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Abstract

The likelihood for patterns of continuous features needed for probabilistic inference in a Bayesian network classifier

(BNC) may be computed by kernel density estimation (KDE), letting every pattern influence the shape of the probability

density. Although usually leading to accurate estimation, the KDE suffers from computational cost making it unpractical

in many real-world applications. We smooth the density using a spline thus requiring for the estimation only very few

coefficients rather than the whole training set allowing rapid implementation of the BNC without sacrificing classifier

accuracy. Experiments conducted over a several real-world databases reveal acceleration in computational speed, some-

times in several orders of magnitude, in favor of our method making the application of KDE to BNCs practical.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Density estimation for Bayesian network

classifiers

A Bayesian network (BN) represents the joint
probability distribution (density) p(X) over a set
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of n domain variables X = {X1, . . . ,Xn} graphically

(Pearl, 1988; Heckerman, 1995). An arc and a lack

of an arc between two nodes in the graph demon-

strate, respectively, dependency and independency

between variables corresponding to these nodes

(Fig. 1). A connection between Xi and its parents
Pai in the graph is quantified probabilistically using

the data. A node having no parents embodies the

prior probability of the corresponding variable.

By ordering the variables topologically, extracting

the general factorization of this ordering (using
ed.
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Fig. 1. A graph of an example Bayesian network. Arcs manifest

dependencies between nodes representing variables.
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the chain rule of probability) and applying the
directed Markov property, we can decompose the

joint probability distribution (density)

pðXÞ ¼ pðX 1; . . . ;XnÞ ¼
Yn
i¼1

pðX ijPaiÞ: ð1Þ

The naı̈ve Bayesian classifier (NBC) is a BN

used for classification thus belonging to the Bayes-

ian network classifier (BNC) family (John and
Langley, 1995; Heckerman, 1995; Friedman

et al., 1998; Lerner, 2004). It predicts a class C

for a pattern x using Bayes� theorem

P ðCjX ¼ xÞ ¼ pðX ¼ xjCÞ � P ðCÞ
pðX ¼ xÞ ð2Þ

i.e., it infers the posterior probability that x be-

longs to C, P(CjX = x), by updating the prior
probability for that class, P(C), by the class-condi-

tional probability density or likelihood for x to be

generated from this class, p(X = xjC), normalized

by the unconditional density (evidence), p(X = x).

The NBC represents a restrictive assumption of

conditional independence between the variables

(domain features) given the class allowing the

decomposition and computation of the likelihood
employing local probability densities

pðX jCÞ ¼
Yn
i¼1

pðX ijCÞ: ð3Þ

Estimating probability densities of variables

accurately is a crucial task in many areas of

machine learning (Silverman, 1986; Bishop, 1995).
While estimating the probability distribution of a

discrete feature is easily performed by computing

the frequencies of its values in a given database,

the probability density of a continuous feature

taking any value in an interval cannot be estimated
similarly thus requiring other, more complex

methodologies. This is a major difficulty in the

implementation of BNCs (John and Langley,

1995; Friedman et al., 1998; Elgammal et al.,

2003; Lerner, 2004), and it requires either discreti-

zation of the variable into a collection of bins

covering its range (Heckerman, 1995; Friedman

et al., 1998; Yang and Webb, 2002; Malka and
Lerner, 2004) or estimation, using parametric,

non-parametric or semi-parametric methods (John

and Langley, 1995; Lerner, 2004). Discretization is

usually chosen for problems having small sample

sizes that cannot guarantee accurate density esti-

mation (Yang and Webb, 2002). Noticeably, pre-

diction based on discretization is prone to errors

due to lost of information. Generally, the accuracy
discretization methods provide will peak for a spe-

cific range of bin sizes deteriorating as moving

away from the center of this range (Malka and

Lerner, 2004). A too small number of bins will

smooth the estimated density and a too large num-

ber of bins will lead to the curse of dimensionality

resulting in performance worsening in both cases.

Besides, a too large number of bins will overload
the calculation.

In parametric density estimation we assume a

model describing the density and look for the opti-

mal parameters for this model. For example, for a

Gaussian model we ought estimating the data mean

and variance. A single Gaussian estimation (SGE)

is straightforward to implement and it bares almost

no computational load to the NBC but its accuracy
declines with the degree of deviation of the data

from normality, which is expected in many real-

world problems (John and Langley, 1995; Lerner,

2004). Extending parametric density estimation

using Bayesian approaches (Heckerman, 1995),

we update an a priori probability (e.g., Dirichlet

prior) on the parameters using the likelihood for

the data, thus combining prior and acquired knowl-
edge jointly. However, when enough data is

available (and the number of parameters is not

too large) the likelihood in Bayesian estimation
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approaches quickly hammers the priors making

these approaches somewhat redundant.

1.2. Non-parametric density estimation using

kernels

Non-parametric methods of density estimation

assume no model in hand generating the data

but allow the data itself to determine the density.

The most common non-parametric method is

kernel density estimation (KDE) (Silverman,

1986) computing the density by a linear combina-

tion of S kernel functions K having width h that
are allocated around each training data point xt,

t = 1, . . . ,S. Based on these S points, the one-

dimensional KDE pS(x) of p(x) required in order

to compute each of the class-conditional probabil-

ity densities of the right hand side of (3) is

pSðxÞ ¼
1

S � h
XS

t¼1

K
x� xt
h

� �
; ð4Þ

Z þ1

�1
KðuÞdu ¼ 1 and KðuÞ P 0 8u ð5Þ
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Fig. 2. SGE and KDE in comparison to a histogram representation of

database.
such that it is strongly pointwise consistent, i.e.,Z
jpSðxÞ � pðxÞjdx ! 0 as S ! 1; ð6Þ

which means that in the limit, a posterior probabil-

ity based on KDE (2) produces the Bayes’ optimal
classification error rate. A kernel commonly used

in KDE is the standard Gaussian, which when

used with a width of h ¼ 1=
ffiffiffi
S

p
renders the KDE

strongly pointwise consistent (John and Langley,

1995).

Fig. 2 demonstrates SGE and KDE in compar-

ison to a histogram representation of the Gamma-

glutamyl transpeptidase feature of the liver-disorders
database of the UCI repository (Merz et al., 1997).

The KDE tracks the histogram accurately while the

SGE fails to reconstruct the histogram skewing to-

ward the tail of the distribution. More evidence to

the superiority of KDE to SGE for non-normal dis-

tributions in the context of the NBC can be found

later in this paper and in John and Langley (1995)

and Lerner (2004).
Although providing superior accuracy for

the NBC, the KDE suffers from extensive
0 200 250
ature of the liver-disorders database

SGE
KDE

the gamma-glutamyl transpeptidase feature of the liver-disorders
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computational cost limiting its implementation in

real-world applications. Using KDE for the

NBC, a class-conditional density for the ith vari-

able, Xi, and kth class is computed for the mth test

pattern, xtstim, using all training patterns xtrit

pðX i ¼ xtstimjC ¼ kÞ ¼ 1

Ntrk

XNtrk

t¼1

1ffiffiffiffiffiffi
2p

p
r
e
�

ðxtst
im

�xtr
it
Þ2

2r2 ð7Þ

for a Gaussian kernel having a width r around

each of the Ntrk training patterns of class k. Thus,

the time complexity of estimating the likelihood

employing KDE is O(Nts Æ Ntr ÆNf Æ Nd) for Nts test

patterns, Ntr training patterns, Nf features (vari-

ables) and Nd the number of calculations involved

in computing a Gaussian, which for the common
case Ntr � Nc for Nc classes is much larger than

O(Nts Æ Nc Æ Nf Æ Nd) which is the complexity of

SGE.

1.3. Related methodologies

To alleviate the complexity and enable fast

implementation of non-parametric density estima-
tion methods, a several approaches have been

developed. Since usually many of the kernels are

close to each other in feature space, binning (grid-

ding) methods (Silverman, 1986; Jianqing and

Marron, 1994; Gray and Moore, 2003) reduce

the number of kernel evaluations by chopping

each dimension into a number of intervals (bins),

M, and representing all training points falling
within an interval using a single kernel established

employing all of these points. The problem is that

M must be large to maintain precise estimation

and the number of grid points increases as MNf

(Gray and Moore, 2003). If howeverM is not large

enough, the estimation may loose its accuracy.

Silverman (1982, 1986) proposes an elaboration

of binning using a fast Fourier transform perform-
ing discrete convolution to combine the grid

counts and kernel weights. However, because a

grid still underlies the method, it suffers from

explosive scaling and error limitations (Gray and

Moore, 2003). The fast Gauss transform (FGT)

algorithm (Strain, 1991; Elgammal et al., 2003) ex-

pands the exponential of (7) using a Hermite series

having a small number of terms around a small
number of centers of �boxes� clustering the training

points. The fast multipole algorithm (FMA)

(Greengard, 1988) relies on a spatial decomposi-

tion that separates the collection of patterns to

regions. The effects of distant regions on test pat-
terns are computed by the multipole expansion,

and the effect of nearby regions is computed di-

rectly. Lambert et al. (1999) cast (7) using Taylor

expansion to a specific order evaluating the

approximation at a cost related to this order rather

than the size of the training set. Hoti and Holm-

strom (2004) transform the data using principal

component analysis (PCA) to non-Gaussian and
Gaussian data corresponding to the most and least

significant PCA eigenvalues, respectively, and then

apply density estimation only to the non-Gaussian

part. This approach can relieve computational cost

although the calculation of the non-Gaussian part

of the data is still needed. Moore et al. (1997)

suggest a tree in which each node summarizes the

relevant statistics of all the data points below it
in the tree. Using this multiresolution data struc-

ture saves the need to employ most of the training

points increasing the speed of kernel regression.

Unfortunately, none of the approaches devel-

oped to alleviate KDE enabling fast implementa-

tion has ever been applied to BNs. Moreover, all

of these methods aim at resolving the curse of

dimensionality unnecessarily for the NBC decom-
position (3). In this study, we propose a spline

smoother to reduce the computational burden in

KDE making probabilistic inference using the

NBC feasible for real-world applications. Section

2 of the paper describes the spline smoother and

its application to KDE for NBC. Section 3 out-

lines our experiments and their results for synthetic

and real-world databases, while Section 4 con-
cludes the paper.
2. Spline-approximated KDE for BNCs

Our approach differs from previous methods

diminishing KDE computationally and relies on

composing a spline from low-order polynomials
each smoothes the density over a small interval

resulting in the approximation of the whole den-

sity using very few coefficients.



Fig. 3. A composition of a spline (bottom) from low-order

polynomials (top) (Inspired by the Math Works MatLab

documentation).
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identicaly to direct KDE for a section of the weight percent of

sodium in oxide feature of the Glass database (top), both having

a negligible difference (Residual) (bottom).
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2.1. The spline smoother

Splines have been used in many applications,

such as medical (Wang and Amini, 2000), video

segmentation (Precioso and Barlaud, 2002), image
encoding and decoding (Wang et al., 2001) and

moments of free-form surfaces (Soldea et al.,

2002). Splines are smooth piecewise polynomial

functions employed to approximate smooth func-

tions locally (de Boor, 1978). The spline is used

in a large interval for which a single approxima-

tion requires a polynomial of high degree that

complicates the implementation and may overfit
the data. Given the data y(d1), . . . ,y(dP) with

a = d1 < � � � < dj < � � � < dP = b, we establish a

piecewise interpolant f to y such that f agrees with

low-degree polynomials fj(x) on sufficiently small

intervals [dj,dj+1], i.e.,

f ðxÞ ¼ fjðxÞ for dj 6 x 6 djþ1; 8j ¼ 1; . . . ; P � 1

ð8Þ

and the jth polynomial fj(x) coincides with y on the

interval edges and its derivatives there satisfy some

slope conditions set by the interpolation method

being used. Using local polynomial coefficients ajl
derived from these slope conditions (de Boor,

1978), the polynomial of order N describing y

within the jth interval is

fjðxÞ ¼
XN
l¼1

ðx� djÞN�lajl: ð9Þ

For example, a piecewise cubic function f agrees

with y at d1, . . . ,dP, is continuous and has a contin-

uous first derivative on [a,b]. It makes use of cubic
polynomials (N = 4)

fjðxÞ ¼ ðx� djÞ3aj1 þ ðx� djÞ2aj2
þ ðx� djÞaj3 þ aj4: ð10Þ

Keeping some boundary conditions at

d1, . . . ,dP enables composition of these low order

polynomials to a smooth piecewise polynomial

function called a spline. Fig. 3 demonstrates such

a composition of a spline from low-order poly-

nomials. By approximating KDE using a spline
instead of direct implementation we utilize those

very few coefficients of the spline instead of the
training set shaping KDE, thus eliminate the

computational complexity of KDE facilitating

classification using the NBC.

Fig. 4 shows an example in which a cubic spline
smoother of KDE provides identical approxi-

mation to direct KDE for a section of the weight

percent of sodium in oxide feature of the UCI

Repository (Merz et al., 1997) Glass database

(top). The figure also shows that the residual,

i.e., the difference, between the two densities is neg-

ligible (bottom).
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2.2. Spline-approximated KDE

We suggest applying splines to KDE in order to

ease probabilistic inference in NBCs. The spline

smoother is applied during the test. After training,
we compute for each of the P � 1 consecutive

intervals within the estimation range of each vari-

able the N coefficients needed to approximate an

Nth-order polynomial. We establish a (P �
1) · N look-up-table (LUT) matrix, A, holding

the ajl coefficients, i.e., all the information needed

for the estimation of this variable density. The va-

lue of N should be large enough to ensure satisfac-
tory fitted curves, but not too large in order to

avoid the curse-of-dimensionality and maintain

the simple implementation using low order poly-

nomials. During the test of the mth pattern repre-

sented by the ith variable, xtstim, we employ the N

coefficients corresponding to the jth interval begin-

ning at dj and coinciding with xtstim in order to eval-

uate the spline-based estimation for this test point

fjiðxtstimÞ ¼
XN
l¼1

ðxtstim � djiÞN�l � ajli; ð11Þ

where ajli is the lth spline coefficient of the jth inter-

val of the ith variable.

Using spline-based KDE for the NBC, each

class-conditional density of (3) for the ith variable

and kth class is derived for the mth test pattern
using (11) and N spline coefficients rather than

using (7) and the whole training set. Thus, time

complexity of estimating the likelihood employing

spline-based approximation is O(Nts Æ Nf Æ Nc Æ Nn)

for Nts test patterns, Nf features, Nc classes and
Table 1

Characteristics of the experimented real-world databases

Database Number of

classes

Number of

features

C

fe

Glass 7 9 9

Iris 3 4 4

Wine 3 13 1

Pima 2 8 8

Ionosphere 2 33 3

Letter 26 16 1

Adult 2 14 6

Liver disorders 2 6 6

Image 7 18 1

Cytogenetics 4 12 1
Nn calculations involved in computing (11). Direct

KDE has complexity of O(Nts Æ Nf Æ Ntr Æ Nd) for

Ntr training patterns and Nd calculations involved

in a single Gaussian distribution in (7). Since Nd

and Nn are of the same order the predominant dif-
ference in computational cost between the two

estimation methods is attributed to the difference

between Ntr and Nc where Ntr � Nc. Moreover

for Nd � Nn, the complexity of spline-based KDE

approximation is identical to that of SGE.
3. Experiments and results

3.1. Databases and methodology

We tested one synthetic and ten real-world

databases with continuous features. The synthetic

database has two classes and ten continuous fea-

tures each having a several states sampled according

to some a priori probability. Nine of the real-world
databases are taken from theUCI repository, which

is a well documented database (Merz et al., 1997).

The remaining database is taken from a cytogenetic

domain including more than 3000 patterns of four

classes of signals represented using twelve features

of size, shape, color and intensity (Lerner et al.,

2001). In the experiments, we employed cross-vali-

dation (CV10) and hold-out (2/3 of the data for
training) methodologies in databases having less

and more than 3000 patterns, respectively. Patterns

with missing values were deleted from the database.

Table 1 summarizes important characteristics of the

real-world databases. In addition, we chose for the
ontinuous/discrete

atures

Database

size

Experiment

methodology

/0 214 CV10

/0 150 CV10

3/0 178 CV10

/0 768 CV10

2/1 351 CV10

6/0 20,000 Hold-out

/8 45,222 Hold-out

/0 345 CV10

8/0 210 CV10

1/1 3144 Hold-out
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KDE the standard Gaussian with a width of

h ¼ 1=
ffiffiffi
S

p
(Section 1.2).

3.2. Sensitivity to spline order

We investigated the influence of spline order on

the estimation error and the NBC accuracy. For

this purpose, we evaluated splines of orders

N = [1,4] approximating KDE of variables of each

databases in comparison to direct KDE and SGE.

Fig. 5 shows direct KDE and its 4th order spline

approximation coinciding with each other for an

example synthetic database feature. The figure also
manifests the residuals between 1st and 4th order

spline-based approximations and direct KDE. A

similar experiment was performed with the weight

percent of sodium in oxide feature of the UCI

Repository Glass database. Fig. 6 reveals densities

approximated by 1st and 4th order splines in com-

parison to direct KDE for a section of the density.

The figure demonstrates the accuracy of the spline
(especially cubic) approximating KDE. We also

measured the mean squared error (MSE) between

direct KDE and spline-based KDE approximation

(i.e., the average residual),
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Fig. 5. Direct KDE and 4th order spline-based KDE approx-

imation coinciding with each other for an example feature of

the synthetic database (top), and the residuals between direct

KDE and 1st and 4th order spline-based approximations for

this feature (bottom).
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Fig. 6. 1st (top) and 4th (bottom) order spline-based KDE

approximations for a section of the weight percent of sodium in

oxide feature of the Glass database in comparison to direct

KDE.
MSE ¼ 1

P

XP
j¼1

½yðdjÞ � f ðdjÞ�2 ð12Þ

for spline orders in [1,4]. As presented in Table 2,
spline-based KDE approximation demonstrates a

negligible MSE compared to direct KDE espe-

cially for orders greater than one.

Next, we conducted classification experi-

ments on the real-world databases using the

NBC employing SGE, KDE and spline-based

KDE approximation. Table 3 demonstrates the



Table 2

The MSE between direct KDE and spline-based KDE approx-

imation having orders in [1,4] for the weight percent of sodium in

oxide feature of the Glass database

Spline order MSE ( · 10�9)

1 146

2 10.6

3 9.99

4 9.15

Table 3

The NBC accuracy for different real-world databases when

densities are based on 1st or 4th order spline KDE approxima-

tions in comparison to SGEa

Database NBC classification accuracy (mean ± std) (%)

SGE 1st order

spline

4th order

spline

Glass 49.0 (±8.45) 40.7 (±7.37) 65.5 (±11.19)

Iris 96.0 (±4.42) 76.7 (±10.00) 95.3 (±5.21)

Wine 97.7 (±2.76) 64.0 (±9.81) 95.5 (±4.17)

Pima 76.0 (±4.89) 58.1 (±2.70) 69.4 (±3.67)

Ionosphere 82.9 (±3.42) 57.9 (±10.33) 92.3 (±3.85)

Letter 65.5 73.3 73.4

Adult 82.6 79.5 83.1

Liver

disorders

56.0 (±10.23) 50.4 (±7.24) 64.3 (±5.66)

Image 62.9 (±8.73) 41.9 (±10.39) 70.6 (±9.15)

Cytogenetics 67.5 41.0 74.5

a Accuracy based on 4th order spline KDE approximation is

identical to that based on direct KDE. Bold font emphasizes the

highest accuracy for a database.

Table 4

The NBC run-time on the synthetic database for increasing

sample sizes using direct KDE and 4th order spline-based KDE

approximation, as well as the run-time acceleration achieved

Sample size NBC run-time (s) Run-time

acceleration

Direct KDE Spline-based

100 81 3.83 21

200 323 7.5 43

300 723 10.1 72

600 2899 19.8 146

1000 8070 36.9 219

2500 41,231 81 509

10,000 196,810 100 1968

50,000 4,897,232 513 9547

100,000 19,633,152 1041 18,863

200,000 77,459,336 2126 36,434
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superiority for most databases of 4th order spline

in comparison to 1st order spline and SGE in

approximating density for the NBC. Accuracy

achieved using the 4th order spline is identical to

that achieved using direct KDE. In three of the

databases (Iris, Wine and Pima), feature distribu-

tion is close to normal thus SGE reaching asymp-

totic performance sooner than KDE (i.e., with a
smaller sample size) yielding better accuracy than

KDE and therefore better than the spline approx-

imation. In those infrequent occasions of close to

normal data distribution, the spline-based KDE

approximation cannot ease the sample size sensi-

tivity of KDE compared to SGE. However, in

most real-world applications KDE and thus the

suggested spline-based KDE approximation will
outperform SGE leading to more accurate NBC

performance.
3.3. Acceleration and sensitivity to sample size

We measured the acceleration (i.e., the ratio) in

NBC run-time due to spline-based approximation

with respect to direct KDE for increasing sample
sizes. Table 4 shows the run-time (on an Intel

P-II, 450 MHz processor with 192 MB RAM)

using both techniques while classifying the syn-

thetic database for sample sizes in the range

[100–200 K] along with the corresponding acceler-

ations. Fig. 7 demonstrates a sharper increase with

sample size of the KDE run-time compared to that

of the spline approximation as well as the acceler-
ation achieved utilizing the latter. The change of

slopes in both graphs is attributed to the switch

of methodologies from CV to hold-out (Section

3.1), as each methodology employs different num-

bers of training and test patterns.
3.4. Sensitivity to dimensionality

Fig. 8 demonstrates the effect of increasing

dimensionality on the NBC classification run-time

when the classifier utilizes direct KDE in compar-

ison to spline-based KDE approximation for 300

patterns of the synthetic database. The accelera-

tion due to spline-based KDE approximation in

comparison to direct KDE is constant for all

dimensions (i.e., 54 for this database).



Table 5

The NBC run-times using a 4th order spline-based KDE

approximation and direct KDE and the corresponding accel-

erations for a several real-world databases

Database NBC run-time (s) Run-time

acceleration
Direct KDE Spline

Glass 235 20 12

Iris 50 3.5 14

Wine 238 11.3 21

Pima 3103 19.3 161

Ionosphere 2120 40 53

Letter 841,510 4429 190

Adult 3,237,669 301 10,746

Liver disorders 530 7.3 73

Image 475 40 12

Cytogenetics 15,690 75 209
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Fig. 7. The NBC run-time for KDE and 4th order spline-based

KDE approximation (top), and accelerations due to the spline

approximation (bottom) for increasing sample sizes of the

synthetic database.
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3.5. Accelerations for real-world databases

Experimenting with real-world databases of the

UCI Repository and the cytogenetic domain, we

compare in Table 5 run-times of the NBC employ-

ing direct KDE or a cubic spline KDE approxima-

tion as well as the corresponding acceleration

achieved using the latter. For all databases we ob-

serve significant run-time acceleration spanning
from 1 to 4 orders of magnitude, where large

databases benefit the most pronounced accelera-

tion. For example, classifying the Adult database

having 45,222 patterns using direct KDE requires
approximately 37 days compared to 5 min using
the spline-based KDE approximation, leading to

significant acceleration of more than 104. We note

again that the NBC employing each of these two

estimation methods achieves identical classifica-

tion accuracy.
4. Discussion

Frequently, classification using BNCs within

a domain having continuous variables requires den-

sity estimation. Non-parametric density estimation
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using kernels is accurate but computationally

expensive since all training patterns participate in

testing each unseen pattern, sometimes rendering

the estimation impractical for real-world applica-

tions. We have presented a method based on a
spline smoother approximating KDE that instead

of using the training set utilizes the spline coeffi-

cients (only four in the case of a cubic spline), thus

providing rapid evaluation of KDE. Moreover,

spline-approximated KDE provides the KDE accu-

racy at the cost of SGE.

Classification experiments with an NBC on syn-

thetic and real-world databases revealed increase
with sample size of the acceleration achieved using

the spline approximation compared to direct

KDE. The experiments proved pronounced

decrease of classification run-time sometimes by

several orders of magnitude while preserving the

predictive accuracy of the classifier, thereby mak-

ing the suggested method practical for real-world

applications. Although demonstrated for the
NBC, the method is useful in reducing time com-

plexity in other applications involving non-para-

metric density estimation. Finally, it is interesting

to compare spline to other approximations of

KDE.
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