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Abstract—Density estimation is the process of taking a set of
multivariate data and finding an estimate for the probability
density function (pdf) that produced it. One approach for ob-
taining an accurate estimate of the true density ( ) is to use the
polynomial-moment method with Boltzmann–Shannon entropy.
Although rigorous mathematically, the method is difficult to
implement in practice because the solution involves a large set of
simultaneous nonlinear integral equations, one for each moment
or joint moment constraint. Solutions available in the literature
are generally not easily applicable to multivariate data, nor
computationally efficient. In this paper, we take the functional
form that was developed in this problem and apply pointwise
estimates of the pdf as constraints. These pointwise estimates
are transformed into basis coefficients for a set of Legendre
polynomials. The procedure is mathematically similar to the
multidimensional Fourier transform, although with different basis
functions. We apply this technique, called the maximum-entropy
density estimation (MEDE) technique, to a series of multivariate
datasets.

Index Terms—Adaptive estiamtion, image classification, max-
imum-entropy methods, probability.

I. INTRODUCTION

THE FUNCTION of a terrain classification algorithm, as
applied to a remotely sensed image, is to determine the

most likely class identity, from among possible classes, of
a given image pixel on the basis of the observation vector
associated with that pixel. The observation vector usually con-
sists of measurements (dimensions) made by a multichannel
sensor. The decision logic used by the classifier is comprised of
a set of decision rules, usually developed on the basis of a -di-
mensional data histogram of each of the classes. In practice,
each data histogram consists of a finite number of observations,
and therefore it represents an estimate of an underlying proba-
bility density function (pdf) that would be found with an infinite
number of observations. Conceptually, it is possible to design
a classifier that can be optimized to provide the highest statis-
tical classification accuracy possible, provided the pdfs
are known for all classes. Usually, we only have poorly sam-
pled histogram estimates of the density functions, reducing the
capability of the classifier to suboptimal performance.
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A. Introduction to Density Estimation

Density estimation is the process of taking a set of multi-
dimensional data that were produced by a particular random
process and finding the pdf that most likely produced it. For our
purposes, we are interested in pdfs that are continuous differen-
tiable functions.

From a mathematical perspective, this is an ill-posed
problem; any finite set of data will only constrain the solution
space, but will not produce a unique solution. There is always
some probability that a given density function could produce a
particular set of data, and there are many density functions that
have a high probability of giving rise to any particular dataset.
Given a set of multivariate data , there is
some probability that a normal density produced it, but there
is also some other probability level that an exponential density
produced it instead.

Even if we can find a unique solution to this problem, higher
dimensional datasets pose an additional challenge because the
large amount of data required to produce an estimate of reason-
able accuracy. For example, assume it takes a 100 data points
to estimate a one-dimensional (1-D) density over a particular
domain. The corresponding number of data points required to
equivalently fill a five-dimensional domain would be , or
around ten billion. That would require more than 180 GB of
dedicated hard drive space to store the sampled data.

As we will see, basing a density estimate on such a large
volume of data is sometimes necessary but can give rise to a
solution that is so unwieldy in size that it is both difficult to store
and time consuming to evaluate. This is a considerable barrier
to ease of use.

B. Framework for Understanding Density Estimation
Techniques

All density estimation techniques conceptually achieve two
objectives: First, they must use the data to to identify the space of
solutions that solves the problem. Typically, this begins with the
estimation of statistical characteristics of the stochastic process
that generated the data. Second, they must apply additional tech-
niques to select the most likely pdf from the space of possible
solutions. This phase can include regularization techniques or
incorporation of a priori information about the problem.

1) Objective 1: Application of Data Toward Density Esti-
mation: The statistical characteristics of a stationary random
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process can be represented by either an infinite set of joint mo-
ments, or by a continuous differentiable pdf. Both representa-
tions contain equivalent information, since joint moments can
be converted into a pdf, and a pdf can be converted into joint
moments.

From the data, we can either estimate a finite set of joint
moments or estimate the value of the pdf at a finite set of dis-
crete points in its domain; such estimates are frequently used as
the beginning of the process of producing a density estimation,
although other techniques exist. Consider a set of random vari-
ables whose statistical relationship is specified
by . Also define to be the th of
realizations of the random variables in a dataset.

• We can estimate a finite set of moments and joint mo-
ments. If the random variables being observed for each
trial are , the moment is defined by

(1)

where is a vector describing
which moment or joint moment is being computed. We
can estimate the moment by computing its sample joint
moment

(2)

Many parametric techniques rely on estimates of moments
or joint moments.

• We can estimate the pdf at discrete points. A pdf evaluated
at a discrete point would simply be the scalar value given
by

(3)

We can estimate this value by computing the fraction of the
total dataset that is sufficiently close to . If there are

points that are sufficiently close to , sufficiently close
encompasses an area , and there are total points in the
dataset, can be estimated by

(4)

Techniques for estimating vary in the definition of
the area and the definition of sufficiently close. His-
togram techniques always rely on estimates of the density
at particular points.

2) Objective 2: Additional Techniques Used to Find a Unique
Solution: To complete the density estimation, each technique
must narrow a family of solutions to a single unique solution.
Each solution may satisfy the requirements that the data places
on it equally well, so other information or techniques must be
brought to bear.

Wherever possible, density estimation techniques can use
a priori knowledge of the density’s shape and characteristics;
techniques that make such assumptions are called parametric
techniques, and typically reduce the volume of data required
for accurate computation of density estimates by orders of
magnitude. For example, if it is known that the character of

a particular dataset is Gaussian, density estimation can be
achieved by simply computing the sample mean and covariance
matrix. This paper focuses on nonparametric density estima-
tion, where little is known and few assumptions can be made
about the overall statistical character of a particular dataset.

A common technique is the multidimensional histogram,
where the domain of the pdf is divided into regularly spaced and
shaped bins, the value of the pdf is computed at the center
of each bin as . For all points inside the bin, ;
the value of the density estimation for the point at the center of
the bin is assigned as the value for the rest of the points in the
bin.

3) Literature on Density Estimation: Density estimation
techniques can broadly be divided into the parametric versus
the nonparametric types. The parametric density estimation
techniques assume some mathematical model of the density
underlying the data, and the method solves for some unknown
parameters such as the mean or standard deviation. Nonpara-
metric techniques, on the other hand, attempt to allow the data
to specify what shape the pdf should assume.

Some of the mainstream nonparametric techniques are sum-
marized below.

• The histogram approach divides the data domain into bins
and measures the relative frequency of data inside each
bin. This provides a rough estimate of the local density
inside a bin. Histogram bins are typically the same size,
but can be variable. Occasionally, this is called a variable
partition estimate when the bin sizes are varied.

• The kernel density (KD) estimator is a smooth function
that is the sum of many bell-shaped functions, one cen-
tered at each data point. KD estimators are introduced and
discussed in many books such as [6] and [14].

• The orthogonal series estimator assumes that the his-
togram can be represented by a weighted sum of
orthogonal basis functions, and uses this to estimate the
coefficients of that decomposition.

• The maximum penalized likelihood estimator [15] at-
tempts to maximize the likelihood of the density based on
the data. Left alone, maximum-likelihood techniques will
yield a set of delta functions, so a smoothing requirement
is added (Thus, the penalized part of the technique),
which yields a density estimate.

• The nearest neighbor estimator assigns densities based on
bins centered on the region of interest, which contain a
fixed number of points. Thus, the bin sizes vary inversely
with the value of the density.

Details of these techniques, as well as a wealth of other
sources can be found in [14] and additionally in [6]. These tech-
niques are typically not easy to generalize to higher dimensions
in a simple way. Even recent papers such as [5] do not often
address multivariate density estimation, although the book by
Scott [13] does. Edwin T. Jaynes has written many papers on
the concept of maximum entropy, such as [9] and [10]. Other
articles on maximum entropy include [7] and [16], while the
use of maximum entropy in the context of density estimation
has been reported in several studies, namely [1]–[3], [8], and
[12]. Most closely related to our investigation is the research by
Borwein et al. [1] and Ormoneit et al. [11]. The former paper
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demonstrates the technique in up to two dimensions, while the
latter only demonstrates the technique on 1-D densities and
does not discuss generalization to higher dimensions.

The next sections describe in more detail the kernel density
estimation (KDE) technique and the formulation of the entropy
moment problem, which we will use as the basis for the max-
imum-entropy density estimation (MEDE) technique described
in this paper.

C. KDE Technique

The KDE technique constructs a density estimate from a set
of data by placing a bell-shaped “kernel” centered at each data
point . In terms of the framework given above, it is a variant
of a histogram technique, where and for any given
point of evaluation includes fractional contributions from each
data point that is near.

Thus, if the kernel is

if
otherwise

(5)

then the density estimate is given by

(6)

The KDE technique is described in [14]. It is simple, com-
monly used, and easily extendable to higher dimensions. For
these reasons, we will use it as the basis of comparison in this
paper. We will also find that it suffers from some drawbacks,
notably that it is computationally intensive and tends to show
evidence of lobes and bumps that do not necessarily exist in the
true pdf. The shape and width of the kernel are important pa-
rameters.

D. Entropy Moment Problem

Another approach to density estimation is to formulate the
problem as what is known as the entropy moment problem. This
formulation assumes that we have computed estimates of the
moments and joint moments from our dataset, as follows:

(7)

The relationship between the pdf and the moments are given in
general by

(8)

where the s are the estimated joint moments, and the only un-
known in this set of integral equations is . As mentioned be-
fore, a finite set of integral equations of this form does not have
a unique solution, but rather a family of solutions. We would
like to simultaneously satisfy these equations and maximize the
entropy so as to produce a unique solution to our problem.

In terms of the framework for understanding density estima-
tion problems given above, this is the application of the data

to produce a family of solutions. The specific solution will be
chosen by finding the maximum-entropy solution; Appendix A
describes the justification for using entropy, and why the max-
imum-entropy solution is appropriate.

The entropy of will be written as . Because it
can be proven that the entropy is a concave function of

, we can be confident that there exists an that maximizes
the value of and satisfies our moment constraints. To
maximize subject to our constraints, we can use the
method of Lagrange multipliers to maximize

(9)
which can be written as

(10)

Next, we define the integrand as , and define
, where is the function that

maximizes , is any well-behaved nonzero
function we choose, and is a constant. When ,
maximizes the integral of interest. Applying the calculus of
variations, we take the partial derivative with respect to

(11)

(by Liebnitz Rule) (12)

(13)

(14)

Note that setting does not change the integral at all.
Since is an arbitrary well-behaved nonzero function,
must satisfy the condition . Solving
this equation leads to

(15)

where . Note that this polynomial
could be a Taylor series expansion of an arbitrary function, and
that each term in the polynomial corresponds to a single con-
straint. Thus, there are as many unknown coefficients as
there are integral constraints.

We substitute into the original set of equations

(16)

The problem of solving these integrals for is the entropy
moment problem.
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Fig. 1. Dataset of realization from a 2-D density.

II. MEDE: A NOVEL SOLUTION TO THE

ENTROPY MOMENT PROBLEM

Despite the conceptually straightforward treatment of den-
sity estimation using maximum-entropy ideas as presented in
Section I-D, solving for the coefficients of is not com-
putationally trivial. This paper proposes a novel solution to the
entropy moment problem that uses the functional form of an
exponentiated polynomial, but solves for the coefficients by
applying alternate constraints. The alternate constraints that we
propose are regularly spaced estimates of the pdf throughout
its domain; it is reasonable to apply the new set of constraints
because the statistical information that they estimate is equiva-
lent to the statistical information in a finite set of moments and
joint moments. Applying ideal interpolation to the constraints
and then applying a technique that we have called a Legendre
transform, we convert the constraints into the coefficients that
we seek.

The Legendre transform procedure can be explained by
making an analogy with a multidimensional Fourier transform
representation. In the terminology of the Fourier transform,
we first sample the function in its domain and then transform
it to its frequency domain representation. The samples of the
function in its domain for our analogy correspond to the “noisy
density samples” we just discussed. The basis functions we
use, rather than being complex exponentials, are Legendre
basis functions. The frequency domain representation in our
analogy still corresponds to a weighting of our basis functions,
but these weighting coefficients to the Legendre basis functions
are exactly the coefficients that we seek in our solution. This
technique is computationally efficient, accurate, and easily
generalizable to multivariate data.

A. Developing the Constraints

The alternate constraints are simply estimates of the value
of the underlying pdf on a grid of points; they can be found
by subdividing the domain into hypercubes and counting the
fraction of points within each cube. The procedure is exactly
the first step of producing a histogram.

These constraints are a series of scalar valued points, one at
the center of each bin. The bin size depends on the size and
nature of the dataset, the extent or spread of the data throughout
measurement space, and the level of detail required in the den-
sity estimate. Given no a priori knowledge, there is currently
no automated optimal way of choosing bin dimensions, so in
a practical scenario, we depend on the user’s expertise and
familiarity with the measurement space and the amount of data
available to guide the choice of this parameter.

To produce the estimates, we take each data point and com-
pute the point that represents the center of the histogram bin that
contains it. If is our data point, is the minimum value of
our domain in dimension , and is the length of a side of the
cube in dimension , then

(17)

is the th coordinate of the histogram bin that the point falls in.
Each bin’s scalar value is determined by counting the number

of points inside it , dividing by the total number of points in
our dataset , and normalizing it so that the whole histogram
integrates to one. The value assigned to the point at the center
of each bin is given by .

B. Implementing the Legendre Transform

We would like to find the set of coefficients that produce a pdf
that maximizes the entropy, while still taking on the values at the
points we have sampled. Earlier, we described this solution as
a transformation, since we are converting samples to weighting
coefficients for orthogonal basis functions. The approach we
are proposing is to examine 1-D slices from the sampled density
and expand them in terms of convenient basis functions. The
coefficients of these basis functions can easily be collected
and expanded in terms of the next dimension. Thus, if we were
working with a two-dimensional (2-D) pdf, whose orthogonal
axes were and , the first expansion produces many densities
of the form , one for each coordinate. We
can collect these together, and each coefficient can again be
expanded in terms of basis functions; so, we could write

, , etc. For higher
dimensional densities, the process can be repeated, expanding
the existing coefficients in terms of the next dimension’s
variable.

Let us be more precise about this algorithm, which does most
of the work of converting a dataset into the analytical density
that we desire.

C. Reduction Algorithm

The reduction algorithm is used to reduce the histogram to a
grid of coefficients that, when used with , describe
a smooth, analytical density function. We will describe the re-
duction algorithm through a 2-D example, where we used the
dataset pictured in Fig. 1. Our first step is to convert the dataset
into a histogram representation. Graphically, we can imagine the
histogram looking like Fig. 2, and as a sparse numerical repre-
sentation, we can visualize it as in Table I.
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Fig. 2. Graphical histogram representation of our dataset. The height of each
point above the domain corresponds to the level of probability that a data point
is in the specified bin.

TABLE I
NUMERICAL HISTOGRAM REPRESENTATION OF OUR DATASET

Next, we choose a dimension and take 1-D slices along it, as
shown in Fig. 3, plotting each of these slices as shown in the
top of Fig. 4. Due to the construction of the histogram, we are
implicitly assuming that any unspecified points (i.e., the value
of when ) left out of our description have
a value of zero. To build this assumption into our calculations,
we will insert samples with zero (or nearly zero) value which
bracket any nonzero samples. This “pins” our function, forcing
it to be well-behaved and enforcing an implicit assumption of
finite support in our domain.

With a sampled 1-D function taken at values
, we can use interpolative techniques (ideal interpolation

or even linear interpolation) to come up with an approxima-
tion for the underlying continuous function, which we will call

. Because we expect the functional form of this pdf
to be an exponentiated polynomial, (according to maximum-en-
tropy arguments) we can reasonably represent the logarithm of
our density function as a weighted sum of Legendre functions,

. Furthermore, because Legendre polynomials are or-
thogonal, then we can write

otherwise
(18)

and use this to decompose into a set of coefficients
by using

(19)

Fig. 3. One-dimensional slice of our histogram.

Fig. 4. (Top) Samples of the 1-D slice in Fig. 3. (Bottom) Best set of
weighting coefficients for our basis functions so that samples of the final
representation match the samples taken from the histogram. This can be
thought of as a projection of a function defined by the original samples onto a
Legendre basis representation.

With these , we can reconstruct by writing

(20)

where is now the projection of
onto our set of basis functions. This transformation converts
samples of a density to coefficients of a Legendre polynomial,
which when plotted, closely matches the sampled points as in
the lower plot of Fig. 4.

Repeating this procedure for each slice of our pdf would re-
sult in Fig. 5, with a tabular representation as in Table II. This
entire procedure is repeated times, one for each dimension of
the pdf, taking slices that are geometrically orthogonal to the
previous set of slices. During the second and subsequent itera-
tions, the slices can no longer be thought of in the density do-
main, but instead can be thought of as taken in the domain of
Legendre coefficients. Zero values used to “pin” the function in
its domain must not be identically zero, but must be values that
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Fig. 5. All slices of histogram bins have been converted into a continuous 1-D
functions.

evaluate to zero, once the coefficients are plugged into the ap-
propriate basis functions.

The bold entries in Table II show the next slice during the
second iteration of our example. Fig. 6 shows the coefficient
slice being plotted, as before and projected into the space of
Legendre basis functions.

In our 2-D example, the reduction algorithm gets run only
twice, converting our histogram into the grid of numbers in
Table III. These numbers are coefficients that describe our pdf,
pictured in Fig. 7 as a 2–D surface.

III. RESULTS

In order to evaluate the performance of the MEDE technique,
we took various oddly shaped densities that we knew very
well, produced randomly generated datasets from them, and
then estimated their densities. To select kernel widths ( for
the kernel density estimator) and bin sizes ( for the MEDE
technique) we experimented with various values for these
parameters, attempting to find a minimum Kullback–Liebler
distance [4] between the estimate and the actual density. The
results reflect the best parameter found for each technique,
although in practice the actual density would not be known and
bin dimensions would have to be chosen by taking into account
the amount and density of data in the measurement domain,
as well as the detail required in the final estimate. Theoretical
comparisons of the storage efficiency and the computational
efficiency of the two density estimation techniques were also
made.

The results are first presented visually, and then numerically,
in table format. For ease of reference, we will call the three
test pdfs the X-density, the Y-density and the XV-density. The
X- and Y-densities are 2-D densities that are mixtures of bi-
variate Gaussians. The XV-density is a three-dimensional den-
sity that can be thought of as a cylinder whose center is curved,
giving it an overall banana-like shape (as shown later in Fig. 10).
The cross section of this cylinder is always a mixture of the X-
and V-densities such that the cross section is the X-density on
one end and the V-density on the other, and half of each in the
middle. Appendix B gives the detailed functional forms for each
of the densities that were used.

TABLE II
EACH COLUMN IS A VECTOR OF COEFFICIENTS WEIGHTING LEGENDRE BASIS

FUNCTIONS FOR A SINGLE SLICE OF THE DENSITY. THE BOLD ENTRIES

REPRESENT A SLICE OF THE COEFFICIENTS USED IN THE SECOND

PASS OF THE REDUCTION ALGORITHM

Fig. 6. In the second pass of the reduction algorithm, slices are no longer in the
density domain. They are in the coefficient domain. These curves correspond to
the entries in bold in Table II.

A. Qualitative Comparison

Fig. 8 shows a comparison using the 2-D analytical V-den-
sity, while Fig. 9 shows the same results, but for the X-density.
Figs. 8(a) and 9(a) show the analytical densities, as viewed from
above, where the different shades of gray differentiate between
probability levels, and Figs. 8(b) and 9(b) show datasets each
containing 500 randomly generated data points produced from
the original density. Using the data points plotted in 8(b) and
9(b), we produced estimates of the underlying density by using
both the kernel density estimator, and the maximum-entropy
density estimator. The results are plotted in Figs. 8(c) and (d)
and 9(c) and (d), respectively. A similar exercise was conducted
on the basis of 1000 data points, and the results are displayed in
Figs. 8(e) and (f) and 9(e) and (9f).

One of the advantageous features of the MEDE technique that
can be observed most clearly when comparing Fig. 9(e) with (f)
is that it clearly has fewer spurious lobes than the kernel den-
sity estimator. Although the KDE technique can be run with a
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TABLE III
FINAL RESULT OF THE REDUCTION ALGORITHM: A GRID OF COEFFICIENTS

WHICH WHEN USED WITH OUR FUNCTIONAL FORM GIVEN

BY (15) YIELD THE SURFACE IN FIG. 7

Fig. 7. Estimate of the underlying density for the dataset in Fig. 1.

larger kernel width, effectively smoothing out the lobes that we
see, this increases the numerical error between the actual den-
sity and the estimate. In Fig. 9(e), the kernel density estimator
is responding to the distribution of data in the particular sam-
pling of our pdf, while the MEDE technique better represents
the shape of the underlying pdf.

B. Quantitative Comparison

This section quantifies the performance of the maximum-en-
tropy technique as compared with the kernel density technique.
We consider various measures of the accuracy of the esti-
mate, as well as computational efficiency and sparseness of
representation.

1) Estimate Accuracy: The first concern we have is in mea-
suring how close we have come to the original density we are
trying to estimate. There are many ways to measure how dif-
ferent one function is from another. Our most important measure
is the Kullback–Liebler distance, because not only is it specif-
ically designed to measure the distance between two pdfs, it is
directly related (through Stein’s Lemma, discussed in [4]) to the

probability of error in certain classification problems. The Kull-
back–Liebler distance is defined in [4] as

(21)

Another measure of interest is the absolute error fraction be-
tween the original density and the estimate, which we define as

(22)

2) Computational Complexity: Once we have estimated our
density function, the simplest operation we can perform on
it is to evaluate it at a single point. One of the advantages
of the maximum-entropy representation is that one can, to
some extent, control the complexity of the representation by
specifying the number of coefficients to use. This complexity
of the representation is directly related to the complexity of
evaluating the density at a point. The fewer coefficients, the more
computationally efficient, and the sparser the representation.
However, as the number of coefficients goes down, so does
the ability to represent details in the density. We will compare
the maximum-entropy density estimate with the kernel density
estimate in terms of computational efficiency by evaluating
the density at a particular point. The fundamental unit of
computational complexity is the number of multiply-adds, and
we will assume that all computations are performed in the
most efficient way possible, using table lookups to reduce
floating-point operations. We will also assume that we are
working with a multivariate dataset in dimensions that has
points in it. The maximum-entropy estimator has coefficients
to represent the density in each dimension.

Consider a pdf represented by an exponentiated polynomial
whose coefficients can be organized as a multidimensional grid
with coefficients on a side. For each evaluation, the maximum-
entropy density has to find Legendre polynomials for each order
from zero to . These can be done by table lookup. It is easiest
to imagine this geometrically, where is the number of coeffi-
cients we have, and we group 1-D slices of coefficients of size
together. Thus, we have a total of slices. With a
total of multiply-adds per slice, with slices, we compute
a total of multiply-adds. The technique repeats this
process more times, as it reduces the dimensionality of the
coefficient grid in each iteration. The total computational cost is
simply the sum of computations from each dimension,
multiply-adds. On the other hand, the kernel density estimator
must compute the distance of the point of interest from each of
the data points; each distance computation is multiply-adds so
the total computational cost of a single evaluation is mul-
tiply adds. Thus, the MEDE technique is more computationally
efficient than the kernel density estimator when

(23)

Fig. 11 is a graphical representation of (23). For a particular
number of coefficients , each curve indicates the size of the
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Fig. 8. Results of various attempts at density estimation using different techniques and different sized datasets. (a) The true underlying smooth, analytical pdf of
the V-density. (b) A set of 500 data points produced as samples of the V-density. (c) Kernel density estimate using the dataset in (b). (d) MEDE technique using
the dataset in (b). (e) Kernel density estimate using a dataset with 1000 points. (f) MEDE technique using a dataset with 1000 points.

dataset above which the MEDE technique is more efficient
than the kernel density estimator.

At this point, the kernel density estimator appears more com-
putationally efficient, because it grows linearly with , while,
the maximum-entropy technique grows exponentially with .
However, one must consider that when using the MEDE tech-
nique, and should be related, and that cannot be chosen
arbitrarily. It turns out that one can almost always choose
appropriately so that the MEDE technique is the more compu-
tationally efficient one.

Once we consider the relationship between and , we will
see that the MEDE technique is usually more efficient than
the kernel density estimator. To incorporate the relationship
between and into our complexity comparison, we should
note that the number of coefficients in each dimension must

grow roughly proportionally with the number of bins in that
dimension. The reason for this is that adding a coefficient to
a polynomial allows us to represent one more bump in a 1-D
curve. The 1-D curve we are referring to is that produced by
decomposition of a slice of bins from our sampled histogram.
Thus, we can relate how many bumps we should be trying
to represent with our sample spacing. In addition to that, on
average, there should be some minimum number of points,
per dimension, in each bin in the slice—otherwise, we have
chosen an inappropriate bin size. Thus, if there are on average

nonzero bins in a single slice, and we require there to be
on average points in each bin (the number of points in
a bin should go up with the dimensionality of the problem),
then there are points in each slice. By definition, there are

slices, and we can thus conclude that when performing
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Fig. 9. (a) True underlying smooth analytical pdf of the X-density. (b) A set of 500 data points produced as samples of the X-density. (c) Kernel density estimate
using the dataset in (b). (d) MEDE technique using the dataset in (b). (e) Kernel density estimate using a dataset with 1000 points. (f) MEDE technique using a
dataset with 1000 points.

Fig. 10. Equiprobable surface of the XV-density, the solution to f (x) =
0:012.

the maximum-entropy density estimate, we must choose so
it satisfies

(24)

The MEDE technique is most computationally inefficient when
is chosen such that equality holds in (24). Accordingly, we

assume that in (23) and our inequality becomes

(25)

The parameter is the number of data points required in each
histogram cube for each dimension of the problem. The larger
we make , the more efficient the MEDE technique will become.
Setting puts the MEDE technique at the greatest disad-
vantage compared to the KD estimator, but we make this sub-
stitution for ease of comparison. Thus, when

(26)
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Fig. 11. This plot compares the relative efficiency of the kernel density
estimator versus the MEDE technique. For each value of c, each curve indicates
the value of N above which the MEDE technique is more efficient than the
kernel density estimator.

we are guaranteed that the MEDE technique is more computa-
tionally efficient than the kernel density estimator. When and

are integers greater than one, this is always the case.
The conclusion we can draw from these arguments is that

if the dataset for which we are trying to estimate a density is
very small and has high dimensionality (a case where one might
think that the kernel density estimator would excel, computa-
tionally), there is simply not enough information in the dataset
about the shape of the pdf to justify having a large number of
coefficients in the maximum-entropy density estimate. For ap-
propriately chosen values of (taking and into account),
the maximum-entropy density estimator is more computation-
ally efficient than the kernel density estimator. As we will see
in Table IV, for the example densities we tested the algorithms
on, the maximum-entropy density estimate is two to seven times
more computationally efficient than the kernel density estimate.

3) Sparse Representation: As mentioned above, controlling
the number of coefficients in the maximum-entropy estimator
controls the sparseness of the representation. This may be im-
portant for storing the density estimates, if there are many of
them. The kernel density estimator uses the whole dataset as
representation, which for a high dimensional dataset with many
points, can be unwieldy. This comparison is very similar to the
one presented in the preceding section. In this case, the unit of
storage is a double-precision floating-point number. The max-
imum-entropy estimate has double-precision coefficients to
represent it, while the kernel density estimator has coeffi-
cients that represent it. The maximum-entropy representation is
sparser when

(27)

Based on the discussion in the preceding sections, we can use the
relationship we found between and . Substituting
into the efficiency comparison yields the following condition

TABLE IV
ACCURACY AND EFFICIENCY OF THE MEDE TECHNIQUE COMPARED WITH

THE KDE TECHNIQUE. THE FIRST COLUMN INDICATES THE UNDERLYING pdf
USED, AND THE SECOND COLUMN LISTS THE METHOD USED TO PERFORM THE

DENSITY ESTIMATE ALONG WITH THE NUMBER OF POINTS IN THE DATASET

in order for the maximum-entropy density estimator to have a
sparser representation:

(28)

which is always the case for more than one dimension.
4) Numerical Results: We now present numerical results of

the estimates that we made, using the synthetically generated
known densities described earlier in Section III. While reading
Table IV, we keep in mind that the accuracy of our estimate is
affected and limited by many variables, including the dimen-
sionality of our data, the shape of the underlying density, and
the number of points we are using to do our estimate. The M-A
column is the number of multiply-adds it takes to compute the
density at a particular point, and the Stor column is the number
of double-precision storage units it takes to represent the den-
sity (which essentially is a measurement of sparseness of the
representation).

The reader should note that Table IV indicates various impor-
tant trends. These trends show that using the Kullback–Liebler
distance as a measure of error, as we increase the complexity
of the density estimation problem (either by increasing the di-
mensionality of our dataset, or by reducing the total samples we
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are using to make our estimate with), the advantage of using the
MEDE technique over the kernel density estimator increases. In
some cases, the differences in estimation accuracy between the
two techniques are very small. In our examples, MEDE tends to
have less error as measured by the Kullback–Liebler distance,
while the kernel density estimator tends to produce less error as
measured by the absolute error fraction .

Table IV also shows an example of the flexibility afforded to
us with the MEDE technique, in trading off accuracy for storage
and computational efficiency. The second from last row shows
results of the density estimate performed with different num-
bers of coefficients per dimension, namely and .
Choosing can afford us slightly better accuracy as esti-
mated by the absolute error fraction, significantly better accu-
racy as estimated by the Kullback–Liebler test, with one-third
the storage and run-time requirements.

IV. CONCLUSION

From the perspective of density estimation, we are successful.
Starting with a set of multivariate data, we have produced a
smooth, analytical, scalar-valued pdf that is very likely close to
the one that created the samples.

• Compared with the kernel density estimator, we have in
many cases significantly reduced the number of coeffi-
cients, achieving a much sparser representation than be-
fore.

• Compared with the kernel density estimator, the max-
imum-entropy representation is, in many cases, much
more computationally efficient to evaluate.

• Compared to the kernel density estimator, the maximum-
entropy representation does not introduce spurious high-
frequency components into the density being estimated.

• This whole procedure works for multivariate (multidimen-
sional) densities with an arbitrary number of points in their
datasets and is only limited by available computational re-
sources.

• Depending on storage or computational requirements, fi-
delity and efficiency (storage and computational) may be
traded off against each other by selecting different num-
bers of coefficients to use in the representation.

APPENDIX I
WHAT IS ENTROPY, AND WHY MAXIMIZE IT?

Entropy is simply a scalar-valued function of a pdf. Thus, if
is a pdf, entropy is usually written as

Jaynes gave a succinct description of the utility of entropy in
[10]:

For many decades it has been recognized, or conjec-
tured, that the notion of entropy defines a kind of measure
on the space of probability distributions, such that those of
high entropy are in some sense favored over others. The
basis for this was stated first in a variety of intuitive forms:

TABLE V
PARAMETERS USED TO DEFINE THE X-DENSITY AND V-DENSITY

that distributions of higher entropy represent more “dis-
order,” that they are “smoother,” “more probable,”etc., and
that they “assume less” according to Shannon’s interpreta-
tion of entropy as an information measure, etc.
We will apply maximum-entropy techniques to choose the

most likely pdf from among the possible densities that satisfy
our constraints as described earlier. The densities so selected
are smoother, more spread out, and the process does not assume
more about the statistics that produced the data than it abso-
lutely has to. In fact, it can be shown that when moment-like
constraints are applied to the space of density functions, most of
the solutions that satisfy those constraints are clustered around
the maximum-entropy point. The proof is called the Concentra-
tion Theorem and is presented in [10].

APPENDIX II
DESCRIPTION OF X-, V-, AND XV-DENSITIES

Both the X- and V-densities are a mixture of two multivariate
Gaussians

(29)

(30)

and

(31)

(32)

where

(33)

and the constants are defined in Table V.
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If , the XV-density is given by

(34)

where , , and

(35)

and are given by

(36)

(37)

Otherwise, if is outside the given range .
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