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In multiple regression it is shown that parameter estimates based on minimum residual sum of 
squares have a high probability of being unsatisfactory, if not incorrect, if the prediction vectors 
are not orthogonal. Proposed is an estimation procedure based on adding small positive quantities 
to the diagonal of X’X. Introduced is the ridge trace, a method for showing in two dimensions the 
effects of nonorthogonality. It is then shown how to augment X’X to obtain biased estimates with 
smaller mean square error. 

0. INTRODUCTION 
Consider the standard model for multiple linear regres- 

sion, Y = Xp + E, where it is assumed that X is (n x p) 
and of rank p,p is (p x 1) and unknown, E[s] = 0, and 
E[EE’] = 0~1~. If an observation on the factors is de- 
noted by x, = {z~,,,x~~, . . ,+,}, the general form X,0 
is {c~=‘=, Adz) h w ere the Oi are functions free of un- 
known parameters. 

The usual estimation procedure for the unknown j3 is 
Gauss-Markov-linear functions of Y = {yv} that are un- 
biased and have minimum variance. This estimation proce- 
dure is a good one if X’X, when in the form of a correla- 
tion matrix, is nearly a unit matrix. However, if X’X is not 
nearly a unit matrix, the least squares estimates are sensi- 
tive to a number of “errors.” The results of these errors are 
critical when the specification is that Xp is a true model. 
Then the least squares estimates often do not make sense 
when put into the context of the physics, chemistry, and 
engineering of the process which is generating the data. In 
such cases, one is forced to treat the estimated predicting 
function as a black box or to drop factors to destroy the cor- 
relation bonds among the Xi used to form X’X. Both these 
alternatives are unsatisfactory if the original intent was to 
use the estimated predictor for control and optimization. If 
one treats the result as a black box, he must caution the 
user of the model not to take partial derivatives (a useless 
caution in practice), and in the other case, he is left with a 
set of dangling controllables or observables. 

Estimation based on the matrix [X’X + ICI,], k > 0 rather 
than on X’X has been found to be a procedure that can 
be used to help circumvent many of the difficulties asso- 
ciated with the usual least squares estimates. In particular, 
the procedure can be used to portray the sensitivity of the 
estimates to the particular set of data being used, and it 
can be used to obtain a point estimate with a smaller mean 
square error. 

1. PROPERTIES OF BEST LINEAR 
UNBIASED ESTIMATION 

Using unbiased linear estimation with minimum variance 
or maximum likelihood estimation when the random vector, 

E, is normal gives 

b = (x/x)-lX’Y (1.1) 

as an estimate of ,0 and this gives the minimum sum of 
squares of the residuals: 

c$(& = (Y - X&‘(Y - Xfi). (1.2) 

The properties of 6 are well known (Scott 1966). Here the 
concern is primarily with cases for which X’X is not nearly 
a unit matrix (unless specified otherwise, the model is for- 
mulated to give an X’X in correlation form). To demon- 
strate the effects of this condition on the estimation of p, 
consider two properties of &its variance-covariance ma- 
trix and its distance from its expected value. 

(i) VAR@) = cr’(X’X)-1 (1.3) 

(ii) L1 = Distance from a to ,0. 

G = (b - Pm - P) (1.4) 

E[LT] = a2Trace(X’X)-’ (1.5) 
or equivalently 

E[fi’p] = ,@p + a2Trace(X’X)-1 (1.5a) 

When the error E is normally distributed, then 

VAR[L’$ = 2a4Trace(X’X)P2. (1.6) 

These related properties show the uncertainty in b when 
X’X moves from a unit matrix to an ill-conditioned one. If 
the eigenvalues of X’X are denoted by 

x max = Xl > X2 2 ‘. ’ > Xp = Xmin > 0, (1.7) 

then the average value of the squared distance from b to p 
is given by 

E[L;] = CT2 &Xi) (1.8) 
i=l 
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and the variance when the error is normal is given by 

VAR[L:] = 20~ x(1/X,)‘. (1.9) 

Lower bounds for the average and variance are g2/Xmin and 
2u4/X$in? respectively. Hence, if the shape of the factor 
space is such that reasonable data collection results in an 
X’X with one or more small eigenvalues, the distance from 
b to p will tend to be large. Estimated coefficients, ,&, that 
are large in absolute value have been observed by all who 
have tackled live nonorthogonal data problems. 

The least squares estimate (1.1) suffers from the defi- 
ciency of mathematical optimization techniques that give 
point estimates; the estimation procedure does not have 
built into it a method for portraying the sensitivity of the 
solution (1.1) to the optimization criterion (1.2). The proce- 
dures to be discussed in the sections to follow portray the 
sensitivity of the solutions and utilize nonsensitivity as an 
aid to analysis. 

2. RIDGE REGRESSION 
A. E. Hoer1 first suggested in 1962 (Hoer1 1962; Hoer1 

and Kennard 1968) that to control the inflation and general 
instability associated with the least squares estimates, one 
can use 

b* = [X’X + kIIPIX’Y; k 2 0 (2.1) 
= WX’Y. (2.2) 

The family of estimates given by k 2 0 has many mathe- 
matical similarities with the portrayal of quadratic response 
functions (Hoer1 1964). For this reason, estimation and anal- 
ysis built around (2.1) has been labeled “ridge regression.” 
The relationship of a ridge estimate to an ordinary estimate 
is given by the alternative form 

B* = [I, + k(X’X)-l]-lb (2.3) 

= zj3. (2.4) 

This relationship will be explored further in subsequent sec- 
tions. Some properties of ,&*, W, and Z that will be used 
are: 

(i) Let &(W) and &(Z) be the eigenvalues of W and Z, 
respectively. Then 

<i(W) = l/(X, + k) (2.5) 

b(Z) = Xi/(& + k) (2.6) 

where Xi are the eigenvalues of X’X. These results follow 
directly from the definitions of W and Z in (2.2) and (2.4) 
and the solution of the characteristic equations ]W-[I] = 0 
and (Z - EI] = 0. 

(ii) Z = 1- k(X’X + ICI)-’ = I - kW (2.7) 

The relationship is readily verified by writing Z in the al- 
ternative form Z = (X’X + kI)-IX’X = WX’X and mul- 
tiplying both sides of (2.7) on the left by W-l. 

(iii) fi* for k # 0 is shorter than b, i.e., 

(b*)‘(b*) < pa. (2.8) 

By definition b* = Za. From its definition and the assump- 
tions on X’X: Z is clearly symmetric positive definite. Then 
the following relation holds (Sheffe 1960): 

(B*m*, 5 6Lmw (2.9) 

But (lr,ax(Z) = Xl/(X1 + k) where Xi is the largest eigen- 
value of X’X and (2.8) is established. From (2.6) and (2.7) 
it is seen that Z(0) = I and that Z approaches 0 as k + CQ. 

For an estimate a* the residual sum of squares is 

4*(k) = (Y - xp*)‘(Y - xb*, (2.10) 

which can be written in the form 

4*(k) = Y’Y - (b*)‘X’Y - k(b*)‘(B*). (2.11) 

The expression shows that 4*(k) is the total sum of squares 
less the “regression” sum of squares for a* with a modifi- 
cation depending upon the squared length of ,&*. 

3. THE RIDGE TRACE 

a. Definition of the Ridge Trace 
When X’X deviates considerably from a unit matrix, that 

is, when it has small eigenvalues, (1.5) and (1.6) show that 
the probability can be small that b will be close to 0. In 
any except the smallest problems, it is difficult to untangle 
the relationships among the factors if one is confined to an 
inspection of the simple correlations that are the elements 
of X’X. That such untangling is a problem is reflected in 
the “automatic” procedures that have been put forward to 
reduce the dimensionality of the factor space or to select 
some “best” subset of the predictors. These automatic pro- 
cedures include regression using the factors obtained from 
a coordinate transformation using the principal components 
of X’X, stepwise regression, computation of all 2” regres- 
sions, and some subset of all regressions using fractional 
factorials or a branch and bound technique (Beale, Kendall, 
and Mann 1967; Efroyson 1960; Garside 1965; Gorman and 
Toman 1966; Hocking and Leslie 1967; Jeffers 1967; Scott 
1966). However, with the occasional exception of principal 
components, these methods don’t really give an insight into 
the structure of the factor space and the sensitivity of the 
results to the particular set of data at hand. But by comput- 
ing p*(k) and 4*(k) f or a set of values of k, such insight 
can be obtained. A detailed study of two nonorthogonal 
problems and the conclusions that can be drawn from their 
ridge traces is given in James and Stein (1961). 

b. Characterization of the Ridge Trace 
Let B be any estimate of the vector ,0. Then the residual 

sums of squares can be written as 

4 = (Y - XB)‘(Y - XB) 
= (Y - X&‘(Y - Xj) + (B - &‘X’X(B -b) 
= $min + 4(B) (3.1) 

Contours of constant Q are the surfaces of hyperellipsoids 
centered at ,& the ordinary least squares estimate of p. The 
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value of 4 is the minimum value, $minr plus the value of the 
quadratic form in (B - ,@. There is a continuum of values 
of B0 that will satisfy the relationship 4 = $min + 40 where 
& > 0 is a fixed increment. However, the relationships in 
Section 2 show that on the average the distance from 0 
to p will tend to be large if there is a small eigenvalue of 
X’X. In particular, the worse the conditioning of X’X, the 
more b can be expected to be too long. On the other hand, 
the worse the conditioning, the further one can move from 
b without an appreciable increase in the residual sums of 
squares. In view of (1.5~) it seems reasonable that if one 
moves away from the minimum sum of squares point, the 
movement should be in a direction which will shorten the 
length of the regression vector. 

The ridge trace can be shown to be following a path 
through the sums of squares surface so that for a fixed 
~+6 a single value of B is chosen and that is the one with 
minimum length. This can be stated precisely as follows: 

Minimize B’B 
subject to (B - @‘X’X(B - 6) = ~$0. (3.2) 

As a Lagrangian problem this is 

Minimize F = B’B + (l/k)[(B - ,@‘X’X(B - b)’ - ~$01 

(3.3) 
where (l/k) is the multiplier. Then 

g = 2B + (l/lc)[2(X’X)B - 2(X’X)fi] = 0 (3.4) 

This reduces to 

B = b* = [X’X + IcI]-lX’Y (3.5) 

where Ic is chosen to satisfy the restraint (3.2). This is the 
ridge estimator. Of course, in practice it is easier to choose 
a k: > 0 and then compute 40. In terms of ,& the residual 
sum of squares becomes 

4*(k) = (Y - Xb”)‘(Y - xg*) 
= 4min + k2/3*‘(X’X)-1fi*. (3.6) 

A completely equivalent statement of the path is this: If the 
squared length of the regression vector B is fixed at R2, 
then ,?I* is the value of B that gives a minimum sum of 
squares. That is, b* is the value of B that minimizes the 
function 

FI = (Y - XB)‘(Y - XB) + (l/lc)(B’B - R2). (3.7) 

c. Likelihood Characterization of the Ridge Trace 
Using the assumption that the error vector is Normal 

(0, g21,) the likelihood function is 

(27ra2)-“‘2 exp{-(1/2a2)(Y - Xp)‘(Y - X0)). (3.8) 

The kernel of this function is the quadratic form in the 
exponential which can be written in the form 

(Y - XP)‘(Y - xp) = (Y - X&‘(Y - Xjl) 

+ (p - &‘X’X(P - b). (3.9) 
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With (3.1) in 3b, this shows that an increase in the residual 
sum of squares is equivalent to a decrease in the value of 
the likelihood function. So the contours of equal likelihood 
also lie on the surface of hyperellipsoids centered at fi. 

The ridge trace can thereby be interpreted as a path 
through the likelihood space, and the question arises as why 
this particular path can be of special interest. The reason- 
ing is the same as for the sum of squares. Although long 
vectors give the same likelihood values as shorter vectors, 
they will not always have equal physical meaning. Implied 
is a restraint on the possible values of ,6 that is not made 
explicit in the formulation of the general linear model given 
in the Introduction. This implication is discussed further in 
the sections that follow. 

4. MEAN SQUARE ERROR PROPERTIES 
OF RIDGE REGRESSION 

a. Variance and Bias of a Ridge Estimator 

To look at a* from the point of view of mean square 
error it is necessary to obtain an expression for E[Ly (lc)]. 
Straightforward application of the expectation operator and 
(2.3) gives the following: 

= El@* - PI’@* - 81 
= E[@ - m’z’z@ - ml + w - mw - 0) (4.2) 

= C? Trace(X’X)-lZ’Z + p’(Z - I)‘(Z - I),0 (4.3) 

= g2 [Trace(X’X + ICI)-’ - Ic Trace(X’X + lcI)-2] 

+ /c2P’(X’X + /?I)-20 (4.4) 

= g2 f: A,(& + k)2 + k2P’(X’X + /CI)-zp (4.5) 
1 

= 71(k) +72(k) (4.6) 

The meanings of the two elements of the decomposition, 
y1 (Ic) and ys(IE), are readily established. The second ele- 
ment, y2(lc), is the squared distance from Zp to 0. It will 
be zero when k = 0, since Z is then equal to I. Thus, y2(lc) 
can be considered the square of a bias introduced when fi* 
is used rather than p. The first term, y1 (Ic), can be shown to 
be the sum of the variances (total variance) of the parameter 
estimates. In terms of the random variable Y, 

Then 

b* = zb = Z(x’x)-lX’Y. (4.7) 

VAR[p*] = Z(X’X)-lX’VARIY]X(X’X)-lZ’ 

= cr2z(x’x)-1z’. (4.8) 

The sum of the variances of all the & is the sum of the 
diagonal elements of (4.8). 
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Figure 1 shows in qualitative form the relationship be- 
tween the variances, the squared bias, and the parameter 
k. The total variance decreases as k increases, while the 
squared bias increases with k. As is indicated by the dot- 
ted line, which is the sum of y1 (k) and 72(k) and thus is 
E[LI(k)], the possibility exists that there are values of k 
(admissible values) for which the mean square error is less 
for fi* than it is for the usual solution 6. This possibility 
is supported by the mathematical properties of n(k) and 
72 (k) . [See Section 4b.l The function yi (k) is a monotonic 
decreasing function of k, while 72 (k) is monotonic increas- 
ing. However, the most significant feature is the value of 
the derivative of each function in the neighborhood of the 
origin. These derivatives are: 

Lim (dyi/dk) = -2a2C(1/Xf) 
kiO+ 

(4.9) 

k&dy2jdk) = 0. (4.10) 

Thus, yi (k) has a negative derivative which approaches 
-2pa2 as k + O+ for an orthogonal X’X and approaches 
-cc as X’X becomes ill-conditioned and X, -+ 0. On the 
other hand, as k -+ O+, (4.10) shows that y2(k) is flat and 
zero at the origin. These properties lead to the conclusion 
that it is possible to move to k > 0, take a little bias, 
and substantially reduce the variance, thereby improving 
the mean square error of estimation and prediction. An ex- 
istence theorem to validate this conclusion is given in Sec- 
tion 4b. 

b. Theorems on the Mean Square Function 

Theorem 4.1. The total variance yi (k) is a continuous, 
monotonically decreasing function of k. 

Corollary 4.1.1. The first derivative with respect to k of 
the total variance 7: (k), approaches --3o as k + O+ and 
A, + 0. 

Both the theorem and the corollary are readily proved by 
use of y1 (k) and its derivative expressed in terms of X,. 

Theorem 4.2. The squared bias 72(k) is a continuous, 
monotonically increasing function of k. 

ProoJ From (4.5) y2(k) = k2,B’(X’X + ICI)-‘p. 

Corollary 4.1.1. The first derivative of the total vari- 
ance, y:(k), approaches -cc as k + O+ and the matrix 
X’X becomes singular. 

Both the theorem and the corollary are readily proved by 
use of y1 (k) and its derivative expressed in terms of Xi. 

Theorem 4.2. The squared bias 72(k) is a continuous, 
monotonically increasing function of k. 

Pro05 From (4.5) 72(k) = k2,B’(X’X + kI)-‘/?I. If A 
is the matrix of eigenvalues of X’X and P the orthogonal 
transformation such that X’X = P’AP. then 

72(k) = k2 2 &Xi + k)2 
1 

(4.11) 

where (Y = Pp. (4.12) 

Since Xi > 0 for all i and k 2 0, each element (X, + k) is 
positive and there are no singularities in the sum. Clearly, 
72(O) = 0. Then y2(k) is a continuous function for k > 0. 
For k > 0 (4.11) can be written as 

yz(k) = 2 &[l + (Wk)]“. (4.13) 
1 

Since Xi > 0 for all i, the functions Xi/k are clearly mono- 
tone decreasing for increasing k and each term of -y2(k) 
is monotone increasing. So 72(k) is monotone increasing. 
q.e.d. 

Corollary 4.2.1. The squared bias 72 (k) approaches p’p 
as an upper limit. 

Prooj From (4.13) lirnkiW 72(k) = Cy crf = cy’cy = 
P’P’PP = p’p q.e.d. 

Corollary 4.2.2. The derivative y;(k) approaches zero 
as k+O+. 

Prooj From (4.11) it is readily established that 

dyz(k)/dk = 2kk X&(Xi + k)3. (4.14) 

Each term in the sum 2k&c$/(Xi + k)3 is a continuous 
function. And the limit of each term as k -+ O+ is zero. 
q.e.d. 

Theorem 4.3. (Existence Theorem) There always exists 
a k > 0 such that E[Lf(k)] < E[Lf(O)j = o”Cf’(l/&). 
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Proofi From (4.5), (4.1 l), and (4.14) 

dE[Lf(k)]/dk = dyl(k)/dk + dyz(k)/dk 

= -2a2 5 k/(-b + kj3 + 21; 5 A&(,& + k)3, (4.15) 
1 1 

First note that y1 (0) = g2 x:(1/&) and 72(O) = 0. In 
Theorems 4.1 and 4.2 it was established that y1 (k) and 
y2 (k) are monotonically decreasing and increasing, respec- 
tively. Their first derivatives are always non-positive and 
non-negative, respectively. Thus, to prove the theorem, it is 
only necessary to show that there always exists a k > 0 such 
that $E[Lf (k)]/dk < 0. The condition for this is shown by 
(4.15) to be: 

4.3. In the general form; one seeks a ki for each canonical 
variate defined by X*. By defining (LT)2 = (&* - a)‘(&* - 
a) it can be shown that the optimal values for the Ici will be 
ki = ~“/a:. There is no graphical equivalent to the RIDGE 
TRACE but an iterative procedure initiated at & = &‘/S: 
can be used. (See Section 7) 

6. RELATION TO OTHER WORK IN REGRESSION 
Ridge regression has points of contact with other ap- 

proaches to regression analysis and to work with the same 
objective. Three should be mentioned. 

k < CT~/CY&~ q.e.d. (4.16) 

c. Some Comments On The Mean Square Error Function 

The properties of E[LT(k)] = n(k) +72(k) show that it 
will go through a minimum. And since yz(k) approaches 
,@p as a limit as k + 00, this minimum will move toward 
k = 0 as the magnitude of p’p increases. Since p’p is the 
squared length of the unknown regression vector, it would 
appear to be impossible to choose a value of k # 0 and 
thus achieve a smaller mean square error without being able 
to assign an upper bound to p’p. On the other hand, it is 
clear that ,@p does not become infinite in practice, and one 
should be able to find a value or values for k that will put b* 
closer to ,8 than is p. In other words, unboundedness, in the 
strict mathematical sense, and practical unboundedness are 
two different things. In Section 7 some recommendations 
for choosing a k > 0 are given, and the implicit assumptions 
of boundedness are explored further. 

5. A GENERAL FORM OF RIDGE REGRESSION 
It is always possible to reduce the general linear regres- 

sion problem as defined in the Introduction to a canoni- 
cal form in which the X’X matrix is diagonal. In partic- 
ular there exists an orthogonal transformation P such that 
X’X = P’AP where A = (&Xi) is the matrix of eigenval- 
ues of X’X. Let 

l In a series of papers, Stein (1960, 1962) and James and 
Stein (1961) investigated the improvement in mean 
square error by a transformation on p of the form 
Cb, 0 5 C < 1, which is a shortening of the vector 
p. They show that such a C > 0 can always be found 
and indicate how it might be computed. 

l A Bayesian approach to regression can be found 
in Jeffreys (1961) and Raiffa and Schlaifer (1961). 
Viewed in this context, each ridge estimate can be 
considered as the posterior mean based on giving 
the regression coefficients, 0, a prior normal distribu- 
tion with mean zero and variance-covariance matrix 
Z = (&S2/Ic). For those that do not like the philo- 
sophical implications of assuming p to be a random 
variable, all this is equivalent to constrained estima- 
tion by a nonuniform weighting on the values of p. 

l Constrained estimation in a context related to regres- 
sion can be found in Balakrishnan (1963). For the 
model in the present paper, let p be constrained to 
be in a closed, bounded convex set C, and, in partic- 
ular, let C be a hypersphere of radius R. Let the esti- 
mation criterion be minimum residual sum of squares 
4 = (Y - XB)‘(Y - XB) where B is the value giving 
the minimum. Under the constraint, if fi’b 5 R2, than 
B is chosen to be ,& otherwise B is chosen to be ,8* 
where k is chosen so that @*)‘@*) = R2. 

7. SELECTING A BETTER ESTIMATE OF ,d 
In Section 2 and in the example of Section 3, it has been 

x = X”P (5.1) 

and 

y=x*a+e (5.2) 

where 

cY.=Ppp, (X*)‘(X*) = A, and (~‘a = ,@p. (5.3) 

Then the general ridge estimation procedure is defined from 

a* = [(X*)/(X*) + K]-l(X*)‘Y (5.4) 

where 

K = (Sijki), ki L 0. 
All the basic results given in Section 4 can be shown to hold 
for this more general formulation. Most important is that 
there is an equivalent to the existence theorem, Theorem 
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demonstrated that the ordinary least squares estimate of the 
regression vector p suffers from a number of deficiencies 
when X’X does not have a uniform eigenvalue spectrum. A 
class of biased estimators $*, obtained by augmenting the 
diagonal of X’X with small positive quantities, has been 
introduced both to portray the sensitivity of the solution to 
X’X and to form the basis for obtaining an estimate of 0 
with a smaller mean square error. In examining the prop- 
erties of b*, it can be shown that its use is equivalent to 
making certain boundedness assumptions regarding either 
the individual coordinates of ,8 or its squared length, /?‘p. 
As Barnard (1963) has recently pointed out, an alternative 
to unbiasedness in the logic of the least squares estimator 
0 is the prior assurance of bounded mean square error with 
no boundedness assumption on 0. If it is possible to make 
specific mathematical assumptions about p, then it is pos- 
sible to constrain the estimation procedure to reflect these 
assumptions. 
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The inherent boundedness assumptions in using ,i?* make 
it clear that it will not be possible to construct a clear-cut, 
automatic estimation procedure to produce a point estimate 
(a single value of k or a specific value for each k,) as can be 
constructed to produce b. However, this is no drawback to 
its use because with any given set of data it is not difficult 
to select a b* that is better than fi. In fact, put in context, 
any set of data which is a candidate for analysis using lin- 
ear regression has implicit in it restrictions on the possible 
values of the estimates that can be consistent with known 
properties of the data generator. Yet it is difficult to be ex- 
plicit about these restrictions; it is especially difficult to be 
mathematically explicit. In a recent paper (Clutton-Brock 
1965) it has been shown that for the problem of estimating 
the mean p of a distribution, a set of data has in it implicit 
restrictions on the values of 0 that can be logical contenders 
as generators. Of course, in linear regression the problem is 
much more difficult; the number of possibilities is so large. 
First, there is the number of parameters involved. To have 
ten to twenty regression coefficients is not uncommon. And 
their signs have to be considered. Then there is X’X and the 
(z) different factor correlations and the ways in which they 
can be related. Yet in the final analysis these many differ- 
ent influences can be integrated to make an assessment as 
to whether the estimated values are consistent with the data 
and the properties of the data generator. Guiding one along 
the way, of course, is the objective of the study. In Hoer1 
and Kennard (1970) it is shown for two problems how such 
an assessment can be made. 

Based on experience, the best method for achieving a 
better estimate b* is to use ki = k for all i and use the 
Ridge Trace to select a single value of k and a unique ,8*. 
These kinds of things can be used to guide one to a choice. 

l At a certain value of k the system will stabilize and 
have the general characteristics of an orthogonal sys- 
tem. 

l Coefficients will not have unreasonable absolute val- 
ues with respect to the factors for which they represent 
rates of change. 

l Coefficients with apparently incorrect signs at k = 0 
will have changed to have the proper sign. 

l The residual sum of squares will not have been inflated 
to an unreasonable value. It will not be large relative to 
the minimum residual sum of squares or large relative 
to what would be a reasonable variance for the process 
generating the data. 

Another approach is to use estimates of the optimum values 
of ki developed in Section 5. A typical approach here would 
be as follows: 

l Reduce the system to canonical by the transformations 
X = X*P and CY = Pp. 

l Determine estimates of the optimum ki’s using ii0 = 
e’/&z. Use the kzo to obtain ,8*. 

l The &O will tend to be too small because of the ten- 
dency to overestimate a’a. Since use of the kZo will 
shorten the length of the estimated regression vec- 
tor, k,o can be re-estimated using the St. This re- 

estimation can be continued until there is a stability 
achieved in (&*)‘(c~*) and ii0 = $‘/(&y:)2. 

8. CONCLUSIONS 
It has been shown that when X’X is such that it has 

a nonuniform eigenvalue spectrum, the estimates of p in 
Y = X/3 + E, based on the criterion of minimum resid- 
ual sum of squares, can have a high probability of being 
far removed from ,0. This unsatisfactory condition mani- 
fests itself in estimates that are too large in absolute value 
and some may even have the wrong sign. By adding a 
small positive quantity to each diagonal element the system 
[X’X + K]fi* = X’Y acts more like an orthogonal system. 
When K = k1 and all solutions in the interval 0 < k 5 1 
are obtained, it is possible to obtain a two-dimensional char- 
acterization of the system and a portrayal of the kinds of 
difficulties caused by the intercorrelations among the pre- 
dictors. A study of the properties of the estimator ,?l* shows 
that it can be used to improve the mean square error of es- 
timation, and the magnitude of this improvement increases 
with an increase in spread of the eigenvalue spectrum. An 
estimate based on b* is biased and the use of a biased es- 
timator implies some prior bound on the regression vector 
p. However, the data in any particular problem has infor- 
mation in it that can show the class of generators ,0 that are 
reasonable. The purpose of the ridge trace is to portray this 
information explicitly and, hence, guide the user to a better 
estimate L?*. 

&= 
p = 
W= 

z= 
Xi = 
A= 
P= 

L:(k) = 
n(k) = 

x(k) = 
K= 

- 
g z 
^* = 

g* = 
z* = 

NOMENCLATURE 

(X’X)-1X’Y 
p*(k) = [X’X + kI]-lX’Y; k > 0 
W(k) = [X’X + ICI]-’ 
Z(k) = [I + k(X’X)-l1-l = I - kW 
Eigenvalue of X’X; X1 2 X2 2 . > X, > 0 
(S,jXi) = the matrix of eigenvalues 
An orthogonal matrix such that P’AP = X’X 
EL@* - PI’@* - RI = 71(k) + yz(k) 
Variance of the estimate b* 
Squared bias of the estimate b* 
(Sij ki); ki 2 0 A diagonal matrix of non- 
negative constants. 
PP 
XP’ 
[(X*)/(X*) + K]-‘(X*)/Y 
[(X*)/(X*) + K]-’ 
{I + [(X*)/(X*)]-‘K]} = I - KW 

[Received August 1968. Revised June 1969.1 
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