
A Rewriting Approach to Graph Invariants

Lars Hellström

January 14, 2007

Abstract

The Generic Diamond Lemma of the author is applied to the problem
of classifying all graph invariants satisfying a contract–delete recursion
(like that of the chromatic polynomial). As expected, the recursion for the
Tutte polynomial is found, along with some more degenerate invariants.
The purpose of this exercise is to demonstrate techniques for applying the
diamond lemma to diagrammatic calculations in general.

In addition, a concept of ‘semigraph’ is defined and some related ele-
mentary constructions of interest for algebraic applications are given.

1 Introduction

Diagrammatic calculations — some different flavours of which can be found in
the works of for example Baez–Lauda [2], Cvitanović [5], Majid [8], and Ma-
jor [9] — is a powerful tool that gets near indispensable when one tries to man-
age some of the newer algebraic structures that have been popping up in the
last couple of decades. A key feature is that algebraic expressions, which in
more classical mathematics has a linear or at worst tree-like structure, start
to look much more like an electric circuit where components (functions, op-
erations, interactions, or whatever) can be connected to form networks with
pretty arbitrary structure as long as some basic syntactical conditions are ful-
filled. While there often are more traditionally-looking ways of writing such ex-
pressions (tensors employing the Einstein convention for summing over indices
in [5, 9], the Sweedler notation in [8]), these have the distinct disadvantage that
it is hard to tell whether a given subexpression occurs in an expression; different
parts of the subexpression may appear far from each other and the links between
them are typically hard to discern. Diagrammatic expressions alleviates this by
letting the mathematician take more advantage of the human capacity to find
patterns in graphical data.

I would have loved to speak about this in the AGMF conference, and in
particular about how my work on a generic diamond lemma [7] can be applied to
the rewriting theory of such diagrams, but unfortunately there was a 20 minutes
limit on the talks. Since it can not yet be assumed that the audience knows
which graphs may be considered well-formed diagrams and how to interpret
diagrams as expressions, this would have had to be explained, and then there
wouldn’t have been enough time to actually do something using the diagrams;
proper diagrammatical calculations were thus out of the question. What I could
do within the given time was to drop the aspiration of working with diagrams

1

that correspond to actual expressions, and instead just do rewriting on ordinary
graphs.

From a pedagogical perspective, graph rewriting is actually a rather good
place to start, because in this one encounters most of the complications arising
from applying the diamond lemma, whereas the object of study does not produce
any particular complications of its own. My intention is that this paper should
serve as a prototype for applications of the diamond lemma to diagrammatic
calculations.

2 Graph theory

This section is an informal review of the graph-theoretical concepts that are
relevant in this paper. The methods used in Sections 4–5 do not logically depend
on this material, but it should help to explain why the given problem is relevant
and how it relates to known results. For graph-theoretical concepts not defined
in this text, I refer to Diestel [6]. I will mostly follow his terminology, but
prefer to reserve the term multigraph for multigraphs without loops; if loops
(and multiple edges) are allowed then the object will be called a pseudograph.
Kn is the complete graph on n vertices. KC

n is the complement of Kn, i.e., the
graph with n vertices but no edges.

The chromatic polynomial Pχ(G) for a graph G is defined by the property
that Pχ(G)(k) is the number of vertex-k-colourings of G, for any natural number
k. That this function is always a polynomial is at first sight surprising, but an
easy proof can be based on the delete–contract recursion for Pχ:

Pχ(G)(k) = Pχ(G− e)(k)− Pχ(G/e)(k) for all k ∈ N and e ∈ E(G). (1)

Here the notation G− e means “the graph G with the edge e deleted”, whereas
G/e means “the graph G with the edge e contracted”, i.e., the two endpoints of e
are identified; see Figure 1 for an example. The proof of this recursion is almost
trivial: a k-colouring of G − e either assigns different colours to the endpoints
of e, and in that case it is a k-colouring of G, or assigns the same colour to
the endpoints of e, and in that case it defines a k-colouring of G/e; subtract
the latter, and you get the expression for the former. Since each step of the
recursion decreases the size (number of edges) of the graphs involved by at least
1, one arrives after a finite number of steps at a linear combination of chromatic
polynomials for size 0 graphs, and these are easily found to be polynomials in
k; since any assignment of colours to the vertices in KC

n is a colouring, there
are exactly kn k-colourings of this graph, and hence Pχ(KC

n)(x) = xn. The
recursion (1) is the foremost tool for computing the chromatic polynomial, and
by extension even for computing the chromatic number, of a general graph (even
though relying solely on this recursion often makes the task much more laborious
than it has to be).

A function of graphs which does not depend on which the vertices and edges
are, but only on how they are connected, is called an invariant ; formally a
function Q is an invariant if Q(G) = Q(H) whenever G and H are isomorphic.
The chromatic polynomial is an invariant, and interestingly enough there are
also several other graph invariants which sport similar delete–contract recur-
sions. Hence it becomes an interesting problem to classify these invariants and
perhaps find new ones. In order to do so, one must however first clarify exactly

2

G =

 e



G− e =




G/e =




Figure 1: Deletion and contraction of an edge

e

Graph G Graph G/e Multigraph G/e

Figure 2: Contracting an edge in a triangle

what the deletion and contraction operations should do. There is a certain
amount of hindsight here, in that the choices I make are primarily dictated by
the method I want to apply, but there are also more generic reasons for making
these choices, and it is certainly worth while to explain them.

The difficult operation is edge contraction. The first choice (Figure 2) one
has to make when defining it is to decide what happens when one contracts an
edge in a triangle (3-cycle): should the two remaining edges count as one edge or
two? The disadvantage of keeping two parallel edges in this case is that it means
edge contraction can transform a graph into a multigraph. For the chromatic
polynomial one or two edges make no difference — the endpoints are not allowed
to have the same colour in either case —but for some other invariants (e.g. the
flow polynomial) it is crucial to distinguish these cases, and as it happens it is
then the multigraph contraction that is the right one for the recursion. Hence
it is natural to let the problem concern invariants of multigraphs.

Opening up for multigraphs leads to another problem, namely what should
happen when one contracts a double (or even higher multiplicity) edge, as in
Figure 3. Contracting one of two parallel edges will turn the other one into a
loop—must one therefore extend the argument to consider also pseudographs?
Although the tradition indeed is to do so, there is no compelling computational
reason to take this route; loops just sit on particular vertices, so they behave as

3

e1

e2

e1

G G/e2 G/{e1, e2}

Figure 3: Contracting a double edge

an extra set of weights that for most part can be ignored. It is possible to stay
within the realm of multigraphs if one decides to always delete or contract all
edges between the two endpoints in a single step, rather than removing them
one at a time; this way the multigraph recursion for the chromatic polynomial
proceeds exactly as with graph contraction of edges.

The tradition to consider also pseudographs has mostly historical reasons: a
lot of the theory for colourings and nowhere-zero flows grew out of attempts to
prove the Four Colour Theorem (every plane graph has a vertex-4-colouring),
and in that context the operation of forming the plane dual of a graph is of
great importance. The dual of a plane graph will however in general be a
pseudograph, and hence it is then more natural to work in the generality of plane
pseudographs. In this paper, planarity is not an issue and hence a restriction
to multigraphs is not problematic.

3 The problem

Formally, the problem studied here is to classify all multigraph invariants Q,
with values in a vector space W over some field R, that for all multigraphs G
satisfy an identity on the form

Q(G) = α|ē|Q(G− ē)− β|ē|Q(G/ē) for all e ∈ E(G). (2)

By ē is meant the set of all edges with the same endpoints as the edge e; that this
set can be regarded as the closed hull ē of e is well established in matroid theory.
The coefficients {αm}∞m=1 and {βm}∞m=1 may be arbitrary elements of R; to a
great extent a class of invariants is determined by a particular parametrisation
of these coefficients.

Most of the rewriting arguments in subsequent sections could just as well
be carried out for coefficients from a commutative ring with unit, but the sub-
sequent parametrisation of these coefficients for particular invariant classes be-
comes much easier if one can invert nonzero ring elements. As this is meant to
be a pedagogical presentation, one shouldn’t introduce unnecessary difficulties;
those interested in the greater generality are referred to the classification of
Bollobás and Riordan [4] instead.

For an algebraic treatment of graph invariants satisfying the prescribed kind
of recursion, it is convenient to first fold away the condition that Q should be
an invariant. A formal solution to this would be to regard Q as a function
of isomorphism classes of multigraphs, as this is an alternative definition of
invariant. In graph theory, such isomorphism classes are sometimes known as

4

unlabelled multigraphs (multigraphs where no names have been assigned to the
vertices and edges), whereas an ordinary multigraph G for which one may speak
of distinct sets of vertices V(G) and edges E(G) is a labelled multigraph.1 Graph
theorists rarely bother about upholding this distinction, but we will have to be
careful about it when we get to do algebra with graphs.

Let Y denote the set of all unlabelled multigraphs, which will be interpreted
as a set of equivalence classes of labelled multigraphs —hence its elements will
be written as [G] for some labelled multigraph G. The sought class of invariants
is then just the set of those functions Q : Y −→ W which satisfy

Q
(
[G]

)
= α|ē|Q

(
[G− ē]

)
− β|ē|Q

(
[G/ē]

)
(3)

for all e ∈ E(G) and labelled multigraphs G. Next let M be the set of all formal
R-linear-combinations of elements of Y, i.e., the R-vector-space with basis Y.
Any invariant Q : Y −→ W extends to a linear map Q : M−→ W , and those of
interest here are those that satisfy (3), or equivalently

Q
(
[G]− α|ē|[G− ē] + β|ē|[G/ē]

)
= 0 (4)

for all e ∈ E(G) and labelled multigraphs G! Let I ⊆ M be the subspace
spanned by all [G] − α|ē|[G − ē] + β|ē|[G/ē] for e ∈ E(G) and [G] ∈ Y. The
invariants which satisfy the wanted recursion are exactly the linear maps that
factor over M/I, so they are completely determined by their values on a basis
for this quotient. Determining bases for a quotient is a standard application
for the diamond lemma, and the key to start using it is to express the identity
[G] ≡ α|ē|[G− ē]− β|ē|[G/ē] (mod I) as a rewrite rule.

4 Semigraphs

The recursion identity [G] ≡ α|ē|[G−ē]−β|ē|[G/ē] (mod I) has a straightforward
interpretation as a rewrite rule: two vertices connected by m edges may be
replaced by αm times the same two vertices without those edges, minus βm

times the contraction of those two vertices. More symbolically, this may be
written as  �������� m ��������

L1 L2

 7→ αm

 �������� ��������
L1 L2

− βm

 ��������
L1 ∪ L2

 (5)

where the L1 and L2 should be taken as the sets of edges between these two
vertices and other vertices in G; it is important in the recursion that these are
unaffected by the deletion and contraction operations.

In order to turn this into a rewrite rule for use with the diamond lemma of [7],
the first step is to turn the diagrams in (5) into proper mathematical objects
with which one may calculate. To that end, I now propose a generalisation of the
ordinary multigraph concept, which I call semigraph. Intuitively, a semigraph

1In diagrammatic calculations, ‘label’ is often a term used for extra information attached
to an edge or vertex, but in graph theory it is just the unique identifier of that particular
item. If you need both concepts, then try using ‘annotation’ for the extra information kind of
label.

5

may be thought of as an ordinary graph which someone has been placed on a
hard surface and chopped in half with a cleaver. (Semi- = half.) Any edge
between a vertex in one part and a vertex in the other must be split in half
by such an operation, so each half-a-graph one is left with will in general have
half-edges sticking out that are attached only to one vertex.

Definition 4.1. A labelled semigraph G is a triplet
(
V(G),E(G), φG

)
, where

V(G) and E(G) are finite sets and

φG : E(G) −→
{

A ⊆ V(G) 1 6 |A| 6 2
}

is a map. The elements of V(G) are called vertices, the elements of E(G) are
called edges. The elements of φG(e) are called endpoints of the edge e. An edge
is said to be internal if it has two endpoints and external otherwise. External
edges are also called legs. The set of legs of G is called the boundary of G and
is denoted ∂G.

While the formal definition of semigraph may look very similar to a formal
definition of pseudograph, the two concepts are quite different: an external
edge is an edge with one endpoint, whereas a loop would be an edge with two
ends, although both of them happen to be attached to the same vertex. A
careful formalisation of pseudograph should really have φG map edges to 2-
element multisets of vertices, but substituting the set {v} for the multiset {v, v}
is usually a reasonable simplification. A better characterisation would be that
semigraphs are “{1, 2}-uniform hypergraphs” (hypergraphs where all edges are
incident with 1 or 2 vertices), but semigraphs occur often enough in practice that
they deserve a simple name. In particular, the ‘gadgets’ that graph theorists
sometimes use to transform graphs or build graphs with particular properties
are precisely semigraphs.

Definition 4.2. An isomorphism of two semigraphs G and H is a pair (α, β)
of bijections α : V(G) −→ V(H) and β : E(G) −→ E(H) such that

φH

(
β(e)

)
=

{
α(v) v ∈ φG(e)

}
for all e ∈ E(G).

Two semigraphs G and H are said to be isomorphic, written G ∼= H, if there
exists an isomorphism from G to H. The isomorphism (α, β) is said to be
internal if β(e) = e for all e ∈ ∂G. Two semigraphs G and H are said to be
internally isomorphic, written G ' H, if there exists an internal isomorphism
from G to H.

Let D be the set of labelled semigraphs G with V(G),E(G) ⊂ Z>0 and define
D(L) to be the set of those G ∈ D for which ∂G = L. Define Y(L) = D(L)

/
';

this is the set of unlabelled semigraphs with boundary L and if G ∈ D(L) then
[G] denotes the element of Y(L) containing G. Finally define M(L) to be the
R-vector-space with basis Y(L).

In this more general notation, the set of unlabelled multigraphs Y is the set
Y(∅) of unlabelled semigraphs with empty boundary, and similarly the vector
space M of the previous section is M(∅). For multigraphs the internal iso-
morphism concept is the same as ordinary isomorphism of multigraphs, but for
more general semigraphs they are not, and consequently even unlabelled semi-
graphs have their external edges labelled. A natural analogy is with the names

6

of variables in a function definition: it makes no difference which names are
used, but one must use the same names in both sides of the defining equation.
The rewriting will primarily operate on semigraphs with boundary. Note for
example that the left hand side of (5) is an element of Y(L1 ∪L2) and the right
hand side is an element of M(L1 ∪ L2).

Lemma 4.3. Let L1, L2 ⊂ Z>0 be given. If η : L1 −→ L2 is a bijection then it
defines a bijection η̊ : Y(L1) −→ Y(L2) by

η̊
(
[G]

)
=

[(
V(G), E, φG ◦ β

)]
(6)

where β : E −→ E(G) is a bijection such that β
(
η(e)

)
= e for all e ∈ L1, and

E ⊂ Z>0 is arbitrary such that |E| =
∣∣E(G)

∣∣ and L2 ⊆ E.

Proof. First observe that (id, β−1), where id denotes the identity map, is an
isomorphism from G to H =

(
V(G), E, φG ◦β

)
. Hence if G′ ∈ [G] is some other

semigraph of the same class then H ′ =
(
V(G), E′, φG′ ◦ β′

)
, where E′ ⊂ Z>0 is

such that |E′| =
∣∣E(G)

∣∣ and L2 ⊆ E′, and β′ : E′ −→ E(G′) is some bijection
such that β′

(
η(e)

)
= e for all e ∈ L1, satisfies H ′ ∼= G′ ' G ∼= H. Furthermore

that isomorphism from H ′ to H composed in the obvious way from (id, β′), an
internal isomorphism from G′ to G, and (id, β−1) will map elements of L2 back
to themselves, and thus be an internal isomorphism. Hence η̊ is well-defined. In
order to see that it is a bijection, it suffices to observe that (η−1)̊ : Y(L2) −→
Y(L1) is the inverse of η̊.

This lemma illustrates a common awkwardness in formalising operations on
labelled semigraphs (or just graphs): although the operation may be very easy
to define, one usually has to make some arbitrary choice of new labels in it.
This means the operations do not really have a canonical definition; a different
author (or perhaps more noticeably: a different programmer) will probably make
a different choice. The different choices will however usually produce isomorphic
results, so in general the operation is canonical as an operation on unlabelled
semigraphs.

Definition 4.4. Let G and H be labelled semigraphs. H is an induced sub-
semigraph of G, written H v G, if

V(H) ⊆ V(G),
φH(e) = φG(e) ∩V(H) for all e ∈ E(H),

E(H) =
{

e ∈ E(G) 1 6
∣∣φG(e) ∩V(H)

∣∣ 6 2
}

.

If X ⊆ V(G) then G{X} denotes the induced subsemigraph of G whose set of
vertices is X.

For any H v G, the splice map G÷H : D(∂H) −→ D(∂G) is defined by

n = max
(
{0} ∪V(G) \V(H)

)
,

m = max
(
{0} ∪ E(G) \

(
E(H) \ ∂H

))
,

V
(
(G÷H)(K)

)
=

(
V(G) \V(H)

)
∪

{
v + n v ∈ V(K)

}
,

E
(
(G÷H)(K)

)
=

(
E(G) \

(
E(H) \ ∂H

))
∪

{
e + m e ∈ E(K) \ ∂K

}
,

7

φ(G÷H)(K)(e) =


(
φG(e) \V(H)

)
∪

{
v + n v ∈ φK(e)

}
if e ∈ ∂H,{

v + n v ∈ φK(e−m)
}

if e > m,
φG(e) otherwise;

the idea is to replace in G the internal parts of H by the corresponding parts of
K. The integers n and m are offsets added to labels from K to avoid collisions
with labels from G.

The sense in which (G÷H)(K) is “G, but with the H part replaced by K”
is formalised in the next lemma.

Lemma 4.5. Let G ∈ D, H v G, and K ∈ D(∂H) be given. If G′ = (G÷H)(K)
and H ′ = G′{V(G′) \V(G)

}
then H ′ ' K and G′ ÷H ′ = G÷H. Furthermore

if F v G is such that V(F) ∩V(H) = ∅ then F v G′.

Proof. Let n = max
(
{0}∪V(G)\V(H)

)
and m = max

(
{0}∪(E(G)\E(H))∪∂H

)
be the offsets that the splice map G ÷ H adds to vertices and internal edges
of K when duplicating them in G′. Let α(v) = v + n for all v ∈ V(K). Let
β : E(K) −→ Z>0 be defined by β(e) = e for e ∈ ∂K = ∂H and β(e) = e + m
for e ∈ E(K) \ ∂K. Let X = V(G′) \V(G). By the definition of G÷H,

X =
{

v ∈ V(G′) v > n
}

=
{

v + n v ∈ V(K)
}

,

hence α is a bijection from V(K) to X = V(H ′). Furthermore β is a bijection
from E(K) to E(H ′) and φG′

(
β(e)

)
∩X =

{
α(v) v ∈ φK(e)

}
for all e ∈ E(K),

thus H ′ ' K as claimed. That G′ ÷ H ′ = G ÷ H is immediate from the
definition, since ∂H ′ = ∂H, E(G′)\E(H ′) = E(G)\E(H), and V(G′)\V(H ′) =
V(G) \V(H); in particular the two offsets n and m will be exactly the same in
the definition of G′ ÷H ′ as in the definition of G÷H.

For the last claim, it is clear that V(F) ⊆ V(G′). That E(F) ⊆ E(G′)
follows from the observation that no edge of F may be an internal edge of
H. Finally, φF (e) = φG(e) ∩ V(F) = φG′(e) ∩ V(F) for all e ∈ E(F) since
φG(e) \φG′(e) ⊆ V(H) and φG′(e) \φG(e) ⊆ X, both of which are disjoint from
V(F).

The definition of the splice map admittedly contains a bit of arbitrariness
when it comes to the assignment of vertex and edge labels — one could just as
well have used n + 1 and m + 1 instead of n and m, since the labels are mostly
irrelevant. The canonical object is instead the corresponding splice map for
unlabelled semigraphs.

Lemma 4.6. Let G ∈ D and H v G. If K1,K2 ∈ D(∂H) are such that
K1 ' K2 then (G÷H)(K1) ' (G÷H)(K2). Hence G÷H is well-defined as a
map Y(∂H) −→ Y(∂G) and extends to a linear map M(∂H) −→M(∂G).

Proof. Let n and m be the vertex and edge respectively offsets added by G ÷
H. Let Gi = (G ÷ H)(Ki) and Xi =

{
v ∈ V(Gi) v > n

}
for i = 1, 2. By

Lemma 4.5, G1{X1} ' K1 ' K2 ' G2{X2}. Let (α, β) be such an internal
isomorphism from G1{X1} to G2{X2}. By extending α to the whole of V(G1)
by α(v) = v for v ∈ V(G1) \ X1 and β to the whole of E(G1) by β(e) = e for
e 6 m, one gets an internal isomorphism from G1 to G2. Hence G1 ' G2, as
claimed.

8

The splice maps themselves do however require some degree of semigraph
labelling, as it is necessary to specify which induced subsemigraph is being
replaced by a particular splice map. The next lemma demonstrates how different
labellings of a semigraph may be used to express the same splice map.

Lemma 4.7. Let G1, G2,H1 ∈ D such that G1 ' G2 and H1 v G1 be given.
Then there exists some H2 v G2 and bijection η̊ : Y(∂H1) −→ Y(∂H2) such
that H2

∼= H1 and G1 ÷H1 = (G2 ÷H2) ◦ η̊ as maps Y(∂H1) −→ Y(∂G1).

Proof. Let (α, β) be the internal isomorphism from G1 to G2. For H2 =
G2

{
α(V(H1))

}
, the restrictions of α and β to V(H1) and E(H1) provide an

isomorphism from H1 to H2. Let η be the restriction of β to ∂H1 and let
η̊ be the corresponding bijection as defined in Lemma 4.3. The task is now
to show that for any K1 ∈ D(∂H1) there is some K2 ∈ η̊

(
[K1]

)
such that

(G1 ÷H1)(K1) ' (G2 ÷H2)(K2).
Let n1 and m1 be the offsets G1 ÷ H1 adds to vertex and edge respect-

ively labels. Let n2 and m2 be the offsets G2 ÷ H2 adds to vertex and edge
respectively labels. Let E = ∂H2 ∪

{
e + m2 e ∈ E(K1) \ ∂K1

}
and define

γ : E −→ E(K1) by γ
(
η(e)

)
= e for all e ∈ ∂K1 and γ(e + m2) = e for all

e ∈ E(K1) \ ∂K1. Then γ is a bijection and (id, γ−1) is an isomorphism from
K1 to K2 :=

(
V(K1), E, φK1 ◦ γ

)
, which implies K2 ∈ η̊

(
[K1]

)
. The needed

isomorphism (α′, β′) from (G1 ÷H1)(K1) to (G2 ÷H2)(K2) is defined by

α′(v) =

{
α(v) if v 6 n1,
v − n1 + n2 if v > n1,

β′(e) =

{
β(e) if e 6 m1,
γ−1(e−m1) + m2 = e−m1 + 2m2 if e > m1

for all v ∈ V
(
(G1 ÷H1)(K1)

)
and e ∈ E

(
(G1 ÷H1)(K1)

)
.

Another useful property of the splice maps is that the order of replacing
disjoint parts of a semigraph is not important.

Lemma 4.8. Let G ∈ D and H1,H2 v G be such that V(H1) ∩ V(H2) = ∅.
Then for any K1 ∈ D(∂H1) and K2 ∈ D(∂H2),(

(G÷H1)(K1)÷H2

)
(K2) '

(
(G÷H2)(K2)÷H1

)
(K1). (7)

It follows that there is a map G ÷ H1 ÷ H2 : Y(∂H1) × Y(∂H2) −→ Y(∂G)
defined by

(G÷H1 ÷H2)
(
[K1], [K2]

)
=

[(
(G÷H1)(K1)÷H2

)
(K2)

]
(8)

that extends to a bilinear map M(∂H1)×M(∂H2) −→M(∂G).

Proof. By Lemma 4.5, H2 v (G÷H1)(K1) and H1 v (G÷H2)(K2), hence both
sides of (7) are well-defined. Let ni and mi be the offsets added to vertex and
edge respectively labels of Ki in the left hand side of (7), and let n′i and m′

i be
the offsets added to vertex and edge respectively labels of Ki in the right hand

9

side of (7), for i = 1, 2. The wanted isomorphism (α, β) from left hand side to
right hand side is then given by

α(v) =


v − n2 + n′2 if v > n2,
v − n1 + n′1 if n2 > v > n1,
v if n1 > v,

β(e) =


e−m2 + m′

2 if e > m2,
e−m1 + m′

1 if m2 > e > m1,
e if m1 > e.

It follows from Lemma 4.6 that the right hand side of (8) depends only on
the internal isomorphism class [K2] of K2, and not on its exact labelling. (8) is
furthermore by (7) equivalent to

(G÷H1 ÷H2)
(
[K1], [K2]

)
=

[(
(G÷H2)(K2)÷H1

)
(K1)

]
and hence the values of G÷H1 ÷H2 is indeed determined only by the internal
isomorphism classes of its arguments.

The next lemma treats the opposite case of composition of splice maps: what
happens when one part is contained in another. The proof is left as an exercise
to the reader.

Lemma 4.9. Let F ∈ D and H v G v F be given. For any K ∈ D(∂H),

(F ÷H)(K) ' (F ÷G)
(
(G÷H)(K)

)
. (9)

More generally, if G1 ∈ D(∂G) and H1 v G1 then there exist F2 ∈ D(∂F) and
H2 ∈ D(∂H1) such that H2 v F2 and for all K ∈ D(∂H1) it holds that

(F2 ÷H2)(K) ' (F ÷G)
(
(G1 ÷H1)(K)

)
. (10)

The previous lemmas have all concerned fairly generic properties of iso-
morphism and splicing in diagrams, in the sense that some variant on these
properties should hold for diagrams no matter what how they are formalised,
and they are part of a general toolbox for defining reductions on M(L). The
utility of the next lemma is more specific to the concrete rewriting system stud-
ied.

Lemma 4.10. For any G ∈ D, H v G, and K ∈ D(∂H),∣∣∣E(
(G÷H)(K)

)∣∣∣ =
∣∣E(G)

∣∣− ∣∣E(H)
∣∣ +

∣∣E(K)
∣∣ . (11)

Proof. By the construction of the edge offset factor m in Definition 4.4, the
union in the definition of E

(
(G÷H)(K)

)
is disjoint. Hence∣∣∣E(

(G÷H)(K)
)∣∣∣ =

∣∣E(G)
∣∣− (∣∣E(H)

∣∣− |∂H|
)

+
(∣∣E(K)

∣∣− |∂K|
)

(12)

and the claim follows from ∂K = ∂H.

10

The splice maps for unlabelled graphs may be compared to maps multiply-
ing by a constant monomial, in the sense that they play the same role in the
next section as multiplication by a monomial does in Gröbner basis theory or
Bergman’s diamond lemma [3]. This may seem an overly modest foundation to
build an algebraic theory on, but it does suffice, and it handles many issues — in
particular the construction of simple reductions —quite elegantly. It is however
not the only possibility for a “multiplication structure” on semigraphs.

A natural product of unlabelled semigraphs is to join up common external
edges; formally one may define G ·H for G, H ∈ D by

n = max
(
{0} ∪V(G)

)
,

m = max
(
{0} ∪ E(G) ∪ ∂H

)
,

V(G ·H) = V(G) ∪
{

v + n v ∈ V(H)
}

,

E(G ·H) = E(G) ∪ ∂H ∪
{

e + m e ∈ E(H) \ ∂H
}

,

φG·H(e) =


{

v + n n ∈ φH(e−m)
}

if e > m,{
v + n n ∈ φH(e)

}
if e ∈ ∂H \ ∂G,

φG(e) ∪
{

v + n n ∈ φH(e)
}

if e ∈ ∂H ∩ ∂G,
φG(e) otherwise.

If G and H are multigraphs, then this G ·H is simply the disjoint union of G
and H. It should be no surprise that G1 ·H1 ' G2 ·H2 whenever G1 ' G2 and
H1 ' H2, so this multiplication is well-defined also for unlabelled semigraphs.
Slightly more surprising is perhaps that

G
{
V(G) \V(H)

}
·K ' (G÷H)(K), (13)

meaning the “quotients” G ÷ H can actually themselves be identified with
semigraphs. Defining A =

⊕
finite L ⊂ Z>0

M(L), one has even produced an
“R-algebra of unlabelled semigraphs”, which turns out to be graded by the
group of finite subsets of Z>0 under symmetric difference, since ∂(G · H) =
(∂G \ ∂H) ∪ (∂H \ ∂G)! This view has many nice features, but there is also a
downside.

One problem with the semigraph algebra A is that its multiplicative struc-
ture is rather far from what is common in rewriting theories: there is no unique
factorisation, not even cancellation (the definition of splice map G÷H requires
G and H to be labelled), and consequently A is rich with zero divisors. A more
important problem is however that the semigraph multiplication doesn’t gener-
alise well to diagrams with more structure. In a directed semigraph, it wouldn’t
be possible to join an external edge e of G with the external edge e of H if both
ends are heads or both ends are tails. In a directed acyclic semigraph, which
is something found underneath a PROP (or symmetric monoidal category), it
need not be allowed to join an output of G to an input of H at the same time
as one joins an output of H to an input of G, as this could create a cycle. If one
is working with plane diagrams, then joining external edges with equal labels is
likely to produce a non-planar diagram. And so on.

The key concept is “replacing part of a diagram with another diagram of
the same sort”, and that is what the splice maps do. Multiplication of diagrams
assumes that “a diagram with a part removed” (which is the essential meaning
of some G ÷H) can be identified with another diagram, but that is often not

11

possible. A plane diagram has to be a plane semigraph with all external edges
in the outer facet, but a plane diagram with a piece missing may have external
edges also in some inner facet, where the extra piece would be plugged in.
Similarly a tree with a piece missing is generally not a tree, but rather a forest.
Inserting any tree (connected acyclic semigraph) with the right boundary will
turn the forest back into a tree however, so splicing on trees is a well-behaved
operation in that it avoids going outside the set of trees. The same holds for
the other types of diagrams mentioned above.

5 Applying the diamond lemma

This section is all about applying the machinery from [7] to the present semi-
graph rewriting problem. Not only results, but also definitions and notation
from that paper will be used extensively and without restraint. The conclusion
can be understood without first having read [7], but the proof of it probably
cannot.

Parts of the basic framework for the diamond lemma has already been set
up, but a review may be in order:

• The index set I — the set of sorts —will be the set of all finite subsets of
Z>0, i.e., the set of all boundaries of semigraphs in D.

• The abelian group of all expressions of sort L ∈ I will be the vector space
M(L) of Definition 4.2.

• Similarly, the set of all “monomials” of sort L ∈ I will be the set Y(L) of
unlabelled semigraphs with boundary L from that same definition.

In addition, there are some advanced aspects of the framework which we won’t
have to worry about:

• The set R(L) of endomorphisms of M(L) is simply going to be the set of
actions of R on M(L), so an R(L)-module (or R-module, in the single-
sorted notation) is just an R-vector-space.

• The topology used will be the discrete topology, so Bn(L) = {0} for all
n > 1 and L ∈ I. This also implies that M(L) = M(L) for all L ∈ I, that
all maps M(L) −→ M(L) are equicontinuous, and that the topological
descending chain condition is the same thing as the ordinary descending
chain condition (any subset contains a minimal element).

The above should be considered the default settings for these two aspects of the
generic diamond lemma framework, as it is often what one wants for diagram-
matical calculations, and those that want something more advanced generally
know that they do.

Even the main step of defining the simple reductions has been hinted at, but
now is the time to do it properly. For all m ∈ Z>0 and L1, L2 ∈ I such that
L1 ∩ L2 = ∅ define

s(L1,m, L2) :=


 �������� m ��������

L1 L2

 , αm

 �������� ��������
L1 L2

− βm

 ��������
L1 ∪ L2


 ,

(14)

12

which is an element of Y(L1 ∪L2)×M(L1 ∪L2). For all L ∈ I, let S(L) be the
set of all s(L1,m, L \ L1) for m ∈ Z>0 and L1 ⊆ L, and let S =

⋃
L∈I S(L).

It is convenient to introduce a less spacious notation for unlabelled semi-
graphs without internal edges, as the results once rewriting is complete will
involve a lot of these. Therefore let [L1, . . . , Ln] denote the element [G] ∈
Y(L1∪· · ·∪Ln) where V(G) = {1, . . . , n}, E(G) =

⋃n
k=1 Lk, and φG(e) = {k} for

all e ∈ Lk, i.e., L1 through Ln are the sets of external edges incident with vertices
1 through n respectively. (The only aspect of this notation that is not uniquely
determined by the underlying element of Y(L) is the order of the Lk sets.) For
(µ, a) = s(L1,m, L2) this means a can be expressed as αm[L1, L2]−βm[L1∪L2].

For any finite L,L′ ∈ I define

V (L,L′) =
{

G÷H : M(L′) −→M(L) G ∈ D(L),H v G, ∂H = L′
}

. (15)

Note that by Lemma 4.9, if v ∈ V (L,L′) and w ∈ V (L′, L′′), then v ◦ w ∈
V (L,L′′). For any v ∈ V (L,L′) and s = (µs, as) ∈ S(L′) define tv,s : M(L) −→
M(L) to be the linear map which satisfies

tv,s(λ) =

{
v(as) if λ = v(µs),
λ otherwise,

for all λ ∈ Y(L). (16)

Finally let

T1(S)(L) =
{

tv,s v ∈ V (L,L′), s ∈ S(L′), L′ ∈ I
}

(17)

be the set of simple reductions on M(L), for every L ∈ I. With this in place,
the derived sets I(S)(L), Irr(S)(L), etc. are defined for all L ∈ I. Also note
that the maps in V (L,L′) are all advanceable with respect to T (S)(L′) and
T (S)(L), since w

(
tv,s(λ)

)
= tw◦v,s

(
w(λ)

)
for all λ ∈ Y(L′), w ∈ V (L,L′), and

tv,s ∈ T1(S)(L′).
In order to verify that this has anything do with the problem that was posed

in Section 3, it must be established that I = I(S)(∅), or in more elementary
language that the rules replace two adjacent vertices by the wanted linear com-
bination of their delete–contract counterparts. By [7, Lemma 3.7], I(S)(∅) is
the set spanned by all λ − t(λ) such that λ ∈ Y(∅) and t ∈ T1(S)(∅), i.e., the
set spanned by all λ − tv,s(λ) such that λ ∈ Y(∅), v ∈ V (∅, L), and s ∈ S(L)
for some L ∈ I. By the definition of tv,s, λ− tv,s(λ) = 0 unless λ = v(µs), and
in that case λ− tv,s(λ) = v(µs)− v(as).

Every v ∈ V (∅, L) is of the form G ÷ H for some G ∈ D(∅) and H v G
such that ∂H = L. Similarly every s = (µs, as) ∈ S(L) is such that v(µs) =[
(G ÷ H)(K)

]
for some K ∈ D(L) such that V(K) = {v1, v2}, and if one fur-

thermore defines Li =
{

e ∈ L φK(e) = {vi}
}

for i = 1, 2 and m =
∣∣E(K) \ L

∣∣
then as = αm[L1, L2]−βm[L]. Letting G′ = (G÷H)(K) and e ∈ E(G′) \E(G),
it follows that |ē| = m, [G′− ē] = (G÷H)

(
[L1, L2]

)
, and [G′/ē] = (G÷H)

(
[L]

)
,

whence v(µs)− v(as) = [G′]− αm[G′ − ē] + βm[G′/ē] ∈ I. Hence I(S)(∅) ⊆ I.
Conversely, for any labelled multigraph G ∈ D(∅) and every edge e ∈ E(G),

there are two endpoints {v1, v2} = φG(e). Let H be the induced subsemigraph
G

{
φG(e)

}
, let Li =

{
e ∈ ∂H φH(e) = {vi}

}
for i = 1, 2, and let m = |ē|.

Then s(L1,m, L2) ∈ S(∂H) satisfies µs(L1,m,L2) = [H] and G÷H ∈ V (∅, ∂H).

13

Furthermore [G− ē] = (G÷H)
(
[L1, L2]

)
and [G/ē] = (G÷H)

(
[L1∪L2]

)
, hence

[G]− αm[G− ē] + βm[G/ē] =

= (G÷H)
(
[H]

)
− αm(G÷H)

(
[L1, L2]

)
+ βm(G÷H)

(
[L1 ∪ L2]

)
=

= (G÷H)(µs(L1,m,L2))− (G÷H)(as(L1,m,L2)) ∈ I(S)(∅)

and thus I ⊆ I(S)(∅).
The next necessary step is to define a suitable partial order on the unlabelled

multigraphs, but for resolving ambiguities it is convenient to have corresponding
partial orders defined for unlabelled semigraphs of all sorts. Constructing these
things can be quite complicated for some diagrammatical calculation problems,
but in the present case it is sufficient to compare elements by size (number of
edges). Thus for every sort L ∈ I, let the partial order P (L) on Y(L) be defined
by [G] < [H] in P (L) iff

∣∣E(G)
∣∣ <

∣∣E(H)
∣∣. Since there are only finitely many

possible values for
∣∣E(G)

∣∣ if [G] < [H] in P (L) for some given [H], it follows
that all P (L) satisfy the descending chain condition.

For the issue of whether the simple reductions are compatible with these
partial orders, one should first observe that for all v ∈ V (L,L′) and µ, ν ∈
Y(L′), it follows from Lemma 4.10 that v(µ) < v(ν) in P (L) if and only if
µ < ν in P (L′), and hence

v
(
DSM

(
ν, P (L′)

))
⊆ DSM

(
v(ν), P (L)

)
. (18)

Thus the issue of whether tv,s is compatible with P (L) reduces to the issue of
whether as ∈ DSM

(
µs, P (L′)

)
, and that is easily verified by considering the

explicit form s(L1,m, L2) for the rule s: any H ∈ µs(L1,m,L2) has
∣∣E(H)

∣∣ =
|L1|+m+ |L2| whereas H ∈ [L1, L2] or H ∈ [L1 ∪L2] has

∣∣E(H)
∣∣ = |L1|+ |L2|.

The general conditions for the diamond lemma are thus fulfilled, and one may
conclude that:

• Irr(S)(∅) is the subspace of M(∅) spanned by the unlabelled graphs
without edges [7, Lemma 5.6].

• M(∅) = Irr(S)(∅) ⊕ I(S)(∅) if and only if all ambiguities of T1(S)(∅)
are resolvable relative to P (∅) [7, Theorem 5.11].

It is when verifying that the ambiguities are resolvable that one ends up making
diagrammatic calculations, but most of them are about semigraphs of other
sorts than ∅, as the critical part of an ambiguity of T1(S)(∅) is typically a
much smaller ambiguity of some other T1(S)(L). For the purpose of analysing
ambiguities, the following lemma is very convenient.

Lemma 5.1. Let L ∈ I, t ∈ T1(S)(L), and λ ∈ Y(L) such that t acts nontrivi-
ally on λ be given. For every G ∈ λ there exists some H v G and s ∈ S(∂H)
such that H ∈ µs and t = tG÷H,s.

Proof. Since t acts nontrivially on λ it must be the case that t = tv,s′ , where
v(µs′) = λ, for some v ∈ V (L,L′), s′ ∈ S(L′), and L′ ∈ I. By Lemma 4.5,
this means v = G′ ÷ K for some G′ ∈ λ and K ∈ µs′ such that K v G′. By
Lemma 4.7 and since G′ ' G, there exists some H v G and η̊ : Y(∂K) −→
Y(∂H) such that H ∼= K and v = G′ ÷ K = (G ÷ H) ◦ η̊. Letting η̊ act on

14

both parts of s′, which must be on the form s(L,m, J) for some L, J ∈ I and
m ∈ Z>0, one finds that

η̊(µs(L,m,J)) =

 �������� m ��������
η(L) η(J)

 = µs(η(L),m,η(J)),

η̊(as(L,m,J)) = η̊
(
αm[L, J]− βm[L ∪ J]

)
=

= αmη̊
(
[L, J]

)
− βmη̊

(
[L ∪ J]

)
=

= αm

[
η(L), η(J)

]
− βm

[
η(L) ∪ η(J)

]
=

= as(η(L),m,η(J)).

Hence for s = s(η(L),m, η(J)), the wanted result is obtained.

Let an ambiguity (t1, µ, t2) of T1(S)(∅) be given, and fix some G ∈ µ. The
lemma then implies that (t1, µ, t2) is of the form (tG÷H1,s1 , [G], tG÷H2,s2), where
Hi v G satisfies Hi ∈ µsi for i = 1, 2. This description of ambiguities is concrete
enough that a resolution can be computed. There are essentially three ambiguity
cases in this system, and these may be distinguished by the number of vertices
that H1 and H2 have in common. Since

∣∣V(H1)
∣∣ =

∣∣V(H2)
∣∣ = 2, the first case

is that V(H1) = V(H2), so that both reductions act on exactly the same part
of G. Due to the symmetry of the rules (s(L,m, J) = s(J,m,L) for all rules
s(L,m, J)), all such cases have t1 = t2 and are thus trivially resolvable.

A not at all trivial case occurs if
∣∣V(H1) ∩V(H2)

∣∣ = 1. Consider first what
happens in H = G

{
V(H1) ∪V(H2)

}
. This semigraph has the form

/.-,()*+v1
k
/.-,()*+v2

l
/.-,()*+v3

m

L1 L2 L3

where v1 ∈ V(H1) \ V(H2), v2 ∈ V(H1) ∩ V(H2), v3 ∈ V(H2) \ V(H1), and
Li =

{
e ∈ ∂H φH(e) = {vi}

}
for i = 1, 2, 3. k > 1 is the number of edges

between v1 and v2, l > 1 is the number of edges between v2 and v3, whereas
m > 0 is the number of edges between v3 and v1. This is the site of the
ambiguity

(
tH÷H1,s1 , [H], tH÷H2,s2

)
of T1(S)(∂H), which is resolved as follows.

On the tH÷H1,s1 side, �������� l
��������

m
��������

k

L2 L3 L1

 7→

7→ αk

 �������� l �������� m ��������
L2 L3 L1

− βk

 �������� l+m ��������
L1 ∪ L2 L3


7→ αkαl

 �������� �������� m ��������
L2 L3 L1

− αkβl

 �������� m ��������
L2 ∪ L3 L1


− βkαl+m[L1 ∪ L2, L3] + βkβl+m[L1 ∪ L2 ∪ L3]

15

7→ αkαlαm[L1, L2, L3]− αkαlβm[L1 ∪ L3, L2]
− αkβlαm[L1, L2 ∪ L3]− βkαl+m[L1 ∪ L2, L3]
+ (αkβlβm + βkβl+m)[L1 ∪ L2 ∪ L3], (19)

and on the tH÷H2,s2 side, �������� m
��������

k
��������

l

L3 L1 L2

 7→

7→ αl

 �������� m �������� k ��������
L3 L1 L2

− βl

 �������� k+m ��������
L1 L2 ∪ L3


7→ αlαk

 �������� m �������� ��������
L3 L1 L2

− αlβk

 �������� m ��������
L3 L1 ∪ L2


− βlαk+m[L1, L2 ∪ L3] + βlβk+m[L1 ∪ L2 ∪ L3]

7→ αlαkαm[L3, L1, L2]− αlαkβm[L1 ∪ L3, L2]
− αlβkαm[L1 ∪ L2, L3]− βlαk+m[L1, L2 ∪ L3]
+ (αlβkβm + βlβk+m)[L1 ∪ L2 ∪ L3]. (20)

The [L1, L2, L3] and [L1 ∪ L3, L2] terms of these reductions are always equal,
but the [L1∪L2, L3] terms are only equal if βkαl+m = βkαlαm, the [L1, L2∪L3]
terms are only equal if αkβlαm = βlαk+m, and the [L1∪L2∪L3] terms are only
equal if αkβlβm + βkβl+m = αlβkβm + βlβk+m. These are thus the conditions
under which this ambiguity is resolvable.

There is a slight formal complication in that the reduction steps removing
edges between v1 and v3 are not really allowed if m = 0, as that means there
aren’t any edges there to remove, but if one sets α0 = 1 and β0 = 0 then the
reduction step carried out is equivalent to applying the identity reduction id.
Hence the m = 0 cases can be resolved using a calculation of the same form as
the m > 0 cases, although a more direct approach would be to make a separate
calculation for the m = 0. The given equations furthermore turn out to be
trivially fulfilled for m = 0 if α0 = 1 and β0 = 0, so it can be argued that m = 0
really represents a different type of ambiguity than the m > 0 cases.

All of this has been about an ambiguity of T1(S)(∂H), however— what about
the ambiguity (t1, µ, t2) that we began with? By [7, Lemma 6.3] this ambiguity
is resolvable relative to P (∅), since it is a shadow of the ambiguity at [H] that
was resolved above. The key to making this claim is Lemma 4.9, which implies
that (G ÷H)

(
tH÷Hi,si(λ)

)
= ti

(
(G ÷H)(λ)

)
for all λ ∈ Y(∂Hi) and i = 1, 2,

and as explained above more generally implies that G ÷H ∈ V (∂G, ∂H) is an
advanceable map.

What remains is therefore the case V(H1)∩V(H2) = ∅, which again is prac-
tically trivial (although the theory is somewhat involved). What happens in this
case is that (t1, µ, t2) is a montage of the two pieces

(
[H1], tid,s1

)
and

(
[H2], tid,s2

)
under the composition map w = G ÷ H1 ÷ H2 as detailed in Lemma 4.8; the
biadvanceability of w is immediate from w

(
[K1], ·

)
= (G ÷ H1)(K1) ÷ H2 ∈

16

V (∂G, ∂H2) and w
(
·, [K2]

)
= (G ÷ H2)(K2) ÷ H1 ∈ V (∂G, ∂H1). Since these

expressions via (18) also demonstrate that the conditions in [7, Lemma 6.7] are
fulfilled, it follows that all ambiguities of this last class are resolvable relative
to P (∅).

Since M(∅) = Irr(S)(∅)⊕I(S)(∅) implies M(∅)
/
I(S)(∅) ∼= Irr(S)(∅), it

has thus been shown that:

Lemma 5.2. If the coefficients {αm}∞m=1, {βm}∞m=1 ⊆ R satisfy

(αkαm − αk+m)βl = 0, (21a)
αkβlβm + βkβl+m = αlβkβm + βlβk+m (21b)

for all k, l,m ∈ Z>0 then a W -valued multigraph invariant Q which satisfies
(2) is uniquely determined by its values for graphs with no edges, and every
assignment of values to the graphs with no edges extends to an invariant Q for
all multigraphs.

The part about the invariant being uniquely determined by its values on
graphs with no edges is pretty easy to arrive at by elementary methods, but
the part that every possible assignment of values to these graphs is allowed for
such invariants is not. Likewise, it is fairly easy to show that (21) are necessary
conditions for such an invariant, but harder to show that they are also sufficient.

6 Classification of invariants

The two main cases in the classification are (i) invariants for which the conditions
of Lemma 5.2 are fulfilled and (ii) invariants for which these conditions are not
fulfilled. In the latter case, it is possible to derive additional relations which
lead to simpler recursions or classifications, which means these on the whole
tend to have fewer degrees of freedom. The former case is more interesting, so
let us begin with that.

Denote by qn the value of Q(KC
n). (Even if W is not formally required

to be a space of polynomials, it turns out to be a very natural identification,
and there is no loss of information as long as one preserves the coefficients
of the polynomial.) Also let |G| denote the order (number of vertices) of the
multigraph G, let ‖G‖ denote the size (number of edges) of the multigraph G,
and let c(G) denote the number of components (connected nonempty induced
subsemigraphs without external edges) in G. Some invariants turn out to be
explainable in terms of these elementary invariants alone.

Invariant class 1. βm = 0 for all m ∈ Z>0. In this case (21) is fulfilled for all
{αm}∞m=1 ⊆ R, and so these may be chosen arbitrarily.

Since Q(G) = αmQ(G − ē) if |ē| = m, the coefficient αm is essentially a
weight attributed to edges of multiplicity m, and apart from that Q only keeps
track of the number of vertices.

If βl 6= 0 for some l then (21a) implies αk+m = αkαm for all k and m. This
has the unique solution αm = αm

1 , and so the values of α’s in the remaining
cases are determined by the values of α1.

Invariant class 2. βm 6= 0 for some m and αm = 0 for all m. (21b) simplifies
to βkβl+m = βlβk+m, which for l = 1 and k = m + 1 reads β2

m+1 = β1β2m+1.

17

Since βm 6= 0 for some m, it follows that β1 6= 0. Setting k = 2 and l = 1 one
gets β2βm+1 = β1βm+2 for all m ∈ Z>0, from which follows that

βk = β2−k
1 βk−1

2 = β1(β−1
1 β2)k−1 for all k ∈ Z>0. (22)

Hence the parameters of this invariant class are β1, β2/β1, and {qn}∞n=0.
As with the previous invariant class, Q(G) is always a single qn times some

weight factors, but in this case n will be the number of components c(G). The
exponent on β1 will be the number of contractions made, i.e., |G| − c(G) and
the exponent on β2/β1 will be the number of edges minus the number of con-
tractions. Hence the value of this invariant is completely determined by c(G),
|G|, and ‖G‖.

Now assume βl 6= 0 for some l and αk = αk
1 6= 0 for all k. Setting l = 1 and

k = m+1 in (21b) leads to αm+1
1 β1βm +β2

m+1 = α1βm+1βm +β1β2m+1, or from
collecting terms β1(αm+1

1 βm − β2m+1) = βm+1(α1βm − βm+1). If β1 = βm = 0
then this implies βm+1 = 0 too, and in particular β1 = 0 implies β2 = 0. As it
was assumed some βm 6= 0, it follows that β1 6= 0.

Having established that, it is possible to fix

βm = αm
1 · (β1/α1) · γm (23)

for some new family of parameters {γm}∞m=1 ⊆ R where γ1 = 1. Inserting this
into (21b) yields the homogeneous equation system

γlγm + γkγl+m = γkγm + γlγk+m for all k, l,m ∈ Z>0. (24)

Let z = γ2−1, l = 1, and k = 2. This equation then becomes γm+(1+z)γm+1 =
(1+ z)γm +γm+2, or equivalently z(γm+1−γm) = γm+2−γm+1. Hence γm+1−
γm = zm and γm =

∑m−1
k=0 zk — the so-called z-natural numbers.

Invariant class 3 (The Tutte polynomial). If some βk and αk are both nonzero
then the parameters of the invariant are α1, β1/α1, z, and {qn}∞n=0, where

αm = αm
1 , (25a)

βm = αm
1 · (β1/α1) ·

m−1∑
k=0

zk. (25b)

It should be observed that α1 is essentially a weight on edges and β1/α1 is a
weight on vertices, where the latter however has some interaction with the qn.

If one denotes by Q′ an invariant of this class with values in R[q] and α1 =
β1 = 1 but the same value of z as a particular R[q]-valued Q, then these two
are related by

Q(G)(q) = α
‖G‖
1 · (β1/α1)|G| ·Q′(G)(qα1/β1),

so any nontrivial information from Q has been encoded into this simpler Q′.
What is this invariant Q′?

For z = 0 one recovers the chromatic polynomial, but Q′(G) seen as a poly-
nomial in the two variables q and z also happens to be a known graph invariant:
it is the Tutte polynomial — in a variant of q-state Potts model variables; see [10]

18

for a nice overview of different forms of the Tutte polynomial —and a closed
form expression for it is

Q′(G) = (−1)|G|
∑

F⊆E(G)

(−q)c(G−F)(z − 1)‖G−F‖+c(G−F)−|G|. (26)

In order to verify that this satisfies the recursion (2), one may collect the terms
of the sum depending on whether F ⊇ ē or F 6⊇ ē, where the former group turns
out to sum to Q′(G− ē) and the latter group sums to −γ|ē|Q

′(G/ē).

For the invariants whose coefficients do not satisfy (21), one may return to
the identity

(βkαl+m − βkαlαm)[L1 ∪ L2, L3] + (αkβlαm − βlαk+m)[L1, L2 ∪ L3]+
+ (αkβlβm + βkβl+m − αlβkβm − βlβk+m)[L1 ∪ L2 ∪ L3] ∈

∈ I(S)(L1 ∪ L2 ∪ L3) (27)

that in (19) and (20) was derived for all k, l,m ∈ Z>0 and disjoint L1, L2, L3 ∈ I.
It is convenient to consider the special case L2 = ∅ (which arises when the
common vertex v2 have no neighbours other than v1 and v3), as the identity
then simplifies to the two terms

(βkαl+m − βkαlαm + αkβlαm − βlαk+m)[L1, L3]+
+ (αkβlβm + βkβl+m − αlβkβm − βlβk+m)[L1 ∪ L3] ∈ I(S)(L1 ∪ L3).

Invariant class 4. If βkαl+m − βkαlαm + αkβlαm − βlαk+m 6= 0 for some
k, l,m ∈ Z>0 then the invariant Q besides (2) also satisfies a recursion on the
form

Q(G) = γ0Q(G/xy) for all nonadjacent x, y ∈ V(G), (28)

and from applying this to (2) they can both be combined into

Q(G) = γ|xy|Q(G/xy) for all x, y ∈ V(G), (29)

where γm = γ0αm − βm and xy =
{

e ∈ E(G) φG(e) = {x, y}
}

denotes the set
of edges between x and y.

Invariants of class 4 are subject to the same uncertainties as those satisfying
(2) in general as to whether these really are the simplest possible recursions,
or whether there are some still simpler identities that can be derived. Since
the formal process of checking this exactly mirrors what was done in Section 5,
except that the calculations are a bit simpler, it seems appropriate to leave this
as an exercise for the reader. It may be noted, however, that qn = γn−1

0 q, which
indeed limits the degrees of freedom quite considerably.

Invariant class 5. If βkαl+m−βkαlαm+αkβlαm−βlαk+m = 0 for all k, l,m ∈
Z>0 but αkβlβm + βkβl+m −αlβkβm − βlβk+m 6= 0 for some k, l,m ∈ Z>0 then
the invariant Q becomes really trivial, since there is then an identity stating
that

(αkβlβm + βkβl+m − αlβkβm − βlβk+m)Q(G) = 0 (30)

if G has at least one vertex. In other words, Q may at most distinguish between
the empty graph (no vertices or edges) and all other graphs.

19

For a generic choice of parameters for an invariant of class 4, it is very likely
that one ends up with a parameter behaving as the ones in class 5. The final
class of invariants is a bit more interesting.

Invariant class 6. The only case remaining has βkαl+m−βkαlαm +αkβlαm−
βlαk+m = 0 and αkβlβm +βkβl+m−αlβkβm−βlβk+m = 0 for all k, l,m ∈ Z>0,
but βkαl+m 6= βkαlαm for some k, l,m ∈ Z>0. (27) then takes on the form

(βkαl+m − βkαlαm)
(
[L1 ∪ L2, L3]− [L1, L2 ∪ L3]

)
∈ I(S)(L1 ∪ L2 ∪ L3), (31)

which in plain English means Q cannot tell the difference between G and G′

if they differ only in that G has some set L2 of edges attached to a vertex
v1 whereas G′ has them attached to the vertex v3, where v1 and v3 are non-
adjacent. It is furthermore easy to get rid of the non-adjacency condition by
going via some additional vertex — if necessary, such a vertex can be manufac-
tured by running the recursion (2) backwards: G = G′′/e′, where one endpoint
of e′ is a new leaf, so that β1Q(G) = α1Q(G′′ − e)−Q(G′′).

In other words, this kind of invariant does not care which vertices an edge
is incident with, so it can at most keep track of the size and order of a graph.

7 Concluding remarks

In [4], Bollobás and Riordan perform a similar classification of delete–contract
invariants, which arrives at the much nicer conclusion that the Tutte polynomial
is universal. How does this not contradict the results in the previous section,
which arrived at a much larger number of invariants? Probably by considering
slightly different problems. Bollobás and Riordan delete and contract edges one
at a time, which quite probably should eliminate invariant class 1. There are
some remarks in [4, Remark 4] that allowing coefficients from a ring may unify
distinct invariant classes of coefficients from a field, but this seems unlikely for
the invariant classes above. A thorough analysis is however beyond the scope
of this paper.

One problem that could be worth studying is whether the value of an invari-
ant of class 1 can be computed from the (ordinary) Tutte polynomial for the
same multigraph. Since both are determined by the cycle matroid and order
of the multigraph— the multiplicity of an edge is 1 more then the number of
2-circuits it is contained in— and since the Tutte polynomial is often celebrated
as “the strongest matroid invariant there is”, one would expect that the answer
is “yes”, but at the same time there doesn’t seem to be any obvious substitution
that turns the Tutte polynomial into a generic class 1 invariant. In the case of
class 2 invariants there is no such uncertainty, as the three graph parameters
these may encode can all be determined from the Tutte polynomial.

It may seem curious, in the case of invariant classes 2 and 3, that α1, β1,
and β2 determine the values for all other coefficients: why should nothing new
happen with edges of higher multiplicities? A bit of hands-on manipulation
of the multigraphs will however reveal the answer: by running the recursion
backwards, it is possible to subdivide any edge and thus express the value of
the invariant for a multigraph using values of that invariant for some ordinary
graphs. When computing Q(G) for a graph G, it is possible to process the edges
in such an order that no edge ever receives a multiplicity higher than 2, and

20

hence there is a way of calculating Q(G) that never uses any coefficients other
than α1, α2, β1, and β2! Subdivision of edges is however not possible unless
β1 6= 0, which is why invariant class 1 can have degrees of freedom corresponding
to higher multiplicities.

A more traditional formalism for graph rewriting, in that it avoids semi-
graphs and half-edges, can be found in [1]. The difference is mostly that the roles
of vertices and edges are swapped, so that vertices act as connectors between
edges rather than vice versa, but of course either way will work. It is a bit
curious, though, that mathematicians (myself included) should be so reluctant
towards equipping vertices with extra structure and rather seek to impose it on
edges, when the intuitive setting for many applications is to have it the other
way around.

References

[1] Michel Bauderon and Bruno Courcelle: Graph Expressions and Graph Re-
writings, Math. Systems Theory 20, 83–127 (1987).

[2] John C. Baez and Aaron D. Lauda: Higher-Dimensional Algebra V: 2-
Groups. Theory and Applications of Categories 12 (2004), 423–491; arXiv:
math.QA/0307200v3.

[3] G. M. Bergman: The Diamond Lemma for Ring Theory, Adv. Math. 29
(1978), 178–218.

[4] Bela Bollobás and Oliver Riordan: A Tutte polynomial for coloured graphs,
Combin. Probab. Comput. 8 (1999), 45–93.

[5] Predrag Cvitanović: Group Theory — Tracks, Lies, and Excep-
tional Groups, Web book (modification of March 17, 2004), http://
chaosbook.org/GroupTheory/

[6] Reinhard Diestel: Graph Theory (Graduate Texts in Mathematics 173),
Springer, 1997; ISBN 0-387-98211-6.

[7] Lars Hellström: A Generic Framework for Diamond Lemmas, 2007;
arXiv:???

[8] Shahn Majid: Cross Products by Braided Groups and Bosonization, J.
Algebra 163, 165–190 (1994).

[9] Seth A. Major: Spin Network Primer, 1999; arXiv:gr-qc/9905020v2.

[10] Alan D. Sokal: The multivariate Tutte polynomial (alias Potts model) for
graphs and matroids, arXiv:math.CO/0503607v1.

21

