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A new metric for probability distributions
Dominik M. Endres, Johannes E. Schindelin

Abstract— We introduce a metric for probability distribu-
tions, which is bounded, information theoretically motivated
and has a natural Bayesian interpretation. The square root
of the well-known χ2 distance is an asymptotic approxima-
tion to it. Moreover, it is a close relative of the capacitory
discrimination and Jensen-Shannon divergence.

I. Introduction

This paper is the result of the authors’ search for a prob-
ability metric that is bounded and can be easily interpreted
in terms of both information theoretical as well as proba-
bilistic concepts. Metric properties are the prerequisites for
several important convergence theorems for iterative algo-
rithms, i.e. Banach’s fixed point theorem [2], which is the
basis of several pattern-matching algorithms. Boundedness
is a valuable property, too, when numerical applications are
considered.

We will limit the following discussion to discrete prob-
ability distributions, but the result can be generalized to
probability density functions.

II. Motivation

The motivation we are presenting in this section is aimed
at providing the reader with an idea of the meaning of the
metric. As such it is not to be understood as a derivation
in a strict mathematical sense. However, we will observe
mathematical rigor in the following section, which contains
the actual proof of the metric properties.

Let X be a discrete random variable which can take on
N different values ∈ ΩN = {ω1, . . . , ωN}. We now draw
an i.i.d. sample X̃, where each observation is drawn from
one of two known distributions, P and Q. Each of those
is used with equal probability. However, we do not know,
which one is used when. Now we wish to find the coding
strategy that gives the shortest average codelength for the
representation of the data. In other words, we are looking
for the most efficient distribution R.

Let us call this code κ. The codelengths are κi = − log ri,
where i ∈ {1, . . . , N} and ri is the probability of X = ωi un-
der R. Denoting the expectation of κ w.r.t. P by E(κ, P ),
the average codelength <κ> is then 1

2E(κ, P ) + 1
2E(κ, Q).

By the very definition of the entropy, the minimum <κ>
is obtained by setting R = 1

2 (P + Q), i.e. <κ>= H(R).
An ideal observer, i.e. one who knows which distribution

is used to generate the individual data, could reach an even
shorter average codelength 1

2H(P ) + 1
2H(Q). Hence the

redundancy of κ is H(R)− 1
2H(P )− 1

2H(Q). The distance
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measure we studied is twice that redundancy

D2
PQ = 2H(R)−H(P )−H(Q)

= D (P‖R) + D (Q‖R)

=
N∑

i=1

(
pi log

2pi

pi + qi
+ qi log

2qi

pi + qi

)
(1)

Since the Kullback divergence D (P‖R) can be inter-
preted as the inefficiency of assuming that the true distri-
bution is R when it really is P , D2

PQ could be seen as a
minimum inefficiency distance.

We are not the first ones to introduce this distance mea-
sure. Topsøe, in [9], called it capacitory discrimination
and introduced it from an information transmission point
of view. In that paper, its properties are studied in depth.
We will relate his results to ours in the discussion. Now
D2

PQ is obviously symmetric and vanishes for P = Q, but it
does not fulfill the triangle inequality. However, its square
root, DPQ, does. The proof of the metric properties of
DPQ is the subject of the next section.

III. Proof of metric properties of DPQ

In the following, IR+ includes 0.
Definition 1: Let the function L(p, q) : IR+× IR+ → IR+

be defined by

L(p, q) := p log
2p

p + q
+ q log

2q

p + q
. (2)

This function can be taken to be any one of the sum-
mands of D2

PQ (see eqn. (1)). By standard inequalities we
realize that L(p, q) ≥ 0 with equality only for p = q.

Theorem 1 uses some properties of the partial derivative
of L(p, q) and to show these we introduce the function g :
IR+\{1} → IR defined by

g(x) :=
log 2

x+1√
L(x, 1)

.

Lemma 1: Let g be defined as above. Then
1. limx→1∓ g(x) = ±1, i.e. g jumps from +1 to −1 at
x = 1.
2. The derivative d

dxg is positive for x ∈ IR+\{1}.
A consequence of this lemma is that |g(x)| ≤ 1 with

equality only at x = 1. Also, it is easy to see that |g| is
continuous, but not g.

Proof: First note that g changes sign at x = 1.
A straightforward application of l’Hôspital’s rule (differ-

entiate twice) yields limx→1 g2(x) = 1.
By differentiation one finds that d

dxg is positive if and
only if f < 0 where f is given by

f(x) = log
2

1 + x
+ log

2x

1 + x
.
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Straightforward differentiation shows that f(1) =
f ′(1) = 0 and that

f ′′(x) =
−1

x2(1 + x)

(
log

2
1 + x

+ x2 log
2x

1 + x

)
.

Using the standard inequality log a ≥ 1− 1
a , we find that

f ′′ < 0, hence f is concave. Combined with the first found
facts, f < 0 for x 6= 1�

We will now prove

Theorem 1: Let FN be the set of all discrete probability
distributions over ΩN , N ∈ IN . The function DPQ : FN ×
FN → IR+ is a metric.
Proof: To show this, we recall that D (P‖Q) is 0 for P = Q
and strictly positive otherwise (see e.g. [3]). In addition,
D2

PQ is symmetric in P,Q and so is DPQ. Therefore, we
only have to show that the triangle inequality holds.

Lemma 2: Let p, q, r ∈ IR+. Then√
L(p, q) ≤

√
L(p, r) +

√
L(r, q).

Proof: It is easy to see that this holds if any of p, q, r are
zero. Now we assume p ≤ q, denote by rhs the right hand
side as a function of r, and show that
1. rhs has 2 minima, namely one at r = p and one at r = q,
and
2. only 1 maximum somewhere between p and q.

We show this by way of the derivative

∂rhs
∂r

=
log 2r

p+r

2 ·
√

L(p, r)
+

log 2r
q+r

2 ·
√

L(q, r)
. (3)

With g as in Lemma 1 and x := p
r and β ·x := q

r (β > 1),
we find that

2 ·
√

r · ∂rhs
∂r

= g(x) + g(βx).

With |g(x)| ≤ 1 with equality only at x = 1, and the fact
that g jumps from +1 to −1 at x = 1 (see lemma 1), the
derivative ∂rhs

∂r indeed changes sign at r = p, because then
x = 1 and |g(x)| > |g(βx)|, and likewise at r = q. Those
extrema are minima because r is reciprocal to x.

Also, d
dxg(x) ≥ 0, therefore between x = 1

β and x = 1,
g(x)+ g(βx) is monotonic increasing and as a consequence
has at most one sign change. �

Applying Minkowski’s inequality to the square root of
the sum which defines DPQ, we see that the triangle in-
equality is fulfilled.

Whence DPQ is a metric.�
The generalization of this result to continuous random

variables is straightforward. Let P and Q be probability
measures defined on a measurable space (Ω, A) and let p =
dP
dµ , q = dQ

dµ be their Radon-Nikodym derivatives w.r.t. a
dominating σ-finite measure µ. Then

DPQ =

√∫
Ω

(
p log

2p

p + q
+ q log

2q

p + q

)
dµ (4)

is a metric, too.
An alternative proof could be constructed using results

presented in [4]. Since D2
PQ is an instance of a class of

distances known as f -divergences (cf. [1]) (let f(t) =
t log 2t

1+t + log 2
1+t , then D2

PQ =
∑N

i=1 qif(pi

qi
)), the the-

orems proven in [4] apply.
Now we will look at the maxima and minima of DPQ. Its

minimum is, of course, located at P = Q, where DPQ = 0.
To find its maximum, rewrite (2) in the form

L(p, q) = (p + q) log 2︸ ︷︷ ︸
≥0

+ p log
(

p

p + q

)
︸ ︷︷ ︸

≤0

+ q log
(

q

p + q

)
︸ ︷︷ ︸

≤0

(5)
It follows that when P and Q are two distinct deterministic
distributions, DPQ assumes its maximum value

√
2 log 2.

IV. Asymptotic approximation

Next, we shall investigate the limit

lim
P→Q

D2
PQ (6)

A term-by-term expansion of DPQ to second order in pj

yields:

D2
PQ ≈

N∑
j=1

1
4qj

(pj − qj)2 =
1
4
χ2(P,Q) (7)

where χ2(P,Q) is the well-known χ2-distance (see e.g [5]).

V. Discussion

The DPQ metric can also be interpreted as the square
root of an entropy approximation to the logarithm of an
evidence ratio when testing if two (equally long) samples
have been drawn from the same underlying distribution [6].
In that paper, it is also argued that 1

2D2
PQ should be named

Jensen-Shannon divergence, or rather, a special instance of
that divergence, which is defined as

Dλ(P,Q) = λD (P‖R) + (1− λ)D (Q‖R)
R = λP + (1− λ)Q

and therefore 1
2D2

PQ = D 1
2
(P,Q).

Topsøe [9] has interpreted capacitory discrimination as
twice an information transmission rate and related it to a
variety of other distance measures, such as the Kullback
divergence, triangular discrimination, variational distance
and Hellinger distance. Many of the inequalities found by
him can now be rewritten to become relationships between
metrics.

Österreicher, in [7], proved the triangle inequality for
square roots of fβ divergences defined by the functions

fβ(t) =
(1 + tβ)

1
β − 2

1−β
β (1 + t)

1− 1
β

(8)

for β > 1. Since the fβ divergence one obtains by taking
the limit β → 1 is D2

PQ (a fact pointed out to us by one
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of the reviewers), our result extends the theorem proven in
[7] to include the case β = 1.

Another way of looking at D2
PQ is from the viewpoint

of Bayesian inference. Consider the following scenario: We
draw a sample X̃1 = {x1} of length 1 from an unknown
distribution R. What we do know about the distribution
is that it is either P or Q, hence assigning each distribution
the prior probability 1

2 . We now use Bayesian inference to
calculate the posterior probabilities P (R = P |X̃1),P (R =
Q|X̃1) of each distribution given the observation X̃1:

P (R = P |X̃1) =
1
2P (x1)

1
2P (x1) + 1

2Q(x1)

P (R = Q|X̃1) =
1
2Q(x1)

1
2P (x1) + 1

2Q(x1)
(9)

The information gain ∆I(x1) resulting from the observa-
tion of X̃1 is given by the Kullback divergence between the
posterior and the prior

∆I(x1) =
P (x1) log 2P (x1)

P (x1)+Q(x1)
+ Q(x1) log 2Q(x1)

P (x1)+Q(x1)

P (x1) + Q(x1)
(10)

To find the expected value of this gain, we now average
∆I(x1) over the prior distribution of x1, which is given by
1
2P + 1

2Q. This yields, noting that P (x1 = ωi) = pi and
likewise for Q:

E(∆I(x1)) =
1
2

N∑
i=1

pi log
2pi

pi + qi

+
1
2

N∑
i=1

qi log
2qi

pi + qi

=
1
2
D2

PQ (11)

Therefore, another interpretation of DPQ is that it is twice
the expected information gain when deciding (by means
of a sample of length 1) between two distributions given
a uniform prior over the distributions. Consider now the
case that P and Q are such that DPQ is maximized. Then,
as stated above, 1

2D2
PQ = 1 (when using log 2), i.e. the

information gain is one bit. Thus, a sample of length 1 is
sufficient to make the (binary) decision as to which distri-
bution is the correct one. More general formulas than (11)
can be found in [8], where relations between arbitrary f-
divergences and information gains in decision problems are
studied.

VI. Acknowledgment

We would like to thank Dr. Peter Földiák for his valuable
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