Roger Rosenkrantz

Why Glymour Is a Bayesian

In the third chapter of his book Theory and Evidence, Clark Glymour
explains why he is not a Bayesian. I shall attempt to show, on the contrary,
that he is a Bayesian, more so than many who march under that banner.

1. Bootstrapping and Bayesian Inference

The central problem his book addresses is to explain how findings in one
(observational) vocabulary can evidence propositions stated in a different
(theoretical) vocabulary. The solution offered is that a hypothesis is
confirmed with respect to a theory by deducing instances of that hypothesis
from the evidence and assumptions of the theory, where these assumptions
may include the very hypothesis under consideration. (It is the latter
feature that leads Glymour to label the procedure “bootstrapping.”)
Confirmation is thus a ternary relation linking a bit of evidence ¢ to a
hypothesis h by way of a background theory T. In addition, Glymour
requires that the observation or experiment that issues in e be such that it
could have issued in a disconfirming, rather than a confirming, instance. In
short, the experiment must place the hypothesis in jeopardy.

Both features are nicely illustrated by Glymour’s discussion of the
hypothesis h, common to Ptolemaic and Copernican astronomy, that a
planet’s period increases with its distance from the center of motion. His
point is that h is testable (hence confirmable) relative to the Copernican
theory but is not relative to the Ptolemaic. For in Copernican astronomy,
observed planetary positions can be used to determine the relative
distances of the planets from the sun. And using the earth’s known period of
365.2425 days, the directly observable synodic periods (the times between
successive superior conjunctions when earth, sun, and planet all lie on a
line) determine the sidereal periods (or time for a complete circuit of the
sun), and so the latter may be inferred from the observations as well. We
find, for example, that the maximal elongation from the sun is larger for
Venus than Mercury, whence Venus’s orbit of the sun must contain
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Mercury’s. Then h predicts that Venus will have the longer (sidereal) -
period, and hence the longer synodic period. This prediction is borne out
by observation. If, however, the observed synodic periods satisfied the
reverse inequality, we would have instead a counterinstance of 4. Relative
to Copernican theory, then, the observed positions and synodic periods do
place h in jeopardy. But as there is no like determination of the relative
sizes of the planetary orbits in Ptolemaic astronomy,  cannot.be tested or
confirmed relative to that theory. Instead, Ptolemaic astronomers simply
assumed h in order to fix the order of the planets.

That the hypothesis h stands in this relation to the two theories is clearly
a result of the fact that relative distances from the center of motion are
deducible from observations in the Copernican theory but not in the
Ptolemaic. That is to say, it results from the greater simplicity or
overdetermination of the Copernican theory. As we will see, greater
overdetermination renders a theory more highly confirmable on Bayesian
grounds. This already suggests a relation between Glymour’s account of
evidence and a Bayesian account very different from opposition, but let us
look more closely.

For ¢ to confirm h relative to T, Glymour first requires that e be an
instance of k in Hempel's sense. Hempel's satisfaction criterion effectively
equates confirming observations with conforming observations, and is of
course strongly at odds with a Bayesian account of confirmation based on
positive relevance. From a Bayesian point of view, Hempel’s “positive
instances” are confirmatory only when they happen to be consequences or
verified predictions of the hypothesis. This suggests opposition, and yet it
is surely very striking that Glymour’s examples are all most naturally
interpreted as Hempelian instances of this more restricted kind! This is
perfectly clear in the example from astronomy, in which we can imagine
first ascertaining that the maximal elongation is greater for Venus than
Mercury. Then the hypothesis A relating period to orbital radius predicts
that Venus will be found to have a longer synodic period than Mercury (to
overtake Earth less frequently). Therefore, using Copernican theory, the
synodic periods are restricted to satisfy a simple inequality. Similarly, in
the examples of theories formulated as equations (pp. 112 ff.), overdetermi-
nation of the theory expresses itself in the fact that different subsets of the
equations can be solved to yield different determinations of a theoretical
quantity, and the predictions are then of the form that these different
determinations will agree. In all of these cases, talk of deducing an instance
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of a hypothesis from theoretical assumptions can be translated without loss
into talk of verifying a prediction based on the hypothesis and the
subsidiary assumptions.

Consider next the (Popperian) requirement that the observation or
experiment place the hypothesis in jeopardy. As Glymour phrases it (p.
127), “the deduction is such that it does not guarantee that we would have
gotten an instance of the hypothesis regardless of what the evidence might
have been.” That is, the relevant observation might have issued in other
outcomes from which a counterinstance or disconfirming instance of the
considered h would have been deducible, using T, as in the example from
astronomy. We may think of the evidence e, therefore, as representing a
particular subset of the allowed values of the observable quantities.
Glymour’s first condition is that the actually observed values do indeed fall
in the allowed subset. His second (Popperian) condition is that the
complement of the allowed subset be nonempty. If we equate possible
outcomes with those of positive probability, his account of “e confirms h
relative to T” comes to this:

(1.1) P(e/h,T) = 1 and P(e/T) < 1.

This looks very much like hypothetico-deduction (see Glymour’s own
formulation on p. 168).

More to the point, the two conditions of (1.1) are sufficient that e confirm
I, relative to T on a Bayesian account of confirmation. The second condition
of (1.1) is definitely needed. Indeed, if we wish, more generally, to
incorporate cases in which e is not a consequence of h and T, it is natural to
replace (1.1) by the weaker condition:

(1.2) P(e/T) < P(e/h,T),

which merely expresses the positive relevance of h to e against the
theoretical background T. (Notice that (1.1) entails (1.2), but not con-
versely, although the second part of (1.1) is entailed by (1.2).)
Glymour hankers after conditions that further constrain the confirmation
relation. As we shall see, his chief objection to hypothetico-deductive and
Bayesian approaches is that they are too liberal, admitting as confirmatory
items of evidence that we should not countenance as such. From this
viewpoint, it is ironic that the Bayesian reconstruction of the bootstrapping
argument just offered is far more restrictive than the one based on
Hempelian confirmation, for Hempel’s criterion, we have seen, is far less
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austere than the positive relevance criterion (1.2). And inasmuch as
Glymour’s own examples seem to depend only on Hempelian instances
that happen to be verified predictions or consequences of the hypothesis,
one would think that Glymour himself would prefer the Bayesian analysis
of bootstrapping to the Hempelian.

In fact, he does express misgivings about Hempel’s satisfaction criterion
(in his closing chapter), pointing out that it does not permit confirmation of
sentences having only infinite models or confirmation by “partial in-
stances” (e.g., of “everything bears the relation R to everything” by “a
bears R to b”). Yet these criticisms suggest that Hempel’s criterion is too
narrow, whereas one would have thought that it is too broad, as shown, for
example, by the paradoxes of confirmation. At any rate, in a paper that has
since appeared (Glymour 1981), Glymour expands some of the replies he
offered to the version of this paper presented at the conference. He shows
how to connect bootstrapping to a Bayesian account (essentially as above)
but continues to insist that Bayesian methods are too permissive. The main
thrust of the paper is to deny what I had argued in my original presentation:
that bootstrapping reduces to a nuts-and-bolts form of Bayesian confirma-
tion theory.

2. Is Bayesian Methodology Too Weak?

Glymour is hardly the first to press this line of criticism or urge that an
adequate methodology should impose additional strictures of a non-
Bayesian kind. Before I take up his specific objections in detail, it may be
well to look briefly at some earlier criticisms of a similar kind. This will not
only set Glymour’s reservations in better perspective, but it will allow us to
highlight additional parallels between his account of evidential support and
the present author’s.

(a) High content versus high probability

Perhaps the most noteworthy previous attempt to show that Bayesian
methodology is too liberal comes from Sir Karl Popper. His chief criticism
seems to be that Bayesians cannot account for the demand for content. For
if high probability is the ens realisimum of inquiry, it is best attained by
putting forth theories of low content that run a minimal risk of exposure to
contrary or falsifying evidence. That confirmation is easily attained if
sought, is a recurring theme in Popper. This accounts, he thinks, for the
otherwise surprising “success” of Freudians and Marxists. And let us admit




WHY GLYMOUR IS A BAYESIAN 73

that this criticism has real bite when applied to Hempelian confirmation.
For if consistency with our hypotheses is all we demand, then confirmation
is indeed easy to come by. The moral Popper draws is that genuine
confirmation or support can be obtained only by running risks. And we run
risks; first by putting forward “bold conjectures” or theories of high
content, and second by subjecting our theoretical conjectures to stringent
tests and searching criticism. In fact, Popper carries this line of thought
right to its logical conclusion, insisting that confirmation can result only
from a sincere attempt to overthrow or refute a conjecture. (We have
already seen that this “nothing ventured nothing gained” philosophy is
incorporated in Glymour’s account of confirmation.) In resting content
with nothing short of a sincere attempt at refutation, Popper enters the
shadowy realm of the psycho-logistic. Although this may seem somewhat
out of character, it is important to recognize this strain in his thinking, for
we shall encounter it below in the writings of Popper’s follower Imre
Lakatos. From a Bayesian standpoint, it would be most natural to equate a
stringent or sensitive test with one that has a low probability of issuing in a
conforming outcome if in fact the conjecture is false. But Popper has been
at best ambivalent about attempts to capture what he is saying in
probabilistic terms.

Let me now sketch a Bayesian response to Popper’s criticism, one that I
have developed elsewhere in greater detail (especially in chapters 5-7 of
Rosenkrantz 1977), although the present treatment contains important
additions and qualifications.

To begin with, Popper’s notion of content seems unduly narrow.
Roughly, he equates a statement’s content with the set of “basic state-
ments” it Jogically excludes. In practice, though, a theory or model does
not logically exclude any outcome of a relevant experiment. This is patently
true of a probability model. As determined by a suitable statistical criterion
of fit, the outcomes will be in only more or less good agreement with such a
model. This will also be true ofa deterministic model, for empirical study of
such a model is always coupled with a probabilistic theory of errors of
observation. Moreover, any theory, probabilistic or deterministic, will
typically have adjustable parameters that must be estimated from the data
used to test the theory. And the number of parameters that must be
estimated is surely relevant to any assessment of a theory’s content.

A natural way of extending Popper’s notion to accommodate degrees of
fit and numbers of parameters is to measure a theory’s content (or
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simplicity, or overdetermination) relative to a contemplated experiment by
the proportion of possible outcomes of the experiment that the theory “fits”
by the lights of a chosen probabilistic criterion. I term this proportion the
theory’s sample coverage for the given experiment. And for theories with
adjustable parameters, sample coverage is just the union of the sample
coverages of the special cases of the theory obtained by assigning definite
values to all free parameters. The smaller its sample coverage (i.e., the
narrower the range of experimental findings it accommodates ina probabil-
istic sense); the greater a theory’s content. And, I hasten to add, the
contemplated experiment relative to which sample coverage is computed
may be a composite experiment comprising several applications of the
theory, or even its entire intended domain of applications.

The concept of sample coverage captures a good deal of what is packed
into our ordinary understanding of content or simplicity. Thus quantitative
theories are simpler (have more content) than their qualitative counter-
parts, and unifications of theory (e.g., of electricity and magnetism,
Mendelian genetics and cytology, or quantum theory and relativity)
represent (usually major) simplifications of theory, for experiments for-
merly regarded as independent then appear as highly dependent. Above
all, we complicate a theory when we enlarge its stock of adjustable
parameters, for each parameter we add extends the range of possible
findings that the theory can accommodate. (It doesn’t follow, however, that
we can compare the content of two theories merely by counting parame-
ters.) The explication of content in terms of sample coverage and the
relativization to an experiment help us to avert some familiar difficulties,
such as irrelevant conjunction (which I discuss below in connection with
Glymour's critique of hypothetico-deductivism). But the really essential
point is that by using a Bayesian index of support, we can show that simpler
theories are more confirmable by conforming data—they have, so to speak,
higher cognitive growth potential. And this already provides a partial
answer to Popper’s charge that Bayesians cannot-explain our preference for
content or simplicity.

To illustrate the connection, consider a composite hypothesis H with
special cases hy, ..., hy. (H is the disjunction of the mutually exclusive
h;'s.) Applying Bayes’s formula,

P(H/e) = 3;P(hi/e)
= 3,P(e/h)P(hy)/P(e)
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= [P(H)/P(e)][Z:P(e/hy)P(hy)].

P(H)
I call this the geheralized Bayes formula and the bracketed quantity, which
mirrors the evidence, the average likelihood of H. Thus

(2.1)  P(H/e)=P(H)[%:P(e/h;) P(hy)]

P(e) P(H)

expresses the posterior probability of H as the product of its prior
probability by the average likelihood divided by P(e), which I term the
expectedness of e. (Note: P(e) must always be computed reélative to the
considered partition of hypotheses.) In practice, of course, one has a
continuum of special cases corresponding to different settings of a real-
valued parameter (or vector of parameters), and then the summation of
(2.1) gives way to an integral. Where the parameter is freely adjustable
(i.e., where the theory itself gives no clue as to its value), an “uninforma-
tive” parameter distribution should be employed. In this way we impose
the maximum penalty for lack of content. But in any case it is clear that this
penalty will be higher when there are more special cases over which to
average the likelihood. A simple example will make this clear.
Ptolemaic astronomy tells us that the center C of Venus’s epicycle lies (at
all times) on the line ES joining Earth and Sun, but it imposes no further
constraint. (Even the constraint that C lies always on ES is rather ad hoc; it
does not grow organically out of a geocentric conception but is inferred
from observation.) Applied to Venus, the Copernican theory may be
considered as the special case of the Ptolemaic that locates C at the point S,
the center of the sun. Reflect for a moment on the contrast: one theory
confines C to a line, the other to a single point of that line! To see the
connection with support, let us look first at the situation in qualitative
terms. Qualitatively, there are just three possibilities: (a) C lies close to S
with § inside the epicycle, (b) S lies between E and C on line ES with S
outside the epicycle, or (c) C lies between E and S with S outside the
epicycle. As telescopic observation of the phases of Venus first disclosed,
possibility (a) is realized. Hence the Copernican special case has an average
likelihood of 1, and the Ptolemaic theory has an average likelihood of 1/3.
This gives a “Bayes factor” (or ratio of average likelihoods) of 3:1 in favor of
Copernicus. This is not very impressive, but if, in quantitative terms, we
could show that C = § (within the limits of observational accuracy), the
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Bayes factor in favor of Copernicus would be effectively infinite. For the
average likelihood of the Ptolemaic theory would be close to zero (we
would be integrating over the entire line ES and only special cases
corresponding to settings of C close to S would have appreciable likeli-
hoods). Historically, of course, the phases of Venus did not (and could not)
show that C = S. I am drawing this comparison only to illustrate the
incomparably greater cognitive growth potential of a simpler theory.

Notice that I have been using the average likelihood to compare a theory
with a special case of itself. I see nothing wrong with that. Of course, if we
wanted to compare the two in terms of probability, we should have to take
logical differences, equating (in our example) the Copernican special case
with the hypothesis C = S and the Ptolemaic alternative with C #S. As
removal of a single point does not affect an-integral, the relevant average
likelihoods would be the sarfie. Failure to see this possibility seems to be
most of what lies behind Popper’s oft-repeated equation of simpler
hypotheses with less probable hypotheses, and the consequent denial that
one can account for the importance of simplicity by connecting it to
probability.

To resume the main thread of argument, we have given a direct and
compelling Bayesian reason for valuing high content and simplicity. Some
Popperians will scoff, nevertheless, saying that we are just mimicking
Popper’s methodology in Bayesian terms, trying, as it were, torecreate the
flavor of the gospel in the vulgar tongue. For Bayesians still seek high
probability first and foremost, even if, coincidentally, the way to obtain it is
to find the simplest theory that can be squared with the “hard” data. But
the charge is unfounded. Granted that probability is the yardstick by which
Bayesians compare rival conjectures, it doesn’t follow that high probability
is the goal of any scientific inquiry. The yardstick is simply the means by
which we measure our progress towards the goal, whatever the goal may
be. And for my own part, I am quite comfortable with Popper’s identifica-
tion of that goal as the attainment of ever more truthlike theories, i.e., of
theories that are closer and closer to the truth. Moreover, highly truthlike
theories are just those that combine a high degree of content with a high
degree of accuracy—in LJ. Good’s happy phrase, they are “improbably
accurate”’—and a precise explication can be given along Bayesian lines by
equating a theory’s truthlikeness with its expected support, i.e., its support
averaged over the outcomes of a relevant experiment. Then a theory is
close to the truth when it is strongly supported by those outcomes of the
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experiment that are highly probable, conditional on the truth. Insofar as
Bayesian support is a (determinate) blend of accuracy and content, the
same will be true of our concept of truthlikeness. Again, the probabilistic
explication appears to escape notorious difficulties associated with its more
narrowly deductive Popperian counterpart (see Rosenkrantz 1980 for a
fuller account), but these-matters are somewhat peripheral to our present
concerns.

Up to this point in our story, it may well appear that I am just offering a
sort of Bayesification of Popper’s notion of content. Significant differences
emerge, however, when our accounts of the role simplicity plays in
theorizing are compared.

Popper connects simplicity with falsifiability and quotes with approval
William Kneale’s remark that “the policy of assuming always the simplest
hypothesis which accords with the known facts is that which will enable us
to get rid of false hypotheses most quickly.” (Popper 1959, p. 140) There is,
to be sure, a pervasive equivocation in Popper on “falsifiability,” which is
used in both a semantical sense (namely, the number of basic statements a
theory excludes) and a pragmatic sense (namely, the ease with which a false
conjecture can be exposed as such). And it is not generally true that
conjectures that are more falsifiable in the semantic sense are more readily
disposed of. But perhaps this is a quibble. The more serious criticism
levelled at Popper is that mere elimination of false pretenders does not
necessarily leave one closer to the truth. For in theorizing, one seldom has
an exhaustive list of theoretical possibilities at hand. Indeed, there is a
certain temptation to.stand on its head Popper’s taunt that confirmation is
easily obtained if sought, and maintain that it is rather falsification that is
easily obtained if sought. One can easily imagine all sorts of Goodmanesque
(gruelike) alternatives to well-established hypotheses that would be easy to
falsify. At the very least, Popper unduly neglects considerations of
plausibility in theory construction; and more than that, there is something
seriously askew in his view that interesting truth is most efficiently attained
via elimination of false conjectures. Perhaps we can best appreciate my
misgivings by turning forthwith to a Bayesian account of these matters.

We must recognize, to begin with, that Bayesian confirmation or
support is not easily obtained. For it requires both accuracy and simplicity.
In fact, the ideal case is that in which the theory fits all and only those
experimental outcomes that actually occur (e.g., just the actually observed
frequencies with which the planets retrogress). From this perspective, it is
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not at all surprising to find that “particle physicists are in the habit of

. thinking that anything not expressly forbidden by nature is compulsory.”

(Calder 1979, p. 186) And in the same vein, C. Lanczos writes:
In 1929 he [Einstein] talked of the “Promethean age of physics,” in
which one is no longer satisfied with the discovery of the laws of
nature, but one wants to know why nature is the way it is and cannot
be anything else. . . The impressive feature of Einstein’s gravitational
theory was that if one wanted to characterize a Riemannian geometry
by the simplest set of field equations, one automatically arrived at
Einstein’s gravitational equations, which gave a complete explanation

of Newtonian gravity, without the necessity of a special force of
gravitation. (1967, pp. 185-186)

There is much more to efficient theorizing, however, than fitting all and
only what occurs. For one thing, the “hard facts” vary in hardness, and it
will often be impossible to accommodate all the mass of partially conflicting
data. And, in any case, it seems advisable to begin with special cases of the
complex system or process of study and “put in our ingredients one at a
time.” (Bartlett 1975)

What are some of the things to be said for starting with a deliberately
oversimplified model? First, there is mathematical tractability. We can
construct and explore the properties of simple models rather easily; highly
complicated models may require ‘techniques that lie beyond the present
reach of mathematics. Second, there is economy of effort. About his search
for an adequate model of DNA, James Watson writes:

We could thus see no reason why we should not solve DNA in the
same way. All we had to do was to construct a set of molecular models
and begin to play—with luck, the structure would be a helix. Any
other type of configuration would be much more complicated.
Worrying about complications before ruling out the possibility that
the answer was simple would have been damned foolishness. Pauling
never got anywhere by seeking out messes. .. (1968, pp. 47-48)

And later he adds:

Finally over coffee 1 admitted that my reluctance to place the bases
inside partially arose from the suspicion that it would be possible to
build an almost infinite number of models of this type. (p. 139)

A third advantage that springs to mind is feedback. A workable model of
even a highly schematic version of the system studied provides information
about how the full system works in special circumstances or when certain
variables are controlled or confined to subsets of their allowable ranges,



WHY GLYMOUR'IS A BAYESIAN 79

and this allows the model builder to see precisely how his simplified model
breaks down when complicating factors are introduced. This provides
insight into what sorts of complications will most dramatically improve
goodness-of-fit.

In sharp contrast to Popper’s account, then, far from aiming at rejection
of false theoretical alternatives, theoreticians seek a model that works
tolerably well in circumscribed contexts (a sort of “first approximation”)
and then (“putting in their ingredients one at a time”) seek ways of
complicating or refining the picture to capture “second-order effects” or
finer details. In short, the development of a theory occurs less by
eliminative induction than by successive approximation or “structured
focusing.” And Popper’s account is weakest in describing what might be
called the “developmental phase.” Popper and Lakatos demand that a
“progressive” modification of theory increase testability and content and
that some of the excess content be corroborated. But, almost by definition,
a complication of theory will increase sample coverage and thereby reduce
content, so that, in effect, Popperian methodology condemns any compli-
cation of theory out of hand, no matter how much it improves accuracy! The
more liberal Bayesian approach, on the other hand, qualifies a complica-
tion as “progressive” just in case the accuracy gained is enough to offset the
loss of content, as determined by the precise yardstick of average
likelihood. Bayesians may speak, accordingly, of support-increasing or
support-reducing complications of theory. Persistent failure to find a
support-increasing complication to account for discrepant data certainly
looms as a difficulty for any theory (and its proponents), but no automatic
rejection is implied.

To illustrate these rather abstract remarks, consider again the problem of
the planets. The heliocentric scheme has all the planets orbiting the sun in
simple closed curves. To capture the salient features of planetary motion,
we might begin with an oversimplified heliocentric model based on
uniform coplanar sun-centered circles. This model is not very accurate, but
its major simplifications already stand out quite clearly. For the relative
sizes of the orbits can be determined from observation of just a few
positions per planet, and all the major irregularities of planetary mo-
tion—the number and frequency of retrogressions, variations in apparent
brightness and diameter, and so forth—are accounted for at one stroke as
effects of the earth’s motion (as Copernicus emphasized in Book I of De
Revolutionibus). Moreover, the theory fits only the behaviors actually
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observed. The contention that the complexity of the full system Coperni-
cus proposed obscured these simplifications strikes me as highly question-
able. Astronomers like Brahe and Kepler distinguished quite clearly
between the simplifications inherent in the heliocentric picture and the
complexities of Copernicus’s own filling out of the details. (Kepler even
accuses Copernicus of not being Copernican enough in needlessly compli-
cating his system by placing the center of planetary motion at a point near,
but distinct from, the center of the sun.) And, in point of fact, a rather
minor complication of the oversimplified model based on eccentric circles
with motion uniform about an equant point and orbital planes slightly
inclined to the ecliptic but all passing through the sun, would have
produced unprecedented accuracy.

Kepler’s refinement of the picture clearly embodies the methodological
principles stated here. Thus, in complicating a model to improve fit, one
should complicate it minimally. Kepler’s ellipses are minimal complica-
tions of circles, and, in addition, his second law retains the feature of
uniform circular motion that the radius vector sweeps out equal areas in
equal intervals of time. Finally, his third law represents a quantitative
sharpening (or simplification) of the empirical rule-of-thumb (discussed
earlier) that a planet’s period increases with its distance from the center of
motion. Because this law relates the motions of different planets, Kepler’s
laws as a whole provide a model of the planets that is, I would surmise,
comparable in simplicity to the model based on uniform circles. (Newton’s
gravitation law represents an additional simplification, imposing dynamical
constraints that exclude various kinematically possible systems of Kepler-
ian orbits as unstable.) In any case, the vastly improved accuracy of
Kepler's model renders it support-increasing. And, in addition, Kepler’s
model lends itself to a natural causal or physical interpretation in a way that
Ptolemaic and Tychonic models did not. Planets speed up as they approach
the sun and planets closer to the sun go round faster, pointing clearly to the
sun as a causal agent.

Let us look now at Glymour’s position on these matters, for again, we
find much substantive agreement in the face of proclaimed disagreement.
First, Glymour is one of the very few codefenders of the view, espoused in
chapter 7 of my 1977 book, that the Copernican theory really is simpler
than the Ptolemaic and that its greater simplicity has evidential value. “On
several grounds,” he writes, (1980, p. 198), “Copernican theory is superior
to Ptolemaic astronomy: there are properties of the bodies of the solar
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system that are presupposed by both theories, but that are indeterminable
in Ptolemaic theory whereas they can be determined within Copernican
theory.” (1980, p. 198) And he goes on to urge that this virtue rendered the
Copernican alternative the better confirmed of the two.

Similar agreement with my view that simplicity has evidential force is
found in his discussion of the classical tests of general relativity, a
discussion ostensibly designed to show that Bayesians cannot account for
the judged relative importance of the different tests. (pp. 277 fI.) After
pointing out that the anomalous advance of the perihelion of Mercury could
be accommodated by a number of theories, he writes:

Perhaps the most common and influential objection to these contend-
ers against general relativity was that, unlike Einstein’s theory, they
saved the phenomena only by employing an array of arbitrary
parameters that had to be fitted to the observations. Eddington,
barely concealing his contempt, objected against éther theories of the
perihelion advance and gravitational deflection that they were not “on
the same footing” with a theory that generated these phenomena
without any arbitrary parameters. It was pointed out that Poincaré’s
extension of Lorentz’s theory could, by proper adjustments of a
parameter, be made consistent with an infinity of perihelion advances
other than the actual one. Conversely, Einstein’s derivations of the
phenomena were praised exactly because they involved no arbitrary
parameters—and, the exception that proves the rule, also criticized
because they did. (p. 284)

No one who has digested even the very sketchy discussion of average
likelihood in this paper will have the slightest difficulty accounting for such
judgments in Bayesian terms. Glymour’s own essential agreement with the
deliverances of Bayesian analysis comes out most clearly in his chapter VIII
on curve-fitting. The application of the average likelihood index of support
to polynomial regression is taken up in chapter 11 of Rosenkrantz (1977),
and its performance is compared with that of various non-Bayesian (or
“orthodox”) tests. Glymour does not discuss either Bayesian or orthodox
approaches to curve-fitting, but he does offer a way of assessing the severity
of a test that uses a notion quite reminiscent of sample coverage:

How is severity to be compared? Suppose that we have the hypotheses
H and G and that, given prior data, the range of outcomes on a new
experiment that would be in contradiction with H is properly
contained in the range of possible outcomes that would be in

contradiction with G. .. In this sort of case, I think it is natural and
proper to regard G as more severely tested than H. (pp. 333-334)
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And later he adds, “one can try to develop, not just the crude comparison of
severity of tests I have used, but a measure of severity of tests. . ..” (p. 339)
If “consistency with the data” is understood in a probabilistic sense
admitting of degrees (really the common usage in the sciences), sample
coverage provides just such a measure. Then Glymour’s suggestion that
polynomials of lower degree “are preferred to more complex families that
also fit the data because . . . the data provide more and severer tests of the
simpler hypothesis than of the more complex one” (p. 335) will follow
- readily from a Bayesian analysis in terms of average likelihoods, if by “fit
the data” we understand “fit the data equally well.”

Itis unfortunate that a misreading of my (possibly obscure) 1976 paper on
simplicity prevented Glymour from appreciating that Bayesian analysis
delivers precisely what his own intuitions demand. He says that I fail to
show “that in curve-fitting the average likelihood of a linear hypothesis is
greater than the average likelihood of a quadratic or higher degree
hypothesis.” But of course I don’t want to show that, for it isn’t true! What
can be shown is that the average likelihood of the quadratic family will be
higher than that of the linear family when the data fit the quadratic
hypothesis sufficiently better than the linear one, whereas the latter will
enjoy higher average likelihood when the two families fit equally well.

Obviously it has not been my intention to attack Glymour’s intuitions
about simplicity. By and large, I see in him a kindred spirit, one who
recognizes both the central role simplicity plays in the deliberations of
theoreticians of all stripes and its objective evidential force. His tendency
to think that Bayesians cannot account for its role and force is perhaps
understandable in light of the extent to which the subjectivist form of the
Bayesian approach has dominated the scene, until quite recently. (Indeed,
many writers still use “Bayesian” and “subjectivist” interchangeably.)
Unlike objectivists, such as Sir Harold Jeffreys, subjectivists have laid very
little stress on average likelihood or on models with adjustable parameters,
quite possibly because the need to adopt a parameter distribution or
weighting function when employing the average likelihood index some-
what vitiates the subjectivists’ claim to be able to separate cleanly the
“subjective element” (the prior) from the “public element” (the import of
the data). At any rate, no theory of evidence that fails to handle models with
free parameters or account for the felt diminution of support that results
from adding parameters or accommodating more outcomes that might have
been but were not observed, can be taken very seriously. Simplicity looms
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as the central problem in the whole field of theory and evidence (and a
glance at Glymour’s index would tend to vindicate this judgment). To
Popper must go much of the credit for keeping the issue of simplicity alive
ata time when methodologists of a positivist persuasion were more inclined
to dismiss it as a will-of-the-wisp or consign it to the limbo of the “purely
pragmatic” or the “merely aesthetic.”

(b) Novel predictions and old evidence

Another old chestnut, closely related to the Popperian demand for
placing our conjectures in jeopardy, is the maxim that hypotheses are more
strongly confirmed by their ability to predict facts not already known.
Some would go even further and say that theories are not confirmed at all
by already known facts or previously available data. Yet, to all appearances,
Bayesian methodology is at odds with this principle. For if we think of
support or likelihood as a timeless relation between propositions (akin to
logical implication in this respect), then P(E/H) does not depend on
whether or not E was known prior to proposing H.

Scientists have, though, a curious ambivalence about this time-honored
precept. Specifically, they never fail to pay it lip-service and never fail to
disregard it in practice whenever it tends to weaken the evidence for their
own theories. Almost all the empirical support for Dalton’s atomic theory,
including the laws of constant and multiple proportions, was already
known, yet it was cited as evidence for the theory. And in his popular
account of relativity (Einstein 1916), Einstein quite expressly states that all
the facts of experience that support the Maxwell-Lorentz theory of
electromagnetic phenomena also support the special theory of relativity,
since the latter “has crystallized out of” the former. Einstein cites in
particular the experiment of Fizeau as having “most elegantly confirmed by
experiment” the rélativistic version of the law of addition for velocities,
even though that experiment had been performed more than fifty years
earlier (before relativity was even a twinkle in Einstein’s eye) and had
moreover been explained by the Maxwell-Lorentz theory. In point of fact,
there was no evidence of a “novel” sort to which Einstein could point, since
it was not then technically feasible to accelerate small particles to speeds
approaching that of light or to perform mass-energy transformations in the
laboratory. What Einstein did point out instead was the ability of relativity
theory to account for “two classes of experimental facts hitherto obtained
which can be represented in the Maxwell-Lorentz theory only by the
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introduction of an auxiliary hypothesis"—in other words, he pointed to the
greater simplicity of relativity. About the negative result of the Michael-
son-Morely experiment he writes:

Lorentz and Fitzgerald rescued the theory from this difficulty by
assuming that the motion of the body relative to the aether produces a
contraction of the body in the direction of motion, the amount of
contraction being just sufficient to compensate for the difference in
time mentioned above. Comparison with the discussion of Section XII
shows that also from the standpoint of relativity this solution of the
difficulty was the right one. But on the basis of the theory of relativity
the method of interpretation is incomparably more satisfactory.
According to this theory there is no such thing as a “specially favored”
(unique) coordinate system to occasion the introduction of the aether-
idea, and hence there can be no aether-drift, nor any experiment with
which to demonstrate it. Here the contraction of moving bodies
follows from the two fundamental principles of the theory, without the
introduction of particular hypotheses; and as the prime factor involved
in this contraction we find, not the motion in itself, to which we cannot
attach any meaning, but the motion with respect to the body of
reference chosen in the particular case in point. (1916, p. 53)

The situation was not so very different in the case of general relativity.
Einstein laid great stress on the equality of inertial and gravitational mass, a
brute fact in the old physics, but a necessary consequence of the general
principle of relativity in the new physics. Here too the difference is one of
overdetermination and has nothing to do with novelty per se. And of course
the advance of the perihelion of Mercury, predicted by general relativity,
had long been established and measured with precision (the predicted
advances in the perihelia of other planets were too small to be detectable).

Faced with these and other obvious exceptions to the precept, Lakatos
and Zahar (1975) fall back on a modified form of it that accounts a prediction
“novel” when it was not consciously used to arrive at the theory (so that the
theory explains it in passing). If taken quite literally, this proposal would
require us to read a theorist’s mind before being able to assess the evidence
for his theory (see Michael Gardner’s contribution to this volume). In any
event, they are able to argue on this basis that the stations and retrogres-
sions of the planets, the brightness of a planet at perigee, and the bounded
elongation of an inner planet from the sun, etc., all count as “novel”
predictions of the Copernican theory, though not of the Ptolemaic. They
observe that “although these facts were previously known, they lend much
more support to Copernicus than to Ptolemy, within whose system they
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were dealt with only in an ad hoc manner, by parameter adjustment”
(Lakatos and Zahar, 1975, p. 376). That is, the Ptolemaic theory could
account for these effects of the earth’s motion only by fitting additional
parameters or making additional assumptions. Could it be more clear that
the real appeal here is, not to “novelty,” but to overdetermination?

There is, to be sure, another sense of “novelty” that plays a more
important role: namely, a prediction is novel when it is unexpected on rival
theories (or on rival theories of comparable simplicity). And, of course,
Bayesians have no difficulty accounting for the force of predictions that are
“novel” in this sense.

The solution of the problem Glymour poses about old evidence (1980,
pp. 86-92) should also be clear. The puzzle is this: if an item e of evidence is
already known, then it must have probability one, and consequently, even
if a hypothesis h entails it, P(h/e) = P(e/h)P(h)/P(e) = P(h), using Bayes’s
formula, and no confirmation is registered. (This is a sort of obverse of the
charge that Bayesians are unable to account for the peculiar force of novel
predictions.) On objectivist Bayesian grounds, however, the likelihoods
P(e/h)) of the alternative hypotheses are timeless relations, and of course
P(e) must be computed relative to a considered partition of hypotheses,
hi,..., h, by the partitioning formula, P(e) = P(e/h;)P(h)
+ ... +P(e/h,)P(h,). And this quantity will be less than one, unless e is a
necessary truth. For purposes of comparing hypotheses, then, the proba-
bility of old evidence is not one, and may even be quite small. This only
shows, of course, that old evidence poses no difficulty for an objectivist
Bayesian position—a point that Glymour readily conceded at the confer-
ence. (For a subjectivist’s way of handling the problem, see Daniel
Garber’s contribution to this volume.)

What does cry out for explanation is our conviction that the ability of
general relativity to fit the already measured advance of the perihelion of
Mercury can afford just as striking a confirmation (and seem quite as
“miraculous”) as the ability of that theory to predict the precise magnitude
of the deflection of starlight passing close to the sun. While I was listening
to Glymour describe Einstein’s vicissitudes in finding a covariant theory
that would account for the advance of Mercury’s perihelion, the solution of
this puzzle suddenly became quite clear. The point is that Einstein’s
success was not assured. What is generally overlooked is that one is not
interested in finding any old theory to explain an anomaly; one seeks, in
practice, a (reasonably simple) theory of specified form. Thus Einstein
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sought a theory that satisfies the general principle of relativity. And we can
think of such a quest in the following way. One is interested, at bottom, in
the hypothesis that there exists a (not unduly complicated) theory of such-
and-such form capable of accommodating the data from a certain class of
experiments, only some of which have already been performed. That there
does exist a theory of the required form that fits the output of an already
performed experiment of the class in question affords, on straightforward
Bayesian grounds, a more or less striking confirmation of the existential
hypothesis in question. And the longer or more tortuous the derivation,
and the more different (and tenuous) the theoretical assumptions involved,
the more striking the confirmation (of all the implicated principles) will be
(as in Bohr’s derivation of the Balmer series for hydrogen).

(c) Projectibility

Hypothetico-deductive accounts face the difficulty that an observation
may be a consequence of more than one hypothesis, and, in particular, of a
“counterinductive” or “unprojectible” hypothesis. Examining an emerald
before time t and finding it green is a consequence of “All emeralds are
grue,” as well as of “All emeralds are green.” And this seems disturbing,
inasmuch as the grue hypothesis licenses the prediction that emeralds not
examined before time t are blue, hence emeralds of a different color. Since
consequences of a hypothesis are confirmatory on a Bayesian account,
some restriction of the Bayesian confirmation relation seems called for.
And, quite apart from this concern, we have been witnessing, since the
early 1950s, a search for a basis for excluding such “counterinductive
inferences.”

To be sure, Bayesian inference blocks this alleged paradox at many
points. For one thing, there is no Bayesian consequence condition that
would allow one to confirm the prediction of blue emeralds after time t.
And, more generally, there are ways of handling irrelevant conjunction.
Yet these considerations do not seem to go to the heart of the matter. For
the more serious issue here, in my view, is whether (not how) we should
drive a wedge between “projectible” (or “lawlike”) and “unprojectible”
hypotheses.

The grue hypothesis belongs to a class we might label bent or crooked.
Such hypotheses posit a breakdown of a straight counterpart in some
nonlocal region of space or time. The grue hypothesis is, admittedly, a
rather extreme case in that it posits a sharp discontinuity, but presumably
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those who view such hypotheses as absolutely unconfirmable would regard
their continuous or gradualistic modifications as equally unsavory.

And yet science is riddled with bent or crooked hypotheses, and this
should certainly make us wary of any proposal to banish them wholesale.
Nelson Goodman’s own attempt to do so, the entrenchment theory, would
list, among others, the hypotheses of relativity theory among the unprojec-
tible! For example, the Einsteinian -hypothesis “All particles subject to
constant force have linearly increasing relativistic momentum” is “overrid-
den,” in Goodman’s sense, by its Newtonian counterpart, “All parti-
cles. . .have linearly increasing momentum.” For the latter had, circa
1905, much the better entrenched consequent predicate and was, up to
that time, unviolated, supported, and unexhausted. In effect, the hypothe-
ses of special relativity posit departures from their Newtonian counterparts
that become experimentally detectable only at speeds close to the speed of
light. They are, in this respect, perfectly representative bent hypotheses.
It is no defect of Bayesian methodology that it gives such hypotheses a
hearing.

From a Bayesian point of view, lawlikeness admits of degrees and is
chiefly a function of simplicity and theoretical assimilability (as reflected in
a prior distribution). I am quite content to let it go at that, for I am
convinced that there is no fundamental distinction to be drawn between
hypotheses that are projectible or confirmable and those that are absolutely
unconfirmable. (I argue this point at greater length in Rosenkrantz 1982,
pp. 86-91)

3. Informal Assessments and Epistemic Utilities

A good theory can explain the salient facts without recourse to special
assumptions of an arbitrary kind. I have been urging that the Bayesian
theory of evidence is a theory of precisely this sort. It dispenses with ad hoc
prescriptions and so-called epistemic utilities. Genuine epistemic utilities,
like content, are automatically reflected in support (and, in effect, this
provides a criterion for distinguishing the genuine from the spurious
among them). From a strict Bayesian point of view, support isall in all. It is
not surprising to find, therefore, at least one sympathetic reviewer of my
1977 book (Jaynes 1979) wondering why I even bother with the adhockeries
that disfigure so much of the literature of scientific method. Why, indeed,
do I attempt a precise explication of simplicity when, however defined,
simplicity matters only insofar as it is reflected in support? At the other
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extreme, some critics of the Bayesian approach question its applicability to
actual scientific evidence. Glymour raises such doubts in his recent paper
when he writes:

I am inclined to doubt that, in many situations, we have either
objective probabilities or subjective degrees of belief of a sufficiently
global kind upon which we can rely to relate evidence to theory. When
theories are proposed for novel subject matters (as in some contempo-
rary social science) or when new theories are seriously considered
which deny previously accepted fundamental relationships. . ., we
may be at a loss for probabilities connecting evidence to theory. (1981,
p. 696)

These two questions may seem unrelated, not to say oppositely directed,
but, in essence, they elicit the same reply.

Although most criticism of the second kind focuses on the alleged
arbitrariness of prior probabilities of theoretical hypotheses (the passage
from Glymour tends that way), the real difficulty, more frequently, is to
compute the relevant likelihoods—a point that Patrick Suppes has empha-
sized on numerous occasions. It often happens that we can calculate
conditional outcome probabilities for a “null hypothesis™ of chance or
randomness, but we cannot calculate them for the hypotheses (of associa-
tion, or causal connection) of real interest to us. For a very simple example,
consider R.A. Fisher’s celebrated case of the tea-tasting lady, who claims
an ability to discriminate whether the tea or milk was infused first in a
mixture of milk and tea. Fisher’s design calls for the lady to classify eight
cups, of which four are milk-first and four are tea-first (and the lady knows
this). It is then easy to find the probability that she classified r of the eight
cups correctly, given that she is merely guessing; but there is no way to
calculate these probabilities on the supposition that she has some skill. The
prevalence of cases like this one explains the widespread use of tests of
statistical significance. Such tests are used to make rather informal
assessments of evidence even in cases in which no well-defined alternative
hypotheses are in view.

Now my answer to both points can be given at once. First, epistemic
utilities are important 'in precisely those contexts in which Bayesian
methods cannot be applied for inability to compute the relevant likeli-
hoods. (My earlier, often outspoken, criticism of epistemic utilities is here
softened to this extent.) At the same time, however, our informal
assessments in these cases are (and ought to be) guided by the methodolog-
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ical insights that formal Bayesian analysis affords in the contexts in which it
does apply. A

To begin with, we might seek a qualitative analogue of the average
likelihood. The latter, you recall, is a determinate blend of accuracy and
content; it measures, roughly speaking, the improbability of a theory’s
accuracy. The ideal case is that in which the theory fits all and only those
possible outcomes that actually occur. Demands of accuracy and simplicity
alike narrow the range of outcomes that a theory can accommodate. Now in
cases in which likelihoods cannot be computed, we may still have an
intuitive rank ordering of experimental outcomes as agreeing more or less
well with the theoretical conjecture of interest. Then we can mimic average
likelihood in a qualitative way by the proportion of possible outcomes that
(by the intuitive yardstick) fit the hypothesis at least as well as the outcome
observed. The size of this proportion will again reflect accuracy and
simplicity in a determinate way, and, moreover, in a way that tends to yield
assessments qualitatively similar to those yielded by average likelihood
where both methods apply (see the last section of Rosenkrantz 1976 on
this). I call this proportion the observed sample coverage. In principle, any
two hypotheses, whether mutually exclusive or not, can be compared by
this informal measure. More generally, using a suitable null hypothesis, we
can compute the chance probability of agreement with the hypothesis of
real interest as good as (or better than) that observed.

To illustrate, if someone claims an ability to detect water with a hazel
prong and boasts of a ninety percent rate of success, we should not be
impressed unless his success rate is materially higher than that achieved by
digging at random in the same area (i.e., the chance rate). If that cannot be
shown, his accuracy is not improbable and his claim is unsubstantiated.

Informal assessments of evidence are often aimed at establishing
improbable accuracy. I recently came across a beautiful example in Thor
Heyerdahl’s interesting book, Early Man and the Ocean (1979, chapter 3).
The hypothesis of interest is that the cultural flowering that occurred in
ancient Meso-America had sources (Sumerian, Egyptian, Hittite, or
Phoenician) in the Near East. Heyerdahl protests the tendency of “isola-
tionists” to dismiss the parallels between these cultures singly, rather than
confronting them collectively, for there is a compounding of improbabili-
ties. That one or two such parallels should arise by mere coincidence does
not strain credulity, but the probability of finding well over a hundred by
chance seems infinitesimal.
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Heyerdahl’s point is well taken, and even the partial list of over fifty
parallels he compiles is nothing if not impressive (1979, pp. 84-92). Yet, the
evidence from cultural parallels could be marshalled more convincingly by
introducing missing ingredients of the informal Bayesian paradigm I have
sketched. What we lack is a sense of how much similarity typifies cultures
between which there has been no contact. We also need some assurance
that dissimilarities are being systematically taken into account.

To this end, we need a well-defined sample space, in effect, an
ethnographic survey of many cultures based on a single workable typology,
and then we need a measure of similarity between cultures based on this
typology. A computer could then be programmed to calculate the propor-
tion of pairs of surveyed cultures manifesting a degree of similarity at least
as great as that of the pair for which contact is hypothesized. That
proportion (the observed sample coverage) estimates the probability that
two cultures chosen at random would manifest at least as much sxmllarlty
(i.e., the chance probability).

Such comparisons are, of course, no better than the typology and
similarity measure on which they are based. Imagine that given items of
the typology are treated as branching classification trees. As a first step
toward measuring similarity with respect to that item, proceed down the
tree to the last branch point at which the two cultures A and B of a
comparison agree, then compute the proportion of surveyed cultures
(including the pair A,B) which proceed at least that far down the same
branch of the tree. Then the square of this proportion (necessarily positive)
estimates the probability that two cultures chosen at random would agree
on the given item to at least that level of specificity. In this way, our
measure of similarity reflects both the specificity and statistical rarity of a
shared custom or artifact, and dissimilarities are systematically taken into
account. This desideratum stands out very clearly in Heyerdahl’s discus-
sion, which will suggest other desiderata and ways of refining our measure.
My purpose here is no more than to indicate the general lines along which
one might proceed.

As for prior probabilities, admittedly they are of little importance in
preliminary investigations where we lack a sharply delimited set of
theoretical alternatives. Observed sample coverage can still be applied to
assess support in such contexts, without regard to alternative hypotheses.
But where the theoretical possibilities have been effectively narrowed, we
can expect the informal, qualitative counterparts of prior probabilities,
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which I will call “initial plausibilities,” to play a major role. Indeed,
Heyerdahl’s famous voyages were mounted to explode the supposed
implausibility of certain migration routes. His point is that routes that seem
implausibly long in miles may actually be short when powerful ocean
currents and trade winds are taken into account. His voyages demonstrated
the feasibility of a journey across the Atlantic or across the Pacific from Peru
to Polynesia in the highly seaworthy wash-thyough reed vessels or balsa
rafts of the Egyptians and Incas (highly specialized constructions whose
occurrence in all three places is itself one of the important bits of evidence
pointing to contact between these cultures). Finally, by using the proce-
dure of the last paragraph, one could hope to rule out alternative migration
routes.

My suspicion is that informal counterparts of the three main elements of
a formal Bayesian analysis—prior probabilities, likelihoods, and alterna-
tive hypotheses—figure importantly in nearly all informal assessments of
evidence, and that more explicit use of the informal Bayesian index of
support (the observed sample coverage) would often render assessments of
this sort more systematic and more objective.

4. Glymour’s Misgivings

With this much background, we can turn at last to Clark Glymour’s
reservations about Bayesian methods (some of which have already been
touched on in passing) and the additional constraints he wishes to impose.

I think of Bayes™ theorem as a refinement of the hypothetico-deductive
approach. We seek hypotheses conditional on which actually occurring
outcomes have high probability while nonoccurring outcomes have low
probability. More precisely, Bayes’s formula implies that a hypothesis h; of
a partition hy,. .., h, is confirmed by an outcome e just in case ¢ has a
higher probability on h; than it has on the average, relative to the members
of the partition (i.e., iff P(e/h;) > P(e/hy)P(hy) + . . . + P(e/h,)P(h,)). And, by
the same token, a member h; of a partition of hypotheses is not discon-
firmed by outcomes that are highly improbable on h; unless those
outcomes are substantially more probable on alternative hypotheses of the
partition. It is widely conceded that this scheme characterizes, in a general
way, both the precepts and practice of working scientists and model-
builders. Glymour too concedes it, yet he denies that hypothetico-
deduction is a sound scheme in all respects (1980, pp. 29 ff.).
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His main fear is that it cannot handle irrelevant conjunction. If e is held
to confirm h just by virture of I’s entailing it, then, equally, e must confirm
hé&k as well, where k is any hypothesis you like. Again, if degree of
confirmation is measured by the ratio P(h/e):P(h) = P(e/h):P(e) of posterior
to prior probability, then if ¢ is a consequence of h, P(e/h) = P(e/h&k) = 1,
and e will accord h&k precisely the same degree of confirmation it accords h
alone. That seems objectionable when k is extraneous, and even more
objectionable when k is probabilistically incompatible with h in the sense
that P(k/h) is low. Personally, I have always considered this reason enough
to reject the ratio measure in favor of the difference measure:

4.1) dcle, h) = P(h/e) — P(h)

writing dc(e, h) for the degree of confirmation e accords k. This measure is
easily seen to satisfy the following condition:

(4.2) dcle, h&k) = P(k/h)dc(e, h) when e is a consequence of h.

And this little theorem seems to deliver precisely what intuition demands.
For, on the one hand, we certainly don’t want to say that a consequence ofh
should disconfirm hé&k. But neither should it confirm hé&k as strongly as h.
Indeed, the degree of compatibility of k with h should control the rate of
depreciation, and this is what (4.2) says.

The difference measure can be applied to conclude, for example, that
examining a sample of emeralds for color before time t and finding them
green (¢) accords “All emeralds are green” a higher degree of confirmation
than “All emeralds are grue.” For the former hypothesis is the conjunction
of h: “All emeralds examined before time t are green,” with k: “All
emeralds not examined before time t are green,” whereas the latter is the
conjunction of h with k': “All emeralds not examined before time t are
blue.” Given our background knowledge that emeralds do not change color
all at once, either individually or as a class, P(k/h) >> P(k'/h). And the
asymmetry in question is language independent. By contrast, the Hempel-
jan account of confirmation registers confirmation for both hék and h&k’,
and leaves us unable to discriminate between them. Worse still, because
that account satisfies the consequence condition, e will also confirm k'—the
dreaded counterinductive inference. Irrelevant conjunction is, therefore,
very much a two-edged sword.

Notice too how our explication of content handles irrelevant conjunc-
tion. On Popper’s account, conjoining an extraneous hypothesis represents
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a simplification, since more states of the world are then logically excluded.
But, in our probabilistic version, this is not so, for content is relativized to a
contemplated experiment. Thus conjoining, say, a hypothesis about the
velocity of neon light in beer to a Mendelian model of a given mating
experiment will have no effect on the latter’s sample coverage for that
experiment. No simplification results, but prior probability is necessarily
reduced.

I come next to “deoccamization” (see Glymour 1980, pp. 30-31). At first
blush, one is tempted to say that a deoccamized theory (one in which a
parameter is replaced throughout by a function of several other parame-
ters) differs only notationally from the theory it deoccamizes. To the extent
that two theories fit the same outcomes of the same experiments to the
same degree, I regard them as equivalent. And so it troubles me not at all
that a theory and a deoccamization of it may have the same sample coverage
or the same support. The only considerations that would lead anyone to
prefer one such notational variant to another one are, I should think,
considerations of elegance or of a heuristic nature. And I see no reason to
issue prescriptions on this matter.

There is nevertheless something about Glymour’s position that troubles
me. He leaves it as an exercise for the reader to show that deoccamization
will reduce a theory’s testability. (pp. 143-144) But let the theoretical term
t of theory T be replaced throughout by the sum t'+t'’ of two new
parameters, t’ and t'’, yielding the deoccamization T’ of T. (To borrow one
of his examples, “force” in classical mechanics might be uniformly replaced
by the sum of “gorce” and “morce.”) Now it seems to me that any instance
of a hypothesis h of T deducible from observations and T is ipso facto an
instance of the corresponding hypothesis A’ of T'. For any determination of
tis likewise a determination of t' +t'’. So Tand T’ have, on Glymour’s own
showing, the very same evidence. I think he escapes this conclusion only
by imposing a further requirement, namely, that for a hypothesis to be
tested by given data, every theoretical parameter of that hypothesis must
be determined. It is not enough that t' +t'’ be determined from the
observations; each of t’ and t'’ must be determined (a reading suggested by
Glymour 1980, p. 357).

It will come as no surprise that I consider this requirement overly
stringent. In fact, I think it goes against the grain of Glymour’s own
approach. For if observations determine a sum of two theoretical quanti-
ties, why shouldn’t we be willing to count that as a test of any hypothesis in
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~hich they occur—albeit a weaker test? After all, two different deter-
minations of such a sum must yield the same value, and this constrains the
data. That all quantities be individually determinable is the ideal case, but
our admiration for the ideal should not lead us to disparage the good.

Glymour himself concedes that “pure deoccamization perhaps never
occurs in science, but what does sometimes occur is deoccamization
together with additional, untested claims about the new quantities.” (p.
364) The clear implication is that such quasi-deoccamization is as much to
be shunned as the real thing. I wonder about that too. Where there are
additional claims, there is additional content, even if it lies beyond the
reach of present experimental techniques. A theory like Einstein’s, which
says that mass (or energy) is really a sum of two terms, rest energy and
energy of motion, one of which becomes appreciable only at speeds close to
that of light, seems to be a theory of exactly this sort. When it was
proposed, there was no way to test it. And similarly, particle physics is
riddled with hypotheses stating that an elementary particle is really made
up of a pair of such particles, but where the new predictions that follow are
presently inaccessible to experimentation. Consider the following illustra-
tive passage about “charm” from Nigel Calder’s popular book The Key to
the Universe: “Nor could the gipsy itself help in settling the issue in favor
of charm. Supposing that the new particle did indeed consist of the
charm/anti-charm combination, the charm was thoroughly hidden because
it was self-cancelling. With zero net charm the gipsy could not be expected
to show direct signs of charmed behavior.” (p. 111) This looks very much
Jike another case of quasi deoccamization, one that should give us pause.

To be sure, Glymour's comments on my presentation (repeated in
Glymour, 1981) make it plain that he does not object to deoccamization
when there are positive reasons for thinking that the new quantities have
distinguishable denotata. He avers that “the demand for bootstrap confir-
mation [wherein every quantity is individually determined] is, I am sure,
at best prima facie and indefeasible. » But then it is left for the rest of us to
wonder what all the hoopla is about if, as he admits, pure deoccamization
never occurs. The only substantive issue that divides us is whether or not to
insist that every theoretical quantity be individually determined in any test
of a hypothesis. And this requirement strikes me as highly representative
of those that cry out for justification, either in terms of a more comprehen-
sive methodology or theory of rationality or as facilitating the achievement
of cognitive objectives.
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Many actual cases of bootstrapping seem to violate this additional
stricture. Newton was able to test his gravitation law by comparing “the
force requisite to keep the moon in her orb with the force of gravity at the
surface of the earth” and finding them “to answer pretty nearly.” By
equating the centripetal force acting on the moon with gravitational force
(and neglecting the sun), one obtains:

myv¥R = Gmgmp/R%

and equating the moon’s velocity v with the circumference of its orbit,
2mR, divided by its period T, one has the following expression for T:

T? = 47*R¥%Gmg

where mg is the mass of the earth and G is the gravitational constant. In
this test of the law, Newton was not able to determine G and mg
separately, but he could determine their product as Gmg = gr?, whereris
the earth’s radius and g the acceleration of free fall, using the obvious
relation mg = Gm,m/r%. This gives a theoretical determination of the
moon’s period which could be checked against observation. Would
Glymour deny the force of the very test that apparently clinched the matter
for Newton?

Here is another example. When Venus is at maximal elongation from the
sun, earth, Venus, and sun lie on a right triangle and measurement of the
angle SEV at E yields the ratio VS:ES of the orbital radii. On the other
hand, at inferior conjunction, when E, V, S lie on a line in that order, we
have ES = EV + VS. Assuming that ES is known, we have a determination
of EV, the distance from the earth to Venus at inferior conjunction. Now
Venus is fairly close at inferior conjunction, and we might hope to
determine this distance directly by triangulation. One slight hitch is that
we can’t really observe Venus at inferior conjunction, since its orbit is
nearly coplanar with the earth’s orbit. But we can measure its apparent
diameter at points very close to inferior conjunction, so let us ignore this
difficulty for the sake of argument. The more serious problem is that we
lack an independent determination of the actual diameter of Venus. Still
undaunted, we make the natural but wholly untested assumption that the
diameter of Venus does not differ appreciably from that of the earth. Now,
for the punch line, imagine that our two independent determinations of EV
agree within experimental error. Would this confirm the (heliocentric)
hypothesis that the center of Venus’s epicycle is at S? Here the apparent
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diameter determines only the product of EV by the actual diameter. Still, I
am inclined to think that some confirmation is registered, if only because
the apparent diameter is determined by an assumption about the actual
diameter within the heliocentric theory but not within the geocentric
theory. In fact, any other epicycle of Venus (compatible with its observed
angular variations) containing the sun must intersect the sun-centered
epicycle, and at the points of intersection we would have conflicting
predictions of apparent diameter. Still, all I want to claim is that some slight
confirmation of all the implicated hypotheses would be registered by
agreement of our two determinations of EV. Does Glymour disagree? In
defense of bootstrapping he writes:

One claims that if certain principles of the theory are true, then certain
empirical data in fact determine an instance of some theoretical
relation, . .. This is some reason to believe the hypothesis, but a
reason with assumptions. Of course it is possible that the assump-
tions—the hypotheses used to determine values of theoretical quanti-
ties—are false and a positive instance of the hypothesis tested is
therefore spurious, or a negative instance equally spurious. But this
does not mean that the test is circular or of no account. (1980, p. 352)

And that is why I said earlier that the requirement that all quantities be
separately or independently determinable goes against the grain of
Glymour’s own conception of bootstrapping. In the case before us, we
achieve this only by making a wholly untested assumption. But that does
not make our test “of no account.”

Glymour’s remaining objection to the Bayesian account of confirmation
is that it does not satisfy the consequence condition: that whatever confirms
a hypothesis H confirms any consequence K of H. His intuitions tell him
that this holds in at least some cases. But presumably his intuitions also
allow that hypotheses are confirmed by their consequences or verified
predictions in at least some cases. And he knows that this principle cannot
be combined with the consequence condition to yield a non-trivial
confirmation theory, unless one of the conditions is suitably restricted. The
Bayesian theory restricts the consequence condition, satisfying it only for
those consequences K of H such that P(K/H) >> P(K/notH). (Such K might
be called “explained consequences,” inasmuch as alternative explanatory
hypotheses are effectively excluded.) True, this opens the door to irrele-
vant conjunction, but the alternative to admitting that a consequence E of
H confirms the conjunction of H with any H' is, we saw, far less palatable.
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And failure of the consequence condition removes much of the sting
anyway, for even though E confirms H&H’, it may disconfirm H’. More-
over, on the difference measure, de(E, H) = P(H/E) — P(H), the degree to
which E confirms H&H' drops to zero when H is inconsistent with H'. No
other confirmation theory, I submit, can steer a safer passage between the
implausibilities of the various corner positions.

Wherever one looks for substantive disagreement between the deliver-
ances of the bootstrapping and the Bayesian accounts of confirmation, one
fails to turn them up, unless additional strictures that fly in the face of much
scientific practice and cry out for justification are introduced.
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