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AbslracL We study the evolution of the generalization ability of a simple linear perceptran 
with N inputs which learns to imitate a 'teacher perceptron'. ?he system is trained on 
p = nN example inpufs drawn h m  some distribution and the generalization ability 
is measured by the average agreement with the teacher on test examples drawn from 
the Same dislribulion. me dynamics may be mlved analytically and exhibits a phase 
transition f" imperfect to perfect generalization a t  n = 1, when there are no ermm 
(static noise) m the training examples. If the examples are pmduced bj an ermneous 
teacher, welfitting is observed, i.e. the generalization ermr starts to increase after a 
finite time of training. It is shown that a weight decay of the Same size as the variance 
of the noise (errom) on the leacher impraves on the generalization and suppresses the 
overfitting. ?he generalization error as a function of time is calculated numerically for 
various values of the parameters. Finally dynamic noise in the training is considered. 
White noise on the input mrresponds on average w a weight decay, and can thus improve 
generalization, whemas white noise on the weights or the output degrades generalization. 
Generalization is particularly sensitive lo noise on the weights (for a < 1)  where it makes 
the error constantly increase with time, but this effect is also shown to be damped bj 
a weight decay. Wight noise and output noise acts similarly a b v e  the mansition at 
n = 1 .  

1. Introduction 

It is very important in practical situations to h o w  how well a neural network will 
generalize from the examples it is trained on to the entire set of possible inputs. 
This problem is the focus of much recent and current work All this work, however, 
deals with the asymptotic state of the network after training. Here we study a very 
simple model which allows us to follow the evolution of the generalization ability in 
time under training. It has a single linear output unit, and the weights obey adaline 
learning. Despite its simplicity, it exhibits non-trivial behaviour: a dynamical phase 
transition a t  a critical number of training examples and overfitting if the training 
examples are corrupted by noise. Part of this work has already been reported 111. 

Given some function f(t) and a set of examples of the function, C' = f(t'), 
the ability to generalize can be mcasured by the average error on a random input 
pattern. The general concept of generalization has been studied by two very different 
iiieihoiij. One k io i i j ~  ihe theow of vc diiiiziijioii~ [ 2 4 j  io fin6 k i i i d s  ~ i i  ihe 
generalization ability, and the other is to use ideas from statistical physics to find 
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the average generalization ability of a network [4-71. Here we use a trick probably 
invented by Gardner and Derrida [SI but recently used by a number of authors [9-131. 
The trick is to limit the set of possible functions f to those the network can actually 
implement, Le. the network has to learn to imitate a teacher. 

A perceptron with multiple units can always be analysed one unit at a time, so in 
the following we study just one linear unit or neuron with a response 
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to an input ci on the ith input terminal. The unit is trained on p examples of input- 
output pairs ((:, C p )  and the delta-rule learning equation [14] is then in continuous 
time 

P 
Gi = N - ’ I 2  C(y - V”)Et - x w i .  (2) 

F 1  

This is the ‘batch-learning’ form of adaline learning. The last term is a simple weight 
decay that enables us to limit the size of the weights. This learning process has been 
studied in the presence of noise [14-161, and many of the results derived in this paper 
will draw on those results. 

The teacher perceptron is characterized by a set of weights U ; ,  and the network 
is trained on p examples ((r, C”) with 

generated by the teacher. So we know that the perceptron can learn the task and 
the interesting questions concern how well it generalizes from a limited number of 
examples and what happens in the presence of noise. 

Using these teacher-generated targets equation (2) becomes 

By introducing the difference between the teacher and the pupil, vi 
the training input correlation matrix 

71, - w ; ,  and 

the learning equation reads 

ui = Xui - A i j v j  - AV;. (5) 
j 

Except for the first term this equation is identical to the original learning equation 
(2) studied in [14, 161. 
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We let the p example inputs cr be drawn randomly and independently according 
to some distribution P ( c )  with mean 0 and variance 1. For a large number of 
examples (p = O( N) >> l), the resulting generalization ability will be independent 
of just which p of the possible input patterns we choose. 

?b measure the generalization ability, we average the squared error ( { e  - V’)2  
over the distribution P of inputs. Thus we define the generalization error as 

where it was used that P has variance one. [ I c  is an average over the different 
possible realizations of input patterns .$‘. That is, F is just proportional to the 
square of the difference between the teacher and pupil weight vectors. With the 
N - ’  normalization factor F will then vary between 1 (tabula ram) and 0 (perfect 
generalization) if we normalize U to length fl and w ( t  = 0) = 0. During learning, 
wi  and thus vi depends on time, so F is a function of t .  The complementaly quantity 
1 - F ( t )  could be called the generalization ability. 

Although we center on generalization it will also be of interest to calculate the 
training error. It is defined as 

Using (3) it becomes 

2. Asymptotic solution 

All the eigenvalues of A are non-negative (because it is a correlation matrix). Then 
for X > 0 we can introduce the response function 

g = ( X I  + A)- ’ .  (9) 

The static solution (i.e. for t -+ M) to equation (2) can then be writtcn as 

J !J 

For X going to zcro this solution approaches the pseudo-inverse [4, 171, while for 
large X the response function (9) will be dominated by the A-term and approach the 
Hebb solution [16]. Thc weight decay parameter is thus a nice way of intcrpolating 
between the two extremes of pseudo-inverse and Hebb synapses. 
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Similarly the asymptotic value of v i  is found from equation (5 )  

vi  = g i j  x u j .  
; 

Most quantities of interest can be calculated from the average response function [g](. 
It is diagonal in this case, and it has been calculated in [14], 

1 - Q - x + J(A- % + ) ( A -  2-) 
G = [ g . . ]  = 

$ 8  E 2x 

Here we have introduced the spectral limits 

z* = -(1 i Ay. (13) 

See [14, 161 for more details. 
The subspace of the weight space spanned by the pattern vectors t p  is called the 

pattern subspace. Any initial component of w outside this subspace is only acted 
upon by the A-term in equation (2). If X = 0 the initial component orthogonal to 
the pattern subspace is therefore unchanged by the learning. Thus the asymptotic 
solution will change: the part of w(t = 0) in the orthogonal subspace should be 
added to the limit of (11) for X -+ 0. If ~ ( t  = 0) = 0 (tubulu rum) there is no such 
oomponent and results derived from (11) holds even in the limit X i 0. 

'Ib find the asymptotic generalization error the size of lv12 is needed. We start 
directly from (ll), 

I l l 12  = - y g i j g i k X % L j u k .  
i j k  

The product gg was calculated in [I41 (it follows easily from (9)), 

When averaged over patterns the response function becomes diagonal, so 

Here and later it is assumed that IuI = a. 
expanded, and in the X = 0 limit 

The derivative of G can be found directly from (12). For small X it can be 

for U < 1 

for Q > 1. 

For X = 0 and starting from tubuln msu the error falls of linearly from 1 to 0 as 
a goes from 0 to 1; i.e. there is a transition at a = 1 from imperfect to perfect 
generalization. This behaviour can be understood in a very intuitive way. For fewer 
than N patterns there are not enough vectors in weight space to exactly specify the 
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Figure 1. The asymptotic generalization emr F as a function of 01 with no noise. 
Starting from tobuln rma with X = 0 is shown by the full awe.  staning I” Iw(t = 
0)l = fl by the dolled line, and laming with a weight decay by the broken NWE. 

For X = 0.2 the envr is shown by lhe chain cuwc. The aspprotic mining 
ennr is zero for X = 0 .  

teacher vector U. For a > 1 the pattems span the whole space and completely specify 
U, and thus the generalization becomes perfect. Fbr X > 0 this curve is smoothed as 
shown in figure 1. 

For X = 0 and a < 1 the calculation holds only if starting from tabula rasa; 
if w ( t  = 0) # 0 the part orthogonal to the pattern subspace will stay untouched 
and therefore contribute to the error. The contribution can be found by a heuristic 
argument. If w ( t  = 0) is zero 2)  is (for 1 -+ w) equal to the part of U orthogonal to 
the pattern subspace, uL. If w ( f  = 0)  is non-zero the part that  is in the orthogonal 
subspace w L ( t  = 0) will also contribute, so IuI’ = (ul - wL(t  = 0))’. Averag- 
ing over patterns and random initial weights will then give ( v ( ~  = ( I  - a)((u(*+ 
Iw(t = 0)1*), because the patterns only ‘cover’ a fraction a of the wight space, so 

F = Frabula vasa + (l  - a)b(f = O ) l ’ / N .  (18) 
See [I] for a more careful treatment of this case. 

G c b  eigenvaiue A, of A (4j corresponds to an exponentiaiiy decaying mode of 
the system with a relaxation time of 1 /( X + Ar). Therefore the relaxation times of 
the learning process depend only on A, which depends on the input patterns. Thus 
the relaxation times are the same as for random inpur/output patterns, which have 
been studied previously [14, 161. For X = 0 the relaxation time diverges when a 
approaches 1 from either side. 

’. 

3. Learning with an unreliable teacher 

’MO kinds of noise will be studied in this paper: random errors in the training set 
which we will also call static no& because it is constant during learning, and time- 
dependent noise in the learning process, which is called dynamic noise. Here we 
consider the first kind. 

An unreliable teacher is, in our terminology, one that supplies the pupil percep- 
tron with erroneous targets. It is modelled by adding stalic noise to the teacher. 
This can be done in (at least) three different ways: directly to the targets {”, to the 
teacher weights, or to the input patterns e: before the targets are produced. 

This section deals with the asymptotic generalization error; the error as a function 
of time will be studied later. 
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Flgum 2. Generalization and mining ermr with static noise of size v2 = 0.2 on the 
input or the output of the teacher. Curves WrIing m the upper left mmer represent 
the generaliration ermr F while r k  h e r  me represcnr the traioing error. The full 
curve is for X = vz ,  and the broken mwe X = 0. The dotted line is the generalization 
error with no noise and X = 0 for reference. 

3.1. Noire on input or output 

If noise f' with mean zero and variance U&, is added to the outputs of the teacher, 
the !earr?k...g eq!2at;e!! (-2) c!?nnges tc 

and the asymptotic solution is then by analogy with (11) 

Squaring and averaging over the static noise and using (15) gives 

1uI2 = G g ; j g i k [ X 2 u j " k  +( f " )2Aj~I  
i j k  

where the bar means averaging over the static nose. Using (15) and averaging over 
the patterns gives 

a a c  
F = U ~ " ~ ~ ( X G )  - X2- a x '  

We observe that the last term is identical to the error in the noise-free case. The 

of XG goes to (1 + a - 11 - 4 ) / 2 ) 1  - al, so in this limit the generalization error is 
afiise . $ ~ n l v   add^ 2 Inncit ive\  term tfi the afike-free error, Fer X - 0 deriyztiy~ r.J --"I - \r---"- I .-.... 

. .  p for a > 1. 
0 - 1  

Differentiating F with respect to X we find that F has a minimum for X = U:",. 

Thus, it pays to learn with a weight decay. At this minimum point the error is 
F = (Tout 2 %=& (24) 

which is compared in figure 2 to the error without the weight decay. 
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Calculating the training error yields 

aE=(a - l )u~ , ,+ (X+u ,2 , , )XG-XF.  
This is plotted in figure 2. For X - 0 it becomes 

E = (  0 
for a < 1 
for a > 1 ' u&,(a - 1 )  

k r  n < 1 !!x !e" is perfect, wherezs *e err9r !iner:!y k$th a &?se 
1. This behaviour was also found for random targets, see [16]. Interestingly the 
generalization error decreases with a while the learning error increases in this limit. 
(Tb compare the leaming and generalization errors the first should really be divided 
by a to give the. training error per pattern. But it is still true that the training error 
increases, and for large a the generalization error becomes smaller than the training 
error). 

Noise on the inputs can be. treated in a similar manner, and it turns out that the 
result is basically the same. 

3.2. Noise on the weights 

Noise on the teachers weights is in a sense qualitatively different from noise added 
to the input or the output as studied earlier. This is because the training set resulting 
from the noisy weigh& can still be learned perfectly by the pupil-; just has to 
converge to the noisy weights. For input or output noise the pupil cannot learn the 
patterns perfectly for a > 1. If noise vi with mean zero and a variance U; is added 
to the teacher weights the targets for training are then corrupted according to 

c(ui + vi)[,!' = N-'12 U,<: + N - ' / ' c  vi<:. (27) C P  = N-112 

i 

As usual this leads to a solution at infinite time, 

Squaring and averaging over the static weight noise gives 

which h a little different from the previous case. The last term can be reduced using 
A A g  = A - XAg = A - X I  + X2g, leading to 

This also has a minimum for a finite A,  but less pronounced, and the optimal 
value of X does not have such a nice solution as for the output noise. In the X -, 0 
limit, 

The training error will in this case go to zero for X = 0 as mentioned before. It 
will actually behave exactly as in the noise-free case except that U; has to be added 
to /til2 whenevcr it occurs, because from the pupil's point of view the training set is 
just produced by a teacher with weights U; + vi. 
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4. Generalization error as a function oi time 

Until now we have only considered the asymptotic behaviour of the network In this 
section we calculate the generalization error as a function of time. 

For the two kinds of sfafic noise the learning equation can be written as Gi = 
Bi - E. A . . v .  - Xui. The particular form of Bi can be found in (19) and (28). In 
the basis where A is diagonal the general solution to this equation is 

A kbgh and J A Hertz 

J ‘ J  J 

v , ( t )  = (1 - e-(A+Ar)f ) x q  Br + IJv(o)e-(A+Ar)i (32) 

where the subscript T indicates transformation to this basis, and A, are the eigen- 
values of A. If the learning starts at tabula ram (v,(O) = U , )  the square of up 
is 

Now we will average over the noise included in B,. First of all the average of the B, 
in the last term is just Xu, for both kinds of static noise. The term B: contributes 
a X2u: plus something that depends on exactly which kind of noise we are dealing 
with. Fbr static input noise we find 

\ 2  

where the orthogonal transformation matrix SVi that diagonalizes A was introduced. 
The average error as a function of time is 

where p( +) is the density of eigenvalues of A for large N .  It can be found from the 
response function as shown in [16]: 

(36) 
-(. + zt)( .  + z-1 

p ( x ) = ( l - - a ) # ( l - a ) 6 ( x ) +  
2 R X  

where e( ) is the unit step function. The second term contributes only when it is real, 
i.e. when z lies between the roots -z+ and - z - .  

It is obvious that we will have an exponential behaviour in the long-time limit 
if X > 0. If X = 0 the smallest non-zero eigenvalue will determine the long-time 
behaviour, but at a = 1 the eigenvalue density will extend all the way down to zero, 
which will lead to a non-exponential behaviour. We first take a look at this situation. 
At a = 1 and X = 0 the eigenvalue density is d m .  In that limit and no 
noise (U’ = 0) the generalization error then becomes 
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It approaches 0 as t - ' / ' ,  i.e. a lot slower than exponential. 
Now, what happens if the noise is not zero? The generalization error (35) has a 

minimum at finite t for some values of A. This can easily be seen from differentiation 
of F with respect to t. Differentiation of the integrand of (35) (call it F ( z ,  1 ) )  gives 

.... ........... ................ 

For X 3 U:", this is always negative, so F & decreasing with time, whereas it is 
positive for sufficiently large t if X < U:",, meaning that F has a minimum for finite 
t. Note that the critical X where this crossover appears is the one giving the smallest 
asymptotic error as calculated earlier. 

Formally putting this derivative equal to zero leads to an z-dependent time, 

(39) e - ( A + l ) t "  - - (U?", - >)/(d", + 2). 
So t ,  is the point where F ( t , z )  has minimum. Therefore the minimal value of the 
error Fmi, must obey an inequality 

(This expression requires a few lines of algebra.) The value of F at infinite time for 
X = U,",, is obtained directly from (3.5). and it turns out to be identical to the last 
line above. That is the lowest possible value of F is obtained at infinite time with 
X = 2 

 FA(^) > FA=,* O Y I  ( t  + M) (41) 

for any value of A, including 0. 

of size uZut = 0.2, and with noise and the optimal weight decay. 
In figure 3 generalization curves are shown for a = 0.8 without noise, with noise 

1 )  1 

0- 
0 10 20 30 

1 

Figure 3. Generalization emor as a function of time for a = 0.8. ?he ermr when 
noise of size &, = 0.2 on the input or the output of the teacher is pmsent is shown 
by the full curve (A = U:",) and the dashed curve (A = 0). Wthout weight decay 
the emr sans to increase after a finite time of learning; that is called overfilling. The 
dotted curve is the generalization error with no noise and A = 0. 
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It is important to note that the learning always decreases the learning error, 
because it is a gradient descent procedure on a mst function. It is a smooth mono- 
tonically decreasing curve with the asymptotic value already calculated in the previous 
section. Here we see that while the learning error keeps decreasing the generalization 
error starts to increase after some time of training. This behaviour is usually referred 
to as 'overfitting': the network starts to learn the irrelevant details of the noise, and 
that spoils the generalization. 

The same calculation of the generalization error can be done for noise on the 
teacher's weights. The only change is in the B: term, which now becomes 

- 
Bf = X2u: + OLA? (42) 

instead of (34). This change means that &,z in equation (35) is changed to uiz'. 
In this case there is no sign of overfitting. 

5. Dynamic noise in the learning process 

Another type of noise is dynamic noise in the learning process. This can, analogously 
to the static noise in the patterns, come in three different ways, namely noise on 
the input, weights and output. The effect of this kind of noise on the learning was 
studied in detail in [14, 161, and we will here see how it affects generalization. 

S . I .  Input noise 

Consider noise e f ( l )  added to the input patterns. It is assumed that the variance k 

( ~ P ( t ) e ; ( t ' ) ) ~  = ~ 6 ; ~ 6 , , ,  exp(-All - f'l) (43) 

where y is the strength of the noise. In [I61 it was shown that if A is very large this 
noise acts on average as a weight decay of size X = y a .  This kind of noise can then 
have a beneficial effect on generalization. This has been found in nonlinear networks 
as well [IO, 18, 191. 

5.2. Weight noice 

Consider white noise qi(l) of variance 

( ~ ; ( t ) q ; ( t ' ) ) ~  = 2Tbi;6(1 - 1 ' )  

added to the learning equation (5). 
The autocorrelation function is defined as 

Then the average generalization error can be written as 

(44) 
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The last part is just the same as before, because if the learning equation is averaged 
the noise disappears. Then 

FT = FT=o + C. (47) 

For this kind of weight noise we have previously proven [16] the fluctuation- 
response relation C = TG, so 

(4q - * - + T G ,  - 
* T -  T-0 

“hiis equation shows that the asymptotic generalization error increases linearly with 
the noise level for X > 0. For a < 1 G (see (12)) and thus F diverges as X goes 
to  0. This simply implies that the noise makes the weight vector perform a random 
walk in the subspace orthogonal to the pattern subspace because for X = 0 there will 
be no damping forces, Therefore Iv12 and thus F w;l! keep increasing ~ . t h  time; 

Above a = 1 the response function is G = (a - l ) - l  in the limit of X = 0, 
which can be found by expanding (12) for small A. The T-dependent term in F, 
called 6 F, is then 

(49) 
T 6 F = T G = -  

a-1’ 

This diverges as a - 1 + .  In the other extreme, a i 00, it follows T/a ,  as has also 
been foilnd for nonlinear networks [S-7, 9-12, 20, 221. 

5.3. Output noire 

If instead noise f ’ ( t )  is added to the output or targets, the result is an effective 
noise +j;(t) of variance 

( Q i ( t ) f i j ( t ’ ) ) T  = A i j ( f p ( t ) f ” ( t ’ ) ) T  = 2 T A i j 6 ( t  - t ’ ) .  (50) 

The same analysis can now be carried through with the only change that the 
fluctuation-response relation C = T( 1 - XG) (see [15, 161). 

This leads to the generalization error 

FT = FTz0 + T(l - XG). (51) 
The term XG does not diverge for X - 0, as seen directly from (12). This noise 
only acts in the pattern subspace, and this is the reason there is no divergence for 
X = 0, contrary to ordinary weight noise which acts in the whole weight space. For 
any parameters we see a linear increase in the error with T.  

6. Conclusion 

In this simple network we have found many interesting properties that can also be 
found in nonlinear networks. Without noise the pupil perceptron can learn to imitate 
the teacher within an arbitrarily small margin for a > 1, hut close to a = 1 the error 
decreases very slowly. For a < 1 the asymptotic error decreases linearly as a = 1 
is approached. If there is noise in the training set the phenomenon of overfitting 
turns up; after a certain training time the generalization error of the pupil starts to 
increase while the training error still decreases. 

It was shown that weight decay is beneficial to generalization in several cases: 
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(i) If there is (static) noise in the training set a weight decay leads to better 
generalization. 

(ii) If there is noise on the weights and a < 1 the weight vector performs a 
random walk in the subspace orthogonal to the pattern subspace which increases the 
generalization error with time, but this is suppressed by a weight decay. 

(iii) If the network starts from a random initial weight vector different from zero 
the part of it in the orthogonal subspace will be left alone (for a < l), degrading 
the generalization unless a weight decay makes it decay. 

White noise on the input has to a first approximation the same effect as a weight 
decay, and can thus improve generalization. This improvement of the generalization 
ability if a weight decay is used has been observed in layered nonlinear networks as 
well, see for instance [21]. 

the pseudo-inverse solution (A = 0) and the Hebbian solution (large A) to the 
learning problem. For threshold perceptrons it has previously been shown that the 
Hebbian solution sometimes leads to better generalization than the pseudo-inverse 
(11, 221, and in [23] another way of interpolating between the two was proposed. 

Many of these effects will to some extend carry over to nonlinear networks. Any 
network with differentiable activation functions behaves like a linear network close 
to the asymptotic state. More specifically for small differences between the network 
and its teacher the learning equation can be written like 

hying the weight decay parameter x can be viewed a8 an interpO!a!ion heween 

v = c- Av (52) 

where c is a constant. If W is the total number of weights (or adjustable parameters) 
in the network A is a cli x cI/ matrix depending miy on the input patterns. Tiis 
implies that if the rank of A is less than W there is a part of weight space not 
'covered' by the patterns, and e.g. a weight decay would improve the generalization. 
We speculate that at least for p < W this would always happen. 
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