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Recent Developments in Nonparametric

ALAN JULIAN IZENMAN*

Density Estimation

Advances in computation and the fast and cheap computational facilities now available to statisticians have had a significant
impact upon statistical research, and especially the development of nonparametric data analysis procedures. In particular, the-
oretical and applied research on nonparametric density estimation has had a noticeable influence on related topics, such as
nonparametric regression, nonparametric discrimination, and nonparametric pattern recognition. This article reviews recent de-
velopments in nonparametric density estimation and includes topics that have been omitted from review articles and books on
the subject. The early density estimation methods, such as the histogram, kernel estimators, and orthogonal series estimators
are still very popular, and recent research on them is described. Different types of restricted maximum likelihood density es-
timators, including order-restricted estimators, maximum penalized likelihood estimators, and sieve estimators, are discussed,
where restrictions are imposed upon the class of densities or on the form of the likelihood function. Nonparametric density
estimators that are data-adaptive and lead to locally smoothed estimators are also discussed; these include variable partition
histograms, estimators based on statistically equivalent blocks, nearest-neighbor estimators, variable kernel estimators, and adap-
tive kernel estimators. For the multivariate case, extensions of methods of univariate density estimation are usually straightfor-
ward but can be computationally expensive. A method of multivariate density estimation that did not spring from a univariate
generalization is described, namely, projection pursuit density estimation, in which both dimensionality reduction and density
estimation can be pursued at the same time. Finally, some areas of related research are mentioned, such as nonparametric
estimation of functionals of a density, robust parametric estimation, semiparametric models, and density estimation for censored
and incomplete data, directional and spherical data, and density estimation for dependent sequences of observations.

KEY WORDS: Adaptive estimators; Censored data; Delta sequences; Directional data; Histograms; Kernel estimators; Max-

imum penalized likelihood; Method of sieves; Multivariate density estimation; Nearest neighbor methods; Or-
der-restricted maximum likelihood methods; Orthogonal series; Projection pursuit density estimation; Statis-

tically equivalent blocks.

1. INTRODUCTION

The field of nonparametrics has broadened its appeal in
recent years with an array of new tools for statistical anal-
ysis. These new tools offer sophisticated alternatives to tra-
ditional parametric models for exploring large amounts of
univariate or multivariate data without making specific dis-
tributional assumptions. As one of those tools, nonpara-
metric density estimation has become a prominent statistical
research topic. If X, X,, ..., X, is a random d-dimensional
sample from a continuous probability density function f,
where

f(x) =0, f fx)dx =1, (1.1)

Rd

the general problem is to estimate f when no formal para-
metric structure is specified. In other words, f is taken to
belong to a large enough family of densities so that it can-
not be represented through a finite number of parameters.
“Smoothness” conditions are usually imposed on f and its
derivatives, although there are applications (e.g., X-ray
transmission tomography) in which discontinuities in f (tis-
sue density) are natural (see Johnstone and Silverman 1990).

Perhaps the earliest nonparametric estimator of a univar-
iate density f was the histogram. Further breakthroughs—
initially, with the kernel, orthogonal series, and nearest-
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neighbor methods—were inspired by application to non-
parametric discrimination and developments in spectral
density estimation for stationary time series. Later, meth-
ods such as penalized likelihood, polynomial spline, vari-
able kernel, sieves, and projection pursuit were introduced
with other objectives in mind. What has helped make non-
parametric density estimation (and related methods) popu-
lar today can be traced to a combination of circumstances:
the growing importance of computers in statistical research,
the public availability of quality statistical software, and a
general awareness of the advantages of high-level graphics.

For example, in comparing data from two independent
samples, nonparametric density estimates can be very help-
ful. In a study by Kasser and Bruce (1969) of coronary
heart disease patients and age-matched “normals,” a num-
ber of variables were recorded on 117 men in each group.
These variables included heart rates recorded at rest and at
their maximum following exercise. Figure 1 shows kernel
density estimates of resting heart rate and maximum heart
rate for both groups. Notice that the maximum heart rate
density estimate for the patient group appears to be bimo-
dal, while for the normal group, the density estimate is es-
sentially unimodal. The opposite appears to be the case for
resting heart rate. Figures 2 and 3 show a contour plot and
a perspective plot, respectively, of the bivariate density es-
timate of resting and maximum heart rates for both groups.
The shapes of both bivariate density estimates, especially
the direction and extent of bimodality, could be used to
classify future males into one of the two diagnostic groups.

Researchers have thus found nonparametric density es-
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Figure 1. Gaussian Kernel Density Estimates of (a) Resting Heart Rate and (b) Maximum Heart Rate Following Exercise for a Group of 117
Male Heart Patients (Dotted Lines) and for a Group of 117 Age-Matched Male “Normals” (Solid Lines) in a Study of Coronary Heart Disease
(Kasser and Bruce 1969). For each density estimate, the window-width was taken to reflect sample variation. Note especially the bimodal
density estimate for maximum heart rate for the patient group and the bimodal density estimate for resting heart rate for the normal group.
Source of data: Kronmal and Tarter (1973).

timates effective in the following situations: (a) In explor- such as multimodality, tail behavior, and skewness, are of
atory analysis, descriptive features of the density estimate, special interest, and a nonparametric approach may be more
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Figure 2. Equal Probability Contours of Bivariate Gaussian Kernel Density Estimates of Resting Heart Rate and Maximum Heart Rate From
Figure 1. The normals-group density contours are shown as solid lines and the patient-group density contours are shown as dotted lines. Notice
that the bimodal orientations of the density contours of the two groups appear orthogonal to each other.
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Figure 3. Three-Dimensional Perspective Plots of Bivariate Gaussian Kernel Density Estimates of Resting Heart Rate and Maximum Heart
Rate From Figure 1. The normals group is displayed in (a) and the patient group in (b).

flexible than the traditional parametric methods; (b) in con-
firmatory analysis, nonparametric density estimates are used
in decision making, such as nonparametric discrimination
and classification analysis, testing for modes, and random
variate testing; and (c) for presentational purposes, statis-
tical peculiarities of the data often can be readily explained
to clients through simple graphical displays of estimated
density curves (See Silverman 1981a). There is a very re-
vealing example of (a) by Park and Marron (1990) where
they display a sequence of annual lognormal density esti-
mates for net income data that indicated unimodal densities
hardly changing from year to year, while nonparametric
density estimates indicated at least two modes and signif-
icant changes in shape over time. Further published appli-
cations of nonparametric density estimation can be found
listed and briefly described in Table 1.

The last two decades have seen a consolidation and a
critical assessment of nonparametric density estimation
methods. Several review articles (Bean and Tsokos 1980;
Fryer 1977; Leonard 1978; Rosenblatt 1971; Tarter and
Kronmal 1976; and Wegman 1972, 1982) and an extensive
bibliography (Wertz and Schneider 1979) were published,
as well as nine books (Devroye 1987; Devroye and Gyorfi

1985; Hand 1982; Nadarya 1989; Prakasa Rao 1983; Sil-
verman 1986; Tapia and Thompson 1978; Van Es 1990;
and Wertz 1978); certain books emphasized density esti-
mation methods preferred by the authors, while others were
more comprehensive in their treatment of the diverse ma-
terial. As with most statistical research, much of what has
been written on the subject of nonparametric density esti-
mation, including most of these books, has been completely
theoretical, some books (such as Silverman 1986), how-
ever, contain discussions of real-data examples, simulation
studies, and computational issues. References to JASA re-
views of some of these books are listed in Table 2. See
also the book review by Silverman (1985). The successful
development of nonparametric density estimation tech-
niques led, in turn, to the formulation of nonparametric
regression (Eubank 1988; Muller 1988; Nadarya 1989), in-
cluding the nonparametric analysis of growth curves, and
nonparametric statistical pattern recognition (Devijver and
Kittler 1982; Fukunaga 1972, chap. 6).

This article surveys recent developments in nonparamet-
ric density estimation, as well as topics that were omitted
from previous review articles and books. Section 2 dis-
cusses desirable statistical properties of nonparametric den-

Table 1. Case Studies Involving Nonparametric Density Estimation

Reference Topic Method Remarks
Silverman (1978c) Identifying the causes of “cot MPL Univariate data; assessing bimodality
death”
Scott, Gotto, Cole, and Gorry (1978) Coronary heart disease Kernel Bivariate data; classification problem
Good and Gaskins (1980) High-energy physics and “bump- MPL Univariate grouped data; assessing a
hunting” bump in a mass spectrum
histogram
Dubuisson and Lavison (1982) Surveillance of a nuclear reactor Kernel Multivariate data; classification
problem
Scott and Thompson (1983) Remote sensing of satellite ASH Trivariate data; exploratory analysis
agricultural crop data
Aitchison and Lauder (1985) Compositional data for geology Kernel Multivariate data vectors of
and consumer demand proportions summing to unity
analysis
De Jager, Swanepoel, and Gamma-ray astronomy for Kernel Univariate data; assessing whether
Raubenheimer (1986) estimating light curves and light curve differs from uniform
identifying periodic sources density
Izenman and Sommer (1988) Identifying the components of a Kernel Univariate data; assessing

philatelic mixture

multimodality; comparison with
parametric mixture
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Table 2. Citations of Reviews in JASA of Books on Nonparametric Density Estimation
Author Source of review Reviewer General comments

Wertz (1978) JASA, 75 (1980), 241 K.-S. Lii Emphasizes kernel methods; theoretical

Tapia and Thompson (1978) no JASA review — Emphasizes MPL method; theoretical;
Monte Carlo simulations

Hand (1982) JASA, 78 (1983), 990-991 J. D. Knoke Kernel methods only; some applications;
univariate and multivariate approaches

Prakasa Rao (1983) JASA, 81 (1986), 264 V. Surarla Comprehensive; theoretical; applications

Devroye and Gyorfi (1985)
Silverman (1986)

JASA, 82 (1987), 344
JASA, 83 (1988), 269-270

Devroye (1987) no JASA review

Nadarya (1989) JASA, 85 (1990), 598

to different topics

Comprehensive; theoretical; L, viewpoint

Comprehensive; numerous real-data
applications; univariate and
multivariate approaches;
computational details

— Emphasizes kernel methods; theoretical;
L, viewpoint

Emphasizes kernel methods; theoretical

J. R. Thompson
A. J. 1zenman

D. W. Scott

sity estimates, followed in Sections 3-9 by reviews of the
various estimation methods. Finally, in Section 10, some
remarks are made about related research areas. Note that
the references, though numerous, should not be regarded
as exhaustive.

2. STATISTICAL PROPERTIES OF DENSITY ESTIMATORS

Like any statistical procedure, nonparametric density es-
timators are recommended only if they possess desirable
properties. Finite-sample properties of nonparametric den-
sity estimators are available for special situations (Deheu-
vels 1977; Fryer 1976), but, in general, research emphasis
has settled on developing large-sample properties.

2.1 Unbiasedness

Consider, for example, unbiasedness. An estimator f of
a probability density function f is unbiased for f if, for all
x € R%, EJ[f(x)] = f(x). Although unbiased estimators of
parametric densities, such as the normal, Poisson, expo-
nential, and geometric, do exist (Ghurye and Olkin 1969),
no bona fide density estimator [that is, satisfying (1.1)] can
exist that is unbiased for all continuous densities (Rosen-
blatt 1956). Hence attention has since focused on sequences
{7} of nonparametric density estimators that are asymptot-
ically unbiased for f; that is, for all x € R?, E[f,(x)] —
flx) as n — o,

22 Consistency

A more important property is consistency. The simplest
notion of consistency of a density estimator is where f is
(weakly) pointwise consistent for a univariate f if f(x) —
f(x) in probability for every x € R, and is strongly point-
wise consistent for f if convergence holds almost surely.
Other types of consistency depend upon the error criterion
(L, or L,, in general); see Hall (1989b).

The L, Approach. 1f f is assumed square integrable, then
the performance of f at x € R is measured by the mean
squared error,

MSE(x) = E;[ f(x) — f(0)1?
= var[ f(x)] + {bias[ f0)1}*,

2.1

where var[ f(x)] = E{f(x) — E;[f(x)]} and bias[ f(x)] =
E/f(x)] — f(x). If MSE(x) — O for all x € R as n — ,
then f is said to be a pointwise consistent estimator of f in
quadratic mean. A more important performance criterion
relates to how well the entire curve f estimates f. One such
measure of goodness of fit is found by integrating (2.1)
over all values of x, yielding the integrated mean squared
error,

IMSE = f E[ f(x) — f(x))* dx. (2.2)

Another measure commonly used is integrated squared er-
ror (or L, norm),

0

ISE = f [fx) = f0)T dx. (2.3)
Taking expectations over f in (2.3) gives the mean inte-
grated squared error, MISE = E/(ISE). Note that MISE =
IMSE. ISE is often preferred as a criterion, rather than its
expected value MISE, since ISE determines how closely f
approximates f for a given data set, whereas MISE is con-
cerned with the average over all possible data sets. Under
mild conditions, ISE has been shown to be a reasonably
random approximation to MISE (Marron and Hardle 1986),
while, in certain situations, MISE may actually be a better
performance criterion than ISE (Hall and Marron 1988).
Farrell (1972) showed that for bona fide density estimates,
the best possible asymptotic rate of convergence for MISE
is O(n™**), and Boyd and Steele (1978) proved that no f
can exist with a MISE better than O(n™"), even if f is a
normal density.

The L; Approach. One problem with the L, approach
to nonparametric density estimation is that the tail behavior
of a density becomes less important, possibly resulting in
peculiarities in the tails of the density estimate. Further ob-
jections to the L, approach can be found in Donoho and
Johnstone (1989). In two books (Devroye 1987; Devroye
and Gyorfi 1985), and in a host of articles, an alternative
L, theory of nonparametric density estimation was vigor-
ously pursued by Devroye and his colleagues. Specifically,
Devroye and Gyorfi (1985, p. 1) claimed that L, is “the
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natural space for densities,” and showed that the integrated
absolute error (also known as the total variation or the L,
norm),

00

IAE = f |/ — f(x)| dx, (2.4)

is always well defined as a norm on that space, is invariant
under monotone transformations, and 0 < IAE = 2. If IAE
— 0 in probability as n — o, then f is said to be a consistent
estimator of f, strong consistency of f occurs when con-
vergence holds almost surely. The distance IAE is related
to Kullback—Leibler relative entropy and Hellinger dis-
tance; see Devroye and Gyorfi (1985, chap. 8) for details.
The expectation of (2.4) over all densities f yields the mean
integrated absolute error, MIAE = E/[IAE]. Some quite re-
markable results were proved by Devroye and his colleages
concerning the asymptotic behavior of IAE and MIAE un-
der little or no assumptions on f. Hall and Wand (1988)
derived a general asymptotic expression for MIAE and
showed that its minimization reduced to numerically solv-
ing a particular equation. One thing, however, is clear: The
technical labor needed to get L, results is substantially more
difficult than that needed to obtain analogous L, results.

23 Bona Fide Density Estimates

Of the density estimation methods currently available,
some always yield bona fide density estimates, while others
generally yield density estimates that contain negative or-
dinates (especially in the tails) or have an infinite integral.
Negativity can occur naturally, as a result of data sparse-
ness in certain regions (Boneva, Kendall, and Stefanov 1971;
Kronmal and Tarter 1968), or it can be caused by relaxing
the nonnegativity constraint in (1.1) in order to improve the
rate of convergence of an estimator of f. Moreover, in the
quest for faster convergence rates of estimators, some re-
searchers have chosen to relax the integral constraint in (1.1)
rather than the nonnegativity constraint; see Terrell and Scott
(1980). There are several ways to alleviate such problems.
The density estimate may be truncated to its positive part
and renormalized; alternatively, one might estimate a trans-
formed version of f, say log f or f'/%, and then transform
back to get a nonnegative estimate of f. Gajek (1986) pro-
posed a simple improvement scheme by which any density
estimator that was not a bona fide density could be made
to converge to a bona fide density.

3. THE HISTOGRAM

Traditionally, the histogram has been used to provide a
visual clue to the general shape of f. Suppose f has support
Q = [a, b], where a and b are usually taken to encompass
the observed data. Partition [a, b] into a grid (or mesh) or
m nonoverlapping bins (or cells) T; = [t,,, #,,+,) (i = 1, 2,
...,m), wherea =1,, <t,, < ... <t,,., = b, and the
bin edges {z,} are shown depending on the sample size n.
This is generally termed a fixed partition of €. Let I7, be
the indicator function of the ith bin and let N, be the number
of sample values falling into 7, (i = 1, 2, ..., m), where
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2L N; = n. Then, the histogram, defined by

m

N N;/n
f&x) =D, —m I (), (3.1)
; (tn,i+1 - tn,z) !
satisfies (1.1). If h, = ¢t — t,, (= 1,2, ..., m), is a
common bin width, then (3.1) reduces to
. I &
fu) = — > NIz). 3.2)

n =1

As a density estimator, however, the histogram leaves much
to be desired, with defects that include “the fixed nature of
the cell structure, the discontinuities at cell boundaries, and
the fact that it is zero outside a certain range” (Hand 1982,
p. 15). A much more serious defect relates to the sensitivity
of histogram shapes to the choice of origin; see Silverman
(1986, sec. 2.2) for an example.

3.4 The Histogram As a Maximum Likelihood
Estimator

Let H(Q) be a specified class of real-valued functions
defined on Q. The maximum likelihood (ML) problem is
to find an f to maximize the likelihood function L(f) =
I, f(X)), or its logarithm, subject to f € H(Q), [, f(2) dt
=1, and f(») = 0 (vt € Q). If H(Q) is finite dimensional,
then a (not necessarily unique) solution to this problem ex-
ists and is called an ML estimator of f. The uniqueness of
the solution depends upon the specification of H({)). The
histogram is the unique ML estimator based on the random
sample X, ..., X,, where H consists of functions of the
form 2.,y I;, (y, € R). See de Montricher, Tapia, and
Thompson (1975), where the histogram was also described
as a polynomial spline of degree O (functions which are
piecewise constant) with knots at the points ¢, 5, ..., £, s .
More generalized versions of the histogram using polyno-
mial splines of higher degree appear in Tapia and Thomp-
son (1978, chap. 3).

3.2 Statistical Properties

Under different sets of conditions on f and (3.2), Scott
(1979) and Freedman and Diaconis (1981b) showed that if
h, — 0 and rh, — « as n — «, then IMSE — 0, and that
IMSE is asymptotically minimized if k¥ = [6/R(f")]"/?
X n', where R(g) = f_ocoo[g(x)]2 dx. For Gaussian data
with variance o, for example, k¥ = 3.490n""/>. The op-
timal IMSE convergence rate of O(n *?) is substantially
slower than most other kinds of density estimators, such as
kernel estimators, and gives a more technical reason why
histograms should not be used as density estimators. De-
vroye and Gyorfi (1985, secs. 3.3 and 5.4) showed that the
histogram (3.2) was strongly consistent for all f and that
MIAE was of order O(n~'"). See also Freedman and Dia-
conis (1981a).

3.3 Choice of Bin Width

Since A depends upon the unknown f through R(f'), an
estimate f of fcan be “plugged into” A¥ For example, Scott
(1979) found that the approximate optimal bin width A* =
3.49sn" Y/ 3 where s is the sample standard deviation, worked
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well for Gaussian samples, while it led to overly large bin
widths and hence oversmoothing otherwise. Freedman and
Diaconis (1981b) suggested a “simple, robust rule [that]
often gives quite reasonable results,” namely, A} =
2(IQR)n "', where IQR is the interquartile range of the
data. Numerical comparisons by Emerson and Hoaglin (1983)
of the Scott and Freedman—Diaconis rules showed the
Freedman—Diaconis rule led to narrower bin widths, al-
though “in practical applications the two rules will often
lead to the same choice of interval width.” Terrell and Scott
(1985) and Terrell (1990) argued that &, should be chosen
conservatively by restricting the choice of bin width to the
value that yields the smoothest density, subject to a given
measure of spread (such as the standard deviation or range).
Information-based methods for the histogram were studied
by Taylor (1987), who used Akaike’s information criterion
for determining an optimal histogram bin width, and by
Rodriguez and van Ryzin (1985), who defined maximum
entropy histograms. Scott (1988) studied hexagonal and
square bin shapes for bivariate histograms.

3.4 Related Estimators

By modifying the block-like shape of the histogram, a
faster rate of IMSE convergence of O(n~*°) (or close to it)
can be attained by the following estimators.

The averaged shifted histogram (ASH) of Scott and
Thompson (1983) and Scott (1985a) is constructed by av-
eraging several histograms with equal bin widths but dif-
ferent bin locations and was motivated by the need to re-
solve the problem of a choice of bin origin; its computational
efficiency in the multivariate case has made the ASH pop-
ular among many researchers.

The classical frequency polygon (FP), studied by Scott
(1985b), is constructed by connecting the mid-bin values
of the histogram with straight lines. The FP was especially
recommended for interpolating the ASH, leading to the ASH-
FP. Jones (1989) studied discretization and interpolation
problems related to the ASH and ASH-FP.

The histospline of Boneva, Kendall, and Stefanov (1971)
is a cardinal quadratic spline fitted to the histogram and is
obtained by interpolating the knots of the sample distribu-
tion function ¥, = n~ ! 3", Iix<q and then differentiating
the cubic spline estimator of the distribution function F.

A weighted histogram estimator of f, also referred to as
a Bernstein polynomial-type approximation, was proposed
by Vitale (1975) and Gawronski and Stadtmuller (1980),
where the bin counts were weighted by empirical Poisson
probabilities.

4. KERNEL DENSITY ESTIMATION
The multivariate kernel density estimator of f has the form

h

Fx = (k™ K( ) xERY, @D
j=1
where the choice of kernel function K and the window width

h = h, > 0 determine the performance of f» as an estimator
of f. It is interesting to note that Cacoullos (1966) appears

Journal of the American Statistical Association, March 1991

to have been the first to call K in (4.1) a kernel function;
previously, K was referred to as a weight function. Note
that the same amount of smoothing is used in (4.1) for each
of the d dimensions. The fast Fourier transform is recom-
mended for computing (4.1) in the univariate case (d = 1);
see Silverman (1982a) and Jones and Lotwick (1984). Since
(4.1) shows that 7, inherits whatever properties the kernel
K possesses, it is important that K have desirable proper-
ties.

The simplest class of kernels consists of probability den-
sity functions that satisfy

K(x) =0, f Kx)dx = 1. 4.2)
Rd

If a kernel K from this class is used in (4.1), then f, will

always be a bona fide probability density. Popular choices

of univariate kernels include the Gaussian kernel with un-
bounded support,

K(x) = 2m %%, x€ER, (4.3)
and the compactly supported “polynomial” kernels,
K(x) = Krs(l - ler)81[|x|$1]’
r
r>0,s=0. (4.4

Krs = b
2Beta(s + 1, 1/r)

The rectangular kernel obtains in (4.4) if s = 0 (ko = 1/
2); the triangular kernel if r = 1, s = 1 (k;; = 1); the
Bartlett—Epanechnikov kernel if r = 2, s = 1 (k,, = 3/4);
the biweight kernel if r = 2, s = 2 (ky, = 15/16); the
triweight kernel if » = 2, s = 3 (kp; = 35/32); and, after
a suitable rescaling, the Gaussian kernel if r = 2, 5 = oo,
The triangular kernel density estimate is asymptotically re-
lated to the ASH since the former is obtained as a limit of
the latter as the number of shifted histograms becomes in-
finite. For x € R?, multivariate kernels are usually radially
symmetric unimodal densities such as the Gaussian K(x) =
Qm) 4 e/ and the Bartlett—Epanechnikov, K(x) =
(d + 2)/2cd)( = XX pxeryy ¢4 = 72/T(@/2) + 1).

In certain situations (Cacoullos 1966), product kernels
may be appropriate, where K(x) = 12, K(x,) is a product
of univariate kernel functions. For example, Figures 2 and
3 were computed using bivariate product Gaussian kernel
density estimates. In a similar study, Scott, Gotto, Cole,
and Gorry (1978) used bivariate product biweight kernel
density estimates.

4.1 Statistical Properties

Deriving asymptotic properties of kernel density esti-
mates depends on the particular viewpoint considered. De-
vroye (1983), using the L, approach, proved the remarkably
simple result that if K satisfies (4.2), then the kernel esti-
mator (4.1) will be a strongly consistent estimator of f if
and only if 4, — 0 and nh? — ©, as n — %, without any
conditions on f. Devroye and Penrod (1984) also showed
that, for the univariate case, MIAE was of order O(n~ %),
better than the L, rate for histograms. Explicit formulas
for minimum MIAE and asymptotically optimal smoothing
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parameters for kernel estimators were obtained by Hall and
Wand (1988).

For the L, approach, under regularity conditions on K
and f, Parzen (1962) showed that if 4, — 0 as n — o, then
the univariate kernel estimator was both asymptotically un-
biased and asymptotically normal. Cacoullos (1966) showed
that the asymptotic expression for IMSE for the d-dimen-
sional case was minimized over all A satisfying the above
conditions by h™MSF = a(K)B(f)n~ /", where a(K) de-
pends only on the kernel K and B(f) depends only on f;
furthermore, IMSE —> 0 at rate O(n~*/“**)_ The results show
clearly the dimensionality effect, since these convergence
rates become slower as d increases. In the univariate case,
if K is the standard Gaussian kernel (4.3) and f is a Gaus-
sian density with variance o, then A = 1.060n™'"* would
be the optimal window width. Additional consistency re-
sults were obtained by Hall and Hannan (1988).

4.2 Choice of Kernel

It has been known for some time that although the Bart-
lett—Epanechnikov kernel minimizes the optimal asymp-
totic IMSE with respect to K, IMSE is quite insensitive to
the shape of the kernel. Marron and Nolan (1987) gave fur-
ther results in this direction. As a result, more exotic types
of kernels are now being studied. The most important of
these developments concerns a hierarchy of classes of ker-
nels defined by the existence of certain moments of K. In
this scheme, those univariate symmetric kernels K that in-
tegrate to unity are called order O kernels, while order s
kernels, for some positive integer s, are those order O ker-
nels whose first s — 1 moments vanish but whose sth mo-
ment is finite. Thus second-order kernels have zero mean
and finite variance and include all compactly supported ker-
nels. Order s kernels, for s = 3, have zero variance, which
can be achieved only if K takes on negative values. Such
kernels are important for bias reduction and improving the
IMSE convergence rate. For example, if K is an order s
kernel, then the fastest asymptotic rate of MSE conver-
gence of f to fis O(n~*/®*"); thus, for a fourth-order ker-
nel, which cannot be nonnegative, the minimum asymptotic
MSE convergence rate of f to f is of order O(n~*®), which
is faster than the best such rate, O(n_4/ %), for nonnegative
kernels (see Gasser, Muller, and Mammitzsch 1985). Hall
and Marron (1988) considered optimal selection of the or-
der s. Cline (1988) defined the admissibility of kernel es-
timators and showed that while the Bartlett—Epanechnikov
kernel is not admissible among all kernels, it is admissible
among all nonnegative kernels.

4.3 Choice of Window Width

Early work on the kernel method emphasized asymptotic
results, whereas determining an optimal 4 is the main re-
search focus today. Since the optimal window width,
hy"S®, depends explicitly on the unknown f through B(f),
it cannot be computed exactly. Several “plug-in” proce-
dures were proposed whereby B(f) was used to estimate
B(f), but these were generally unsatisfactory (e.g., see Scott
and Terrell 1987).

An automatic method for determining the optimal win-
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dow width is cross-validation (CV). The basic algorithm
involves removing a single value, say X,, from the sample,
computing the appropriate density estimate at that X, from
the remaining n — 1 sample values,

X, — X
- Kl = f’
(n—l)hz ( h >

J#

and then choosing 4 to optimize some given criterion in-
volving all values of f,,,,(X,) (i=1,2,...,n). Two different
versions of CV have been used in density estimation: like-
lihood cross-validation and least squares cross-validation.
For likelihood cross-validation, h*“" is that h that maxi-
mizes the “pseudo-likelihood” L(h) = I, fA,,V,(X,). For least
squares cross-validation, K" is that h that minimizes LS(h)
= R(f) — (2/n) =, f,.(X,), which is exactly unbiased for
MISE - R(f). Marron (1987b) provided an excellent sur-
vey of these and other automatic smoothing parameter
methods.

Mixed results have been obtained for CV methods in ker-
nel density estimation. It has been shown, for example, that
when using compactly supported kernels [such as (4.4)],
likelihood CV produces consistent estimates of compactly
supported densities (Chow, Geman, and Wu 1983) but does
not necessarily do so for estimating infinitely supported
densities (Schuster and Gregory 1981). The complex influ-
ence that the tails of both K and f have on likelihood CV
was studied by Hall (1987a) in terms of the Kullback—Lei-
bler norm. Broniatowski, Deheuvels, and Devroye (1989)
related such convergence problems to the stability of the
extreme order statistics. Simulation studies by Scott and
Factor (1981) indicated that, depending upon the type of
kernel employed, likelihood CV could lead to either a se-
verely undersmoothed or oversmoothed density estimate.
Furthermore, the criterion L(k) was found to be very sen-
sitive to outliers. Obvious modifications of L(4), including
truncating f, have been considered; see Hall (1982) and
Marron (1985).

Least squares CV does not seem to display the peculiar
behavior exhibited by likelihood CV. Indeed, very mild tail
conditions on f and K are needed to prove asymptotic op-
timality results for least squares CV. See, for example, Hall
(1983a) and Stone (1984), who showed that A~V asymp-
totically minimized ISE. Bowman (1984) also showed, via
simulation, that least squares CV achieved satisfactory re-
sults for long-tailed f. Hall and Marron (1987a, b) proved
that A5V performed asymptotically as well as the optimal
(but unattainable) window width A™SF; they then went on
to show that although 4“5V converged very slowly, the least
squares CV choice of window width could not be improved
upon asymptotically. Scott and Terrell (1987) introduced a
version of the criterion LS(h) that was biased for MISE and
showed that although large asymptotic performance gains
could be obtained from such a biased CV procedure, no
currently available (biased or unbiased) CV procedure could
be considered highly reliable for very small samples.

The high sampling variability of CV estimates led Terrell
(1990) to propose that the smoothest density estimate be
chosen that is compatible with the estimated scale of the
density. Taylor (1989) and Hall (1990) showed that the

X)) = 4.5)
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bootstrap also works well for selecting / in large samples
and if resampling is carried out with a reduced sample size.

4.4 Related Estimators

Applying the ideas of sequential analysis to kernel den-
sity estimation led to the development of sequential density
estimators by Deheuvels (1973), Davies and Wegman (1975),
and Carroll (1976); for this type of estimator, sequential
sampling is carried out, and the kernel estimator is com-
puted at each sample size until the conditions of a given
stopping rule are satisfied, so that sample size is random.
A related estimator is the recursive density estimator, where
the kernel density estimator is calculated recursively, f,, from
F.—1; this estimator was introduced independently by Wol-
verton and Wagner (1969) and Yamato (1971), and further
studied by Devroye (1979) and Wegman and Davies (1979).
See Prakasa Rao (1983, chap. 5).

5. LOCAL ADAPTIVE SMOOTHING

The methods for nonparametric density estimation so far
described are quite insensitive to local peculiarities in the
data, such as data clumping in certain regions and data
sparseness in others, particularly the tails. In this section,
we describe attempts at constructing nonparametric density
estimators that are more sensitive to the clustering of sam-
ple values.

54 Variable Partition Histograms

The results described in Section 3 were restricted to the
fixed partition case. Some work has appeared in which the
histogram concept has been made more data-sensitive as an
estimator of f. This development, which led to the variable
partition histogram, was originally suggested by Wegman
(1969, 1975). Variable partition histograms are constructed
in a similar manner as fixed partition histograms, but in this
case the partition depends upon the gaps between the order
statistics X(), ..., X(,. Choose an integer m € [2, n] to be
the number of bins of the histogram and then set k = [n/
m]. A partition P = {P,} can be obtained by defining P,,
= Xy Xwls P = Xggs Xawls -5 Pun = Kim-1y9> Xm)»
so that each interval contains about k sample values. Then,
for any x € [X), X(»], estimate f by

\ - k
f&x) = 2 /n
i=1 (X(ik) - X((l’—l)k+l))
Clearly, f is constant on the intervals {P,,} and is, therefore,
a histogram-type estimator of f. Wahba (1971) and Van Ry-
zin (1973) indicated that variable partition histograms were
related to polynomial spline estimators. In the L, approach,
Devroye and Gyorfi (1983, sec. 7.5) showed that if k = k,
— o and k,/n —> 0 as n — , then f in (5.1) is a strongly
consistent estimator of f. Similar results for the L, case can
be found in Prakasa Rao (1983, sec. 2.4), Lecoutre (1986),
and Kogure (1987). Note that the results of Lecoutre are
not valid when f is Gaussian. The rate of convergence for
MISE of the estimator (5.1) is O(n~ %), the same order as
for the fixed partition case. Kanazawa’s (1988) results used
the Hellinger distance approach and a dynamic program-

Ip, ). 5.1)
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ming algorithm, but gave no asymptotic rate of conver-
gence for the estimator.

5.2 Estimators Based on Statistically Equivalent
Blocks

A multivariate version of the variable partition histogram
was constructed by Gessaman (1970) and applied to non-
parametric discrimination in Gessaman and Gessaman (1972).
See also Quesenberry and Gessaman (1968). This estimator
was defined over a partitioning of the sample space into
statistically equivalent blocks (a term introduced by Tukey
and abbreviated ‘se-blocks’). An se-block is a multivariate
analog of the gap between two adjacent order statistics, and
was originally used for constructing nonparametric toler-
ance regions (Anderson 1966; Fraser 1951, 1953, 1957, sec.
4.3; Fraser and Guttman 1956; Tukey 1947, 1948; Wald
1943; and Wilks 1962, sec. 8.7). Since this estimator does
not appear in any book or review of nonparametric density
estimation, some detail is provided here.

Let X, X, ..., X, be a random sample on X € R”. The
procedure for constructing se-blocks depends on a se-
quence, h(X), ..., h,(x), of n real-valued functions of X,
not necessarily different, and a set of integers, (ji, ja, - .,
Jn), that forms a permutation of (1, 2, ..., n). Typically,
h,(X) = x;, the kth coordinate of x. At the first step, k;(x)
is used to order the {X,}. Define XY" as that X, for which
h;(x") is the jist smallest of the h;(x,) values. The cut
hi(x) = h,(xY") creates two disjoint blocks B, ; =
{XIhj,(x) = hj.(x(j'))} and Bj, 1. 11 = {x: h; (x) > hj,(x(jl))}-
Thus, there are exactly j; — 1 X, in B, _; and exactly n —
Jiin Bj .1 .41 At the second step, if j, < ji, then h;(x) is
used to order the j, — 1 X,’s in B, ;. Define X" as that
X, for which j, — 1 X,’s satisfy h;,(x,) < h;,(x"”) and h;,(x,)
< &) and j; — j, — 1 X.s satisfy h,(x,) >
hy,(xY?) and h; (x,) < h;,(xY"). The cut hy(x) = hy,(x"?) di-
vides the block B, ; into subblocks B, ;, =B, ; N {x :
hi(x) < h,(xY")} and Bj,., ;, =B, ; N {x : hx) >
h,(x¥)}. If, on the other hand, j, < j,, then the block
B; 11, n+1 is divided into subblocks B; .1 ;, = Bj 11, a41 N
{x : hyx) Shjz(x(h))} and Bj,i i 1 = Bjir e N {X
h;(x) > h;,(xY?)}. This is done by ranking the n — j, X,’s
in Bj 1, .+ according to h;,(x) and letting X"? be the (j, —
Jj1) smallest in the ranking. This procedure is continued. At
the mth step, the block that is divided is the one having j,
in its index set, and the X, in that block are ordered by
h; (x) and the (j,, — jmn,) smallest value chosen to represent
the cut, where j,, is the largest of the jj, ..., j,-; that are
less than j,. After n steps there will be n + 1 se-blocks,
B, B,, ..., B,.;. The map of se-blocks is completely de-
termined by the functions {A,} and the permutation used.

To construct the density estimator, consider the bivariate
case [d = 2, where X = (X;, X,)]. Let k, > 0 be an integer
(Gessaman suggested k, = [»"3)). Superimposed over the
map of se-blocks, make [(n/k,)"/*] — 1 evenly spaced ver-
tical line cuts at the ordered X,;-observations. After deleting
the observations used to make the cuts, make a further [(n/
k,)'/?] — 1 evenly spaced horizontal line cuts at the ordered
X,-observations. The plane will now be partitioned into
[(nk,)"/*] subblocks or probability squares (Gessaman and
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Gessaman 1972). Each probability square will be the union
of about k, se-blocks and, therefore, will contain about £,
observations. If B, is a bounded probability square and x
€ B,, set

k./(n +1)

fx) = (5.2)

area(B,)
On unbounded probability squares, estimate f as 0. Ges-
saman (1970) showed that if k, — o and k,/n — 0 as n —
o, then the estimator (5.2) was weakly consistent for f.
Convergence rates and some optimal choice for &, in (5.2)
have yet to be determined, however.

5.3 Nearest Neighbor Methods

Fix and Hodges (1951) proposed the nearest neighbor es-
timator in the context of nonparametric discrimination. See
Silverman and Jones (1988) for a modern interpretation. At
a fixed point x and for fixed integer k, let D,(x) be the
Euclidean distance from X to its kth nearest neighbor among
the X, X,, ..., X,, and let vol(x) = c,[Dy(x)]* be the vol-
ume of the d-dimensional sphere of radius D,(x), where c,
is the volume of the unit d-dimensional sphere. The kth
nearest neighbor (k-NN) density estimator is then given by

k/n
vol(x)

Tukey and Tukey (1981, sec. 11.3.2) called (5.3) the bal-
loon density estimate of f. An advantage of the k-NN es-
timator is that it is always positive, even in regions of sparce
data. Loftsgaarden and Quesenberry (1965) proved (5.3)
was consistent if k = k, — o and k,/n — 0 as n — o,
Abramson (1984) proposed that in the d-dimensional case,
k, should be chosen proportional to n*/“*®| the constant of
proportionality depending on x. The k-NN estimator (5.3)
can be written as an kernel density estimator by setting

1 i K(x - j)
nD®) 5\ Dy /”
where the smoothing parameter is now k and the kernel K
is the rectangular kernel. Moore and Yackel (1977) and Mack
and Rosenblatt (1979) analyzed the bias and variance of
(5.3). Rosenblatt (1979) studied the global behavior of gen-
eralized nearest neighbor estimates of f. See also Mack (1980)
and Abramson (1984). Although the k-NN estimator ap-
peared reasonable for estimating a density at a point, it was
not particularly successful for estimating the entire density
function f. Indeed, the estimator was not a bona fide density
since (5.3) was discontinuous and had an infinite integral
due to very heavy tails. Devroye and Gyorfi (1985, p. 21)
noted that, because of these difficulties, “it is impossible
to study its properties in L,.”

fx) = (5.3)

fx) = (5.4)

5.4 Variable Kernel Estimators

The variable kernel estimator, which was an attempt to
avoid the problems associated with the k-NN estimator, was

defined by setting
K ,
Hy \ H;

n

. 1
Fo = 521

5.5)
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where the variable window width H; = hDy(X;) does not
depend on x as did (5.4), & is a smoothing parameter, and
k controls the local behavior of H;. The estimator (5.5) is
a bona fide density if the kernel K satisfies (4.2). It was
apparently first considered by Meisel in 1973 in the context
of pattern recognition and then studied empirically by Brei-
man, Meisel, and Purcell (1977), who listed its advantages
as having the smoothness properties of kernel estimators,
the data-adaptive character of the k&-NN approach, and very
little computational penalty. In their simulation studies, the
estimator (5.5) performed very poorly unless k was large,
on the order of .10n. Conditions for consistency of the vari-
able kernel estimator were obtained by Wagner (1975) and
Devroye (1985); Devroye and Penrod (1986) proved the
strong uniform consistency of (5.5).

8.5 Adaptive Kernel Estimators

The variable kernel estimator (5.5) led, in turn, to the
adaptive kernel estimator. Abramson (1982a,b), who was
concerned with estimating f at a point, proposed a two-step
algorithm for computing a data-adaptive window width. First,
a clipped (or winsorized) version f§ is constructed from a
pilot kernel density estimate 7§ with fixed window width A
and then the adaptive kernel estimator is defined as

s 1ol (x=X,
== h;‘K< h )

nio

(5.6)

where k; = A[fU(X)]""/2. Two modifications of Abram-
son’s h; have been suggested. Silverman (1986, sec. 5.3)
set b = h[(1/g) f 2(Xj)]_°‘, where g is a scale factor [such
as the geometric mean of thefﬁ(Xi), i=1,2,...,n] and
0 = a = 1 reflects the sensitivity of the window width to
variations in the pilot estimate; examples of Silverman’s
adaptive window widths and @ = 1/2 were also given that
demonstrated better tail behavior than the corresponding fixed
window width kernel estimator. Hall and Marron (1988) set
b = hel £3,(X)17"? in (5.6), where hp was the smoothing
parameter of the pilot estimate and sy was the smoothing
parameter of the final estimate; they showed that their mod-
ification had a very fast rate of MSE convergence.

6. ORTHOGONAL SERIES ESTIMATORS

Orthogonal series density estimators were introduced by
Cencov (1962) and have since been applied to several dif-
ferent areas, especially pattern recognition and discrimi-
nation and classification; see Greblicki and Pawlak (1981).
The method has been used to estimate multivariate densities
for dichotomous (Ott and Kronmal 1976), polychotomous
(Butler and Kronmal 1985), and mixed continuous and dis-
crete variables (Hall 1983b).

6.1 Arbitrary Orthogonal Expansions

This method assumes that a square-integrable f can be
represented as a convergent orthogonal series expansion,

©

)= ap),

k=—o0

x€EQ, 6.1)

where {¢,} is a complete orthonormal system of functions
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on a set ) of the real line [that is, satisfying Jo ¢,(x)¢@u(x)
dx = 8, where &, is the Kronecker delta] and {a,} are coef-
ficients defined by a, = E[@#(X)], where ¢jfis the complex
conjugate of ¢;. This formulation allows for systems of real-
or complex-valued orthonormal functions. Orthonormal
systems proposed for {¢,} are those with compact support
(such as the Fourier, trigonometric, and Haar systems on
[0, 1], and Legendre system on [—1, 1]) and those with
unbounded support [such as the Hermite system on R and
Laguerre system on [0, %)].

Given an independent sample, X, X5, ..., X,, from f and
a system {¢,}, the {a,} can be estimated unbiasedly by

1 n
==, gF(X). 6.2)
nio
The obvious estimator of f, obtained by plugging (6.2) into
(6.1) in place of a,, may not be well defined: It has infinite
variance and is not consistent in the ISE sense. Tapered
estimators of the form

Jw =2 bhaem, x€Q, (6.3)

= —o0

have been studied, where 0 < b, < 1 is a symmetric weight
(b_; = by) that shrinks d, towards the origin, and 2|b,| <
% is needed for pointwise convergence of (6.3). See, for
example, Watson (1969), Rosenblatt (1971), Brunk (1978),
and Hall (1986). Tapered orthogonal series estimators were
used by Johnstone and Silverman (1990) to estimate bi-
variate glucose density within the brain. The choice b, =
1 for —r = k = r and O otherwise leads to the partial sums
of (6.1) being approximated by

L= ap, x€Q, (6.4)

k=—r

where {4} are given by (6.2). Wahba (1981) considered a
two-parameter system of weights, b, = (1 + AQ k)™~
for —r = k = r, where A > 0 is a smoothing parameter
and m > 1/2 is a shape parameter. Other systems of weights
were discussed by Hall (1987) and Lock (1990). To esti-
mate the {b,}, likelihood cross-validation was proposed by
Wahba (1981) and least squares cross-validation by Hall
(1987b). In related work, Anderson and de Figueiredo (1980)
developed an adaptive orthogonal series estimator.

6.2 Statistical Properties

The most popular orthogonal series estimator for densi-
ties with unbounded support, usually R or [0, ®), is the
Hermite series estimator. The normalized Hermite functions
given by ¢ (x) = c(x)H(x) (k = 0, 1, 2, ...), where ¢, =
e )22 and Hyx) = (= Dfe ™/2(d*/dx*) (e ™)
is the kth Hermite polynomial, form an orthonormal basis
for an L, approach. They are heavily weighted in the tails
by e/ and provide sufficient protection against unusual
tail behavior of X; see Hall (1987b). Schwartz (1967) showed
that if r = r, in (6.4) satisfies r,/n — 0 as r, — ©, then
IMSE — 0 as n — %; moreover, if r, = O(n‘/") for g =
2, then IMSE = O(n™"""?). Walter (1977) improved this
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last result slightly. Note that the IMSE convergence rate is
independent of the dimension of the data, which gives the
Hermite series estimator an advantage over the kernel es-
timator for multivariate density estimation. The Hermite
system does not form a basis for the L, approach, however,
and the Hermite series estimator is neither translation in-
variant nor consistent in the L, sense.

If f has compact support [0, 1], say, the popular Fourier
(or trigonometric) series estimate, which is the real part of
(6.4), is formed from the system of discrete Fourier func-
tions, defined by @,(x) = ™ [i = (-=1D)"*, k=0, 1, 2,
...]. See Wahba (1975a, 1975b, 1981) and Hall (1981) for
details and comments about the influence of periodicity and
the Gibbs phenomenon on Fourier series density estimates.
Devroye and Gyorfi (1985, sec. 12.4) proved that for the
Fourier series estimator, under suitable conditions on f and
if r,/n — 0 as r, = », then MIAE — 0 as n — .

Arguments about the relative merits of the Hermite sys-
tem versus the Fourier system can be found in Walter (1977)
and Good and Gaskins (1980). Wahba (1981) suggested that
“in many applications it might be preferable to assume the
true density has compact support and to scale the data to
the interior of [0, 1].”

6.3 Choice of Number of Terms

The performance and smoothness of the orthogonal series
density estimate (6.4) depend on r, the number of terms in
the expansion. Kronmal and Tarter (1968) proposed a term-
by-term optimal stopping rule for choosing r by minimizing
an estimated MISE criterion. Disadvantages of that rule were
pointed out by Crain (1973), who suggested that it might
not yield the optimal r; by Hart (1985), who noted from
simulation studies that the rule tended to stop too soon, thus
yielding oversmoothed density estimates; and by Diggle and
Hall (1986), who warned about the possible poor perfor-
mance and inconsistency of the rule in multimodal situa-
tions. Improvements were suggested by Hart (1985) and
Diggle and Hall (1986), and Lock (1990) combined choice
of the number of terms with a tapered estimator and showed
its advantages in a simulation study.

7. DELTA SEQUENCE DENSITY ESTIMATORS

Many of the different methods described so far for non-
parametric density estimation are special cases of the fol-
lowing general class of density estimators. Let 6,(x, y) (x,
y € R), be a bounded function indexed by a smoothing
parameter A > 0. The sequence {5,(x, y)} is called a delta
sequence on R if [, 8,(x, y)d(y) dy — ¢(x) as A — % for
every infinitely differentiable function ¢ on R. Any esti-
mator that can be written in the form

. 1 «
i =~ > &(x.X), xER, (7.1)
7=1

where {6,(x, y)} is a delta sequence, is called a delta se-
quence density estimator. Thus histograms, kernel esti-
mators, and orthogonal series estimators can each be writ-
ten in the form (7.1):
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8u(x, X)) = 2Ly (fy — 1) I (OI(X,)
[see (3.1)]

histograms:

1
kernels: §,(x, X)) = ZK((X - X)/h)

[see (4.1)]
orthogonal series: 6,(x, X)) = Z\—_, ¢(x)¢f (X))
[see (6.2), (6.4)]

In some cases (such as histograms and orthogonal series
estimators), A will be integer-valued as in the number of
terms in an expansion, while in others (such as kernel es-
timators), A will be real-valued. Such general density es-
timators were first studied by Whittle (1958). Watson and
Leadbetter (1964) called them &-function sequences and
showed that they were asymptotically unbiased as density
estimators. Further work along the same lines was carried
out by Foldes and Revesz (1974). Walter and Blum (1979)
and Prakasa Rao (1983, sec. 2.8) gave a long list of special
cases and established MSE rates of convergence; but, see
Hall (1981) for a cautionary note. Silverman (1986, sec.
2.9) referred to (7.1) as a general weight function esti-
mator. Marron (1987a) used delta sequence estimators as
a means of comparing different density estimators.

8. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS

The ML method of Section 3.1 fails miserably when the
class of densities H over which the likelihood L is to be
maximized is otherwise unrestricted. For that case, the like-
lihood is maximized by a linear combination of Dirac delta
functions (or “spikes”) at the n sample values, resulting in
a value of +o for the likelihood. In this section, ap-
proaches to the ML problem are described in which restric-
tions are placed either on H or L.

8.1 Order—Restricted Methods

Consider, first, an order restriction on H. For example,
densities that are monotone decreasing over the range [0,
) are especially important in survival analysis; see Denby
and Vardi (1986). Grenander (1956) showed that the ML
estimator for a nonincreasing density on [0, ©) was a step
function with jumps at the order statistics {X,}. Specifi-
cally, if F ,» 1s the sample distribution function, then the ML
estimator of a nonincreasing density is the slope of the least
concave majorant of F,, namely,

A F n(X(t)) - F n(X(s))

f(x) = min max
sst—1 = X(,) - X(S) ’

Xoon <x<X, (8.1)

and O for x < 0 and x < X,,,. Figure 4 displays the least
concave majorant for a sample of size n = 15. The Gren-
ander estimator (8.1) is strongly consistent for monotone
decreasing f (Groeneboom 1983) with an MIAE conver-
gence rate of o' (Devroye 1987, chap. 8). It is also
reasonably well behaved when f is close to decreasing (Birge
1986, 1989). Some modifications have been suggested to
improve the performance of (8.1), including smoothing in

215

the neighborhood of zero. For different approaches to com-
puting (8.1), see Barlow, Bartholomew, Bremner, and Brunk
(1972, chap. 5) and Denby and Vardi (1986). Alternative
approaches to estimating a decreasing density were given
by Birge (1987a,b).

A related order restriction concerns unimodal densities.
First, without loss of generality, assume that the mode M
= 0 is known. Since a unimodal density f is nondecreasing
in x prior to the mode and nonincreasing thereafter, it suf-
fices to consider only ML estimation of f,, the conditional
density on [0, ), since a similar argument holds for f_,
the conditional density on (—, 0). The ML estimate of f
is then given by f = o”zf‘+ + (1 — @)f_, where f, is the slope
of the least concave majorant of F,, f_ is the slope of the
greatest convex minorant of F,, and 0 = & =< 1 is the pro-
portion of sample values that fall into [0, *). See, for ex-
ample, Robertson, Wright, and Dykstra (1988, chap. 7).
Robertson (1967) showed that the ML estimate for a uni-
variate, unimodal density with known mode can also be
expressed as a conditional expectation given the o lattice
of all intervals that contained the mode, together with the
empty set, and demonstrated that isotonic regression al-
gorithms can efficiently compute the ML estimate. When
the mode is unknown, Wegman (1969) obtained the ap-
propriate ML estimator and showed consistency; in this case
the o lattice was defined in terms of all intervals that con-
tained a consistent estimate of the mode. Sager (1982) gen-
eralized the results of Robertson and Wegman and illus-
trated his results by estimating the contours of a bivariate
density applied to a problem in cartography. See also Sager
(1986). A related minimum-distance estimator for unimo-
dal densities was studied by Reiss (1976).

8.2 Method of Sieves

The method of sieves is another restricted ML density
estimation method in which H is restricted. It is different,
however, in that the choice of “sieve” determines the den-
sity estimation method. The essence of the method of sieves
is the following: For each & > 0, select a subset S, of den-
sities for which a ML estimator does exist; next, find the
restricted ML density estimator f‘,, by maximizing the like-
lihood function

L(hH=11rx). ress (8.2)
=1

and, finally, let the subset §, grow (in some sense) with
the sample size n, while allowing » = h, — 0 as n — ©
in such a way as to ensure that the ML estimator converges
to a density function. The sequence {S,} of these subsets is
called a sieve, h is called the sieve parameter or mesh size,
and the estimation procedure is called the method of sieves.
For specific sieves, this method produced the histogram,
MPL, and orthogonal series estimators, but, surprisingly,
not the Gaussian kernel estimator.

The method was introduced by Grenander (1981, part III),
motivated by his work in pattern analysis and “based on an
idea of Wald refined by Bahadur.” It was further developed
by Geman and Hwang (1982) and Walter and Blum (1984).
See also Wegman (1975). As with density estimators in
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Figure 4. The Empirical Distribution Function F, and Its Least Concave Majorant for a Sample of Size n = 15.

general which depend upon a smoothing parameter, the
performance of the method of sieves estimator depends par-
ticularly upon the sequence of sieve parameters which should
decrease to zero “at a sufficiently slow rate” (Grenander
1981, p. 426). It has been shown that this method leads to
consistent estimators in the L, sense, although exact rates
of convergence have not yet been determined. To date, the
method has been studied only theoretically.

8.3 Maximum Penalized Likelihood Method

The most popular method for restricted ML density es-
timation, however, involves penalizing the likelihood func-
tion L for producing density estimates that are “too rough.”
See Good and Gaskins (1971). Thus, if ® is a given non-
negative (roughness) penalty functional defined on H, then
the ®-penalized likelihood of f is defined to be

L) =[] fx)e . (8.3)
i=1

The optimization problem calls for L( f) in (8.3), or its log-

arithm, to be maximized subject to f € H(QY), [ f () dt =

1, and f(r) = 0 (vt € Q). If it exists, a solution, f, of that

problem is called a maximum penalized likelihood (MPL)

estimate of f corresponding to the penalty function ® and

class of functions H. For example, ®(f) = « o L")
dx is used in the International Mathematical and Statistical
Libraries, Inc. (1987) routine DESPL, where @« > 0 is a
smoothing parameter. Based on this penalty function, Fig-
ure 5 shows MPL density estimates with different a using
n = 63 observations of Buffalo snowfall recorded during
1910-1972. Good and Gaskins observed that the MPL
method could, for certain types of problems, be interpreted
as “quasi-Bayesian” since (8.3) resembles a posterior den-
sity for a parametric estimation problem. Furthermore, the
MPL method is closely related to Tikhonov’s method of
regularization used for solving ill-posed inverse problems
(O’Sullivan 1986).

De Montricher, Tapia, and Thompson (1975) rigorously
established the existence and uniqueness of MPL density
estimates, and showed that the MPL method was intimately
related to spline methods. For example, if f has finite sup-
port ) and H({)) is a suitable class of smooth functions on
(1, then the MPL estimate f exists, is unique, and is a poly-
nomial spline with join points (or “knots”) only at the sam-
ple values.

The case when f has infinite support is more complicated.
Good and Gaskins (1971) proposed penalty functionals de-
signed to estimate the root-density, y = f 2 so that f =
9% would be a nonnegative (and bona fide) estimator of f.
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Figure 5. Maximum Penalized Likelihood Density Estimates of the 63 Annual Observations on Buffalo Snowfall, 1910-1972. The data are
given in Scott (1985a). The penalty function used was ®(f) = af[ f"(x)F dx, and the smoothing-parameter values were (a) « = 107, and (b)
a = 10° The trimodal shape [see (b)) is generally regarded as the most reasonable density estimate for these data.

The penalty functionals were

00

[y ()] dx, a>0, (8.4)

®,(f) = 4af

—o0

=

%Uﬁﬂaj[fwfﬂ+ﬁf[wwfﬂ,

—o0

a=0, =0, (8.5)

where the hyperparameters a and B, with « + 8 > 0 in
(8.5), control the amount of smoothing. Motivation for ®,
and @, rested on how best to represent the “roughness” of
f- Good and Gaskins preferred (8.5) to (8.4), arguing that
curvature as well as slope of the density estimate should be
penalized. In follow-up papers, Good and Gaskins (1980)
and Good and Deaton (1981) set @ = 0 in (8.5) and used
B JIy"(x)]* dx as the measure of roughness of f, where B
was to be determined from the data. Klonias and Nash (1983)
and Klonias (1984) investigated a very general class of pen-
alty functionals [that included (8.4) and (8.5) as special cases]
whose primary motivation was to improve estimation of peaks
and valleys of f.

For the penalty function (8.4) and a given value of «,
De Montricher et al. (1975) showed that, if the optimiza-
tion problem is set up correctly, then the resulting estimator
Ya» SAY, €Xists, is unique, and is a positive exponential spline
with knots only at the sample values. An exponential spline
rather than a polynomial spline is the price to be paid for
requiring nonnegativity of the density estimate. The MPL
estimator is then given by fa = 9. Klonias (1982) dem-
onstrated consistency of £, in a number of different norms,
including L, and L,. As for determining the value of «,
Silverman (1978c) suggested, in a slightly different setup,
that @ be chosen informally using graphical methods. If the
penalty function is (8.5) and given values of @ and 3, then,
provided the optimization problem is set up correctly, the
resulting estimate 7, g exists and is unique. The MPL es-
timate of f is given by fa,B = 7?1,;3- Good and Gaskins also

gave some recommendations for («, ) that performed well
in their examples.

Another way of guaranteeing a bona fide density estimate
using the MPL method was devised by Silverman (1982b),
who used a roughness penalty based on g = log f, and showed
that this approach led to a wide range of possible density
estimates. Solving the appropriate optimization problem
yielded an estimator ¢ of g, so that a nonnegative MPL
estimate for f was given by f = ¢®. Silverman developed a
very general theory of penalty functionals based on log f,
and then proved the existence, consistency, and asymptotic
normality of the resulting estimators. This approach was
studied further by Silverman (1984).

Implementation of the MPL method depends upon the
quality of the numerical solutions to the restricted optimi-
zation problems. Since y = f'/? is square-integrable, Good
and Gaskins (1980) suggested using mixtures of orthonor-
mal expansions for 7y, terminating the expansions at some
finite number of terms. Scott, Tapia, and Thompson (1980)
studied a discrete approximation to the spline solutions of
the MPL problems, and proved that the resulting discrete
MPL estimator exists, is unique, converges to the spline
MPL estimator, and is a strongly pointwise consistent es-
timator of f. Further computational work on the discrete
MPL estimator was carried out by Good and Deaton (1981).

9. PROJECTION PURSUIT DENSITY ESTIMATION

Multivariate kernel density estimators tend to be poor
performers when it comes to dealing with high-dimensional
data since extremely large sample sizes are needed to match
the sort of numerical accuracy that is possible in low di-
mensions. In light of this, Friedman and Stuetzle (1982)
and Friedman, Stuetzle, and Schroeder (1984) developed
projection pursuit density estimation (PPDE). The PPDE
method has been shown in simulations to possess excellent
properties, and several quite striking applications of PPDE
to real data have also been published.
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9.1 The PPDE Paradigm

When dealing with small samples of high-dimensional
data, the PPDE procedure may be jump-started by restrict-
ing attention to the subspace spanned by the first few sig-
nificant principal components; see Friedman (1987) and Jee
(1987) for examples. A PPDE of fis then formed using the
following stepwise procedure. First, transform the data to
have center the origin and covariance matrix the identity.
Second, choose  to be an initial multivariate density es-
timate of f, usually taken to be standard multivariate Gaus-
sian. Third, find the direction a, € R? for which the (model)
marginal f,, along a, differs most from the current estimated
(data) marginal fa, along a;. Choice of direction a; will not
generally be unique. Fourth, given a,, define a univariate
“augmenting function” g,(ajx) as the ratio of the two mar-
ginals, namely, g,(ajx) = ﬁ,,(a{x)/ﬁ,l(a?x), and update the
initial estimate so that fV(x) = f©(x)g,(a]x). Repeat this
procedure on the modified density /" so that a second di-
rection a, € R and augmenting function g,(a}x) = f, (ajx)/
faz(agx) are found, and the density is again modified to be
FPx) = fV(x)g,(ajx). Repeat the procedure as many times
as necessary so that, at the kth iteration,

k
7O =79 [ | g@x = F* "mgdax (9.1
J=1

will be the current multivariate density estimate, where

fo(@x’
In (9.1), the vectors {a} are unit length directions in R?,
and the augmenting (or ridge) functions {g} are used to build
up the structure of f© so that f* converges to f in some
appropriate sense as k — . The number of iterations
k operates as a smoothing parameter and a stopping rule
is determined by balancing bias against the variance of
the estimate. Friedman et al. (1984) suggested graphical
inspection of the augmenting functions [plotting g, (a;x)
against a)x for j = 1, 2, ..., k] as a termination criterion
for the iterative procedure.

Computation of the augmenting functions (9.2) has been
discussed by Friedman et al. (1984), Huber (1985, sec. 15)
and discussants Buja and Stuetzle (especially pp. 487—-489),
and Jones and Sibson (1987, sec. 3). Given a,, estimate
fa, by first projecting the sample data along the direction a;,
thus obtaining z, = a)x; (i = 1, 2, ..., n) and then compute
a kernel density estimate from the {z,}. Monte Carlo sam-
pling is used to compute f"aj, followed by kernel density es-
timation. Alternatives to kernel smoothing include cubic
spline functions (Friedman et al. 1984) and average shifted
histograms (Jee 1987).

g@x) = j=1,2,.. . k 9.2)

9.2 Projection Indexes
PPDE is driven by a projection index usually of the form

I(f) = fJ(f(Z))f(Z) dz = E;[J()], 9.3)

where J is a smooth real-valued functional and z is a one-
dimensional projected version of x. As a functional on f,
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I(f) should be absolutely continuous with easily comput-
able first derivatives. “Interesting” projections should cor-
respond to large values of I(f), while small values of I( f)
should correspond to random or unstructured projections.

Estimates of I(f) should be amenable to fast computa-
tion, unaffected by the overall covariance structure of the
data and by outliers or heavy tails; see Huber (1985, sec.
4). Friedman (1987) stressed that a very reliable and thor-
ough numerical optimizer was absolutely essential for find-
ing “substantive” maxima of I(f), since sampling fluctua-
tions tend to trap ineffective optimizers within a multitude
of local maxima. If {z} are the projected data, then (9.3)
is estimated by I(f) = [ J(f(z)) dF(2) = (1/n) 3,
J(f(z)). Thus if J(f(2) = f(2), then I(f) = 1) [f(zA)]2 dz
can be estimated by I(f) = (1/n) 2, f,(z,), where f, is a
kernel estimate with window width A; see Friedman and
Tukey (1974) and Tukey and Tukey (1981). Another choice
is to take J(f(z)) = log f(z), so that I(f) = [ f(z) log f(2)
dz, which is (negative) cross-entropy, and (9.3) can be es-
timated at the kth iteration by (1/n) =, log f®(z,); see
Friedman et al. (1984). Joe (1987) discussed kernel esti-
mation of functionals such as (9.3) and showed that, for
moderate-sized samples, statistical properties of [ were im-
proved either through bias corrections or by using a res-
caled kernel.

Other projection indexes that have also been used include
a moment index based on the sum of squares of the third
and fourth sample cumulants of the projected data (Jones
and Sibson 1987), and the ISE criterion (Friedman .1987;
Hall 1989a). The latter approaches, though related, differed
on whether or not to first transform the projected data.
Friedman used ISE between the transformed projected data
density and the uniform density, while Hall’s version used
ISE between the untransformed projected data density and
the standard normal. Both Friedman and Hall used orthog-
onal series density estimators (Legendre polynomials and
Hermite functions, respectively) to study their projection
indexes.

Each of these indexes was designed to search for devia-
tions from “uninterestingness,” whose definition depended
on the application in question. Thus, the Friedman—-Tukey
index searched for evidence of “clottedness” as well as de-
partures from a parabolic density; the entropy index searched
for departures of the projected data from normality since
the normal distribution maximizes entropy; and the moment
index and ISE criteria also set up normality as the least
interesting data feature. Other indexes are also being stud-
ied for specific applications.

10. RELATED TOPICS

Functionals of a Density. Examples of functionals, a(F),
say, of the distribution function F associated with a density
f include the quantile function F~', the hazard function A
= f/(1 — F), any L,-norm of the derivatives of f, Shannon
negative entropy [ f log f, and Fisher information [ (f")*/f.
Certain of these are used as projection indexes in PPDE.
Typically, “plug-in” estimators of the form a(F) are used,
where F is taken to be a smoothed version of F',. Note that
estimating F using the kernel method requires less smooth-
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ing than that best suited for estimating f. Kernel estimation
of the hazard rate was discussed by Singpurwalla and Wong
(1983) and Hassani, Sarda, and Vieu (1986), and that of
the quantile function £, = F~'(p), 0 < p < 1, by Parzen
(1979), Falk (1984), and Sheather and Marron (1988). The
bootstrap and its smoothed versions have been used to es-
timate a(F) directly, especially for kernel quantile esti-
mation. See Silverman and Young (1987), Yang (1985),
Hall, Diciccio, and Romano (1989), and Hall (1990). Note,
however, that bootstrap smoothing using a non-bona fide
kernel density estimator of a nonnegative quantity, such as
a probability or a variance, can make a nonnegative esti-
mate negative.

Assessing  Multimodality. Integer-valued nonlinear
functionals of f, such as the number of mixture components
needed to represent f, and the number of modes of f, are
also of interest, and different nonparametric approaches to
determining the values of such functionals have been con-
sidered. Donoho (1988) developed a general theory for de-
termining nonparametric lower bounds on such functionals.
Good and Gaskins (1980) used the MPL method together
with certain “bump hunting” surgical techniques to assess
the existence of any “real” dips and bumps in mass spectra
obtained from scattering experiments. Silverman (1981b,
1983) used the kernel method together with the smoothed
bootstrap procedure to develop a confirmatory test of the
most probable number of modes in a density; see Silverman
(1986, sec. 6.6) and Izenman and Sommer (1988).

Robust Estimation. Nonparametric density estimation
has been used to obtain robust estimators for parametric
inference. The main tool has been the use of Hellinger dis-
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tance between two probability densities f and g, namely,

1
HD(f, 8) = J (Lf1'? = [g@1%)* dx.  (10.1)
The minimum Hellinger distance (MHD) estimator is that
value § of 0 that minimizes HD( f, fo), where f is a non-
parametric density estimator of fand f, 6 € ©, is a member
of some parametric family. The distance HD is always fi-
nite and is invariant under strictly monotone transforma-
tions. Beran (1977a,b) Birge (1986), Tamura and Boos
(1986), and Simpson (1987, 1989) proved asymptotic re-
sults and established impressive robustness properties of
MHD location estimators based on the kernel density es-
timator. For related work on minimum distance estimators
of densities, see Reiss (1976) and Birge (1983).

Semiparametric Models. Olkin and Spiegelman (1987)
developed an approach to density estimation that combined
parametric and nonparametric approaches. Their density es-
timator was given by

Fo0) = mfix) + (1 — mfx), (10.2)

where f; is a ML parametric estimator of f, f is a kernel
estimator of f, and 0 = 7 < 1 is unknown. The parameter
7+ was chosen to minimize the Hellinger distance, HD( f,,,
f), and asymptotic results were obtained under regularity
conditions on f. Figure 6 shows the semiparametric density
estimate constructed from annual wind speed measurements
from Olkin and Spiegelman. For that example, the para-
metric model appeared to be appropriate.

Directional Data. In astronomy, geology, and studies
of animal behavior, it is often of interest to estimate the
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Figure 6. Density Estimates for 20 Measurements on Annual Maximum Wind Speeds in the N. Direction Taken in Sheridan, Wyoming, During
1958-1977. Reproduced from Olkin and Spiegelman (1987). The dotted-and-dashed line shows the kernel density estimate with smoothing
parameter h = .7s, where s is the sample standard deviation; the dashed line shows the parametric density estimate; and the solid line shows

the semiparametric density estimate with estimated weight 7+ = .8.
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(a)

(b)

Figure 7. Perspective Plots for 685 Measurements on the Orbits of all Known Comets. Reproduced from Hall, Watson, and Cabrera (1987).
Smoothing was obtained by (a) likelihood cross-validation, and (b) least squares cross-validation. Notice that likelihood CV produces a smoother
density estimate having lower peaks than least squares CV. With permission of the Biometrika trustees.

density f of measurements, X;, ..., X,, observed on the
surface of a d-dimensional unit sphere S,;, d = 2. Kernel
density estimators for such “directional data” have the forms

Fors®) = n7'c(k) D, Ki(kx"X), (10.3)
i=1

Fers®) = 0700 D Kokl = X'X)),  (10.4)
i=1

where K, and K, are known kernel functions typically de-
fined on [0, »), k > 0 is an unknown smoothing parameter,
c(x) and d(k) are positive numbers, and x € S,. Asymptotic
properties of (10.3) and (10.4) were studied by Hall, Wat-
son, and Cabrera (1987) and Bai, Rao, and Zhao (1988).
For a discussion of the related problem of nonparametric
density estimation on Riemannian manifolds using Fourier
transform methods, see Hendriks (1990). As an example,
three-dimensional perspective plots of kernel density esti-
mators of different cometary orbits regarded as directional
data are given in Figure 7 using likelihood and least squares
cross-validation for determining the smoothing parameter.

Censored Data. Often, in biomedical and industrial
studies, censored survival or lifetime data are recorded, and
it is of interest to estimate density and hazard functions for
such data. Padgett and McNichols (1984) provided an ex-
cellent survey paper on this topic. Since then, the kernel
(Marron and Padgett 1987), nearest-neighbor (Mielniczuk
1986), and penalized likelihood (Lubecke and Padgett 1985)
methods have been used to obtain nonparametric estimates
of the density fin the presence of censored data. The hazard
function (intensity function, failure rate) was estimated for
censored data by the kernel method (Blum and Susarla 1980;
Liu and Van Ryzin 1985; Schafer 1985; Tanner 1983; Tan-
ner and Wong 1983; Yandell 1983) and by the MPL method
(Anderson and Senthilselvan 1980; Bartoszynski, Brown,
McBride, and Thompson 1981).

Incomplete Data. Kernel density estimation from in-
complete data was considered by Titterington and Mill
(1983).

Time Series Data. For dependent observations gener-
ated by a strictly stationary process, kernel density esti-
mators were studied by Roussas (1969), Rosenblatt (1970,
1971), Nguyen (1979), and Hart (1984), recursive density
estimators were studied by Masry (1986, 1989) and Masry
and Gyorfi (1987), and survival function and hazard rate
estimators were studied by Roussas (1989, 1990) and Iz-
enman and Tran (1990).
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