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ABSTRACT 

We describe so- called doubly stochastic processing 
by using a simple factorization scheme on Jacket 
matrices..

1. INTRODUCTION 

The doubly stochastic matrix is with entrywise 

nonnegative with all rows and columns sum one, and 

it is a special process in combinatorial theory, and 

probability [1]. Otherwise, Hadamard matrices are 

used widely in communication, and signal processing. 

Motivated by the Hadamard, a generalized form 

called Jacket has been reported and its applications in 

image processing and communications have been 

pointed out [2],[3]. The basic idea of Jacket was 

motivated by the cloths of Jacket. As our two sided 

Jacket is inside and outside compatible, at least two 

positions of a Jacket matrix are replaced by their 

inverse; these elements are changed in their position 

and are moved, for example, from inside of the 

middle circle to outside or from to inside without loss 

of sign. Recently, [4] gives contributions on 

mixed-radix representation for Jacket transform, 

which unifies all Hadamard transforms, and Jacket 

transforms, and also applicable for any even length 

vectors. In this paper, we investigate a simple Jacket 

factorization scheme for doubly stochastic processing, 

which includes a special orthostochastic case for any 

even length.    

2. JACKET MATRICES AND THEIR 

PROPERTIES 

In [3], a basic two by two kernel Jacket matrix is 

defined as  
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ba
J

T2 ,         (1) 

where T  denotes the transpose, and cba ,,  are all 

real nonzero element. By considering a 2J  is a 

unitary or orthogonal, we should have  
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thus we have the solution bbT
, ca , and the 

orthogonal 2J  can be written by 
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J 2 ,             (3) 

where ba,  are real nonzero elements. Additionally, 

an inverse property should be hold, which is  
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where ijJ  is the i th row and j th column element 

in NJ . It implies that the inverse of the Jacket 

matrix is the entrywise inverse and transpose of itself. 
Therefore, (3) should be rewritten by 
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where we should force ba . Clearly the result is a 

classical two by two Hadamard matrix  
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HaJ 22 ,     (6) 

where 2H  is the size two Hadamard matrix. The 

result shows that the two by two orthogonal Jacket 
matrix is exist and only is the Hadamard case. 
Therefore, in several works [4][5], Jacket matrices are 
from four by four form, which is defined as   
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and its inverse is  
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where  denotes a weight factor, that can be 
n2 ,

j , and other complex numbers. The higher order 
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Jacket matrices can be obtained by using the 

recursive function with ,...}4,3,2{,2 nN n
as 

22/ HJJ NN ,         (9) 

where  is the kronecker product, and 2H  is 

defined by  

11

11
2H .           (10)  

Thus, the unitary Jacket matrices only exist when 

*
1

. Since the unitary Jacket matrix needs 

           N
H
NN INJJ ,        (11) 

that implies   

             
1

N
H
N JNJ ,           (12)  

where H  denotes the Hermitian of a matrix, and *
is the conjugate of the element.  

3. DOUBLY STOCHASTIC PROCESSING ON 

JACKET MATRICES 

An N by N matrix is said to be doubly stochastic if 

ijN PP , 1
j ijP  and 1

i ijP  for 

all row i , and column j . Now, we can write a set 

of doubly stochastic matrices according to a simple 
factorization scheme as follows. 
Theorem 1: Assuming a nonnegative probability 

matrix NP  is a nonnegative diagonalizable matrix 

with eigenvalues N21 , , it can be a doubly 

stochastic matrix if  
1

21 )],,([ NNNN JdiagJP ,  (13) 

where NJ  should be unitary, 11 , and 

,..., 32  are any values which can guarantee  that 

NP  is nonnegative. The inverse form can be easily 

written by   
1
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1
)]/1,/1,/1([ NNNN JdiagJP .(14)

Proof: Based on the basic matrix (7), we have  
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where 
)-)-(1/)+(1/(/41
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)--(1/4 4321d
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The sum of rows and that of columns in 4P  are 

listed by 

Rows:  1__ dpaircpairba ;

1cdab ;              (16) 

Columns: 1dcba ;

1__ paircdapairb . (17) 

It is clearly that the 4P  is doubly stochastic if 

11 . By using the recursive function as (9), the 

higher order probability matrix NP  also is the 

doubly stochastic. And we call the set of these doubly 
stochastic matrices as doubly stochastic Jacket 
matrices (DSJM), several cases are listed in Table 1.  
Theorem 2: A square doubly stochastic matrix of the 

form *NNN UUP for some unitary U
is said to be orthostochastic [1][7][8]. If 

NN JU , the resulted matrix is orthostochastic,

and we always can find a special matrix is 
orthostochastic from the matrices set according to the 

Theorem 1, when 0...,1 21 N .

Proof: Let 44 JU ,  we obtain 
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where *
1

, 1
1

* , and 

denotes the Hadamard product. Clearly, it is 
orthostochastic matrix, and its eigenvalues matrix is 

like as shown in Table 1 (b), where 11 ,

0432 , then   
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Similarly the higher order orthostochastic probability 
matrix according to the recursive function as  
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For the special two by two unitary Jacket matrix, i.e. 
Hadamard, the probability matrix generated 
according to Theorem 1 has the same properties as 
that of the four by four unitary Jacket matrix. In 
general, the Theorem 1 can not only be applied for 

nN 2 , but also be used for nN 2 , with 

3n . Since the unitary nn 22  Jacket matrix is 

based on [4] 
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where 16
. Thus we give factorization as  

1

66166 ),...,( JdiagJP

1

4224

245

2442

452

6

5

4

3

2

1

4224

245

2442

452

111111

11

11

11

11

111111

111111

11

11

11

11

111111

af

af

af

fa

fa

fa

bcde

dbec

edcb

bcde

cebd

edcb

,            (22)
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and e
j 3/

 which is the complex roots of 

16
. It is clear that 142

, and 

151
. Hence, we can find if diagonal value 

11 , other diagonal values can chose any values 

that a,b,c,d,e,f , are nonnegative ,then the probability 
matrix is a double stochastic process. Similar to 

Theorem 2, the nn 22   with 3n   Jacket 

matrix is a unitary matrix, thus we have 
1

2222 )22( nn
H

nn JnnJ . We always can 

find a generalized doubly stochastic matrix is 

orthostochastic, if the first eigenvalue 11 , and 

the other eigenvalues equal zero.  

Proof: Let 66 JU ,  we obtain  
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Clearly, it is orthostochastic matrix, and its 
eigenvalues matrix is likely as shown in Theorem 2,
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Similarly the higher order orthostochastic probability 
matrix according to the recursive function is  
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 ,
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Table.1: Different cases of 44 doubly stochastic Jacket 
matrices 
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4. CONCLUSION 

We proposed a novel method to generalize a set of 
nn 22  and nn 22 matrices named generalized 

doubly stochastic Jacket matrices, also 
orthostochastic cases are included. The derivation 

shows that 
nn 22  and nn 22 , 2n , Jacket 

matrices always have the orthostochastic case if the 

eigenvalues 11 , the others are zeros, however, 

for the doubly stochastic case they may be any values 
which could approach the elements in the probability 
matrix are nonnegative. Generally, the proposed 
scheme uses a simple matrix factorization method to 
represent the doubly stochastic, Markov vectors and 
eigenvalues, and it can be easily applied for 
stochastic signal processing, Markov random process, 
Miller coding system [7], and orthogonal design for 
signal processing such as space time codes pattern 
design [6], [9], [10],[11]. 
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