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Generalization in a linear perceptron in the presence of noise
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Absfract. We study the evolution of the generalization ability of a simple linear perceptron
with N inputs which learns to imitate a ‘teacher perceptron’. The system is trained on
p = aN asample inputs drawn from some distribution and the generalization ability
is measured by the average agreement with the teacher on test examples drawn from
the same distribution. The dynamics may be solved analytically and exhibits a phase
transition from imperfect to perfect generalization at o = 1, when there are no errors
(static noise) in the training examples. If the examples are produced by an etToneous
teacher, overfitting is observed, ie. the generalization error starts to increase after a
finite time of training. It is shown that a weight decay of the same size as the variance
of the noise (errors) on the teacher improves on the generalization and suppresses the
overfitting. The generalization error as a function of time is calculated pumerically for
various values of the parameters. Finally dynamic noise in the training is considered.
White noise on the input comresponds on average to a weight decay, and can thus improve
generalization, whereas white noise on the weights or the output degrades generalization.
Generalization is particularly sensitive to noise on the weights (for o < 1) where it makes
the error constanily increase with time, but this effect is also shown to be damped by
a weight decay. Weight noise and output noise acts similarly above the transition at
a=1.

1. Introduction

It is very important in practical situations to know how well a neural network will
generalize from the examples it is trained on to the entire set of possible inputs.
This problem is the focus of much recent and current work. All this work, however,
deals with the asymptotic state of the network after training. Here we study a very
simple model which allows us to follow the evolution of the generalization ability in
time under training. It has a single linear output unit, and the weights obey adaline
learning. Despite its simplicity, it exhibits non-trivial behaviour: a dynamical phase
transition at a critical] number of training examples and overfitting if the training
examples are corrupted by noise. Part of this work has already been reported [1].
Given some function f(¢) and a set of examples of the function, ¢* = f(£*),
the ability to generalize can be measured by the average error on a random input
pattern. The general concept of genera]ization has been studied by two very different
meihods. One 8 to use the theory of vC dimensions [2-4] t© find bounds on ihe
generalization ability, and the other is to use ideas from statistical physics to find
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the average generalization ability of a network [4-7). Here we use a trick probably
invented by Gardner and Derrida [8] but recently used by a number of authors [9-13].
The trick is to limit the st of possible functions f to those the network can actually
implement, ie. the network has to learn to imitate a teacher.

A perceptron with multiple units can always be analysed one unit at a time, so in
the following we study just one linear unit or neuron with a response

V=N wg, (1

to an input £; on the ith input terminal. The unit is trained on p examples of input—
output pairs (££,(*) and the delta-rule learning equation [14 is then in continuous
time

P
wy = NTYEY(CF - VI)EE - A, (2)

u=1

This is the ‘batch-learning’ form of adaline learning. The last term is a simple weight
decay that enables us to limit the size of the weights. This learning process has been
studied in the presence of noise [14-16), and many of the results derived in this paper
will draw on those results.

The teacher perceptron is characterized by a set of weights «,, and the network
is trained on p examples (£, ¢*) with

¢H = N"YES "l 3)

generated by the teacher. So we know that the perceptron can learn the task and
the interesting questions concern how well it generalizes from a limited number of
examples and what happens in the presence of noise.

Using these teacher-generated targets equation (2) becomes

\ i
by = 57 2 _(u; = wEfE - Awy.
Wy

By introducing the difference between the teacher and the pupil, v; = w; — w;, and
the training input correlation matrix

1 ¢ Bl
A= L @
u=1 .
the learning equation reads
i

Except for the first term this equation is identical to the original learning equation
(2) studied in [14, 16].
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We let the p example inputs £} be drawn randomly and independently according
to some distribution P(£) with mean 0 and variance 1. For a large number of
examples (p = O(N) > 1), the resulting generalization ability will be independent
of just which p of the possible input patterns we choose.

To measure the generalization ability, we average the squared error ((# — V#)?2
over the distribution P of inputs. Thus we define the generalization error as

(o) o)

where it was used that P has variance one. [] ¢ IS an average over the different
possible realizations of input patterns ¢¥. That is, F is just proportional to the
square of the difference between the teacher and pupil weight vectors. With the
N~! normalization factor F will then vary between 1 (fabula rasa) and O (perfect
generalization) if we normalize « to length N and w(t = 0) = 0. During learning,
w,; and thus v; depends on time, so F is a function of ¢. The complementary quantity
1 — F(t) could be called the generalization ability.

Although we center on generalization it will also be of interest to calculate the
training error. It is defined as

1
F=%

= 7 X1 ©®
¢ i

E= [% S(¢H - vry ()
# £
Using (3) it becomes
E = [%ZAUvivi . @)
ij ¢

2. Asymptotic solution

All the eigenvalues of A are non-negative (because it is a correlation matrix). Then
for A > 0 we can introduce the response function

g:(/\|+A)_]. 9

The static solution (i.e. for t — oo) to equation (2) can then be written as
wy = N7VEY g > ebem, (10)
J B

For XA going to zcro this solution approaches the pseudo-inverse [4, 17], while for
large ) the response function (9) will be dominated by the A-term and approach the
Hebb solution [16]. Thc weight decay parameter is thus a nicc way of interpolating
between the two extremes of pseudo-inverse and Hebb synapses.
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Similarly the asymptotic value of v; is found from equation (5)

v =) g Ay (11
;

Most quantities of interest can be calculated from the average response function [g],.
It is diagonal in this case, and it has been calculated in {14},

G= [9.'.'].5 = 1_‘1_’\-'_\/(21_ z+)()\—z_)' (12)

Here we have introduced the spectral limits
zy = —(1+Va)?. (13)

See [14, 16] for more details.

The subspace of the weight space spanned by the pattern vectors £# is called the
pattern subspace. Any initial component of w outside this subspace is only acted
upon by the A-term in equation (2). If A = 0 the initial component orthogonal to
the pattern subspace is therefore unchanged by the learning. Thus the asymptotic
solution will change: the part of w(¢ = 0) in the orthogonal subspace should be
added to the limit of (11) for A — 0. If w(f = 0) = 0 (tabula rasa) there is no such
component and results derived from (11) holds even in the limit A — 0.

To find the asymptotic generalization error the size of |v|? is needed. We start
directly from (11),

lvf? = Zg;’jgik Aguj U+
ik

The product gg was calculated in [14] (it follows easily from (9)),

ag;,
Zgijgik == 61\ . (15)

When averaged over patterns the response function becomes diagonal, so

agjk] aG

1 Al
F= [lo)?], = }_V.Zujuk [— S| = ~A25. (16)
ik

Here and later it is assumed that |u| = v/N.

The derivative of G can be found directly from (12). For small A it can be
¢xpanded, and in the A = 0 limit

Fz{l-—cr for a €1 a”

0 for a > 1.

For A = 0 and starting from fabula rasa the error falls of linearly from 1 to O as
o goes from Q to 1; ie. there is a transition at e = 1 from imperfect to perfect
generalization. This behaviour can be understood in a very intuvitive way. For fewer
than N patterns there are not enough vectors in weight space to exactly specify the
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Figare 1. The asymplotic generalization error F as a function of o with no noise.
Starting from tabula rasa with A = ¢ is shown by the full curve, starting from [w{t =
0)| = V'N by the dotted line, and learning with a weight decay by the broken curve.
For A = 0.2 the fraining error is shown by the chain curve. The asymptotic fraining
error is zero for A = 0.

teacher vector u. For « > 1 the patterns span the whole space and completely specify
u, and thus the generalization becomes perfect. For A > 0 this curve is snoothed as
shown in figure 1.

For A = 0 and « < 1 the calculation holds only if starting from tabula rasa;
if w(f = 0) # 0 the part orthogonal to the pattern subspace will stay untouched
and therefore contribute to the error. The contribution can be found by a heuristic
argument. If w(¢ = 0} is zero v is (for { — 0o) equal to the part of « orthogonal to
the pattern subspace, ut. If w(t = 0) is non-zero the part that is in the orthogonal
subspace w*(¢t = 0) will also contribute, s0 |v|*> = (ut — wt(t = 0))% Averag-
ing over patterns and random initial weights will then give [v{* = (1 — a)(|ul*+
[w(t = 0}|?), because the patterns only ‘cover’ a fraction o of the weight space, so

F = Faputa rasa +(1 = a}lw(t=0)*/N. (18)

See [1] for a more careful treatment of this case.

Each cigenvalue A, of A {(4) corresponds to an exponentiaily decaying mode of
the system with a relaxation time of 1/(A + A,). Therefore the relaxation times of
the learning process depend only on A, which depends on the input patterns. Thus
the relaxation times are the same as for random input/output patterns, which have
been studied previously [14, 16]. For A = 0 the relaxation time diverges when o
approaches 1 from either side.

3, Learning with an unreliable teacher

Two kinds of noise will be studied in this paper: random errors in the training set
which we will also call static noise because it is constant during learning, and time-
dependent noise in the learning process, which is called dynamic noise. Here we
consider the first kind.

An unreliable teacher is, in our terminology, one that supplies the pupil percep-
tron with erroneous targets. It is modelled by adding static noise to the teacher.
This can be done in (at least) three different ways: directly to the targets (¥, to the
teacher weights, or to the input patterns £} before the targets are produced.

This section deals with the asymptotic generalization error; the error as a function
of time will be studied later.
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Figure 2. Generalization and training error with stalic noise of size #* = 0.2 on the
input or the output of the teacher. Curves starting in the upper left corner represent
the generalization error & while the lower ones represent the training ertor. The full
curve is for A = o2, and the broken curve A = 0. The dotted line is the generalization
error with no noise and A = 0 for reference.

3.1. Noise on input or output

If noise f# with mean zero and variance oZ , is added to the outputs of the teacher,

the learning eauation {5} changes to

Bhaipy ey HEE L vh R LY

z‘)iz(Au,-—~N"1"ZE§ff”)*ZAUUJ"AU; (19)
" b

and the asymptotic solution is then by analogy with (11)

v =) gi(Au; — NTV2Y el ). (20)
i “
Squaring and averaging over the static noise and using (15) gives
|v]? =Zgijgik[’\2ujuk +(f#)2A 4] (21)
ik

where the bar means averaging over the static noise. Using (15) and averaging over
the patterns gives

8 8G
— 42 __z2
F= 0, 2(3G) ~ N 55 (22)

We observe that the last term is identical to the error in the noise-free case. The
noise simply adds a {positive) term to the noise-free error, For A — 0 the derivative

......... Py Sl Wl age WUt AN LI}l

of AG goes t0 (1 + a—|1 — @|)/2|1 — af, so in this limit the generalization error is

2
l-a+ T2 foragl
F= \ @ (23)
Fout_ for a > 1.
a—1

Differentiating F with respect to A we find that F' has a minimum for A = o7 ..
Thus, it pays to learn with a weight decay. At this minimum point the error is
 F=o2, Gly_,e (24)

out aut

which is compared in figure 2 to the error without the weight decay.



Generalization in a knear perceptron in the presence of noise 1141

Calculating the training error yields
aE=(a—-1)ol,+ (A4 ¢2,)AG — \F.
This is plotted in figure 2. For A — 0 it becomes

0 foragl
E=¢, . (26)
o2 (-1} for a > 1
For & £ 1 the learning is perfect, whereas the error grows linearly with a above

1. This behaviour was also found for random targets, see [16]. Interestingly the
generalization error decreases with o while the learning error increases in this limit.
(Tb compare the learning and generalization errors the first should really be divided
by o to give the training error per pattern. But it is still true that the training error
increases, and for large o the generalization error becomes smaller than the training
€ITor).

Noise on the inputs can be treated in a similar manner, and it turns out that the
result is basically the same.

3.2, Noise on the weights

Noise on the teachers weights is in a sense qualitatively different from noise added
to the input or the output as studied earlier. This is because the training set resulting
from the noisy weights can still be learned perfectly by the pupil—w just has to
converge to the noisy weights. For input or output noise the pupil cannot learn the
patterns perfectly for o > 1. If noise n; with mean zero and a variance o2, is added
to the teacher weights the targets for training are then corrupted according to

4= NTVEY (w4 el = NTUEY gkl NTUR Y gl 27)
As usual this leads to a solution at infinite time,
1
v = Zg;,' Au; — ~ ij‘fﬁﬂk = Egij(‘\uj - ZAjkm-)- (28)
j i‘rk i k

Squaring and averaging over the static weight noise gives

w2 =3 ggs N + D A AT (25}

i3 k&

which i a little different from the previous case. The last term can be reduced using
AAg = A — JAg = A — Al + A%g, leading to
2
F= g2 (1_((_”\_G\_)‘2§._G_._ (30
v ax |/ 3 Al
This also has a minimum for a finite A, but less pronounced, and the optimal
value of A does not have such a nice solution as for the output noise. In the A — 0

limit,

) fora<gt
p={l atowe Bras] G1)
LO&: 10T <« > 1.

The training error will in this case go to zero for A = 0 as mentioned before. Tt
will actually behave exactly as in the noise-free case except that o2, has to be added
to |u|? whenever it occurs, because from the pupil’s point of view the training set is
just produced by a teacher with weights u; + n;.
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4. Generalization error as a function of time

Until now we have only considered the asymptotic behaviour of the network In this
section we calculate the generalization etror as a function of time.
For the two kinds of static noise the learning equation can be written as o,

B; - %; A;;v; — Av;. The particular form of B; can be found in (19) and (28). In
the basis where A is diagonal the general solution to this equation is
b (1) = (1 - OHAN L Te g ()0 ()

At A,

where the subscript » indicates transformation to this basis, and A, are the eigen-
values of A. If the learning starts at tabula rasa (v, (0) = u,) the square of v,
is

, _ (1—e"OHanyzps
T OFAY

2=204 AN | o=(FADL (] _ o=(A+AN 28 B,y
+ upe te (1-e )A+AT'

(33)

Now we will average over the noise included in B,. First of all the average of the B
in the last term is just Au, for both kinds of static noise. The term B2 contributes
a AZyu?2 plus something that depends on exactly which kind of noise we are dealing
with. For static input noise we find

2
B? = (Aur -y Sn-N"I“ZE.*‘f‘*) = Nul 4 o), A, (34)
{ #

where the orthogonal transformation matrix S, that diagonalizes A was introduced.
The average error as a function of time is

F =5 Y [dana,)00) (35)

where p{z) is the density of eigenvalues of A for large V. It can be found from the
response function as shown in [16]:

V(g +z)(@+z)

2w

plx) =(1-a){1 - a)s(z)+ (36)
where 8( ) is the unit step function. The second term contributes only when it is real,
i.e. when x lies between the roots —z, and —z_.

It is obvious that we will have an exponential behaviour in the long-time limit
if A > 0. If A = 0 the smallest non-zero eigenvalue will determine the long-time .
behaviour, but at « = 1 the cigenvalue density will extend all the way down to zero,
which will lead to a non-cxponential behaviour. We first take a look at this situation.
At o = 1 and X = 0 the eigenvalue density is /(4 — «)/z. In that limit and no
noise (o2 = 0) the generalization error then becomes

1 14—z 1 M, At 1
Fty= — | d RN g—— d ¥y j—=1— —. 37
®) 271'_/0 Ve © amt ), °V° y  i—oo Jant &7
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It approaches 0 as t~!/2, ie. a lot slower than exponential.

Now, what happens if the noise is not zero? The generalization error (35) has a
minimum at finite ¢ for some values of A\. This can easily be seen from differentiation
of F' with respect to t. Differentiation of the integrand of (35) (call it F'(z,1)) gives
2ze~(Ate

F(z,t) = [(Uout = A) = (@ + agy e M. (38)

Sl

L T
A+ E

For X > oZf, this is always negative, so F is decreasing with time, whereas it is
positive for sufficiently large ¢ if A < o2, meaning that F has a minimum for finite
t. Note that the critical A where this crossover appears is the one giving the smallest
asymptotic error as calculated earlier.

Formally putting this derivative equal to zero leads to an z-dependent time,

e~ (M)t — (o;’ut - /\)/(aogut + ). (3%)

So t, is the point where F(¢,x} has minimum. Therefore the minimal value of the
error I, must obey an inequality

Foi 2 /d:cp(:n)F(ae )= jdwp(:c) _Tout (40)

out+3’

(This expression requires a few lines of aigebra.) The value of F’ at infinite time for
A = a2, is obtained directly from (35), and it turns out to be identical to the last
line above. That is the lowest possible value of F is obtained at infinite time with
A= agut:

Fy\(1) 2 Fy_ps_(1— o0) (41)

for any value of A, including 0.
In ﬁgurc 3 generalization curves are shown for o = 0.8 without noise, with noise
of size o2, = 0.2, and with noise and the optimal weight decay.

1 T

Fit)
(
\
\
\
v

0 10 20 30

Figure 3. Generalization error as a function of time for &« = 0.8. The error when
noise of size ¢2,; = 0.2 on the input or the output of the teacher is present is shown
by the full curve (A = #2,.) and the dashed curve (A = 0). Without weight decay
the error starts to increase after a finite time of learning; that is called overfitting, The

dotted curve is the generalization error with no noise and A = 0,
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It is important to note that the learning always decreases the learning error,
because it is a gradient descent procedure on a cost function. It is a smooth mono-
tonically decreasing curve with the asymptotic value already calculated in the previous
section. Here we sec that while the learning error keeps decreasing the generalization
error starts to increase after some time of training. This behaviour is usually referred
t0 as ‘overfitting”: the network starts to learn the irrelevant details of the noise, and
that spoils the generalization.

The same calculation of the gencralization error can be done for noise on the
teacher’s weights. The only change is in the B2 term, which now becomes

B2 = A\ul 4 o2 A? (42)
instead of (34). This change means that ol x in equation (35) is changed to o2 .
In this case there is no sign of overfitting,
5. Dynamic noise in the learning process
Another type of noise is dynamic noise in the learning process. This can, analogously
to the static noise in the patterns, come in three different ways, namely noise on
the input, weights and output. The effect of this kind of noise on the learning was

studied in detail in [14, 16], and we will here see how it affects generalization.

5.1, Input noise

Consider noise €/(t) added to the input patterns. It is assumed that the variance is

(X (V) = 76,38, exp(—=AlL - ¥')) 43)
where ~ is the strength of the noise. In [16] it was shown that if A is very large this
noise acts on average as a weight decay of size A = «a. This kind of noise can then
have a beneficial effect on generalization. This has been found in nonlinear networks
as weli [10, 18, 19].

5.2, Weight noise

Consider white noise n;(t) of variance
(D) n; (€)= 276;;6(t - 1) (44)

added to the learning equation (5).
The autocorrelation function is defined as

C=— Z why — w7, - (45)
Then the average generalization error can be writien as

= o) = 0 4 T [t (46)
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The last part is just the same as before, because if the learning equation is averaged
the noise disappears. Then

Frp=Fp_o+C. 47

For this kind of weight noise we have previously proven [16] the fluctuation-
response relation C = TG, so

Fr=Fr_ o+ TG (48)

This equation shows that the asymptotic peneralization error increases linearly with
the noise level for A > 0. For a € 1 G (see (12)) and thus F diverges as A goes
to 0. This simply implies that the noise makes the weight vector perform a random
walk in the subspace orthogonal to the pattern subspace because for A = 0 there will
be no damping forces. Therefore |v|? and thus F° will keep increasing with time.

Above o = 1 the response function is G = (@~ 1)~! in the limit of A = 0,
which can be found by expanding (12) for small A. The T-dependent term in F,
called 8 F, is then

T
SF=TG= pact (49)

This diverges as o« — 17, In the other extreme, a — co, it follows T'/c, as has also
been found for nonlinear networks [5-7, 9-12, 20, 22].

5.3. Cutput noise

If instead noise f#(t) is added to the output or targets, the result is an effective
noise 7,;(t) of variance

(1 (D)7, = A (A () = 2TA;;8(1-1). (50)

The same analysis can now be carried through with the only change that the
fluctuation-response relation C = T(1 — AG) (see [15, 16]).
This leads to the generalization error

Fp = Fy_o+ T(1 - AG). 51

The term A ¢ does not diverge for A — 0, as seen directly from (12). This noise
only acts in the pattern subspace, and this is the reason there is no divergence for
A = 0, contrary to ordinary weight noise which acts in the whole weight space. For
any parameters we see a linear increase in the error with T.

6. Conclusion

In this simple network we have found many interesting properties that can also be
found in nonlinear networks. Without noise the pupil perceptron can learn to imitate
the teacher within an arbitrarily small margin for « > 1, but close t0 « = 1 the error
decrcases very slowly. For o < 1 the asymptotic error decreases linearly as o = 1
is approached. If there is noise in the training set the phenomenon of overfitting
turns up; after a certain training time the generalization error of the pupil starts to
increase while the training error still decreases.
It was shown that weight decay is beneficial to generalization in several cases:
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(i) If there is (static) noise in the training set a weight decay leads to better
generalization.

(i) If there is noise on the weights and « < 1 the weight vector performs a
random walk in the subspace orthogonal to the pattern subspace which increases the
generalization error with time, but this is suppressed by a weight decay.

(iii) If the network starts from a random initial weight vector different from zero
the part of it in the orthogonal subspace will be left alone (for a < 1), degrading
the generalization unless a weight decay makes it decay.

White noise on the input has to a first approximation the same effect as a weight
decay, and can thus improve generalization. This improvement of the generalization
ability if a weight decay is used has been observed in layered nonlinear networks as
well, see for instance [21].

Varying the weight decay parameter A can be viewed as an interpolation between
the psendo-inverse solution (X = 0) and the Hebbian solution (large A\) to the
learning problem. For threshold perceptrons it has previously been shown that the
Hebbian solution sometimes leads to better generalization than the pseudo-inverse
[11, 22], and in [23] another way of interpolating between the two was proposed.

Many of these effects will to some extend carry over to nonlinear networks. Any
network with differentiable activation functions behaves like a lincar network close
to the asymptotic state. More specifically for smali differences between the network
and its teacher the learning equation can be written like

»=c—Av (32)

where ¢ is a constant. If W is the total number of weights (or adjustable parameters)
in the network A is a W x W matrix depending only on the input patterns. This
implies that if the rank of .4 is less than W there is a part of weight space not
‘covered’ by the patterns, and e.g. a weight decay would improve the generalization,
We speculate that at least for p < W this would always happen.
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