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Abstract
Since most real-world applications of classifica-
tion learning involve continuous-valued attributes,
properly addressing the discretization process is an
important problem. This paper addresses the use
of the entropy minimization heuristic for discretiz-
ing the range of a continuous-valued attribute into
multiple intervals. We briefly present theoretical
evidence for the appropriateness of this heuristic
for use in the binary discretization algorithm used
in ID3, C4 , CART, and other learning algorithms.
The results serve to justify extending the algorithm
to derive multiple intervals. We formally derive a
criterion based on the minimum description length
principle for deciding the partitioning of intervals.
We demonstrate via empirical evaluation on several
real-world data sets that better decision trees are ob-
tained using the new multi-interval algorithm.

Introduction
Classification learning algorithms typically use heuristics to
guide their search through the large space of possible relations
between combinations of attribute' values and classes. One
such heuristic uses the notion of selecting attributes locally
minimizing the information entropy of the classes in a data set
(d. the ID3 algorithm (13) and its extensions, e.g. GID3 (2),
GID3* (5), and C4 (15), CART (1), CN2 (3) and others). See
(11; 5; 6) for a general discussion of the attribute selection
problem.

The attributes in a learning problem may be nominal (cat-
egorical), or they may be continuous (numerical). The term
continuous" is used in the literature to refer to attributes

taking on numerical values (integer or real); or in general
an attribute with a linearly ordered range of values. The
above mentioned attribute selection process assumes that all
attributes are nominal. Continuous-valued attributes are dis-
cretized prior to selection , typically by paritioning the range
of the attribute into subranges. In general, a discretization is
simply a logical condition , in terms of one or more attributes,
that serves to partition the data into at least two subsets.

In this paper, we focus only on the discretization of
continuous-valued attributes. We first present a result about
the information entropy minimization heuristic for binary dis-
cretization (two-interval splits). This gives us:

. a better understanding of the heuristic and its behavior
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. formal evidence that supports the usage of the heuristic

;;'

in this context , and 
. a gain in computational effciency that results in speeding .

up the evaluation process for continuous-valued attribute
discretization.

We then proceed to extend the algorithm to divide the range
of a continuous-valued attribute into multiple intervals rather
than just two. We first motivate the need for such a capabil-
ity, then we present the multiple interval generalization, and
finally we present the empirical evaluation results confirming
that the new capability does indeed result in producing better
decision trees.

Binary Discretization
A continuous-valued attribute is typically discretized during
decision tree generation by partitioning its range into two
intervals. A threshold value for the continuous-valued

attribute is determined, and the test 

:: 

is assigned to
the left branch while is assigned to the right branch 

I ,

We call such a threshold value cut point. This method

for selecting a cut point is used in the ID3 (13) algorithm and

its variants such as GID3* (5), in the CART algorithm (1),
and others (8). It can generally be used in any algorithm for
learning classification trees or rules that handles continuous-
valued attributes by quantizing their ranges into two intervals.
Although the results we present are applicable to discretization
in general , they are presented in the particular context of top-
down decision tree generation.

Assume we are to select an attribute for branching at a node
having a set 5 of examples. For each continuous-valued

attribute we select the "best" cut point from its range of
values by evaluating every candidate cut point in the range of
values. The examples are first sorted by increasing value of
the attribute and the midpoint between each successive pair
of examples in the sorted sequence is evaluated as a potential
cut point. Thus , for each continuous-valued attribute - I
evaluations will take place (assuming that examples do not
have identical attribute values). For each evaluation of a
candidate cut point the data are partitioned into two sets
and the class entropy of the resulting partition is computed.
Recall , that this discretization procedure is performed locally
for every ncde in the tree.

Let partition the set 5 of examples into the subsets 5)
and 5 , Let there be classes C"... , Ck and let P(Ci, 5)

I The test 
)0 stands for: "the value of A is greater than 
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Figure 1: A potential within-class cut point.

be the proportion of examples in 5 that have class Ci. The
class entropy of a subset 5 is defined as:

Ent(5) = 
- L 

P(Ci, 5) 10g(P(Ci, 5))
i=1

When the logarithm base is 2, Ent(5) measures the amount
of information needed, in bits, to specify the classes in 5. To
evaluate the resulting class entropy after a set 5 is paritioned
into two sets 51 and 5 , we take the weighted average oftheir
resulting class entropies:
Definition 1: For an example set 5, an attribute A, and a cut
value T: Let 5 C 5 be the subset of examples in 5 with A-
values:: and 52 = 5 - 5 . The class information entropy
of the partition induced by T, E(A , T; 5), is defined as

E(A , T; 5) = TSEnt(5J) + TSEnt(52)

A binary discretization for is determined by selecting the
cut point TA for which E(A , T 5) is minimal amongst all
the candidate cut points.

Discussion of Cut Point Selection
One of the main problems with this selection criterion is that
it is relatively expensive. Although it is polynomial in com-
plexity, it must be evaluated - 1 times for each attribute
(assuming that the examples have distinct values). Since
machine learning programs are designed to work with large
sets of training data, is typically - large. In the case of a
nominal (or discretized) attribute, this criterion requires only
a single evaluation of an r-parition, where r is the number of
values of the nominal attribute. Typically, r N. Indeed,
experience with ID3-like algorithms confirms that they run
significantly slower when continuous attributes are present.

The other objection that may be raised is that the algorithm
has an inherent weakness in it that wil cause it to produce
bad" cut points especially when there are more than two

classes in the problem. This objection is based on the fact
that the algorithm attempts to minimize the weighted average
entropy of the two sets in the candidate binary parition (as
shown in Equation 1 above). The cut point may therefore
separate examples of one class in an attempt to minimize the
average entropy. Figure 1 ilustrates this situation. Instead of
falling on one of the boundaries B 1 or B2, the cut point may -

,,-

fall in between so that the average entropy of both sides is
minimize. This would be undesirable since it unnecessarily
separates examples of the same class, resulting in larger (and
lower quality (5)) trees.

(1 )

However, neither of these objections turns out to be true.
Theorem 1 below shows that regardless of how many classes
there are, and how they are distributed, the cut point wil al-
ways occur on the boundary between two classes (see Defini-
tion 2 for a precise statement of what we mean by a boundary
point). This is indeed a desirable property of the heuristic
since it shows that the heuristic is "well-behaved" in terms
of the cut points it favours. It tells us that this heuristic wil
never select a cut that is considered "bad" from the teleolog-
ical point of view. In addition, this result wil also help us
improve the effciency of the algorithm without changing its
function.

Cut Points Are Always on Boundaries
We show that the value TA for attribute that minimizes
the average class entropy E(A , TA; 5) for a training set 5

must always be a value between two examples of different
classes in the sequence of sorted examples. Let A( e) denote
the A-value of example E 5.

Definition 2: A value in the range of is a boundary point

iff in the sequence of examples sorted by the value of A, there
exist two examples e1, e2 E 5, having different classes, such
that A(eJ) 

.: .: 

A(e2); and there exists no other example
E 5 such that A(eJ) 

.: 

A(e

.: 

A(e2)'

Theorem 11fT minimizes the measure E(A , T; 5), then T
is a boundary point.
Proof: is rather lengthy and thus omitted; see (5). 

Corollary 1 The algorithm used by ID3 for finding binar
partition for continuous attribute wiJ always partition the
data on a boundary point in the sequence of the examples
ordered by the value of that attribute.
Proof: Follows from Theorem 1 and definitions. 

The first implication of Corollary 1 is that it serves to sup-
port the usage of the entropy minimization heuristic in the
context of discretization. We use the . information entropy
heuristic because we know, intuitively, that it possesses some
of the properties that a discrimination measure should, in
principle, possess. However, that in itself does not rule out
possibly undesirable situations, such as that depicted in Fig-
ure 1. The Corollary states that "obviously bad" cuts are never
favoured by the heuristic. This result serves as further formal
support for using the heuristic in the context of discretization
since it tells us that the heuristic is well-behaved from the
teleological point of view.

In addition, Corollary 1 can be used to increase the eff-
ciency of the algorithm without changing its effects at all.
After sorting the examples by the value of the attribute 

the algorithm need only examine the boundar points rather
than all - 1 candidates. Note that: - 1 

:: :: 

Since typically we expect significant computational
savings to result in general. We have demonstrated significant
speeups in terms of the number Qf potential cut points eval-
uated in (7) for the ID3 algorithm. ID3 paritions the range
of a continuous-valued attribute into two interN'als. Algo-
rithms that extract multiple intervals using a generalization of
this procecure(such as the one presented in the next section)
achieve higher speeups. Algorithms that search for rules
rather than decision trees also spend more effort on discretiza-
tion. The computational speedup in the evaluation process is
only a side benefit of Corollary 1. Its semantic significance
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is our focus in this paper since it justifies olir generalizing the
same algorithm to generate multiple intervals rather than justtwo. 

Generalizing the Algorithm
Corollar 1 also provides support for extending the algorithm
to extract multiple intervals, rather than just two, in a single
discretization pass. The motivation for doing this is that
better" trees are obtained

The training set is sorted once, then the algorithm is applied
recursively, always selecting the best cut point. A criterion is
applied to decide when to refrain from applying further binar
paritioning to a given interval. The fact that only boundar
points are considered makes the top-down interval derivation
feasible (since the algorithm never commts to a "bad" cut at
the top) and reduces computational effort as described earlier.

To properly define such an algorithm, we nee to formu-
late a criterion for deciding when to refrain from paritioning
a given set of examples. The criterion nees to be well-
principled and theoretically justified. Empirical tests are later
used to verify that the assumptions behind the justification are
appropriate.

Why is the derivation of multiple ranges rather than bi-
nar ranges more advantageous from a tree generation per-
spectiv.e? Often, the "interesting" range may be an internal
interval within the attribute s range. Thus, to get to such an
interval, a binar-interval-at-a-time approach leads to unnec-
essar and excessive paritioning of the examples that are out-
side the interval of interest. For example, assume that for an
attribute with values in (0 40), the subrange 12 .: A:: 20

is of interest. Assume that range is discretized into:
-( -00 , 12), (12 20), (20 25), (25 , 00)1. Given an algorithm
like GID3* (5), that is capable of filtering out irrelevant at-
tribute values, it is in principle possible to obtain the decision
tree of Figure 2(a). The attribute selection algorithm decided
that only two of the four available intervals are relevant. The
examples outside this interval are grouped in the subset la-
beled S in the figure.

Using only a binary interval discretization algorithm, in
order to select out these two ranges the decision tree shown
in Figure 2(b) would be generated. Note that the set S is now
unnecessarily paritioned into the two subsets S 1 and S2. For
the first tree, the algorithm has the option of paritioning Slater
using some other, perhaps more appropriate, attribute. This
option is no longer available in the second situation, and the
choice offuture attributes wil be based on smaller subsets: S 

and S2. Essentially, this leads to the same sort of problems as
those caused by the irrelevant values problem discussed in (2;
51 The details of how GID3* deals with this problem and
how only a subset of the values are branched on is beyond the
scope of this paper (see (5) for details.

1 To Cut or not to Cut? That is the Question
Given the set 5 and a potential binar parition, 1IT, specified
on by the given cut value of attribute A, we nee to
decide whether or not to accept the parition. This problem
is naturally formulated as a binary decision problem: accept

0ne tre being "better" that another in this context means that
it is smaller in size and that its (empirically estimated) error rate is
lower. In (4) we address the meaning of "better" more formally. See
(5) for furter details.
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Figure 2: Decision Trees and Multi-interval Discretization.

or reject 1IT. Let HT be the hypothesis that 1IT induces if it
were accepted. That is, HT is the classifier that tests the value
of against and then classifies examples that have value
less than according to the examples in for which A-value

.: 

T. Similarly, let NT represent the null hypothesis; that
is the hypothesis that would result if 1IT were rejected. Thus
NT would classify all examples according to the classes in

without examining the value of A. Since accept or reject

are the only possible actions, one of them must be the correct
choice for this situation; the other is incorrect. Of course we
have no way of directly deciding which is correct.

Let be the decision to accept the parition 1IT, and let

dR represent rejecting it. The set of possible decisions in this
situation is idA, dR)- 

and we have a binary decision
problem to solve. If we assign a cost to our taking the wrong
decision , then the expected cost associated with a decision
rule that selects between , d

)- 

is expected to have cost:

cII ProbidA 

/\ 

HT)- + c22ProbidR /\ NT)-

+cl2 ProbidA /\ NT)- + c21 Prob-(d

/\ 

HT)-

where CII and Cn represent the costs of making the correct
choice, and C12 and C21 are the costs of making the wrong
decision. This is the expected Bayes risk associated with

whatever decision rule is being used to select one of -( dA, d

)-.

The Bayes decision criterion, calls for selecting the decision
rule that minimizes the expected cost.

Since we do not know what values to assign to C12 and

C21, we resort to the uniform error cost assignment. If we
let C11 C22 = 0 and let C12 C21 1, then mini-

mizing the Bayes risk reduces to a decision rule known as
Probability-of-ErrorCriterion (PEe) (12) which calls for min-

imizing the probability of making the "wrong" decision. Sub-
sequently, it can be shown via a simple derivation (12) that the
Bayes decision criterion reduces to adopting the decision rule
which, given data set 5, selects the hypothesis HT for which
Probi 15)- is maximum among the competing hypotheses
(12). We refer to this decision criterion as the 

Bayesian De-

cision Strategy. This strategy is also known as the maimum
a posteriori (MAP) criterion (12), which in turn is equivalent
to PEC.

For our decision problem, the Bayesian decision strategy
(as well as MAP and PEe) calls for selecting the decision

that corresponds to the hypothesis with the maximal
probability given a data set 5: thus we should choose 

if and only if Prob-(HTI5)- Prob-(NTI5)-. If we had a
way of determining the above two probabilities our problem
would be solved: simply choose the hypothesis that has the
higher probability given the data, and Bayesian decision the-
ory guarantees that this is the best (minimum risk) strategy.
Unfortunately, there is no easy way to compute these probabil-
ities directly. However, we shall adopt an approach that wil
allow us to indirectly estimate which probability is greater.
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3 2 The Minimum Description Length Principle
The minimum description length of an object is defined to be
the minimum number of bits required to uniquely specify that
bject out of the uni verse of all objects. o We shall show that in the case of our decision problem

we can employ the Minimum Description Length Principle
(MDLP) to make a guess at the hypothesis with the higher
robability, given a fixed set of examples. The MDLP

fs a general principle that i intended t encode the . natu-

ral bias in science towards simpler theones that expla1l the
same body of data. The 

MDLP was originally introduced

by Rissane 7) and has later bee? adopted b others (14;

18) for use 11 1IductlOn. We define It as defined 11 (14):

Definition 3: Given a set of competing hypotheses and a

of data 5, the minimum description length principle

(MDLP) calls for selecting the hypothesis HT for which

MLength(HT) 
+ MLength(5I is minimal among the

set of hypotheses. MLength( 
HT) denotes the length of the

minimal possible encoding of 
HT, while MLength(5IHT)

is the length of the minimal encoding of the data given the
hypothesi
. For convenience, we assume lengths are measured in bits.

The encoding of the data given the hypothesis may be thought
of as encoding the data points that are the "exceptions" to the
hypothesis HT. If HT fits the data exactly, then the latter
term goes to zero.

The MDLP principle is not necessarily calling for some-
thing different from the decision criteria discussed earlier. It
can be easily shown that the MDLP and the Bayesian risk
minimization strategy (under the assumption of uniform error
cost) are theoretically related to each other. For lack of space
we omit the derivation which simply consists of expanding
the expression for the number of bits needed to specify the
hypothesis given the data 5: - log2(Probi HI5)), using
Bayes ' rule. The final expression obtained is equivalent to
the MDLP. This wil serve as motivation for adopting the
MDLP since it reduces the arbitrariness of our adopting 
over some other heuristic for deciding when to refrain from
further paritioning.

Based on our earlier arguments, if we had a way of finding
the tre ininimal encoding length of hypotheses and of the data
given a hypothesis, then employing the MDLP for selecting
one of a set of competing hypotheses leads to choosing the
hypothesis with the maximum a posteriori probability (given
the data). Consequently, this is equivalent to the PEC decision
criterion. This means that the selected hypothesis wil be
the one which minimizes the probability of having made the
wrong selection decision. However, in the physical world we
do not have access to the probability distributions. Hence,
the MDLP is used as an estimate of cost, or a heuristic, for
distinguishing between hypotheses.

Applying the MDLP: A Coding Problem
Now the problem at hand is a coding problem. In our case, the
decision problem is relatively simple. The set of competing
hypotheses contains exactly 

two elements: -fHT, NT). 

shall employ the formulation used by Quinlan and Rivest (14)
where they used the MDLP in attribute selection in an attempt
to generate compact decision trees (see (18) for a commentar
on (14)). In our case, the problem is fortunately simpler.

Using the formulation of (14), the problem that needs to
be solved is a communication proQlem. The goal is to com-

municate a method (classifier), that wil enable the receiver
to determine the class labels of the examples in the set. It is
assumed that a sender has the entire set of training examples,
while a receiver has the examples . without their class labels.
The sender needs to convey the proper class labeling of the ex-
ample set to the receiver. The sender must essentially choose
the shortest description for specifying the classes.
Coding the Null Theory NT: In the case of NT, the sender
must simply transm t the classes of the examples in 5 in

sequence. The sender sends messages, each being a coded
class label (where 151). To encode the classes of the
examples in 5, we may use an optimal (e.g. Huffman coding)
algorithm (16) to produce code optimized for average code
length. Since we have to transmit the class for each example
in the set 5, multiplying the average code length by gives
us the total cost of transmitting the classes of the examples
in 5. In addition, one needs to transmit the "code book" to
be used in decoding the classes. Transmitting the code book
consists of s nding the code word associated with each class.
Hence, if there are classes the length of the code book is
estimated by (k I). Note that is a constant that does not
grow with so the cost of the code book is a small constant
overhead.
Coding the Partition HT: The cut point chosen to parti-
tion the examples must be specified by the sender followed by)
an encoding of the classes in each of the two subsets. Speci-
fying the cut value costs log2 (N - 1) bits since we need only
specify one of the - 1 examples in the sequence which the
cut value falls just before (or after).

The classifier HT corresponding to the binary parition,
7fT, partitions the set 5 into subsets 5 and 5 . What the

sender must transmit, then , is a specification of the cut point
followed by the sequence of classes in 5 followed by the
classes in 5 . Again , all we are interested in determining is
the minimal average length code for the classes in 5 and 52

as we did in the case of encoding the classes in 5. Let and
lz be the minimal average code lengths (in bits) for the classes
in 5 and 5 respectively. The cost of transmitting HT along
with the data given HT 

log2 (N - 1) + 1511- + 1521'lz bits.

We also nee to transmit the code books for the respective
codingschosen for the classes in 5 and 52. Unlike the case of
transmitting 5 where we knew that all classes are present, in

this case we must inform the receiver which subset of classes
is present in each of the two subsets 5 and 5 , and then send
the respective code books. Since we know that our parition
is non-trivial , i.e. 5 f: 52 f: 0, we know that 5 can have
anyone of - 1 possible subsets of the classes. Using a
lengthy derivation, it can be shown that

Gk = L (:)2TeI + - 1 = - 2=1 
is the number of possible paritions out of which we need
to specify one. Hence we need log2 (GTe) bits. Note that

log2 (Gk) .: 210g (2k - 1) .: 2k.

The Decision Criterion

In our quest for the "correct" decision regarding whether or not
to parition a given subset further, we appealed to the MDLP.
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Table I: Details of the Data Sets Used.

Data Set name examples attributes classes

Faulty operation data from the JPL Deep Space Network antenna controller DSN 258

Problems 11 a reactive IOn etching process (Klh) 11 semiconductor manu- SRCI
facturing from HUl!hes Aircraft ComDanv
The waveform domain described in (1) WVFRM 150

Vata obtamed frm a response surtace ot mU1tipre response vanables ID a RSMI 300
set of wafer etchinl! eXDeriments conducted at HUl!hes
RSMI with classes mapped to only two values: "good" and "bad" RSM2 300

Publicly available heart disease medical data from an institute in Cleveland HEART 303

The glass types data from the USA Forensic Science Service GLASS 214

The famous iris classification data used by R.A. Fisher (1936) IRIS 150

The echocardiogram data of heart diseases from the Reed Institute of Miami ECG 132

In turn, this gave us a coding problem to solve. The solution
is readily available from information theory, c.f. Huffman
coding. However, we are not interested in the actual minimal
code itself. The only thing we nee to know is the average
length of the minimal code. The following theorem gives us
this information directly and in the general case.

Theorem 2 Given a source of messages s with entropy
Ent( s), for any f :? 0, there exists an optimal encoding 

the messages of s such that the average message code length
" in bits, is such that Ent( s) 

:: .: 

Ent( s) + f.
Proof: See Shannon s Noiseless Coding Theorem in (9). 

Note that this theorem requires that the entropy Ent( 
be defined using logarithms to the base 2. In the case of our
simple communication problem, the source of messages is the
sender and the messages are the encoded classes. Theorem 2
tells us, that "we can bring the average code word length 
close as we please to the entropy" of the source (91

Let be the average length of the code chosen to represent
the classes in S. Similarly, II and lz are the corresponding
average code lengths for SI and S2. Putting all the derived
costs together we obtain:

N. Ent(S) + k. Ent(5)
log2 (N - 1) + IS11. Ent(SI) + IS21. Ent(S2)

log2 (3k - 2) + k Ent(SJ) + k Ent(S2)'

The MDLP prescribes accepting the partition iff
Cost( HT) .: Cost( NT). Examine the condition under which
(Cost( NT) - Cost( HT)) :? 0: .

.: 

NEnt(S) -1St!. Ent(SI) - IS21. Ent(S2)

log2 (N - 1) + kEnt(S) - log2 (3k - 2)

Ent(SI) - k Ent(S2)

Cost( NT)
Cost(HT) -

Now recall that the information gain of a cut point is

Ent(5) - E(A , T; S)

ISII IS21
Ent(5) - li Ent(SI) - Ent(S2)'

The above inequality, after dividing through by N, reduces to

Gain(A , T; S)

log2 (N - 1) A(A , T; S)

:? 

where A(A , T; 5) =

log2 (31e - 2) - (kEnt(S) - k1Ent(5t) - k Ent(S2)) .

1026 Machine Learning
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We are now ready to state our decision criterion for accept-
ing or rejecting a given partition based on the MDLP:

MDLPC Criterion: The partition induced by a cut point
for a set of examples is accepted iff

log2 (N - 1) A(A , T; S)

, ? 

and it is rejected otherwise.

Note that the quantities required to evaluate this criterion
namely the information entropy of Sj, and S2 are com-

puted by the cut point selection algorithm as part of cut point
evaluation.

Empirical Evaluation
We compare four different decision strategies for deciding
whether or not to accept a partition. For each data set used,

we ran four variations of the algorithm using each of the
following criteria:

1. Never Cut: the original binary interval algorithm.
2. Always Cut: always accept a cut unless all examples

have the same class or the same value for the attribute.
3. Random Cut: accept or reject randomly based on

flipping a fair coin.
4. MDLP Cut: the derived MDLPC criterion.

The first three strategies represent simple alternative decision
strategies that also cover the continuum of decision strategies
since the first two are the two extrema.

We used the data sets described in Table 1. Some of these
were obtained from the U.c. Irvine Machine Learning Repos-
itory and others from our own industrial applications of ma-
chine learning described in (101 The data sets represent a
mixture of characteristics ranging from few classes with many
attributes to many classes with few attributes.

For each data set, we randomly sampled a training subset
and used the rest of the set for testing. For each data set we
repeated the sampling procedure followed by generating the
tree and testing it 10 times. The results reported are in terms

of the average number of leaves and percentage error rate on
classifying the test sets. The results are shown in Figure 3.
Note that there is no difference between the tree generated by
GID3* under the Never Cut strategy and the tree generated
by the ID3 algorithm. Thus, those columns in the chars may
be taken to reflect ID3's performance. For ease of compar-
ison, we plot the results in terms of ratios of error rate and
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Figure 3: Ratios of Error Rates and Number of Leaves Comparisons.

number of leaves of the various cut strategies to the MDLP
Cut strategy. Note that the improvements are generally sig-
nificant. The data set RSMI proved a little problematic for
the MDLPC. One possible reason is that the number of classes
is large and the number of training examples is probably not
suffcient to make the recommendations of the MDLPC crite-
rion meaningful. Note that this hypothesis is consistent with
the fact that performance dramatically improved for the set
RSM2 which is the same data set but with only two classes.

Conclusion
We have presented results regarding continuous-valued at-
tribute discretization using the information entropy minimiza-
tion heuristic. The results point out desirable behavior on the
par of the heuristic which in turn serves as further theoreti-
cal support for the merit of the information entropy heuristic.
In addition, the effciency of the cut point selection heuristic
can be increased without changing the final outcome of the
algorithm in any way. Classification learning algorithms that
use the information entropy minimization heuristic for select-
ing cut points can benefit from these results. We also used
the results as. a basis for generalizing the algorithm to mul-
tiple interval discretization. We derive a decision criterion
based on information and decision theoretic notions to decide

whether to split a given interval further. Coupled with formal
arguments supporting this criterion, we presented empirical
results showing that multiple interval discretization algorithm
indee allows us to construct better decision trees from the
same data.
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