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Preface

These notes are concerned with applications of information theory con-
cepts in statistics. They originated as lectures given by Imre Csiszar at
the University of Maryland in 1989 with later additions and corrections by
Csiszar and Paul Shields.

Attention is restricted to finite alphabet models. This excludes some cele-
brated applications such as the information theoretic proof of the dichotomy
theorem for Gaussian measures, or of Sanov’s theorem in a general setting,
but considerably simplifies the mathematics and admits combinatorial tech-
niques. Even within the finite alphabet setting, no efforts were made at
completeness. Rather, some typical topics were selected, according to the
authors’ research interests. In all of them, the information measure known
as information divergence (I-divergence) or Kullback-Leibler distance or rel-

ative entropy plays a basic role. Several of these topics involve ”information
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geometry”, that is, results of a geometric flavor with [-divergence in the role

of squared Euclidean distance.

In Section 1, a combinatorial technique of major importance in informa-
tion theory is applied to large deviation and hypothesis testing problems.
The concept of I-projections is addressed in Sections 2 and 3, with appli-
cations to maximum likelihood estimation in exponential families and, in
particular, to the analysis of contingency tables. Iterative algorithms based
on information geometry, to compute I-projections and maximum likelihood
estimates, are analysed in Section 4. The statistical principle of minimum
description length (MDL) is motivated by ideas in the theory of universal
coding, the theoretical background for efficient data compression. Sections 5
and 6 are devoted to the latter. Here, again, a major role is played by con-
cepts with a geometric flavor that we call I-radius and I-centroid. Finally,
the MDL principle is addressed in Section 7, based on the universal coding

results.

Reading these notes requires no prerequisites beyond basic probability
theory. Measure theory is needed only in the last three sections, dealing
with processes. Even there, no deeper tools than the martingale convergence
theorem are used. To keep these notes self-contained, the information theo-
retic prerequisites are summarized in Section 0, and the statistical concepts
are explained where they are first used. Still, while prior exposure to informa-
tion theory and/or statistics is not indispensable, it is certainly useful. Very
little suffices, however, say Chapters 2 and 5 of the Cover-Thomas book [8] or
Sections 1.1, 1.3, 1.4 of the Csiszar-Korner book [15], for information theory,
and Chapters 1-4 and Sections 9.1-9.3 of the book of Cox and Hinckley [9],

for statistical theory.



0 Preliminaries.

The symbol A = {a1, as,...,a} denotes a finite set of cardinality |A;
xp denotes the sequence z,,, Tpm+1, ..., Ty, Where each z; € A; A" denotes
the set of all z7; A> denotes the set of all infinite sequences z = x{°, with
x; € A,t > 1; and A* denotes the set of all finite sequences drawn from A.
The set A* also includes the empty string A. The concatenation of u € A*
and v € A* U A% is denoted by uv. A finite sequence u is a prefix of a finite

or infinite sequence w, and we write u < w, if w = uw, for some v.

The entropy H(P) of a probability distribution P = {P(a),a € A} is
defined by the formula

H(P)=-— Z P(a)log P(a).

a€EA

Here, as elsewhere in these notes, base two logarithms are used and 0log0 is
defined to be 0. Random variable notation is often used in this context. For
a random variable X with values in a finite set, H(X) denotes the entropy
of the distribution of X. If V is another random variable, not necessarily
discrete, the conditional entropy H(X|Y) is defined as the average, with
respect to the distribution of Y, of the entropy of the conditional distribution
of X, given Y = y. The mutual information between X and Y is defined by
the formula
I(XANY)=H(X)—- HX|Y).

If Y (as well as X) takes values in a finite set, the following alternative

formulas are also valid.
H(X|Y) = H(X,Y)—-H(Y)

I(XAY) = H(X)+H(Y)-H(X,Y)
= H(Y)- H(Y|X).



For two distributions P and @ on A, information divergence (I-divergence)

or relative entropy is defined by

P(a)

D(P||Q) = }_ P(a)log .

2 e )
A key property of I-divergence is that it is nonnegative and zero if and only
if P = (). This is an instance of the log-sum inequality, namely, that for

arbitrary nonnegative numbers py,...,p; and qy, ..., q,

t t t

Di Zi:1 Di
> pilog = > (E p~> log
i=1 ’ qi i=1 ’ Et

i=14

with equality if and only if p; = ¢q;, 1 <7 < t. Here plog% is defined to be 0
if p=0and o0 if p>¢g=0.

Convergence of probability distributions, P,, — P, means pointwise con-
vergence,that is, P,(a) — P(a) for each a € A. Topological concepts for
probability distributions, continuity, open and closed sets, etc., are meant
for the topology of pointwise convergence. Note that the entropy H(P) is
a continuous function of P, and the I-divergence D(P||@Q) is a lower semi-
continuous function of the pair (P, @), continuous at each (P, Q) with strictly

positive Q).

A code for symbols in A, with image alphabet B, is a mapping C: A — B*.
Its length function L: A+~ N is defined by the formula

In these notes, it will be assumed, unless stated explicitly otherwise, that
the image alphabet is binary, B = {0, 1}, and that all codewords C'(a), a € A,
are distinct and different from the empty string A. Often, attention will be
restricted to codes satisfying the prefiz condition that C(a) < C(a) never
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holds for a # a in A. These codes, called prefiz codes, have the desirable
properties that each sequence in A* can be uniquely decoded from the con-
catenation of the codewords of its symbols, and each symbol can be decoded
“instantaneously”, that is, the receiver of any sequence w € B* of which
u=C(z1)...C(z;) is a prefix need not look at the part of w following u in

order to identify u as the code of the sequence x; ... ;.

Of fundamental importance is the following fact.

Lemma 1 A function L: A — N s the length function of a prefix code if
and only if it satisfies the so-called Kraft inequality

o2t <.

acA

Proof. Given a prefix code C: A — B*, associate with each a € A the number
t(a) whose dyadic expansion is the codeword C(a) = bH | that is, t(a) =
0.b1 ...br(). The prefix condition implies that t(a) ¢ [t(a),t(a) + 2 L@) if
a # a, thus the intervals [t(a), t(a) +27(®) a € A, are disjoint. As the total
length of disjoint subintervals of the unit interval is at most 1, it follows that
S o-Le) < 1.

Conversely, suppose a function L: A — N satisfies 3. 27 < 1. Label A
so that L(a;) < L(ai11), i < |A]. Then t(i) = Y., 27%) can be dyadically
represented as t(i) = 0.by...by(,), and C(a;) = b2 defines a prefix code
with length function L. []

A key consequence of the lemma is Shannon’s noiseless coding theorem.



Theorem 1 Let P be a probability distribution on A. Then each prefiz code
has expected length

B(L) = Y. P(a)L(a) > H(P).
a€A
Furthermore, there is a prefiz code with length function L(a) = [—log P(a)];
its expected length satisfies

E(L) < H(P)+1.

Proof.  The first assertion follows by applying the log-sum inequality to
P(a) and 275 in the role of p; and ¢; and making use of 3 P(a) = 1
and Y 274@ < 1. The second assertion follows since L(a) = [—log P(a)]
obviously satisfies the Kraft inequality. L]

By the following result, even non-prefix codes can not “substantially”
beat the entropy lower bound of Theorem 1. This justifies the practice of

restricting theoretical considerations to prefix codes.

Theorem 2 The length function of a not necessarily prefix code C: A — B*

satisfies
2710 < log | A], (1)

a€EA
and for any probability distribution P on A, the code has expected length

E(L) =Y P(a)L(a) > H(P) — loglog |A|.

a€A



Proof. 1t suffices to prove the first assertion, for it implies the second asser-
tion via the log-sum inequality as in the proof of Theorem 1. To this end,
we may assume that for each a € A and i < L(a), every u € B’ is equal to
C(a) for some a € A, since otherwise C(a) can be replaced by an u € B,

increasing the left side of (1). Thus, writing
m .
Al =32+, m>1,0<r<2m
i=1

it suffices to prove (1) when each u € B*, 1 < i < m, is a codeword, and the
remaining r codewords are of length m + 1. In other words, we have to prove
that

m + 72 mH) <log |[A| = log(2™ ! — 2 4 1),

or
r2 (M <og(2 + (r — 2)2°™).

This trivially holds if r = 0 or r > 2. As for the remaining case r = 1, the
inequality
27+ < Jog(2 — 27™)

is verified by a trite calculation for m = 1, and then it holds even more for
m > 1. (]

The above concepts and results extend to codes for n-length messages or
n-codes, that is, to mappings C: A" — B*, B = {0,1}. In particular, the
length function L: A” — N of an n-code is defined by the formula C(z7) =

blL(x?), x? € A", and satisfies

Z o~ LY) < nlog|Al;

TPTEA™



and if C: A" — B* is a prefix code, its length function satisfies the Kraft

inequality
Z 9—L(z}) <1.
TP EeAn
Expected length F(L) = Y P,(aT)L(z}) for a probability distribution P,
TP EAn

on A", of a prefix n-code satisfies
E(L) > H(P,) ,

while
E(L) > H(P,) — logn — loglog |A]

holds for any n-code.

An important fact is that, for any probability distribution P, on A", the
function L(z7) = [—log P, (z7)] satisfies the Kraft inequality. Hence there
exists a prefix n-code whose length function is L(z7]) and whose expected
length satisfies E(L) < H(P,) + 1. Any such code is called a Shannon code
for P,.

Supposing that the limit

_ 1
H=lim — H(P,)

n—oo n,

exists, it follows that for any n-codes C,: A" — B* with length functions
L,: A" — N, the expected length per symbol satisfies

1 —
liminf — E(L,) > H ;

n— 00 n

moreover, the expected length per symbol of a Shannon code for P, converges

to H as n — oo.



We close this introduction with a discussion of arithmetic codes, which
are of both practical and conceptual importance. An arithmetic code is a

sequence of n-codes, n = 1,2, ... defined as follows.

Let Q,, n=1,2,... be probability distributions on the sets A" satisfying

the consistency conditions

Qn(aj?) = Z QnJrl(x?a)a

acA

in other words, (), is the marginal distribution on A™ of a probability distri-
bution @ on A*°. For each n, partition the unit interval [0, 1) into subintervals
J(zh) = [t(z}),r(x])) of length r(z]) — £(2}) = Qu(z}) in a nested man-
ner, i. e., such that {J(z7a): a € A} is a partitioning of J(z7), for each
x} € A™. Two kinds of arithmetic codes are defined by setting C(x7) = 2"

if the endpoints of J(z7) have binary expansions
E(l‘?):ZIZQZmO, T(l‘?):-zle"'Zm]_"',

and C(z7) = 2™ if the midpoint of J(z") has binary expansion

S(00) + 7)) = iz, = [~ logQE +1. (2)

Since clearly £(z7) < .z12p- -z and r(a?) > 2129 - 25 4+ 27, we always
have that C'(z") is a prefix of C'(z"), and the length functions satisfy L(z7) <
L(z") = [—1logQ(#7)] + 1. The mapping C: A® — B* is one-to-one (since
the intervals J(z7) are disjoint) but not necessarily a prefix code, while C'(z7)

is a prefix code, as one can easily see.

In order to determine the codeword C(z7) or C'(z%), the nested partitions
above need not be actually computed, it suffices to find the interval J(z7).
This can be done in steps, the i-th step is to partition the interval J(xlfl)

into A subintervals of length proportional to the conditional probabilities



Qalzi™) = Qs(zi a)/Qi_1(z1), a € A. Thus, providing these conditional
probabilities are easy to compute, the encoding is fast (implementation issues
are relevant, but not considered here). A desirable feature of the first kind
of arithmetic code is that it operates on-line, i.e., sequentially, in the sense

that C(27) is always a prefix of C'(z} 1

). The conceptual significance of the
second kind of codes C () is that they are practical prefix codes effectively
as good as a Shannon code for the distribution @),, namely the difference in
length is only 1 bit, whereas a strict sense Shannon code may be of prohibitive

computational complexity if the message length n is large.

1 Large deviations, hypothesis testing.

1.1 Large deviations via types.

An important application of information theory is to the theory of large
deviations. A key to this application is the theory of types. The type of a
sequence z7 € A" is just another name for its empirical distribution P = Px?,
that is, the distribution defined by

p(a):w7 ac A
n

A distribution P on A is called an n-type if it is the type of some x7 € A™.
The set of all 27 € A" of type P is called the type class of the n-type P and
is denoted by T2

Lemma 2 The number of possible n-types is < nt[Af =1 >

Al =1

Proof. Left to the reader. (]
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Lemma 3 For any n-type P

—1

n+[Al -1 nH(P) n nH(P)
< <

( |A] -1 ) 2 < [Tl <2 '

Proof. Let A = {aj,as,...,a;}, where t = |A|. By the definition of types
we can write P(a;) = k;/n,i =1,2,...,t, with ky + ko + ... + k; = n, where

k; is the number of times a; appears in z] for any fixed 27 € 75. Thus we

have :
n!
T = —————.
77 keylko! - - - k!
Note that |
"= (k... k)" =) - TR A
AR
where the sum is over all ¢-tuples (ji,...,J;) of nonnegative integers such
that j; +...47; = n. The number of terms is ( " —|i_A||A—|I 1 ), by Lemma 2,

and the largest term is

n! k1 7.ks ky
kl!kz!---kt!kl I

forif 5, > k., js < ks then decreasing j, by 1 and increasing j, by 1 multiplies

the corresponding term by

The lemma now follows from the fact that the sum is bounded below by
its largest term and above by the largest term times the number of terms,
and noting that

n t N —k; t
o — H(&) _ H P(ai)fnP(ai) — onH(P)
Ritky?---kft i\ -



O

The next result connects the theory of types with general probability
theory. For any distribution P on A, let P" denote the distribution of n
independent drawings from P, that is P"(z}) = [T\~ P(z;), x7 € A™.

Lemma 4 For any distribution P on A and any n-type @)

P(a?)  _.p -
— 9 nD@QIP) i g e T
Q(x7) '
-1
n+ Al -1 —nD@QIIP) < pr(Tny < 9-nD(Q|P)
( |A] -1 ) ’ < PiTg) <2 '

Corollary 1 Let P, denote the empirical distribution (type) of a random

sample of size n drawn from P. Then

n+|Al—1

Prob(D(P,||P) > §) < ( A - 1

) 27 /5 > 0.

Proof. If % € T4 the number of times x; = a is just nQ(a), so that

Pr(a}) P(a)\"?) _ (a3, a@log 22) _ o, np(@|P)
= — 2 a (a)) = 2
oo~ 1Ge) ’ /

that is,
P(TY) = Qn(']gL)Q—nD(QHP)_

—1
Here Q"(75) > < " —|FA||A—|I L > , by Lemma 3 and the fact that Q" (z]) =

27"Q@ if g7 € T4. The probability in the Corollary equals the sum of

12



P"(T4) for all n-types @ with D(Q||P) > ¢, thus Lemmas 2 and 4 yield the
claimed bound. ]

The empirical distribution P, in the Corollary converges to P with prob-
ability 1 as n — oo, by the law of large numbers, or by the very Corollary
(and Borel-Cantelli). The next result, the finite alphabet special case of the
celebrated Sanov theorem, is useful for estimating the (exponentially small)
probability that P, belongs to some set I of distributions that does not

contain the true distribution P.
We use the notation D(II||P) = infgen D(Q||P).
Theorem 3 (Sanov’s Theorem.) Let I be a set of distributions on A

whose closure is equal to the closure of its interior. Then for the empiri-

cal distribution of a sample from a strictly positive distribution P on A,

1 .
——log Prob (P, € I) — D(TI||P).
n

Proof. Let P, be the set of possible n-types and let II, = IINP,. Lemma 4
implies that
Prob (pn € Hn) = P" (UQEHTL’];;)

is upper bounded by

nA Al =1\ P
Al -1

and lower bounded by

—1
n+ Al =1\ " npap)
Al -1 '

13



Since D(Q||P) is continuous in @, the hypothesis on IT implies that D(IT,|| P)
is arbitrarily close to D(II||P) if n is large. Hence the theorem follows. [

Example 1 Let f be a given function on A and set IT = {Q: >, Q(a)f(a) >
a} where oo < max, f(a). The set I is open and hence satisfies the hypothesis

of Sanov’s theorem. The empirical distribution of a random sample X, ..., X,
belongs to ITiff (1/n) ¥, f(X;) > a, since X, Pu(a) f(a) = (1/n) ¥; f(X)).
Thus we obtain the classical large deviations result

n ni

In this case, D(II||P) = D(cl(IT)||P) = min D(Q||P), where the minimum is
over all @ for which Y- Q(a)f(a) > «. In particular, for « > Y P(a)f(a) we
have D(II||P) > 0, so that, the probability that (1/n) X7 f(X;) > « goes to

0 exponentially fast.

It is instructive to see how to calculate the exponent D(II||P) for the pre-
ceding example. Consider the exponential family of distributions P of the
form P(a) = cP(a)2¥®, where ¢ = (¥, P(a)2¥®)~1. Clearly ©, P(a)f(a)
is a continuous function of the parameter ¢ and this function tends to max f(a)

as t — co. (Check!) As ¢t =0 gives P = P, it follows by the assumption
> Pla)f(a) <a< maaxf(a)

that there is an element of the exponential family, with ¢ > 0, such that
Y P(a)f(a) = a. Denote such a P by Q*, so that,

Q*(a) = ¢ P(a)2" /@), > 0, 3 Q*(a)f(a) = o

We claim that
D(IT||P) = D(Q"||P) = log ¢ + t"cv. (3)

14



To show that D(II||P) = D(Q*||P) it suffices to show that D(Q||P) >
D(Q*||P) for every @ € 11, i. e., for every @ for which Y, Q(a)f(a) > a. A

direct calculation gives

D@IP) =X @ (n 0g L) _

P(a)
=Y Q*(a)[logc* +t*f(a)] =logc" + t* (4)
and
Q*(a) _ * * * *
> Q(a)log Pla) > Q(a)[logc* +t* f(a)] > logc" + t*a.
Hence
DQIP) = D@'IP) > DIQIP) ~ ¥ Qo) og 55 = D(@]@") > 0

This completes the proof of (3).

Remark 1 Replacing P in (4) by any P of the exponential family, i. e.,
P(a) = c¢P(a)2"® | we get that

D(Q*||P) =

*

logc— + (t" —t)a=logc" + t*a — (logc + ta).
c
Since D(Q*||P) > 0 for P # Q*, it follows that
logec+ta = logZP Qtf + ta

attains its maximum at ¢ = t*. This means that the “large deviations expo-

nent”

lim l—% log Prob (% ;n; f(Xi) > Oé))]
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can be represented also as
_ tf(a)
mtzaox log Ea P(a)2 +ta] .

This latter form is the one usually found in textbooks. Note that the restric-
tion ¢ > 0 is not needed when o > Y, P(a)f(a), because, as just seen, the
unconstrained maximum is attained at ¢* > 0. However, the restriction to
t > 0 takes care also of the case when o < ¥, P(a)f(a), when the exponent

is equal to 0.

1.2 Hypothesis testing.

Let us consider now the problem of hypothesis testing. Suppose the
statistician, observing independent drawings from an unknown distribution
P on A, wants to test the “null-hypothesis” that P belongs to a given set II
of distributions on A. A (nonrandomized) test of sample size n is determined
by a set C' C A", called the critical region; the null-hypothesis is accepted if
the observed sample z7 does not belong to C'. Usually the test is required to
have type 1 error probability not exceeding some € > 0, that is, P"(C) < e,
for all P € II. Subject to this constraint, it is desirable that the type 2 error
probability, that is P(A™ — C), when P ¢ II, be small, either for a specified
P ¢ 11 (“testing against a simple alternative hypothesis”) or, preferably, for
all P ¢ II.

Theorem 4 Let P, and P, be any two distributions on A, let « be a positive
number, and for each n > 1 suppose B, C A™ satisfies P{*(B,) > «. Then

1
lim inf — log P?(B,) > —D(P,|| ).

n—oo n,
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Remark 2 The assertion of Theorem 4 and the special case of Theorem 5,

below, that there exists sets B, € A" satisfying
1
P'(B,) — 1, - log P} (B,) = —D(P||P),

are together known as Stein’s lemma.

Proof of Theorem /. With 9, = W%, say, Corollary 1 gives that the em-
pirical distribution P, of a sample drawn from P; satisfies Prob(D (P, P;) >
d,) — 0. This means that the PJ*-probability of the union of the type classes
To with D(Q||P1) < 0, approaches 1 as n — oo. Thus the assumption
P(B,,) > « implies that the intersection of B,, with the union of these type
classes has P[-probability at least «/2 when n is large, and consequently
there exists n-types @, with D(Q,||P1) < d, such that

n n Q n n
PUBANTD,) 2 SPITS,).

Since samples in the same type class are equiprobable under P™ for each
distribution P on A, the last inequality holds for P, in place of P;. Hence,

using Lemma 4,

" @ o o (n+ Al =13, wp@up
P2(Bn)2§P2(TTCL2)2§< |A|—1 >2 .
As D(Q,||P1) < 0, — 0 implies that D(Q,||P;) — D(P;||Pz), this completes
the proof of Theorem 4. L]

Theorem 5 For testing the null-hypothesis that P € 11, where 11 is a closed
set of distributions on A, the tests with critical region
|Allogn

Com s DBl 28}
Pell ! n

have type 1 error probability not exceeding €,, where €, — 0, and for each

Py ¢ 11, the type 2 error probability goes to 0 with exponential rate D(I1||Py).

17



Proof. The assertion about type 1 error follows immediately from Corol-
lary 1. To prove the remaining assertion, note that for each P, & II, the type
2 error probability P,(A" — C,) equals the sum of P}(77) for all n-types Q
such that Ii}g[D(Q“P) < &y,. Denoting the minimum of D(Q||Pz) for these
n-types by &,, it follows by Lemmas 2 and 4, that

n{ AN n+|A|_1 —nép

A simple continuity argument gives Jgrglo En = }1)21; D(P||P,) = D(II|| ), and
hence 1
lim sup — log P}’ (A" — C,,) < —D(II|| ).

n—oo N

As noted in Remark 3, below, the opposite inequality also holds, hence

1
lim ~ log PI(A" — C,)) = —D(IL|| P),

n—oo n

which completes the proof of the theorem. (]

Remark 3 On account of Theorem 4, for any sets C, C A", such that
P"(C,) <e<1,forall Pelln>1, we have

1
lim inf — log PP(A™ — C,)) > —D(II||Ps), VP, ¢ 1.

n—oo n,

Hence, the tests in Theorem 5 are asymptotically optimal against all alterna-
tives P, ¢ I1. The assumption that IT is closed guarantees that D(II|| ;) > 0,
whenever P, ¢ II. Dropping that assumption, the type 2 error probability
still goes to 0 with exponential rate D(II||P;) for P, not in the closure of
IT, but may not go to 0 for P, on the boundary of II. Finally, it should be

mentioned that the criterion IiDm;I D(Pyn||P) > 6, defining the critical region
S

of the tests in Theorem 5 is equivalent, by Lemma 4, to

SUPpcenr Pn(ff)

Q" (z7)

<27 =0 Q= Py

18



Here the denominator is the maximum of P"(x7) for all distributions P on A,
thus the asymptotically optimal tests are [ikelihood ratio tests in statistical

terminology.

2 I-projections.

Information divergence of probability distributions can be interpreted as
a (nonsymmetric) analogue of squared Euclidean distance. With this inter-
pretation, several results in this section are intuitive “information geometric”
counterparts of standard results in Euclidean geometry, such as the inequality

in Theorem 6 and the identity in Theorem 7.

The I-projection of a distribution ) onto a (non-empty) closed, convex
set II of distributions on A is the P* € II such that

D(P*Q) = min D(P]Q)

In the sequel we suppose that Q(a) > 0 for all @ € A. The function D(P||Q)

is then continuous and strictly convex in P, so that P* exists and is unique.

The support of the distribution P is the set S(P) = {a: P(a) > 0}. Since
IT is convex, among the supports of elements of II there is one that contains
all the others; this will be called the support of IT and denoted by S(II).

Theorem 6 S(P*) = S(II), and D(P||Q) > D(P||P*) + D(P*||Q) for all
Pell

Of course, if the asserted inequality holds for some P* € Il and all P € II
then P* must be the I-projection of () onto II.

19



Proof. For arbitrary P € II, by the convexity of IT we have P, = (1 —t)P* +
tP eI, for 0 <t < 1, hence for each t € (0,1),
1 . d
0< - [D(P)Q) - DP|Q)] = — D(RQ) |- ,

for some ¢ € (0,t). But

d Pt(a)
ZD(P|Q — P*(a))log 2.
(PIIQ) = 3 (Pla) = P*(a)) log 1 =
and this converges (as ¢t | 0) to —oo if P*(a) = 0 for some a € S(P), and
otherwise to

S (P(a) — P*(a)) log ];*(g) . (5)

It follows that the first contingency is ruled out, proving that S(P*) O S(P),

and also that the quantity (5) is nonnegative, proving the claimed inequality.

O

Now we examine some situations in which the inequality of Theorem 6 is
actually an equality. For any given functions fi, fs,..., fr on A and numbers

a1, Qo, ..., 0, the set
L={P:> P(a)fi(a) =a;,1 <i <k},

if non-empty, will be called a linear family of probability distributions. More-
over, the set £ of all P such that

P(a) = cQ(a) exp (f: Hifi(a)> , for some 6,..., 0,
1

will be called an exponential family of probability distributions; here () is any

given distribution and

c=c(0,...,0;) = (Xa: Q(a) exp (2?: 9ifi(a)>>

-1
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We will assume that S(Q)) = A; then S(P) = A for all P € £. Note that
Q@ € £. The family £ depends on @), of course, but only in a weak manner,
for any element of £ could play the role of ). If necessary to emphasize this

dependence on () we shall write £ = &g.

Linear families are closed sets of distributions, exponential families are
not. Sometimes it is convenient to consider the closure cl(£) of an exponential

family £.

Theorem 7 The I-projection P* of ) onto a linear family L satisfies the
Pythagorean identity

D(P||Q) = D(P||P*) + D(P*||Q), VP € L.

Further, if S(L) = A then LNEg = {P*}, and, in general, LNcl(Eg) = {P*}.

Corollary 2 For a linear family £ and exponential family £, defined by
the same functions fi,..., fx, the intersection L N cl(E) consists of a single

distribution P*, and

D(P||Q) = D(P||P*) + D(P*||Q), VP € L,Q € cl(&).

Proof of Theorem 7. By the preceding theorem, S(P*) = S(L£). Hence for
every P € L there is some ¢t < 0 such that P, = (1 — t)P* +tP € L.
Therefore, we must have (d/dt)D(P;||Q)]:=0 = 0, that is, the quantity (5) in

the preceding proof is equal to 0, namely,

. P
5 (P(a) = P*(a))log 35
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This proves that P* satisfies the Pythagorean identity.

By the definition of linear family, the distributions P € L, regarded as |A|-
dimensional vectors, are in the orthogonal complement F of the subspace
F of R4, spanned by the k vectors fi(-) — o, 1 <4 < k. If S(£) = A then
the distributions P € £ actually span the orthogonal complement of F (any
subspace of Rl that contains a strictly positive vector is spanned by the
probability vectors in that subspace; the proof is left to the reader.) Since
the identity (6) means that the vector
P(-)
Q)
is orthogonal to each P € L, it follows that this vector belongs to (F)* = F.
This proves that P* € £, if S(L£) = A.

log

- D(PYQ)

Next we show that any distribution P* € £ N cl(€p) satisfies (6). Since
(6) is equivalent to the Pythagorean identity, this will show that £Ncl(&p),
if nonempty, consists of the single distribution equal to the I-projection of )
onto L. Now, let P, € £, P, — P* € L. By the definition of &,

Py (a)
Q(a)
As P € L,P* € L implies 3 P(a)f;(a) = ¥ P*(a)fi(a),i = 1,...,k, it
follows that

k
log =logc, + (loge) > 0;,fi(a).
i=1

— P*(a))lo P"(a):
%:(P(a) P*(a))log 0 0, VP € L.

Since P, — P*, this gives (6).

To complete the proof of the theorem it remains to show that £ N cl(€)
is always nonempty. Towards this end, let P’ denote the I-projection of )
onto the linear family

L, = {P: " P(a)fi(a) = (1 _

acA

1
n

)ai+%ZQ(a)fi(a),i _ 1k}

acA
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Since (1 —2)P+ Q€ L, if P € L, here S(L,) = A and therefore P; € £.
Thus the limit of any convergent subsequence of { P} belongs to LNcl(&).L]

Proof of Corollary 2. Only the validity of the Pythagorean identity for
Q@ € cl(€) needs checking. Since that identity holds for @ € &, taking limits
shows that the identity holds also for the limit of a sequence @, € &£, that
is, for each @ in cl(&). O

Remark 4 A minor modification of the proof of Theorem 7 shows that the
[-projection P* of @) to a linear family with S(£) = B C A is of the form

o= { O (FH0s0) iTacs "

0 otherwise.
This and Theorem 7 imply that cl(€¢) consists of distributions of the form
(7), with B = S(L) for suitable choice of the constants a,...,a; in the

definition of £. We note without proof that also, conversely, all such distri-

butions belong to cl(€g).

Next we show that I-projections are relevant to maximum likelihood es-

timation in exponential families.

Given a sample 2z} € A™ drawn from an unknown distribution supposed
to belong to a feasible set II of distributions on A, a mazimum likelihood
estimate (MLE) of the unknown distribution is a maximizer of P™(z}) subject

to P € II; if the maximum is not attained the MLE does not exist.

Lemma 5 An MLE is the same as a minimizer of D(P|P) for P in the set

of feasible distributions, where P is the empirical distribution of the sample.
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Proof. Immediate from Lemma 4.

In this sense, an MLE can always be regarded as a “reverse I-projection”.
In the case when II is an exponential family, the MLE equals a proper I-

projection, though not of P onto TI.

Theorem 8 Let the set of feasible distributions be the exponential family

£— {P:P(a) = (01, B Qa) exp(3 0:Fi(@), (B, .. 00) € Rk},

where S(Q) = A. Then, given a sample x7 € A™, the MLE is unique and
equals the I-projection P* of () onto the linear family

£= (PR P@)f{a) = 3 i), 11 < k),

provided S(L) = A. If S(L) # A, the MLE does not exist, but P* will be
the MLE in that case if cl(E) rather than £ is taken as the set of feasible

distributions.

Proof. The definition of £ insures that P € L. Hence by Theorem 7 and its
Corollary,
D(P||P) = D(P||P*) + D(P*||P), VP € cl(€).

Also by Theorem 7, P* € £ if and only if S(L£) = A, while always P* € cl(£).
Using this, the last divergence identity gives that the minimum of D(P||P)
subject to P € & is uniquely attained for P = P*, if S(£) = A, and is not
attained if S(L) # A, while P* is always the unique minimizer of D(P]||P)
subject to P € cl(€). On account of Lemma 5, this completes the proof of
the theorem. 0

We conclude this section with a counterpart of Theorem 6 for “reverse
[-projections.” The reader is invited to check that the theorem below is also

an analogue of one in Euclidean geometry.
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Let us be given a distribution P and a closed convex set II of distributions
on A such that S(P) C S(II). Then there exists QQ* € II attaining the (finite)
minimum mingen D(P||Q); this Q* is unique if S(P) = S(II), but need not

be otherwise.
Theorem 9 A distribution Q* € II minimizes D(P||Q) subject to Q € 11 if
and only if for all distributions P' on A and Q' € 11,

D(P'|Q") + D(P'[|P) = D(P'|Q").

Proof. The “if” part is obvious (take P' = P.) To prove the “only if” part,
S(P') C S(Q')NS(P) may be assumed else the left hand side is infinite. We

claim that

Q'(a)
PR (1- Q*(@) > 0. (8)

Note that (8) and S(P) 2 S(P’) imply

, P(0)Q'(a)
R (- Fae@) 2°

which, on account of log 7 > (1 —¢)loge, implies in turn

o1 P0)Q (@)
D O I

The latter is equivalent to the inequality in the statement of the theorem,

hence it suffices to prove the claim (8).

Now set @Q; = (1 —)Q* +tQ" € Q,0 <t < 1. Then

0< L ID(PIQ) — D(PI@)] = % D(PIQ) s, 0 < F <1
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With ¢ — 0 it follows that

| (Q(a) — Q'(a))loge L@@ - Q)
0 < lim GESZ(P) PO oo + 0@ GESZ(P) P4

loge.

This proves the claim (8) and completes the proof of Theorem 9. L

3 f-divergence and contingency tables.

Let f(t) be a convex function defined for ¢ > 0, with f(1) = 0. The
f-divergence of a distribution P from @ is defined by

DPIo) = e (5.
Here we take 0f(2) = 0, f(0) = limy,o f(¢), 0f(%) = limy,otf(%) =
f(uw)

alimy, ;o =~

Some examples include the following.

(1) f(t) = tlogt = Dy(PI|Q) = D(P|IQ).
(2) f(t) = —logt = Dy(PQ) = D(@Q|P).
(3) f(t)=(t—1)

= D) = 3 e,

(4) f(t) =1V
= Dy(PllQ) = 1~ Y {/P(a)Q(a).

(5) f(t) =t — 1= D¢(P||Q) =|P - Q| =>_|P(a) - Qa)].
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The analogue of the log-sum inequality is
a; a
Suf ()20 (5) a=Sa b=, (9)

where if f is strictly convex at ¢ = a/b, the equality holds iff a; = cb;,
for all 7. Using this, many of the properties of the information divergence
D(PJ|Q) extend to general f-divergences, as shown in the next lemma. Let
B = {By,Bs,...,By} be a partition of A and let P be a distribution on A.
The distribution defined on {1,2,...,k} by the formula

PS(i) = %_ Pl(a),

a€B;

is called the B-lumping of P.

Lemma 6 D;(P||Q) > 0 and if f is strictly conver att = 1 then Dy(P||Q) =
0 only when P = Q). Further, D;(P||Q) is a convex function of the pair
(P,Q), and the lumping property, D;(P||Q) > D(P5||Q") holds for any
partition B of A.

Proof. The first assertion and the lumping property obviously follow from
the analogue of the log-sum inequality, (9). To prove convexity, let P = aP;+
(1—a) P2, @ = aQ1+(1—)Q,. Then P and Q are lumpings of distributions P
and Q defined on A x {1,2} by P(a,1) = aPi(a), P(a,2) = (1—a)Py(a), and
similarly for (). Hence by the lumping property, D(P|Q) < Df(]5||6~2) =
aDy(P1]|Q1) + (1 — ) Dy (P[|Q2). [

A basic theorem about f-divergences is the following approximation prop-
erty, where we denote by x?(P, Q) the f-divergence for f(t) = (¢t — 1)?, that

is, \(P,Q) = X(P(a) -~ Q(a))*/Q(a).
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Theorem 10 If f is twice differentiable att = 1 and f"(1) > 0 then for any
Q with S(Q) = A and P “ close” to () we have

(1)
2

Formally, D;(P||Q)/x*(P,Q) — f"(1)/2 as P — Q.

D(P||Q) ~ X*(P, Q).

Proof. Since f(1) = 0, Taylor’s expansion gives

s = -1+ T 0212

where €(t) — 0 as ¢t — 1. Hence
P(@)) _

Q)
PP - @y + HP )

P(@) (P(o) - Q(a))
ve(p) |

va(

Q(a) Q(a)

Summing over a € A then establishes the theorem. []

Remark 5 The same proof works even if () is not fixed, replacing P — @) by
P — @ — 0, provided that no (a) can become arbitrarily small. However,
the theorem (the “asymptotic equivalence” of f-divergences subject to the
differentiability hypotheses) does not remain true if @ is not fixed and the

probabilities of @(a) are not bounded away from 0.

Corollary 3 Let fo = 1, f1,..., fla—1 be a basis for R (regarded as the

linear space of all real-valued functions on A), orthonormal with respect to
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the inner product < g,h >g=3,Q(a)g(a)h(a). Then, under the hypotheses
of Theorem 10,

o1y A1 2
D¢ (P||Q) ~ / 2(1) > <ZP(a)fi(a)> ,

=1 a

and, for the linear family
L(a) ={P: Y P(a)fi(a) = ai, 1 <i <k},

with o = (e . .., ) approaching the zero vector,

‘ fn (1) k )
min D¢ (P ~ E ;.

Proof. On account of Theorem 10, it suffices to show that

|Al-1 2
CPQ - ¥ (S r@h) (10
i=1 \a
and, at least when o = (« ..., a4) is sufficiently close to the zero vector,
k
min x*(P,Q) =) a;. (11)
PeL(a) i=1

2
Now, x*(P,Q) = 3, Q(a) (SEZ; — 1) is the squared norm of the function

g defined by g(a) = SEZ; — 1 with respect to the given inner product, and
A]-1

that equals 3,2 < g, f; >5. Here

<g.fo>q = >.(P(a)=Q(a)) =0

a

<g.fi>q = Y_(P(a) = Q(a))fila) = 3_P(a)fi(a), 1 <i < [A] -1,

a
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the latter since < fo, fi >g= 0 means that >, Q(a)fi(a) = 0. This proves
(10), and (11) then obviously follows if some P € L(«) satisfies -, P(a) f;(a) =
0, k+1 <i < |A[—1. Finally, the assumed orthonormality of 1, f1, ..., fia—1
implies that P defined by P(a) = Q(a)(1 + X%, a;fi(a)) satisfies the last
conditions, and this P is a distribution in £(«) provided it is nonnegative,

which is certainly the case if « is sufficiently close to the zero vector. (]

One property distinguishing information divergence among f-divergences
is transitivity of projections, as summarized in the following lemma. It can,
in fact, be shown that the only f-divergence for which either of the two

properties of the lemma holds is the informational divergence.
Lemma 7 Let P* be the I-projection of () onto a linear family L. Then
(1) For any convex subfamily L' C L the I-projections of Q and of P* onto

L' are the same.

(ii) For any “translate” L' of L, the I-projections of Q@ and of P* onto L'
are the same, provided S(L) = A.

L' is called a translate of £ if it is defined in terms of the same functions

fi, but possibly different «;.

Proof. By the Pythagorean identity
D(P[|Q) = D(P||P*) + D(P*||Q), P € L.

It follows that on any subset of £ the minimum of D(P||Q) and of D(P||P*)
are achieved by the same P. This establishes (i).

The exponential family corresponding to a translate of £ is the same as
it is for £. Since S(L) = A, we know by Theorem 7 that P* belongs to
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this exponential family. But every element of the exponential family has the

same I-projection onto L', which establishes (ii). (]

In the following theorem, B, denotes the empirical distribution of a ran-
dom sample of size n from a distribution @ with S(Q) = A, that is, the
type of the seqeunce (X7,...,X,) where X, X5, ... are independent random

variables with distribution ().

Theorem 11 Given arbitrary functions fi,..., fr,(1 < k < |A]—1) on A
such that fo =1, f1,..., fx are linearly independent, let P} be the I-projection
of Q onto the (random) linear family

L, = {P: Y Pla)fi(a) = %_znjfi(xj), | <i<k)

Then
D(P,||Q) = D(P,||1P;) + D(P;|Q),

each term multiplied by 13% has a x* limiting distribution with |A] —1,|A| —
1 — k, respectively k, degrees of freedom, and the right hand side terms are

asymptotically independent.

The x? distribution with k degrees of freedom is defined as the distribution
of the sum of squares of k£ independent random variables having the standard

normal distribution.

Proof of Theorem, 11. The decomposition of D(P,||Q) is a special case of the
Pythagorean identity, see Theorem 7, since clearly P, € L,. To prove the
remaining assertions, assume that fo = 1, fi, ..., fr are orthonormal for the
inner product defined in Corollary 3. This does not restrict generality since
the family £,, depends on fi,..., fr through the linear span of 1, fi,..., fx,

only.. Further, take additional functions fy,1,..., fla—1 on A to obtain a
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basis for RI4!, orthonormal for the considered inner product. Then, since
P, — @ in probability, Corollary 3 applied to f(t) = tlogt, with f7(1) =

log e, gives

R op e AL X 2 pee A n 2
D(P]|Q) ~ l2g > <an(a)fi(a)> :l2g > (%;fz(Xg)) ;

=1 a =1
1 1 & ’
D(P;IQ) = wip D(P|Q)~ 253 (—foxj)) .
rel, i=1 \"" =1

Here, asymptotic equivalence ~ of random variables means that their ratio

goes to 1 in probability, as n — oo.

By the assumed orthonormality of fo =1, f1,..., flaj-1, for X with dis-
tribution @) the real valued random variables f;(X), 1 < i < |A| — 1, have
zero mean and their covariance matrix is the (JA| — 1) x (JA| — 1) identity
matrix. It follows by the central limit theorem that the joint distribution of

the random variates
Zni = Zfz ), 1<i <Al -1

converges, as n — 00, to the joint distribuiton of |A|—1 independent random

variables having the standard normal distribution.

As the asymptotic relations established above give

2 A o 20
P D(P;
loge ( ||Q) ; nz’ log ||Q Z nz?

and these imply the Pythagorean identiy that

m, [Al-1
D(P,||PY) i
loge “ ; %1
all the remaining claims follow. (]
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Remark 6 D(P,||P?) is the preferred statistic for testing the hypothesis

that the sample has come from a distribution in the exponential family
k
E= {P: P(a) = cQ(a) exp (Z Hifi(a)> ,(6h,...,0;) € Rk} .
i=1

Note that D(P,||P*) equals the infimum of D(P,||P), subject to P € £, by
Corollary 2 in Section 2, and the test rejecting the above hypothesis when
D(P,||P¥) exceeds a threshold is a likelihood ratio test, see Remark 3 in

Section 1.2. In this context, it is relevant that the limiting distribuiton of

2n
loge

from, as any P € £ could play the role of () in Theorem 11.

D(P,||P*) is the same no matter which member of £ the sample is coming

Notes also that Theorem 11 easily extends to further decompositions
of D(P,||Q). For example, taking additional functions fii1,...,f; with
1, fi,..., f¢ linearly independent, let P’* be the common I-projection of )
and P} to

Then
D(F,]|Q) = D(P,||Py") + D(P,*||Py) + D(P,|Q),

2n
log

with degrees of freedom |A| —1 — ¢, ¢ — k, k respectively, and these terms are

the right hand side terms multiplied by

— have x? limiting distributions

asymptotically independent.

Now we apply some of these ideas to the analysis of contingency tables.

A 2-dimensional contingency table is indicated in Table 1. The sample data
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Table 1: A 2-dimensional contingency table.

2(r1,0) | x(ri,1) | -~ [ 2(ri,7r2) || 2(r1)
L 2(0) [ a(D) [---[ a(ry) [ n |
have two features, with categories 0, ..., r; for the first feature and 0, ..., ry

for the second feature. The cell counts
z(J1,72), 0 <j1 <ry, 0<js <y

are nonnegative integers; thus in the sample there were z(ji,j2) members
that had category j; for the first feature and js for the second. The table
has two marginals with marginal counts

r2 r1

w(ji-) = Y w(dr, J2), w(-j2) = D w(d1, Ja)-

J2=0 Jj1=0
The sum of all the counts is

n="> x(jir) =Y x(j2) = D> x(jr, Jo)-

Ji J2 Ji o J2

The term contingency table comes from this example, the cell counts
being arranged in a table, with the marginal counts appearing at the mar-
gins. Other forms are also commonly used, e. g., the counts are replaced by
the empirical probabilities p(ji1,j2) = x(j1,j2)/n, and the marginal counts
are replaced by the marginal empirical probabilities P(j;.) = #(j;.)/n and
P(.52) = 2(.j2) /n.

In the general case the sample has d features of interest, with the ith

feature having categories 0,1, ..., r;. The d-tuples w = (ji, ..., ja) are called
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cells; the corresponding cell count x(w) is the number of members of the
sample such that, for each 7, the ith feature is in the j;th category. The
collection of possible cells will be denoted by €2. The empirical distribution
is defined by p(w) = z(w)/n, where n = ¥, z(w) is the sample size. By
a d-dimensional contingency table we mean either the aggregate of the cell
counts x(w), or the empirical distribution p, or sometimes any distribution
P on Q (mainly when considered as a model for the “true distribution” from

which the sample came.)

The marginals of a contingency table are obtained by restricting attention
to those features i that belong to some given set v C {1,2,...,d}. Formally,
for v = (iy,...,i) we denote by w(7) the y-projection of w = (ji,...,j4),
that is, w(v) = (Ji,» Jiss - - - » Jip )- The y-marginal of the contingency table is
given by the marginal counts

z(w(7)) = z(w')
w':w! (7)=w(7)
or the corresponding empirical distribution p(w(vy)) = z(w(7y))/n. In general

the y-marginal of any distribution {P(w):w € Q} is defined as the distribu-
tion P, defined by the marginal probabilities

Pw(y)= > P

A d-dimensional contingency table has d one-dimensional marginals, d(d—
1)/2 two-dimensional marginals, ..., corresponding to the subsets of {1,...,d}

of one, two, ..., elements.

For contingency tables the most important linear families of distributions
are those defined by fixing certain y-marginals, for a family I' of sets v C

{1,...,d}. Thus, denoting the fixed marginals by P,,v € I, we consider
L={P:P, =P, yeT}
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The exponential family (through any given @)) that corresponds to this linear
family £ consists of all distributions that can be represented in product form

as

P(w) = cQ(w) [T ay(w(7)). (12)

vel
In particular, if £ is given by fixing the one-dimensional marginals (i. e.,
[' consists of the one point subsets of {1,...,d}) then the corresponding

exponential family consists of the distributions of the form

P(il, .. .,id) = CQ(il, Ce ,id)al(il) . -ad(id)

The family of all distributions of the form (12) is called a log-linear family
with interactionsy € I'. In most applications, @) is chosen as the uniform dis-
tribution; often the name “log-linear family” is restricted to this case. Then
(12) gives that the log of P(w) is equal to a sum of terms, each represent-

ing an “interaction” v € T, for it depends on w = (jy, ..., jq) only through

w(f)/) = (jila s 7jik), where Y= (’il, .. ,’Lk)

A log-linear family is also called a log-linear model. 1t should be noted that
the representation (12) is not unique, because it corresponds to a represen-
tation in terms of linearly dependent functions. A common way of achieving
uniqueness is to postulate a,(w(y)) = 1 whenever at least one component of
w(7) is equal to 0. In this manner a unique representation of the form (12)
is obtained, provided that with every v € I' also the subsets of v are in I'.

Log-linear models of this form are also called hierarchical models.

Remark 7 The way we introduced log-linear models shows that restricting
to the hierarchical ones is more a notational than a real restriction. Indeed,

if some y-marginal is fixed then so are the «'-marginals for all ' C ~.
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In some cases of interest it is desirable to summarize the information
content of a contingency table by its y-marginals, v € T'. In such cases it is
natural to consider the linear family £ consisting of those distributions whose
~v-marginals equal those of the empirical distribution, P. Ifa prior guess )
is available, then we accept the I-projection P* of () onto £ as an estimate of
the true distribution. By Theorem 7, this P* equals the intersection of the
log-linear family (12), or its closure, with the linear family £. Also, P* equals
the maximum likelihood estimate of the true distribution if it is assumed to
belong to (12).

By Theorem 5, an asymptotically optimal test of the null-hypothesis that
the true distribution belongs to the log-linear family £ with interactions

v € I' consists in rejecting the null-hypothesis if
D(P||P*) = min D(P||P)
pee

is “large”. Unfortunately the numerical bounds obtained in Theorem 5
appear too crude for most applications, and the rejection criterion there,
namely D(P||P*) > |82, admits false acceptance too often. A better
criterion is suggested by the result in Theorem 11 (see also Remark 7) that
2 D(P||P*) has x? limit distribution, with specified degrees of freedom, if
ge
the null hypothesis is true. Using this theorem, the null-hypothesis is re-
jected if (2n/loge)D(P||P*) exceeds the threshold found in the table of the

x? distribution for the selected level of significance. Of course, the type 1

error probability of the resulting test will be close to the desired one only
when the sample size n is sufficiently large for the distribution of the test
statistic to be close to its y? limit. The question of how large n is needed is

important but difficult, and will not be entered here.

Now we look at the problem of outliers. A lack of fit (i. e., D(P|P*)
“large”) may be due not to the inadequacy of the model tested, but to
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outliers. A cell wy is considered to be an outlier in the following case: Let
L be the linear family determined by the y-marginals (say v € T') of the
empirical distribution P, and let £ be the subfamily of £ consisting of those
P € L that satisfy P(wg) = P(wp). Let P** be the I-projection of P* onto
L'. Ideally, we should consider wy as an outlier if D(P**||P*) is “large”,
for if D(P**||P*) is close to D(P||P*) then D(P||P**) will be small by the
Pythagorean identity. Now by the lumping property (Lemma 6):

> p (wo) > p (wo)
D(P™||P*) > P 1 1-P 1
(PP 2 Plao) 0g 52+ (1= Ple) o 5
and we declare wy as an outlier if the right-hand side of this inequality is
“large”, that is, after scaling by (2n/loge), it exceeds the critical value of x?

with one degree of freedom.

If the above method produces only a few outliers, say wq,wi,...,ws we
consider the subset £ of £ consisting of those P € L that satisfy P(w;) =
p(wj) for j =0,...,¢. If the I-projection of P* onto L is already “close” to
]5, we accept the model and attribute the original lack of fit to the outliers.
Then the “outlier” cell counts z(w;),j = 0...,¢ are deemed unreliable and

they may be adjusted to nP*(w;),j =0...,7.

Similar techniques are applicable in the case when some cell counts are

missing.

4 Iterative algorithms.

In this section we discuss iterative algorithms to compute I-projections

and to minimize [-divergence between two convex sets of distributions.
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4.1 Iterative scaling

The I-projection to a linear family L is very easy to find if £ is determined
by a partition B = (Bj,..., Bi) of A and consists of all those distributions P
whose B-lumping is a given distribution (ay,...,ax) on {1,... k}. Indeed,
then D(P||Q) > D(PB||QB) = S a;loga;/Q(B;) for each P € L, by the
lumping property (see Lemma 6), and here the equality holds for P* defined
by

Q;
Q(B;)
It follows that P* obtained by “scaling” () as above is the I-projection of @)
to L.

P*(a) = ¢;Q(a), a € B;, where ¢; = (13)

In the theory of contingency tables, see Section 3, lumpings occur most
frequently as marginals. Accordingly, when L is defined by prescribing some
y-marginal of P, say £, = {P:P, = P,}, where v C {1,...,d}, the I-
projection P* of () to L, is obtained by scaling () to adjust its y-marginal:
P*(w) = Q(w)P,(w(7))/Q+(w(7)). Suppose next that £ can be represented
as the intersection of families £;,7 = 1, ..., m, each of form as above. Then,
on account of Theorem 12, below, and the previous paragraph, I-projections
to L can be computed by iterative scaling. This applies, in particular, to I-
projections to families defined by prescribed marginals, required in the anal-
ysis of contingency tables: For £ = {P, = P,,v € T}LT = {v,...,7m},
the I-projection of ) to L equals the limit of the sequence of distribu-
tions P™ defined by iterative scaling, that is, P = @, and P™(w) =
PO=D(W)P, (w(7n))/ PP~V (w(7,)), where 71,72, . .. is a cyclic repetition of
r.

Suppose Ly, ..., L,,, are given linear families and generate a sequence of

distributions P, as follows: Set Py = @ (any given distribution with support
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S(Q) = A), let Py be the I-projection of Py onto Ly, P, the I-projection of
P, onto L5, and so on, where for n > m we mean by L, that £; for which

i=n (modm);i. e, Lq,..., Ly, is repeated cyclically.

Theorem 12 If "™, L; = L # () then P, — P*, the I-projection of @ onto
L.

Proof. By the Pythagorean identity, see Theorem 7, we have for every
P € L (even for P € L,) that

D(P||P,_1) = D(P||P,) + D(P,||Py-1),n=1,2,...

Adding these equations for 1 < n < N we get that

D(P||Q) = D(P|[Py) = D(P||Py) + 3 D(Pu||Pa-1)-

n=1

By compactness there exists a subsequence Py, — P’, say, and then from

the preceding inequality we get for N, — oo that

D(P|[Q) = D(P|[P) + 3" D(Py||Pocy). (14)

n=1

Since this series is convergent we have D(P,||P,_1) — 0, and hence also | P, —
P, 1] — 0, where |P, — P, 4| denotes the variational distance Y, |P,(a) —
P,_i(a)|. This implies that together with Py, — P’ we also have

/ / !
PN;C+1_>P7PNk+2_>P7---7PNk+m_>P-
Since by the periodic construction, among the m consecutive elements,
Prn., P41, s Pnytm—1

there is one in each £;,i = 1,2,...,m, it follows that P' € NL; = L.
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Since P’ € L it may be substituted for P in (14) to yield

o0

D(P|Q) = >_ D(Pu[|Pn-1)-

=1

With this, in turn, (14) becomes
D(P||Q) = D(P|P) + D(P'Q),

which proves that P’ equals the I-projection of Q onto £. Finally, as P’
was the limit of an arbitrary convergent subsequence of the sequence P,, our
result means that every convergent subsequence of P, has the same limit P*.
Using compactness again, this proves that P, — P* and completes the proof
of the theorem. ]

In the general case when £ = N2, £; but no explicit formulas are available
for I-projections to the families £;, Theorem 12 need not directly provide a
practical algorithm for computing the I-projection to £. Still, with a twist,
Theorem 12 does lead to an iterative algorithm, known as generalized iterative
scaling (or the SMART algorithm) to compute I-projections to general linear

families and, in particular, MLE’s for exponential families, see Theorem 8.

Generalized iterative scaling requires that the linear family

ﬁz{P:ZP(a)f(a):ai, 1§i§k}

acA

be given in terms of functions f; that satisfy

k
f,(a) Z 0, Zfl(a) = ]_, a € A 3 (]_5)

i=1
accordingly, (v, .. ., ax) has to be a probability vector. This does not restrict

generality, for if £ is initially represented in terms of any functions f;, these
can be replaced by f; = C'f; + D with suitable constants C' and D to make
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sure that f; > 0 and X%, fi(a) < 1; if the last inequality is strict for some

a € A, one can replace k£ by k + 1, and introduce an additional function

frri=1=-F f.

Theorem 13 Assuming (15), the nonnegative functions b, on A defined re-

cursively by

=1

- fi(a)
bo(a) = Q(a), bnyi(a) = by(a) H < : ) v Bn = Z bn(a) fi(a)

/8n7i acA

converge to the I-projection P* of Q to L, that is, P*(a) = lim b,(a), a € A.

n—o0

Proof. Consider the product alphabet A = A x {1,...,k}, the distribution
Q = {Q(a)fi(a), (a,i) € A}, and the linear family £ of those distributions
P on A that satisfy P(a,i) = P(a)f;(a) for some P € L. Since for such
P we have D(P||Q) = D(P||Q), the I-projection of Q to L equals P* =
{P*(a)fi(a)} where P* is the I-projection of @ to L.

Note that £ = £,NL, where L, is the set of all distributions P = {P(a, 1)}

whose marginal on {1,...,k} is equal to (aq,...,q4), and
Ly ={P:P(a,i) = P(a)fi(a), P any distribution on A}.

It follows by Theorem 12 that the sequence of distributions Fg, ]3[/)1, Fl, Fl,, e
on A defined iteratively by

Py, = @, HQ = [-projection to L of E, f’n+1 = [-projection to L5 of ﬁnl

converges to P*. In particular, writing P, (a,7) = P,(a)fi(a), we have P, —
P*. The theorem will be proved if we show that P,(a) = ¢,b,(a), where

¢, — 1 as n — oo.
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Now, by the first paragraph of this subsection, E{b is obtained from P, by

scaling, thus

Pi(a,i) = —“Pu(a)fi(a), Yns= 3 Pula)fi(a) .

n, G,EA

To find P, 1, note that for each P = {P(a)fi(a)} in L, we have, using
(15),

DPIP) = XY Plaiatos (7 /)

acAi=1 Pn(a) /Yn,i

Q;

— %P(a) log ff);((a)) — X%P(a) ;fi(a) log
Y P()log——
S h (e

i=1 Tn,i

n,i

)fi(a) ’

This implies, by the log-sum inequality, that the minimum of D(P||P!) sub-
ject to P € L, is attained by ]5n+1 = {P,+1(a)fi(a)} with

Poi1(a) = cop1Pa(a) ﬁ ( a; )fi(a)

i=1 \ Tn,i

where ¢, is a normalizing constant. Comparing this with the recursion

defining b, in the statement of the theorem, it follows by induction that
Py(a) = epby(a),n=1,2,....

Finally, ¢, — 1 follows since the above formula for D(P||P!) gives
D(P,41||P!) =log cpi1, and D(Ppy||P!) — 0 as in the proof of Theorem 12.
O

4.2 Alternating divergence minimization

In this subsection we consider a very general alternating minimization

algorithm which, in particular, will find the minimum divergence between
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two convex sets P and Q of distributions on a finite set A.

In the general considerations below, P and Q are arbitrary sets and
D(P, Q) denotes an extended real-valued function on P x Q which satisfies

the following conditions.

(a) —co < D(P,Q) < +o0, P P,Q € Q.

(b) VP € P,3Q* = Q*(P) € Q such that iz D(P,Q) = D(P,Q").
Qe
(¢) YQ € Q,3P* = P*(Q) € P such that min D(P,Q) = D(Q, P*).

peP

A problem of interest in many situations is to determine

Duin ® inf D(P,Q). 16
reid o (P, Q) (16)

A naive attempt to solve this problem would be to start with some @)y € O

and recursively define

Pn:P*(Qn—l)a Qn:Q*(Pn)a n:1727"' (]-7)
hoping that D(P,,Q,) — inf D(P,Q), as n — oo.
PeP.oeQ

We show that, subject to some technical conditions, the naive iteration
scheme (17) determines the infimum in (16). This is stated as the following

theorem.

Theorem 14 Suppose there is a nonnegative function §(P, P') defined on
P x P with the following properties:

(1) “three-points property,”
o(P,P*(Q)) + D(P*(Q),Q) < D(P,Q), VYPeP,Q¢cQ,
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(ii) “four-points property,” for P € P with miaD(PHQ) < 00,
Q¢

D(P', Q")+ o6(P',P)> D(P',Q*(P)), VP eP,Q €Q.
(iii) 6(P*(Q), P1) < oo for Q € Q with 1196171)1 D(P, Q) < oc.

Then, if rlglei%D(P, Qo) < oo, the iteration (17) produces (P,, Q) such
that

lim D(P,Qu) =, inf_ D(P.Q) = D (18)

Under the additional hypotheses: (iv) P is compact, (v) D(P,Q*(P)) is

a lower semi-continuous function of P, and (vi) 6(P, P,) — 0 iff P, — P, we

also have P, — P, where D(Py, Q*(Ps)) = Dmin; moreover, §( Py, Py) 1 0
and

D(Pri1, Qn) — Dmin < 6(Poo, ) — 6(Pocs Pot1)- (19)

Proof. We have, by the three-points property,
6(P, Poy1) + D(Pat1, @n) < D(P, Qn),
and, by the four-points property
D(P,Qy) < D(P,Q) +0(P, P,),
for all P € P, € Q. Hence
(P, Pri1) < D(P,Q) = D(Poy1, @n) + 0(P, Fr) (20)

We claim that the iteration (17) implies the basic limit result (18). Indeed,

since

D(Py, Qo) > D(P,Q1) > D(P,Q1) > D(P,Q2) > ...
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by definition, if (18) were false there would exist () and € > 0 such that
D(P,1,Qn) > D(P*(Q),Q) +¢,n = 1,2,.... Then the inequality (20)
applied with this @ and P*(Q) would give §(P*(Q), Py11) < 0(P*(Q), P,) —e,

for n =1,2,..., contradicting assumption (iii) and the nonnegativity of .

Supposing also the assumptions (iv)-(vi), pick a convergent subsequence
of {P,}, say P,, = P € P. Then by (v) and (18),

D(Ps, Q*(Px)) < liminf D(P,, @n,) = Do
— 00

and by the definition of Dy, here the equality must hold. By (20) applied
to D(P, Q) = D(Px, Q*(Ps)) = Dmin, it follows that

5(P007 Pn—i—l) S Dmin - 5(Pn+17 Qn) + 5(P007 Pn)a

proving (19). This last inequality also shows that §(Px, Py11) < 0(Px, Py),
n=1,2,..., and, since 0(Px, P,,) — 0, by (vi), this proves that 0(Px, P,)
0. Finally, again by (vi), the latter implies that P, — Px. 1

Next we want to apply the theorem to the case when P and Q are con-
vex, compact sets of measures on a finite set A (in the remainder of this
section by a measure we mean a nonnegative, finite-valued measure, equiva-
lently, a nonnegative, real-valued function on A), and D(P,Q) = D(P||Q) =
> o P(a)log(P(a)/Q(a)), a definition that makes sense even if the measures
do not sum to 1. The existence of minimizers Q*(P) and P*(Q) of D(P||Q)
with P or () fixed is obvious.

We show now that with
P(a)
P'(a)

5(P,P') = §(P||P) & 3 {P(a) log — (P(a) — P'(a))loge],

acA
which is nonnegative term-by-term, all assumptions of Theorem 14 are sat-
isfied, with the possible exception of assumption (iii) to which we will return

later.
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Indeed, the three-points and four-points properties have already been
established in the case when the measures in question are probability dis-
tributions, see Theorems 6 and 9. The proofs of these two theorems easily

extend to the present more general case.

Of assumptions (iv)-(vi), only (v) needs checking, that is, we want to
show that if P, — P then min, o D(P||Q) < liminf, o D(Pp[|@n), where
Qn = Q*(P,). To verify this, choose a subsequence such that D(P,, ||Qn,) —
liminf, o D(P,||Qn) and Q,, converges to some Q* € Q. The latter and
P,. — P imply that D(P||Q*) < limy_,oo D(P,,||@n,), and the assertion

follows.

Returning to the question whether assumption (iii) of Theorem 14 holds
in our case, note that 0(P*(Q)||P1) = 6(P*(Q)||P*(Qy)) is finite if the diver-
gence D(P*(Q)||P*(Qo)) is finite on account of the three-points property (i).
Now, for each @ € Q with inf,_p D(P||Q) < co whose support is contained
in the support of @y, the inclusions S(P*(Q)) C S(Q) C S(Qp) imply that
D(P*(Q)||P*(Qo) is finite. This means that assumption is always satisfied if
(o has maximal support, that is, S(Qo) = S(Q). Thus we have arrived at

Corollary 4 Suppose P and Q are convexr compact sets of measures on
a finite set A such that there exists P € P with S(P) C S(Q), and let
D(P,Q) = D(P||Q),6(P,Q) = §(P||Q). Then all assertions of Theorem 1}
are valid, provided the iteration (17) starts with a Qo € Q of mazimal sup-
port.

Note that under the conditions of the corollary, there exists a unique mini-
mizer of D(P||Q) subject to P € P, unless D(P||Q) = +oc for every P € P.
There is a unique minimizer of D(P||Q) subject to Q € Q if S(P) = S(Q),
but not necessarily if S(P) is a proper subset of S(Q); in particular, the
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sequences P,, @, defined by the iteration (17) need not be uniquely deter-
mined by the initial Qo € Q. Still, D(P,||Qn) — Dmin always holds, P,
always converges to some Py € P with min, g D(P4||®) = Din, and
each accumulation point of {@,} attains that minimum (the latter can be
shown as assumption (v) of Theorem 14 was verified above). If D(Py, Q) is

minimized for a unique Qo € Q, then @), = @ can also be concluded.

The following consequence of (19) is also worth noting, for it provides a

stopping criterion for the iteration (17).

D(Pn-l—lHQn) = Dhin < 6(P00||Pn) - 5(P00||Pn+1) =

=Y Py(a)log Puyala) + > [Pu(a) = Poti(a)]loge

a€A Fu(a) 3
< (max P(A)) max log Pusi(a) + [Py(A) — Pyy1(A)]loge
>~ Pep aeA Pn(a) n n+1

where P(A) ¥ 5,4 P(a); using this, the iteration can be stopped when the
last bound becomes smaller than a prescribed € > 0. The criterion becomes

particularly simple if P consists of probability distributions.

Corollary 4 can be applied, as we show below, to minimizing I-divergence
when either the first or second variable is fixed and the other variable ranges
over the image of a “nice” set of measures on a larger alphabet. Here “nice”

sets of measures are those for which the divergence minimization is “easy.”

For a mapping T: A — B and measures P on A, write P” for the image
of P on B, that is, PT(b) = > ,.7a— P(a). For a set P of measures on A write
PT = {PT.P c P}.

Problem 1. Given a measure P on B and a convex set Q of measures on
A, minimize D(P||Q) subject to Q € Q7.
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Problem 2. Given a measure (Q on B and a convex set P of measures on
A, minimize D(P||Q) subject to P € P.

Lemma 8 The minimum in Problem 1 equals D i, = min, _p 0cQ for P =
{P: PT = P} and the given Q, and if (P*,Q*) attains Dy, then Q*T attains

the minimum in Problem 1.

A similar result holds for Problem 2, with the roles of P and Q inter-
changed.

Proof. The lumping property of Lemma 6, which also holds for arbitrary

measures, gives

P(a) _ PT(b)

Qa) Q")

From this it follows that if P = {P: PT = P} for a given P, then the

minimum of D(P||Q) subject to P € P (for @ fixed) is attained for P* =
P*(Q) with

D(PT||QT) < D(P||Q), with equality if

.y Qla)
P =)

and this minimum equals D(P||Q7). A similar result holds also for minimiz-

ing D(P||@) subject to @ € Q (for P fixed) in the case when Q = {Q: Q" =
Q} for a given @, in which case the minimizer Q* = Q*(P) is given by

P(b), b="Ta (21)

P(a)
* = =T 22
The assertion of the lemma follows. ]

On account of Lemma 8, an efficient solution to Problem 1 is available via
the iteration in Corollary 4 applied to P = {P: PT = P} and the given Q,
provided that the steps of minimizing D(P,[|Q) subject to @ € Q are “easy
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to perform”; indeed, the steps of minimizing D(P||@Q, 1) subject to P € P
are very simple, see (21). A similar efficient solution to Problem 2 is also

available, provided the minimization of D(P||Q) subject to P € P is “easy”.

Problem 1 arises, in particular, in maximum likelihood estimation from
incomplete data. Suppose the maximum likelihood estimation of an un-
known probability distribution @, supposed to be a member of a known
family Q, is not feasible, for instead of a full sample 7 = z4,..., 2, drawn
from @, only an incomplete sample y* = Ty, ..., Tx, from Q7 is observable.
By Lemma 5, the MLE from y? equals the minimizer of D(P||@Q), subject
to @ € Q', where P is the empirical distribution of the incomplete sam-
ple y7. This MLE can be determined by the iteration of Corollary 4, with
P = {P: PT = P} as discussed above, provided the family Q is convex and
compact. The resulting iteration is known in statistics as the expectation-
maximization or EM algorithm. The E-step consists of determining P,, from
Qn—1 via equation (21), which can be interpreted as taking the conditional
expectation with respect to (,,—1 of the empirical distribution of the unob-
served x, conditioned on the observed yi. The M-step is to determine @),
by minimizing D(P,||Q) subject to () € Q which, by Lemma 5, is the same
as taking the MLE in the complete model pretending that the empirical dis-
tribution of 27 is P,. It should be noted that in most situations where the
EM algorithm is used in statistics, the set Q of feasible distributions is not
convex. Then Corollary 4 does not apply, and the EM algorithm may not
converge to the MLE from the observed data; indeed, the iteration often gets

stuck at a local optimum.

Example 2 (Decomposition of mixtures.) Let P be a probability dis-
tribution and let pq, ..., ux be arbitrary measures on a finite set B. The goal
is to minimize D(P|| ¥ ¢;p;) for weight vectors (cq, . .., cx) with nonnegative

components that sum to 1. If y,. .., s are probability distributions and P
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is the empirical distribution of a sample drawn from the mixture 3, ¢;j1; then

the goal is identical to finding the MLE of the weight vector (cy, ..., c).

This example fits into the framework of Problem 1, above, by setting A =
{1,...,k}xB, T(i,b) =b, Q={Q:Q(i,b) = ¢;11;(b)}. Thus we consider the
iteration (17) as in Corollary 4, with P = {P:Y; P(i,b) = P(b),b € B} and
Q above, assuming for nontriviality that S(P) C U;S(p;) (equivalent to the
support condition in Corollary 4 in our case). As Corollary 4 requires starting
with @y € Q of maximal support, we assume Qq(i,b) = ¥ p;(b), & >0, i =

., k. To give the iteration explicitly, note that if Q,_i(i,b) = ¢ 1;(b)
is already defined then P, is obtained, according to (21), as

Q1 (i) ”’luz(b) _
e 0= T

To find @, € Q minimizing D(P,||Q), put Pn(z) = Y e Pu(i,b) and use
Q(i,b) = c;p;(b) to write

P,(i,b) =

DRIQ) = Y5 Puli,b)log Pu((bb))

1= leB

= ZP log +ZZP (4,b) log —————— P (i,0)

i=1beB P, (i ),uz(b)

This is minimized for ¢! = P, (i), hence the recursion for ¢! will be

Cc; = C

L &Y )

Finally, we show that (¢}, ..., c}) converges to a minimizer (cj, .. c,”;) of
D(P|| Xy, cipt;)- Indeed, P, converges to a limit P,, by Corollary 4, hence c?
P, (i) also has a limit ¢ and @, — Q* with @Q*(i,b) = c;u;(b). By the passage
following Corollary 4, (P, Q") attains Dy, = min, p .o D(P||Q), and
then, by Lemma 8, Q*" = ¥, ¢} p; attains ming_ o7 D(P||Q) = Dyin.
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Remark 8 A problem covered by Example 2 is that of finding weights ¢; > 0
of sum 1 that maximize the expectation of log},; ¢;X;, where Xy,..., X}
are given nonnegative random variables defined on a finite probability space
(B, P). Indeed, then

Bllog Y- c:;) = ~D(P|| Y ciw),

for p;(b) = P(b)X;(b). In this case, the above iteration takes the form

Xi
e =c T E(———
which is known as Cover’s portfolio optimization algorithm. We note without

proof that the algorithm works also for nondiscrete X1, ..., X.

Remark 9 The counterpart of the problem of Example 2, namely, the min-
imization of D(X cij;||@) can be solved similarly. Then the iteration of

Corollary 4 has to be applied to the set P consisting of the measures of the

form P(i,b) = c;p;i(b) and to Q = {Q: >, Q(i,b) = Q(b),b € B}. Actu-
ally, the resulting iteration is the same as that in the proof of Theorem 13,
(assuming the u; and @ are probability distributions), with notational dif-
ference that the present i,b,c;, u;(b), Q(b), P, € P,Q, € Q correspond to
a,i, P(a), fz-(a),az-,]Bn € Lo, ]5,’L € L, there. To see this, note that while the
even steps of the two iterations are conceptually different divergence mini-
mizations (with respect to the second, respectively, first variable, over the set
denoted by Q or Zl), in fact both minimizations require the same scaling,

see (21), (22).

This observation gives additional insight into generalized iterative scaling,
discussed in the previous subsection. Note that Theorem 13 involves the
assumption £ # () (as linear families have been defined to be non-empty, see

Section 2), and that assumption is obviously necessary. Still, the sequence
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{P,} in the proof of Theorem 13 is well defined also if £ = (), when L and
L, in that proof are disjoint. Now, the above observation and Corollary 4
imply that P, converges to a limit P* also in that case, moreover, P = P*

minimizes the I-divergence from (ay, ..., ay) of distributions (71, ..., vx) such
that v; = >, P(a) fi(a),1 <i < k, for some probability distribution P on A.

5 Universal coding

A Shannon code for a distribution P, on A™ has the length function
[—log P, (z7)] and produces expected length within 1 bit of the entropy lower
bound H(PF,); it therefore provides an almost optimal method for coding
if it is known that the data x7 is governed by F,. In practice, however,
the distribution governing the data is usually not known, though it may be
reasonable to assume that the data are coming from an unknown member
of a known class P of processes, such as the i.i.d. or Markov or stationary
processes. Then it is desirable to use “universal” codes that perform well
no matter which member of P is the “true process”. In this section, we
introduce criteria of “good performance” of codes relative to a process, and
describe universal codes for the classes of i.i.d. and Markov processes, and
for some others, which are almost optimal in a strong sense and, in addition,

are easy to implement.

By a process with alphabet A we mean a Borel probability measure P on
A, that is, a probability measure on the o-algebra generated by the cylinder
sets

[a}] = {2{°: 2} = a'}, at € A", n=1,2,...;

see the Appendix for a summary of process concepts. The marginal distri-
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bution P, on A™ of a process P is defined by
Po(aY) = P([ay]),  ay € A"
we also write briefly P(al) for P,(af).

Simple examples are the i.i.d. processes with

P(a}) =[] P(a), al € A",

t=1

and the Markov chains with

P(ay) = Pi(a1) [ Plaslars), — af € A",

t=2

where P = {Pi(a):a € A} is an initial distribution, and {P(a|a), a € A,

a € A} is a transition probability matriz, that is, P(-|a) is a probability

distribution on A for each a € A. Stationary processes are those that satisfy

P({a°: 2117 = at}) = P([a}]), for each i,n, and af € A™.

5.1 Redundancy

The ideal codelength of a message 7 € A" coming from a process P
is defined as —log P(x}). For an arbitrary n-code C,: A" — B* B =
{0, 1}, the difference of its length function from the “ideal” will be called the

redundancy function R = Rpg,:
R(x}) = L(z) + log P(x7).
The value R(x7) for a particular z7 is also called the pointwise redundancy.

One justification of this definition is that a Shannon code for P,, with

length function equal to the rounding of the “ideal” to the next integer,
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attains the least possible expected length of a prefix code C,: A" — B*, up
to 1 bit (and the least possible expected length of any n-code up to logn

plus a constant), see Section 0. Note that while the expected redundancy
Ep(R) = Ep(L) — H(Fy)

is non-negative for each prefix code C,: A" — B*, the redundancy function
takes also negative values, in general. The next theorem shows, however,
that pointwise redundancy can never be “substantially” negative for large n,
with P-probability 1. This provides additional justification of the definition

above.

In the sequel, the term code will either mean an n-code C,: A — B*, or
a sequence {Cp,:n =1,2,...} of n-codes. The context will make clear which
possibility is being used. A code {Cy,:n =1,2,...} is said to be a prefix code
if each C), is one, and strongly prefix if C,, (y7") < Cp,(z7) can hold only when

yt < .
Theorem 15 Given an arbitrary process P and code {Cy:n =1,2,...} (not
necessarily prefiz),

R(zV) > —¢, eventually almost surely,

for any sequence of numbers {¢,} with 3 n2~ < +o0, e.g., for ¢, = 3logn.
Moreover, if the code is strongly prefiz, or its length function satisfies L(x]) >
—log Q(z7) for some process @, then

Ep(inf R(z7)) > —oo.

Proof. Let
A (c) = {a™: R(2") < —c} = {a": 2L P () < 27},
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Then
Py(Au(0)) = Y Ply) <2 Y 27HD <27¢log|A”|
P EA(c) zP€An(c)
where, in the last step, we used Theorem 2. Hence
> Pu(An(cn)) < loglA[- > m 27,
n=1 n=1

and the first assertion follows by the Borel-Cantelli principle.

The second assertion will be established if we show that for codes with

either of the stated properties
P({z{%:inf, R(z7) < —c}) <27°, Ve>0,

or in other words,
o

P,(B,(c)) < 27°¢

n=1
where

B,(c) = {z": R(2") < —¢, R(z%) > —¢c, k < n}.

As in the proof of the first assertion,

Py(Bule)) <27 S 27hED),

2} E€Bn(c)

hence it suffices to show that

i Z 9~ L(a1) <1.

n=1 zleB,(c)

If {Ch:n =1,2,...} is a strongly prefix code, the mapping C: (U, B,,(¢)) —
B* defined by C(z}) = C,(27), 7 € B,(c), satisfies the prefix condition,
and the claim holds by the Kraft inequality. If L(z7) > —log Q(z7), we have

> 27 < 3 Qat) = Qu(Bal0)),

zP €Bn(c) zP€Bn(c)
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and the desired inequality follows since
> Qu(Bn(c) = Q({af®:inf,, R(z]) < —c}) < 1.
n=1
(]

In the literature, different concepts of universality, of a code {C,:n =
1,2,...} for a given class P of processes, have been used. A weak concept

requires the convergence to 0 of the expected redundancy per symbol,
1
—Ep(Rpc,) — 0, for each P € P; (23)
n

stronger concepts require uniform convergence to 0 of either (1/n)Ep(Rpc, )
or (1/n) max Rpc, (z]), for P € P.
zPeAn ’

In the context of “strong” universality, natural figures of merit of a code
C,: A" — B* (for a given class of processes) are the worst case expected

redundancy

Rg, = sup Ep(Rpc,)
pPeP

and the worst case maximum redundancy

* . n
R¢, = sup max Rpc, (x7).
peP ™1

Example 3 For the class of i.i.d. processes, natural universal codes are ob-
tained by first encoding the type of 27, and then identifying 7 within its type
class via enumeration. Formally, for 7 of type @, let C,,(27) = C(Q)Cq(27}),
where C: P, — B* is a prefix code for n-types (P, denotes the set of all
n-types), and for each @ € P, Cq:Tg — B* is a code of fixed length
[log |[T%I1. This code is an example of what are called two-stage codes. The
redundancy function Rpc, = L(Q) + [log T[] + log P(27) of the code C),
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equals L(Q) +log P"(T¢), up to 1 bit, where L(Q) denotes the length func-
tion of the type code C: P, — B*. Since P"(T7) is maximized for P = @Q,

it follows that for 7 in 7, the maximum pointwise redundancy of the code
Cy equals L(Q) +1og Q"(T7,), up to 1 bit.

Consider first the case when the type code has fixed length L(Q) =
[log |P,|]. This is asymptotically equal to (|A] — 1)logn as n — oo, by
Lemma 2 and Stirling’s formula. For types ) of sequences x} in which
each a € A occurs a fraction of time bounded away from 0, one can see
via Stirling’s formula that log Q" (77) is asymptotically —((|A|—1)/2) logn.
Hence for such sequences, the maximum redundancy is asymptotically ((|A|—
1)/2)logn. On the other hand, the maximum for z7 of L(Q) + log Q"(77)
is attained when 7 consists of identical symbols, when Q"(77) = 1; this

shows that R{, is asymptotically (JA| —1)logn in this case.

Consider next the case when C:P,, — B* is a prefix code of length
function L(Q) = [log(c,/Q"(Tg))] with ¢, = Yoop Q"(Tg) ; this is a
bona-fide length function, satisfying the Kraft inequality. In this case L(Q)+
log Q"(T7) differs from log ¢, by less than 1, for each @ in P, and we obtain
that Ry, equals logc, up to 2 bits. We shall see that this is essentially best
possible (Theorem 16), and in the present case R¢, = ((|A| —1)/2)logn +
O(1) (Theorem 17).

Note that to any prefix code C,: A" — B*, with length function L(z7),
there is a probability distribution @, or A" such that L(z7) > —log Q,(z)
(one can take Q,(z7) = 27 *1) with ¢ > 1, using the Kraft inequality).
Conversely, to any distribution (), on A™ there exists a prefix code with
length function L(2]) < —log Q,(z})+1 (a Shannon code for @,,). It follows
that for any class P of processes with alphabet A, the least possible value of
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R, or Ry, for prefix codes C,: A" — B* exceeds

= - P(at)
R, = min sup P(x7)log - (24)
0 &, PR G
or Pl
R; = min sup max log (z1) (25)

Qn pop TiEA™ T Qp(at)
by less than 1; moreover a Shannon code for (), attaining the minimum in
(24) or (25) yields the least possible R, or Rf. , up to 1 bit. In particular, for
a class P of processes, there exist “strongly universal codes” with expected
or maximum redundancy per symbol converging to 0 uniformly for P € P,

if and only if R,, = o(n) or R} = o(n), respectively.

Our next theorem identifies the minimizer in (25) and the value R’. The

related problem for R,, will be treated in Section 6.

We use the following notation. Given a class P of processes with alphabet
A, we write

Py (z7) € sup P(a?), xy € A",
pcP

where the subscript on Py, emphasizes its interpretation as the maximizer
of P(z}) subject to P € P (if it exists), that is, as the maximum likelihood
estimate of the process P € P that generates z7. The normalized form
def
NMLTL(CL?) :e PML((LTIL)/ Z PML(ZUTIL), CLTIL € An,
TPEA™

is called the the normalized maximum likelihood distribution.

Theorem 16 For any class P of processes with finite alphabet A, the mini-
mum in (25) is attained for Q,, = NML,, the normalized mazimum likelihood

distribution, and the minimax redundancy is given by

TP EAn
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Proof. For arbitrary @,

P(z7) Py (27)
sup max log —~ = log max —
pep THEA" Qn(ajl) ThEAN Qn(xl)
Here P P
ML xl ML 5U1
max Qn(z Py, (27
B Q) © 2 e 2, Pt
with equality if @, = NMLn. O

5.2 Universal codes for certain classes of processes

While Shannon codes for the distributions NML,,, n = 1,2, ... are opti-
mal for the class P within 1 bit, with respect to the maximum redundancy
criterion, by Theorem 16, they are typically not practical from the imple-
mentation point of view. We will show that for some simple but important
classes P there exist easily implementable arithmetic codes {C,,:n = 1,2, ...}

which are nearly optimal, in the sense that
R¢ < R, + constant, n=12,... (26)

Recall that an arithmetic code determined by a process @ (of the second kind,
see see eq.(2) in Section 0) is a prefix code {C,:n = 1,2,...} with length
function L(z7) = [—logQ(z})] + 1. Note that the obvious idea to take a
process () with marginals ), = NML, does not work, since such a process
typically does not exist (that is, the distributions NML,, n =1,2,..., do not

meet the consistency criteria for a process).

Below we describe suitable “coding processes” (), and for the correspond-
ing arithmetic codes we prove upper bounds to Ry . For the class of i.i.d
processes, we also determine R, up to a constant, and establish the bound

(26) for our code. For other classes, the proof of the claimed near optimality
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will be completed in the next section, where we also prove near optimality

in the expected redundancy sense.

In the rest of this section, we assume with no loss of generality that
A=A{1,... k}.

Consider first the case when P is the class of i.i.d. processes with alpha-
bet A. Let the “coding process” be the process () whose marginal distribu-
tions @, = {Q(z}): 2} € A"} are given by

w e n]aiTh) + g
T = _ =
Q(zY) t|:I1 F—1+L

Y

where n(i|z} ') denotes the number of occurrences of the symbol i in the

“past” z!™'. Equivalently,

[ = D= 34
Qa}) = —— 2 TN (27)
D=1 B2 5t
where n; = n(ilz}), and (n; — 3)(n; — 2)...5 =1, by definition, if n; = 0.

Note that the conditional probabilities needed for arithmetic coding are

given by the simple formula
Q(il+1™") =

Intuitively, this Q(i|z! ') is an estimate of the probability of i from the ” past”
2!7! under the assumption that the data come from an unknown P € P.
The unbiased estimate n(i|z}™")/(t — 1) would be inappropriate here, since
an admissible coding process requires Q(i|z{™") > 0 for each possible 2™

and 7.

Remark 10 It is not intuitively obvious at this point in our discussion why

exactly 1/2 is the "right” bias term that admits the strong redundancy bound
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below. Later, in Section 6, we establish a deep connection between minimax
expected redundancy R, and mixture distributions with respect to priors
(which is closely connected to Bayesian ideas); the 1/2 then arises from using
a specific prior. For now we note only that replacing 1/2 by 1 in formula
(27) leads to the coding distribution Q(z}) = (n—1+lg[(;;7—bi2!+k)mk which equals
|Pn\-\17'Q\’ if 27 € T, see Lemma 2. In this case, the length function is the

same (up to 2 bits) as the first, suboptimal, version of the two-stage code in

Example 3.

We claim that the arithmetic code determined by the process () satisfies

R¢ <

logn + constant. (28)

Since the length function is L(z}) = [logQ(z})] + 1, our claim will be

established if we prove

Theorem 17 For QQ determined by (27), and any i.i.d. process P with al-
phabet A ={1,... k},
P(xt) ]
< Kynz, Vol e A",
Q) ~ " :

where Ky 1s a constant depending on the alphabet size k only.

Proof. ~We begin by noting that given z7 € A", the i.i.d. process with
largest P(z7) is that whose one-dimensional distribution equals the empirical

distribution (n1/n,...,ng/n) of 7, see Lemma 4, and hence

P@}) < Pu(ad) = ﬁ (2"

In a moment we will use a combinatorial argument to establish the bound

ﬁ(@)" c M=y =)

2l (29)



This is enough to yield the desired result, for if it is true, then we can use
P(21)/Q(2T) < Pyw(2})/Q(27) and the Q-formula, (27), to obtain
n n k :
P(x7?) < 11 %,
Q(z7) =1t

V2" € A", (30)

If the alphabet size k is odd, the product here simplifies, and is obviously of

k—1 . .
order n = . If k is even, using

(n—YHn-3)...1 = (2n—1)(2272_3)...1
2n)!  2n(2n—1)---(n+1)
= 22nn!: 92n , (31)

the product in (30) can be rewritten as

(n+ %~ Y& - 1)
(2n)!/22mn! ’

and Stirling’s formula gives that this is of order n's. Hence, it indeed suffices

to prove (29).

To prove (29), we first use (31) to rewrite it as

Eona\m_ TI (20020 — 1) -+ (ng + 1)

i=1
which we wish to establish for k-tuples of non-negative integers n; with sum n.
This will be done if we show that it is possible to assign to each / =1,...,n
in a one-to-one manner, a pair (4,7), 1 <i <k, 1 < j <n, such that

n - nt+tl

Now, for any given ¢ and 4, (33) holds iff j > n;¢//n. Hence the number of
those 1 < j < n; that satisfy (33) is greater than n; — n;¢/n, and the total
number of pairs (4,7), 1 <i <k, 1 <j <mn, satisfying (33) is greater than

k

Z(ni—%€>:n—€.

=1
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It follows that if we assign to £ = n any (i, j) satisfying (33) (i. e., ¢ may be
chosen arbitrarily and j = n;), then recursively assign to each ¢ = n—1,n—2,
etc., a pair (i,7) satisfying (33) that was not assigned previously, we never
get stuck; at each step there will be at least one “free” pair (i, j) (because the
total number of pairs (i, j) satisfying (33) is greater than n — ¢, the number

of pairs already assigned.) This completes the proof of the theorem. (]

Remark 11 The above proof has been preferred for it gives a sharp bound,
namely, in equation (29) the equality holds if 27 consists of identical symbols,
and this bound could be established by a purely combinatorial argument. An
alternative proof via Stirling’s formula, however, yields both upper and lower
bounds. Using equation (31), the numerator in equation (27) can be written
. [ Cn!

70 22nip|’

which, by Stirling’s formula, is bounded both above and below by constant
times ™" [1;.,. .o m;*. The denominator in equation (27) can also be expressed
by factorials (trivially if k£ is even, and via equation (31) if k is odd), and
Stirling’s formula shows that it is bounded both above and below by a con-
stant times e "n"**= . This admits the conclusion that Py (27)/Q(x7) is

bounded both above and below by a constant times n%, implying

Theorem 18 For the class of i.i.d processes,

k—1
Ry =log Y Pu(a})= Tlogn +O(1).

TPEAN

Consequently, our code satisfying equation (28) is nearly optimal in the sense

of equation (26).
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Next, let P be the class of Markov chains with alphabet A = {1,...,k}.
We claim that for this class, the arithmetic code determined by the process
() below satisfies

k(k—1)

5 logn + constant. (34)

R, <

Let the “coding process” be that ) whose marginal distributions ), =
{Q(al): x} € A"} are given by

ﬁ L(nyg = 1/2)(ny = 3/2) ... 1/2]
bl —1+k/2)(nz—2+/€/2) kj2’

(35)

here n;; is the number of times the pair 4, j occurs in adjacent places in x7,
and n; = 3, n;;. Note that n; is now the number of occurrences of ¢ in the
block 27" (rather than in 27 as before). The conditional Q-probabilities

needed for arithmetic coding are given by

QU= = ——
where n;_1(i, j) and n,_;(7) have similar meaning as n;; and n; above, with
24! in the role of z7.

Similarly to the i.i.d. case, to show that the arithmetic code determined

by @ above satisfies (34) for the class of Markov chains, it suffices to prove

Theorem 19 For () determined by (35) and any Markov chain with alphabet
A={1.... k},

)
Q(xl)

where Ky 1s a constant depending on k only.

Va2 € A",
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Proof. For any Markov chain, the probability of 27 € A™ is of form

i kE k
Plaf) = Po(on) IT Plaufeir) = Prten) ILTL PGID™ .
t=2 i=1j=1
This and (35) imply that

) T oo /il = 1/2)(ni; — 3/2) ... 1/2]
Q(ah) SkiHlLHlP(M /(nz-—1+k/2)(ni—2+k/2)...k/2 '

Here, the square bracket is the same as the ratio in Theorem 17 for a se-
quence z7" € A™ with empirical distribution (n;/n;,...,ng/n;), and an
i.i.d. process with one-dimensional distribution P(-]¢). Hence, it follows from
Theorem 17 that

P(at)
Q(a7)

E—1 k(k—1
> (k—1)

k
< kT Ko n™ | < (6 Kn*
=1

O

Consider next the class of Markov chains of order at most m, namely of
those processes P (with alphabet A = {1,...,k}) for which the probabilities
P(z7), 7 € A", n > m can be represented as

n

P(a}) = Pu(a7") [ Pladleizn),

t=m+1
where P(-|a]") is a probability distribution for each af € A™. The Markov
chains considered before correspond to m = 1. To the analogy of that case
we now define a “coding process” () whose marginal distributions @,,, n > m,
are given by

ny L (N — 1/2) (i — 3/2) ... 1/2]
Qi) = 11 (Rap — 1+ k/2)(nap —2+k/2) ... k/2"°

alteA™

(36)

where n,m; denotes the number of times the block af"j occurs in z}, and

Ngm = 32; Ngmj 18 the number of times the block a* occurs in A
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The same argument as in the proof of Theorem 19 gives that for @) de-

termined by (36), and any Markov chain of order m,

P(z? ™ (k-1 m
(x;) <Kpn 52, K=k K" (37)
Q(z7)

It follows that the arithmetic code determined by ) in (36) is a universal

code for the class of Markov chains of order m, satisfying

kR

o, < logn + constant. (38)

Note that the conditional ()-probabilities needed for arithmetic coding are
now given by

ntfl(agnaj) + %

nt_l(a’ln) + g ’

_ m
_al’

e -1
it -,

Q") =

where 1,1 (af’, j) and n,_;(af") are defined similarly to ngm; and ngm, with

in the role of z7.

xﬁ’

A subclass of the Markov chains of order m, often used in statistical
modeling, is specified by the assumption that the transition probabilities
P(jlay*) depend on af* through a “context function” f(a!*) that has less
than £™ possible values, say 1,...,s. For m <t < n, the t’th symbol in a
sequence z7 € A" is said to occur in context ¢ if f(xi_},) = £. A suitable
coding process for this class, determined by the context function f, is defined
by
Q™) = - s T (e — 1/2)(ney = 3/2) ... 1/2],

Emo (e —14+k/2)(ng —2+k/2) ... k/2

where 7, ; denotes the number of times j occurs in context ¢ in the sequence

k

xt, and ny = '21 nej. The arithmetic code determined by this process )
]:

satisfies, for the present class,

k—1
Re, < %logn + constant, (39)
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by the same argument as above. The conditional ()-probabilities needed for

arithmetic coding are now given by

e 1(0]) + 3
L1 _ (4, 2
Q(]| 1 ) nt,1(€)+§

Finally, let P be the class of all stationary processes with alphabet A =
{1,...,k}. This is a “large” class that does not admit strong sense universal
codes, that is, the convergence in (23) can not be uniform for any code, see
Example 6 in Section 7. We are going to show, however, that the previous
universal codes designed for Markov chains of order m perform “reasonably
well” also for the class P of stationary processes, and can be used to obtain

universal codes for P in the weak sense of (23).

To this end, we denote by Q™ the coding process defined by (36) tailored
to the class of Markov chains of order m (in particular, Q(® is the process
defined by (27)), and by {C":n =1,2,...} the arithmetic code determined
by the process Q™.

Theorem 20 Let P € P have entropy rate H = lim,,_,o H,, where, with
{X,} denoting a representation of P, Hy, = H(X;i1| X4, ..., Xm). Then

1 Rk 1 .
—Bp(Rpop) < Hy — 1 + (k= 1) logn | cm

2 n n’
where ¢, 1s a constant depending only on m and the alphabet size k, with

Cm = O(K™) as m — oo.

Corollary 5 For any sequence of integers m, — oo with m, < alogn,
a < 1/logk, the prefiz code {C":n =1,2,...} satisfies (23). Moreover, the

arithmetic code determined by the mixture process

Q= Z W Q™ (with  ay, > 0, Zam =1)
m=0
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also satisfies (23).

Proof. Given a stationary process P, let P(™

) denote its m’th Markov
approximation, that is, the stationary Markov chain of order m with

PU(at) = P(at) I Pladlei=y), a2t € A%
t=m-+1
where
P(zi|zy=,,) = PriX, = z|X,", = v/,

- xt:m}
The bound (37) applied to P™ in the role of P gives

P(ay) P(a7) P (af)
lOgW = logi

i
<
QUM (a}) ~

logn + log Ky,
where log K, = O(k™).

of log P(z,|x!=},) equals —H,

Hence for the code C}" with length function
L(z?) = [—1og QU (27)] + 1, the last bound gives that

Note that the expectation under P of log P(z7) equals —H(P,), and that
¢

+2<

Px
1
E™(k—1
<-H(P,)+H(P,)+ (n—m)H m—i—%lognleogmeLQ.
Since

n—1
H(P,) = H(Pa) = H(X]) = HXT) = 3 H(Xoal X) 2 (0= m) T,
the assertion of the theorem follows
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The corollary is immediate, noting for the second assertion that Q(x7) >

Q™ (27) implies

P(x?) < log

1 I S A
Q) = P Qm(an)

— log ay,.

Remark 12 The last inequality implies that for Markov chains of any order

m, the arithmetic code determined by Q@ = 3. @, Q™ performs effectively
m=0

as well as that determined by Q™ the coding process tailored to the class of
Markov chains of order m: the increase in pointwise redundancy is bounded
by a constant (depending on m). Of course, the situation is similar for other
finite or countable mixtures of coding processes. For example, taking a mix-
ture of coding processes tailored to subclasses of the Markov chains of order
m corresponding to different context functions, the arithmetic code deter-
mined by this mixture will satisfy the bound (39) whenever the true process
belongs to one of the subclasses with s possible values of context function.
Such codes are sometimes called doubly universal. Their practicality depends
on how easily the conditional probabilities of the mixture process, needed for
arithmetic coding, can be calculated. This issue is not entered here, but
we note that for the case just mentioned (with a natural restriction on the
admissible context functions) the required conditional probabilities can be

calculated via a remarkably simple “context weighting algorithm”.

6 Redundancy bounds

In this section, we address code performance for a class of processes
with respect to the expected redundancy criterion. We also show that the

universal codes constructed for certain classes in the previous section are
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optimal within a constant, both for the maximum and expected redundancy

criteria.

As noted in the previous section, the least possible worst case expected
redundancy R¢, , for a given class P of processes attainable by a prefix code
Cp: A" — B*, exceeds by less than 1 bit the value

R, = min sup D(P,[|Q.,), (40)

@ peP
see (24). Moreover, a distribution @)% attaining this minimum is effectively
an optimal coding distribution for n-length messages tailored to the class P,
in the sense that a Shannon code for )} attains the least possible worst case

expected redundancy within 1 bit.

Next we discuss a remarkable relationship of the expression (40) to the
seemingly unrelated concepts of mutual information and channel capacity.
As process concepts play no role in this discussion, we shall simply consider
some set II of probability distributions on A, and its [-divergence radius,
defined as the minimum for @) of supp.y D(P||Q). Later the results will be
applied to A™ and the set of marginal distributions on A™ of the processes
P € P, in the role of A and II.

6.1 I-radius and channel capacity

The I-radius of a set II of distributions on A is the minimum, for distri-
butions @ on A, of suppe D(P||Q) . If the minimum is attained by a unique
@ = Q* (as we shall show, this is always the case), the minimizer Q* is called
the I-centroid of the set II.
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In the following lemma and theorems, we consider “parametric” sets of
probability distributions IT = {P), 8 € ©}, where O is a Borel subset of RF,

for some k > 1, and Py(a) is a measurable function of # for each a € A.

In information theory parlance, { Py, 0 € O} defines a channel with input
alphabet © and output alphabet A: when an input # € © is selected, the
output is governed by the distribution Py = {Py(a),a € A}. If the input is
selected at random according a probability measure v on ©, the information

that the output provides for the input is measured by the mutual information

1) = H(Q,) ~ [ H(P)w(db),

where ), = {Q,(a): a € A} is the “output distribution” on A corresponding
to the “input distribution” v, that is,

- /Pg(a)u(dﬁ), a€ A

The supremum of the mutual information I(v) for all probability measures v

on O is the channel capacity. A measure vy is a capacity achieving distribution
if I(vy) = sup, I(v).

Lemma 9 For arbitrary distributions QQ on A and v on O,

| DBlQw(d0) = 1(v) + D(Q, Q).

Proof. Both sides equal +o0o if S(Q), the support of @, does not contain
S(Py) for v-almost all § € ©. If it does we can write

| D(RilI@)w(do) /(ZP logg((a))>l/(d9)

aEA

_/<ZP Q ) (d6) +/<ZP log%(())> (d6).

acA acA
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Using the definition of @,, the first term of this sum is equal to I(r), and
the second term to D(Q,[|Q). ]

Theorem 21 For arbitrary distributions Q on A and v on O,
sup D(F[|Q) = I(v),
0co

with equality iof and only if v is a capacity achieving distribution and Q@ = Q.

Proof.  The inequality follows immediately from Lemma 9, as does the
necessity of the stated condition of equality. To prove sufficiency, suppose
on the contrary that there is a capacity achieving distribution 1 such that
D(Py,||Qu,) > (1), for some 0y € O. Setting vy = (1—t)vy+tPy,, 0 <t < 1,
we have, by the definition of I(v),

T(w) = H(Qu) = (1= ) [ H(P)wo(d8) ~ tH(Py,),

so that,

d d
@[(Vt) = EH(QZ&) + /H(Pg)l/o(dg) o H(PGO)'

Since Q,, = (1 —t)Qy, + tPy,, simple calculus gives that

d
%H(Qw) = Z(QVO (a) - P90 (a)) IOg QVt (a)
It follows that
d
ltlf(I)l %I(Vt) = _[(VO) + D(P90||QV0) >0,

contradicting the assumption that v, is capacity achieving (which implies
that I(14) < I(1p)). The proof of the theorem is complete. ]
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Note that any set I of distributions on A which is a Borel subset of R
(with the natural identification of distributions with points in R'4) has a
natural parametric representation, with © = II and § — P, the identity
mapping. This motivates consideration, for probability measures p on I, of

the mutual information
1) = HQ,) — [ H(P)u(aP). Q.= [ Pu@p). (1)

Lemma 10 For any closed set 11 of distributions on A, there exists a prob-
ability measure pg concentrated on a finite subset of 11 of size m < |A| that
mazximizes I(p). If a parametric set of distributions {Py,0 € O} is closed,

there exists a capacity achieving distribution vy concentrated on a finite subset
of © of size m < |A].

Proof. If Il is a closed (hence compact) subset of R4, the set of all proba-
bility measures on II is compact in the usual topology of weak convergence,
where y,, — p means that [ ®(P)u,(dP) — [ ®(P)u(dP) for every continu-
ous function ® on II. SinceHI (u) is Continuou;T in that topology, its maximum

is attained.

Theorem 21 applied with the natural parametrization of II gives that
if 4* maximizes I(p) then Q* = Q- satisfies D(P||Q*) < I(u*) for each
0 € ©. Since I(p*) = fD(P||Q) *(dP), by Lemma 7, it follows that
D(P||Q*) = I(u*) for u* almost all P € I, thus Q* = fPu*(dP) belongs to
the convex hull of the set of those P € II that satisfy (P||Q) = I(p*). Since
the probability distributions on A belong to an (|A| — 1)-dimensional affine
subspace of RI4, this implies by Caratheodory’s theorem that Q* is a convex

combination of m < |A| member of the above set, that is, Q* = Z a; P; where

the distributions P; € II satisfy D(PB;||Q*) = I(u*), © = 1,. m Then the
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probability measure p concentrated on {P, ..., P,,} that assigns weight «;

to P;, satisfies I (1) = I(u*), completing the proof of the first assertion.

The second assertion follows by applying the one just proved to Il =
{Py,0 € ©}, because any probability measure v on © and its image p on II
under the mapping § — Py satisfy I(v) = I(u), and any measure concen-
trated on a finite subset {Py,, ..., Py, } of IT is the image of one concentrated
on {6y,...,0,} CO. L]

Corollary 6 Any set I1 of probability distributions on A has an I-centroid,
that is, the minimum of sup D(P||Q) is attained for a unique Q*.
Pell

Proof: For II closed, the existence of I-centroid follows from the fact that
the maximum of I(u) is attained, by Theorem 21 applied with the natural
parametrization of II. For arbitrary II, it suffices to note that the I-centroid

of the closure of II is also the I-centroid on II, since supp.; D(P||Q) =
suppeeqm D(P||@), for any Q. 0

Theorem 22 For any parametric set of distributions {Py,0 € O}, the I-
radius equals the channel capacity sup I(v), and Q,, converges to the I-

centroid QQ* whenever I(v,) — sup I(v).

Proof:  Let II denote the closure of {Py,# € ©}. Then both sets have
the same I-radius, whose equality to sup I(v) follows from Theorem 21 and
Lemma 10 if we show that to any probability measure jy concentrated on

a finite subset {Py,..., P,,} of II, there exist probability measures v, on ©
with I(v,) — I(ju0)-

Such v,,’s can be obtained as follows. Take sequences of distributions in
{Py,0 € ©} that converge to the P;’s, say Py, — P;,i=1,...,m. Let v,
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be the measure concentrated on {6 ,,...,0,,}, giving the same weight to
0;, that po gives to P;. O

Finally, we establish a lower bound to channel capacity, more exactly, to
the mutual information I(v) for a particular choice of v, that will be our
key tool to bounding worst case expected redundancy from below. Given a
parametric set {Py,# € O} of distributions on A, a mapping : A — O is
regarded as a good estimator of the parameter # if the mean square error

Egll0 —0)* = Y Py()]|6 — O(x)||”

T€A

is small for each # € ©. We show that if a good estimator exists, the channel

capacity can not be too small.

Theorem 23 If the parameter set © C R* has Lebesgue measure 0 < \(©) <

00, and an estimator 0: A — O exists with
Eyll0 —0)> <& for each 6 €O ,

then for v equal to the uniform distribution on ©,

k k
I(v) > 21 log \(©).
(v) > 0g 5—— +log (©)

2

To prove this theorem, we need some standard facts from information
theory, stated in the next two lemmas. The differential entropy of a random
variable X with values in R¥ that has a density f(z), is defined as

H(X) =~ [ f(2)log f(x)ds
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thus H denotes entropy as before in the discrete case, and differential entropy
in the continuous case. The conditional differential entropy of X given a
random variable Y with values in a finite set A (more general cases will not

be needed below), is defined similarly as

H(X|Y) = [ /f a)log f(x|a)dz

aeA

where P(a) is the probability of Y = a, and f(x|a) is the conditional density
of X on the condition Y = a.

Lemma 11 For X and Y as above, ( XA\Y') = H(X)—H(X|Y). Moreover,
if Z is a function of Y then H(X|Y) < H(X|Z) < H(X).

Proof. By the definition of mutual information of random variables, one

with values in a finite set and the other arbitrary, see Section 0,
I(XAY)=H(Y) - H(Y|X) = /H ()dz,

where P(-|z) denotes the conditional distribution of Y on the condition X =
x. Substituting the formula for the latter, P(a|x) = P(a)f(x|a)/f(z), into

the above equation, the claimed identity
I(XAY) /f )log f(x)dz + 3" Pla /f a) log f(x|a)dx
a€A

follows by simple algebra.

Next, if Z is a function of Y, for each possible value ¢ of Z let A(c) denote
the set of possible values of Y when Z = ¢. Then the conditional density of
X on the condition Z = ¢ is given by

Yacae) Pla) f(z|a)
EaeA(c)P(a) ’

g(zle) =
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and Jensen’s inequality for the concave function —tlogt yields that

> Pla)(=f(zla)log f(za)) < ( > P(a))(—g(zlc)logg(z|c)).

acA(c) a€A(c)

Hence, by integrating and summing for all possible ¢, the claim H(X|Y) <
H(X|Z) follows. Finally, H(X|Z) < H(X) follows similarly. L

Lemma 12 A k-dimensional random variable V = (Vi,..., Vi) with E||V[|? <
ko? has mazimum differential entropy if Vi, ..., Vi are independent and have

2

Gaussian distribution with mean 0 and variance o, and this maximum en-

tropy is & log(2mec?).

Proof. The integral analogue of the log-sum inequality is
/a(x) log% dx > alog%, a= /a(x)dx,b = /b(x)dx,

valid for any non-negative integrable functions on RF. Letting a(z) be any
k-dimensional density for which E||V||? < ko?, and b(z) be the Gaussian
density [1;(270?) 1/2e(-#{/27%) the log-sum inequality gives

/a(m) log a(z)dx — /a(x)

(k/2)log(2ma®) + Y (27 /20°) loge

dx > 0.
Here [a(x)(X z?)dz < ko? by assumption, hence the assertion

—/ )Yloga(x)dr < (k/2)log(2mec?)
follows, with equality if a(z) = b(x). O

Proof of Theorem 23. Let X be a random variable uniformly distributed
on O, and let Y be the channel output corresponding to input X, that is,
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a random variable with values in A whose conditional distribution on the
condition X = @ equals Py. Further, let Z = 6(Y). Then, using Lemma 11,

IW)=I(XAY) = H(X)- H(XY)
H(X)- H(X|Z)=H(X)- H(X — Z|7)

H(X) - H(X - 2). (42)

v

v

The hypothesis on the estimator 0 implies that
E|X - Z|I* = E(E|IX - Z||X) = /E9||9 —0]Pv(do) < e.

Hence, by Lemma 12 applied with o2 = ¢/k,

k 2mee
— < 2
HX-27)< 5 log ’
On account of the inequality (42), where H(X) = log A(©), this completes
the proof of the theorem. (]

6.2 Optimality results

Returning to the problem of least possible worst case expected redun-
dancy, it follows from Corollary 6 that for any class P of processes with
alphabet A, there exists, for each n, a unique (); attaining the minimum
n (40). As discussed before, this I-centroid of the set {P,: P € P} of the
marginals on A" of the processes in P is effectively an optimal coding distri-
bution for n-length messages, tailored to the class P. When P is a parametric
class of processes, that is, P = {Pp:0 € O} where © is a Borel subset of R*,
for some k > 1, and Py(a?) is a measurable function of 6 for each n and
at € A", Theorem 21 identifies the I-centroid @) as

Qua}) = [ Ponlalywnlde),  aj € A"
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where v, is a capacity achieving distribution for the channel determined
by {Pyn,0 € ©} provided that a capacity achieving distribution exists; a
sufficient condition for the latter is the closedness of the set {Py,,0 € O} of

the marginal distributions on A", see Lemma 10.

Typically, v, does depend on n, and no process exists of which @)} would
be the marginal on A" for n = 1,2,... (a similar inconvenience occurred
also in the context of Theorem 16). Still, for important process classes P =
{Py, 0 € ©}, there exists a probability measure v on © not depending on n,
such that the marginals @, = {Q(z}), 2] € A"} of the “mixture process”
Q = | Pyv(df) given by

Q") = /pa,n(x?)u(de), P EA n=1,2,... (43)

attain the minimum of supycq D(FPp,||@Qn) within a constant. Then @ is
a “nearly optimal coding process”: the arithmetic code determined by @
attains the least possible worst case redundancy for P, within a constant.
Typical examples are the coding processes tailored to the classes of i.i.d. and
Markov processes, treated in the previous section. We now show that these
are mixture processes as in (43). Their “near optimality” will be proved later

OI1l.

First, let P be the class of i.i.d. processes with alphabet A = {1,...,k},
k—1
parametrized by © = {(p1,...,pk_1):p;i > 0, > p; < 1}, with
i=1

k
Py(z}) =[] v} n; = {1 <t<nx, =i}
i=1

herea for 6 = (pla R 7pk—1)7 Pr = 1- (pl + ... +pk—1)-

Let v be the Dirichlet distribution on © with parameters «; > 0, i =

1,...,k, whose density function, with the notation above, is
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k
def (121%) —
for e (0) = -—=— Hp ,
_I;IIF(%')

where I'(s) = j"oxsfle”dx. Then (43) gives
0

F(iaZ) i+a;—1
Q) = [ P o 000 = s | Hp” “ g
(> a) M T(m+a)
’ lZIk /fn1+a1 ..... nk+ak(9) do
ITT(e;) T(X(ni+a))

i=1 i=1 i=1

where the last equality follows since the integral of a Dirichlet density is 1,
and the I'-function satisfies the functional equation I'(s + 1) = sI['(s). In
particular, if oy = ... = a4 = 1, the mixture process Q = [ Py(df) is

exactly the coding process tailored to the i.i.d. class P, see (27).

Next, let P the class of Markov chains with alphabet A = {1, ... k}, with

initial distribution equal to the uniform distribution on A, say, parametrized

k—1
by © = {(pij)1<i<k,1<j<k—1:Dij > 0, '21 pij < 1}:
]:

o) = T LTI ng = 1<t <0t =i, a0 =),

i=17=1

where, for § = (p;;), pik = 1—(pij +...+pir—1). Let v be the Cartesian prod-
uct of k Dirichlet (%, ce %) distributions, that is, a distribution on © under
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which the rows of the matrix (p;;) are independent and Dirichlet (3,...,3)
distributed. The previous result implies that the corresponding mixture pro-
cess @ = [ Pyr(df) equals the coding process tailored to the Markov class

P, see (35).

Similarly, the coding process tailored to the class of m’th order Markov
chains, see (36), or to its subclass determined by a context function, can also
be represented as ) = [ Pyv(df), with v equal to a Cartesian product of
Dirichlet (3,...,3) distributions.

To prove "near optimality” of any code, a lower bound to R, in equation
(40) is required. Such bound can be obtained applying Theorems 21 and 23,
with A™ in the role of A.

Theorem 24 Let P = {Py,0 € O} be a parametric class of processes, with

© C RF of positive Lebesgue measure, such that for some estimators f,: A" —

)
E9||9—én||2gij), fecO ,n=12....

Then, for a suitable constant K,
— k
R, > §logn—K, n=12....

Moreover, if \(©) < +oo, then to any 6 > 0 there exists a constant K such
that for each n and distribution @, on A"

{0 € ©: D(Pyl|Qn) < glogn _K}) <4

Proof: It suffices to prove the second assertion. Fixing 0 < 0 < A\(©), take
C so large that ©' = {# € ©,¢(0) > C} has \(©') < §/2. Then, for arbitrary
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©; C © with A(©1) > ¢, Theorem 23 applied to {FPy,:0 € O, \ ©'} with
e = C/n gives

k kn
I > —1
) 2 2 o8 2meC

where v is the uniform distribution on ©, \ ©'.

+1og A(©:1\ ©)

Since here A\(©,\0’) > §/2, this and Theorem 21 applied to {FPp,: 0 € O}
yield

k kn o
D(P||Q,) > I(v)> =1 log —
Sup (Poll@n) = 1(v) 2 5 log 5= +log
2 2
= —logn—K; K:glg WI:C+10 5

whenever \(©;) > 4. This proves that the set {# € ©: D(Pp,,||Qy) < £logn—

K} can not have Lebesgue measure > 0, as claimed. L]

Corollary 7 For P as above, if the expected redundancy of a prefiz code
{Ch:in=1,2,...} satisfies

k
EP(RP,CTL) — 5 logn — —0Q, P = Pg, 0 € @0
for some subset Oy of © then \(Og) = 0.
Proof. Note that Ep(Rpc,) — £logn — —oo implies D(P||Q,) — £ logn —
—oo for the distributions @, associated with C,, by Q,,(z7) = ¢2~(*"). Hence

it suffices to show that for no Oy C O with A(©y) > 0 can the latter limit
relation hold for each P = Py with 0 € O,.

Now, if such Oy existed, with A\(©g) = 24, say, Theorem 24 applied to ©
in the role of © would give A\({# € Oy, D(Py,||Qn) > &logn — K}) > §, n=
1,2,..., contradicting D(Pp,||Qn) — glogn — —00,0 € 0. ]
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Theorem 25

(i) For the class of i.i.d. processes with alphabet A = {1,... k},

k—1 k—

_ 1
logn — K1 <R, <R, < 5 logn + Ko,

where Ky and Ky are constants. The worst case redundancies R, and
Re, of the arithmetic code determined by the coding process Q given by
(27) are the best possible for any prefix code, up to a constant.

(ii) For the class of m’th order Markov chains with alphabet A = {1, ..., k},

k—1)k™ — k—1)k™
%logn—[(l <R,<R, < %lognqLKZ
with suitable constants Ky and Ky. The arithmetic code determined by

the coding process Q given by (36) is nearly optimal in the sense of (i).

Proof. (i) The class P of i.i.d. processes satisfies the hypothesis of The-
orem 24, with k replaced by k& — 1. Suitable estimators én are the natu-
ral ones: for z7 € A" with empirical distributions P = (p1,...,px), set

0, (27) = (P1,--.,Pk—1). Thus the lower bound to R, follows from Theo-
rem 24. Combining this with the bound in (28) completes the proof.

(ii) To prove the lower bound to R,, consider the m’th order Markov
chains with uniform initial distribution, say, restricting attention to the irre-
ducible ones. The role of 6 is now played by the (k —1)k™-tuple of transition
probabilities P(jlal*), a" € A™, j =1,...,k — 1. It is not hard to see that
estimating P(j[af") from 27" € A" by the ratio ngm;/n.» (with the notation
in equation (36)) gives rise to estimators 6,, of # that satisfy the hypothesis of
Theorem 24, with (k — 1)k™ in the role of k. Then the claimed lower bound
follows, and combining it with the bound in (38) completes the proof. ]
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Remark 13 Analogous results hold, with similar proofs, for any subclass
of the m’th order Markov chains determined by a context function, see Sec-

tion 5.

7 Redundancy and the MDL principle

Further results about redundancy for processes are discussed in this
section, with applications to statistical inference via the minimum description
length (MDL) principle.

As in the last sections, the term code means either an n-code C),: A" —
{0,1}*, or a sequence of n-codes {Cy,:n =1,2,...}. Codes {Cp:n=1,2,...}
determined by a “coding process” () will play a distinguished role. For con-
venience, we will use the term (Q-code for an “ideal code” determined by
@, with length function L(z}) = —log Q(x7), whose redundancy function

relative to a process P is

P(at)
Q1)

The results below stated for such ideal codes are equally valid for real (Shan-

R(zy) = log

non or arithmetic) codes whose length and redundancy functions differ from
those of the ideal ()-codes by less than 2 bits.

Theorem 26 If P and Q) are mutually singular probability measures on A>,

the P-redundancy of a @QQ-code goes to infinity, with P-probability 1.

Proof: Let F, be the o-algebra generated by the cylinder sets [x]], 2] € A™.

Then {Zn = ggg;, n=12,... } is a non-negative martingale with respect
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to the filtration {F,}, with underlying probability measure P, hence the
almost sure limit

Jin 2, =2 >0
exists. We have to show that Z = 0 (a.s.), or equivalently that E(Z) = 0.

By the singularity hypothesis, there exists a set A € F = o(UF,) such
that P(A) = 1, Q(A) = 0. Define a measure x by

uB)=QB)+ [7dr,  BeF.

Since F = o(UF,), to every £ > 0 and sufficiently large m there exists
flm € F., such that the symmetric difference of A and flm has p-measure

less than ¢; thus,

Q(AL) - ZdP < e.
A\Ap,
Since the definition of Z, implies [; Z,dP = Q(Am) for n > m, Fatou’s
lemma gives

/~ ZdP < lim inf/~ Z,dP = Q(A,,) .
Am Am

n—0o0

Combining these two bounds, we obtain

A\Apm

E(Z):/ zdP+ | zdp <= .

Since € > 0 was arbitrary, F(Z) = 0 follows. ]

7.1 Codes with sublinear redundancy growth

While by Theorem 26 the redundancy of a ()-code relative to a process
P typically goes to infinity, the next theorem gives a sufficient condition for
a sublinear growth of this redundancy, that is, for the per letter redundancy

to go to zero.
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For this, we need the concept of divergence rate, defined for processes P
and @ by
— . 1
D(P||Q) = lim —D(Fal|Qn),

provided that the limit exists. The following lemma gives a sufficient con-
dition for the existence of divergence rate, and a divergence analogue of the
entropy theorem. For ergodicity, and other concepts used below, see the

Appendix.

Lemma 13 Let P be an ergodic process and ) a Markov chain of order m
with D(Pp41||@Qm+1) < +00. Then

P(x7)

(7

= D(PIQ)=-H(P)= 5 P@{)logQum | 21,

xTI’n"rl eAm+1

log

SRS

O

both P-almost surely and in Ly (P), with Q(xm,m11 | 21*) denoting the transition
probabilities of the Markov chain Q).

Proof: Since @ is Markov of order m,

Pz} ~ i~
) —rog P(af) ~ log Q) — 3 108 Qriess | #07), n 2 m
Q(zt) i=1

here log Q(z7") is finite with P-probability 1, and so is log Q(x;,41 | 27),
since D(Py,11]|Qmi1) < +00.

log

By the entropy theorem, and the ergodic theorem applied to f(z$°) =

log Q21 | "), we have

%log P(2%) — —H(P)
L1log 30" 10g Q(wmyi | 27 ") = Ep(log Q(zmir | 27)),

both P-almost surely and in L;(P). The lemma follows. L]
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Theorem 27 Let P be an ergodic process, and let QQ = [ Uyv(dv) be a miz-
ture of processes {Uyg, 0 € O} such that for every e > 0 there exist an m and

a set ©' C O of positive v-measure with
Us Markov of order m and D(P||Ug) <&, if 9€©.

Then for the process P, both the pointwise redundancy per symbol and the
expected redundancy per symbol of the QQ-code go to zero as n — oo, the

former with probability 1.

Remark 14 Here () need not be the mixture of a parametric class of pro-
cesses, that is, unlike in Section 6, the index set © need not be a subset of
an Euclidean space. It may be any set, endowed with a o-algebra > such
that Uy(a?) is a measurable function of ¢ for each o} € A" n =1,2,...,
and v is any probability measure on (0, X). All subsets of © we consider are

supposed to belong to .

Proof of Theorem 27. We first prove for the pointwise redundancy per

symbol that

1

1. Pt)
- ny— —]
nR(xl) n 0og

Q(a1)
To establish this, on account of Theorem 15, it suffices to show that for every

e>0

—0, P-as. (44)

1
limsup —R(z7) <e, P-as..
n

n—o0

This will be established by showing that

Q6
Pl — +00, P-as.
Since
Q) = [ Us(@tyw(dd) = [ Uy(atyv(an), (45)
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we have

PR [Z D) - [ Hos ) )

P(z7) s P(at)

If ¥ € ©, Lemma 13 implies

g (k- DPUs) <=

for P-almost all z3° € A® (the exceptional set may depend on 9). It follows
that the set of pairs (x7°,19) € A> x ©' for which the last limit relation does
not hold, has P x v -measure 0, and consequently for P-almost all z7° € A*
the set of those ¥ € ©' for which that limit relation does not hold, has

v-measure 0 (both by Fubini’s theorem).

Thus, for P-almost all z{°, the integrand in the above lower bound to
2°7Q(27)/P(xT) goes to infinity for v-almost all ¥ € ©'. Hence, by Fatou’s
lemma, the integral itself goes to +00, completing the proof of (44).

To prove that also the expected redundancy per symbol = Ep(R(x7)) goes

to zero, we have to show that

~Eplog Q(at)) — —H(P).

On account of the entropy theorem, the result (44) is equivalent to
1 —
—log Q(x}) —» —H(P) P-as.,
n
hence it suffices to show that L logQ(z}) is uniformly bounded (P-a.s.).

Since for ¥ € ©' the Markov chains Uy of order m satisfy D(P||Uy) < &,
their transition probabilities Uy(z,,+1 | 27*) are bounded below by some v > 0

m+1)

whenever P(x > 0, see the expression of D in Lemma 13. This implies

by (45) that Q(z7) is bounded below by a constant times ", P-a.s. The
proof of Theorem 27 is complete. (]
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Example 4 Let Q = > >, am@™ . where ag, aq, ... are positive numbers
with sum 1, and QU™ denotes the process defined by equation (36) (in par-
ticular, Q© and QM) are defined by (27) and (35)). This @ satisfies the
hypothesis of Theorem 27, for each ergodic process P, on account of the
mixture representation of the processes Q™ established in Section 6. In-
deed, the divergence rate formula in Lemma 13 implies that D(P||Uy) < e
always holds if Uy is a Markov chain of order m whose transition proba-
bilities U(zy,41 | «7*) are sufficiently close to the conditional probabilities
Pr{iXm,s1 = Tmy | XJ* = 2"} for a representation {X,} of the process
P, with m so large that H(X,,+1 | X7") < H(P) —|— £/2, say. It follows by
Theorem 27 that the Q)-code with ) = Z am@Q™ is weakly universal for
the class of ergodic processes, in the sense of (23), and also its pointwise

redundancy per symbol goes to zero P-a.s., for each ergodic process P.

Recall that the weak universality of this ()-code has already been estab-

lished in Section 5, even for the class of all stationary processes.

Example 5 Let {U, : v € I'} be a countable family of Markov processes (of

arbitrary orders), such that for each ergodic process P,
inf D(P|U) = 0. (46)

Then for arbitrary numbers a, > 0 with 3~ o, = 1, the process @ = > o, U,
yer
satisfies the conditions of Theorem 27, for every ergodic process P. Hence

the @Q-code is weakly universal for the class of ergodic processes. Note that
the condition (46) is satisfied, for example, if the family {U,:y € I'} consists
of all those Markov processes, of all orders, whose transition probabilities are

rational numbers.

While the last examples give various weakly universal codes for the class
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of ergodic processes, the next example shows the non-existence of strongly

universal codes for this class.

Example 6 Associate with each a!* € A™ a process P, the probability mea-
sure on A that assigns weights 1/m to the infinite sequences a*ai*ay" . .. i =
1,...,m. Clearly, this P is an ergodic process. Let P denote the class of
these processes for all a]* € A™. We claim that for the class P equal to the

union of the classes P, m =1,2,...

R, = inf sup D(P,||Qn),
Q@n pep

see equation (40), is bounded below by nlog|A| — logn.
Denote by P,m the marginal on A™ of the process P associated with ay"

as above, and by v, the uniform distribution on A™. Since P™ is a subset

of P, Theorem 21 implies

Ro>igf s D(PIQ) > 104) = H( o ¥ Pu)=in ¥ H(Pg),
peP apeAn apeAn

As P,» is concentrated on the cyclic shifts of af, implying H(F,») < logn,

and the "output distribution” [A|™" ¥ ;nc4n Pop equals the uniform distribu-

tion on A", this establishes our claim. In particular, no strongly universal

codes exist for the class P, let alone for the larger class of all ergodic pro-

cesses.

Next we consider a simple construction of a new code from a given (finite
or) countable family of codes {C.,y € I'}, where C,, = {C): A" — B*, n =
1,2,...}, B ={0,1}. Let the new code assign to each z} € A™ one of the
codewords C/(z"), with v € T" chosen depending on z7, preambled by a code
C(v) of the chosen v € I'. Here C:T" — B* can be any prefix code; the
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preamble C(7) is needed to make the new code decodable. We assume that
7 above is chosen optimally, that is, to minimize L(vy)+ L, («}), where L, (z7)
and L(7) denote the length functions of the codes C,, and C. Then the new
code has length function

L(z1) = min[L(7) + Ly(a7)]-

If the family {C,,y € I'} consists of ,-codes for a list of processes {Q,,y €

'}, the code constructed above will be referred to as generated by that list.

Lemma 14 A code generated by a list of processes {Q~,v € I'} is effectively
as good as a Q-code for a mizture ) of these processes, namely its length

function satisfies

—log Q(l)(x?) < L(2%) < —log Q® (27) + log ¢z,

where
Q(l) =0 Z 2_L(7)Q7 ) Q(Z) =0 E'yeF 272L(7)Q77
yer
-1
—1
c, = (Z Q—L(7)> , cy = (E%F Q*ZL(V)) i
yer

Proof. The QQ,-code C. has length function L, (z7) = —log Qy(z7), hence

L(xt) = min[L(y) — log Q, (21)] = —log max 2~*0Q, (7).

QW(z}) > Y 27MQ,(27) > max,er 27FVQ, (a7) >
vel

@) (gn
> Y 2700Q, (at) = LD

C2

92



where the first and third inequalities are implied by Kraft’s inequality
> er 2~ < 1, the assertion follows. O

Recalling Examples 4 and 5, it follows by Lemma 14 that the list of
processes {Q™, m =0,1,...}, with Q™ defined by equation (36), as well
as any list of Markov processes {U,,y € I'} with the property (46), generates
a code such that for every ergodic process P, the redundancy per symbol goes

to 0 P-a.s., and also the mean redundancy per symbol goes to 0.

7.2 The minimum description length principle

The idea of the above construction of a new code from a given (finite
or countable) family of codes underlies also the minimum description length

(MDL) principle of statistical inference that we discuss next.

MDL principle. The statistical information in data is best extracted
when a possibly short description of the data is found. The statistical model
best fitting to the data is the one that leads to the shortest description, taking

into account that the model itself must also be described.

Formally, in order to select a statistical model that best fits the data x7,
from a list of models indexed with elements v of a (finite or) countable set
I', one associates with each candidate model a code (., with length function
L,(z7), and takes a code C:T' — B* with length function L(y) to describe
the model. Then, according to the MDL principle, one adopts that model

for which L(v) + L,(27) is minimum.

For a simple model stipulating that the data are coming from a speci-

fied process @), the associated code C, is a ),-code with length function
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L,(z7) = —logQ,(«}). For a composite model stipulating that the data
are coming from a process in a certain class, the associated code C., should
be universal for that class, but the principle admits a freedom in its choice.

There is also a freedom in choosing the code C:T" — B*.

To relate the MDL to other statistical principles, suppose that the can-
didate models are parametric classes P, = {Py, v € O,} of processes, with
7 ranging over a (finite or) countable set I. Suppose first that the code C,

is chosen as a Q,-code with
Q, = [ Povy(dv), (47)
Oy

where v, is a suitable probability measure on ©,, see Section 6. Then MDL
inference by minimizing L(v) + L,(z}) = L(7y) — log Q. (27) is equivalent to
Bayesian inference by maximizing the posterior probability (conditional prob-
ability given the data x7) of 7, if one assigns to each v € T" a prior probability
proportional to 275" and regards v, as a prior probability distribution on
©,. Indeed, with this choice of the priors, the posterior probability of 7 is
proportional to 2-XM@Q, (7).

Suppose next that the codes C, associated with the models P, as above

are chosen to be NML codes, see Theorem 16, with length functions

L. (z7) = —log NML,(z7) = —log P} (a7) +1log Y. PG (a}),

alcAn

where

P(@}) = sup Po(a)
v

Then the MDL principle requires minimizing

L(7) + Ly (z%) = —log P (27) + Ra(7)
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where

Ru(v) = L(y) +log 3. P{(a}) .

al €A™
In statistical terminology, this is an instance of penalized maximum likelihood
methods, that utilize maximization of log PI\(R(:U?) — R, (), where R,(7) is

a suitable “penalty term”.

Remark 15 We note without proof that, under suitable regularity condi-
tions, L(y) + L, («}) is asymptotically equal (as n — 00) to —log Pl\(/?L)(x?) +
%l% logn, for both of the above choices of the codes C.,, where k, is the di-
mension of the model P, (meaning that O, is a subset of positive Lebesgue
measure of R%). When T is finite, this admits the conclusion that MDL
is asymptotically equivalent to penalized maximum likelihood with the so-
called BIC (Bayesian information criterion) penalty term, R, (v) = 3k, logn.

This equivalence, however, need not hold when T is infinite, as we see later.

The next theorems address the consistency of MDL inference, namely,
whether the true model is always recovered, eventually almost surely, when-

ever one of the candidate models is true.

Theorem 28 Let {Q,,v € T'} be a (finite or) countable list of mutually
singular processes, and let L(7y) be the length function of a prefiz code C: T —
B*. If the true process P is on the list, say P = Q-+, the unique minimizer

of L(7y) —log Q4 (z7) is v*, eventually almost surely as n — oo.

Remark 16 The singularity hypothesis is always satisfied if the processes
Q4,7 € I, are (distinct and) ergodic.
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Proof. Consider the mixture process
Q=c Z Q*L(V)Q7
yer\{y*}
where ¢ > 1 (due to Kraft’s inequality). Then

") > 9L > max 2 L ") .
Az ¥ 202 max 20,

The hypothesis implies that ) and ),- are mutually singular, hence by
Theorem 26

log Q- (z7) —log Q(z7) — +oo @y —a.s.

This and the previous inequality complete the proof. (]

Theorem 29 Let {P,,v € I'} be a (finite or) countable list of parametric
classes P, = {Py,V € ©,} of processes, let Q.,,v € I, be mizture processes as
in equation (47), supposed to be mutually singular, and let L(vy) be the length
function of a prefir code C:T' — B*. Then, with possible exceptional sets
N, C ©, of v,-measure 0, if the true process is a non-exceptional member
of either class P, say P = Qg,0 € O, \ N,-, the unique minimizer of
L(v) —log Q,(x7) is v*, eventually almost surely as n — oo.

Remark 17 A necessary condition for the singularity hypothesis is the es-
sential disjointness of the classes P.,~v € I, that is, that for no v # +' can
©, N O, be of positive measure for both v, and v.,,. This condition is also
sufficient if all processes Py are ergodic, and processes with different indices

are different.

Proof of Theorem 29. By Theorem 28, the set of those 2{° € A> for which

there exist infinitely may n with

L(y") —log Q4 (x7) > inf [L(y) — log @, (z7)]

-~ vel\{r"}
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has @Q,--measure 0, for any v* € I'. By the definition of Q),-, see (47), this
implies that the above set has Py-measure 0 for all ¥ € ©,- except possibly

for ¥ in a set N,« of p.,--measure 0. []

As an application of Theorem 29, consider the estimation of the order
of a Markov chain, with alphabet A = {1,... k}. As in Example 4 de-
note by Q™ the coding process tailored to the class of Markov chains of
order m. According to the MDL principle, given a sample 27 € A" from a
Markov chain P of unknown order m*, take the minimizer m = m(z}) of
L(m) — logQ™) (27) as an estimate of m*, where L(-) is the length func-
tion of some prefix code C: N — B*. Recall that Q'™ equals the mixture
of m’th order Markov chains with uniform initial distribution, with respect
to a probability distribution which is mutually absolutely continuous with
the Lebesgue measure on the parameter set ©,,, the subset of £ (k — 1) di-
mensional Euclidean space that represents all possible transition probability
matrices of m-th order Markov chains. It is not hard to see that the processes

Q™ m =0,1... are mutually singular, hence Theorem 29 implies that
m(z}) =m*  eventually almost surely, (48)

unless the transition probability matrix of the true P corresponds to some
¥ € Np,» where N,,- C O,,- has Lebesgue measure 0. (Formally, this follows
for Markov chains P with uniform initial distribution, but events of proba-
bility 1 for a Markov chain P with uniform initial distribution clearly have
probability 1 for all Markov chains with the same transition probabilities
as P.)

Intuitively, the exceptional sets N,, C O,, ought to contain all parameters
that do not represent irreducible chains, or represent chains of smaller order
than m. It might appear a plausible conjecture that the exceptional sets

N,, are thereby exhausted, and the consistency assertion (48) actually holds
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for every irreducible Markov chain of order exactly m*. Two results (stated
without proof) that support this conjecture are that for Markov chains as
above, the MDL order estimator with a prior bound to the true order, as
well as the BIC order estimator with no prior order bound, are consistent.
In other words, equation (48) will always hold if m(z}) is replaced either
by the minimizer of L(m) — log Q™ (2%) subject to m < mq, where my is a

known upper bound to the unknown m*, or by the minimizer of

m 1
—log PI™ (2™ + §km(k —1)logn .

Nevertheless, the conjecture is false, and we conclude this section by a
counterexample. It is unknown whether also other counterexamples exist.
Example 7 Let P be the i.i.d. process with uniform distribution, that is,

Pl)y=k", 2y€A", A={l,... k}.
Then m* = 0, and as we will show,
L(0) — log QO (z7) > T}gfo[L(m) —log Q™ (z™)], eventually a.s., (49)

provided that L(m) grows sublinearly with m, L(m) = o(m). This means
that (48) is false in this case. Actually, using the consistency result with a
prior bound to the true order, stated above, it follows that m(z}) — +oo,

almost surely.
To establish equation (49), note first that
(0)(,.n 0) /. n k-1
—log Q" (27) = —log Py () + 5 logn + O(1),

where the O(1) term is uniformly bounded for all 27 € A*. Here

0) o 17 (™
Pyi(#}) = sup HP?IZH<_>

{p1ypi} im1 i=1 N1
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is the largest probability given to 2] by i.i.d. processes, with n; denoting

the number of times the symbol i occurs in 27, and the stated equality holds

since Pl\(/?ﬁ(x?)/Q ©)(27) is bounded both above and below by a constant times

n 5 , see Remark 11, after Theorem 17.

Next, since P is i.i.d. with uniform distribution, the numbers n; above

satisty, as n — oo,

n; = % + O(y/nloglogn ), eventually a.s.,

by the law of iterated logarithm. This implies

—logPML x7) Znﬂog( ) =nlogk + O(loglogn),

since

log— = logk+log<1+ " —1>:
kni

n;

2
= logk+<n —1>loge—|—0<n —1) .
kn kn;

It follows that the left hand side of equation (49) equals nlogk + *5' logn +

O(loglogn), eventually almost surely as n — oo.

Turning to the right hand side of equation (49), observe that if no m-
~! more than once then Q™ (27) = k~". Indeed,

then n,m is non-zero for exactly n —m blocks af* € A™ in the definition (36)

block af* € A™ occurs in 7

of Q™) for these, ngm = 1 and there is exactly one j € A with n,m; nonzero,
necessarily with nem; = 1. Hence equation (36) gives Q™ (a}) = k™" as

claimed.

The probability that there is an m-block occurring in 2! more than once
is less than n?k~™. To see this, note that for any 1 < j < ¢ < n —m + 1,

the conditional probability of x”m b= gftm=1 when z{7' € A is fixed
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is k7™, as for exactly one of the k™ equiprobable choices of xﬁ”’“l e A™

will 20t = xg}m*l hold. Hence also the unconditional probability of this

4

event is k=™, and the claim follows. In particular, taking m, = Togk

1

logn,
the probability that some m,-block occurs in '~ more than once is less

than n=2. By Borel-Cantelli, and the previous observation, it follows that
—log Q) (z") = nlogk, eventually a.s.

This, and the assumption L(m) = o(m), imply that the right hand side of
(49) is < nlogk + o(logn), eventually almost surely, completing the proof of
equation (49).

Appendix. Summary of Process Concepts

A (stochastic) process is frequently defined as a sequence of random vari-
ables { X, }; unless stated otherwise, we assume that each X,, takes values in
a fixed finite set A called the alphabet. The n-fold joint distribution of the
process is the distribution P, on A™ defined by the formula

P,(2}) = Prob(X; = z;, 1 <i <n), ry € A"
For these distributions, the consistency conditions

P (z}) = Z Pyyi(7ta)

a€A

must hold. The process {X,,}, indeed, any sequence of distributions P, on
A" n=1,2,...that satisfies the consistency conditions, determines a unique
Borel probability measure P on the set A of infinite sequences drawn from
A such that each cylinder set [a]] = {z5° : 2T = a}'} has P-measure P, (a});
a Borel probability measure on A* is a probability measure defined on the
o-algebra F of Borel subsets of A, the smallest o-algebra containing all

cylinder sets.
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The probability space on which the random variables X,, are defined is
not important, all that matters is the sequence of joint distributions P,. For
this reason, a process can also be defined as a sequence of distributions P,
on A", n=1,2,..., satisfying the consistency conditions, or as a probability
measure P on (A%, F). In these notes we adopt the last definition: by a
process P we mean a Borel probability measure on A*°. The probabilities
P,(a?) = P([a}]) will be usually denoted briefly by P(a?).

A sequence of random variables {X,,} whose n-dimensional joint distri-
butions equal the n-dimensional marginals P, of P, will be referred to as
a representation of the process P. Such a representation always exists, for
example the Kolmogorov representation, with X,, defined on the probability
space (A> F, P) by X, (23°) = z;, i =1,2,.. ..

A process P is stationary if P is invariant under the shift 7', the trans-
formation on A* defined by the formula Tz = x3°. Thus P is stationary if
and only if P(T~'A) = P(A), A€ F.

The entropy rate of a process P is defined as

_ 1
H(P) = lim —H(Xy,..., X,),

n—oo n,
provided that the limit exists, where { X} is a representation of the process
P. A stationary process P has entropy rate

H(P) = lim H(X,| X1, ..., X01);

n— 00

here the limit exists since stationarity implies that H(X,|Xy,..., X, 1) =
H(Xp1|Xo, ..., X)) > H(X, 1] X1, ..., X,), and the claimed equality fol-
lows by the additivity of entropy,

n

H(Xl, . 7Xn) — H(Xl) —|— ZH(XZ|X1, [N ,Xifl).

=2



If {Py € ©} is a family processes, with 9 ranging over an arbitrary
index set © endowed with a o-algebra ¥ such that Py(a}) = Py([a}]) is
a measurable function of ¥ for each af € A", n=1,2,..., the mizture of the
processes Py with respect to a probability measure p on (O, ) is the process
P = [ Pyu(d?) defined by the formula

P(a") :/Pﬁ(a?)u(dﬁ), ave A" n=1,2,... .

A process P is called ergodic if it is stationary and, in addition, no non-
trivial shift-invariant sets exist (that is, if A € F, T-'A = A, then P(4) =0
or 1), or equivalently, P can not be represented as the mixture P = aP,+(1—
a) P, of two stationary processes P; # P, (with 0 < a < 1). Each stationary
process is representable as a mixture of ergodic processes (by the so-called
ergodic decomposition theorem). Other key facts about ergodic processes,

needed in Section 7, are the following:

Ergodic theorem. For an ergodic process P, and P-integrable function
f:A*® >R,

1 n

=Y f@) — [ fap

=1

both P-almost surely and in Li(P).

Entropy theorem. (Shannon-McMillan-Breiman theorem) For an ergodic

process P,

1 —
——log P(af) = H(P),
n
both P-almost surely and in Li(P).

For an ergodic process P, almost all infinite sequences z{® € A™ are

P-typical, that is, the “empirical probabilities”

1

P(afla?) = —7

iy =al, 0<i<n—k}|
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of k-blocks a¥ € A¥ in 27 approach the true probabilities P(a¥) as n — oo,
for each k > 1 and a} € A*. This follows applying the ergodic theorem to
the indicator functions of the cylinder sets [a%] in the role of f. Finally, we
note that also conversely, if P-almost all 2{° € A* are P-typical then the

process P is ergodic.

Historical Notes

Section 0. Information theory has been created by Shannon [44]. The
information measures entropy, conditional entropy and mutual information
were introduced by him. A formula similar to Shannon’s for entropy in
the sense of statistical physics dates back to Boltzmann [4]. Information
divergence was used as a key tool but had not been given a name in Wald [49];
it was introduced as an information measure in Kullback and Leibler [33].
Theorem 1 is essentially due to Shannon [44], Theorem 2 is of Rissanen [37].
Arithmetic coding, whose origins are commonly attributed to unpublished
work of P. Elias, was developed to a powerful data compression technique

primarily by Rissanen, see [35], [40].

Section 1. The combinatorial approach to large deviations and hypoth-
esis testing originates in Sanov [42] and Hoeffding [27]. A similar approach
in statistical physics goes back to Boltzmann [4]. The method of types
emerged as a major technique of information theory in Csiszar and Korner
[15]. ”Stein’s lemma” appeared in Chernoff [6], attributed to C. Stein.

Section 2. Kullback [32] suggested I-divergence minimization as a prin-
ciple of statistical inference, and proved special cases of several results in this
Section. Information projections were systematically studied in Cencov [5] ,
see also Csiszar [12], Csiszar and Matus [16]. In these references, distribu-

tions on general alphabets were considered; our finite alphabet assumption
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admits a simplified treatment. The characterization of the closure of an ex-
ponential family mentioned in Remark 4 is a consequence of a general result
in [16] for exponential families whose domain of parameters is the whole R¥;

the last hypothesis is trivially satisfied in the finite alphabet case.

The remarkable analogy of certain information theoretic concepts and
results to geometric ones, instrumental in this Section and later on, has
a profound background in a differential geometric structure of probability

distributions, beyond the scope of these notes, see Cencov [5], Amari [2].

Section 3. f-divergences were introduced by Csiszar [10], [11], and in-
dependently by Ali and Silvey [1]; see also the book Liese and Vajda [34].
A proof that the validity of Lemma 7 characterizes I-divergence within the
class of f-divergences appears in Csiszar [14]. Theorem 11 can be regarded
as a special case of general results about likelihood ratio tests, see Cox and
Hinkley, [9, Section 9.3]; this special case, however, has admitted a simple
proof. For the information theoretic approach to the analysis of contingency
tables see Kullback [32], Gokhale and Kullback [26].

Section 4. Iterative scaling has long been used in various fields, primarily
in the two-dimensional case as an intuitive method to find a non-negative
matrix with prescribed row and column sums, ”most similar” to a previously
given non-negative matrix; the first reference known to us is Kruithof [31]. Its
I-divergence minimizing feature was pointed out in Ireland and Kullback [28],
though with an incomplete convergence proof. The proof here, via Theorem
12, is of Csiszar [12]. Generalized iterative scaling is due to Darroch and
Ratcliff [19]. Its gometric interpretation admitting the convergence proof via
Theorem 12 is of Csiszar [13]. Most results in Section 4.2 are from Csiszar
and Tusnddy [18]. The EM algorithm has been introduced by Dempster,
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Laird and Rubin [23]. The portfolio optimizing algorithm in Remark 7 is
due to Cover [7].

Section 5. Universal coding was first addressed by Fitingof [25], who
attributed the idea to Kolmogorov. An early theoretical development is
Davisson [20]. Theorem 15 is of Barron [3], and Theorem 16 is of Shtarkov
[46]. The universal code for the i.i.d class with coding process defined by
eq. (25) appears in Krichevsky and Trofimov [30] and in Davisson, McEliece,
Pursley and Wallace [22]. Our proof of Theorem 17 follows [22]. Theorem
20 is due to Shtarkov [46]. The construction of ”doubly universal” codes
via mixing (or "weighting”) as in Remark 11 was suggested by Ryabko [41].
The context weighting algorithm mentioned in Remark 11 was developed by
Willems, Shtarkov and Tjalkens [50].

Section 6. The approach here follows, though not in the details, Davis-
son and Leon-Garcia [21]. Lemma 9 dates back to Topsee[47]. The first
assertion of Theorem 22 appears in [21] (crediting R. Gallager for an unpub-
lished prior proof), with a proof using the minimax theorem; see also (for
© finite) Csiszar and Korner [15], p.147, and the references there. Theorem
24 and Corollary 7 are based on ideas of Davisson, McEliece, Pursley and
Wallace [22] and of Rissanen [38]. For early asymptotic results on worst
case redundancy as in Theorem 25, see Krichevski [29] (i.i.d.case) and Trofi-
mov [48] (Markov case); the latter reference attributes the upper bound to
Shtarkov.

Section 7. The main results Theorems 26-29 are due to Barron [3].
While Examples 4 and 5 give various weakly universal codes for the class

of ergodic processes, those most frequently used in practice (the Lempel-Ziv
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codes, see [51]) are not covered here. The MDL principle of statistical infer-
ence has been proposed by Rissanen, see [36], [39]. The BIC criterion was
introduced by Schwarz [43]. The consistency of the BIC Markov order esti-
mator was proved, assuming a known upper bound to the order, by Finesso
[24], and without that assumption by Csiszar and Shields [17]. The coun-
terexample to the conjecture on MDL consistency suggested by Theorem 29
is taken form [17].

Appendix. For details on the material summarized here see, for example,
the first Section of the book Shields [45].
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