TP decoding

Yi Lu, Cyril Méasson and Andrea Montanari

July 3, 2007

TP stands for tree pruning.

We are interested in an efficient algorithm that interpolates between BP and MAP.

The decoding problem

MAP symbol decoding

- Computing the marginal of a distribution that factorizes on a graph.
- Exact computation is exponential in n.
- Belief propagation is exact if the graph is a tree; otherwise suboptimal.
- Define bit-error rate $P_e = \frac{1}{n} \sum_i P(\hat{x}_i \neq x_i)$

There exists a gap between BP and MAP.

What we would like

BP

BP is a message passing decoder.

BP computation tree

Tree Pruning

 -nodes with fixed boundary condition

Weitz's construction

[Weitz, 2006. Jung and Shah, 2006]Given a pairwise Markov random field

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \phi_{ij}(x_i, x_j) \qquad x_i \in \{0, 1\}$$

Weitz's construction

 T_{SAW}

- = occupied vertex
- I = unoccupied vertex

Weitz's construction

Algorithm

$$\begin{array}{rcl} Problem & \to & |T_{saw}| = O(\Delta^n) \\ ldea & \to & \text{Truncate at depth } t \end{array}$$

 $\mathsf{Convergence} \Leftrightarrow \mathsf{Correlation} \; \mathsf{decay}$

$$\sup_{\underline{X}_t,\underline{X}_t'} |\mu_{\text{Tree}}(x_i|\underline{X}_t) - \mu_{\text{Tree}}(x_i|\underline{X}_t')| \le 2 e^{-\kappa t}$$

- 1. Binary variables, but multi-variable interactions.
- 2. Non-permissive interactions.
- 3. No "correlation decay". Truncation can be problematic.
- [Nair and Tetali, 2006] extension to non-binary variables and multivariable interactions. Higher complexity than Weitz.

MRF with negative potentials

Using duality

 $\sigma_a \in \{0, 1\}$ Edge potential $(-1)^{x_i \sigma_a}$

MRF with negative potentials

$$= \prod_{i \in V} Q(y_i | x_i) \prod_{a \in F} 2 \mathbb{I} \left\{ \sum_{i \in \partial a} x_i \in \text{EVEN} \right\}$$
$$= \prod_{i \in V} Q(y_i | x_i) \prod_{a \in F} \sum_{\sigma_a = 0}^{1} (-1)^{\sigma_a} \sum_{i \in \delta a} x_i$$

$$= \sum_{\underline{\sigma}} \prod_{i \in V} Q(y_i | x_i) \prod_{(ia) \in E} (-1)^{x_i \sigma_a}$$

Non-Permissiveness

Non-permissiveness can cause undefined messages like $\frac{0}{0}$

Concatenation

Truncation

- x_1 Leave boundary "free" Erasure channel 1 \boldsymbol{a} Further prune at unerased nodes. Note the resulting tree does not necessarily correspond to a graph С h truncate
- Truncated TP is a biased estimate

Erasure Channel

Fig. 3. Tailbiting convolutional code with generator pair $(1 + D^2, 1 + D + D^2)$ and blocklength n = 100. Dashed black curve: BP decoding with $t = \infty$. Plain black curve: MAP decoding (BP followed by Gaussian elimination). Blue curves: BP decoding with t = 3, 4, 5, 6, 8, 10, 12, 14 (almost undistinguishable). Red curves: TP decoding with t = 3, 4, 5, 6, 8, 10, 12, 14 (truncated tree).

Fig. 4. (23, 12) Golay code with blocklength n = 23. Dashed black curve: BP decoding with $t = \infty$. Plain black curve: MAP decoding (BP followed by Gaussian elimination). Blue curves: BP decoding with t = 4, 5, 6. Red curves: TP decoding with t = 4, 5, 6 (truncated tree).

Erasure Channel

Fig. 5. A regular (3, 6) LDPC code with blocklength n = 50. Dashed black curve: BP decoding with $t = \infty$. Plain black curve: MAP decoding (BP followed by Gaussian elimination). Blue curves: BP decoding with t = 7, 8. Red curves: TP decoding with t = 7, 8 (truncated tree).

General Channel

Truncation does not work. Only preliminary results.

. . .

General Channel

Fig. 6. Tailbiting convolutional code with generator pair $(1 + D^2, 1 + D + D^2)$ and blocklength n = 50. Dashed black curve: BP decoding with t = 400. Plain black curve: MAP decoding. Blue curves: BP decoding with t = 8, 50. Red curves: TP decoding with t = 8 (truncated tree), with TP on a ball of radius 2, i.e. MAP(2), and MAP(2) - BP(50).

Conclusion

• We constructed a Tree Pruning algorithm that interpolates between BP and MAP in the error floor region.

