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1 Introduction 
Generally, learning is performed so as to  minimize the sum of squared errors between network outputs and 
training data.  Unfortunately, this procedure does not necessarily give us a network with good generaliza- 
tion ability when the number of connection weights are relatively large. In such situation, overfitting to  
the training data  occurs. To overcome this problem, there are several approaches such as regularization 
Iearning[6][11][12][16] and early stopping[2][15]. It has been suggested that these two methods are closely 
related[4][5][8][14]. In this article, we firstly give an unified interpretation for the relationship between two 
methods through the analysis of linear networks in the context of statistical regression ; i.e. linear regres- 
sion model. On the other hand, several theoretical works have been done on the optimal regularization 
parameter[6][11][12][16] and the optimal stopping time[2][15]. Here, we also consider the problem from the 
unified viewpoint mentioned above. This analysis enables us to  understand the statistical meaning of the 
optimality. Then, the estimates of the optimal regularization parameter and the optimal stopping time are 
present and those are examined by simple numerical simulations. Moreover, for the choice of regulariza- 
tion parameter, the relationship between the Bayesian framework and the generalization error minimization 
framework is discussed. 

2 Linear least squares estimation 
2.1 Linear networks 

Consider a linear network with K inputs and one output,  whose output for input 2 = ( x l , .  . . , xK) E RK is 
h’ 

fW(2) = x w k x k ,  (1) 
k = l  

where w = ( w 1 , .  . . , W K )  E RK is a Ii-dimensional weight vector. The training data  is denoted by D = 
{ ( z , , y m )  : 2, = ( x , , ~ , .  . . ,IC,,K) E R K , y ,  E R, 1 5 m 5 M } ,  in which each output data  ym is assumed 
to be generated according to y, = fw* (z,)+<’, fw*(z,) = ck.1 wix,,k,  where {tm : 1 5 m 5 M }  is an 
i.i.d. noise sequence from a probability distribution with mean 0 and variance U’, w* = (w;, . . . , w k . )  E RK’ 
is a true weight vector and K* is the true number of weights ; i.e. w; = 0 for IC > A’*. Here, we assume 
that z m ,  m = 1 , .  . . , M are not stochastic. For simplicity, we also assume that Ii 2 I<* ; i.e. realizable 
or overrealizable scenario. As well known, the above setting of problem is that  of linear regression. In this 
framework, we usually use a set of fixed functions {Gk : k = 1, .  . . , I<} and set xk = Gk(u)  for an input 
vect,or U in (1). 

In the following, we use the matrix notion such as y := (y1 . . .  yM)’, w := (wl  . . .  wK)’, fw := 
(fw(z1) . . .  fw(zht))’ = xw, where X is a M x I< matrix whose ( m , k )  element is given by x,,k and 
’ denotes the transpose of a matrix. Let us define lla11’ = C,=,u& for an M-dimensional vector a = 
(a1 . . .  a ~ ) ’ .  We assume that l l f W . 1 1 ’  = O ( M )  in our article. Hereafter, we also assume that ( X ’ X ) ,  which 
is called the design matrix, is not singular. The design matrix plays an important role in our analysis. 

2.2 Linear least squares estimator 

For a linear network, we usually estimate w so as to  minimize the sum of squared errors : 

K’ 

M 

E ( w )  := IIY - fwll’. (2) 
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The minimizing weight vector of E(w) is the least squares estimator and is given by 

GIse = (X’X) - lx ’y .  (3) 

Ey {Gise} = w*, (4) 

vy {G*se}  = a2(X’X)-1,  ( 5 )  

For the linear least squares estimator in realizable/overrealizable scenario, it is well known that 

where Ey and Vy stand for the expectation and covariance matrix with respect to the joint probability 
distribution of y1, . . . , y ~ .  The equation (4) means that the least squares estimator is the unbiased estimator. 

For an estimator G ,  the expected generalization error is defined as 

where z = (z1 . . .  z ~ ) ’ ,  in which each element z,, has the sa.me probability distribution with ym and 
21, . . . , ZM, y1, . . . , y~ are independent. For the least squares estimator, we can easily obtain 

K O ?  

A4 EEn(Ii-, M )  = uz + -, 
by using (4) and (5) (e.g. [3]). 

3 Regularization learning 
3.1 Regularization learning 

The regularized estimator is obtained by minimizing the cost function defined by 

C(W) = E(w) + XR(w), (8) 
where E(w) is defined in ( a ) ,  R(w) is a regularization term and X E [O,co) is a regularization parameter. 
For the analysis, we introduce the following regularization term. 

R(w) := w’(X’X)w = I l f w l l ”  (9)  
3.2 

In our case, the regularized estimator Greg, which is the minimizing weight vector of C(w) ,  is given by 

where y = 1/( 1 + A ) .  Because we have 

by (3) and 0 < y 5 1 ,  the regularized estimator Greg is a shrinkage estimator[7]. 
estimator, it is easily shown that 

Statistical properties of regularized estimator 

(10)  
A wreg = y ( x ’ x ) - ’ X ’ y ,  

h 

wreg = Y W s e  

For the regularized 

(11) 

vy {Greg} = u2y2(X’X)-l .  (12) 

E?/ {Greg} = w* - ~ 

- w := E y { G r e g }  = YW*, 

(11) is rewritten as 
1 

1 + l / X W * .  
Hence, the regularized estimator is biased even in the realizable/overrealizable scenario. When X = 0, 
W r e g  = Glse and the bias is 0. 
3.3 

For the regularized estimator Greg, the expected generalization error is shown to be given by 

where 

h 

Bias/variance dilemma in the expected generalization error 

EEP,(X, I<, M )  = u2 + B(X) + V(X), (13) 

- 1 1 
M B(X) = - ~ I w *  - z/I$/x, v(X) = z ~ y  { IlGreg - wll$/X} 7 

where Il~llh,~ = a’X’Xa for some vector a.  Because B(X) is caused by deviation between the true weight 
vector and the expectation of the regularized estimator, it represents the bias. On the other hand, be- 
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cause V(X) arises from fluctuation of the regularized estimator around its expectation, it represents the 
variance. Therefore, the expected generalization error is decomposed into the bias and variance even in the 
realizable/overrealizable scenario. Here, it is easy to  show that 

1 1 
M 

by using (11) and (12). In case of X = 0, B(0)  = 0 and V ( 0 )  = u21</M hold, which corresponds to 
the case of the least squares estimator. When X + CO, B ( m )  = I l fw . ( (2 /M and V(m)  = 0 hold, which 
implies that the network output is 0 regardless of the true function. These facts say that the regularization 
parameter controls the balance between the bias and variance in the expected generalization error. Thus, the 
optimal regularization parameter, which minimize the expected generalization error, is given by solving the 
bias/variance dilemma. Note that this bias/variance dilemma is additional one to  the well-known (intrinsic) 
bias/variance dilemma argued in [5][9]. The bias in our analysis arises from estimation procedures and exists 
even in the realizable/overrealizable scenario. The optimal regularization parameter is shown to  be given by 

B(X) = M ( Y  - 1)211fw*112, V(X)  = -y2u2K1 

u2I< 
Xopt = ____ Ilf w* 1 1 2  ‘ 

The difference between the expected generalization error for the least squares estimator and for the optimal 
regularized estimator is given by dreg(I<, M )  = &u2K l:z:t. Because l l f w . 1 1 2  = O ( M )  by the definition, 
Xopt = 0(1/M) for fixed I<. Thus, dreg(I<,M)  = O(l/M2) for fixed I<. This order is consistent with the 
result in [12], which solved the problem in more general case. Thus, the optimal regularized estimator domi- 
nates the least squares estimator at the order of 1/M2. But, this implies that the effect of the regularization 
learning on the generalization error is negligible when il/l is large and I< is small. On the other hand, it is 
easily found that the effect of the regularized estimator will be essential in the situation where I< is large 
because dreg(I<, M )  = O ( K )  for fixed M .  The results suggest that the regularization technique may improve 
the generalization ability when the number of data is small or the number of weights is large relative to the 
number of data. 

4 Overtraining and early stopping 
4.1 Learning rule 

Here, we consider the following update rule 

where q(> 0) is a learning rate and E ( w ( t ) )  is the error function defined in (2) with w a t  t .  It is easily found 
that this is a special case of natural gradient method[l]. If we assume that 7 is very small, the approximation 
by continuous dynamical system yields 

where Q = a(t)  := e-’“‘. Therefore, w( t )  approaches 
that if we set w ( 0 )  = 0 then it is easily found that w ( t )  is a shrinkage estimator because 0 < Q 5 1. 

4.2 

For simplicity, w(0)  is assumed to  be fixed a t  any sampling. Because GIse is the unbiased estimator of ut*, 
we have 

~ ( t )  = (1 - a)GIse + C U W ( O ) ,  (16) 
linearly from w(O), where ~ ( m )  = Glse. Note 

Statistical properties of early stopping estimator 

(17) 
- ~ ( t )  := E y  { ~ ( t ) }  = (1 - Q)W* + Q W ( ~ ) ,  

v, {w(t)} = (1 - Q)2u2(x’X)-1 + Q2W(O)W(O)’, (18) 
by using (4), (5) and (16). (17) tells us that the obtained weight vector w ( t )  is biased if we stop the lea,rning 
before convergence. The bias is vanished if the learning is not stopped early. 

4.3 Bias/variance dilemma in the expected generalization error 

The expected generalization error at each t is easily shown to  be 

EEZ”(t) = u2 + B( t )  + V ( t ) ,  
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where 
1 1 
A4 B ( t )  = -1IWt) - w*llK,x, V ( t )  = ;i?Ey { llw(t) - Wl l$ , x }  

As in the regularization learning, again, the expected generalization error is decomposed into the bias B ( t )  
and variance V ( t ) .  By using (16), (17) and (18), those are calculated as 

a2 2 KU2 
V ( t )  = (1 - a )  - 1  B ( t )  = MlIf(0) - f*1I2, M 

where f, := fw. and f ( 0 )  := f w ( o ) .  It is easily found that the regularization parameter and the stopping 
time are linked by the relation a( t )  = 1 - y. In the above, B(co) = 0 and V ( m )  = K u 2 ,  which is the case of 
without stopping and corresponds to  the case of the least squares estimator. On the other hand, V(0)  = 0 
while it leads to  the large bias B(0)  = Ilf(0) - f * 1 I 2 .  Thus, again, the optimal stopping time is determined 
by solving the bias/variance dilemma and we obtain 

Ii' U2 

K U 2  + I l f ( 0 )  - f*llZ @opt = 

Thus, by the definition of CY = a ( t ) ,  we have 
2 

rl 
topt = - - log a o p t  

as the optimal stopping time according to  the expected generalization error. Inserting (20) into (19), we 
have 

(22) 
I i u 2  

M 
E;:n(ffopt, Ii', M )  = u3 + (1 - CYopt)-. 

Therefore, the optimally stopped weight vector reduces the generalization error by the factor of &,(I<, M )  = 
aoptI<u2/M compared with the least squares estimator. By (20),  d e s ( I i l M )  = O(1/M2) for fixed I< if 
f ( 0 )  # f,. The effectiveness a t  order 1/M2 is consistent with the results in ['2][15]. As in the regularization 
learning, again, the results tell us that the advantage of early stopping is negligible when M is large and Ii' 
is small, but it may essentially improve the generalization error when K is large relative to  M .  

5 Discussions 
5.1 
The importance of the regularization learning and early stopping is explained from a statistical point of 
view. It is well known that the least squares estimator is the best linear unbiased estimator, which is known 
as the Gauss-Markov theorem ; e.g. [13]. Moreover, it can be shown that the least squares estimator gives 
the minimum expected generalization error among linear unbiased estimators. Thus, in linear unbiased 
estimators, there is no good estimator according to  the expected generalization error other than the least 
squares estimator. However, this does not hold for biased estimators. In this meaning, the introduction of 
the regularizer or early stopping can be regarded as one of the attempts for searching a good estimator in a 
collection of biased estimators. More specifically, as seen in the preceding sections, both of the regularization 
learning and early stopping yield shrinkage estimators. Although [7] defined the amount of shrinkage as the 
least squares slope of validation sample on the predictor, the shrinkage naturally arises as a solution to  the 
estimation procedures. As described in the above, the best biased estimator or the best amount of shrinkage 
is determined by minimizing the expected generalization error, which have a meaning of the solution to the 
bias/variance dilemma in the expected generalizat'ion error. 

On the other hand, in the Bayesian framework, our regularizer corresponds to  the introduction of the Gaus- 
sian prior with covariance matrix ( X ' X ) - ' .  For our regularizer (9), the effective choice of the regularization 
parameter by means of the method of integrating over hyperparameters[6][16] is given by 

0 1 1  the meaning of the regularization learning and early stopping 

I i u 2 ( w )  
X(w) = ~ 

llfw1I2 
(23) 

where u 2 ( w )  is defined as 
- M  
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Therefore, if we set w = w* in (23) then X(w*) = Xopt,  which is the optimal regularization parameter 
obtained by niinizing the expected generalization error. 

5.2 

Because the optimal regularization parameter obtained in (14) can not be calculated in real world problems, 
we must, estimate that based on the given training data.  Here, we give a natural estimate of the optimal 
regularization parameter and examine the estimate through a simple numerical simulation. 

On the estimation of the optimal regularization parameter 

The input-output data  is generated by the following manner. For zm E I c R, 

where <I , . .  . , < M  are independent samples according to  N(0,  U ’ )  and we fixed r and pk ,  k = 1,.  . . , I<. Here, 
we set I = [-5,5], U’ = 1.0, A4 = 50 and I<* = 1. For the given training data,  we train linear networks with 
I< = 1 N 7. Thus, we consider the realizable/overrealizable scenario. In our simulation, we first generate 
1000 sets of training data. For each-set of training data,  we train a linear network under the regularized cost 
function (8), (2) and (9) with X = Xopt defined below. 

where o2(GlSe) is defined by (24) with w = Glse. This is closely related to the proposed estimate in [12] for 
weight, decay. The generalization error is estimated by using 1000 sets of A4 new samples. Thus, we have 
the estimate of the generalization error for each trained network. Then , the expected generalization error 
is estimated by t,he average of the estimated generalization error. 

Figure 1 shows the result on t.he generalization error$ each number of weights I<. In the figure, we show 
the estimate of the expected generalization error with Xopt (open circle), the expected generalization errors 
with the least squares estimator (gray line) and with X = Xopt (solid line). In the figure, the generalization 
error with the estimated regularization parameter is larger than one with the optimal, but, smaller than one 
with the least squares estimator. These results suggest that there is a chance to construct a network with 
better generalization ability by using the-regularization technique even in practical situations. Note that if we 
set w = &lse in (23), X(Glse) is equal t o  Xopt ; i.e. the effective Bayesian choice of the empirical regularization 
parameter is consistent with a natural estimate of the regularization parameter which minimizes the expected 
generalization error. 

5.3 

For early stopping technique in practical applications, we again encounter the problem to estimate t,he 
optimal stopping time topt. Here, we employ 

On the estimation of the optimal stopping time 

as a natural estimate of topt. To examine this estimate, we have done a numerical simulation. The setting 
of the simulation is the same one as in the previous simulation of regularization learning. The simulation 
results are summarized in figure 2. In the figure, we show the expectfed generalization error for the least 
squares estimator given by (7) (gray line) ; i.e. without stopping, the optimal time (21) (sold line) and 
the estimate of the expected generalization error for the estimator obtained by stopping at  the estimated 
optimal time (26)(open circle). The results tell us that  the estimated stopping time works better than the 
least squares estimator. Although [2] proved the cross-validation early stopping works worse than t,he least 
squares estimator, the result shows that the early stopping may be effective if we choose an appropriate 
estimate of stopping time, especially in small sample situation. 

6 Conclusions and future works 
In this article, we present a unified statistical interpretation of regularization learning and early stopping 
for linear networks in the context of statistical regression ; i.e. linear regression model. Here, the regular- 
ization learning and the early stopping are shown to  be equivalent with the use of biased estimator, or more 
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Figure 1. The result of a numerical simulation on 
regularization learning. early stopping. 

Figure 2. The result of a numerical simulation on 
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specifically shrinkage estimator. We also showed that the optimal regularization parameter or the optimal 
stopping time according to  the expected generalization error are obtained by solving the bias/variance dilem- 
ma, which is additional one to  the well-known intrinsic bias/variance dilemma argued in [5][9]. Moreover, 
we gave estimates of the optimal regularization parameter and stopping time. The effectiveness of those 
estimates is shown by the numerical simulations. The theoretical analysis as in [7] on the estimates is left as 
a future work. Finally, the effective regularization parameter obtained in the Bayesian framework is linked 
to  the optimal and empirically estimated regularization parameter in the generalization error minimization 
framework. 
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