eventually a
s


This� and the assumption L�m� � o�m�� imply that the right hand side of

�
�� is � n log k! o�logn�� eventually almost surely� completing the proof of

equation �
��


Appendix� Summary of Process Concepts

A �stochastic� process is frequently de�ned as a sequence of random vari�

ables fXng� unless stated otherwise� we assume that each Xn takes values in

a �xed �nite set A called the alphabet
 The n�fold joint distribution of the

process is the distribution Pn on A
n de�ned by the formula

Pn�x
n
� � � Prob�Xi � xi� � � i � n�� xn� � An�

For these distributions� the consistency conditions

Pn�x
n
� � �

X
a�A

Pn���x
n
�a�

must hold
 The process fXng� indeed� any sequence of distributions Pn on
An� n � �� �� � � � that satis�es the consistency conditions� determines a unique

Borel probability measure P on the set A� of in�nite sequences drawn from

A such that each cylinder set �an� � � fx�� � xn� � an�g has P �measure Pn�an� ��
a Borel probability measure on A� is a probability measure de�ned on the

��algebra F of Borel subsets of A�� the smallest ��algebra containing all

cylinder sets


���



The probability space on which the random variables Xn are de�ned is

not important� all that matters is the sequence of joint distributions Pn
 For

this reason� a process can also be de�ned as a sequence of distributions Pn

on An� n � �� �� � � �� satisfying the consistency conditions� or as a probability

measure P on �A��F�
 In these notes we adopt the last de�nition� by a
process P we mean a Borel probability measure on A�
 The probabilities

Pn�a
n
� � � P ��an� �� will be usually denoted brie�y by P �a

n
��


A sequence of random variables fXng whose n�dimensional joint distri�
butions equal the n�dimensional marginals Pn of P � will be referred to as

a representation of the process P 
 Such a representation always exists� for

example the Kolmogorov representation� with Xn de�ned on the probability

space �A��F � P � by Xn�x
�
� � � xi� i � �� �� � � �


A process P is stationary if P is invariant under the shift T � the trans�

formation on A� de�ned by the formula Tx�� � x�� 
 Thus P is stationary if

and only if P �T��A� � P �A�� A � F 


The entropy rate of a process P is de�ned as

H�P � � lim
n��

�

n
H�X�� � � � � Xn��

provided that the limit exists� where fXng is a representation of the process
P 
 A stationary process P has entropy rate

H�P � � lim
n��

H�XnjX�� � � � � Xn����

here the limit exists since stationarity implies that H�XnjX�� � � � � Xn��� �

H�Xn��jX�� � � � � Xn� � H�Xn��jX�� � � � � Xn�� and the claimed equality fol�

lows by the additivity of entropy�

H�X�� � � � � Xn� � H�X�� !
nX
i��

H�XijX�� � � � � Xi����

���



If fP� � *g is a family processes� with � ranging over an arbitrary

index set * endowed with a ��algebra , such that P��a
n
� � � P���a

n
� �� is

a measurable function of � for each an� � An� n � �� �� � � � � the mixture of the

processes P� with respect to a probability measure � on �*�,� is the process

P �
R
P���d�� de�ned by the formula

P �an� � �
Z
P��a

n
� ���d��� an� � An� n � �� �� � � � �

A process P is called ergodic if it is stationary and� in addition� no non�

trivial shift�invariant sets exist �that is� if A � F � T��A � A� then P �A� � �

or ��� or equivalently� P can not be represented as the mixture P � 	P�!���
	�P� of two stationary processes P� �� P� �with � � 	 � ��
 Each stationary

process is representable as a mixture of ergodic processes �by the so�called

ergodic decomposition theorem�
 Other key facts about ergodic processes�

needed in Section �� are the following�

Ergodic theorem� For an ergodic process P � and P �integrable function

f � A� 
 RI �
�

n

nX
i��

f�x�i �

Z
fdP�

both P �almost surely and in L��P ��

Entropy theorem� �Shannon�McMillan�Breiman theorem� For an ergodic

process P �

� �
n
logP �xn� �
 H�P ��

both P �almost surely and in L��P ��

For an ergodic process P � almost all in�nite sequences x�� � A� are

P �typical� that is� the #empirical probabilities�

$P �ak�jxn� � �
�

n� k ! �
jfi � xi�ki�� � ak�� � � i � n� kgj

���



of k�blocks ak� � Ak in xn� approach the true probabilities P �a
k
�� as n 
 	�

for each k � � and ak� � Ak
 This follows applying the ergodic theorem to

the indicator functions of the cylinder sets �ak�� in the role of f 
 Finally� we

note that also conversely� if P �almost all x�� � A� are P �typical then the

process P is ergodic


Historical Notes

Section �� Information theory has been created by Shannon �

�
 The

information measures entropy� conditional entropy and mutual information

were introduced by him
 A formula similar to Shannon�s for entropy in

the sense of statistical physics dates back to Boltzmann �
�
 Information

divergence was used as a key tool but had not been given a name in Wald �
���

it was introduced as an information measure in Kullback and Leibler ����


Theorem � is essentially due to Shannon �

�� Theorem � is of Rissanen ����


Arithmetic coding� whose origins are commonly attributed to unpublished

work of P
 Elias� was developed to a powerful data compression technique

primarily by Rissanen� see ����� �
��


Section �� The combinatorial approach to large deviations and hypoth�

esis testing originates in Sanov �
�� and Hoe�ding ����
 A similar approach

in statistical physics goes back to Boltzmann �
�
 The method of types

emerged as a major technique of information theory in Csisz�ar and K�orner

����
 �Stein�s lemma� appeared in Cherno� �	�� attributed to C
 Stein


Section �� Kullback ���� suggested I�divergence minimization as a prin�

ciple of statistical inference� and proved special cases of several results in this

Section
 Information projections were systematically studied in -Cencov ��� �

see also Csisz�ar ����� Csisz�ar and Mat�u-s ��	�
 In these references� distribu�

tions on general alphabets were considered� our �nite alphabet assumption

���



admits a simpli�ed treatment
 The characterization of the closure of an ex�

ponential family mentioned in Remark 
 is a consequence of a general result

in ��	� for exponential families whose domain of parameters is the whole Rk�

the last hypothesis is trivially satis�ed in the �nite alphabet case


The remarkable analogy of certain information theoretic concepts and

results to geometric ones� instrumental in this Section and later on� has

a profound background in a di�erential geometric structure of probability

distributions� beyond the scope of these notes� see -Cencov ���� Amari ���


Section �� f�divergences were introduced by Csisz�ar ����� ����� and in�

dependently by Ali and Silvey ���� see also the book Liese and Vajda ��
�


A proof that the validity of Lemma � characterizes I�divergence within the

class of f�divergences appears in Csisz�ar ��
�
 Theorem �� can be regarded

as a special case of general results about likelihood ratio tests� see Cox and

Hinkley� ��� Section �
��� this special case� however� has admitted a simple

proof
 For the information theoretic approach to the analysis of contingency

tables see Kullback ����� Gokhale and Kullback ��	�


Section �� Iterative scaling has long been used in various �elds� primarily

in the two�dimensional case as an intuitive method to �nd a non�negative

matrix with prescribed row and column sums� �most similar� to a previously

given non�negative matrix� the �rst reference known to us is Kruithof ����
 Its

I�divergence minimizing feature was pointed out in Ireland and Kullback �����

though with an incomplete convergence proof
 The proof here� via Theorem

��� is of Csisz�ar ����
 Generalized iterative scaling is due to Darroch and

Ratcli� ����
 Its gometric interpretation admitting the convergence proof via

Theorem �� is of Csisz�ar ����
 Most results in Section 

� are from Csisz�ar

and Tusn�ady ����
 The EM algorithm has been introduced by Dempster�

��




Laird and Rubin ����
 The portfolio optimizing algorithm in Remark � is

due to Cover ���


Section 
� Universal coding was �rst addressed by Fitingof ����� who

attributed the idea to Kolmogorov
 An early theoretical development is

Davisson ����
 Theorem �� is of Barron ���� and Theorem �	 is of Shtarkov

�
	�
 The universal code for the i
i
d class with coding process de�ned by

eq
 ���� appears in Krichevsky and Tro�mov ���� and in Davisson� McEliece�

Pursley and Wallace ����
 Our proof of Theorem �� follows ����
 Theorem

�� is due to Shtarkov �
	�
 The construction of �doubly universal� codes

via mixing �or �weighting�� as in Remark �� was suggested by Ryabko �
��


The context weighting algorithm mentioned in Remark �� was developed by

Willems� Shtarkov and Tjalkens ����


Section �� The approach here follows� though not in the details� Davis�

son and Leon�Garcia ����
 Lemma � dates back to Tops.�
��
 The �rst

assertion of Theorem �� appears in ���� �crediting R
 Gallager for an unpub�

lished prior proof�� with a proof using the minimax theorem� see also �for

* �nite� Csisz�ar and K�orner ����� p
�
�� and the references there
 Theorem

�
 and Corollary � are based on ideas of Davisson� McEliece� Pursley and

Wallace ���� and of Rissanen ����
 For early asymptotic results on worst

case redundancy as in Theorem ��� see Krichevski ���� �i
i
d
case� and Tro��

mov �
�� �Markov case�� the latter reference attributes the upper bound to

Shtarkov


Section �� The main results Theorems �	��� are due to Barron ���


While Examples 
 and � give various weakly universal codes for the class

of ergodic processes� those most frequently used in practice �the Lempel�Ziv

���



codes� see ����� are not covered here
 The MDL principle of statistical infer�

ence has been proposed by Rissanen� see ��	�� ����
 The BIC criterion was

introduced by Schwarz �
��
 The consistency of the BIC Markov order esti�

mator was proved� assuming a known upper bound to the order� by Finesso

��
�� and without that assumption by Csisz�ar and Shields ����
 The coun�

terexample to the conjecture on MDL consistency suggested by Theorem ��

is taken form ����


Appendix
 For details on the material summarized here see� for example�

the �rst Section of the book Shields �
��
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