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Abstract

We consider the problem of determining the structure of clustered data, without prior
knowledge of the number of clusters or any other information about their composition. Data
are represented by a mixture model in which each component corresponds to a different
cluster. Models with varying geometric properties are obtained through Gaussian compo-
nents with different parameterizations and cross-cluster constraints. Noise and outliers can
be modeled by adding a Poisson process component. Partitions are determined by the EM
(expectation-maximization) algorithm for maximum likelihood, with initial values from ag-
glomerative hierarchical clustering.

Models are compared using an approximation to the Bayes factor based on the Bayesian
Information Criterion (BIC); unlike significance tests, this allows comparison of more than
two models at the same time, and removes the restriction that the models compared be
nested. The problems of determining the number of clusters and the clustering method
are solved simultaneously by choosing the best model. Moreover, the EM result provides a
measure of uncertainty about the associated classification of each data point.

Examples are given, showing that this approach can give performance that is much better
than standard procedures, which often fail to identify groups that are either overlapping or
of varying sizes and shapes.



Contents

1 Introduction 1

2 Model-Based Cluster Analysis 1
2.1 Cluster Analysis Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Probability Models for Cluster Analysis . . . . . . . . . . . . . . . . . . . . . 3
2.3 EM Algorithms for Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Bayesian Model Selection in Clustering . . . . . . . . . . . . . . . . . . . . . 7
2.5 Model-Based Strategy for Clustering . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Modeling Noise and Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Examples 9
3.1 Diabetes Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Minefield Detection in the Presence of Noise . . . . . . . . . . . . . . . . . . 11

4 Software 12

5 Discussion 13

List of Tables

1 Parameterizations of Σk and their geometric interpretation. . . . . . . . . . . . . 4
2 Reciprocal condition estimates for model-based methods applied to the diabetes data. 12

List of Figures

1 Three-group classifications for diabetes data using various clustering methods. . . 2
2 EM for clustering via Gaussian mixtures. . . . . . . . . . . . . . . . . . . . . . 6
3 Clinical classification of the diabetes data. . . . . . . . . . . . . . . . . . . . . . 10
4 BIC and uncertainty for the diabetes data. . . . . . . . . . . . . . . . . . . . . 11
5 Model-based classification of a simulated minefield with noise. . . . . . . . . . . . 13

i



1 Introduction

We consider the problem of determining the intrinsic structure of clustered data when no
information other than the observed values is available. This problem is known as cluster
analysis, and should be distinguished from the related problem of discriminant analysis, in
which known groupings of some observations are used to categorize others and infer the
structure of the data as a whole.

Probability models have been proposed for quite some time as a basis for cluster analysis.
In this approach, the data are viewed as coming from a mixture of probability distributions,
each representing a different cluster. Recently, methods of this type have shown promise in
a number of practical applications, including character recognition (Murtagh and Raftery
[53]), tissue segmentation (Banfield and Raftery [7]), minefield and seismic fault detection
(Dasgupta and Raftery [27]), identification of textile flaws from images (Campbell et al.
[21]), and classification of astronomical data (Celeux and Govaert [24], Mukerjee et al. [51]).

Bayes factors, approximated by the Bayesian Information Criterion (BIC), have been
applied successfully to the problem of determining the number of components in a model
[27], [51] and for deciding which among two or more partitions most closely matches the
data for a given model [21]. We describe a clustering methodology based on multivariate
normal mixtures in which the BIC is used for direct comparison of models that may differ
not only in the number of components in the mixture, but also in the underlying densities
of the various components. Partitions are determined (as in [27]) by a combination of
hierarchical clustering and the EM (expectation-maximization) algorithm (Dempster, Laird
and Rubin [28]) for maximum likelihood. This approach can give much better performance
than existing methods. Moreover, the EM result also provides a measure of uncertainty about
the resulting classification. Figure 1 shows an example in which model-based classification
is able to match the clinical classification of a biomedical data set much more closely than
single-link (nearest-neighbor) or standard k-means, in the absence of any training data.

This paper is organized as follows. In Section 2, we give the necessary background in
multivariate cluster analysis, including discussions of probability models, the EM algorithm
for clustering and approximate Bayes factors. The basic model-based strategy and modi-
fications for handling noise are described in Sections 2.5 and 2.6, respectively. A detailed
analysis of the multivariate data set shown in Figure 1 is given in Section 3.1, followed by
an example from minefield detection in the presence of noise in Section 3.2. Information on
available software for the various procedures used in this approach is given in Section 4. A
final section summarizes and indicates extensions to the method.

2 Model-Based Cluster Analysis

2.1 Cluster Analysis Background

By cluster analysis we mean the partitioning of data into meaningful subgroups, when the
number of subgroups and other information about their composition may be unknown; good
introductions include Hartigan [36], Gordon [35], Murtagh [52], McLachlan and Basford [46],
and Kaufman and Rousseeuw [42]. Clustering methods range from those that are largely
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Figure 1: A projection of the three-group classification of the diabetes data from Reaven and Miller
[56] using single link or nearest neighbor, standard k-means, and the unconstrained model-based
approach. Filled symbols represent misclassified observations.

heuristic to more formal procedures based on statistical models. They usually follow either
a hierarchical strategy, or one in which observations are relocated among tentative clusters.

Hierarchical methods proceed by stages producing a sequence of partitions, each corre-
sponding to a different number of clusters. They can be either ‘agglomerative’, meaning
that groups are merged, or ‘divisive’, in which one or more groups are split at each stage.
Hierarchical procedures that use subdivision are not practical unless the number of possible
splittings can somehow be restricted. In agglomerative hierarchical clustering, however, the
number of stages is bounded by the number of groups in the initial partition. It is common
practice to begin with each observation in a cluster by itself, although the procedure could
be initialized from a coarser partition if some groupings are known. A drawback of agglom-
erative methods is that those that are practical in terms of time efficiency require memory
usage proportional to the square of the number of groups in the initial partition.

At each stage of hierarchical clustering, the splitting or merging is chosen so as to optimize
some criterion. Conventional agglomerative hierarchical methods use heuristic criteria, such
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as single link (nearest neighbor), complete link (farthest neighbor), or sum of squares [42].
In model-based methods, a maximum-likelihood criterion is used for merging groups [53, 7].

Relocation methods move observations iteratively from one group to another, starting
from an initial partition. The number of groups has to be specified in advance and typically
does not change during the course of the iteration. The most common relocation method
— k-means (MacQueen [44], Hartigan and Wong [37]) — reduces the within-group sums of
squares. For clustering via mixture models, relocation techniques are usually based on the
EM algorithm [28] (see section 2.3).

Neither hierarchical nor relocation methods directly address the issue of determining the
number of groups within the data. Various strategies for simultaneous determination of
the number of clusters and cluster membership have been proposed (e. g. Engelman and
Hartigan [31], Bock [12], Bozdogan [17] — for a survey see Bock [13]). An alternative is
described in this paper.

2.2 Probability Models for Cluster Analysis

In model-based clustering, it is assumed that the data are generated by a mixture of un-
derlying probability distributions in which each component represents a different group or
cluster. Given observations x = (x1, ...,xn), let fk(xi | θk) be the density of an observation
xi from the kth component, where θk are the corresponding parameters, and let G be the
number of components in the mixture. The model for the composite of the clusters is usually
formulated in one of two ways. The classification likelihood approach maximizes

LC(θ1, . . . , θG; γ1, . . . , γn | x) =
n∏

i=1

fγi(xi | θγi), (1)

where the γi are discrete values labeling the classification : γi = k if xi belongs to the kth
component. The mixture likelihood approach maximizes

LM(θ1, . . . , θG; τ1, . . . , τG | x) =
n∏

i=1

G∑

k=1

τkfk(xi | θk), (2)

where τk is the probability that an observation belongs to the kth component (τk ≥ 0;
∑G
k=1 τk =

1).
We are mainly concerned with the case where fk(xi | θk) is multivariate normal (Gaus-

sian), a model that has been used with considerable success in a number of applications
[53, 7, 24, 27, 21, 51]. In this instance, the parameters θk consist of a mean vector µk and a
covariance matrix Σk, and the density has the form

fk(xi | µk,Σk) =

exp
{
−1

2
(xi − µk)TΣ−1

k (xi − µk)
}

(2π)
p
2 |Σk|

1
2

.
(3)

Clusters are ellipsoidal, centered at the means µk. The covariances Σk determine their other
geometric characteristics.
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Banfield and Raftery [7] developed a model-based framework for clustering by parame-
terizing the covariance matrix in terms of its eigenvalue decomposition in the form

Σk = λkDkAkD
T
k , (4)

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues of Σk, and λk is a scalar. The orientation of the prin-
cipal components of Σk is determined by Dk, while Ak determines the shape of the density
contours; λk specifies the volume of the corresponding ellipsoid, which is proportional to
λpk |Ak|.1 Characteristics (orientation, volume and shape) of distributions are usually esti-
mated from the data, and can be allowed to vary between clusters, or constrained to be the
same for all clusters.

This approach subsumes several earlier proposals based on Gaussian mixtures: Σk = λI
gives the sum of squares criterion, long known as a heuristic (Ward [65]), in which clusters
are spherical and have equal volumes; Σk = Σ = λDADT , in which all clusters have the same
shape, volume and orientation (Friedman and Rubin [33]); unconstrained Σk = λkDkAkDT

k ,
which is the most general model (Scott and Symons [60]); and Σk = λDkADk (Murtagh and
Raftery [53]), in which only the orientations of the clusters may differ. Table 1 shows the
geometric interpretation of the various parameterizations discussed in [7]. A more extensive
set of models within the same framework is treated in [24].

Table 1: Parameterizations of the covariance matrix Σk in the Gaussian model and their geometric
interpretation. The models shown here are those discussed in Banfield and Raftery [7].

Σk Distribution Volume Shape Orientation Reference
λI Spherical equal equal NA [65, 53, 7, 24]
λkI Spherical variable equal NA [7, 24]

λDAD Ellipsoidal equal equal equal [33, 60, 7, 24]
λkDkAkDk Ellipsoidal variable variable variable [60, 7, 24]
λDkADk Ellipsoidal equal equal variable [53, 7, 24]
λkDkADk Ellipsoidal variable equal variable [7, 24]

The classification likelihood can be used as the basis for agglomerative hierarchical clus-
tering [53], [7]. At each stage, a pair of clusters is merged so as to maximize the resulting
likelihood. Fraley [32] developed efficient algorithms for hierarchical clustering with the
various parameterizations (4) of Gaussian mixture models.

2.3 EM Algorithms for Clustering

Iterative relocation methods for clustering via mixture models are possible through EM
and related techniques [46]. The EM algorithm [28, 47] is a general approach to maximum

1Conventions for normalizing λk and Ak include requiring |Ak| = 1 [24], so that λk = |Σk|1/p, or else
requiring max(Ak) = 1 [7], so that λk is the largest eigenvalue of Σk.
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likelihood in the presence of incomplete data. In EM for clustering, the “complete” data are
considered to be yi = (xi, zi), where zi = (zi1, . . . , ziG) with

zik =

{
1 if xi belongs to group k
0 otherwise

(5)

constitutes the “missing” data. The relevant assumptions are that the density of an ob-
servation xi given zi is given by

∏G
k=1 fk(xi | θk)zik and that each zi is independent and

identically distributed according to a multinomial distribution of one draw on G categories
with probabilities τ1, . . . , τG. The resulting complete-data loglikelihood is

l(θk, τk, zik | x) =
n∑

i=1

G∑

k=1

zik [log τkfk(xi | θk)] . (6)

The quantity ẑik = E[zik|xi, θ1, . . . , θG] for the model (6) is the conditional expectation of
zik given the observation xi and parameter values. The value z∗ik of ẑik at a maximum of (2)
is the conditional probability that observation i belongs to group k; the classification of an
observation xi is taken to be {j | z∗ij = maxk z∗ik}.

The EM algorithm iterates between an E-step in which values of ẑik are computed from
the data with the current parameter estimates, and an M-step in which the complete-data
loglikelihood (6), with each zik replaced by its current conditional expectation ẑik, is max-
imized with respect to the parameters (see Figure 2). Celeux and Govaert [24] detail both
the E and M steps for the case of multivariate normal mixture models parameterized via the
eigenvalue decomposition in (4). Under certain conditions (Boyles [16], Wu [66], McLachlan
and Krishnan [47]), the method can be shown to converge to a local maximum of the mixture
likelihood (2). Although the conditions under which convergence has been proven do not
always hold in practice, the method is widely used in the mixture modeling context with
good results. Moreover, for each observation i, (1−maxk z

∗
ik) is a measure of uncertainty in

the associated classification (Bensmail et al. [9]).
The EM algorithm for clustering has a number of limitations. First, the rate of conver-

gence can be very slow. This does not appear to be a problem in practice for well-separated
mixtures when started with reasonable values. Second, the number of conditional probabil-
ities associated with each observation is equal to the number of components in the mixture,
so that the EM algorithm for clustering may not be practical for models with very large num-
bers of components. Finally, EM breaks down when the covariance matrix corresponding to
one or more components becomes ill-conditioned (singular or nearly singular). In general it
cannot proceed if clusters contain only a few observations or if the observations they contain
are very nearly colinear. If EM for a model having a certain number of components is applied
to a mixture in which there are actually fewer groups, then it may fail due to ill-conditioning.

A number of variants of the EM algorithm for clustering presented above have been
studied. These include the stochastic EM or SEM algorithm (Broniatowski, Celeux and
Diebolt [18], Celeux and Diebolt [22]), in which the ẑik are simulated rather than estimated
in the E-step, and the classification EM or CEM algorithm (Celeux and Govaert [23]),
which converts the ẑik from the E-step to a discrete classification before performing the M-
step. The standard k-means algorithm can be shown to be a version of the CEM algorithm
corresponding to the uniform spherical Gaussian model Σk = λI [23].
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initialize ẑik (this can be from a discrete classification (5))

repeat

M-step: maximize (6) given ẑik (fk as in (3)

nk ← ∑n
i=1 ẑik

τ̂k ← nk
n

µ̂k ←
∑n
i=1 ẑikxi
nk

Σ̂k : depends on the model — see Celeux and Govaert [24]

E-step: compute ẑik given the parameter estimates from the M-step

ẑik ←
τ̂kfk(xi | µ̂k , Σ̂k)∑G
j=1 τ̂jfj(xi | µ̂j , Σ̂j)

, where fk has the form (3).

until convergence criteria are satisfied

Figure 2: EM algorithm for clustering via Gaussian mixture models. The strategy described in
this paper initializes the iteration with indicator variables (5) corresponding to partitions from
hierarchical clustering, and terminates when the relative difference between successive values of the
mixture loglikelihood falls below a small threshold.
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2.4 Bayesian Model Selection in Clustering

One advantage of the mixture-model approach to clustering is that it allows the use of
approximate Bayes factors to compare models. This gives a systematic means of selecting
not only the parameterization of the model (and hence the clustering method), but also the
number of clusters. For a recent review of Bayes factors emphasizing the underlying concepts
and scientific applications, see Kass and Raftery [41].

The Bayes factor is the posterior odds for one model against the other assuming neither is
favored a priori. Banfield and Raftery [7] used a heuristically derived approximation to twice
the log Bayes factor called the ‘AWE’ to determine the number of clusters in hierarchical
clustering based on the classification likelihood. When EM is used to find the maximum
mixture likelihood, a more reliable approximation to twice the log Bayes factor called the
Bayesian Information Criterion or ‘BIC’ (Schwarz [59]) is applicable:

2 log p(x|M) + const. ≈ 2lM(x, θ̂)−mMlog(n) ≡ BIC,

where p(x|M) is the (integrated) likelihood of the data for the model M, lM(x, θ̂) is the
maximized mixture loglikelihood for the model, and mM is the number of independent
parameters to be estimated in the model. The number of clusters is not considered an
independent parameter for the purposes of computing the BIC. If each model is equally likely
a priori, then p(x|M) is proportional to the posterior probability that the data conform to
the model M. Accordingly, the larger the value of the BIC, the stronger the evidence for
the model.2

The fit of a mixture model to a given data set can only improve (and the likelihood
can only increase) as more terms are added to the model. Hence likelihood cannot be used
directly in assessment of models for cluster analysis. In the BIC, a term is added to the
loglikelihood penalizing the complexity of the model, so that it may be maximized for more
parsimonious parameterizations and smaller numbers of groups than the loglikelihood. The
BIC can be used to compare models with differing parameterizations, differing numbers of
components, or both. Bayesian criteria other than the BIC have been used in cluster analysis
(e. g. Bock [12], Binder [11]). Although regularity conditions for the BIC do not hold for
mixture models, there is considerable theoretical and practical support for its use in this
context [43, 58, 27, 21, 51].

A standard convention for calibrating BIC differences is that differences of less than 2
correspond to weak evidence, differences between 2 and 6 to positive evidence, differences
between 6 and 10 to strong evidence, and differences greater than 10 to very strong evidence
(Jeffreys [40], Kass and Raftery [41]).

2.5 Model-Based Strategy for Clustering

In practice, agglomerative hierarchical clustering based on the classification likelihood (1)
with Gaussian terms often gives good, but suboptimal partitions. The EM algorithm can
refine partitions when started sufficiently close to the optimal value. Dasgupta and Raftery

2Kass and Raftery [41] and other authors define the BIC to have the opposite sign as that given here, in
which case the smaller (more negative) the BIC, the stronger the evidence for the model. We have chosen to
reverse this convention in order to make it easier to interpret the plots of BIC values that we present later.
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[27] were able to obtain good results in a number of examples by using the partitions pro-
duced by model-based hierarchical agglomeration as starting values for an EM algorithm for
constant-shape Gaussian models, together with the BIC to determine the number of clusters.
Their approach forms the basis for a more general model-based strategy for clustering:

• Determine a maximum number of clusters to consider (M), and a set of candidate
parameterizations of the Gaussian model to consider. In general M should be as small
as possible.

• Do agglomerative hierarchical clustering for the unconstrained Gaussian model,3 and
obtain the corresponding classifications for up to M groups.

• Do EM for each parameterization and each number of clusters 2, . . . ,M , starting
with the classification from hierarchical clustering.

• Compute the BIC for the one-cluster model for each parameterization, and for the
mixture likelihood with the optimal parameters from EM for 2, . . . ,M clusters. This
gives a matrix of BIC values corresponding to each possible combination of parame-
terization and number of clusters.

• Plot the BIC values for each model. A decisive first local maximum indicates strong
evidence for a model (parameterization + number of clusters).

It is important to avoid applying this procedure to a larger number of components than
necessary. One reason for this is to minimize computational effort; other reasons have been
discussed in Section 2.3. A heuristic that works well in practice is to select the number of
clusters corresponding to the first decisive local maximum (if any) over all the parameteriza-
tions considered. There may in some cases be local maxima giving larger values of BIC due
to ill-conditioning rather than a genuine indication of a better model (for further discussion,
see section 3.1).

2.6 Modeling Noise and Outliers

Although the model-based strategy for cluster analysis as described in Section 2.5 is not
directly applicable to noisy data, the model can be modified so that EM works well with
a reasonably good initial identification of the noise and clusters. Noise is modeled as a
constant-rate Poisson process, resulting in the mixture likelihood

L̃M(θ1, . . . , θG; τ0, τ1, . . . , τG | x) =

∏n
i=1

[
τ0

V
+

G∑

k=1

τkfk(xi | θk)
]
,

(7)

where V is the hypervolume of the data region,
∑G
k=0 τk = 1, and each fk(xi | θk) is mul-

tivariate normal. An observation contributes 1/V if it belongs to the noise; otherwise it
contributes a Gaussian term.

3While there is a hierarchical clustering method corresponding to each parameterization of the Gaussian
model, it appears to be sufficient in practice to use only the unconstrained model for initialization.
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The basic model-based procedure for noisy data is as follows. First, it is necessary to
obtain an initial estimate of the noise. Possible approaches to denoising include the nearest-
neighbor method of Byers and Raftery [20] and the method of Allard and Fraley [1], which
uses Voronöı tessellations. Next, hierarchical clustering is applied to the denoised data. In
a final step, EM based on the augmented model (7) is applied to the entire data set with the
Gaussian components initialized with the hierarchical clustering partitions, and the noise
component initialized with the result of the denoising procedure. The BIC is then used to
select the best model representing the data.

’

3 Examples

3.1 Diabetes Diagnosis

In this section we illustrate the model-based approach to clustering using a three-dimensional
data set involving 145 observations used for diabetes diagnosis (Reaven and Miller [56]).
Figure 3 is a pairs plot showing the clinical classification, which partitions the data into
three groups. The variables have the following meanings:

glucose - plasma glucose response to oral glucose,
insulin - plasma insulin response to oral glucose,
sspg - degree of insulin resistance.

The clusters are overlapping and are far from spherical in shape. As a result, many clustering
procedures would not work well for this application. For example, Figure 1 shows the
(1, 3) projection of three-cluster classifications obtained by the single-link (nearest-neighbor)
method, standard k-means, and the model-based method for an unconstrained Gaussian
mixture. Of the possible group assignments, those shown were chosen so as to minimize
the error rate in each case. The assumption of three classes is artificial for single link and
k-means, while for the model-based method the BIC was used to determine the number of
groups (see below).

Neither standard k-means nor single link perform well in this example. Two of the
clusters identified by single link are singletons, so that nearly all of the data are assigned
to one class. While all three classes resulting from standard k-means are nontrivial, two of
the classes are confined to one of the long thin extensions while the third class subsumes the
other extension as well as their conjunction. In the clinical classification, each of the two
long extensions roughly represents a cluster, while the third cluster is concentrated closer
to the origin. Most clustering methods that are currently in common use work well when
clusters are well separated, but many break down when clusters overlap or intersect.

It is important, however, to distinguish between single-link clustering and nearest-neighbor
discrimination. In discrimination, there is a ‘training set’ of data whose group memberships
are known in advance, while in clustering, all group memberships are unknown. Nearest-
neighbor discrimination assigns a data point to the same group as the point in the training
set nearest to it. It often works very well (e.g. Ripley [57]), but its success depends entirely
on the available training set.
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Figure 3: Pairs plot showing the clinical classification of the diabetes data. The symbols have the
following interpretation: squares – normal; circles – chemical diabetes; triangles – overt diabetes.

Figure 4 gives a plot of the BIC for six model-based methods (spherical models with
equal and varying volumes, constant variance, unconstrained variance, and constant shape
models with equal and varying volumes). The first local maximum (in this case also the
global maximum) occurs for the unconstrained model with three clusters, for which the
classification assignment is shown in Figure 1. For initial values in EM, we used the zik given
by equation (5) for the discrete classification from agglomerative hierarchical clustering for
the unconstrained model (λkDkAkDT

k ) in all cases, leaving the model selection to the EM
phase.

Of note is that no values of the BIC are given in Figure 4 for the spherical, varying-volume
model for 9 clusters and for the unconstrained model for 8 and 9 clusters. In these cases, the
covariance matrix associated with one or more of the mixture components is ill-conditioned,
so that the loglikelihood and hence the BIC cannot be computed. Hierarchical clustering for
the spherical, varying-volume model produces a 9-cluster solution in which one cluster is a
singleton, and for the unconstrained model it produces 8- and 9-cluster solutions in which
one cluster contains three points. Because the data are three-dimensional, a minimum of four
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Figure 4: The plot on the left shows the Bayesian Information Criterion (BIC) for model-based
methods applied to the diabetes data. The first local (also global) maximum occurs for the uncon-
strained model with three clusters. The plot on the right depicts the uncertainty of the classification
produced by the best model (unconstrained, 3 clusters) indicated by the BIC. The symbols have
the following interpretation: dots < 0.1; open circles ≥ 0.1 and < 0.2; filled circles ≥ 0.2.

points is required for the estimate of the covariance matrix to be nonsingular. The algorithms
used for EM and for computing the BIC monitor an estimate of the reciprocal condition
number (smallest to largest eigenvalue ratio) of the covariances. This latter quantity falls
in the range [0, 1], and values near zero imply ill-conditioning [34]. Computations are less
reliable for ill-conditioned problems, and as a result ill-conditioning may cause anomalies
before reaching the point of actual failure. In our implementation, EM terminates with a
warning if one or more estimated covariance matrices are judged to be too close to singularity,
and the BIC calculation produces a missing value under the same circumstances. Table 2
shows reciprocal condition estimates for six different Gaussian mixture models for up to 9
clusters. It should also be clear that EM started from partitions obtained by hierarchical
clustering should not be continued for higher numbers of clusters once ill-conditioning is
encountered.

3.2 Minefield Detection in the Presence of Noise

Figure 5 shows the results of the model-based strategy for noise (section 2.6) on simulated
minefield data (Muise and Smith [50] — see also [27]). The data arise from the processing of
a series of images taken by a reconnaissance aircraft in which a large number of points are
identified as representing possible mines, but many of these are in fact false positives (noise).
The assumption is that the imaged area does not lie completely within a minefield, and that
if there is a minefield it will occur in an area where there is a higher density of identified
points. The goals are to determine whether the image contains one or more minefields, and
to give the location of any minefields that may be present.

The initial denoising for Figure 5 was carried out using the NNclean procedure for nearest-
neighbor denoising [20]. The BIC is clearly maximized at a value of 3 (2 clusters plus
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Table 2: Minimum reciprocal condition estimates for covariances in model-based methods applied
to the diabetes data. Rows correspond to models and columns to numbers of components. Values
near zero are cases in which there is either a very small cluster, or one whose points are very nearly
colinear.

1 2 3 4 5 6 7 8 9
λI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λkI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0
Σ 0.33 0.062 0.10 0.047 0.053 0.053 0.053 0.027 0.031
Σk 0.33 0.020 0.0060 0.0064 0.0067 10−7 10−7 10−32 10−32

λDkADT
k 0.0025 0.0048 0.0044 0.0049 0.0072 0.0070 0.0070 0.0017 0.0024

λkDkADT
k 0.0025 0.0035 0.0070 0.0065 0.0065 0.0063 0.0046 0.0039 0.0027

noise), and favors the uniform-shape, equal-volume model. The two clusters together give
an accurate reconstruction of the actual minefield.

It should be noted that the method is sensitive to the value of V , the assumed volume of
the data region. Here it is clear that V is the area of the image; Banfield and Raftery [7] and
Dasgupta and Raftery [27] similarly used the volume of the smallest hyperrectangle with sides
parallel to the axes that contains all the data points. However, this value could overestimate
V in many cases. Another possibility is to take V to be the smallest hyperrectangle with
sides parallel to the principal components of the data that contains all the data points.
Our implementation uses the smaller of these two alternatives as a default, but also allows
specification of V by the user. A better solution might be to use the volume of the convex
hull of the data, although this may not be practical to compute in higher dimensions.

4 Software

Software implementing state-of-the-art algorithms for hierarchical clustering [32] and EM
based on the various parameterizations of Gaussian clustering models is available through
the internet — for details see

http://www.stat.washington.edu/fraley/mclust/soft.shtml

Included are functions that incorporate hierarchical clustering, EM, and BIC in the model-
based cluster analysis strategy described in this paper. This software is designed to interface
with the commercial interactive software S-PLUS4. An earlier version of the model-based
hierarchical clustering software is included in the S-PLUS package as the function mclust.
Subscription information for a mailing list for occasional announcements such as software
updates can also be found on the same web page.

An S-PLUS function NNclean implementing the nearest neighbor denoising method [20]
is available at http://lib.stat.cmu.edu/S/nnclean.

4MathSoft Inc., Seattle, WA USA — http://www.mathsoft.com/splus
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Model-based Classification

Figure 5: Model-based classification of a simulated minefield with noise. Hierarchical clustering
was first applied to data after 5 nearest neighbor denoising. EM was then applied to the full data
set with the noise term included in the model.

5 Discussion

We have described a clustering methodology based on multivariate normal mixture models
and shown that it can give much better performance than existing methods. This approach
uses model-based agglomerative hierarchical clustering to initialize the EM algorithm for
a variety of models, and applies Bayesian model selection methods to determine the best
clustering method along with the number of clusters. The uncertainty associated with the
final classification can be assessed through the conditional probabilities from EM.

This approach has some limitations, however. The first is that computational methods
for hierarchical clustering have storage and time requirements that grow at a faster than
linear rate relative to the size of the initial partition, so that they cannot be directly applied
to large data sets. One way around this is to determine the structure of some subset of the
data according to the strategy given here, and either use the resulting parameters as initial
values for EM with all of the data, or else classify the remaining observations via supervised
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classification or discriminant analysis [7]. Bensmail and Celeux [8] have developed a method
for regularized discriminant analysis based on the full range of parameterizations of Gaussian
mixtures (4). Alternatively, fast methods for determining an initial rough partition can be
used to reduce computational requirements. Posse [55] suggested a method based on the
minimum spanning tree for this purpose, and has shown that it works well in practice.

Second, although experience to date suggests that models based on the multivariate
normal distribution are sufficiently flexible to accommodate many practical situations, the
underlying assumption is that groups are concentrated locally about linear subspaces, so
that other models or methods may be more suitable in some instances. In Section 3.2,
we obtained good results on noisy data by combining the model-based methodology with
a separate denoising procedure. This example also suggests that nonlinear features can in
some instances be well represented in the present framework as piecewise linear features,
using several groups. There are alterative models in which classes are characterized by
different geometries such as linear manifolds (e. g. Bock [12], Diday [29], Späth [61]). When
features are strongly curvilinear, curves about which groups are centered can be modeled by
using principal curves (Hastie and Stuetzle [38]). Clustering about principal curves has been
successfully applied to automatic identification of ice-floe contours [5, 6], tracking of ice floes
[3], and modeling ice-floe leads [4]. Initial estimation of ice-floe outlines is accomplished by
means of mathematical morphology (e.g. [39]). Principal curve clustering in the presence of
noise using BIC is discussed in Stanford and Raftery [62].

In situations where the BIC is not definitive, more computationally intensive Bayesian
analysis may provide a solution. Bensmail et al. [9] showed that exact Bayesian inference via
Gibbs sampling, with calculations of Bayes factors using the Laplace-Metropolis estimator,
works well in several real and simulated examples.

Approaches to clustering based on the classification likelihood (1) are also known as
classification maximum likelihood methods (e. g. McLachlan [45], Bryant and Williamson
[19]) or fixed-classification methods (e. g. Bock [14, 13, 15]). There are alternatives to the
classification and mixture likelihoods given in section 2.2, such as the classification likelihood
of Symons [64]

LC(θ1, . . . , θG; τ1, . . . , τG; γ1, . . . , γn | x)

=
∏n
i=1 τγifγi(xi | θγi),

and the posterior likelihood of Anderson [2]

LP (θ1, . . . , θG; τ1, . . . , τG; z11, z12, . . . , znn | x)

=
∏G
k=1

∏n
i=1 τ

zik
k f(xi | θk)zik .

The former is the complete data likelihood for the EM algorithm when the zik are restricted
to be indicator variables (5), while the later has the same form as the complete data likelihood
for the EM algorithm, but includes the zik as parameters to be estimated. Fuzzy clustering
methods (Bezdek [10]), which are not model-based, also provide degrees of membership for
observations.

The k-means algorithm has been applied not only to the classical sum-of-squares crite-
rion but also to other model-based clustering criterion (e. g. Bock [12, 13, 15], Diday and
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Govaert [30], Diday [29], Späth [61], Celeux and Govaert [24]). Other model-based clus-
tering methodologies include Cheeseman and Stutz [25, 63], implemented in the AutoClass

software, and McLachlan et al. [46, 48, 54], implemented in the EMMIX (formerly MIXFIT)
software. AutoClass handles both discrete data and continuous data, as well as data that
has both discrete and continuous variables. Both AutoClass for continuous data and EMMIX

rely on the EM algorithm for the multivariate normal distribution; EMMIX allows the choice
of either equal, unconstrained, or diagonal covariance matrices, while in Autoclass the co-
variances are assumed to be diagonal. As in our approach, AutoClass uses approximate
Bayes factors to choose the number of clusters (see also Chickering and Heckerman [26]),
although their approximation differs from the BIC. EMMIX determines the number of clusters
by resampling, and has the option of modeling outliers by fitting mixtures of multivariate
t-distributions (McLachlan and Peel [49]). In Autoclass, EM is initialized using random
starting values, the number of trials being determined through specification of a limit on the
running time. Options for initializing EM in EMMIX include the most common heuristic hier-
archical clustering methods, as well as k-means, whereas we use the model-based hierarchical
clustering solution as an initial value.
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