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Information Projections Revisited
Imre Csiszár, Fellow, IEEE,and Frantǐsek Matú̌s

Abstract—The goal of this paper is to complete results available
about -projections, reverse -projections, and their general-
ized versions, with focus on linear and exponential families.
Pythagorean-like identities and inequalities are revisited and
generalized, and generalized maximum-likelihood (ML) estimates
for exponential families are introduced. The main tool is a new
concept of extension of exponential families, based on our earlier
results on convex cores of measures.

Index Terms—Convex core, exponential family, -projec-
tion, Kullback–Leibler divergence, maximum likelihood (ML),
Pythagorean identity.

I. INTRODUCTION

FOR two probability measures (PMs), on the same
measurable space , the information divergence

( -divergence, relative entropy) of from is defined by

if

otherwise.

A. Information Projections

The infimum of for in a set of PMs is de-
noted by . If a unique minimizer exists it is called
the -projectionof to . If every sequence in satis-
fying converges in a specified sense
to a unique PM, not necessarily in, this PM is called the
generalized -projectionof to . Similarly, the infimum of

for in a set of PMs is denoted by , and
a unique minimizer, if exists, is called thereverse -projection
( -projection) of to . If every sequence in satisfying

converges to a unique PM, not neces-
sarily in , this PM is called thegeneralized -projectionof
to .

Such projections, particularly to linear and exponential
families of PMs, occur in various problems of probability
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and statistics. They are intimately related to large deviation
theory and maximum-likelihood (ML) estimation. Previous
works studying these projections include Chentsov [6], Csiszár
[10], [11], Topsøe [22], etc., see the review of prior results in
Section I-C. Our goal here is to complete the existing theory
and to show how known results generalize if certain regularity
conditions (such as steepness of exponential families) are
omitted. Various subtle points will be clarified, including
corrections of some errors in [6], a key work on the subject. We
shall also address the question of how the possible nonexistence
of ML estimates can be remedied, in cases when the likelihood
function is bounded.

A set of PMs is calledlog-convexif it contains all log-
convex combinations of pairs of not mutually singular PMs in

. These log-convex combinations are defined, for not mutu-
ally singular PMs and with densities and with respect to
(w.r.t.) a dominating measure, as the PMs with -den-
sities , . Examples of log-convex
sets comprise exponential families and their extensions intro-
duced in Section II. Log-convex sets of mutually absolutely con-
tinuous PMs are the “geodesically convex” sets of Chentsov [6].
We are not aware of references to log-convex sets of not mutu-
ally absolutely continuous PMs.

Generalized projections exist to convex and log-convex sets
of PMs due to the following theorem. Here,-convergenceor

-convergenceof a sequence of PMs to a PM means that
or , respectively. Each of these

convergences is stronger than convergence in variation distance,
due to Pinsker’s inequality.

Theorem 1: For any PM and convex set of PMs such that
is finite, there exists a unique PM, denoted by ,

that satisfies

(1)

This is the generalized-projection of to : every se-
quence in satisfying -converges
to .

For any PM and log-convex set of PMs such that
is finite, there exists a unique PM, denoted by ,

that satisfies

(2)

This is the generalized -projection of to : every
sequence in satisfying -con-
vergences to .

The “convex” part of Theorem 1 was proved by Topsøe [22,
Theorem 8], using a refinement of a geometric idea of Csiszár
[10]. The “log-convex part” of Theorem 1 is new but can be
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proved by the same technique, see Appendix A. A key ingre-
dient is the identity

(3)

(valid for , any PM , and not mutually singular PMs
and with densities and w.r.t. a dominating measure)

combined with its specialization

(4)

obtained by taking in (3). Note that substituting
(4) into (3) yields a log-convex analog of the parallelogram
identity of Euclidean geometry, the special case of [6,
Lemma 20.5, p. 296].

Remark 1: As a direct consequence of (1) and (2), if the min-
imum of subject to or is attained, the
minimizer is unique and equals or , respectively.
Actually, the minimum is attained, thus, the- or -projection
exists, if and only if , respectively, belongs to
(and then the generalized projection is a true projection). The
“if” part follows from Theorem 1 because the lower semiconti-
nuity of -divergence implies

and

Remark 2: Inequality (1) shows that the generalized-pro-
jection belongs to the-closureof defined as

: . Similarly, inequality (2) entails that the
generalized -projection belongs to thereverse -clo-
sure( -closure) of defined as : .
Calling a set of PMs -closedor -closedif it equals its own
- or -closure, it follows that under the conditions of The-

orem 1, - or -projections to always exist if is - or
-closed (in particular, if is variation closed). It should be

noted that the generalized-projection can be different
from even if is a linear family of PMs, see Ex-
ample 3 in Section VII. On the other hand, ifis an exponen-
tial family, generalized -projections to equal true -pro-
jections to , provided the projected PM has a mean, see
Corollary 9 in Section V.

B. Structure of the Paper

We will work mostly with PMs on , with linear families
of PMs that have a given mean , and with stan-

dard, full exponential families, cf. [4]. More general situations
can be reduced to this one and are postponed to Section VIII.

The main new tools in this paper are convex cores of mea-
sures we have introduced in [13], and extensions of exponential
families whose definition relies upon the geometric concept of
face of a convex core. This extension concept is defined, and its
basic properties established, in Section II. Some simple auxil-
iary results are collected in Section III.

For linear and exponential families, both parts of Theorem 1
can be improved, and in a sense merged together. Section IV
elaborates upon the first “convex part” of Theorem 1 when

is a linear family. The main result there, Theorem 3, is a gen-
eral form of the “Pythagorean theorem for-divergences” that
requires no regularity conditions other than an obvious finite-
ness assumption. This neat general form relies substantially on
the concept of extension of an exponential family. We note that
the proof of Theorem 3 does not actually use Theorem 1.

Section V is devoted to the second “log-convex part” of The-
orem 1 when is an exponential family. An essential role is
played by the fact that the -closure of is always contained,
perhaps strictly, in the extension of, a consequence of The-
orem 2 in Section II. In special cases, results of Sections IV and
V overlap, see Theorem 5 in Section V.

ML estimation in exponential families is closely related to
-projections. Section VI addresses this subject, including the

question how nonexistence of an ML estimate can be remedied.
Here, the “log-convex” part of Theorem 1 and a variation on it
play a key role.

In Section VII, we present three examples illustrating our re-
sults and showing that certain “irregular” cases may, in fact,
occur.

The straightforward extensions of our results to more gen-
eral linear and exponential families on arbitrary measurable
spaces are discussed in Section VIII. As an example, we
work out in detail perhaps surprising implications of our
results for exponential families on with directional statistic

. Proofs are postponed to Appendix C.
Appendix A contains the proofs of two key theorems not

proved in the text and the completion of another proof. In Ap-
pendix B, auxiliary results additional to those in Section III are
presented.

Since several previous results on convex cores are needed in
this paper, a friendly introduction into the topic in Section II
is complemented by Appendix D containing those assertions of
[13] that are used throughout in proofs. Full familiarity with [13]
is not a prerequisite for understanding of this paper.

C. Previous Results

The - and -convergences of PMs are special cases of more
general convergence concepts studied in Csiszár [9]. By the re-
sults there, “information neighborhoods” of the form

or

do not define a topology for PMs. In particular, -closures
are not topological closure operations, that is, -closures of
sets of PMs need not be -closed. Previously, Csiszár [8]
showed that, even for PMs on a countable set, no topology
exists in which the convergence of nets were equivalent to their
-convergence. Recently, however, Harremoës [15] showed that

a topology for PMs does exist in which the convergence of se-
quences is equivalent to their-convergence, and-closures
equal sequential closures in that topology. For-convergence,
the situation is similar.

It has been known for a long time that-divergence admits
a “geometric” interpretation as an analog of squared Euclidean
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distance. The first appearance of the “Pythagorean theorem for
-divergences” we are aware of is in Chentsov [5], see also

the collection [7, pp. 218–225]. There, implicitly, (10) below
(with replaced by ) is established when . A
version of the Pythagorean identity, as in Corollary 7, not re-
quiring , goes back to Csiszár [10]. A first system-
atic development of -divergence geometry, in particular, the
study of information-theoretic projections and closures, appears
in Chentsov’s book [6]. There, as distinct from our work, dif-
ferential geometric ideas also play an essential role. For further
developments of the differential geometric approach see Amari
[1] and the references therein.

The existence of generalized-projections to convex sets of
PMs is implicit in [10]; the full first part of Theorem 1 is due
to Topsøe [22]. For its extensions to more general measures of
distance see Csiszár [12]. Generalized-projections to convex
(rather than log-convex) sets of PMs appear in Barron [3].
These, in accordance with [12], may be of total mass less than
one, unlike the generalized projections in Theorem 1. Special
cases of our general Pythagorean theorem (Theorem 3) and
its corollaries, other than the simple ones already mentioned,
appear explicitly or implicitly in Jupp and Mardia [17] and
Csiszár [11]. In particular, the generalized-projection of a PM

to a linear family was shown in [11, Theorem 2] to belong
to an exponential family based on a suitable restriction of;
the proof there admits (in retrospect, using results of [13])
identification of that family as a component of the extension
of .

A concept of extension of exponential families, similar to but
not the same as ours, was devised by Chentsov [6, p. 315]. He
extended the family based on a measureby a “boundary
at infinity” that consisted of members of exponential families
based on restrictions of to “ponderable faces” of the convex
support of . However, some crucial assertions in [6] about
an exponential family completed by this boundary, such as [6,
Lemma 23.7] ( -closedness) and [6, Theorem 23.3] (existence
of -projections), are false, see Example 1 in Section VII, or
[13, Example 3]. The reason is that the boundary at infinity in
[6] is too small (the ponderable faces of the convex support
correspond to the exposed faces of the convex core, see [13,
Lemma 11]). Extensions of exponential families were also con-
sidered by Barndorff-Nielsen [2, pp. 154–155] and Brown [4,
pp. 191–201]; the former for with finite support, the latter for

with at most countable support satisfying additional assump-
tions. These two extensions are special cases of our definition.

The information-theoretic view of ML estimation in exponen-
tial families goes back to Kullback [16], see also Chentsov [6].
A first connection with generalized-projections was made by
Jupp and Mardia [17]. The focus in our paper is on the situ-
ation when no ML estimate exists. For this case, the question
“whether it is possible to enlarge the family in a natural way
such that the ML estimate becomes defined with probability
one” was answered in the affirmative by Barndorff-Nielsen [2,
pp. 154–155] when has finite support.

Though not directly related to our work, we mention that the
limiting behavior of the variance function of a steep exponential
family has been studied by Masmoudi [18]. For recent results
on ML estimation in multidimensional exponential families we

refer to Miao and Hahn [19]. The readers’ attention is drawn
also to Morozova and Chentsov [20] and Chentsov’s collected
works [7].

II. EXTENSIONS OFEXPONENTIAL FAMILIES

From now on, all measures we consider are finite Borel mea-
sures on , with a few exceptions stated explicitly.

Themean of a PM is the coordinatewise integral
, provided that each coordinate functionis -inte-

grable; otherwise, does not have a mean. Alinear familyof
PMs is defined as

all PMs with a mean

where is themeanof .
The (standard, full)exponential family based on a nonzero

measure on is the set of all PMs equivalent to such
that is an affine function. In parametric representation

where

and

Note that is permitted to be concentrated on an affine subspace
of , thus, the above parametrization need not be one-to-one.
Also, no assumptions are made on the richness of . In
the literature, the finiteness of the underlying measureis rarely
required; our finiteness assumption does not restrict generality
but excludes the trivial case . It could even be assumed
that is a PM, since clearly for each .

Exponential families are log-convex, the log-convex combi-
nations of and are the PMs , .

Theconvex core of a measure is the intersection of
all convex Borel sets of full -measure. Equivalently, is
the set of means of PMs dominated by[13, Theorem 3] (for
this, and other references to [13], see Appendix D). By [13,
Lemma 1], the closure of equals the well-knownconvex
support of , the intersection of all convex closed sets of
full -measure, see [6], [2]. Therefore, the relative interiors of

and coincide. Note that , unlike , need
not be of full -measure.

For the exponential family based on , each has the
same convex core as. Hence, we write for , and
speak about the convex core of; we do the same for convex
support.

A faceof a convex set in is a convex set that
contains each line segment in

that has an interior point , , in . In this
paper, we exclude the trivial face and by face we always
mean a nonempty face. Theproper facesare those distinct from

itself. The intersection of with one of its supporting hyper-
planes is always a face; these, anditself, are calledexposed
faces. Each proper face of is a subset of a proper exposed face
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[21, Theorem 11.6]. Each point in belongs to the relative in-
terior of exactly one face of [21, Theorem 18.2].

Given an exponential family , and a face of
, let denote the exponential family based on ,

the restriction of to the closure of . Since has the
convex core [13, Lemma 3], implies that is
a nonzero measure. Thus, is well defined, , and
by [13, Lemma 1]], . A member of
has -density equal to on and otherwise.
Here

and belongs to . Clearly,
contains all PMs obtained by normalizing the

restrictions , ; they exhaust if
but in general they do not.

The family is acomponentin the disjoint union

face of

to be called theextensionof . The union is at most countable
since has at most a countable number of faces [13, The-
orem 1]. A PM belongs to the component with

.

Remark 3: Clearly, . The equality holds if and
only if is relatively open (it has no proper faces), or equiv-
alently, if every nontrivial supporting hyperplane of has

-measure zero [13, Corollary 2].

Theorem 2: The extension of an exponential family
is log-convex and -closed.

The proof will be given in Appendix A.

Corollary 1: For each PM and exponential family
such that is finite, the -projection of to

exists, and equals of Theorem 1.

Corollary 2: For an exponential family , the following as-
sertions are equivalent:

i) ;
ii) every PM with finite has -projection to ;
iii) is -closed.

Proofs of Corollaries 1 and 2:Corollary 1 is immediate
from Theorems 1, 2, and Remark 2, and it gives i)ii) in
Corollary 2. As for ii) iii), note that no PM in
can have -projection to .

The implication iii) i) is a consequence of Lemma 7 i) in
Appendix B, stating that for each and exposed face
of , the PM belongs to . Since

and are disjoint when , the -closedness of
implies that has no proper exposed face. Then, in turn,

has no proper face and follows.

III. A UXILIARY RESULTS

For a linear family and an exponential family we denote
by the infimum of subject to and

. Similar notation will be used also for other sets of PMs.

In auxiliary calculations, the quantities and
will be considered also for an arbitrary (positive, finite) measure

, defined in the same way as if were a PM. Then, a lower
bound to is rather than . We will work
also with the (convex) function defined by

(5)

The following lemma is included for reference purposes. It
follows directly from [13, Theorem 3], stating that the means of
PMs are in , and each point in is the mean
of some having bounded -density.

Lemma 1: For a linear family and finite measure ,
is finite if and only if the mean of is in . In

other words, is equal to .

Corollary 3: For a linear family and exponential family ,
is finite if and only if the mean of is in . The

last condition is necessary (and sufficient) also for the finiteness
of .

Proof: By Lemma 1, is finite if and only if the
mean of is in . The first assertion follows since

for each , and the second assertion follows since
implies .

Lemma 2: For any PM with mean and exponential
family

(6)

Further, if the mean of belongs to a face of then

(7)
Proof: In the nontrivial case , (6) follows by

rewriting the left-hand side as

Applying (6) to the exponential family , one obtains (7) with
replaced by . Since for with mean

in we have [13, Corollary 6], this replacement
does not affect the value of the divergence.

The function is convex by Hölder’s inequality. Recall that
the convex conjugate of a convex function on is defined
by

(see [21, Sec. 12]).

Corollary 4: For each and

Proof: Minimization over in (6) and a trivial re-
arrangement yield the first equality. If is finite, it follows
that when approaches its infimum subject
to , then approaches its supremum
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; thus, the second equality follows. If , then
for each , by the first equality

(or Lemma 1), and the second equality holds trivially.

The following lemma is less trivial. It is presumably known
to experts though we have no direct reference; a related result is
[14, Lemma 6.2.13].

Lemma 3: .
Proof: For each and PM that has a mean

Letting be the member with parameterof the exponen-
tial family , based on the restriction of to a large ball

, this lower bound is ,
by trivial calculation. As the ball can be arbitrarily large,

follows.
The opposite inequality is immediate from

Corollary 4 that implies for all .

The following lemma extends [2, Theorem 9.13] which is
stated for only, under the hypotheses that and
are full dimensional.

Lemma 4:
i) If then there exists with

ii) If then for each

Proof:
i) For a proper convex functionon and its convex conju-

gate , the equality holds if and only
if belongs to the subdifferential [21, Theorem 23.5
(a)(d)], which is a nonempty subset of if [21,
Theorem 23.4]. These results are applied to the function
with , Lemma 1, whose convex conjugate is

, Lemma 3. It follows that if is in
[13, Lemma 1] then is nonempty and

for

This proves i), since , by
Corollary 4.

ii) This is a consequence of Lemma 6 in Appendix B, since
implies the existence of a closed halfspace con-

taining whose boundary hyperplane containsbut not the
whole .

Remark 4: A question motivated by large deviations theory
is under what conditions does hold for each

. Although the subject is not in the scope of this paper,
that question will be briefly addressed in Section V, Remark 10.

Lemma 5: If a sequence of PMs in an exponential
family -converges to some PM in a component

of then

for all in the affine hull of .

Proof: The hypothesis implies, by the
obvious inequality

(8)

that for each Borel set of positive -measure

The last logarithmic term vanishes in the limit because
converges to in variation distance. It follows that if the mean
of exists, it belongs to the set of those for
which converges to . Hence,

contains the means of conditionings ofon arbitrarily small
balls with centers in the support of (the smallest closed set
of -measure ). It is not difficult to see that the affine hull of

not only contains these means but
is even spanned by them. The assertion follows asis clearly
an affine set.

Corollary 5: If a sequence of PMs -converges to
some then tends to for each
PM that has a mean.

Proof: Suppose , say . The assertion
is trivial by lower semicontinuity of -divergence if is
infinite. If is finite, the mean of belongs to

by [13, Theorem 3]. Denoting this mean by, we have

by (7), and

by (6), where parametrizes . Therefore, the assertion fol-
lows from Lemma 5.

IV. PYTHAGOREAN THEOREM IN -DIVERGENCEGEOMETRY

The main result in this section is a general “Pythagorean iden-
tity” for -divergences that, for , substantially sharpens
the first part of Theorem 1. No regularity assumptions will be
used other than a finiteness assumption needed for the problem
to be meaningful, see Corollary 3. Recall that each point in the
convex set belongs to the relative interior of exactly
one face of .

Theorem 3: Let be a linear family and be an exponential
family with finite, that is, with containing
the mean of . Then, the intersection consists
of a single PM , and this PM satisfies

(9)

Moreover, belongs to that component of for which
the mean of is in , and is the unique PM satisfying (9).

Remark 5: The PM belongs to if and only if inter-
sects . In that case, (9) with gives

, and, thus, (9) can be rewritten as

(10)
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A direct proof of (10) is straightforward. The difficulty in
proving Theorem 3 is due to the fact thatneed not intersect

.

Remark 6: The fact that is nonempty when
is finite, implies that is dichotomic,

either infinite or zero.

Proof of Theorem 3:Given and with in
, let be the face of whose relative interior contains

. Then, for each PM with mean
and finite, as in the proof of Lemma 2, and, thus,

of (5) is equal to . Since
equals [13, Lemma 3], the hypothesis of Lemma 4 i) is sat-
isfied for in the role of , and it follows that there exists

satisfying

(11)

We claim that with this , (9) holds for .
Fix , say , where is a face

of . Then, the convex core of is . We may
assume that contains , since, otherwise, is infinite
by Lemma 1, and both sides of (9) equal if . The
face , containing , contains the whole face , by
[21, Theorem 18.1].

Next, for any with mean , Lemma 2 applied to
gives

whence by minimization over

Similarly, Lemma 2 applied to gives

Comparison of the last three equations and (11) establishes our
claim.

By construction, was in . Equation (9) implies
that it is also in , since minimizing both sides over
entails . To prove the uniqueness assertions, it
suffices to show that if and satisfies
(9) then necessarily . Now, substituting into
(9) with , we obtain

This implies that a sequence of PMs inthat -converges to
(such a sequence exists since ) also -converges to

. Hence, as claimed.

An attractive feature of (9) is that it embraces and strengthens
instances of inequality (1) with and, at the same time,
instances of inequality (2) with and with ,
without relying upon Theorem 1 for existence. (The results in
this section do not depend on Theorem 2, either.) To express
the feature of Theorem 3, hinted to above and formally stated
in the following corollary, the PM in (9) will be denoted by

in the sequel.

Corollary 6: For a linear family and an exponential
family with , the PM is both the gen-

eralized -projection to of every with
finite, and the true -projection to

of every with finite. Moreover, if ,
then is the -projection to of every
with finite.

Proof: Only the assertions about -projections require
proof. To this, note that (9) implies by minimizing over in

, and using Remark 6, that

(12)

By Remark 1 after Theorem 1, the last term in (9) is bounded
from below by , thus, we obtain

This shows that satisfies (2) in the role of
, where , for all with

finite. As , it is, therefore, the -projec-
tion of to . If then Theorem 3 gives that

belongs to itself. Hence, it is the -projection of
to .

The following corollary of Theorem 3 is immediate.

Corollary 7: The true -projection of a PM to a linear
family exists if and only if intersects . Then, this
-projection is , and satisfies

An exponential family is called steep if has
nonempty interior, and no PM with on the boundary
of has a mean (this trivially holds if is open).
Steepness is a well-known necessary and sufficient condition
for each to be the mean of some , see
[2], [4]. Recalling that for each face of , the convex
core of the component of is equal to , and that
the relative interiors of a convex core and a convex support
coincide, Corollary 7 and the last necessary and sufficient
condition yield the following.

Corollary 8: A PM has -projection to each linear family
with mean in if and only if each component of
is steep. A sufficient condition for this situation is

.

Note that steepness of an exponential family or even openness
of does not guarantee steepness of the components of
its extension.

V. GENERALIZED -PROJECTIONS TOEXPONENTIAL FAMILIES

This section is devoted to the problem of minimizing
over in an exponential family when is a

PM with mean . Recall that, by Corollary 3, is a nec-
essary condition for the finiteness of . When
is finite, Lemma 2 implies that ,
and the existence of the -projection of to is equivalent
to for some . The latter
takes place if and only if , by Lemma 4. In this
case, equals the PM of Theorem 3, see
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Corollary 6. The results in this section cover the case when
belongs to but not to its relative interior.

We shall use, without further reference, the consequence
of Theorem 2. A sufficient condition for the

equality appears in Lemma 7 ii), see Appendix B; it is satisfied
if . The case of strict inclusion will be, however,
theoretically more interesting.

The following theorem strengthens the log-convex part of
Theorem 1 for . Its proof, unlike that of Theorem 3, will
rely upon Theorem 1.

Theorem 4: For every linear family and exponential family
with finite, there exists a unique PM, denoted by

, such that

(13)

belongs to , and

for each . Moreover, , and
contains the mean of.

Proof: Given and with finite, fix
first a PM with finite. By Theorem 1, applied
to , there exists a unique PM such
that

It follows from (6) that the left-hand side of this inequality is
constant for with finite (it equals

if ). Hence, the PM above does not de-
pend on a particular choice of, and the inequality (13) holds,
with this as , for each and (note that (13)
trivially holds for if is infinite). Using Corol-
lary 5 and the lower semicontinuity of-divergence, the validity
of (13) for all is a consequence of its already es-
tablished, weaker version for .

For , the equality follows
by minimization in (13) over , and

holds due to Corollary 5 and .
Hence, in turn, follows and the

mean of belongs to by Lemma 1.

Remark 7: It remains open whether the -closure of an ex-
ponential family is always log-convex and -closed. A partial
result toward the -closedness is that each PM in the-closure
of that has a mean necessarily belong to . Indeed,
by Theorem 4, implies for
with a mean.

Corollary 9: For each PM having a mean, with
finite, the generalized -projection of to and the true

-projection of to exist and coincide.

Corollary 10: If is finite

(14)

Consequently, if for PMs and
then -converges to and -con-

verges to .

Proofs of Corollaries 9 and 10:Corollary 9 is immediate
from Theorem 4. Corollary 10 follows combining (13) and

(15)

obtained by minimizing both sides of (9) subject to .

Remark 8: The inequality in (13) may be strict. A simple
example is provided by the exponential family on the real line
based on the PM with density when , and oth-
erwise, and any linear family with mean . In this case,

. Note that the mean of differs from the mean
of .

Remark 9: A sufficient condition for the equality in (13) is
. Indeed, then the PM of The-

orem 3 is the single member of that intersection, and it satisfies
the equality (10) by Remark 5. Minimizing both sides of (10)
over gives . Then (10) be rewritten
as (13) with the equality, having in the role of .

Note that to guarantee for all ,
it does not suffice to assume that all components of are
steep (in Example 1 of Section VII, the choice with
mean renders (13) strict). However, the stronger
assumption suffices due to Corollary 8 and Lem-
ma 7 ii) in Appendix B.

By Theorem 3, is always nonempty for
, still the intersection of with the subset

of can be empty. Also, may differ
from in general. Example 1 in Section VII demonstrates
that these irregularities can happen and illustrates differences
between Theorem 3 and Theorem 4. The following theorem
shows that in this context, various “regularity conditions” are
equivalent. There, denotes the function in (5).

Theorem 5: If is finite then the following assertions
are equivalent:

i) ;

ii) ;

iii) ;

iv) for and ;

v) is lower semicontinuous at, the mean of ;

vi) .

In particular, these assertions hold if or if
.

Proof:
i) iii): If , then for

some sequence and the implication follows from (14).
iii) ii): If , that is, for se-

quences and , then, by Corollary 10, also
and . The three

convergences imply , using Pinsker’s in-
equality.
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ii) i): belongs to by Theorem 3 and
belongs to by Theorem 4. If they are equal, the

intersection in i) is nonempty.
ii) iv): If then (9) can be rewritten as

where by Theorem 4.
iv) iii): By minimization over when is

finite.
iii) vi): Obvious from Corollary 4 and the fact that

.
vi) v): Since is a lower bound to by Corollary 4,

and , a convex conjugate function, is lower semicontinous,
implies

v) vi): Lower semicontinuity at of the convex function
implies if along a line segment in

; hence, follows since in
the relative interior of , by Lemma 4 i).

If then by Theorem 3, and
i) holds. If coincides with then i) holds due to
Theorem 3.

Remark 10: If is a PM, the large deviation behavior of
the mean, respectively, empirical distribution of an indepen-
dent and identically distributed (i.i.d.) sample fromis gov-
erned by the rate function , respectively, , see [14,
Corollary 6.1.6], [14, Theorem 6.2.10]. Hence, a formal appli-
cation of the contraction principle suggests that the function
in (5) is equal to . The continuity assumption needed for
the standard form of the contraction principle [14, Theorem
4.2.1] holds for the present case only if is bounded. It is,
therefore, of interest under what weaker conditions the equality

remains valid. By Theorems 3 and 5 i), vi), the con-
dition is sufficient for when

is finite, that is, see Lemma 1 and Corollary 3, when
is in . However, this condition is not suffi-

cient for , see Example 2 in Section VII. By
Proposition 1 iii) in Section VI, either of the conditions

or implies . As ei-
ther of them implies (the latter by Lemma 7
ii) in Appendix B), these are sufficient conditions for ;
a necessary and sufficient condition remains elusive.

VI. ML E STIMATES

Let as before. The (normalized)log-likelihood func-
tion (LLF) associated with a sample of size

from an unknown distribution can be de-
fined as the function of given by times the logarithm
of the density

if

otherwise.
(16)

In this paper, however, we will define the LLF for as the
(extended real-valued) function

if contains
otherwise,

(17)

where is the sample mean. The two definitions
coincide for samples whose mean belongs to the closure of
any face of (if and) only if for .
Adopting (17) as the definition of LLF is justified by the fact
(whose proof is omitted, for brevity) that the set of samples not
having the above property has measure .

For , we shall simply write and call it the
LLF for . If the maximum of subject to
is attained and finite, a maximizer will be called amax-
imum-likelihood estimate(MLE) in , from the sample with
mean . An obvious necessary condition for existence of an
MLE is the finiteness of , that is,

. This condition is, however, not sufficient; by Lemma
4, the necessary and sufficient condition is . In this
section, remedies to nonexistence of MLE will be offered when

.
No explicit description of seems to be available.

Some partial results are given in the following proposition. We
note that the three inclusions of i) and ii) may be simultaneously
strict, see Example 1 in Section VII. Previous results in this di-
rection are [2, Theorem 9.1 (ii)*], stating that contains
the interior of , and [2, Theorem 9.5] which is effectively
the same as part ii) of the following proposition.

Proposition 1:
i) .
ii) The intersection of all open half-spaces with full-mea-

sure contains and is contained in .
iii) whenever is relatively open or

.
Proof:

i) This follows from , Corollary 4, and
, Lemma 1.

The remaining assertions are consequences of Lemma 6 in
Appendix B.

ii) If is not in the intersection, there exists an open half-
space of full -measure whose boundary hyperplanecontains
. Then, by Lemma 6. The intersection is obvi-

ously a subset of .
iii) By part i), it suffices to verify the inclusion . If is

relatively open, then it equals the intersection of all open half-
spaces with full -measure, and follows by
ii). Suppose now that equals . If is finite, then
by part ii) either , or else is on
the relative boundary of . In the latter case, in addition, a
nontrivial supporting hyperplane to at has positive

-measure. Then for , we have by
[13, Lemma 2 (ii)], and hence by [13, Lem-
ma 1]. Thus,

(18)



1482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

in particular, is nonempty and is a proper (exposed) face of
. By Lemma 6 and (18) we have

Repeating the argument for in the role of , one concludes
that either or else
for a proper face of , etc. After at most steps, turns out
to be in the relative interior of a face of .

Theorem 6: For each there exists a unique PM
satisfying

(19)

for each such that the affine hull of contains .
Proof: Suppose first that belongs to . Then a PM

with mean and finite exists by [13, Theorem 3].
Since

by Lemma 2, the “log-convex part” of Theorem 1 applied to this
and implies

(20)

with . Any PM is the -limit of
a sequence from . If the affine hull of contains then

converges to , by Lemma 5. Since
cannot be eventually smaller than ,

by lower semicontinuity of divergence, (20) implies (19).
If , the existence of satisfying (20)

follows by a modification of the proof of Theorem 1, detailed in
Appendix A. Then, by the above limiting argument, (19) holds
also in this case. The uniqueness of is obvious from (19).

Corollary 11: For , if a sequence in
satisfies , then it -converges to .

If an MLE from a sample with mean exists, that is,
, then and Theorem 6

implies , thus, . When the MLE
does not exist but , on account of Corollary 11 it
is reasonable to call thegeneralizedMLE (GMLE), from a
sample with mean . Note that this GMLE is a PM rather than
a parameter. As belongs to , it can be represented as

where is a unique face of and is in
, nonunique in general.

Remark 11: In statistics, approximate MLEs are often used,
meaning a parametersuch that the value of the LLF is
within of . By Theorem 6, for any approximate MLE,
the PM is close to the GMLE in the divergence sense

.

The following corollary relates the GMLE to an MLE in
. That MLE is defined as a maximizer of

in (17) subject to , provided the max-
imum is attained and finite. We note, however, that sampling
from may yield with positive probability a sample

from which the GMLE exists but no MLE in does, see
Example 2 in Section VII.

Corollary 12: If is an MLE in from a
sample , then the sample mean belongs to and

equals the GMLE from . For , such
an MLE exists if and only if . This condition holds
when .

Proof: Suppose with in is fi-
nite and equals the maximum of subject to in

. The finiteness implies

and , by the definition (17) of LLF. Then

for

where because . It follows
that , thus, , and for

the equality takes place in (19); note that
the condition for there is satisfied as . This proves
that and .

If then implies
, by (19). Moreover, using Proposition 1 ii)

hence, the supremum of subject to
equals the finite number . By Corollary 11, is the

-limit of a sequence satisfying .
Thus, for some . If, in addition,

then

by (17). Lemma 5 implies that converges to
. Hence, and

is an MLE in .
When then by Proposition 1 i), and

for , see the proof of Theorem 6. The last
assertion of Theorem 4 implies .

Remark 12: Theorem 6 can be easily extended to log-convex
subfamilies of , where is a convex subset of

, replacing by . Moreover,
MLE and GMLE can be considered for log-convex subfamilies
of . We intend to return to this topic elsewhere.

VII. EXAMPLES

Example 1: Let be the measure on the Euclidean plane
expressible as sum of the PM sitting in the point ,
sitting in , and the PM on the open quadrant

with density w.r.t. the Lebesgue measure. Then
has convex support and convex core

where . This convex core has
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four faces, namely, , , , and . The first
two are not exposed.

The extension of has four components

where . By simple calculation

whenever The two strict inequalities define
.

By Proposition 1

where the union on the right is the intersection of all open half-
spaces with full -measure. For

whence by simple calculus

This shows that the inclusions of Proposition 1 i), ii) are strict.
By Lemma 4, the function defined in (5) equals on . For

because is the only PM in dominated
by . Note that only for .

To determine , note that by Lemma 7 i) in Appendix
B, all conditioned PMs

belong to . Hence,

The PMs and , which are in the -closure of
the previous set, also belong to , by Remark 7. Further,

as for each , no other
members of can belong to . Thus,

The PM does not belong to the “boundary at
infinity” of in the sense of [6]. Hence, is a coun-
terexample to [6, Theorem 23.3] claiming that each PMwith

finite has an -projection to completed with the
boundary, and also to [6, Lemma 23.7] claiming-closedness
of that completion. (In [6], our was denoted by

, and our -closedness was termed-closedness).
To illustrate Theorems 3–5, let a linear familyhave mean

, with to ensure that belongs to .
Then, equals . Further,

for , while equals
which is different from for .

Finally, we discuss maximization of likelihood. The MLE in
from a sample with mean does not exist, as is

on the boundary of , cf. Lemma 4. The PM of Theorem
6 is well defined when . It equals if , i.e.,

, and , otherwise. Thus, the GMLE is
not in . By Corollary 12, an MLE in from
exists if and only if , that is, , in which
case .

Example 2: Let be the closed cone :
and be the PM on the boundary of

equal to the joint distribution of such that is
exponentially distributed with density , , and the con-
ditional distribution of given is uniform on the
circle . Consider with
where is the unit mass at the origin. Then, is the union of

and , and its only proper face is ;
clearly, . Thus, . We
claim that . To prove this, by Proposition 1, it
suffices to show that for each boundary point of

. Now, since

and if for some
, it follows that for a boundary point ,

, of we have

This establishes the claim.
Having a sample of size , it is a positive probability

event that exactly elements of the sample are equal to
. Then the sample mean does not belong to but

remains on the boundary of and, thus, in . In this
case, the GMLE exists and equalswhile no MLE in
exists, by Corollary 12.
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Example 3: In this example, all PMs are on the real line,
and is the linear family with mean. We show that
contains all Gaussian distributions.

By symmetry, let be Gaussian with density , mean
, and variance . Consider the PM with density

equal to when , and when
. Then

goes to as (note that the normalizing constants
are bounded). Hence, the assertion follows if
we prove that . A little more generally, we show
that if a PM has mean and density
for then . In fact, given such , for
there exists such that is constant both on
and on . The corresponding constants and can
be determined from the conditions that is a PM and that its
mean is . Using the identities

these conditions give the equations

yielding

For , one has

This establishes , and, consequently, .
The -projection of any Gaussian PM with mean

to is obviously the Gaussian PM with meanand the same
variance. Hence, and . On the other
hand, and, thus, the generalized-projection
of to the convex set equals itself. This exhibits oc-
currence of .

This example also demonstrates that the identity (9) cannot
be extended to . Indeed, take and
with as above. Then (9) reduces to (10) whereis the
Gaussian PM with mean and variance . For
as above, can be arbitrarily close to , whereas

is bounded from below by .

VIII. -, -PROJECTIONS ANDMLE IN MORE GENERAL

CASES

In this section, minimization of over sets of PMs
on a measurable space is compared with mini-

mization of over sets of PMs on . The MLE

and GMLE are discussed in this framework, too. The focus is
on general linear families

PM on

where : is a vector-valued measurable function and
, and on general exponential families

where now is a finite nonzero measure on and

The function is the directional statistic of this exponential
family.

A. Direct Generalizations

It is a well-known fact that the minimization of sub-
ject to or subject to can be transferred to
the Euclidean space via the mapping . To outline this idea,
let denote the -image of and, given a PM on domi-
nated by , let denote the PM on with -den-
sity . Recall further that the inequality

holds; the equality takes place for dominated
by if and only if and . Since
the mapping maps onto ,

. It is not difficult to see that, actually, the equality
takes place here, and when is finite, the general-
ized -projection of to equals where is the
generalized -projection of to . In addition, both -pro-
jections can be true projections only simultaneously. An analo-
gous observation is valid for the minimization of over

. Here, is a sufficient statistic for this family and the
mapping is even a bijection of onto the standard
family , based on the-image of , and is its
inverse. Note that .

This simple device of transferring problems to via the
mapping has been frequently employed to lift results from
Euclidean spaces to more general settings. It works for our re-
sults as well. As a first example, one can immediately recog-
nize whether the minimization of over is
a feasible problem, that is, whether with
finite exists. The necessary and sufficient condition for this is

, by Lemma 1 or [13, Theorem 3].
The key concept in this paper, the extension of a standard

exponential family, is generalized by defining to be
the set of all PMs where . Equivalently,

is the union of its components; for each faceof
a component of is the exponential family

with equal to the restriction of to

and with the previous directional statistic.
All results of Sections IV–VI admit straightforward general-

izations. For example Theorem 3 extends to the following form.
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For the set of PMs and exponential family such
that is finite, that is, , the intersection

consists of exactly one PM. For this
, the Pythagorean identity holds

(21)

The PM belongs to the component of based
on where is the face of containing
in its relative interior.

The proof is immediate from Theorem 3. Namely, by the
assumption, is finite and then the intersection of

and consists of a single PM . The PM
equal to is easily seen to have the claimed properties. In
particular, (21) follows from the Pythagorean identity (9) (with

replaced by ) since for each and
such that not both and are

infinite

To sketch the implications of our results for ML estimation in
the exponential family , let
be an i.i.d. sample drawn from a member of and

denote the sample mean of the directional statistic. The LLF
is defined similarly to (17) where now is a face of and

As an example let us discuss an extension of Theorem 6:

For , there exists a unique PM such that
for each

where is the face of such that belongs to the com-
ponent of and parametrizes .

The above PM equals where is the PM playing
the role of in Theorem 6 for . The analog of Corollary 11
obviously holds for this , hence it can be interpreted as a
GMLE.

To apply the results of this paper to the families and
, the convex core of the -image of and its faces

have to be determined, which may be nontrivial. If the convex

core turns out to be an open set, then it equals the domain of
, by Proposition 1 iii), and, in absence of nontrivial faces,

the extension and -closure of the corresponding exponential
family will be the family itself. In this case, classical results on
the information projections and ML estimation suffice.

Another situation that has been well understood is whenis
finite. Then, the image of has finite support and

is a polytope. Obviously, , and
the extension and -closure of coincide with the closure
of viewed as a subset of . Similarly, is closed in

and coincides with . Hence, the Pythagorean iden-
tity (21) takes place with replaced by ,
see also (10) in Remark 5. For the GMLE ex-
ists and coincides with the MLE in , see also Barn-
dorff-Nielsen [2, pp. 154–5].

B. Example With Moment Statistics

The last part of this section illustrates the preceding general-
izations when and . Let be a
finite measure on ; denote by the support of (the smallest
closed subset of with full -measure) and by the subset
of consisting of the points with positive-measure. Then, the
image of is supported by the subset of the curve
in , known as themoment curve, see [23]. We exclude the case
when is a finite set that is covered by the last paragraph of the
previous subsection.

The moment curve intersects any hyperplane

with nonzero in at most points because
implies that is a real root of the polynomial

of degree at most. This fact implies that any
points of the moment curve are affinely

independent, that is, span a simplex of dimension . In
particular, the convex hull of has nonempty
interior because is not finite.

A description of and its faces is summarized below;
for proofs of the following two propositions see Appendix C.

Proposition 2:
i) The interior of is equal to that of .
ii) Each proper face of is exposed and equals a

simplex with of cardinality at most . In
addition, .

iii) Each set of cardinality spans a
face of . If is contained in the interior of then all
proper faces of are of this form.

It is an elementary fact that the standard exponential family
based on a measure whose support is an affinely independent
set , equals the set of all PMs with support. Then,
it follows from Proposition 2 that each component of the
extension of , corresponding to a proper face
of , where , is equal to the set of all PMs with
support . Moreover, if is contained in the interior of then

equals the union of and the set of all PMs whose
support is a subset of size of .

Proposition 3: .
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Remark 13: The inclusion , see Proposi-
tion 1 i), may be strict, giving another example of the equality

on but not beyond this set, see
Remark 10 in Section V. Indeed, take , thus,

, and let be the sum of the unit mass at the origin
and the measure with Lebesgue density . Then, ,

, and consists of the interior of
and the point . In particular, is contained in
the open half-space except for the
point . Since for the boundary hyperplane of this
half-space we have , for each , and

is determined by the inequality , Lemma 6 ap-
plied with and gives

Thus, contains the line intersecting
only in the single point .

The generalization of Theorem 3 given in the previous
subsection implies that for in and in the interior
of , the generalized -projection belongs to

, and equals the -projection to of any
with finite. If for a proper face of

, there is only one PM with mean and
(since is concentrated on the vertices of the simplex).
Then, only one PM exists with finite, and
it is trivially the -projection of to .

The GMLE exists if and only if the sample transformed by the
directional statistic has mean . For example, if
a sample with as above is contained in, the GMLE
equals the empirical distribution of the sample and coincides
with the MLE in .

When is continuous, , then is open by Propo-
sition 2 ii). Thus, , and by
Proposition 1 iii). Now, a remarkable feature is that the MLE or
GMLE never exists if the sample size is . This follows from
the well-known property of the moment curve that any
points of it span a face of the convex hull of the curve, see also
the proof of Proposition 2 in Appendix C. Thus, for samples of
small sizes the sample mean ofdoes not belong to ,

-a.s., cf. also [13, Example 2]. This includes the well-known
special case of nonexistence of MLE in the Gaussian family
from a sample of size.

APPENDIX A

This appendix contains the proofs of Theorems 1, 2, and the
completion of the proof of Theorem 6.

Proof of Theorem 1—“Log-Convex Part”:In this proof,
all measures are given on an arbitrary measurable space. Let

be finite for a PM and a log-convex set. The only
nontrivial assertion to prove is the existence of a PM
that satisfies inequality (2) for all with finite.

If and are nonsingular PMs in then (3) and
imply

(22)

where the right-hand side is nonnegative. Letbe a sequence
in with converging to . One can assume
all dominated by a finite measure, with densities . Ap-
plying (22) with , , and , it follows that

thus,

as . Hence, is a Cauchy sequence in , and,
therefore, converges in , say to . Then converges
to in , and converges in total variation to the PM

with -density . If is another sequence insuch that
converges to then, by same argument,

also converges in total variation. Since the sequencesand
can be merged together, the limit of must be equal to

. This will play the role of .
When is finite, (22) can be rewritten as

(23)

Given any with finite, as above, and
going to slowly, such that ,
one has

(24)

Here, the first inequality follows from (23) with ,
, and the second inequality from (4). The sequence

in satisfies , on account of

a consequence of (3). As shown above, this implies thatcon-
verges to in variation distance. Hence, by lower semiconti-
nuity, the rightmost in (24) is bounded from below by

. This proves (2) with . The last asser-
tion of Theorem 1 obviously follows from (2), and implies the
uniqueness of .

Proof of Theorem 2:Supposing , two members
and of , where and are faces of ,

are not mutually singular if and only if has positive
-measure. In that case, since

[13, Corollary 4], the set is nonempty, and is a face of
. As the -densities of and are equal to

and on , respectively, , and elsewhere,
the -density of the log-convex combination is propor-
tional to on and elsewhere. Since

and its subset have the same-mea-
sure, and a density can be arbitrarily changed on a set of measure
, one can also say that has -density proportional to

on and elsewhere. Thus,

proving the log-convexity of .



CSISZÁR AND MATÚŠ: INFORMATION PROJECTIONS REVISITED 1487

The -closedness of means that PMs with
necessarily belong to . For having

a mean, say , the assumption
implies by (12) that equals the PM from Theorem 3. Thus,

is a simple consequence of Theorem 3, provided
has a mean. If with does not have a mean,
a truncation argument is needed.

We first claim that a component of exists such that
. To see this, pick any sequence in

with , and define another sequence recur-
sively, letting , and be a log-convex combination
of and , with . Then, also con-
verges to (this follows, e.g., from (3)), and by the above proof
of log-convexity, the PMs belong to components of
that correspond to faces of with , . Our
first claim follows since then must be eventually equal to a
fixed face .

Now, since clearly , it suffices to show
that implies that belongs to . To this
end, denote by the ball , and write

, for sufficiently large to make
positive. Since if , the assumption

implies , using the inequality
(8). Since has a mean, it follows that . In
particular, is a face of , and (using
that the restriction of to equals the restriction
of to ) the logarithm of the -density of equals
an affine function, -almost everywhere. Noting that on
the set we have

it follows that on this set equals an affine function-al-
most everywhere. It is not hard to see that the union of the in-
creasing sequence of sets is equal to .
Therefore, equals an affine function on the whole convex
support of , -almost everywhere.

To complete the proof, it remains to show that is a
face of . To this end, since obviously implies

, it suffices to verify that each segment con-
tained in and having an interior pointin , must be
contained in . By [13, Lemma 11], the convex core of any
finite measure equals the union of the increasing sequence of
convex cores of its restrictions to the balls , . Hence,
for sufficiently large , the segment is contained in ,
and the point is contained in . As the
latter is a face of the former, this implies that is contained
in .

Completion of the Proof of Theorem 6:We have shown that
Theorem 6 is a consequence of (20). In the case ,
when a PM with mean and finite exists, Theorem
1 with this and was applied, and (20) with

followed from (2). It remains to show the existence of
satisfying (20) for all in , not necessarily in .

To this end, the proof of Theorem 1 for can be
modified as follows. For a PM with mean and
in , the divergence can be rewritten by (6) as

. With this substitution, the starting
point (3) of the proof of Theorem 1 takes for and

the form

since the divergence cancels, provided it is finite. For-
tunately, the above identity is obviously valid for arbitrary.
Since all inequalities of the proof of Theorem 1 were conse-
quences of (3), and of its specialization (4) not containing the
PM , their counterparts obtained by replacing by

and by hold. (This is as if
were canceled in all equations of that proof.) Finally,

we arrive, exactly as in the above proof, at a PM equal
to the limit in total variation of a sequence with

, such that (20) holds for .

APPENDIX B

Lemma 6: If is contained in a half-space
, , but not in its boundary hyper-

plane , then for each . Moreover

where

In particular, if then where
denotes the convex conjugate of .

Proof: For and arbitrary

(25)
Since -almost everywhere, it follows that

and then . This inequality is, however, strict be-
cause the hyperplane does not have full -measure, proving
the first assertion. For growing to , the integral in (25)
decreases to , by dominated convergence. It fol-
lows that

for
(26)

Hence,

The opposite inequality is trivial because .

Lemma 7:
i) For an exposed face of , the PM , ob-

tained by conditioning on , belongs to .
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Moreover, to each there exists a sequence in
that -converges to and satisfies

, .
ii) For such that

face of (27)

the assertions of i) hold also for nonexposed faces of . In
particular, then equals . A sufficient condition for
(27) is .

Proof: Note first that holds if
and only if the -density of is constant on . Subject
to this condition, the -convergence of to is
equivalent to .

i) Suppose is a proper exposed face of , say
for a supporting hyperplane of . Then,

is the boundary of a closed half-space
containing as in Lemma 6. As in the proof of that lemma,

belongs to , . The -density of the PM
is constant on , namely,

Using (18), , and

converges to as goes to infinity, by (26).
ii) We have to show that if satisfies the assumption (27) and
belongs to a component of , there exist PMs in
with -densities constant on such that .

We prove this by induction on the affine dimension of .
There is nothing to be proved if this affine dimension is zero.
Our induction hypothesis will be the validity of the assertion
for exponential families whose convex core has smaller affine
dimension than .

If is exposed, i) applies. For a nonexposed faceof ,
there exists a proper exposed faceof that contains .
The component of satisfies (27) becausedoes. By
the induction hypothesis, for some sequence

with -densities constant on . Applying i) to
each PM , there exists a sequence , ,
with -densities constant on , such that

as tends to . Then, the -density of every PM is
constant on . Given ,
for sufficiently large. Since -converges to , as
tends to , for ,
sufficiently large. Thus, it follows that the desired sequence
exists within the array .

APPENDIX C

The material collected here complements Section VIII-B.

Proof of Proposition 2:
i) This follows from and

the fact that and have the same interior, [13,
Lemma 1].

ii) Let be an exposed proper face of

where is the boundary hyperplane of a closed half-space
, , that contains . Since at most

points of can be contained in ,

for

of cardinality at most . This proves that the exposed face
equals the simplex . It remains to

show that each proper face of is exposed. This will be
done when all facets of an exposed face

as above (that is, the simplices , )
are identified also as exposed faces of .

Now, the condition that the half-space contains means
that

(28)

and, denoting by the set of those roots of the polynomial
that belong to , the set of extreme points of

equals . We have to show that to any there exists
a polynomial , also of degree and nonnegative on ,
whose roots in are exactly the elements of the set .

Suppose is a root of multiplicity of . If is even,
then the polynomial is obviously suit-
able. If is odd, then (28) implies that some open interval with
(right or left) endpoint is disjoint from . Taking from such
an interval, the polynomial will
be suitable.

iii) The last argument also shows that roots ofin the interior
of cannot have odd multiplicity. In particular, if is a subset
of the interior of then the polynomial must be divisible by

, hence, the cardinality of is . Thus,
in this case all proper faces of are simplices spanned by

points in .
Finally, let be any subset of size of and let

(where , and for ). Then,
clearly, the moment curve is contained in the closed half-
space whose boundary hyperplane contains
exactly the subset of . As seen before, this
implies that is a face of .

Proof of Proposition 3: The assertion is obviously equivalent
to . For each proper face of , the
conditionings of PMs belong to , due
to Lemma 7 i) in Appendix B, since is exposed and closed by
Proposition 2. Hence, it suffices to show that, for any fixed
which by Proposition 2 is a simplex with vertex set
and , the family contains all
PMs with support . As is clearly log-convex, this follows
from Lemma 8 below if for each facet of there exist PMs

with and not depending on. By
Proposition 2, is an exposed face of , thus, Lemma 7 i)
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guarantees the existence of PMs with
and not depending on. Then, the PMs
enjoy the same properties, and this establishes our claim.

Lemma 8: Let be a nonempty log-convex set of PMs with
common support equal to the setof extreme points of a sim-
plex in . If for each facet of this simplex there exist PMs

with and not depending on
then consists of all PMs with support.

Proof: As the standard exponential familybased on the
counting measure on is the set of all PMs with support, we
have to show that or, equivalently, that

It suffices to consider simplices of dimension. Then, the
parametrization is bijective.

Let be any facet of the simplex, spanned by , ,
and be a normal vector to with ,

. For PMs , , in satisfying the hypothesis
and ,

where is a constant. This implies that
equals a constant when , depending on . It follows that

is a scalar multiple of , say , ,
and

By the assumption , this ratio goes to infinity,
hence . Suppose indirectly that the set, which is
convex since is log-convex, is a proper subset of . Then,

is contained in some half-space , ,
and from with it follows
that . But, if some satisfies
for each face of the simplex then, since the simplex is the
set of those points that satisfy the inequalities ,
the simplex would contain with any of its pointsthe whole
half-line , a contradiction.

APPENDIX D

This appendix lists certain results of [13]. The intent is to
help the reader to follow our arguments involving convex cores.
The numbering of theorems, lemmas, and consequences corre-
sponds to [13]. The symbol used originally for a finite Borel
measure on has been replaced by where it denoted a PM
and by elsewhere.

Lemma 1: and .

Lemma 2:
i) If is a convex Borel set then .

ii) Let be a hyperplane and the open half-spaces
determined by . If the intersection is empty then

.

Corollary 2: if and only if each nontrivial
supporting hyperplane of has measure zero.

Lemma 3: for every face of .

Corollary 4: for any two
faces and of .

Theorem 1: A convex set is the convex core of some
finite Borel measure if and only if has at most a countable
number of faces.

Theorem 3: The convex core of equals

a PM dominated by

Moreover, to each there exists with mean
such that is bounded.

Lemma 4: If is contained in a convex set and the
mean of belongs to a face of then .

Corollary 6: If the mean of is in a face of
then .

Lemma 9: Let be i.i.d. random variables with
the distribution . Then

Here, is the th convolution power of .
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