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Information Projections Revisited

Imre CsiszarFellow, IEEE,and FranBek Mat®

Abstract—The goal of this paper is to complete results available and statistics. They are intimately related to large deviation
about I-projections, reverse I-projections, and their general- theory and maximum-likelihood (ML) estimation. Previous
ized versions, with focus on linear and exponential families. works studying these projections include Chentsov [6], Csiszar

Pythagorean-like identities and inequalities are revisited and . . .
generalized, and generalized maximum-likelihood (ML) estimates [10], [11], Topsge [22], etc., see the review of prior results in

for exponential families are introduced. The main tool is a new Section I-C. Our goal here is to complete the existing theory
concept of extension of exponential families, based on our earlier and to show how known results generalize if certain regularity

results on convex cores of measures. conditions (such as steepness of exponential families) are
Index Terms—Convex core, exponential family, I-projec- omitted. Various subtle points will be clarified, including
tion, Kullback—Leibler divergence, maximum likelihood (ML), corrections of some errors in [6], a key work on the subject. We
Pythagorean identity. shall also address the question of how the possible nonexistence
of ML estimates can be remedied, in cases when the likelihood
I. INTRODUCTION function is bounded.
- A set S of PMs is calledlog-convexif it contains all log-
F OR two probability measures (PM3), @ on the same ¢,nyex combinations of pairs of not mutually singular PMs in
‘measurable spaceX, X), the information divergence g These log-convex combinations are defined, for not mutu-
(I-divergence, relative entropy) 6t from @ is defined by ally singular PMsP and@ with densitieg andg with respect to
dP (w.r.t.) adominating measufg as the PM$t Q1 -t with u-den-
_ /ln —dP, if P<Q sitiesp’q' ™"/ [ p'q' ™" dp, 0 < t < 1. Examples of log-convex
D(PlQ) = 1Q sets comprise exponential families and their extensions intro-
+00, otherwise. duced in Section II. Log-convex sets of mutually absolutely con-
tinuous PMs are the “geodesically convex” sets of Chentsov [6].
) o We are not aware of references to log-convex sets of not mutu-
A. Information Projections ally absolutely continuous PMs.
The infimum of D(P||Q) for P in a setS of PMs is de-  Generalized projections exist to convex and log-convex sets
noted by D(S||Q). If a unique minimizer exists it is called of PMs due to the following theorem. HerEconvergencer
the I-projectionof @ to S. If every sequencé’, in S satis- rI-convergencef a sequence of PMB,, to a PMR means that
fying D(P,||Q) — D(S||Q) converges in a specified senseéD(R,||R) — 0 or D(R||R,) — 0, respectively. Each of these
to a uniqgue PM, not necessarily i, this PM is called the convergences is stronger than convergence in variation distance,
generalizedl-projectionof ) to S. Similarly, the infimum of due to Pinsker’s inequality.
D(P||Q) for @ in a setS of PMs is denoted by (P||S), and
a unique minimizer, if exists, is called tmever_sel-prOj_ectl_on D(S]|Q) is finite, there exists a unique PM, denotedTby._o,
(rI-projection) of P to S. If every sequencé),, in S satisfying that satisfies
D(P||Q.) — D(P||S) converges to a uniqgue PM, not neces-
;soagl.ylns, this PM is called thgeneralized-I-projectionof Q D(P||Q) = D(P|s—o) + D(S||Q), Pes. (1)
Such projections, particularly to linear and exponentighisyy;,_, is the generalized-projection of@ to S: every se-
families of PMs, occur in various problems of probabilityyencep, in S satisfyingD(P,||Q) — D(S||Q) I-converges
to H5<_Q.
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proved by the same technique, see Appendix A. A key ingre-For linear and exponential families, both parts of Theorem 1

dient is the identity can be improved, and in a sense merged together. Section IV
elaborates upon the first “convex part” of Theorem 1 wi§es
tD(P||Q) + (1 —t)D(P||R) L is a linear family. The main result there, Theorem 3, is a gen-

eral form of the “Pythagorean theorem fbdivergences” that
requires no regularity conditions other than an obvious finite-
) ) ness assumption. This neat general form relies substantially on
(valid for0 < ¢ <1, any PMP, and not mutually singular PMs e concept of extension of an exponential family. We note that
Q and R with densities; andr w.r.t. a dominating measuyg  the proof of Theorem 3 does not actually use Theorem 1.
combined with its specialization Section V is devoted to the second “log-convex part” of The-
orem 1 whers = £ is an exponential family. An essential role is
—In / q'rt " dp played by the fact that thel-closure of€ is always contained,
perhaps strictly, in the extension 6f a consequence of The-
R) (4)  orem 2in Section II. In special cases, results of Sections IV and
V overlap, see Theorem 5 in Section V.
obtained by taking® = Q*R!~* in (3). Note that substituting ML estimation in exponential families is closely related to
(4) into (3) yields a log-convex analog of the parallelogrami-projections. Section VI addresses this subject, including the
identity of Euclidean geometry, the special case= 1 of [6, question how nonexistence of an ML estimate can be remedied.
Lemma 20.5, p. 296]. Here, the “log-convex” part of Theorem 1 and a variation on it

) . . . play a key role.
Remark 1: As a direct consequence of (1) and (2), if the min- In Section VII, we present three examples illustrating our re-

imum .Of D.(PHQ) subject toP’ € SorQ € S'is attalnec_i, the sults and showing that certain “irregular” cases may, in fact,
minimizer is unique and equals._¢ orIlp_, s, respectively. ceur

g((:itsutz”ii g;]%rg'r:imiflhm 'S attrzlge:étti\rigls,ﬁlﬁeorrbléic())rrc])jesci&n The straightforward extensions of our results to more gen-
’ y llls—q, resp Yilp—s Y ral linear and exponential families on arbitrary measurable

(and then the generalized projection is a true projection). TESaces are discussed in Section VIIl. As an example, we

|f_part foIIc_st from T_heoremlbecause the lower Semlcom'\ivork out in detail perhaps surprising implications of our
nuity of 7-divergence implies

results for exponential families d with directional statistic
f(z) = (z, 2%, ..., z%). Proofs are postponed to Appendix C.
D(S]Q) 2 P(s—¢l|Q), and D(P[S) > D(P[|Ip—s). (A)ppei‘\dix A contair)1$ the proofs of two key theorems not
proved in the text and the completion of another proof. In Ap-
Remark 2: Inequality (1) shows that the generalizgro- pendix B, auxiliary results additional to those in Section Il are
jectionIls.q belongs to thd-closureof S defined agl;(S) =  presented.
{R: D(S||[R) = 0}. Similarly, inequality (2) entails that the  Since several previous results on convex cores are needed in
generalized-I-projectionll »_.s belongs to theeversel-clo-  this paper, a friendly introduction into the topic in Section II
sure(rI-closure) ofS defined agl,(S) = { R: D(R||S) = 0}. is complemented by Appendix D containing those assertions of

Calling a set of PMd-closedor rI-closedif it equals its own [13]that are used throughout in proofs. Full familiarity with [13]
I- or rI-closure, it follows that under the conditions of Theis not a prerequisite for understanding of this paper.

orem 1,1- or rI-projections toS always exist ifS is I- or
rI-closed (in particular, ifS is variation closed). It should be C. Previous Results
noted that the generalizddprojectionlls._ can be different
from Iy, (sy—q even if S is a linear family of PMs, see Ex-
ample 3 in Section VII. On the other hand Sfis an exponen-
tial family, generalized-7-projections toS equal truer-pro-
jections tocl,.;(S), provided the projected PM has a mean, see
Corollary 9 in Section V.

= D(PHW) — ln/qtrl_t dp (3)

=D ( QTR

Q) +(1-t)D(QR"

Thel- andrl-convergences of PMs are special cases of more
general convergence concepts studied in Csiszar [9]. By the re-
sults there, “information neighborhoods” of the form

{Q: D(Q[IP) < e} or {Q: D(P||Q) <€}

do not define a topology for PMs. In particuldrrI-closures
are not topological closure operations, thaf/i&;7-closures of
We will work mostly with PMs onR<, with linear families sets of PMs need not be/rI-closed. Previously, Csiszar [8]
L = L, of PMs that have a given meanc R?, and with stan- showed that, even for PMs on a countable Xetno topology
dard, full exponential familie§, cf. [4]. More general situations exists in which the convergence of nets were equivalent to their
can be reduced to this one and are postponed to Section VIII-convergence. Recently, however, Harremoés [15] showed that
The main new tools in this paper are convex cores of meatopology for PMs does exist in which the convergence of se-
sures we have introduced in [13], and extensions of exponentijglences is equivalent to thelrconvergence, and-closures
families whose definition relies upon the geometric concept efjual sequential closures in that topology. Fbiconvergence,
face of a convex core. This extension concept is defined, andthie situation is similar.
basic properties established, in Section II. Some simple auxil-It has been known for a long time thatdivergence admits
iary results are collected in Section Ill. a “geometric” interpretation as an analog of squared Euclidean

B. Structure of the Paper
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distance. The first appearance of the “Pythagorean theoremrefer to Miao and Hahn [19]. The readers’ attention is drawn
I-divergences” we are aware of is in Chentsov [5], see alatso to Morozova and Chentsov [20] and Chentsov’s collected
the collection [7, pp. 218-225]. There, implicitly, (10) belowworks [7].

(with ext(€) replaced byt) is established whed N & # 0. A

version of the Pythagorean identity, as in Corollary 7, not re- Il. EXTENSIONS OFEXPONENTIAL FAMILIES

quiring £ N € # (), goes back to Csiszar [10]. A first system-

. : ; . From now on, all measures we consider are finite Borel mea-
atic development of -divergence geometry, in particular, the d . -
sures oriR¢, with a few exceptions stated explicitly.

study of information-theoretic projections and closures, appear d ! A o
in Chentsov’s book [6]. There, as distinct from our work, dif- %rhe meana € R° of a PM P is the coordinatewise integral

¢ ; g . 2 P(dx), provided that each coordinate functigpis P-inte-
erential geometric ideas also play an essential role. For further ble: otherwiseP does not have a mean. liear family of
developments of the differential geometric approach see Am rla .’ . ) y
. Ms is defined as

[1] and the references therein.

The existence of generalizddprojections to convex sets of L = L, = {all PMs with a meamn}
PMs is implicit in [10]; the full first part of Theorem 1 is due
to Tops@e [22]. For its extensions to more general measuresvblerea € R? is themeanof L.
distance see Csiszar [12]. Generalizéeprojections to convex  The (standard, fullgxponential family based on a nonzero
(rather than log-convex) sets of PMs appear in Barron [3heasure: on R? is the set of all PMs) equivalent toy such
These, in accordance with [12], may be of total mass less thiwatln % is an affine function. In parametric representation
one, unlike the generalized projections in Theorem 1. Special
cases of our general Pythagorean theorem (Theorem 3) angd _ £, :{Q193 AQy (1) = P D=2 ¢ dom(A)}
its corollaries, other than the simple ones already mentioned, du
appear explicitly or implicitly in Jupp and Mardia [17] and
Csiszar [11]. In particular, the generaliz&grojection of a PM Where
Q to a linear familyL was shown in [11, Theorem 2] to belong
to an exponential family based on a suitable restrictio)pf
the proof there admits (in retrospect, using results of [133nhd
identification of that family as a component of the extension dom(A) = {9: A(¥) < oo).
of £.

A concept of extension of exponential families, similar to butlote thatu is permitted to be concentrated on an affine subspace
not the same as ours, was devised by Chentsov [6, p. 315]. tfR?, thus, the above parametrization need not be one-to-one.
extended the family¥ based on a measufeby a “boundary Also, no assumptions are made on the richnes®of(A). In
at infinity” that consisted of members of exponential familiethe literature, the finiteness of the underlying meagtisrarely
based on restrictions @f to “ponderable faces” of the convexrequired; our finiteness assumption does not restrict generality
support of. However, some crucial assertions in [6] aboutut excludes the trivial casg = 0. It could even be assumed
an exponential family completed by this boundary, such as fiat. is a PM, since clearly = & for each € €.

Lemma 23.7]{I-closedness) and [6, Theorem 23.3] (existence Exponential families are log-convex, the log-convex combi-
of rI-projections), are false, see Example 1 in Section VII, orations of@Qy andQ, are the PM%)y1(1_4)-, 0 < t < 1.

[13, Example 3]. The reason is that the boundary at infinity in The convex corecc(p) of a measureg: is the intersection of
[6] is too small (the ponderable faces of the convex suppall convex Borel sets of fulli-measure. Equivalentlyc(y) is
correspond to the exposed faces of the convex core, see [h&, set of means of PMs dominated py13, Theorem 3] (for
Lemma 11]). Extensions of exponential families were also cothis, and other references to [13], see Appendix D). By [13,
sidered by Barndorff-Nielsen [2, pp. 154-155] and Brown [4,emma 1], the closure afc(:) equals the well-knoweonvex
pp. 191-201]; the former fqi with finite support, the latter for supportcs(p) of p, the intersection of all convex closed sets of
p with at most countable support satisfying additional assumfodl ;-measure, see [6], [2]. Therefore, the relative interiors of
tions. These two extensions are special cases of our definitiaie(;.) andcs(:) coincide. Note thatc(u), unlike cs(u), need

The information-theoretic view of ML estimation in exponennot be of full u-measure.
tial families goes back to Kullback [16], see also Chentsov [6]. For the exponential familg based on, each € £ has the
A first connection with generalizef-projections was made by same convex core as Hence, we writeec(€) for cc(u), and
Jupp and Mardia [17]. The focus in our paper is on the sitgpeak about the convex core &f we do the same for convex
ation when no ML estimate exists. For this case, the questisapport.

“whether it is possible to enlarge the family in a natural way A faceof a convex set” in R? is a convex sef’ C C that
such that the ML estimate becomes defined with probabiligontains each line segmerit= {ta + (1 —¢)b: 0 < ¢t < 1} in
one” was answered in the affirmative by Barndorff-Nielsen [Z;' that has an interior point+(1—t)b,0 < ¢ < 1,in F. Inthis
pp. 154-155] whem has finite support. paper, we exclude the trivial fadé = ) and by face we always

Though not directly related to our work, we mention that thenean a nonempty face. Theoper facesre those distinct from
limiting behavior of the variance function of a steep exponentiél itself. The intersection of’ with one of its supporting hyper-
family has been studied by Masmoudi [18]. For recent resujp¢anes is always a face; these, andtself, are callecexposed
on ML estimation in multidimensional exponential families wéaces Each proper face @ is a subset of a proper exposed face

A(W) =Au(9) =In / et ") yu(da)
R4
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[21, Theorem 11.6]. Each point ifi belongs to the relative in-  In auxiliary calculations, the quantitié3( P|| ) andD(L||)
teriorri( F') of exactly one facd” of C [21, Theorem 18.2]. will be considered also for an arbitrary (positive, finite) measure
Given an exponential famil§ = £,,, and afacé” of cc(€) = p, defined in the same way as/if were a PM. Then, a lower
cc(p), let EF denote the exponential family based pf(*), bound toD(P||p) is — In u(R?) rather thard. We will work

the restriction ofy to the closure off". Since () has the also with the (convex) functiofd defined by
convex coreF’ [13, Lemma 3],F # () implies that;<(F) is
anonzero measure. Th&, is well definedcc(£F) = F, and H(a) = Hy(a) = D(Lllp),  a€R% )

by [13, Lemma 1]],cs(£F) = cl(F). A memberQpr 4 of £F _ o
hasp-density equal te(? =4+ () oncl(F) and0 otherwise. The following lemma is included for reference purposes. It

Here follows directly from [13, Theorem 3], stating that the means of
PMs P <« p are incc(p), and each point irc(y) is the mean
Ap(9) = 1n/ e (da) of someP < y having boundegi-density.
c(F)

Lemma 1:For a linear family£ and finite measureu,
andJ belongs todom(Ap) = {d: Ap(J) < oo}. Clearly, p(£||u) is finite if and only if the mean of is in cc(x). In
EF contains all PMSQ(-|cI(F)) obtained by normalizing the other wordsdom(H) = {a: H(a) < oo} is equal tocc(p).
restrictionsQ°(¥), Q € &; they exhaust” if dom(A) = R? _ _ _ _
but in general they do not. Corollellry.3:_ Fpr alinear fgmllyﬁ and expo_ngntlal family,
The family£¥ = &,.(r) is acomponenin the disjoint union D(L]|€) is finite if and only if the mean of is in cc(€). The
last condition is necessary (and sufficient) also for the finiteness
ext(£) = U {SF: F face ofcc(€)} of D(L|lext(£)).
Proof: By Lemma 1,D(L||Q) is finite if and only if the
to be called theextensiorof £. The union is at most countablemean of is in cc(Q). The first assertion follows sinee(Q) =
sincecc(u) has at most a countable number of faces [13, Thec(€) for each@ € &, and the second assertion follows since
orem 1]. A PMQ € ext(€) belongs to the compone&t” with Q € ext(€) impliescc(Q) C cc(€). O

= cd@). Lemma 2: For any PM P with meana and exponential
Remark 3: Clearly, £ C ext(£). The equality holds if and family £ = £,

only if cc(€) is relatively open (it has no proper faces), or equiv-

alently, if every nontrivial supporting hyperplane @f ;1) has D(P||Qy) = D(P||n) — (¥, a) + A(¥), Qs €e&. (6)

u-measure zero [13, Corollary 2].

) ] _Further, if the mean of P belongs to a facé’ of cc(&) then
Theorem 2: The extensiorext(£) of an exponential family

£ is log-convex and-/-closed. D(P||QF,9) = D(P||p) — (9, a) + Ap(¥), Qro € EF.

The proof will be given in Appendix A. . (7)
Proof: In the nontrivial caseP < pu, (6) follows by

Corollary 1: For each PMP and exponential family¢  rewriting the left-hand side as
such thatD(P||ext(£)) is finite, the rI-projection of P to

S = ext(€) exists, and equaH p_, s of Theorem 1. / I [E/@} dP = D(P||M)_/[<Q9_ z) — A(9)]P(dx).
Corollary 2: For an exponential family, the following as- /- dp
sertions are equivalent: Applying (6) to the exponential familg*', one obtains (7) with
) &= ext(&); D(P||) replaced byD(P||uF)). Since forP <y with mean
i) every PMP with D(P||€) finite hasrI-projection tof; in F we haveP < p¥) [13, Corollary 6], this replacement
iii) & isrl-closed. does not affect the value of the divergence. O

Proofs of Corollaries 1 and 2:Corollary 1 is immediate  The functionA is convex by Hélder’s inequality. Recall that
from Theorems 1, 2, and Remark 2, and it givessi)ii) in  the convex conjugatg* of a convex functiorf onR¢ is defined
Corollary 2. As for ii)=> iii), note that no PMP in cl,.; () \ £ by
can have-I-projection tof.

The implication iii)= i) is a consequence of Lemma 7 i) in [*(a) = sup [(¥, a) — f(F)], a € R
Appendix B, stating that for ead) € £ and exposed facé vER?
of cc(€), the PMQ(-[cI(F)) € £F belongs tocl,(€). Since  (see [21, Sec. 12]).
EF and¢ are disjoint whenF' # cc(€), therI-closedness of
£ implies thatec(€) has no proper exposed face. Then, in turn, Corollary 4: For eachu & R? andy € dom(A)

&) has no proper face arfti= ext(&) follows. O
ec(£) has no prop xi(E) H(a) = D(L]|Q9) + (9, a) — A(W) = D(La|€) + A*(a).

lll. A UXILIARY RESULTS Proof: Minimization overP € L, in (6) and a trivial re-
For a linear familyC and an exponential famil§ we denote arrangement yield the first equality. H («) is finite, it follows
by D(L]||€) the infimum of D(P||Q) subject toP € £ and thatwhenD(L,||Qs) approachesitsinfimu®(L,||€) subject

@ € £. Similar notation will be used also for other sets of PM2o 9 € dom(A), then(d, a) — A(J) approaches its supremum
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A*(a); thus, the second equality follows. H(a) = +oo, then Proof: The hypothesiD(Q]|Qy,) — 0 implies, by the
D(L,||Qs) = +oo for eachd € dom(A), by the first equality obvious inequality

(or Lemma 1), and the second equality holds trivially. [ D(P||R) > P(B)D(P(-|B)|R(-|B)), P(B)>0 (8)

The following lemma is less trivial. It is presumably knownnat for each Borel se of positive Q-measure
to experts though we have no direct reference; a related result is

[14, Lemma 6.2.13]. D(Q(IB)Qv..(-|B))
Lemma 3: H* = A. _ 1 exp[(¥, z) — Ap(9)] dQ(-|B) —1 Q(B) _o0.
Proof: For each? € R¢ and PMP that has a mean /B " exp[(n, z) — A(d)] (1B) = In Qv,(B)

The last logarithmic term vanishes in the limit becadgg,
converges t@) in variation distance. It follows that if the mean
of Q(-|B) exists, it belongs to the set of thosea € R? for
which (¢,,, a) — A(¢,,) converges td¥, a) — Ap(«¥). Hence,

A contains the means of conditionings(@fon arbitrarily small
balls with centers in the support 6f (the smallest closed set
of Q-measurd). It is not difficult to see that the affine hull of
cs(Q) = cl(ce(Q)) = cl(F) not only contains these means but
is even spanned by them. The assertion followsgl as clearly
an affine set. O

() = swp[(0, )~ H(a)) > [ (0. )dP - DP]p).
Letting P be the member with parametérof the exponen-
tial family £,5, based on the restriction ¢f to a large ball
B = {a: ||z|| < r} C R?, this lower bound isn [, e{”> dp,
by trivial calculation. As the ballB can be arbitrarily large,
H*(9) > A(¥) follows.
The opposite inequalitp(¥) > H*(¥) is immediate from
Corollary 4 that implies\(9) > (9, a) — H(a) for all a € R?.
O

The following lemma extends [2, Theorem 9.13] which is Corollary 5: If a sequence of PM&,, € & rI-converges to

. someQ € ext(€) thenD(P||Q,) tends toD(P||Q) for each
stated forA onI.y, under the hypotheses thaf€) anddom(A) PM P that has a mean.
are full dimensional.

Proof: Suppose) € £F, sayQ = Qr 4. The assertion

Lemma 4: is trivial by lower semicontinuity of -divergence ifD(P||Q) is
i) If a € ri(cc(p)) = ri(cs(u)) then there exists € R? with  infinite. If D(P||Q) is finite, the mean of belongs tac(Q) =
(9, a) — A(9) = A*(a) = H(a). F by [13, Theorem 3]. Denoting this mean bywe have
ii) If a ¢ ri(cs(u)) then for eachy € R? D(P||Q) = D(P||p) + (9, a) — Ap(¥9)
(9, a) = A(9) < A*(a). by (7). and
Proof D(PI|Qy) = D(P|l#) + (P, a) = A(9y)

i) Fora proper convex functiofionR? and its convex conju-
gatef*, the equalityf (=) + f*(2*) = (=, =) holds ifand only by (6), wheres,, parametrizes),,. Therefore, the assertion fol-
if 2* belongs to the subdifferentidf(x) [21, Theorem 23.5 |ows from Lemma 5. O
(a)(d)], which is anonempty subset&f! if = € ri(dom(f)) [21,

Theorem 23.4]. These results are applied to the fungtien// |, PyTHAGOREAN THEOREM IN I-DIVERGENCE GEOMETRY
with dom(f) = cc(p), Lemma 1, whose convex conjugate is

f* = A, Lemma3. Itfollows thatifiis inri(cc(p)) = ri(cs(u))
[13, Lemma 1] the@H (a) is nonempty and

The mainresultin this section is a general “Pythagorean iden-
tity” for I-divergences that, faf = L, substantially sharpens
the first part of Theorem 1. No regularity assumptions will be

H(a) + A(Y) = (0, a),  ford € 9H(a). used other than a finiteness assumption needed for the problem
This proves i), sincdd, a) — A(¥) < A*(a) < H(a), by © be meaningful, see Corollary 3. Recall that each point in the
Corollary 4. ’ convex setc(&) belongs to the relative interiei( /') of exactly

ii) This is a consequence of Lemma 6 in Appendix B, sinc@€ faceF’ of cc(€).
a ¢ ri(cs(p)) implies the existence of a closed halfspace con- Theorem 3: Let £ be a linear family and be an exponential
tainingcs(4.) whose boundary hyperplane contairtsut notthe - famjly with D(£||ext(€)) finite, that is, withcc(€) containing
wholecs(p). 0 the mean ofZ. Then, the intersectiodl;(£) N ext(£) consists

Remark 4: A question motivated by large deviations theorf @ single PMR, and this PMR satisfies

is under what conditions does*(a) = H(a) hold for each _
a € R?. Although the subject is not in the scope of this paperl,)(P”Q)_D(P||R)+D(£HQ)’ Perl, @eext(). (9
that question will be brlefly addressed in Section V, Remark 1M0reover,R be|0ngs to that Componeﬁf of ext(é') for which

Lemma 5:If a sequence of PM),_ in an exponential the mean ofC is inri(F'), andR is the unique PM satisfying (9).

family £ rI-converges to some PK} = QF, » in a component  Remark 5: The PM R belongs toZ if and only if £ inter-
ET of ext(€) then sectsext(£). In that case, (9) wittlP = R gives D(R||Q) =

(9n, @) — A(0,) — (9, a) — Ap(9) D(L||Q), and, thus, (9) can be rewritten as
for all a in the affine hull of F. D(P||Q)=D(P||R)+D(R||Q), PeL,Qe€ext(f). (10)
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A direct proof of (10) is straightforward. The difficulty in eralized-projectionIl;._g to £ of every@ € ext(&) with
proving Theorem 3 is due to the fact thamneed not intersect D(L||Q) finite, and the true I-projectionll p_, e (s) t0 ext(€)
ext(&). ofeveryP € Lwith D(P||€) finite. Moreover, ifa € ri(cs(£)),
thenIl; e (e) is therI-projectionllp_.¢ to € of everyP € £
with D(P||€) finite.
Proof: Only the assertions abouf/-projections require
proof. To this, note that (9) implies by minimizing ovéx in
Proof of Theorem 3:GivenL = £, andé = £, withain  ext(€), and using Remark 6, that
cc(p), let F' be the face ofc(1) whose relative interior contains
a.(Tr)1en,D(P||u) = D(PH(/Ld)(F)) for each PMP with mean D(Pllext(£)) = D(P|IR), P eL. (12)
a and D(P||p) finite, as in the proof of Lemma 2, and, thusgy Remark 1 after Theorem 1, the last term in (9) is bounded
H(a) = Hy(a) of (5) is equal toH ., (a). Sincecc(u®*))  from below byD(R||Q), thus, we obtain
equalsF’' [13, Lemma 3], the hypothesis of Lemma 4 i) is sat-
isfied for u<F) in the role ofi, and it follows that there exists D (PlQ)>D(P||R)+D(R||Q)
¥ € R satisfying =D(P|lext(£))+D(R||Q), PeL, Q € ext(E).

H(a) = Har) (a) = (9, a) — Ap(9). (11) This shows thatR = Tl .. () Satisfies (2) in the role of
We claim that with this, (9) holds forR = Q. € £F . llp—s, whereS = ext(£), forall P € L with D(P|lext(£))
. a : . finite. As Il exi(ey € ext(€), itis, therefore, the I-projec-
Fix Q € ext(€), sayQ = Q¢ » € £“, whereG is a face . ) .
T G tion of P to ext(&). If a € ri(cs(€)) then Theorem 3 gives that
of cc(i). Then, the convex core @ is cc(€“) = G. We may . o L
. . . L Il .ext(e) belONgs tcf itself. Hence, it is the I-projection of
assume thati containsa, since, otherwiseD(L£||Q) is infinite Ptos 0
by Lemma 1, and both sides of (9) equabo if P € L. The ’
face G, containinga € ri(F'), contains the whole facg', by The following corollary of Theorem 3 is immediate.
[21, Theorem 18.1].
Next, for anyP with meana € F' C G, Lemma 2 applied to

Q = Q.- gives
D(P||Q) = D(P||n) — {7, a) + Ag(7)

whence by minimization oveP € £,

Remark 6: The fact that!;(£) N ext(£) is nonempty when
D(L]|ext(&)) is finite, implies thatD(L||ext(£)) is dichotomic,
either infinite or zero.

Corollary 7: The truel-projection of a PMQ@ to a linear
family £ exists if and only if£ intersectsxt(£g). Then, this
I-projection isP* = Tl _,eq(s), and satisfies

D(P|Q) = D(P|P*) + D(P*|Q).  PeL.

An exponential family€ is called steepif dom(A) has
D(L||Q) = H(a) — (7, a) + Ag(7). nonempty interior, and no P\, € € with ¢ on the boundary
of dom(A) has a mean (this trivially holds dom(A) is open).
Steepness is a well-known necessary and sufficient condition
D(P||R) = D(P||p) — (9, a) + Ap(?). for eacha € ri(cs(£)) to be the mean of som@ € &, see

Comparison of the last three equations and (11) establishes 6ur [4]. Recalling that f‘;f each facE of cc(€), the convex
claim. core of the componerg* of ext(£) is equal toF', and that

By construction? was in€F C ext(€). Equation (9) implies thg rglative interiors of a convex core and a convex support
thatitis also incl; (L), since minimizing both sides ovét € £ coch_ie, (_:orollary ! ar?d the last necessary and sufficient
entails D(L||R) = 0. To prove the uniqueness assertions, fiondition yield the following.
suffices to show that iR’ € cl;(£) Next(€) andR” satisfies  Corollary 8: A PM @ hasI-projection to each linear family
(9) then necessarilje’ = R”. Now, substituting) = R’ into  with mean incc(Q) if and only if each component ekt(&q)

(9) with R”, we obtain is steep. A sufficient condition for this situationdsm(A¢) =

d
D(P|R) = D(P|R)+ DR = D(P|RY),  Pec. B

Similarly, Lemma 2 applied t& = Qr, s gives

Note that steepness of an exponential family or even openness
of dom(A) does not guarantee steepness of the components of
its extension.

This implies that a sequence of PMsdrthatI-converges td?’
(such a sequence exists singee cl; (L)) alsol-converges to
R".Hence,R' = R"” as claimed. O

An attractive feature of (9) is that it embraces and strengtheis GENERALIZED r 7-PROJECTIONS TOEXPONENTIAL FAMILIES
instances of inequality (1) witly = £ and, at the same time, This section is devoted to the problem of minimizing

instances of inequality (2) witlf = ext(£) and withS = &, D(P||Q) over( in an exponential family’ — &, whenP is a

without relying upon Theorem 1 for existence. (The results : . i
this section do not depend on Theorem 2, either.) To expre‘gs'\s{I with mean:. Recall that, by Corollary 3; € cc(€) is anec

the feature of Theorem 3, hinted to above and formally statéd, Y condition for the finiteness Bi P||£). WhenD(P||€)

in the following corollary, the PMR in (9) will be denoted by IS finite, Lemma 2 implies thap(B||€) y D(P”.“) — A (a),
I in the sequel and the existence of thel-projection of P to £ is equivalent
L—ext(E) .

to A*(a) = (9, a) — A(9) for somed € dom(A). The latter
Corollary 6: For a linear family = £, and an exponential takes place if and only i € ri(cc(€)), by Lemma 4. In this
family € with a € cc(£), the PMII; e (¢) is both the gen- casellp_.c equals the PMR = Il (s Of Theorem 3, see
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Corollary 6. The results in this section cover the case whenConsequently, iD(P,||Q.) — D(L||E) for PMs P, € £ and

belongs toce(€) but not to its relative interior.

Qn € & then P, I-converges tdl; .. and @, rI-con-

We shall use, without further reference, the consequeneerges toll,;_.¢.

cl.7(€) C ext(&) of Theorem 2. A sufficient condition for the

equality appears in Lemma 7 ii), see Appendix B; it is satisfi

if dom(A) = R?. The case of strict inclusion will be, however,

theoretically more interesting.

The following theorem strengthens the log-convex part of D(Pll€) = D(P||lzcex(e)) + D(L]IE),

Theorem 1 forS = £. Its proof, unlike that of Theorem 3, will
rely upon Theorem 1.

Theorem 4: For every linear familyC and exponential family

Proofs of Corollaries 9 and 10:Corollary 9 is immediate
fom Theorem 4. Corollary 10 follows combining (13) and

PeL (15)

obtained by minimizing both sides of (9) subjeciQoc £. O
Remark 8: The inequality in (13) may be strict. A simple

& with D(L]||€) finite, there exists a unique PM, denoted byxample is provided by the exponential family on the real line

II._ ¢, such that

D(P||Q) = D(P||€) + D(T—£(1@),
Pel, Qec. (&) (13)
II;_ ¢ belongs tacl,.;(€), and
D(P|lz—g) = D(P||E) = D(Pllcl,1(€))

for eachP € L. Moreover,D(L||&) =
cc(Ilz—¢) contains the mean df.

Proof: Givenl = £, andé = £, with D(L||€) finite, fix
firsta PMP € £ with D(P||€) finite. By Theorem 1, applied
to S = &, there exists a unique PR = IIp_,¢ € cl,.7(€) such
that

D(,C“HLHg), and

D(P||Q) - D(P||€) = D(R||Q) Qeé.

?

based on the PN with density2z =2 whenz > 1, and0 oth-
erwise, and any linear familg with meana > 2. In this case,
II._. ¢ = p. Note that the mean @i -_. ¢ differs from the mean
of L.

Remark 9: A sufficient condition for the equality in (13) is
LN clr(€) # 0. Indeed, then the PNR = Tl ;.,ex(e) Of The-
orem 3 is the single member of that intersection, and it satisfies
the equality (10) by Remark 5. Minimizing both sides of (10)
overQ € & givesD(P||€) = D(P||R). Then (10) be rewritten
as (13) with the equality, havindi; . e,:(¢) inthe role ofll . ..

Note that to guaranteg, N cl,.r(€) # 0 for all a € cc(€),
it does not suffice to assume that all componentsxof€) are
steep (in Example 1 of Section VII, the choi¢e = 6, with
meana (0, 2) renders (13) strict). However, the stronger
assumptionlom(A) = R? suffices due to Corollary 8 and Lem-
ma 7 ii) in Appendix B.

It follows from (6) that the left-hand side of this inequality is By Theorem 3.cl;(£,) N ext(€) is always nonempty for

constant forP € £ with D(P||€) finite (it equalsA(+) +

A*(a)— (¥, a) if Q@ = Qy). Hence, the PNR above does not de-
pend on a particular choice &f, and the inequality (13) holds,

with thisR asll,_.¢, foreachP € £ andQ@ € £ (note that (13)
trivially holds for @ € £ if D(P||€) is infinite). Using Corol-
lary 5 and the lower semicontinuity dfdivergence, the validity

a € cc(€), still the intersection okl (L£,) with the subset
clyr(€) of ext(€) can be empty. Alsoll, () May differ
fromIl;_ ¢ in general. Example 1 in Section VIl demonstrates
that these irregularities can happen and illustrates differences
between Theorem 3 and Theorem 4. The following theorem
shows that in this context, various “regularity conditions” are

of (13) forallQ € cl,7(€) is a consequence of its already esequivalent. Therell denotes the function in (5).

tablished, weaker version f@y € €.

For P € L, the equalityD(P||E) = D(P||cl.;(€)) follows
by minimization in (13) ovef) € cl,.;(£), andD(P||Ilz_¢)
D(PJ|€) holds due to Corollary 5and . _.¢ € cl,.;(£).

Hence, in turn,.D(L||TTz—¢) = D(L||E) follows and the
mean ofL belongs tace(I1,_.¢) by Lemma 1. O

Remark 7: It remains open whether thd-closure of an ex-
ponential family€ is always log-convex and/ -closed. A partial
result toward the I-closedness is that each PM in theclosure
of cl,.;(€) that has a mean necessarily belondte(€). Indeed,
by Theorem 4D(P||cl,;(€)) = 0 impliesD(P||€) = 0 for P
with a mean.

Corollary 9: For each PMP having a mean, wittD (P||£)
finite, the generalized-I-projection of P to £ and the true
rI-projection of P to cl,.;(£) exist and coincide.

Corollary 10: If D(L||E) is finite

D(P||Q) = D(P||Uzcex(e) ) + D(LIE) + Dz ||Q),
Pecl, Qecd.(&). (14)

Theorem 5:If D(L]|€) is finite then the following assertions
are equivalent:

i) clr(£)ncl.r(&) # 0;
") H£<—>ext(€) = H£—>5;
iy D(LJ|E) = 0;
iv) D(P||Q) = D(P||€)+ D(L||Q) for P € L andQ € &;
v) H is lower semicontinuous at, the mean of;
vi) H(a) = A*(a).
In particular, these assertions holddif € ri(cs(€)) or if
clyr(€) = ext(€).
Proof:
i) =iii): If @ € clf(L)Nclyr(E), thenD(P,||Q) — 0 for
some sequenck, € £ and the implication follows from (14).
i) = ii): If D(L||€) = 0, that is,D(P,||@») — 0 for se-
quencesP, € L and@, € €&, then, by Corollary 10, also
D(P,| Uz exey) — 0 andD(Iz—g||Q,) — 0. The three
convergences impl¥l; .y = Hz—¢, using Pinsker’s in-
equality.
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i) = i) Hzeex(e) belongs tocl;(£) by Theorem 3 and In this paper, however, we will define the LLF fext(&) as the
I1,_.¢ belongs tacl,.;(€) by Theorem 4. If they are equal, the(extended real-valued) function
intersection in i) is nonempty.

i) = V). If Iz cex(e) = Ilc—e then (9) can be rewritten as (9, a) — Ap(d), if cI(F) containsa
—00, otherwise,

L (F, 9) = { (17)

D(P||Q) = D(P|z-¢) + D(£]|Q)

whereD(P|[Tl;_¢) = D(P||€) by Theorem 4. wherea = LS &' is the sample mean. The two definitions
iv) = iii): By minimization over@ € & whenD(P||€) is coincide for sample_s whose mean belongs to the closure of
finite. any fa_ceF of cc(&) (if and_) _o_nly ifz* € c_I(l_?) fp_r 1< < n.
iii) < vi): Obvious from Corollary 4 and the fact that € Adopting (17)_ as th_e definition qf LLF is justified by the fact
cc(&). (whose proof is omitted, for brevity) that the set of samples not

vi) = v): SinceA* is a lower bound taHd by Corollary 4, having the above property has measure.

and A*, a convex conjugate function, is lower semicontinous, FOr ' = cc(£), we shall simply write/, () and call it the
a — a, implies LLF for &. If the maximum of/,(¢) subject tod € dom(A)

is attained and finite, a maximizet* will be called amax-
liminf H(a,) > liminf A*(ay) > A*(a) = H(a). imum-likelihood estimatéMLE) in &, from the sample: with
meana. An obvious necessary condition for existence of an
v) = vi): Lower semicontinuity at: of the convex function MLE is the finiteness obup, £,(7) = A*(a), thatis,a €
H implies H(a,) — H(a) if a, — a along a line segment in 4om(A*). This condition is, however, not sufficient; by Lemma
ri(dom(H)); hence,H(a) = A*(a) follows sinceH = A* in 4 the necessary and sufficient condition i ri(cs(€)). In this
the relative interior olom(H) = cc(y), by Lemma 4 i). section, remedies to nonexistence of MLE will be offered when
If a € ri(cs(€)) thenll o eu(ey € & by Theorem 3, and @ € dom(A™) \ ri(cs(€)).

i) holds. If ext(¢) coincides withcl,1(£) then i) holds due to _ NO explicit description oldom(A*) seems to be available.
Theorem 3. 0 Some partial results are given in the following proposition. We

note that the three inclusions of i) and ii) may be simultaneously
Remark 10:1f 1 is a PM, the large deviation behavior ofgrict, see Example 1 in Section VII. Previous results in this di-
the mean, respectively, empirical distribution of an indepegsction are [2, Theorem 9.1 (ii)*], stating thadm(A*) contains
dent and identically distributed (i.i.d.) sample frqmis gov- the interior ofcs(y), and [2, Theorem 9.5] which is effectively

erned by the rate function®, respectively,D(-||z), see [14, the same as part ii) of the following proposition.
Corollary 6.1.6], [14, Theorem 6.2.10]. Hence, a formal appli-

cation of the contraction principle suggests that the funciion ~ Proposition 1:
in (5) is equal toA*. The continuity assumption needed for i) dom(A*) 2 cc(u).
the standard form of the contraction principle [14, Theorem ii) The intersection of all open half-spaces with fulmea-
4.2.1] holds for the present case onlysf ) is bounded. Itis, sure containslom(A*) and is contained ims(y).
therefore, of interest under what weaker conditions the equalityiii) dom(A*) = cc(u) wheneverc(y) is relatively open or
H = A* remains valid. By Theorems 3 and 5 i), vi), the condom(A) = R<.
dition cl,.;(£) = ext(&) is sufficient forH(a) = A*(a) when Proof:
D(L,||€) is finite, that is, see Lemma 1 and Corollary 3, when i) This follows fromA* < H, Corollary 4, ancddom(H) =
ais incc(pu) = dom(H ). However, this condition is not suffi- cc(x), Lemma 1.
cient fordom(A*) = cc(u), see Example 2 in Section VII. By  The remaining assertions are consequences of Lemma 6 in
Proposition 1iii) in Section VI, either of the conditions() = Appendix B.
ri(cs(u)) or dom(A) = R implies dom(A*) = cc(p). As ei- i) If ais notin the intersection, there exists an open half-
ther of them impliesl,; (€) = ext(€) (the latter by Lemma 7 g4 ce of full,-measure whose boundary hyperplaheontains
ii) in Appendix B), these are sufficient conditions for = A*; Then,A*(a) = +o0o by Lemma 6. The intersection is obvi-
a necessary and sufficient condition remains elusive. ously a subset afs(y).

iii) By parti), it suffices to verify the inclusior. If cc(u) is

VI. ML E STIMATES relatively open, then it equals the intersection of all open half-

spaces with fullu-measure, andom(A*) C cc(u) follows by
ii). Suppose now thatom(A) equalsR?. If A*(a) is finite, then
by part i) eithera € ri(cs(p)) = ri(cc(p)), or elsea is on
the relative boundary afs(x:). In the latter case, in addition, a
nontrivial supporting hyperplanf to cs(x) at a has positive
p-measure. Then faF = cc() N H, we haveF = cc(uf) by
n _ [13, Lemma 2 (ii)], and hencel(F) = cs(u*) by [13, Lem-
dQ7, 4 { [T et =2 if i e c(F), 1 <i<n  mal]. Thus,
g o = i=1

Let& = &, as before. The (normalizetg-likelihood func-
tion (LLF) associated with a sampie= (!, ..., 2™) of size
n > 1 from an unknown distributio®) 7, y € ext(£) can be de-
fined as the function of F, ¥) given by% times the logarithm
of the density

dum .
a 0, otherwise.

(16) p(cl(F)) = p(H) (18)
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in particular,F' is nonempty and is a proper (exposed) face dfom which the GMLE exists but no MLE inl,.;(£) does, see
cc(p). By Lemma 6 and (18) we have Example 2 in Section VII.

Corollary 12: If (F*, ¥*) is an MLE incl.r(£) from a
samplez, then the sample mean belongs todom(A*) and

Repeating the argument fpf'(¥) in the role ofy, one concludes Qr,9- equals the GMLER; from z. *Fora € dom(A"), such
that eithera € ri(cs(u<(7))) = ri(F') or elseA:-(a) = A% (a) an MLE exists if and only ifa € cs(R). This condition holds

hena € cc(€).
for a proper faces of F, etc. After at most! stepsg turns out "V ) v aws . -
to be in the relative interior of a face of(1). _ Proof: Supposd, (£, 9") With Q- - in cl,;(£) is fi-
nite and equals the maximum éf(F, ) subject toQp, » in
Theorem 6: For eachu € dom(A™) there exists a unique PM cl,.;(€). The finiteness implies

R} satisfying

A(a) = Ay (a) = Ak (a).

L, (F*, 9%) = (9%, a) — Ap«(97)
Ar(9) + A*(a) = (9, a) > D(R|Qro)  (19)
anda € cl(F™*), by the definition (17) of LLF. Then
foreachQ g, » € cl,.;(€) such that the affine hull o containsa.
Proof: Suppose first that belongs tocc(y). Then a PM (9%, a) — Ap«(9%) = £,(9), for ¥ € dom(A)
P with meana and D(P||p) finite exists by [13, Theorem 3].
Since wherel,(¢9) = (9, a) — A(Y) becauser € cs(u). It follows
that (¢9*, a) — Ap-(9*) = A*(a), thus,a € dom(A*), and for
D(P||Qyg) = D(P||u) — {9, a) + A(9) (F,9) = (F*, ¢*) the equality takes place in (19); note that
the condition fora there is satisfied as € cl(F™*). This proves
by Lemma 2, the “log-convex part” of Theorem 1 applied to thihatQ p- - = R} anda € cs(R}) = cl(F*).
P andS = & implies If a € dom(A*) thenQr,» € cl,7(€) impliesl, (9, F) <
A*(a), by (19). Moreover, using Proposition 1 ii)
A@) +A*(a) = (9, a) > D(R|Qs),  QueE (20)
ta(V, cc(p)) = (¥, a) — A(D)
with R} = Tlp_,¢. Any PM QF,y € cl,.1(€) is therI-limit of
a sequenc€), from £. If the affine hull of ' containsa then hence, the supremum éf (¢, F') subject toQr,y € cl.1(&)
(9, a)=A(¥,,) converges tdd, a)—Ar(¥9), by Lemma5. Since equals the finite numbeA*(a). By Corollary 11, R} is the
D(R||Qy,) cannot be eventually smaller thdn R}||QF,»), rI-limit of a sequenc&)y, € & satisfyingl,(J,) — A*(a).
by lower semicontinuity of divergence, (20) implies (19).  Thus,R; = Qp- ¢~ for some(F*, 9*). If, in addition,a €

If a € dom(A*)\ cc(p), the existence oR; satisfying (20) cs(R;) = cl(F™) then
follows by a modification of the proof of Theorem 1, detailed in
Appendix A. Then, by the above limiting argument, (19) holds L (F™,97) = (97, a) — Ap-(07)
also in this case. The uniquenesdijfis obvious from (1911 o

by (17). Lemma 5 implies that},,, a) — A(¥,) converges to

C_:o_rollary 11: Fora € dom(A*), if a sequenc&y, IN & (9« ) — Ap.(9%). Hencef, (F*, 9*) = A*(a) and(F*, 9*)
satisfiesl,, (¢,) — A*(a), then itrT-converges tar:. is an MLE incl,;(€).

If an MLE 9* from a sampler with meana exists, that is, _Whena € cc(£) thena € dom(A™) by Proposition 1 1), and
£,(9*) = A*(a) < +oo, thena € dom(A*) and Theorem 6 o = Ilz—¢ for £ = L,, see the proof of Theorem 6. The last
implies D(R:||Qy-) = 0, thus,RX = Q.. When the MLE assertion of Theorem 4 impliese cc(;). O
does not exist but € dom(A*), on account of Corollary 11 it  Remark 12: Theorem 6 can be easily extended to log-convex
is reasonable to calt; thegeneralizedMLE (GMLE), froma  gypfamilies{Qy: € =} of £, whereZ is a convex subset of
samplexr with meana. Note that this GMLE is a PM rather thandom(A), replacing\* (a) by sup,c=[(d, a)—A(d)]. Moreover,

a parameter. A&7 belongs tacl,7(£), it can be represented asyi|E and GMLE can be considered for log-convex subfamilies

R = Qp- 9 whereF™ is a unique face ofc(u) andd” isin - of ext(£). We intend to return to this topic elsewhere.
dom(Ap+), nonunique in general.

Remark 11: In statistics, approximate MLEs are often used, VIl. EXAMPLES
meaning a parametérsuch that the valué, (9) of the LLF is ,
within e of A*(a). By Theorem 6, for any approximate MLE Example 1:Let ;1 be the measure on the Euclidean plane

the PMQ, is close to the GMLER? in the divergence sense€XPressible as sum of the P sitting in the point(0, 1), &
D(R*||Qy) < c. sitting in (0, 2), and the PM on the open quadrant

The following corollary relates the GMLE to an MLE in T ={(z1, 22) €R? : 21 > 0, x5 > 0}
cl.r(£). That MLE is defined as a maximiz&F™, ¥*) of
L,(F, ¥)in (17) subject tadQ r » € cl,.7(£), provided the max- with densitye ="' ~*> w.r.t. the Lebesgue measure. Tlee: £,
imum is attained and finite. We note, however, that samplirfigas convex suppors(£) = cl(T) and convex corec(€) =
from @ € £ may yield with positive probability a sample T U S whereS = {(0, s): 1 < s < 2}. This convex core has
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four faces, namely{ (0, 1)}, {(0, 2)}, S, andcc(€). The first asQ{(0, 2)}/Q{(0, 1)} = e”2 < e for eachQ € &, no other

two are not exposed. members okxt(&) \ € can belong tal,.;(£). Thus,
T2 ) e
() =EU {(1—t)61+t62. 0<t< 1+6}.
The PMé; € cl,.;(€) does not belong to the “boundary at
&y T infinity” of £ in the sense of [6]. Hencdl = §; is a coun-
S terexample to [6, Theorem 23.3] claiming that each RMith
D(R||€) finite has anrI-projection to€ completed with the
01 boundary, and also to [6, Lemma 23.7] claiminfyclosedness
of that completion. (In [6], ourD(R||P) was denoted by
I[P|R], and ourrI-closedness was termdeclosedness).
T To illustrate Theorems 3-5, let a linear famifyhave mean
= (0, s), with 1 < s < 2 to ensure that belongs tocc(€).
The extension of has four components Then ML cext(e) €QUAIY2 — )61 + (s —1)62. Furtherll, e =
T, cea(e) for s < 425, while Tl ¢ equals 61 + 1562
ext(£) = {61} U{6}UESUE which is different fromll ;. e.¢) for s > L2,

Finally, we discuss maximization of likelihood. The MLE in
& from a sampler with meana = (0, s) does not exist, as is
1 1 on the boundary ofs(€), cf. Lemma 4. The PMR? of Theorem
1—-91 1= 6 is well defined WhEB > 1. ltequaldll;_¢ if a € cc(€), i.e.,
S o . <2, and 861 + =09, otherwise. Thus, the GMLE} is
\(/iv:rﬁ?[e;/ewl < 1,9 < 1. The two strict inequalities define notine. Bylér:orollar;rlz an MLE(F™, 9% in clor(€ )fromm
exists if and only ifl < s < 2, thatis,a € cs(R?), in which
caseQp- g« = RZ.

Example 2:Let C C R? be the closed coné(z, y, 2):
where the union on the right is the intersection of all open half? > z* + 3, z > 0} andv be the PM on the boundary of

wheregS = {(1—t)6;+t62: 0 < t < 1}. By simple calculation

A(D1, 92) =1n|e?? + €22 4

By Proposition 1
cc(€) =TUS Cdom(A*) C TU{(0, s): s >0}

spaces with fulli-measure. Foi = (0, s) C equal to the joint distribution of X, Y, Z) such thatZ is
exponentially distributed with density #, z > 0, and the con-
A(a) = p <Slug <1[5192 = A(dy, 92)] ditional distribution of(X, Y') givenZ = z is uniform on the
— -0 ()] s st ongi Theng) e o«
9o<t . ) is the union of
. {(0, 0, 0)} andint(C), and its only proper face i§0, 0, 0)};
whence by simple calculus clearly,cs(€) = C. Thus,ext(€) = clor(€) = € U {8}. We
+00, s<1 claim thatdom(A*) = C. To prove this, by Proposition 1, it

A*(a)= (s—1)In(s—1)+(2—5)In(2—s), 1<s< 11125 suffices to_ show thad*(a) < +oo for each boundary point of
C'. Now, since

s—1-In(1+e), 11Jg_2€f’<5
— 19lz+192y+193zl/(dx dy dZ)
This shows that the inclusions of Proposition 1 i), ii) are strict{x(ﬁ) In |1+ . ¢ » @Y
By Lemma 4, the functiot/ defined in (5) equald* onT. For oo p2m ) dod
_ (0 3) Inl1 +/ / 2(91 cos o+, sin p+95—1) PP
o 21z
H(0, 5) = D(La]|1) >0

=(s=1)In(s—1) + (2—s)In(2—s), 1<s<2,  andA(¥) = +oo if 91 cosp + Jasing + 93 > 1 for some

because2 — )8, + (s — 1)6, is the only PM inZ, dominated o, it follows that for a boundary point = (¢ cos ¢, tsin ¢, t),
T s 1420 t > 0, of C we have
by 1. Note thatH (a) = A*(a) only fors < 555 < 2.
To determinecl,.;(£), note that by Lemma 7 i) in Appendix A*(a) < sup (9, a)

B, all conditioned PMs 9edom(A)
1 o2 =t- 963up( \)(191 cos@ + Posinp +93) < t
91,92) S b1 + - b2, 91,92 ef vedomis
“ =1 +e’ 1+ e o, 0a This establishes the claim.
belong tocl,;(€). Hence, Having a sample of size > 1, it is a positive probability
e event that exactly, — 1 elements of the sample are equal to
{(1 — )0 + 162 : 0 <t < m} Cclrr(€). (0, 0, 0). Then the sample mean does not belongd@) but

remains on the boundary @f and, thus, idom(A*). In this
The PMss; and 51 + = + — 489, which are in the-I-closure of case, the GMLE exists and equalsvhile no MLE incl,.;(£)
the previous set also belongdh;(£), by Remark 7. Further, exists, by Corollary 12.
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Example 3: In this example, all PMs are on the real liRe and GMLE are discussed in this framework, too. The focus is
and/ is the linear family with meaf. We show thatl;(cl;(£)) on general linear families
contains all Gaussian distributions.

By symmetry, letQ) be Gaussian with density(z), mean Lo ;= {p PMon(X, X): / fdP = a}
m < 0, and variancer2. Consider the PMY,, with density ’ JX

. 2 — —4
qr(x) equal tog(x) whenz < k, andgy(z) = arz™" when wheref: X — R¢ is a vector-valued measurable function and

© > k. Then a € R?, and on general exponential families
D@QulQ) J
+oo Eﬂf = Qﬂf Qﬁf(l) = e<"97f(z)>_‘\(19)7 = dOm(A)
_ qr. () ’ ’ du
= qr(x)In @ dx
T
g oo I 2 where nowy is a finite nonzero measure ¢, X') and
=a / lnak—41nx—|—11n(27rcr2)~|—M d_x
" Ji 2 202 | 24

A(W) = A, 5(9) zln/ e F @)y (da).
goes to0 ask — oo (hote that the normalizing constantg X

are bounded). Hence, the asserti@re cly(cl;(£)) follows if  The function f is the directional statistic of this exponential
we prove that), € cl;(£). A little more generally, we show family.

that if a PM R has meann < 0 and densityr(z) = az™*

forz > (thenR € cl(L£). In fact, given such®, forn > ¢ A. Direct Generalizations

. P?‘l . ) A A ) .
there exists”, € £ such thatjz is constant both ofi—oo, ) Itis a well-known fact that the minimization @ ( P||Q) sub-
and on(n, +oo). The corresponding constarits andc,, can jectto P ¢ L,  or subject toQ € &, ; can be transferred to
be determined from the conditions th@t is a PM and that its e Eyclidean spad@ via the mappingf. To outline this idea,

mean is0. Using the identities let 11y denote thef-image ofy and, given a PMP onR? domi-
+oo u +oo u nated byuy, let Py, denote the PM 00X, X') with p-den-
/ r(z)de = 23, / wr(z)de = o5 sity #7-(f(«)). Recall further that the inequalitp(F||Q) >
" " D(Py||Qy) holds; the equality takes place B @ dominated
these conditions give the equations by pifand only if P = (Pf)¢—1 , and@ = (Qy)¢-1 . Since

a a a a the mapping — Q7 mapsL, ; onto L., D(L, f||Q) =
bi(l— g5 )+engs =1 bu(m—s5)+tcens5=0 D(L,] Q). Itis not difficult to see that, actually, the equality
3n3 3n3 2n2 2n2 f R
o takes place here, and whén L, ¢||Q) is finite, the general-
yielding ized I-projection ofQ to £, ; equalsPs-1 , whereP is the
generalized -projection ofQ ¢ to L. In addition, both/-pro-

by = 3471. Cn = 3n w, jections can be true projections only simultaneously. An analo-
3n —2m: a 3n-—2m gous observation is valid for the minimization B P||Q) over
Forn — oo, one has Q € &, ¢. Here,f is a sufficient statistic for this family and the
a a mapping@ — Q; is even a bijection of, ; onto the standard
D(P,||R) = (1 - —3) bnInbp + 5 cnlncy, — 0. family £, ., based on th¢-image ofy, andQ — Q-1 , isits
sn sn inverse. Note thah,, ; = A,,,.
This establishe® e cl; (L), and, consequently) € cl;(cl;(£)). This simple device of transferring problems R via the

The I-projection of any Gaussian Pk} with meanm # 0 mapping f has been frequently employed to lift results from
to £ is obviously the Gaussian PM with mefirand the same Euclidean spaces to more general settings. It works for our re-
variance. HenceD(£||Q) > 0 and@ ¢ cl;(£). On the other sults as well. As a first example, one can immediately recog-
hand,D(cl;(£)]|Q) = 0 and, thus, the generalizéeprojection nize whether the minimization ab(P||Q) overP € L, y is
of Q) to the convex setl;(£) equalsq itself. This exhibits oc- a feasible problem, that is, wheth&r € £, ; with D(P||Q)
currence ofllzq # Iy, (£)—o- finite exists. The necessary and sufficient condition for this is

This example also demonstrates that the identity (9) cannmot cc(Q ), by Lemma 1 or [13, Theorem 3].
be extended td € cl;(£). Indeed, takel = Ly and€ = & The key concept in this paper, the extension of a standard
with @ as above. Then (9) reduces to (10) whétes the exponential family, is generalized by definiegt(&,, f) to be
Gaussian PM with meafi and variances?. For P = @, the set of all PMsP;—: , whereP € ext(&,,). Equivalently,
as above,D(P||Q) can be arbitrarily close td), whereas ext(£, f) is the union of its components; for each faEeof
D(P||R) + D(R||Q) is bounded from below b (R||Q) > 0. cc(u;) acomponent,; ; ofext(&,,, ;) is the exponential family

&, ¢ with v equal to the restriction qf to

VIIl. I-, rI-PROJECTIONS ANDMLE IN MORE GENERAL 3
CASES J7(F)) = {a: f(z) € c(F)}

In this section, minimization oD(P||Q) over sets of PMs and with the previous directional statistfc
P, @ on a measurable spa¢&, X) is compared with mini-  All results of Sections IV-VI admit straightforward general-
mization of D(P||Q) over sets of PM$”, Q onR<. The MLE izations. For example Theorem 3 extends to the following form.
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For the set of PM<L, ¢ and exponential family,, ¢ such core turns out to be an open set, then it equals the domain of
thatD(L,, ¢||€,, ¢) isfinite, thatisa € cc(uy), the intersection A*, by Proposition 1 iii), and, in absence of nontrivial faces,
cr(Lq, ) Next(E, ) consists of exactly one PMR. For this the extension and-closure of the corresponding exponential

R, the Pythagorean identity holds family will be the family itself. In this case, classical results on
the information projections and ML estimation suffice.
D(P||Q) = D(P||R) + D(La,£1Q), Another situation that has been well understood is wkea

PeLl, s, Qeext(E, f). (21) finite. Then, the image s of p has finite support andc(us) =
cs(py)=dom(A*) is a polytope. Obviouslyjom(A)=R¢, and
The PMR belongs to the compones, s of ext(€),, r) based the extension angl-closure ofé,, ; coincide with the closure
ony = uf (@) whereF is the face ofc(yy) containinga  of &, viewed as a subset & . Similarly, £, ; is closed in
in its relative interior. R and coincides witkl; (£, ;). Hence, the Pythagorean iden-
The proof is immediate from Theorem 3. Namely, by thgty (21) takes place W|t|-D( 11Q) replaced byD(R||Q),

assumption,D(L,||€,,) is finite and then the intersection ofsee also (10) in Remark 5. Fore cs(uuf) the GMLE R ex-
cr(L,) andext(€,, ) consists of a single PMR. The PMR ists and coincides with the MLE id, (€, 1), see also Barn-
equaltolz;-: , is easily seen to have the claimed properties. bforff-Nielsen [2, pp. 154-5].
particular, (21) follows from the Pythagorean identity (9) (with
P, Q, R replaced byP, Q, R) since for each? € £, ; and B. Example With Moment Statistics

Q € ext(€,, r) such that not bottD(P[|Q) and D(P||R) are  The |ast part of this section illustrates the preceding general-
infinite izations whenX = R andf(z) = (z, 2, ..., ). Letyu be a
finite measure of; denote bysS the support ofu (the smallest
b(P|@) = D(PIIR) closed subset dR with full y-measure) and by the subset
= / In {@ (x)/@(x)} P(dz) of S consisting of the points with positiyemeasure. Then, the
dp dp imagey. s of 11 is supported by the subsgts) of the curvef (R)
dR dQ in R?, known as thenoment curvesee [23]. We exclude the case
- /\ In d:“f (f(L))/ dpg (f(z)) whenS is a finite set that is covered by the last paragraph of the
‘ previous subsection.
= / In dR (2)
Qs I

P(dx)

H={&: (9, 7) =r}

with nonzerod = (¥4, ..., ¥4) in at mostd points because
To sketch the implications of our results for ML estimationiry(z) € H implies thatz is a real root of the polynomial
the exponential familf = €, ¢, letz = (2!, ..., 2") € X" ¢ 92" — r of degree at most. This fact implies that any
be ani.i.d. sample drawn from a memberé’gff and 1<k<d+1 points of the moment CUI‘Vﬁ(R) are afﬁne|y
" independent, that is, span a simplex of dimengior 1. In
a = 1 Z f(z%) particular, the convex hutlonv(f(S)) of f(S) has nonempty
n = interior because is not finite.

A description ofcc(ur) and its faces is summarized below;

denote the sample mean of the directional statitithe LLF for proofs of the following two propositions see Appendix C.

is defined similarly to (17) where now is a face otc(yuf) and
i i Proposition 2:
Ap(9) :/ e T@) 1y (dar) :/ ) (d). i) The interior ofcc(ps) is equal to that ofonv(f(.S)).
1(c(F)) I(F) i) Each proper faceF’ of cc(uy) is exposed and equals a

simplexconv(T) with T" C f(Y") of cardinality at mostl. In
addition,pf = uz;.

Fora € dom(A7, ;), there exists a unique PM; such that  iii) Each setl’ C f(Y) of cardinalityl < k& < £ spans a
for each@ € cl.;(€) face ofcc(ys). If Y is contained in the interior of then all

. . proper faces ofc(u¢) are of this form.
Ap(9) + A(a) = (9, a) > D(R[|Q)

As an example let us discuss an extension of Theorem 6:

It is an elementary fact that the standard exponential family
whereF is the face otc(sf) such that) belongs to the com- based on a measure whose support is an affinely independent
ponente ; of ext(€) andy parametrizes). setT C R?, equals the set of all PMs with suppdrt Then,
it follows from Proposition 2 that each componé}ﬁf of the
extension of,, , corresponding to a proper fage= conv(T’)
of cc(py), whereT C f(Y), is equal to the set of all PMs with
supportl’. Moreover, ifY is contained in the interior o then
ext(€,, ¢) equals the union &, ; and the set of all PMs whose
support is a subset of si@’% of Y.

The above PMR;: equalsi; -, whereR is the PM playing
the role of?; in Theorem 6 fo€,, . The analog of Corollary 11
obviously holds for thisR}, hence it can be interpreted as a
GMLE.

To apply the results of this paper to the familiés ; and
&, 5, the convex corec(y¢) of the f-image ofy and its faces
have to be determined, which may be nontrivial. If the convex Proposition 3: cl,; (€, ) = ext(&,, f).
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Remark 13: The inclusiornce(pr) C dom(A*), see Proposi- where the right-hand side is nonnegative. Qgtbe a sequence
tion 1 i), may be strict, giving another example of the equality S with D(P||Q,) converging toD(P||S). One can assume
H = A* oncc(py) = dom(H) but not beyond this set, seeall Q,, dominated by a finite measure with densitiesy,,. Ap-
Remark 10 in Section V. Indeed, take= 3, thus, f(z) = plying (22) withQ = Q,,,, R = Q,,, andt = 3, it follows that
(z, 2%, 2%), and lety be the sum of the unit mass at the origin
and the measure with Lebesgue density?!’. Then,S = R, ln/ Vinm dpp = 0
Y = {0}, andcc(uys) consists of the interior ofonv(f(R)) thus,
and the point(0, 0, 0). In particular,cc(p¢) is contained in /'[\/q__ Vil du=2—2 / I T i — 0
the open half-spacé(z1, =2, 23): 72 > 0} except for the " " ' noAm
point (0, 0, 0). Since for the boundary hyperpladé of this asm, n — occ. Hence, /g, is a Cauchy sequenceln (), and,
half-space we hav¢,, e$% 2 y(dr) = 1, for eachy € R?, and therefore, converges ihs (1), say to,/¢*. Theng, converges
dom(A) is determined by the inequalitys| < 1, Lemma 6 ap- to ¢* in Li(x), and@,, converges in total variation to the PM

plied with— = (0, —1, 0) anda = (0, 0, t) gives

A (a) = sup (¥, a)=]|t.

vedom(A)

Thus,dom(A*) contains the ling (0, 0, ¢): ¢ € R} intersecting
cc(py) only in the single pointo, 0, 0).

The generalization of Theorem 3 given in the previo

subsection implies that fo@ in £, ; anda in the interior
of cc(uy), the generalized-projectionll,, .. belongs to
&, ¢, and equals thel-projection to&,, r of any P € L, ¢

with D(P||E,, f) finite. If a € ri(F') for a proper faceF" of

cc(ug), there is only one PMP with meana and P < M?

(sinceuff is concentrated on the vertices of the simplex

Then, only one PMP € L, ; exists withD(P||Q) finite, and
it is trivially the I-projection of() to £, ¢.

The GMLE exists if and only if the sample transformed by the

directional statistig has meam € dom(A}, ;). Forexample, if
a sample withu € ri(F') as above is contained i, the GMLE

Q* with p-densityq*. If R,, is another sequence &such that
D(PJ|R,,) converges td(P||S) then, by same argumerk,,
also converges in total variation. Since the sequenldresind
R,, can be merged together, the limit &, must be equal to
Q*. This@* will play the role ofllp_,s.

When D(P||R) is finite, (22) can be rewritten as

"D(PIQ) - D(PIR) + § [D(PIR) - D(P)S)]

> —%ln /qtrl_t dp.  (23)

Given any@ € S with D(P||Q) finite, Qn as above, and,

going to0 slowly, such that,,'[D(P||Q,) — D(P||S)] — 0,

one has .

D(P||Q) — D(P||S) > liminf—t—ln/qt"q};t” du

21iminfD(Qth,1ft" Q). (24)

Here, the first inequality follows from (23) witk = @Q,,, t =
t., and the second inequality from (4). The sequence

n

equals the empirical distribution of the sample and coincide¥’

with the MLE incl,.r (€, f).

Wheny is continuousY” = §, thencc(y.5) is open by Propo-

sition 2ii). Thus£,,, ; = ext(&,,, ), anddom(A*) = cc(uy) by

Proposition 1 iii). Now, a remarkable feature is that the MLE or

GMLE never exists if the sample sizes'[%. This follows from
the well-known property of the moment curve that d&ny %

points of it span a face of the convex hull of the curve, see al 6
the proof of Proposition 2 in Appendix C. Thus, for samples

small sizes the sample mean pfdoes not belong tac(u ),

u-a.s., cf. also [13, Example 2]. This includes the well-know
special case of nonexistence of MLE in the Gaussian famlllg/

from a sample of sizé.

APPENDIX A

This appendix contains the proofs of Theorems 1, 2, and t

completion of the proof of Theorem 6.

Proof of Theorem 1—‘Log-Convex Part’in this proof,

all measures are given on an arbitrary measurable space.

D(P||S) be finite for a PMP and a log-convex s&. The only
nontrivial assertion to prove is the existence of a PM_. s
that satisfies inequality (2) for afp € S with D(P||Q) finite.

If @ andR are nonsingular PMs i then (3) and)t R~ e
S imply

tD(P||Q) + (1 — t)D(P||R) — D(P||S) > _hl/qtrl_t "
(22)

R, = Qi Qu "
in S satisfiesD(P||R,,) — D(P]|S), on account of
tnD(P[|Q) — (1 = t,) D(P[|@n) = D(P||Ry),

a consequence of (3). As shown above, this impliesfhaton-
yerges toQ* in variation distance. Hence, by lower semiconti-
uity, the rightmostiminf in (24) is bounded from below by
(Q*]|Q)- This proves (2) withQ* = TIp_,s. The last asser-
Hon of Theorem 1 obviously follows from (2), and implies the
niqueness oflp_. 5. O

Proof of Theorem 2:Supposingg = &£, two members €
EF andQ € £ of ext(£), whereF andG are faces ofc(u),
are not mutually singular if and onlydf( F)Ncl(G) has positive

-measure. In that case, sine&l!(F)Ncl(G)) = p(c(FNQ))

, Corollary 4], the sef’ N G is nonempty, and is a face of
cc(y). As thep-densities ofP andQ are equal te(?>*) —Ar ()
ande(™*)~Aa(7) oncl(F), respectivelyel(G), and0 elsewhere,
thet:-density of the log-convex combinatid¥Q'—* is propor-
tional toef*?+(1=7.2) oncl(F)Ncl(G) ando elsewhere. Since
c(F) N cl(G) and its subset!(F' N G) have the samg-mea-

sure, and a density can be arbitrarily changed on a set of measure

0, one can also say th&tQ—* hasu-density proportional to
e+ =07.2) oncl(F N @) ando elsewhere. Thus,

PtQI-t € €N C ext(€)

proving the log-convexity oéxt(&).
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The rI-closedness ofext(£) means that PMsP with D(P|ju) — (¢, a) + A(«}). With this substitution, the starting
D(P|lext(€)) = 0 necessarily belong text(£). For P having point (3) of the proof of Theorem 1 takes f¢f = @y and
amean, say’ € L, = L, the assumptioD(P||ext(£)) = 0 R = Q. the form
implies by (12) that” equals the PMR from Theorem 3. Thus,

P € ext(€) is a simple consequence of Theorem 3, provitted t=(0, a) + A@)] + (1 = 1)[~(7, a) + A(7)]

has a mean. IP with D(P||ext(£)) = 0 does not have a mean, ==+ (1 =t)r, a) + AY + (L - t)7)
a trunc_ation argument is needed. _ n /etW"”>‘A(19)]e(1‘t)[<7’“f>‘A(T)];L(dx)
We first claim that a compone#t” of ext(&) exists such that

D(P||ET) = 0. To see this, pick any sequeng, in ext(£)  gince the divergencB(P||:) cancels, provided it is finite. For-
with D(P||Q,) — 0, and define another sequensg recur- ynately, the above identity is obviously valid for arbitrary
sively, letting 2, = Q1, andR,, be a log-convex combination gjnce gl inequalities of the proof of Theorem 1 were conse-

of Q, andR,_,, with ¢ =, — 1. Then,D(P||R,) also con- 4 ,ences of (3), and of its specialization (4) not containing the
verges td (this follows, e.g., from (3)), and by the above proop), P, their counterparts obtained by replacifbgP||Qy) by
of log-convexity, the PMsR,, beIo_ng to components ekt(&) — (9, a) + A(9) and D(P||S) by —A*(a) hold. (This is as if
that correspond to faces of(€) with F;, 2 F,, 41, > 1. Our D(P||1.) were canceled in all equations of that proof.) Finally,
first claim follows since therf;, must be eventually equal to a,,,¢ arrive, exactly as in the above proof, at a M equal
fixed faceF. _ _ to the limit in total variation of a sequend@y, € & with
Now, since clearlyext(£F) C ext(€), it suffices to show (9, a)—A(9,) — A*(a), such that (20) holds foR* — 0*.00
that D(P||€) = 0 implies thatP belongs toext(£). To this ’ " ' “
end, denote by3, the ball {z: ||z|| < n} c R?, and write
P, = P(:|By,), &, = &5, for n sufficiently large to make _ ) ]
P(B,) positive. Since)(-|B,,) € &, if Q € £, the assumption Lemma  6:1f cs(u) is contained in a half-space
D(P||€) = 0 implies D(P,||€,) = 0, using the inequality {z:(m, z—a) < 0}, 7 # 0, but not in its boundary hyper-
(8). SinceP, has a mean, it follows thaP, € ext(&,). In PlaneH, then(d, a)—A(¥) < A*(a) for eachy € R?. Moreover
particular,cc(P,) is a faceF,, of cc(u?") C B, and (using A(a)= sup [(9,a) — Ag(9)]
that the restriction ofi®» tocl(F,,) C B, equals the restriction dedom(A) '
of uto cl(F,)) the logarithm of the.?'(F») -density ofP,, equals
an affine function..<(¥»)-almost everywhere. Noting that on
the setcs(P,,) = cl(F,,) C B, we have Ap(9) = —00, n(H) =0
" In fHew*”'") dy, w(H) > 0.

In particular, ifdom(A) = R? thenA*(a) = A% (a) whereA%,
denotes the convex conjugate /of;.
it follows that on this sein % equals an affine functiop-al- Proof: Fory € dom(A) and arbitraryt > 0
most everywhere. It is not hard to see that the union of the in-
creasing sequence of set$P,) = cs(PB) is equal tocs(P). (9 + t7, a) — A(9 + t7) = — ln/e<ﬂ7m‘“>+t<f7$‘“>u(dx).
Therefore]n % equals an affine function on the whole convex (25)
support of P, u-almost everywhere.

To complete the proof, it remains to show thatP) is a

APPENDIX B

where

dP dP,
hl@ = lnm +1IIP(Bn)

Since(r,  — a) < 0 p-almost everywhere, it follows that

face of cc(p). To this end, since® < obviously implies (9 +tr, a) — A(9 + tr) > —In /em,x—a)u(dx)
cc(P) C cc(u), it suffices to verify that each segmerit con- ’ .
tained incc(y2) and having an interior pointin cc(P), must be = (9, a) — A(V)

contained ircc(P). By [13, Lemma 11], the convex core of any,

finite measure equals the union of the increasing sequence gp then/-+#7 € dom(A). This inequality is, however, strict be-
) o tause the hyperplanié does not have full:-measure, provin
convex cores of its restrictions to the balks, n > 1. Hence yperp W P 9

- ) . . ' the first assertion. Fot growing to+oo, the integral in (25)
for sufficiently largen, the segmentb is contained irec(pu ), (9, 2—a) . )
and the pointc is contained incc(PB) = cc(P,). As the decreases t¢,, e du, by dominated convergence. It fol

latter is a face of the former, this implies that is contained lows that

in cc(P,) C cc(P). O (F+tr,a)—AI+1tr) /7 (9, a) — Ag(9), for t /" +oc.
Completion of the Proof of Theorem 8Me have shown that Hence (26)

Theorem 6 is a consequence of (20). In the case cc(u), '

when a PMP with meana and finite D(P||Q) exists, Theorem A(a) > sup [(9, a) — Ag(D)].

1 with this P andS = £ was applied, and (20) witlR! = vedom(A)

I1p_, s followed from (2). It remains to show the existencedjf The opposite inequality is trivial because> A . O

satisfying (20) for allu in dom(A*), not necessarily inc(u).
To this end, the proof of Theorem 1 f& = & can be Lemma 7:

modified as follows. For a PMP with meana and@ = Qy i) For an exposed fac€' of cc(&), the PMQ(:|cl(F)), ob-

in &, the divergenceD(P||Q) can be rewritten by (6) as tained by conditioning) € & on cl(F), belongs tocl,.;(£).
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Moreover, to eacl)y € & there exists a sequencg, in £ ii) Let F' be an exposed proper faceaaf ;)
that rI-converges taQ(-|cl(F')) and satisfied),,(:|cI(F)) =
QUIcI(F)),n > 1. F = Hncc(py) :cc(u?)
i) For £ such that where H is the boundary hyperplane of a closed half-space
ext(€) = {Q(c(F)): Q € &, F face of cc(€)} 27) {Z: (¢, ) = r}, ¥ # 0, that containsf(S). Since at mostl

points of f(S) C f(R) can be contained i#/,
the assertions of i) hold also for nonexposed faces:(#). In

. . S H _  HNf(S) _ T _
particular, therext(£) equalsl,.r(£). A sufficient condition for Py = Hy = Hys forT'=Hnf(Y)

(27) isdom(A) = R _ of cardinality at mostl. This proves that the exposed fake=
Proof: Note first thatQ,, (-[cl(F")) = Q(-[cI(F)) holds if cc(uf!) = cc(u¥) equals the simplexonv(T). It remains to
and only if the@-density ofQ,, is constant orl(F"). Subject show that each proper face af(y.;) is exposed. This will be
to this condition, the-/-convergence of),, to Q(+|cl(F)) IS done when all facets of an exposed fate= H N cc(py) =
equivalent toQ),, (cI(F")) — 1. cc(pH) as above (that is, the simplicesnv(T \ {z}), z € T)
i) Supposel” is a proper exposed face of(£), say ' = gare identified also as exposed faces«ffii ).

cc(€) N H for a supporting hyperplangl of cc(€). Then,lI  Now, the condition that the half-space contafi{s) means
is the boundary of a closed half-spage: (7, z —a) < 0} that

containinges(€) as in Lemma 6. As in the proof of that lemma,
¥ + n7 belongs tadom(A), n > 0. The Q-density of the PM
Quinr € & is constant or, namely,

exp[(¢ + 17, 2) = AW+ nT)] _ (e, a) - A@4nr) +A@). and, denoting by’ the set of those roots of the polynomial

exp[(?, #) — A(Y)] that belong toY’, the setl’ = H N f(Y) of extreme points of

Using (18),u(cl(F)) = pu(H), and F equalsf(U). We have to show that to anye U there exists

_ a polynomialg(z), also of degree<d and nonnegative oW,
@onr (CI(F)) = Qv-ynr(H) whose roots irt” are exactly the elements of the #&t, {y}.

= / elotnT @) =AW+nT) ¢\ Suppose; € U is a root of multiplicitya of g. If a is even,

H then the polynomiafi(z) = g(z)/(x — y)* is obviously suit-
able. Ifa is 0dd, then (28) implies that some open interval with

converges td asn goes to infinity, by (26). (right or left) endpointy is disjoint from.S. Takingv from such

ii) We have to show that if satisfies the assumption (27) ancﬁn interval, the polynomig)(z) = (z — v)g(z)/(z — ) will
Q belongs to a compone&t” of ext(£), there exist PM£),, in emsunable. . S
€ with Q-densities constant an( F') such thatQ,, (cI(F)) — 1. iii) The lastargument also_shows that _rootguﬂnthelnterlor
We prove this by induction on the affine dimensioncofé). of S ca_mnoft have odd multiplicity. In _parUcuIar,if is a ;ubset
There is nothing to be proved if this affine dimension is zerﬁ the |nter|02r ofS then the po!ynqm|aj; must b(_a d'vis'ble by
Our induction hypothesis will be the validity of the assertio ye_U(‘T_y) , hence, the cardinality of ~ f([_]) Is<3. Thus,
for exponential families whose convex core has smaller affiﬁ'éth'f case aI.I proper faces of(y.) are simplices spanned by
dimension tharec(&). £S5 points in f(Y). . 4

If Fis exposed, i) applies. For a nonexposed fEagf cc(€), ~ Finally, letl/ be any subset of size< £ < 5 of Y and let

g(x) = Z Pzt —r >0, x€eS (28)

— en(‘r, a)y—A(I+n7t)+Ay(9)

there exists a proper exposed fagef cc(€) that containg. d ‘
The componenf® of ext(€) satisfies (27) becauskdoes. By g(z) = H (x—y) = Z izt —r
the induction hypothesis?, (cl(F)) — 1 for some sequence yeU i=1

P, € £Y with Q-densities constant otl(F). Applying i) to
each PMP,, € £F, there exists a sequeng®, ,, € £, m =1,
with P,,-densities constant ari(G), such thai?,, ,.,(c/(G)) —
1 asm tends toco. Then, theQ-density of every PMR,, ., is
constant orel(F) C cl(G). Givene > 0, P,(cl(F)) > 1—¢

(wherer = —T[, ;4% andd; = 0 for 2/ < i < d). Then,
clearly, the moment curvg(R) is contained in the closed half-
space{i: (¢, ) > r} whose boundary hyperplane contains
exactly the subsel’ = f(U) of f(R). As seen before, this

for n sufficiently large. Sinc&?,, ,,, rI-converges td>,, asm implies thatconv(T’) is a face okc(y). .
tends tooco, Ry, m(cl(F)) > Po(cl(F)) — e form > m(n), Proof of Proposition 3: The assertion is obviously equivalent
sufficiently large. Thus, it follows that the desired sequefge tocl.1(€,,) = ext(&,,). For each proper fac@ of cc(py), the
exists within the arrayR,, ., € €. O conditioningsQ(-|G) of PMsQ € &, belong tacl,r (€, ), due
to Lemma 7 i) in Appendix B, sinc€ is exposed and closed by
APPENDIX C Proposition 2. Hence, it suffices to show that, for any fixed

which by Proposition 2 is a simplex with vertex §etC f(Y")
andu§ = 7, the family 7 = {Q(|G): Q € &, } contains all
Proof of Proposition 2: PMs with supporfl’. As F is clearly log-convex, this follows
i) This follows fromec(py) C conv(f(S)) C cs(puy) and from Lemma 8 below if for each facét of G there exist PMs
the fact thatcc(uf) and cs(uuf) have the same interior, [13,Q,, € F with Q,(F) — 1andQ,(-|F) notdepending on. By
Lemma 1]. Proposition 2F' is an exposed face ot(y¢), thus, Lemma 7 i)

The material collected here complements Section VIII-B.
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guarantees the existence of Pls € £, with Qun(F) — 1 i) Let H be a hyperplane anl., H- the open half-spaces
and@, (-|F) notdepending on. Then, the PM§),, = Q,,(:|G) determined by. If the intersectiorec(x) N H is empty then
enjoy the same properties, and this establishes our claifl  cc(p) N H = cc(puf).

Lemma 8: Let F be a nonempty log-convex set of PMs with Corollary 2: cc(u) = ri(cs()) if and only if each nontrivial
common support equal to the $Btof extreme points of a sim- supporting hyperplane af(x) has measure zero.
plex inR<. If for each facetF” of this simplex there exist PMs
Qn € F with Q,(F) — 1 and@,(:|F) not depending om
thenF consists of all PMs with suppoft. Corollary 4: p(cl(F)Ncl(G)) = u(cl(F N QG)) for any two

Proof: As the standard exponential fam#fybased on the facesF andG of cc(y).

counting measure ofi is the set of all PMs with suppoft, we
have to show thaF = £ or, equivalently, that

Lemma 3: cc(u?F) = F for every faceF of cc(y).

Theorem 1: A convex seC’ C R? is the convex core of some
finite Borel measure if and only i€ has at most a countable

=={9eR:Qyec F} =R number of faces.

_ _ o _ _ Theorem 3: The convex core of, equals
It suffices to consider simplices of dimensiah Then, the

parametrizationt) — @y is bijective. {/ 2P (dz): P a PM dominated bW} )
Let F’ be any facet of the simplex, spannedby{z},z € T, Rd

andry be a normal vector td" with (rr, z) = tr > (7r. 2). Moreover, to each € cc() there exists® <y with meana
x € F.For PMsQy,, ¥, € =, |n F satisfying the hypothesis such thatﬂ is bounded.

Qy,(F)—1andQy, (-|F) = Qu,(-|F),n>1
Lemma 4: If cc(P) is contained in a convex sét and the

el @) =A0n) — ¢ e<’917’”>“‘(191), zeT\{z} mean ofP belongs to a fac# of C thencc(P) C F.

Corollary 6: If the mean ofP < p is in a faceF of cc(u)

wherec,, > 0 is a constant. This implies that),, — 9., z
P & 1 o) thenP < p(F),

equals a constant whene F', depending om. It follows that

9, — v, is a scalar multiple ofp, say?d,, = 91 +1t,7r,t, € R, Lemma 9: Let X;, Xo, ... be i.i.d. random variables with
and the distributionP. Then
., (F - 1 :
%72)) = > eltmra) Pr{—(Xl +-+X,) € rl(cc(P))}
9. \Z n
" zeT\{z} s/
= Z {1, =2) b (Tp, 2 —z) = P*"(nri(cc(Q))) — 1, n — 0o.
reT\{z} Here, P*™ is thenth convolution power of°.
_ et,, (tr— (7, z)) Z e{i%,m—z)'
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