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Summary

The covariance between two variables in a multivariate Gaussian distribution
is decomposed into a sum of path weights for all paths connecting the two
variables in an undirected independence graph. These weights are useful in
determining which variables are important in mediating correlation between
the two path endpoints. The decomposition arises in undirected Gaussian
graphical models and does not require or involve any assumptions of causal-
ity. This covariance decomposition is derived using basic linear algebra. The
decomposition is feasible for very large numbers of variables if the corre-
sponding precision matrix is sparse, a circumstance that arises in examples
such as gene expression studies in functional genomics. Additional computa-
tional efficiencies are possible when the undirected graph is derived from an
acyclic directed graph.

Some key words: Concentration graph; Conditional independence; Covariance
selection; Path analysis
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1 Introduction

Graphical models over undirected graphs (Lauritzen, 1996) are increasingly
used to exhibit the conditional independence structures in multivariate distri-
butions, and advances in computational techniques are providing increased
access to methods associated with graphical modelling in problems of in-
creasing complexity and dimension (Dobra et al., 2004; Rich et al., 2005).
Undirected Gaussian graphical models are a special case of particular interest
(Speed & Kiiveri, 1986; Giudici, 1996; Jones et al., 2005). Wermuth (1976)
showed that, for Gaussian models, conditional independence corresponds to
nonzero entries in the precision matrix; thus model selection for undirected
Gaussian graphical models is equivalent to selecting which elements of the
precision matrix are zero, the problem called ‘covariance selection’ in Demp-
ster (1972). In exploring and aiming to interpret relationships exhibited in
such multivariate systems, we are often faced with questions about how dif-
ferent subsets of possibly many variables mediate the observed relationship
between a pair of variables. We represent the covariance between two random
variables in a multivariate Gaussian distribution in terms of sums of com-
ponents related to individual paths between the variables in an underlying
graphical model. This decomposition directly defines path weights that high-
light and quantify the roles played by intervening variables along multiple
such paths.

The covariance decomposition we present is derived using basic linear
algebra, relying only on analytical expressions for matrix determinants and
inverses. The linear algebra literature has used similar approaches, e. g. to
provide alternative expressions for the determinant of a matrix (Johnson et
al., 1994); however, to our knowledge they have not been used to aid in
the interpretation of covariance patterns in graphical models. We envisage
that this decomposition will provide an alternative to the path coefficients of
Wright (1921), which provide covariance decomposition along paths between
two variables in the context of directed graphs.

2 Covariance decomposition over paths

Theorem 1. Consider an n-dimensional multivariate distribution with a
finite and nonsingular covariance matrix Σ, with precision matrix Ω = Σ−1.
Let Ω determine the incidence matrix of a finite, undirected graph on vertices
(1, . . . n), with nonzero elements in Ω corresponding to edges. The element of
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Σ corresponding to the covariance between variables x and y can be written
as a sum of path weights over all paths in the graph between x and y:

σxy =
∑

P∈Pxy

(−1)m+1ωp1p2ωp2p3 . . . ωpm−1pm

det(Ω\P )

det(Ω)
, (1)

where Pxy represents the set of paths between x and y, so that p1 = x and
pm = y for all P ∈ Pxy, and Ω\P is the matrix with rows and columns
corresponding to variables in the path P omitted, with the determinant of a
0 dimensional matrix taken to be 1.

The proof of the theorem uses the following basic results from linear
algebra.

Lemma 1. Let A be a nonsingular, n by n matrix. Then the following
hold:

(i)

(A−1)i,j =
(−1)i+j det(A\j,\i)

det(A)

where the A\j,\i is the matrix produced by removing row j and column
i from A (Lang, 1987, Theorem 6.2.3)

(ii) for any row i:

det(A) =
n∑

j=1

(−1)i+jaij det(A\i,\j)

with a similar formula based on expanding along a column (Lang, 1987,
Theorem 6.8.1).

As Σ = Ω−1, and is symmetric, application of Lemma 1 (i) gives σxy =
(−1)x+y det(Ω\x,\y)/ det(Ω). Using Lemma 1 (ii), expand det(Ω\x,\y) along
the column corresponding to the variable x. Let d(Ω, xi, xy) be the appro-
priate power of −1 times the determinant of the matrix, where we have
eliminated the rows for variables x and i and the columns for x and y. Then

σxy =
1

det(Ω)
(ωx1d(Ω, x1, xy) + . . . + ωxnd(Ω, xn, xy)).

There is no term with ωxx because ωxx is eliminated from Ω in producing
Ω\x,\y. Terms in the sum drop out for cases with ωix = 0, i.e. when there is
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no edge between variables i and x in the corresponding graph. The nonzero
terms can then be expanded further, in terms of edges incident at i in the
graph with x eliminated. The first term, representing paths whose first edge
is from x to 1, becomes

ωx1d(Ω, x1, xy) = ωx1ω12d(Ω, x12, xy1) + . . . + ωx1ω1nd(Ω, x1n, xyn),

where d(Ω, xij, xyi) represents the determinant of the matrix where we have
eliminated the rows and columns corresponding to the subscripts, and also
subsuming the signs in this term.

Continue the expansion until either an edge to y is reached or the last
variable used for the expansion has no remaining incident edge. In the latter
case, the determinant of the remaining matrix is zero, and the term does
not contribute to σxy. The former case constitutes a path from x to y; the
remaining d(·) term is the determinant of Ω with the variables in the path
removed.

We can determine the relevant power of −1 for each path by considering
Ω ordered so that x corresponds to the first row and column, y corresponds to
the mth row and column, and the intervening rows and columns correspond
to the ordered path variables. Under this ordering (−1)x+y det(Ω\x,\y) has
coefficient (−1)m+1. The repeated applications of Lemma 2 (ii) to produce
the path weight each involve the first row and first column, so the power of
−1 is not altered. This argument generalises to any ordering of the variables:
changing the index of a particular variable involves a row swap and a column
swap, and thus does not alter the relevant determinants. 2

Let the summand in (1) corresponding to a particular path be called the
path weight. An alternative representation gives further insight into what
this weight represents. If X is the vector of variables under consideration,
the path weight can be written in terms of partial correlations and partial
variances of the path variables XP , using Corollaries 5.8.1 and 5.8.2 from
Whittaker (1990), and following his notation: ∏

i;pi∈P\y

cor(Xpi
, Xpi+1

|X\{pi,pi+1})

 {
var(Xx|X\x)var(Xy|X\y)

} 1
2 ×

det(ΣP )∏
i;pi∈P var(Xpi

|X\pi
)
.
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This rearrangement emphasises the fact that the determinants of the poten-
tially large matrices Ω and Ω\P need not be computed. We also see that
the path weight has the same sign as the product of partial correlations

corresponding to the path edges. The term
{
var(Xx|X\x)var(Xy|X\y)

}1/2
is

common to all paths, and the remaining terms are scale-invariant, so that the
path weights are equivariant to scale multiplication of Xx or Xy. The ratio
det(ΣP )/{

∏
i;pi∈P var(Xpi

|X\pi
)} can be further broken down into terms that

reflect the general predictability of each path variable, and the strength of
association between the path variables:{

det(ΣP )∏
i;pi∈P var(Xpi

|X\pi
)

}
=

{ ∏
i;pi∈P

1

1−R2(pi)

}{
det(ΣP )∏

i;pi∈P var(Xpi
)

}
,

where R2(p) is the multiple correlation between Xp and X\p, and the second
term on the right hand side is the information in the marginal distribution
of the path variables against their mutual independence.

We also note that, for variables taken to have mean 0 without loss of
generality, Theorem 1 can be derived via consideration of mxy, the regres-
sion coefficient of variable x on y in their bivariate normal distribution:
σxy = E(xy) = mxyσyy. If G is the matrix of complete conditional regression
parameters on the graph, i. e. Gij = −ωij/ωii with Gii = 0, and Uy is the
p by p identity matrix with the diagonal element corresponding to y set to
zero, mxy is the (x, y) element of (I−UyG)−1. The decomposition along paths
can be obtained by applying Lemma 1, in an analogous manner to the proof
above, to obtain an expression for the (x, y) element of (I −UyG)−1 in terms
of the elements of G.

3 An illustrative synthetic example

Consider a four-variable example in which Xx,a,b,y has precision matrix

Ω =


5 3 -1.5 0
3 5 -0.5 2

-1.5 -0.5 5 -2.5
0 2 -2.5 5

 (2)

corresponding to the graph in Fig. 1.
There are three paths from a to b, with weights given in column 2 of Ta-

ble 1; the weights of the four paths from x to y are also given. The weights
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Figure 1: Undirected graph corresponding to the precision matrix in equa-
tion (2).

indicate that the direct path between a and b does not contribute as much
to the covariance between a and b as do the indirect paths via x and y. In
fact, the direct path has sign opposite to that of the marginal covariance. We
refer to paths whose weights have opposite sign to the marginal covariance as
‘moderating’ paths, as they reduce or ‘moderate’ the covariance. Paths with
the same sign as the marginal covariance are referred to as ‘mediating’ paths.
The terms ‘mediating’ and ‘moderating’ are not used to imply a specific
causal relationship: any relationship compatible with the undirected graph
is possible, including relationships involving unobserved variables. Neverthe-
less, the breakdown of the path weights implies that study of the variables x
and y is important in understanding the covariance between a and b.

Columns 3 and 4 of Table 1 give alternative weights based on decompo-
sition of the correlation and bivariate regression coefficients mxy and mab.
These are constant multiples of the covariance based weights, but may be
preferable in certain circumstances. Unlike the covariance-based weights,
the correlation-based weights are comparable between paths with different
endpoints; for example, we can conclude the moderating path ab has larger
influence than either moderating path between x and y. The weights based
on the bivariate regression coefficients indicate how a unit change in b is
‘transmitted’ to a. When a and b are quantities with an intuitive scale, such
as survival time in months and weight in pounds, this decomposition may be
more easily interpretable.
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weight based on decomposition of:

path covariance correlation reg. coef.

a− b 0.084 0.178 0.209

a− x− b −0.151 −0.320 −0.375

a− y − b −0.168 −0.356 −0.417

total −0.235 −0.500 −0.584

x− a− y 0.201 0.401 0.416

x− b− y 0.126 0.251 0.261

x− a− b− y −0.025 −0.050 0.052

x− b− a− y −0.010 −0.020 0.021

total 0.292 0.582 0.604

Table 1: Example. Path weights for all paths between a and b, and all paths
between x and y.
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4 Undirected graphs derived from acyclic directed graphs

Undirected graphical models are sometimes derived from acyclic directed
graphical models. Fitting directed graphical models is often a computation-
ally efficient way of exploring a large subset of the space of undirected graphs.
Dobra & West (2004) uses this approach for a data set with over 12,000 vari-
ables; marginal likelihood computations for unrestricted, undirected graphs
of even 150 variables are infeasible (Jones et al., 2005). Even when computa-
tion is not a limiting factor, it may be appealing to consider a fitted acyclic
directed graph as an undirected graph. An inferred covariance matrix is of-
ten consistent with many acyclic directed graphs with no a priori preference
among these, as discussed in Andersson et al. (1997).

Converting an acyclic directed graph to an undirected graph requires
adding edges between the parents of each node, called ‘moralisation’ (Cowell
et al., 1999, §3.2), and removing the directionality of the original edges.
The endpoint nodes of a moralized edge are dependent conditional on one
or more of their common descendants. However, if no common descendants
are conditioned upon, the endpoints are independent conditional on some,
possibly empty, set of variables. This structure, induced by the underlying
acyclic directed graph, implies a specific relationship between certain path
weights. We use the following result to find ‘cancelling sets’ of paths: sets of
paths whose weights add to zero.

Theorem 2. Consider a vector of random variables X with an associated
precision matrix and graph. Let C be the set of paths in this graph from x to
y that do not use any variables from the set A; these paths also exist after
conditioning on the variables in A to produce X\A|XA. Let D be the variables
other than x and y used in C. Then the following statements hold.

(i) If (XA ⊥⊥ XD)|Xxy, the path weights for paths in C sum to zero if and
only if they also sum to zero when computed from the precision matrix
for X\A|XA.

(ii) Define a set of paths C ′ from p1 to pm constructed by using an identical
route p1, . . . pk, x for each, then using each path in C to go from x to
y, and again identical routes y, pk+1 . . . pm; if C is a cancelling set and
(XF ⊥⊥ XD)|Xxy, C ′ is also a cancelling set.

The proof of Theorem 2 is given in the Appendix.
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Consider applying Theorem 2(i) in the case where x and y are the end-
points of a moralized edge. The two endpoints are independent given some,
possibly empty, set of variables, drawn from variables that are ancestors to x,
y, or both. Use this set of variables as A and construct C and D; the one-edge
path xy is an element of C. The set D contains the common descendants
of x and y. After conditioning on A, x and y have covariance zero, so C is
a cancelling set for X\A|XA. If, additionally, XA and XD are independent
conditional on Xxy, C will also be a cancelling set for X. Theorem 2 (ii)
implies that, if a moralised edge xy is a member of a cancelling set, paths
with this edge embedded are also members of a cancelling set if the other
path vertices F are independent of the vertices in D conditional on variables
x and y. In the example that follows, we found that the conditions for apply-
ing Theorem 2 were frequently satisfied for moralized edges and paths with
these edges embedded, greatly reducing the number of paths that needed to
be considered.

5 An application to analysis of gene expression data

A high-dimensional example arises from exploration of aspects of large-scale
graphical models developed for analyses of gene expression data in brain
cancer genomics. The data is taken from Rich et al. (2005) and consists
of 8408 variables, each measuring the expression level in tumor tissue of
a particular gene. The variables are observed in 41 glioblastoma patients,
and have undergone univariate transformations so that they have roughly
a multivariate Gaussian distribution. The graph is the maximum posterior
probability graph found with the method in Dobra & West (2004). We also
follow their prior specification and use the maximum a posteriori estimate of
Ω for this graph in computing the weights.

A subgraph of the 8408 variable graph is shown in Fig. 2. The directions
from the original acyclic directed graph are included so it is clear which
edges are added during the conversion to an undirected graph. Note that for
many edges depicted with direction, other graphs in this equivalence class
will have that edge pointing in the opposite direction. Suppose our interest
is in whether the expression of gene KIAA0913, which encodes a protein of
unknown function, is worth investigating as a potential intermediary between
the genes ZBP1 and TGM1. The expression levels for ZBP1 and TGM1 have
covariance 0.68, correlation 0.78. All paths considered are between the same
two endpoints, so we use the covariance based weights.
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Figure 2: Subgraph of an 8408-node graph representing gene expression in
glioblastomas.

The paths ZBP1-PAIP1 3-TGM1 and ZBP1-PAIP1 3-LOC90379 2-TGM1
have path weights of the exactly the same magnitude and opposite sign. This
is a consequence of Theorem 2. If the acyclic directed graph actually rep-
resents the causal structure, in otherwords, the endpoints x and y of the
moralised edge are independent influences on their common offspring, the
moralised edge and paths via the common descendants of x and y are not
involved in transmitting influence between x and y. Consequently we have
omitted cancelling sets of paths from consideration. This dramatically re-
duces the number of paths to be considered; in this example more than 60
paths, not shown, were eliminated.
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Path via Weight

F2 0.97

F2-KCNJ12 −0.56

MGC31957-KIAA0913-DIPA 1-KCNJ12 0.43

MGC31957-KIAA0913-DIPA 1-KCNJ12-F2 −0.16

Total 0.68

Table 2: Gene expression application. Paths contributing to the covariance
between ZBP1 and TGM1. All paths start at ZBP1 and end at TGM1, so
these endpoints have been omitted.

The four paths that are not part of cancelling sets have weights given in
Table 2. Note that not all paths involving moralised edges can be disregarded;
for example, the path via F2 and KCNJ12 is an important moderating path.
We also see that the paths through KIAA0913 do make an important con-
tribution, accounting for about 40% of the covariance between ZBP1 and
TGM1. Finally, despite the Ω matrix being of dimension 8408 x 8408, be-
cause this matrix is sparse, and never needs to be dealt with as a whole, the
calculation of these path weights takes less than a minute in Matlab.
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Appendix

Proof of Theorem 2

Part (i). We show the ratio between the path weight computed for X\A|XA

and a path weight computed for X is constant over paths in C. This implies
that the path weights sum to zero over C either in both cases, or in neither.
Since the precision matrix for X\A|XA is produced from the precision matrix
for X by simply eliminating the rows and columns for the variables in A, the
ratio of weights for a path P containing m vertices is:

(−1)m+1ωp1,p2 . . . ωpm−1,pm det(Ω\{P∪A})/ det(Ω\A)

(−1)m+1ωp1,p2 . . . ωpm−1,pm det(Ω\P )/ det(Ω)

Only det(Ω\{P∪A})/ det(Ω\P ) is a function of P ; since Ω\{P∪A} and Ω\P are
positive definite precision matrices, this ratio of determinants can also be
written in terms of the matrix inverses, which are conditional covariance
matrices:

det(Ω\{P∪A})

det(Ω\P )
=

det(Σ\P |P )

det(Σ\{P∪A}|P∪A)
=

det(ΣA|P ) det(Σ\{P∪A}|P∪A)

det(Σ\{P∪A}|P∪A)
= det(ΣA|P ).

Since every path contains x and y, and (XA ⊥⊥ XD)|Xxy, ΣA|P is constant
over P ∈ C.

Part (ii). From part (i) the path weights for paths in C will also sum to
zero for X\F |XF . The ratio between the path weights for C ′ for X and the
weights for corresponding paths in C for X\F |XF is

(−1)mωp1,p2 . . . ωpk,xωy,pk+1
. . . ωpm−1,pm det(Ω\F )/ det(Ω),

which is constant over paths in C ′. Thus the weights for paths in C ′ computed
for X also sum to zero. 2
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