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Plan

Les fleches en trait plein correspondent & un ordre conseillé de lecture. Les fleches en pointillé
indiquent des relations entre chapitres qui peuvent néanmoins étre lus indépendamment.



Chapitre 0

Introduction

0.1 Systemes a Evénements Discrets

La motivation premiere de ce travail est I’étude des systémes a événements discrets (SED).
De tels systemes peuvent se définir de fagon négative par opposition aux systémes classiques
dont I’évolution est continue et décrite par des équations différentielles. Dans un SED, les
transformations sont déclenchées par des “événements” ponctuels, typiquement l'arrivée d’un
client, d’un signal ou 'acheévement d’une tache. Ces événements donnent lieu a des phénomenes
de synchronisation et de concurrence.

De tels systemes apparaissent de facon naturelle dans la modélisation d’un certain nombre de
systemes physiques. On peut mentionner les exemples suivants.

e Systemes informatiques, architecture interne des ordinateurs.
e Réseaux de télécommunications, réseaux de transport.

e Systemes de production : lignes d’assemblage, ateliers flexibles.

Pour décrire ou étudier ces SED, il existe de nombreux modeles et techniques mathématiques.
On s’intéressera plus particulierement aux suivants :

o Réseaux de files d’attente.
o Réseaux de Petri et automates.

e Systemes dynamiques dans des algebres non-conventionnelles.

Réseaux de files d’attente, réseaux de Petri et automates seront utilisés comme formalismes de
description et de représentation graphique des objets étudiés. L’essentiel de analyse aussi bien
quantitative que qualitative portera sur les systemes dynamiques.

0.2 Approche algébrique

La dynamique est codée par des équations de récurrence dans des structures algébriques non-
conventionnelles telles I'algébre (max,+). Une telle approche permet de mettre en ceuvre un
ensemble de techniques et de résultats proprement algébriques et similaires a ceux utilisés en
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algebre classique. Cette approche permet aussi de s’affranchir de certaines des caractéristiques
propres au modele. Les résultats seront obtenus au niveau algébrique quitte a étre ensuite
traduits.

Cette démarche est illustrée par les chapitres 6 et 8. Dans le chapitre 6, on démontre des résultats
ergodiques pour les produits de matrices aléatoires dans 'algebre (max,+). Le chapitre 8 est
consacré a ’application de ces résultats aux graphes d’événements stochastiques.

La modélisation algébrique permet également de mettre en ceuvre des techniques de simulation
efficaces. Ce domaine est abordé dans le chapitre 2, §2.7.

Détaillons les différents modeles algébriques considérés.

Systémes (max,+) linéaires On considere les systémes décrits par une équation de la forme
“x(n+1)=A®a(n)”, ot z(n) et 2(n+1) sont des vecteurs et A une matrice carrée. Le produit
matrice vecteur @ s’interpréte en remplacant les opérations “+7 et “x” par “max” et “47
respectivement. De tels systemes sont les analogues dans une structure algébrique différente des
systemes linéaires classiques.

Opérateurs monotones et homogénes On considére des fonctions (ou opérateurs) 7 : R¥ —
RF* vérifiant des propriétés de monotonie, i.e. = > y = T(z) > T(y), et d’homogénéité, i.e.
T(z + M) = T(z) + M, o 1 est le vecteur dont toutes les coordonnées sont égales & 1. De
tels opérateurs généralisent strictement les opérateurs (max,+) linéaires (T'(z) = A ® ). lls
correspondent, de fagon trés imprécise, a des opérateurs (min,max,+,x) linéaires.

Réseaux monotones et séparables De facon schématique, on appelle ici réseau un systeme
ol un processus ponctuel (arrivée de clients, de taches, ...) déclenche un ensemble d’événements
internes. Sous des hypotheses adéquates de monotonie et de séparabilité, on obtient une classe
de systemes généralisant strictement les opérateurs monotones et homogenes.

0.3 Systemes Déterministes-Stochastiques

Les systemes cités précédemment ont été, historiquement, d’abord étudiés sous des hypotheses
déterministes. De nombreux arguments, variabilité intrinseque des phénomenes étudiés ou im-
possibilité de les évaluer avec précision, plaident en faveur d’extensions stochastiques de ces
meémes systemes.

Cette these se décompose en deux moitiés. La premieére (Partie I) est consacrée aux systemes
déterministes et la seconde (Parties Il et I1I) aux systemes stochastiques.

Dans I’étude déterministe, on s’intéresse a des problemes d’optimisation et de conception (re-
présentation minimale) ainsi qu’a une analyse fine des comportements asymptotiques (bassins
d’attraction des points limites).

Dans I’étude stochastique, on s’intéresse également au comportement limite par 'intermédiaire
d’une analyse de la stabilité. Par stabilité d’un SED aléatoire, on entend I’existence d’un régime
stationnaire et la convergence vers ce régime pour des quantités telles que le débit, le nombre
de taches (clients, données, ...) ou le temps d’attente dans le systéme. Plus précisément, on
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considere deux notions de convergence, la convergence faible ou étroite (weak convergence) et
la convergence en variation (total variation convergence).

Soit (£, &) un espace polonais (i.e. métrique, complet et séparable) muni de sa tribu borélienne.
On note M (L) 'ensemble des mesures de probabilité sur (£, ) et Cj (&) 'ensemble des fonctions
continues et bornées de F vers R. Soit {P,,n € N} et {P/,n € N} € M(F).

Convergence Définition Théoreme de représentation
étroite VfeCyE), [fdP,— [ fdP, =0 | X, = X, P—p.s.
variation supAeg(flAdPn - flAdP/l) =0 |Vn>2N, X, =X et PIN<oo)=1

Les théoremes de représentation doivent s’interpréter comme l’existence d’un espace de prob-
abilité (2, F, P) et de variables aléatoires X,,, X! n € N définies sur cet espace et de lois de
probabilités respectives P,, P/;n € N. Pour la convergence en variation, ce résultat est du a
Goldstein (voir Lindvall [102]). Ils permettent une approche trajectorielle et intuitive. La con-
vergence faible correspond au couplage asymptotique et la convergence en variation au couplage
en temps fini.

Mentionnons quelques-unes des raisons justifiant I'intérét d’une étude de stabilité.

e En général, on attend d’un réseau que le nombre de taches en attente ou la durée d’exécution
d’une tache restent finis au cours du fonctionnement. La zone de stabilité du réseau corre-
spond a sa zone de bon fonctionnement. Lors de la conception d’un réseau, un des criteres
communément utilisés est la maximisation de la zone de stabilité.

o [étude de la stabilité a connu un vif regain d’intérét avec la découverte récente de réseaux
non-stables sous les conditions usuelles de charge (“p < 17), voir Rybko et Stolyar [125]
ou Dumas [59] (zone de stabilité non-convexe et possédant une frontiere quadratique). A
I'inverse, et de facon complémentaire, notre approche va consister a définir des classes de
systemes stables sous des conditions naturelles.

e La connaissance de la dépendance du régime stationnaire en fonction de la condition
initiale (analyse fine de stabilité) est utile pour le contréle ou la simulation d’un réseau.
On choisira une condition initiale en fonction du mode de fonctionnement que "on cherche
a obtenir ou simuler.

Dans le cadre de P'analyse des systemes stochastiques, on supposera parfois que les suites de
variables aléatoires sont i.i.d. (indépendantes et identiquement distribuées). Le plus souvent,
cependant, on menera I’étude sous des hypotheses de type stationnaire et ergodique. Les justi-
fications en sont multiples.

e D’un point de vue théorique, il est toujours satisfaisant de démontrer les résultats sous des
hypotheses minimales.

e Le cadre stationnaire et ergodique permet de prendre en compte les phénomenes de péri-
odicité, telle la dépendance des variables aléatoires en fonction du moment de la journée
ou de année.
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e Des études expérimentales menées récemment sur des données réelles (trafic sur réseau
local Ethernet) ont permis de mettre en lumiére des phénomenes de longues dépendances
et méme d’auto-similarité (nature fractale) du trafic, voir [141]. De tels trafics ne sont
évidemment pas i.i.d. Il apparait par contre qu’ils peuvent étre efficacement représentés
a laide de processus stationnaires et ergodiques tels les mouvements browniens fraction-
naires.

0.4 Résumé et Contributions

Le chapitre 0 consiste en une introduction générale. 1l contient un résumé de la these.

Partie I

Le premier chapitre, le seul écrit en francais!, propose une présentation d’un ensemble de sys-
témes représentables sous forme (max,+) linéaire. Ce chapitre a aussi pour fonction de montrer
que les méthodes et résultats présentés par la suite peuvent s’appliquer a des domaines autres
que les SED, tels ’économie mathématique ou la mécanique statistique.

Le chapitre 2 est consacré a ’étude de systemes d’Equations Récurrentes Uniformes. Un tel
systeme peut étre vu comme un graphe infini et périodique de calculs a effectuer. L’objectif est
de minimiser le nombre de cases mémoires nécessaires pour mener a bien ce calcul. Le modele
étudié est tres général et se situe en amont des modeles considérés par la suite.

Le chapitre 3 traite le cas des systémes (max,+) linéaires déterministes de dimension 3. On
propose un nouvel outil de description du comportement spectral. Il s’agit de la représentation
graphique des vecteurs propres et des domaines d’attraction dans un “espace projectif additif”.

Le chapitre 4 complete le chapitre précédent. Il s’agit d’illustrer & 'aide de la représentation
graphique des problemes propres a I’ordonnancement cyclique dans les systemes de production.

Le chapitre 5 propose un algorithme permettant de calculer tous les vecteurs propres et tous les
régimes périodiques d’une matrice (max,+).

Partie 11

Le chapitre 6 étudie les produits de matrices aléatoires dans 'algébre (max,+). On obtient des
conditions nécessaires et suffisantes pour que de tels systemes couplent en temps fini avec un
unique régime stationnaire.

Le chapitre 7 vient en complément du chapitre précédent. 1l illustre les phénomeénes de régimes
stationnaires multiples a l'aide de 'outil graphique du chapitre 3.

Le chapitre 8 applique les résultats du chapitre 6 au probleme de la stabilité des graphes
d’événements stochastiques.

Le chapitre 9 introduit un modele de ressources partagées, dit modele Tache Ressource. Celui-ci
se représente sous la forme d’automate (max,+), c’est-a-dire de systéme (max,+) linéaire dont
la dynamique est indexée par des lettres. On étudie sa stabilité a I’aide des résultats du chapitre

6.

'Editor’s note : almost the only one, chapter 0 is also in french.
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Partie 111

Le chapitre 10 propose un cadre général pour aborder le probleme de la stabilité des systemes
a événements discrets stochastiques. D’une part, on étudie les itérés d’opérateurs aléatoires
homogenes et monotones, d’autre part les réseaux a événements discrets monotones et séparables.
On propose des théoremes ergodiques dits du premier et du second ordre. Ces résultats généra-
lisent ceux obtenus au chapitre 6. On traite ensuite plus spécifiquement le modele des réseaux

de Jackson.

Contributions
Fermé (autonome) Ouvert (non-autonome)
7 T
| I
. I 1 ordre : ' 1 ordre :
Syst .
ystemes ! Cuninghame-Green [49] : Cohen, Dubois,
(max,+) : | Quadrat, Viot [43]
linéaires | 2 ordre ; ' 2 ordre :
) . I Cohen, Moller, !
déterministes | Quadrat, Viot [45] I Wende & al [139]
I Appr. graph. J. M. Ch. 3 : Gaubert [67]
I
| T
| I
Systémes I 1 ordre : : 1 ordre :
I .
(max,+) ,  Cohen [46] : Baccelli [4]
I
linéaires : 9 ordre : : 2 ordre :
aléatoires I JM. Ch. 6 ' Baccelli [4]
| I
| I
T |
! I
Obérateurs I 1 ordre : ;1 ordre :
P ' Vincent [136] ' Vincent [136]
monotones : !
I
homogenes : 2 ordre : : 2 ordre :
aléatoires i Baccelli, J.M. Ch. 10 I Borovkov [22]
: I Brandt, Franken, Lisek [32]
I
T T
I I
Systémes i 1 ordre: I 1 ordre :
I i I :
monotones | Baccelli, Foss, ‘]Cfl}/llO | Baccelli, Foss [10]
séparables : :
lator , 2 ordre : , 2 ordre :
alcatorres ! 0 I Baccelli, Foss [10]
I I
I I

Figure 1: Principales contributions.
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On propose, en figure 1, un schéma simplifié permettant de situer une partie des contributions
de la these. Seuls certains des chapitres sont mentionnés, les autres s’y rattachent (voir le
plan précédant ce chapitre) ou portent sur des domaines connexes (modélisation : Ch. 1,9, et
optimisation : Ch. 2).

Les résultats originaux de cette these portent principalement sur les systemes fermés. Consid-
érons un réseau avec des serveurs et des clients. Ce réseau sera dit ouvert s’il existe un flux de
clients arrivant, circulant puis quittant le réseau. Au contraire, il sera dit fermé si le nombre de
clients dans le réseau est fixe. Ces définitions demanderont bien sir & étre précisées.

En langage algébrique, les résultats du premier ordre sont ceux relatifs aux valeurs propres et
les résultats du second ordre aux vecteurs propres. En langage réseau, les résultats du premier
ordre portent sur le débit et les résultats du second ordre sur le nombre de taches ou le temps
d’attente dans le systeme. Les références données en figure 1 sont tres incompletes. Pour plus
de détails, on se reportera aux chapitres correspondants.

0.5 Problémes Non Résolus

Les problemes ouverts évoqués ici constituent autant de pistes de recherches dans la continuité
de ce travail.

e Pouvoir de modélisation des systemes étudiés.

Le pouvoir d’expression des systémes (max,+) linéaires est maintenant bien compris, voir chapitre
1. En terme de réseaux de Petri, ils correspondent a la sous-classe des graphes d’événements.
Il n’en est pas du tout de méme pour la classe des systémes (min,max,+) linéaire ou celle des
réseaux monotones-séparables (voir chapitre 10). En particulier, I'intersection entre ces systemes
et la classe des réseaux de Petri reste a éclaircir.

e Etude des systémes (max,+) linéaires stochastiques de dimension infinie.

Une théorie spectrale relativement compléte existe pour les systemes (max,+) linéaires détermi-
nistes de dimension infinie, voir [107]. Il n’existe par contre pas, a notre connaissance, de théorie
ergodique pour les versions stochastiques de ces systemes. Une application potentiellement
intéressante serait ’étude du modele d’exclusion asymétrique, exemple de systeme de particules
en interaction [101]. Ce modele apparait entre autre dans le fameux probleme de la suite infinie
de files en tandem et peut se modéliser sous la forme d’un systeme (max,+) linéaire de dimension

infinie dénombrable, voir [5].
e Etude des opérateurs monotones-homogenes de dimension infinie.

Les réseaux de Jackson sont un exemple de réseaux monotones-séparables pouvant s’interpréter
comme un opérateur (min,max,+) a dépendances non-bornées (Lemme 10.9.5). De fagon géné-
rale, on peut se demander s’il y a équivalence entre la classe des réseaux monotones-séparables
et celle des opérateurs monotones-homogenes. La réponse a une telle question constituerait un
premier pas dans I’étude des opérateurs de dimension infinie.
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Systemes Linéaires Déterministes



Chapitre 1

Exemples de Systemes (max,+)
Linéaires

Une importante caractéristique des systemes (max,+) linéaires est leur simplicité mathématique.
Il s’agit en effet de considérer des produits de matrices mais dans une structure algébrique non
usuelle. Avoir un modele théorique simple est certainement un atout, encore faut-il que cela
s’accompagne d’une puissance de modélisation raisonnable. Les systemes linéaires dans 'algebre
(max,+) réalisent ce compromis. Ce chapitre illustre le second aspect, le pouvoir de modélisation.

Ce chapitre doit paraitre dans la Revue Scientifique et Technique de la Défense. Mes remer-
ciements vont & Camille Terray, Sophie Lefebvre-Barbaroux et Alain Jean-Marie pour leur relec-
ture attentive d’une premiere version.
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1.1 Introduction

On présente un ensemble de modeéles dont la caractéristique commune est de pouvoir étre
représentés par un systeme linéaire dans ’algebre (max,+).

On ne cherchera pas a établir un catalogue exhaustif de modeles mais plutot a illustrer la variété
des domaines ou ils apparaissent.

Ce chapitre a également pour objet, a& un modeste niveau, d’éviter I’écueil consistant a se limiter
a une vision ou a un domaine d’application. La multiplicité des domaines est susceptible de
suggérer et d’éclairer des problemes différents et complémentaires.

Le chapitre est organisé de la fagon suivante. En section 1.2, on présente le modele mathéma-
tique théorique. Les quatre sections suivantes sont indépendantes les unes des autres. Elles
sont consacrées a quatre types d’applications : les graphes d’événements (sous-classe de réseaux
de Petri), les automates temporisés, I'optimisation dynamique et enfin le modéle de Frenkel-
Kontorova en mécanique statistique. Ces différents modeles ne sont pas originaux en ce sens
qu’ils étaient déja répertoriés, au moins par les membres de leur communauté scientifique re-
spective, en tant que systémes (max,+) linéaires. La seule exception est le modeéle de réseau de
Petri avec choix présenté en section 1.4.2 et qui est inspiré d’un travail en préparation [71].

1.2 Modele Mathématique

On considere le systeme d’équations récurrentes :

zi(n+1) = lrgjagk(Aij+xj(n)),z:l,...,k, (1.1)
z;(0) = (20);.

Les quantités z;(n) et A;; appartiennent & RU {—oo}. On veut étudier la suite de vecteurs

{z1(n),...,zx(n)}.
Il est fructueux de récrire I’équation (1.2) en utilisant une notation matrice-vecteur.

Définition 1.2.1. L’algébre (maz,+) ou Ryay est Uensemble RU{—oo}, muni de la loi max,
notée additivement (i.e. a ®b = max(a,b)) et de la loi 4+, notée multiplicativement (i.e. a @b =

a+b).

On définit la matrice A de dimension k x k dont les coordonnées sont A;;. On définit également
le vecteur colonne z(n) = (z1(n),...,2x(n))" ainsi que le vecteur de conditions initiales xg. Avec
ces nouvelles notations, I’équation (1.2) prend une forme simple et agréable :

zn+1) = A@z(n), ie. az(n+1)=A""T" Q. (1.2)

Le produit matriciel est défini de facon naturelle en remplacant simplement les opérations +
et X de l’algebre usuelle par @ et ®. Soit A et B deux matrices de taille appropriée, on a
(A@ B)ij = Aij P Bij = HlaX(AZ']‘7 Bij), (A (039 B)ij = @k Aik (039 Bk]‘ = maxk(Aik + Bk]‘). Dans la

suite, on omettra souvent le symbole ®, remplacant par exemple A ® B par AB.
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Une généralisation naturelle, et souvent essentielle dans la modélisation de systémes physiques,
consiste & considérer que la matrice A n’est pas constante. L’équation (1.2) prend deés lors la
forme suivante :

z(n+1) = A(n)z(n), ie. z(n+1)=A(n)---A(0)z. (1.3)

La suite {A(n)} est donnée de facon exogene. En général, ce sera le cas dans les chapitres de
la partie Il, on suppose que la suite {A(n)} est une suite i.i.d. ou stationnaire ergodique de
matrices aléatoires.

Pour les systemes d’équations (1.2) ou (1.3), on définit deux types de limites asymptotiques :

e Les limites dites du premier ordre : lim,, ||z(n)||/n, lim, z;(n)/n (division dans 'algébre
usuelle).

o Les limites dites du second ordre : lim,, z;(n+ 1) — z;(n), lim, z;(n) — z;(n), V1, j.
Dans le cas d’un systeme déterministe, i.e. A(n) = A, ces limites sont directement reliées aux
éléments propres de la matrice A. Ceux-ci sont définis de la fagon suivante. On cherche A € R
et 2 € R*¥ solutions de I’équation spectrale :

lrgjagk(Aij +a;) = A4, i=1,...,k
Az = A@uz, (1.4)

Par analogie avec ’algebre classique, on appelle A une valeur propre et z un vecteur propre de
la matrice A. Une particularité importante de I’algeébre (max,+) est I'existence d’une unique
valeur propre pour une matrice A irréductible '. Par contre, il peut y avoir une multiplicité de

vecteurs propres ainsi que des régimes périodiques?. Pour plus de détails, voir chapitre 3.
On verra dans la suite quelle interprétation donner aux limites du premier et du deuxieme ordre
en fonction du modele physique considéré.

Algeébre de chemin [’algébre (max,+) est souvent appelée une algébre de chemin pour la

raison suivante. A toute matrice A € RFXF on peut associer un graphe & k nceuds comportant

un arc de j vers ¢ de poids A;; si A;; > —oo. Le terme A%pm € N, ¢’interprete alors comme le
poids maximum des chemins de longueur (mesurée en nombre de nceuds) p joignant j a ¢. Cette
interprétation sera utile par la suite.

1.3 Réseaux de Petri

L’évaluation de performances de systemes informatiques et de télécommunications nécessite une
modélisation préalable de ces modeles. Cette modélisation utilise souvent le paradigme des
Systemes Dynamiques a Evénements Discrets (SED). Pour de plus amples détails sur le champ
d’application des SED, on pourra se référer au numéro spécial de Proceedings of the IFFFE [88]

Ye. Vi, 4, Ins.t. Al > —oo.
2Un régime périodique est un ensemble fini x!,..., 2% tel que Az' = \a?, Az = Aa®, ..., Azg = Azl
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ou aux ouvrages récents de Baccelli, Cohen, Olsder & Quadrat [8] et de Glasserman & Yao [75].
Une excellente référence récente en francais est Gaubert [68].

Parmi les formalismes de modélisation des SED les plus largement utilisés, on peut mentionner
les GSMP (Generalized Semi-Markov Process) et les réseaux de Petri. 1l est montré dans [75]
qu’un GSMP vérifiant certaines propriétés de convexité et d’homogénéité peut étre représenté
sous la forme d’une équation de type (1.3).

On va insister dans la suite de cette section sur le second formalisme, celui des réseaux de Petri.
lls ont été introduit par Carl Petri en 1962 dans sa theése soutenue a 'université de Bonn [117].
Notre but n’est pas de présenter le formalisme dans toute sa richesse mais d’arriver le plus vite
possible a la sous-classe qui nous intéresse, celle des graphes d’événements temporisés. Pour une
description plus complete, on se reportera a Murata [112] ou Brams [30].

1.3.1 Présentation générale

Un réseau de Petri est défini comme le quadruplet G = (P, T, F, M), ou :

e P est un ensemble fini. Ses éléments sont appelés places.
e 7 est un ensemble fini. Ses éléments sont appelés transitions.

o F C (P xXxT)U(T x P) définit une relation de dépendance entre places et transitions.

e M est une fonction de P dans N. L’entier M (p) est appelé le marquage de la place p € P.

Un réseau de Petri peut étre interprété comme un graphe orienté. Les nceuds sont de deux types :
les places et les transitions. Un élément de F est un arc reliant une place et une transition ou
bien une transition et une place. Il devient des lors naturel de parler de “places d’entrée” (d’une
transition), de “transitions de sortie” (d’une place), etc.

Un formalisme graphique spécifique est associé aux réseaux de Petri. Les places sont représen-
tées par des cercles et les transitions par des barres. Un marquage n = M(p) est représenté par
n jetons dans la place p. Un exemple de ce formalisme est fourni par la figure 1.1.

Un réseau de Petri est également un objet dynamique. Le triplet (P, 7, F) n’est jamais modifié
mais le marquage évolue suivant une reégle intitulée tir d’une transition. Cette regle est définie
comme suit :

1. Une transition ¢ est dite habilitée si il y a au moins un jeton dans chaque place d’entrée
de t.

2. Une transition ¢ peut tirer si et seulement si elle est habilitée.

3. Le tir de t enleve un jeton dans chaque place d’entrée et ajoute un jeton dans chaque place
de sortie.

La regle de tir est illustrée par la figure 1.1. On a représenté un réseau de Petri avant et apres
le tir de la transition t. Il est possible qu'un méme jeton puisse participer au tir de plusieurs
transitions (il faut que la place correspondante ait plusieurs transitions en sortie). Dans ce cas,
on dit étre en présence d’'un choiz. C’est le cas pour la figure 1.1, la transition ¢’ étant également
initialement habilitée.
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Avant Apres

Figure 1.1: Réseau de Petri. Avant : les transitions ¢ et ¢’ sont habilitées. Apres : la transition
t vient d’étre tirée. Aucune transition n’est habilitée.

Le plus souvent, les places représentent des conditions (présence de clients, de ressources, ...)
et les transitions des événements.

Temporisation Un réseau de Petri est & 'origine un objet logique. Cependant, la temporisa-
tion de cet objet s’est avérée une approche tres riche permettant en particulier I’évaluation de
performance du systeme modélisé.

A chaque transition ¢ (resp. place p), on associe o; € Ry (resp. 0, € Ry).

e Le réel o, correspond au temps de séjour d’un jeton en place p. Plus précisément, si un
jeton arrive en place p a l'instant u, il ne sera disponible pour I’habilitation des transitions
(i.e. étape 1 de la regle de tir) en sortie de ¢ qu’a l'instant u 4 o,.

o Le réel o; correspond au temps de tir de la transition ¢. Il s’agit du temps qui s’écoule
entre le début et la fin du tir de . Pendant la durée oy, les jetons participant au tir sont
“gelés” et ne peuvent participer a une autre habilitation ou a un autre tir.

Dans la suite de cette section, on va se restreindre & une sous-classe de réseaux de Petri, les
graphes d’événements (parfois appelées graphes marqués ou réseaux de Petri sans décisions).

Définition 1.3.1 (Graphe d’événements). Un graphe d’événements est un réseau de Petri
dans lequel chaque place a exactement une transition en entrée et une en sortie.

Les graphes d’événements permettent de modéliser la synchronisation mais excluent les choix.
On reviendra sur les réseaux de Petri avec choix en section §1.4.2.

Un graphe d’événements est vivant si chaque circuit contient au moins un jeton. Lorsque cette
propriété n’est pas vérifiée, le réseau se bloque aprés un nombre fini de tirs. Dans toute la suite,
il est implicite que ’on ne considere que des graphes d’événements vivants.

Considérons un graphe d’événements temporisé G = (P, T, F, M, {o,t € T}, {o,,p € P}). On
cherche a le représenter sous forme d’un systéme (max,+) linéaire. Pour ce faire, commencons
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par réaliser une transformation du graphe. Chaque place p comprenant M(p) > 1 jetons est
remplacée par M (p) places en série avec exactement 1 jeton par place. Les nouvelles transi-
tions et les nouvelles places ont des temps de tir et de séjour identiquement égaux a 0. Cette
transformation a été illustrée en figure (1.2).

Tl

-G

Ip
[ J
[ N ]
'
p 1

o~

ot o5 =0 o;=0 o5 =0 or=0 Ip [
- g — I !
t P t P t p t

Figure 1.2: Eclatement d’une place comprenant plusieurs jetons.

Pour simplifier, on conserve les notations G = (P, T, F, M, {0}, {o,}) pour le nouveau graphe.
On définit une suite de vecteurs {z(n),n € N} de dimension k = |T|, le nombre de transitions.
Le terme x(n); correspond a la date de début du n-ieme tir de la transition ¢;. Pour des raisons
de convenance, on note * C T l’ensemble des transitions en entrée de la transition t;, i.e.
I'ensemble des ¢; tels que dp € P | (¢;,p) € F, (p,t;) € F. D’autre part, si il existe une place
entre les transitions ¢; et ¢;, on la note p;;.
Soit j € *i. On considere le n-ieme jeton produit par la transition ¢;. En raison de la propriété
M(p) < 1,Vp, deux cas seulement sont possibles : soit ce jeton habilite le n-ieme tir de ¢; (si
M(pji) = 0), soit il habilite le (n + 1)-ieme tir de ¢; (si M(p;;) = 1). La régle de tir au niveau
de la transition ¢; se traduit par I’équation suivante :

zi(n+1) 2;{2&5 {zj(n+1—M(pji))+o¢, +0p,, } - (1.5)
En particulier instant u = z;(n+1—-M(p;;))+0¢, correspond a la fin du ( n+1-M(pj;;) )-ieme
tir de la transition ¢;. Le jeton correspondant habilite donc la transition ¢; a partir de I'instant

u—l—apﬂ..

On définit les matrices 4,, v = 0 ou 1, de la fagon suivante :

—00 sinon

{O‘tj + 0y, sig € %ret M(sz’) = u

L’équation (1.5) se récrit sous la forme :

z(n+1) > Agz(n+ 1)@ Ajz(n) . (1.6)
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Introduisons la matrice Ag = P,~, Ag = @];:0 AP ot AJ est la matrice identité I définie par
I;; =0 et I;; = —00,2 # j. On montre aisément que cette matrice est I'inverse formel de I — Ay,

ie. A(0)*(/ — A(0)) = ({ — A(0))A(0)* = I. On peut montrer
z(n+1) = AjAr1z(n) . (1.7)

Le passage de (1.6) a (1.7) illustre la puissance formelle de la représentation algébrique sous
forme matricielle. En parcourant le chemin inverse de celui réalisé précédemment, on peut
associer a I’équation (1.7) un graphe d’événements avec exactement un jeton par place. Il est
instructif de comparer ce nouveau graphe avec le graphe initial. Un exemple simple est proposé
en figure 1.3.

Opl3 =0ty + 0p12 + op23

o1 Tpl2 Tt2 Tp23 a3 at1 Opl2 a3
t1 P12 t2 P23 t3 t1 P12 t2 t3

Figure 1.3: La multiplication par Aj a pour effet de court-circuiter les chemins sans jetons.

Evolution au plus t6t On est en général particulierement intéressé par I’évolution au plus
tot du graphe d’événements, c’est-a-dire qu’une transition tire des qu’elle est habilitée. Cette
évolution correspond a la solution minimale de (1.7), c’est-a-dire a I’équation (max,+) linéaire :

z(n+1)=AjA1z(n) . (1.8)

Une propriété remarquable des graphes d’événements est que le marquage est préservé lorsque
I’on tire chaque transition une fois, voir chapitre 8 proposition 8.1.4. Cela explique que la
récurrence (1.8) soit uniforme en n, le marquage a I’“instant” z(n) (aprés n tirs de chaque
transition) étant exactement le marquage initial M. Il est toutefois important de comprendre
qu’il s’agit d’un marquage “virtuel”, au sens ou il apparait & un “instant” z(n) correspondant
a des dates différentes des horloges associées a chaque transition. En général, une photographie
du réseau a un instant ¢ > 0 ne permettra pas d’observer le marquage M. En effet il faudrait
pour cela qu’il existe une occurrence n et un réel ¢ tel que (z1(n),...,zx(n)) = (¢,...,1), ce qui
n’est pas toujours le cas.

Remarque 1.3.2. Il existe des systémes (max,+) linéaires autres que celui de I’équation (1.7)
et qui représentent I’évolution du graphe d’événements. En particulier, on aurait pu considérer
des dates de fin de tir au lieu de dates de début de tir. De facon plus essentielle, il existe des
méthodes plus astucieuses d’éclatement des places marquées que celle présentée en figure 1.2.
Cela permet d’obtenir une représentation a I’aide d’une matrice de taille inférieure. La recherche
d’une représentation de taille minimale constitue ’objet du chapitre 2.
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Temporisations aléatoires Une généralisation naturelle est de considérer que les tempori-
sations des places et transitions du graphe d’événements sont données par des suites {o¢(n),n €
N}, t € T, et {o,(n),n € N}, p € P, de variables aléatoires. On aimerait pouvoir écrire les
analogues des équations (1.5) (1.6) (1.7) et (1.8).

Cependant, dans un graphe d’événements stochastique, il devient possible pour les jetons de se
dépasser (il suffit d’imaginer que o,(n) > o,(n + 1)). Si on étudie de pres I’équation (1.5), on
se rend compte qu’elle n’est plus vraie des lors que des dépassements sont possibles. Pour con-
tourner cette difficulté, il faut se limiter a une sous-classe de graphes d’événements stochastiques,
dits PAPS (Premier Arrivé Premier Servi), pour lesquels les dépassements sont impossibles. Sous
les hypotheses qui suivent, un graphe d’événements est PAPS.

e Toute transition ¢; vérifie une des deux propriétés suivantes : 1) il existe un rebouclage
avec un unique jeton, i.e. i € *i et M(p;) = 1. 2) le temps de tir est constant, i.e.
oi(n) = oy, Vn.

e Toute place p a un temps de séjour constant, i.e. o,(n) = o,, Vn.

Il existe d’autres types de conditions permettant d’assurer une évolution de type PAPS. Ainsi
un graphe d’événements avec au plus un jeton par circuit sera toujours PAPS, voir 'exemple de
la figure 1.5.

Pour un graphe d’événements stochastique PAPS, on définit les suites de matrices {A,(n),n €
N},u=0o0ul:

Au(n)s; = {O’tj (n+1—-M(py))+o,, sije *iet M(pj)=u

—00 sinon .

L’évolution au plus tot du graphe d’événements est donné par le systeme (max,+) linéaire :
z(n+1) = Ag(n)"Ar(n)z(n) . (1.9)

On propose, sections §1.3.2 et §1.3.3, deux exemples de systemes se modélisant sous forme de
graphe d’événements et donc de systeme (max,+) linéaire.

1.3.2 Atelier flexible

Un atelier flexible (job-shop en anglais) est un type particulier de systéme de production. On
dispose d’un nombre fini de machines et d’un nombre fini de types de produit. Chaque produit
doit subir une suite d’opérations élémentaires sur différentes machines et ce dans un ordre bien
déterminé. Chaque machine travaille de facon séquentielle sur un produit a la fois. Nous avons
représenté en figure 1.4 un exemple avec deux machines (My, M) et deux types de produits
(J1,J2) représentés par leur routage le long des machines.

On suppose qu’il y a un stock infini de chaque type de produit. Deés qu’un produit de type p
acheve son cycle de production, un nouveau produit p commence le sien.

Pour que le modele soit completement spécifié, il faut définir 'ordre de passage, ou ordonnance-
ment, des produits sur les machines. On considere dans la suite que cet ordonnancement est
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J1
e —_ —_ — — b — - — - = = ___>
<+--F-=----- - -

J2

Figure 1.4: Atelier flexible constitué de deux machines et deux types de produits.

fixé (imposé par les contraintes technologiques) et périodique. Suivant les notations de Hillion
et Proth [87], on note o(M) 'ordonnancement des produits sur la machine M. Le routage du
produit j est noté o(j). Pour le modele de la figure 1.4 par exemple, on a o(ji) = (M, Ms),

0(j2) = My. Un ordonnancement possible est o(M1) = (j1j1J2) (J1j1j2) - -+ et o(Ma) = jiji---.

On peut définir la période minimale commune des suites o(M;). Cette période minimale peut
comprendre plusieurs produits de chaque type. Ainsi dans I'exemple cité ci-dessus, la période
est 3 et correspond a deux produits 7; et un produit j;. L’ensemble des produits correspondant
a une période minimale est appelé MPS (Minimal Part Set, Lee [99]).

Un atelier flexible peut étre représenté sous forme d’un graphe d’événements, voir [87]. Plutot
que de présenter la construction générale, on se propose de l'illustrer a 'aide d’un exemple.

On considere ’atelier de la figure 1.4 avec I'ordonnancement suivant :

o(Mi) = (J2, 1) (G2 J1) -+ et o(Mz) = (j1) -+~

Le MPS est formé par un produit de chaque type. La représentation sous forme de graphe
d’événements de ce systeme est donnée en figure 1.5.

machine M1

produit j; /K @ % 3

SO

Figure 1.5: Atelier flexible. Modélisation sous forme de graphe d’événements.

\

produit 7,

machine M,
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La synthese de ce graphe est réalisée en deux étapes. A chaque produit p du MPS, on associe un
cycle comportant un nombre de transitions égal au cardinal de o(p). Une transition correspond
au passage du produit p sur une machine. Chaque cycle-produit comporte exactement 1 jeton.
Ceci correspond au mécanisme décrit plus haut : des que la fabrication d’un produit est achevée,
la fabrication d’un nouveau produit du méme type commence.

Il faut ensuite modéliser le fait que certaines de ces transitions correspondent a la méme machine
physique. Les transitions correspondant a la machine M; sont reliées par un cycle suivant
l’ordre donné par o(M;). Chacun de ces cycles-machines comprend exactement un jeton, ceci
correspondant au fonctionnement séquentiel des machines.

La méthode générale permettant de décrire 'exécution au plus tét d’un graphe d’événements par
une matrice (max,+) s’applique. Les dateurs z1(n), z2(n) et 23(n) sont associés aux transitions
t1, ty et t3 de la figure 1.5. Soit (a, 3,7) les temps de tir de ces transitions (durée de passage
du produit sur la machine). On suppose que les temps de transport entre machines sont nuls.
Tous calculs effectués, on obtient le systeme linéaire suivant :

o+ g 2 Xy
z(n+1)= 2xa+y a+p a+2xy | @z(n).
o —00 0%

L’inverse de la valeur propre de la matrice, 1/A, correspond au taux de production de I’atelier.
On obtient ici 1/A = (@ + max(8,7))~'. Si on contréle I'atelier en imposant une condition
initiale 2(0) qui soit un vecteur propre, on obtient un fonctionnement régulier de 'atelier, ou les
opérations se répetent a 'identique toutes les A unités de temps.

1.3.3 Files d’attente avec blocage

La notation de Kendall est une facon simple et synthétique de décrire une file d’attente. Avec
cette notation, la file la plus simple s’écrit® -/1/c0 : il y a un serveur (1) et un buffer d’entrée
a capacité illimitée (c0). Le terme (.) correspond aux caractéristiques du temps de service de-
mandé par un client au serveur. On note (.) = D, (.) = M, (.) = GI ou (.) = G suivant que la
suite {o(n),n € N} des temps de service, est constante, i.i.d. exponentiellement distribuée, i.i.d.
ou enfin stationnaire ergodique. On peut adjoindre a la notation de Kendall une information

sur la politique de service considérée. Dans la suite, on considere toujours et de facon implicite
une politique PAPS.

On a représenté ci-dessous, figure 1.6, quelques exemples élémentaires de files d’attente sous
forme de graphes d’événements.

La transition ¢ correspond au serveur, la place p au buffer d’entrée. On modélise un buffer a
capacité limitée a ’aide d’une place supplémentaire p’ comprenant autant de jetons qu’il y a de
places dans le buffer. Le nombre de jetons dans la place rebouclant la transition t correspond
au nombre de serveurs.

On peut maintenant considérer des réseaux de files d’attente. On a représenté en figure 1.7
quatre variations de réseaux a deux files d’attente en série.

®La notation compléte est -/ - /1/00. Le premier terme (.) correspond au processus d’arrivée.
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. )

File & capacité limitée -/1/3

-[TT10~ -0

File multiserveur -/2/oco

- TR /

oN |=CO——~

Figure 1.6: Représentation de files d’attente sous forme de graphes d’événements.

Dans les trois derniers exemples de la figure 1.7, la deuxieme file est a capacité limitée, en
conséquence certains clients peuvent se trouver bloqués. Décrivons plus précisément les méca-
nismes de blocage représentés en figure 1.7.

(A) Aucun blocage.

(B) Blocage avant service. Un service ne peut commencer en file 1 que si il y a une place de

libre dans le buffer de la file 2.

(C) Blocage apres service. Un client ayant terminé son service en file 1 et trouvant le buffer
de la file 2 plein, doit attendre au niveau de la file 1 (son lieu d’attente est matérialisé par
la place p). Ce faisant, il interdit & un nouveau client d’étre servi en file 1. Ce mécanisme

est représenté par le circuit (p,, p, ;). Le mécanisme est le

(D) Blocage général (introduit par Cheng et Yao [38]). La file dispose de deux buffers, un en
entrée et un en sortie. 1l existe d’autre part une limitation sur le nombre total de clients
présents dans la file. Une telle file est notée -/1/(a,b,c) ot a,b et ¢ sont respectivement
les capacités des buffers d’entrée et de sortie et la capacité totale de la file (qui peut étre
différente de a + b). L’exemple de la figure 1.7.(D) correspond a une file -/1/(c0, 0, c0) en
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:+/1fo0 = /10 (C) : +/1/oo = -/1/2, blocage aprés service

@ @ ) )

OO+ =0+~
Pz P1 P . P2
t1 ta t1
O,
P

:+/1/o0 — -/1/2, blocage avant service (D) :-/1/(00,0,00) = -/1/(2,3,3), blocage général

%i IjOiIiQ%i

o+
o+
N

Figure 1.7: Files d’attente en série. Représentation sous forme de graphes d’événements.

tandem avec une file -/1/(2,3,3). Le cas @ = b = ¢ correspond a une des variantes du
célebre mécanisme de kanban.

La notation de Kendall généralisée -/ - /(a, b, ¢) permet de définir complétement un réseau sans
avoir a spécifier le mode de blocage.

Un mode de blocage qui ne peut étre représenté a I’aide d’un graphe d’événements est le blocage
avec “réémission” : un client se trouvant bloqué apres service en file 1 recommence un nouveau
service en file 1.

Dans les systemes décrits en figures 1.6 et 1.7, la modélisation du flux d’arrivée de clients n’a pas
été réalisée. On propose en figure 1.8, deux exemples de réseaux de files d’attente completement
spécifiés.

e Systeme ouvert, figure 1.8.1. On considere un flux d’arrivée de clients modélisé par la tran-
sition recyclée u. La suite des temps de tir de la transition u correspond aux interarrivées
entre clients.

e Systeme fermé, figure 1.8.11. On considere un systeme autonome avec un nombre de clients
constant. Un client terminant son service en file 2 est routé vers la file 1. Dans ’exemple
considéré, figure 1.8.11, il y a 3 clients (nombre de jetons dans les places p; et pz).

A partir des ingrédients des figures 1.6, 1.7 et 1.8, on peut construire de nombreuses variantes de
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Systeme ouvert

S

Systeme fermé

(1

Figure 1.8: Files d’attente en série. Systeme ouvert et systeme fermé.

séries de files d’attente de longueur arbitraire. Le modele de la figure 1.8.11 avec k files G/1/00
sera spécifiquement étudié au chapitre 6.

On consideére le réseau de la figure 1.8.11. Soit {a(n), n € N} et 5(n),n € N}, la suite des temps
de service des serveurs 1 (f1) et 2 (¢3) respectivement. L’évolution au plus tét du réseau peut
étre modélisée par un systeme (max,+) de dimension 3 (la place p; doit étre éclatée en deux
places, voir figure 1.2). Les deux premiers dateurs correspondent aux transitions t; et t3 et le
troisieme a la transition fictive ajoutée. On obtient :

a(n) —oo 0
sln+1) = A @ o(n), Ar(n) = | aln) B(n) —o0
—oc0 f(n) 0

Les limites du premier ordre lim,, n/z;(n) correspondent au débit du réseau. A partir des limites
du second, on peut calculer des quantités telles que le nombre de clients par file ou le temps
d’attente avant service. Ainsi le temps d’attente avant le n-ieme service a la file 2 est donné par

z(n) = ya(n) = (pr(n = D+ a(n 1) ).

1.4 Automates temporisés

Un formalisme utilisé pour I’étude des SED et non encore mentionné est celui des automates et
des langages formels. Cette approche a été introduite par Ramadge et Wonham [120].
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Il s’agit d’un outil mathématique traitant des aspects purement “logiques” des SED. De fagon
tres schématique, a chaque événement pouvant se produire dans le systeme est associé une lettre,
celles-ci formant un alphabet. L’ensemble des comportements possibles ou souhaités du systeme
correspond a un langage L sur cet alphabet. Le langage I est représenté sous la forme du langage
reconnu par un automate (voir définition 1.4.1).

Des travaux récents ont consisté a temporiser cet objet logique. La notion d’automate temporisé,
ou encore automate (max,+), que nous présentons ici a été proposée par Gaubert [69]. Un des
exemples proposés, le modele de stockage, est une adaptation de celui considéré dans [69]. Le
second exemple, un réseau de Petri avec choix, est inspiré d’un travail en préparation [71].
Les systemes taches-ressources sont un autre exemple de modeles se représentant sous forme
d’automates (max,+). lls seront introduits et étudiés au chapitre 9.

Définition 1.4.1. On appelle automate (déterministe) sur lalphabet A un quadruplet
(K,$, K., K) .

K est Uensemble des états, K. C K Uensemble des états d’entrée et Ky C K celui des états de
sortie. L’application partielle (i.e. non nécessairement partout définie) 6 : A x K — K est
dite fonction de transition de 'automate.

Un automate est représenté sous forme d’un graphe a k = |K| noeuds comportant trois types
d’arcs, les arcs d’entrée, de sortie et les arcs internes, ces derniers étant valués. Un arc interne
valué par a € A relie les noeuds ¢ et j si d(a,i) = j. On repere les états d’entrée par un arc
entrant et les états de sortie par un arc sortant, voir figure 1.9.

A tout chemin dans le graphe, on associe un mot constitué par la suite des labels des arcs ren-
contrés. Un mot est dit reconnu si il correspond a un chemin menant d’un état d’entrée a un
état de sortie. L’ensemble des mots reconnus forme le langage reconnu par 'automate.

Un automate (max,+) est défini comme un automate avec une temporisation (€ R*) associée
a chaque arc interne. On note A(a,7,j) la temporisation associée a 'arc ¢ — j valué par a. Si
’on n’a pas é(a,i) = j, on pose A(a,i,j) = —oo. On définit le vecteur ligne d’entrée a et le
vecteur colonne de sortie 3 de la fagon suivante : a; = 0 (resp. §; = 0) si 7 € K. (resp. 1 € Kj)
et a; = —oo (resp. ; = —o0) sinon.

Ceci permet d’associer une durée finie a chaque mot reconnu par 'automate. La durée d’un mot
w est la temporisation maximale des chemins de label w. Au contraire, un mot non reconnu
aura une durée —oo. Cette durée est calculée de facon récursive.

On associe un dateur z; a chaque état . On note X la durée d’un mot. Soit w un mot et a € A
une lettre, on a :

{wi(wa) = max;{z;(w) + A(a,j,9)}, 2(0) =«
X(wa) = max;{z;(wa)+ G;}.

Il apparait maintenant clairement que ce modéle possede une structure (max,+) linéaire. A
chaque lettre a € A, on associe une matrice (max,+) définie comme suit :

Aa) = (A(a,i,5), i,j € {1,....k}) .
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On obtient & partir de I’équation (1.4) et pour un mot w = ajay...a, :
X(w) = aA(ar)A(az) -+ - Alan)p .
La spécificité du modeéle provient de ce que le produit de matrices (max,+) est contraint par un

langage reconnaissable par un automate®.

Un probleme spécifique intéressant est celui de ’analyse de performance dans le pire des cas.
On définit la durée maximale d’un mot reconnu de longueur |w| = n par

T(n) = max X(w)=a( P =(w)s=ad"s,
= w, ful=n

ol la matrice M est définie par M = P, 4 A(a), i.e. M;; = max, A(a, 1, ).
Nous proposons maintenant une application puis une généralisation de ce modele.

1.4.1 Un modele de stockage

On considere un stock pouvant contenir 0, 1 ou 2 objets. On considere un alphabet & trois
lettres correspondant aux événements suivants :

a: Un objet est ajouté au stock.
b : Deux objets sont retirés du stock.

¢ : Un objet est retiré du stock.

L état 0 est I’état d’entrée et I’état 2 celui de sortie. Cela signifie que ’on part d’un stock vide et
que ’on souhaite terminer avec un stock plein. On a représenté 'automate associé a ce modele
en figure 1.9. Les temporisations sont représentées entre parentheses. Ainsi enlever deux objets
du stock nécessite ny unités de temps.

c(p1) ¢ (p2)

Figure 1.9: Automate temporisé associé & un modele de stockage.

Le langage reconnu par l'automate est® : L = (ac)*a? (c(ca)*a)” (b(ac)*a® (c(ca)*a)*)".

*On remarquera que le produit de matrices est effectué de la gauche vers la droite, contrairement au cas des
équations (1.3) et (1.9).
®On utilise la notation (classique) a* pour le langage {#}U{a}U{a*}U- -, la loi produit étant la concaténation,

ie. a® = aa.
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Les matrices (max,+) associées au systéme sont :

—00 My —00 —00 —00 —00 —00 —00 —00
Ala) = =00 —c0 my |, A(l)=| —o0 —o0 —o0 |, A(c)= P —00 —00
—00 —00 —00 ng  —00 —00 —00 Pz —00

1.4.2 Réseaux de Petri avec choix

Le modéle que nous présentons maintenant est une généralisation de I'automate (max,+) défini
en section §1.4. On consideére un modele a deux niveaux.

e Niveau logique : on dispose d’un automate classique (i.e. non temporisé) sur I’alphabet
A. Cet automate définit un langage reconnaissable L.

e Niveau temporel : on dispose d’un ensemble de matrices {A(a),a € A} & valeur dans REXX

A chaque mot w = ay ...a, du langage L, on associe une matrice A(w) définie comme suit :
A(w) = A(ar) @ Alag) --- Alan) .
La généralisation provient de ce que les matrices A(a) peuvent étre quelconques (en particulier

leur dimension k n’est pas a priori liée a la taille de Iespace d’état de "automate).

Reprenons le modele d’atelier flexible de la figure 1.4. Deux types de produits j; et jo sont
fabriqués sur deux machines M; et M;. Le routage des produits est o(j1) = M1 M; et 0(j3) =
M. Les temps d’exécution sont (o, 3,7) comme définis en §1.3.2. La différence avec 'atelier
étudié en §1.3.2 provient de ce que 'ordonnancement des produits sur les machines est libre et
non fixé. Un tel atelier peut se modéliser par le réseau de Petri (avec choix) de la figure 1.10.

produit 7, \/®\/I> @ts
\ /
p33

\ 11 t2

produit 7,

Ots
tz

Figure 1.10: Atelier flexible. Modélisation sous forme de réseau de Petri. Graphe des marquages
associés.

On a également représenté en figure 1.10, le graphe (¢ des marquages associés a ce réseau de
Petri. Les nceuds de (G sont les marquages atteignables (pour une définition formelle, voir §8.1,
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définition 8.1.2). On représente un arc valué par t; entre le nceud M et le nceud M’ si le tir de
t; fait passer du marquage M au marquage M’.

Dans I’exemple considéré, on représente le marquage par le triplet (M (pa1), M(p12), M(ps3)).
Il n’y a que deux marquages atteignables, (1,0,1) et (0,1, 1).

Ce graphe des marquages peut étre vu comme un automate, définition 1.4.1. L’état initial
correspond au marquage initial et tous les états sont des états finaux (on peut également spécifier
un état final particulier). Soit L le langage reconnu par I"automate, pour I'exemple de la figure
1.10, on a L = (5t1t5t2)* U (t5L1t5t2)*t1. On définit un vecteur-ligne de dateurs :

. 4
T L—>R+.

Le dateur z1(w) correspond & la date de disponibilité du jeton du circuit (t1, p12,t2, p21) apres
tir des transitions dans I'ordre défini par w. Les dateurs zq(w), 23(w) et xz4(w) sont définis de
la méme facon pour les jetons des places p33, My et My respectivement.

On définit les matrices :

o -0 o - g - -
-0 0 —o0o —x -0 0 —o0o —x
Alty) = 0 oo o —oco , Altz) = oo —oo 0 —eo |

-0 —o0 —oo 0 s —oco —oco f3

0 —o0 -0 —o0

—00 —00

A= | _2 71T
2l 2l o0

Le dateur z(w) associé au mot w = t;1t;2 - - - ;,, est solution du systéme (max,+) linéaire :
z(w) = 2(0) @ A(ti) Altiz) - - Altin) -

Cette modélisation s’applique a la classe générale des réseaux de Petri conservatifs, voir [71].
Toutefois, on ne peut pas modéliser toutes les politiques de résolution des conflits. Précisons ce
dernier point.

Dans un réseau de Petri avec choix, il est nécessaire lorsqu’un jeton habilite plusieurs transi-
tions de préciser la sémantique du tir (compétition ou pré-sélection). On parle de politique de
résolution de conflits. La politique de compétition consiste a allouer le jeton a la transition dont
le tir s’acheve le premier. Dans le cas de la pré-sélection, une fonction de routage associée aux
places décide de 'allocation des jetons. En général, les dépendances entre les tirs des transitions
ne sont pas bornées (i.e. le n-ieme tir de ¢; peut étre déclenché par le (n — p)-ieme tir de ¢; avec
p arbitrairement grand) ce qui rend ’écriture d’équations de récurrence beaucoup plus difficile,
voir [7]. L’approche classique consiste a se limiter au cas ou les temps de tir des transitions sont
exponentiellement distribués. En raison de la propriété sans mémoire de la loi exponentielle, on
peut décrire I’évolution du systeme a ’aide d’une chaine de Markov a temps continu sur ’espace
des marquages atteignables, voir par exemple [1]. Si I'on souhaite considérer d’autres types de
temps de tir, 'espace d’état doit incorporer les temps de tir résiduels des transitions ce qui rend
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la modélisation plus difficile a opérer (explosion de I’espace d’état,...).

Dans notre modele, I'ordre de déclenchement des événements n’est pas déterminé par des re-
gles temporelles mais par une suite de décisions logiques prises au niveau de I'automate (non-
temporisé) des marquages. Cette restriction permet de modéliser une politique de pré-sélection
mais pas une politique de compétition (dans ce dernier cas, la résolution des conflits est faite
au niveau temporel). En contrepartie, il devient possible de considérer n’importe quel type de
loi pour les temps de tir des transitions sans modifier les dimensions du modele. Pour le niveau
logique, cette dimension est celle du graphe des marquages (comme dans I’approche markovienne
classique), et pour le niveau temporel, la dimension des matrices (max,+) est égale au nombre
de jetons dans le réseau de Petri.

1.5 Optimisation Dynamique

Cette section est inspiré de 'article de Yakovenko et Kontorer [142]. Dans ce papier, les auteurs
font le point sur les systémes (max,+) linéaires en économie et en théorie de la décision.

Rappelons brievement ce qu’est un probléeme d’optimisation dynamique en temps discret et a
espace d’état fini. On considere un espace d’état fini K. La dynamique du systeme est décrite
par un ensemble de chemins ou trajectoires. Une trajectoire est une suite d’états dans ’espace
K. Soit une économie composée de k biens consommables. On décrit le niveau de stock en biens
par un élément de N*. Si on suppose qu’il existe un stock maximal pour chaque bien, on obtient
un espace d’état fini K C N*. Une trajectoire correspond & 1’évolution temporelle des quantités
de biens disponibles. Une fonction de transition ¢ : K X K — RU {—o0} est associée au
passage d’un état a un autre. Certaines transitions peuvent étre interdites, ce qui est spécifié en
donnant la valeur —oo & af(.,.). Cette fonction est souvent appelée fonction de coit en controle
et wutilité en économie. En économie, 'interdiction de certaines transitions correspond souvent
a des limitations en terme de capacité de production.

En théorie du contréle, 'objectif est de déterminer une trajectoire optimale, c’est-a-dire min-
imisant le cotit. En économie classique, sous une hypothese dite d’information parfaite, on
considere que I’économie évolue de facon rationnelle. Cela signifie que la trajectoire réelle est
effectivement celle qui maximise I'utilité. Le choix significatif devient celui du choix de I’état
final étant donné ’état initial. Dans les deux cas, il est essentiel de déterminer les trajectoires
optimales.

Le critere & optimiser en 'absence de taux d’actualisation, resp. avec un taux d’actualisation r,
est :

Za(w(n),w(n—l— 1)), resp. Zr” x a(z(n),z(n+1)),

n

ot x = {z(0),z(1),...,2(n),...} est la trajectoire. On se restreint par la suite au critere sans

actualisation. On ajoute souvent au probleme un gain® terminal. Le gain maximal en horizon

5Par la suite, on considére des gains plutét que des cofits de facon A travailler avec la fonction max plutdt que
la fonction min.
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N (souvent appelé fonction valeur) est alors obtenu comme solution de ’équation :

N-1

o(w(0)) = max 3 a(e(n).2(n+ 1)) + g(a(N)) (1.10)
n=0

ot la fonction g correspond au gain terminal. On introduit la matrice A définit par A;; = a(¢, j)

et on identifie la fonction ¢ : K — R & un vecteur colonne. L’équation (1.10) peut se récrire

sous la forme de (1.2) :
v(@(0)) = (AY @ g)a0) v=A"2g. (1.11)

La valeur propre de la matrice A, voir §1.2, correspond au gain (resp. a l'utilité) moyen(ne) le
long d’une trajectoire optimale.

En général, en optimisation, on s’intéresse plus a la forme des trajectoires optimales qu’a la valeur
du gain moyen. Ces trajectoires sont directement reliées aux vecteurs propres de I’équation
spectrale (1.4), plus connue en optimisation sous le nom d’équation de Bellman stationnaire.
Essayons d’expliquer cela.

Lorsque I'on résout I’équation (1.10) en horizon fini, on se heurte au probleme de 'existence
d’effets de bord. On peut éliminer ces effets en choisissant une fonction g adaptée. On choisit ¢
de facon a ce que la solution de (1.11) soit indépendante de I'horizon N. Plus précisément, la
trajectoire optimale du probleme (1.11) sous I’horizon N doit constituer les N premieres étapes
de la trajectoire optimale sous I’horizon N’ pour N/ > N.

Les fonctions g vérifiant cette propriété sont les solutions de I’équation de Bellman, c’est-a-dire
les vecteurs propres de la matrice (max,+) A.

Un autre probleme classique est celui de I'optimisation en horizon infini. Soit ¢ un vecteur propre
de la matrice A. D’apres ce que I'on vient de voir, on peut associer & ¢ une trajectoire optimale
indépendante de I’horizon N et donc, par passage a la limite, une trajectoire infinie optimale.
Notons qu’il n’y a pas unicité de la trajectoire optimale, une matrice (max,+) pouvant avoir
plusieurs vecteurs propres. Ce phénomene a été tres étudié en économie mathématique sous le
nom de turnpike theory, voir McKenzie [108]. En particulier il existe une importante littérature
définissant des criteéres permettant de choisir entre trajectoires infinies optimales, voir [142] et
ses références.

Il est également classique de considérer une fonction de transition a,(.,.) variable au cours du
temps. En économie, les variations peuvent correspondre a des changements technologiques, a
des variations de la taille ou de la composition de la population voir a des modifications des
goiits et des comportements. La modélisation doit alors se faire a I’aide de matrices (max,+)

variables. L’équation (1.11) devient donc :
v=A(1)A(2)---A(N)®yg. (1.12)

Pour pouvoir calculer v de facon récursive, il est nécessaire d’introduire les variables vy =

A(k)A(k+1)---A(N) ® g. On obtient :

v = A(k)vgs1 et vg = 0. (1.13)
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L’équation rétrograde (1.13) est connue sous le nom d’équation de la programmation dynamique.

1.6 Meécanique Statistique

Le modele de Frenkel-Kontorova est étudié en mécanisme statistique. Ce modele simplifié permet
d’appréhender les phénomenes de transitions de phase apparaissant dans I’étude des structures
cristallines et du magnétisme des métaux rares. Pour une présentation plus détaillée, on se
reportera a Chou et Griffiths [41] et surtout & ’article de synthese de Griffiths [80].

Le modele de Frenkel-Kontorova peut étre décrit comme un systeme de particules reliées par
des ressorts et placées dans un potentiel périodique, voir figure 1.11.

Figure 1.11: Modele de Frenkel-Kontorova.

L’énergie potentielle totale de ce systeme est de la forme :

H=> Hwnrnp) =Y (W(tnp —20) + Viza)) (1.14)

n

ol &, est la position de la n-ieme particule, V' est un potentiel périodique de période 1 et W est
I’énergie potentielle du ressort. On a le plus souvent V(u) = K cos(2wu) et W(u) = 1/2(u —7)?
ol ~ est la longueur du ressort au repos.

L’approche physique classique pour étudier un tel systeme est de rechercher les solutions de
I’équation a I’équilibre dH/dx,, = 0. La résolution de cette équation est dans le cas présent
particulierement difficile. On propose ici une analyse sensiblement différente.

Etant donné une énergie de la forme (1.14), une procédure standard en mécanique statistique
consiste a introduire 'opérateur de transfert F' défini ci-dessous :

Flz,2') = exp (—%H(x,x’)) , (1.15)

ol T est la température. Les propriétés du systeme original sont étudiées a travers la limite de
Popérateur de transfert lorsque la température tend vers 0.
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On considere dans la suite le modele de Frenkel-Kontorova discrétisé avec une grille de résolution
de pas 1/k. Ainsi I'intervalle unité est-il découpé en {1/k,2/k,...,1}. L’opérateur F se décrit
comme une matrice positive de dimension k x k dont les coordonnées sont F;; = exp( —1/7 f{ij ),

ol la matrice H est définie par :

Hij = H(i/k, j/k)=W(j/k—i/k)+ V(i/k) sioi<j
Hij = H(i/k,j/k+1) = W(L+j/k—i/k)+V(i/k) sii>j.

Les propriétés thermodynamiques du systeme sont déterminées par la plus grande valeur propre
(dans 'algebre usuelle) de F. Par le théoreme de Perron Frobenius, celle-ci est réelle positive
ainsi que son vecteur propre associé. On écrit la valeur propre sous la forme exp(—1/7 ) et le
vecteur propre sous la forme exp(—1/T z) = ( exp(—1/T 1),...,exp(=1/T z) ). On a:

exp (—1/T f{) exp (—=1/T z)=exp (=1/T N exp (=1/T z). (1.16)

Lorsque la température tend vers 0, on peut simplifier I’équation (1.16) en ne conservant que les
termes dominants. On obtient alors I’équation (pour la ligne 7) :

1 - 1
max exp{(— M +2;)} > exp{-(\+20)}
J

= min (f{”—l—x]) = A+ta;. (1.17)
J

L’équation (1.17) obtenue apres passage au logarithme est une équation spectrale dans R, en
tout point similaire a celle définie en (1.4). On peut bien sir se ramener a un systéme (max,+)

linéaire en considérant —H, — X et —z.

Il existe une autre méthode, dans l'esprit de la programmation dynamique, voir §1.5, pour
aboutir a I’équation (1.17). On commence par fixer la position z; de la premiére particule dans
le potentiel, puis on détermine la position x5 > x; de la deuxieme particule de facon a minimiser
I’énergie H pour 'ensemble des deux particules. On procede ensuite par récurrence. On note
h(n);,i=1,...,k, énergie minimale d’un systéme a n particules dont la plus & gauche est en
position i/k. En particulier, on a h(1); = V' (i/k). On obtient :

h(2)i = min (W(i/k = i/k)+V(i/k)+V(i/k) ) = min( Hij +h(1);) . (1.18)

iz
Par récurrence et en utilisant les notations de I’algebre (min,+), on obtient :
h(n+1)=H@h(n) = H* @ h(1) . (1.19)

L’équation (1.17) est I’équation spectrale associée a (1.19).

La valeur propre A de H est [l’enthalpie moyenne par particule. On s’intéresse également aux
configurations de particules minimisant I’énergie H. Soit A un vecteur propre de H. On définit
une fonction 7 ott 7(7) est un des indices réalisant le minimum de (H;; + h;). A partir des itérés

de cette fonction, on obtient une configuration périodique d’énergie minimale.
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La densité spatiale de particules dans une configuration minimale est le parametre physique le
plus étudié. Pour une configuration périodique, cette densité est un rationnel. Le phénomene
de transition de phase consiste en D’existence de discontinuités de cette densité en fonction
des parameétres (v, K) du modele. D’un point de vue algébrique, cela s’interpréte comme la
discontinuité de la cyclicité (voir chapitre 3) en fonction des coordonnées de la matrice. De tres

beaux graphiques illustrant le phénomene sont proposés dans [80].

Un systeme est a interaction de type plus proche voisin si son énergie potentielle est de la forme
H =Y H(zy,,x,41) (généralisation de (1.14)). L’approche présentée ici s’applique a de tels
systemes a condition de pouvoir borner uniformément la distance entre deux particules de facon
a représenter le systeme par une matrice de taille finie.

1.7 Conclusion

Les exemples proposés dans ce chapitre sont loin d’épuiser I’ensemble des problemes et modeles
représentables sous forme (max,+) linéaire.

Parmi les modeles que 'on a pas présentés, le plus célebre et le plus ancien est celui de la
recherche du plus long (ou court) chemin dans un graphe valué. Il s’agit d’une application di-
recte de 'interprétation algébre de chemin décrite en §1.2. Cette application est connue depuis
la fin des années 50, voir les références de [50], chapitre 1. De nombreux probléemes en recherche
opérationnelle peuvent étre abordés de cette fagcon, voir [78] pour une présentation détaillée.
L’ordonnancement au plus tot sans contraintes de ressources est une instance du méme prob-
leme et sera considéré au chapitre 4. Le probleme plus compliqué de 'ordonnancement avec
contraintes de ressources peut également étre abordé par une approche (max,+) linéaire [71].
On peut également représenter sous forme (max,+) linéaire des réseaux de communication, voir
[8] ou Braker [28] pour le réseau ferroviaire hollandais.

D’autre types de réseaux de files d’attente que ceux présentés en §1.3.3 peuvent étre considérés.
Parmi ceux-ci, on peut mentionner les réseaux série-parallele, les modeles de rendez-vous et enfin
des réseaux avec relations de précédence entre clients.

Un autre domaine tres riche et non abordé dans ce chapitre (et dans cette these) est celui des
systemes (max,+) linéaires continus. On considére 'espace F des fonctions d’un ensemble F
dans RU {—oc}. On définit 'opérateur A : F — F par :

Af(r) = sup (a(z,y) + F(y)) 5@ W, 9) ® ().

yel

On parle parfois d’intégrale de Maslov de f par rapport a la “mesure” a. Il existe une théorie
complete de l'intégration de Maslov. Parmi les domaines d’application, on peut mentionner
I’étude des solutions de certaines équations aux dérivées partielles (équation de Schrédinger, de
Hamilton-Jacobi). Pour de plus amples détails, on se reportera au volume [107].



Chapitre 2

Minimal Representation of Uniform
Recurrence Equations

Représentation Minimale d’Equations Récurrentes Uniformes

Dans ce chapitre, nous étudions des systemes d’Equations Récurrentes Uniformes. L’objectif est
de minimiser le nombre de cases mémoires nécessaires pour mener le calcul d’un tel systeme.
Le modele étudié est tres général et se situe en amont des modeles étudiés par la suite. De fait,
on verra en section 2.7 que les systémes (max,+) linéaires sont un cas particulier d’Equations
Récurrentes Uniformes. Une application des résultats de ce chapitre est la minimisation de la
taille du systéeme (max,+) linéaire représentant un graphe d’événement donné.

Ce chapitre provient d’un travail commun avec Bruno Gaujal et Alain Jean-Marie [74]. Une
partie des résultats a été présentée dans [73]. Les auteurs tiennent a remercier tout parti-
culierement Jean-Claude Bermond, Alain Darte, Mike Robson et Stéphane Gaubert pour de
nombreuses discussions.
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We consider a system of uniform recurrence equations of dimension one. We show how the
computation can be carried using minimal memory size with several synchronous processors.
This result has applications in register minimization for digital circuitry and parallel simulation
of timed event graphs.

2.1 Introduction
The model under study will be the Uniform Recurrence Equations (URE) [93].

Definition 2.1.1 (URE). We consider E-valued variables X;(n),i € V ={1,...,k},n € K,
where E is an arbitrary set and K C ZP for some p € N. These variables satisfy the equations

Xi(n) :E(Xj(n—'y)),(j,’y) €D;,¥ne K. (2.1)

The sets D; are finite non empty subsets of {1,..., k} x ZP.

The integers v are called the delays. The system S defined by Equation (2.1) is said to be
uniform because the dependence sets D; do not depend on n. Note that it is possible to have
two delays v,~v" € ZP,v # ~' such that (j,7v) € D; and (j,7') € D;. There is no restriction on
the generality of the functions F; considered.

There are various motivations to study URE. They appear in the description of differential
equations using finite difference methods or in the study of discrete event systems. The case
p > 1, K = ZP has often been studied in the literature, see [93]. In such a case, some of the
major issues are the constructivity [93] and loop parallelization [53]. These problems and others
appearing in this framework will be discussed in §2.3.1.

In this paper, we consider only the simple case where K = Z (systems of dimension one). We
investigate the problem of minimizing the number of “memory locations”: we want to determine
the minimal memory size that is needed to compute all the variables X;(n) of Equation (2.1)
using parallel processors with a shared memory.

We show that the solution of this problem has many applications. It can be used in order to
obtain the most efficient representation of the system for simulation purposes. This aspect of the
problem will be investigated in §2.7. In a quite different context, URE appear in the modeling
of logical circuits, systolic arrays or program loops. The minimization for URE enables us to
obtain an optimal design of such circuits (in terms of number of registers). This application will
be discussed in §2.6.

The paper is organized as follows. In Section 2.2, we precise the definition of a system of URE
and we present two associated graphs, the dependence graph and the reduced graph. In Section
2.3 we describe the problem that we are going to address. Section 2.4 investigates the relations
that can be found between cuts in the dependence graph and the memory size required for
an execution of the URE; section 2.5 presents the interpretation of the above quantities in the
reduced graph. Finally in Sections 2.6 and 2.7, two applications are described, for digital circuits
and (max,+) linear systems respectively.
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2.2 Basic Models

From now on, we consider URE of dimension 1. More precisely, we consider the set of variables
Xi(n),t € V.=A{1,...,k},n € Z and the equations

Xi(n) = Fi(Xj(n=7)),(5,7) €Dy n e Z (2.2)

where the sets D; are finite non empty subsets of {1,...,k} x N.

A system of URE § is constructive if given the values of the “negative” variables X;(n),n < 0,
involved in S (initial data), there exists an ordering of the equations such that, ¥i,Vn > 0, all
the variables present in the right hand side of the equation defining X;(n) are either “negative”
variables or can be computed before X;(n). This condition is satisfied if and only if there is
no cycle in the dependences, i.e. there does not exist iy,...,%,,7,41 = ¢ such that (i3,0) €
D, (ig, 0) €Dy, ..., (il, 0) € Dip-

Remark 2.2.1. We could have considered an apparently more general definition of URE allow-
ing the delays v to be negative in Equation (2.1.1). In this case, the constructivity assumption
becomes

For each cycle (i1,71),.. ., (ip,¥p)sfpt1 = @1 such that (ij41,vj41) € Di;y § € {1,...,p} then
Zle v; > 0. Under the constructivity assumption, it is possible to come back to Equation

(2.1.1) through a simple renumbering of the variables (i.e. X;(n) := X;(n + ¢;) for some con-
stant ¢; € Z independent of n).

From now on, the system & that we consider is always assumed to be constructive. We are going
to present two equivalent ways to describe § : the dependence graph and the reduced graph.

Example 2.2.2. The illustrative examples to be presented in the following correspond to the
system :

Xi(n) = Fi(X3(n—1))

Xa(n) = Fy(Xi(n—-2)) (2.3)
X3(n) = F3(Xa(n), Xa(n - 2)) '
X4(n) = F4(X3(n— 1),X4(n— 1))7

2.2.1 Dependence graph

We introduce the graph D of the dependences between the variables X;(n).

Definition 2.2.3 (Dependence graph). The dependence graph associated with a system of
URE is the graph D with (V X Z) as the set of nodes. There is an arc from the node (i,n)
to the node (j,m) if X;(m) = F;(X;(n),...) or equivalently if (i,m —n) € D; (notation:
(t,n) = (4, m)).

The n-th level in D is the set of nodes {(¢,n),1 < ¢ < k}. The i-th column in D is the set of
nodes {(¢,n),n € Z}. In the following, we will refer to nodes (¢, n), n < 0 as negative nodes and

nodes (¢,n), n > 0 as positive nodes.
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It is immediate from the definition of an URE that D is 1-periodic, i.e.
(i) = (G, m) = (iyn+1) > (G, m+1).

Note also that the constructivity assumption implies that the graph D is acyclic.
We have represented in Figure 2.1 the dependence graph corresponding to the system of Example
2.2.2.

1 2 3 4 Columns

Figure 2.1: Dependence graph associated with the system & of Equation (2.3).

The dependence graph appears under various forms and names in the literature. For example, we
can mention the following names: developed graph, task graph, PERT graph, unfolded process
graph or activity network.

2.2.2 Reduced graph

Since the dependence graph is 1-periodic, it can be folded into a more compact form. This is
how we construct the reduced graph R associated with the system S.

Definition 2.2.4 (Reduced graph).
The reduced graph is an arc valued graph R = (V, E,I"). The set of nodes is V = {1,---,k}.
There is an oriented arc in E from 1 to j if

dyeN st (i,7)€D;. (2.4)
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This arc is valued with the delay . If there exist several delays v verifying condition (2.4), F
contains several arcs between the nodes v and j, with corresponding values.

There is an arc from 7 to j in £, if and only if there are arcs from the column (3, .) to the column
(4,.) in the dependence graph. Note that system & is constructive if and only if the sum of the
delays along any circuit in R is positive.

The reduced graph associated with the system § of Example 2.2.2 is represented in Figure 2.2.
The delays + associated with the arcs are depicted in boxes.

Figure 2.2: Reduced graph associated with the system § of Equation (2.3).

Reduced graphs appear in the literature under the following names : computation graph, Syn-
chronous Data Flow (SDF) graphs, process graphs or uniform graphs.

2.2.3 Recycled case

In the following, we will particularly study a special case of URE, where the computation of the
variable X;(n) cannot be done before the computation of X;(n—1). This case appears naturally
in marked graphs to impose a FIFO behavior (see section 2.7) and in other applications. This
constraint can be modeled by imposing a dependence between X;(n—1) and X;(n), for all ¢ and
n. Formally, it results in having (¢, 1) € D;, Vi, for the system of URE. Equivalently, it results
in having a self loop with delay one (hence the name recycled) in each node of R, or in having
arcs between the nodes (7,n) and (i,n+ 1) in D.

Figure 2.3 depicts an example of a recycled system.

2.2.4 Preliminary remarks

It should be clear from the definitions that there is a one to one correspondence between the
three models. Indeed, a system can be given by its reduced graph as well as its dependence
graph or system of equations.

If R is not connected, then the system of URE is made of two or more independent systems
which can be studied independently. In the rest of the paper we will always assume that the
graph R is connected.
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Recycled reduced graph Recycled dependence graph

Figure 2.3: Recycled reduced and dependence graphs.

In the following, we will study more precisely the relations between D and R.

2.3 Parallel Executions

In this part, we will define the problem to be investigated in the rest of the paper. Roughly
speaking, we want to minimize the memory size required to compute a system §. In §2.3.1, we
discuss the main issues that have been studied in the field of uniform recurrence equations and
we explain the difference with the aim of this paper. Section §2.3.2 gives a formal definition of
the question we investigate in the following.

2.3.1 Relations with the basic scheduling problem

Organizing efficient computations for uniform recurrence equations on parallel computers has
now taken a considerable importance in the literature. In the past, the investigations have often
been oriented towards speeding up the execution with no or little consideration for memory
requirements.

Assume that initially the negative variables X;(n),n < 0 are known. Assume also that each
computation of a variable requires a time equal to 1. In a system of URE, the date at which the
variable X;(n),n > 0 will be computed is necessarily larger than the length of a longest path in
D from level 0 to (¢, 7). A computation of a system of URE is as soon as possible if the time it
takes to compute the variable X;(n) is exactly given by the longest path from level 0 to (i,n).
A first question that can be addressed is :

What is the number of processors required to carry out
a computation as soon as possible I

This number is often called the degree of parallelism of the URE. In general, the solution is given
by the size of the maximal anti-clique in the dependence graph.
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Once this question is settled and provided a sufficient number of processors are available (i.e.
larger than the degree of parallelism of the system), a problem is to characterize the as soon as
possible schedule. This problem is often called the basic scheduling problem, see also Chapter
4. It has been proved that for the as soon as possible schedule, the time at which the variable
Xi(n) is computed is of the form An + d;, where XA is called the cycle time of the system (see
[42] [44]). Such a schedule is said to be linear. For systems of higher dimension (i.e. when
K =1Z?, p > 1in Equation (2.1)), partial results on the optimality of linear schedules can be
found in [52, 53].

When the number of available processors is fixed and less than the degree of parallelism of the
URE, finding the optimal schedule becomes NP-hard, see [85].

All the results mentioned above are related with the problem of minimizing the number of
processors used. This paper is concerned with the following dual problem : how much memory
is necessary to carry out the computations of an URE, the number of processors being unlimited.
First, we should say that, in general, a computation as soon as possible requires a lot of memory.
It may not even be bounded in n when the reduced graph R is connected but not strongly
connected. This makes the alternative to find a computation using a smaller memory size
attractive. Second, the usual time-space trade-off tells us that some interesting results can be
expected to arise when minimizing the memory size.

As one can expect, the schedule we will propose will not be as soon as possible in general.
The time required to carry out the computation of variable X;(n) will be of the form X'n + d,
where A’ > A. Furthermore, the number of processors needed to carry out the computation
will be greater than the degree of parallelism, but smaller than the memory size involved in the
computation. In spite of these two drawbacks, the schedule we propose provides a new insight
on the best ways to compute a system of URE and has interesting practical applications, see
§2.6 and §2.7.

As shown in the following, the minimal size of the memory is related with cutsin the dependence
graph (instead of anti-cliques for the minimal number of processors).

2.3.2 Pebble game

Let us work with an URE, § and its associated dependence graph D as defined in §2.2.1. We want
to compute iteratively all the variables X;(n). At each step, the variables which are necessary
to carry out the computations have to be stored in some memory locations.

We want to determine the minimal number of memory locations
needed to compute all the variables X;(n).

We give a description of this problem in terms of a pebble game (see [119]).

Game 1. We consider a dependence graph D. At step 0, one puts a finite number of pebbles on
negative nodes, i.e. on nodes (i,n),n < 0. By convention, we assume that at least one of these
pebbles is on level 0. At each step of the game, the following moves are allowed.

Move 1 : Put a pebble on a node (i,n) if on each infinite oriented path (see Definition
2.4.1) ending in (¢, n) there is at least one node with a pebble.

Move 2 : Remove a pebble from a node.
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An execution of the game is successful if all positive nodes receive a pebble during the execution.
In the following, we will always refer to successful executions simply as executions. The set of
(successful) executions will be denoted £. Several variants for the number of moves allowed
during a step are to be considered later on. Accordingly, a step of the game may have a
duration different from 1 unit of time, see the discussion in Remark 2.3.3.

Definition 2.3.1 (configuration). In an execution, the position of the pebbles at step t € N,
is called the t-th configuration and is denoted A(t). In particular, A(0) corresponds to the set
of initial pebbles.

Pebbles correspond to memory locations. A pebble put on a node corresponds to the computa-
tion of a new data and its storage in the memory. The removal of a pebble corresponds to the
erasing of a data from the memory. An execution corresponds to a computation of all the nodes
in the dependence graph. Our objective will be to find an execution of the game using a number
of pebbles which is as small as possible. The total number of pebbles used by an execution e € £
is

P(e) < max|A(®)]

where | A(t)| represents the cardinal of A(t).

Remark 2.3.2. Note that this definition of P(e) considers only the number of pebbles at the
end of the step and not in intermediate stages (after move 1 and before move 2 for example). It
corresponds to the assumption that both moves can be performed simultaneously.

Our objective can be redefined as follows:
Problem 1. We want to find an execution e, € £ such that P(e,) = min.cge P(e).

The definition of Move 1 implies that we are allowed to perform function compositions during
one step of the execution (see for example Figure 2.6, rule Ms).

We have to take care of the fact that function composition has a cost. In order to do so, we
assume that step ¢ lasts [ time units where [ is the length of the longest path in D joining a node
marked at step t — 1 to a node marked at step ¢. This is coherent with the assumption that each
computation requires 1 time unit. Note that [ is also the longest chain of function compositions
performed during step t.

Remark 2.3.3. Here is a possible execution of the game. The initial pebbles A(0) remain
unchanged along the execution. An additional pebble is used to mark successively all the nodes
in the graph. In this case, marking a node on level n takes Q(n) units of time and marking all
the nodes up to level n takes Q(n?) units of time. On the other hand, we say that an execution
has a linear time complexity if it puts a pebble on node (i, n) within O(n) time units for all n.
The set of linear executions is not empty. For example, if we mark the nodes as soon as possible,
then node (7,n) is marked at time An 4 d;.

The executions that we are going to propose to solve Problem 1 will not be optimal in terms of
time complexity (i.e. will not be asap). However, they will always be linear, which means that
the loss in terms of time efficiency is kept under control (see also the discussion in §2.3.1).

In order for the pebble game to be rigorously defined, we need to have some additional rules.

We are going to define four different set of rules My, My, M3 and M.
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My : Asynchronous execution We consider two additional rules. In particular, we further
constrain the rule of Move 1.

e Move 1’ : Put a pebble on a node if all the predecessors (for the precedence relation) of
this node have a pebble.

e [t is possible to perform one move of type 17 and several moves of type 2 during one step
of the game. On the other hand, it is not possible to perform several moves of type 1°.

Let us consider the example of Figure 2.4. We have represented a small part of the dependence

graph of the URE X;(n) = F;(Xi(n —1), Xo(n — 1), X3(n — 1)),¥Vi=1,2,3.
1 2 3

n Q\ Q /Q Q\ Q £ Q

i ' '

step ¢ stept+1

n+1

\6% ¢ %ﬂ

step t 4+ 2 step £+ 3

Figure 2.4: Asynchronous rule, My, five pebbles are needed.

At step ¢, there are pebbles on the nodes (1,n),(2,n) and (3,n). At step ¢t + 1, we can put a
pebble on node (1,n + 1) as all the predecessors (i,n) have a pebble. At step ¢ 4+ 2, and for
the same reason, we can put a pebble on node (2,n + 1). At step ¢t + 3, we put a pebble on
node (3,n+ 1) and we remove the pebbles on nodes (¢, n) (they are not needed anymore). The
minimal number of pebbles needed to describe the dependence graph of Figure 2.4 is 5.

This rule corresponds to the necessity of performing asynchronous computations. It is relevant
if we use a sequential computer to perform the calculations. In this case, the maximal number of
pebbles used during the game corresponds to the minimal number of memory locations needed
to carry out the computation.

Remark 2.3.4. When Game 1, rule My, is performed on a binary tree, the minimal number
of pebbles is known as the Strahler’s number. This Strahler’s number appears in various fields
ranging from hydrology or combinatorics to molecular biology. For a nice review paper, the
reader is referred to Viennot [135].

In the forthcoming set of rules, we switch back to the original definition of Move 1, see Game 1.



2.3 Parallel Executions 45

M, ¢ Synchronous execution We consider Game 1 with the following additional rule.

e Several moves of type 1 and several moves of type 2 can be performed at the same step of
the game.

We consider, in Figure 2.5, the same example as previously under the new set of rules.

QL L

i i

step stept+1 step t + 2

Figure 2.5: Synchronous rule, M5. Three pebbles are needed.

At step n, we have three pebbles on nodes (i,n), ¢ = 1,2,3. At step n+1, we put simultaneously
three pebbles on nodes (7,n+1) and we remove the initial pebbles. Hence, the number of pebbles
needed by this execution is three.

This rule corresponds to the case where several synchronous processors are used during the
computations. It will be adapted if we use parallel synchronous processors with shared memory
to carry out the calculations.

M3 ¢ Synchronous regular execution We consider Game 1 with two additional rules

e Several moves of type 1 and several moves of type 2 can be performed at the same step of
the game.

o If at step ¢ the configuration is \A(¢), then at step ¢ + 1, the configuration is (A(t) + 1)
defined by :

(t,n) € A(t) +1 < (i,n—1) € A(t) .

The example of Figure 2.5 was also verifying the set of rules Ms. To see that My and Ms
are different, let us consider the example of Figure 2.6. It corresponds to the URE X;(n) =
Fi(Xa(n — 1)), Xa(n) = Fo(X1(n)).

In Figure 2.6 (1), only one pebble is needed. The corresponding execution verifies rule My but
not rule Ms. In Figure 2.6 (II), two pebbles are needed. The corresponding execution verifies
rule Ms. The computations are performed according to the following patterns :

e Rule My (Figure 2.6 (1)).

— step t @ Xa(n) = Fo(X1(n)).
—stept+1: Xi(n+1) = Fi(X3(n)).
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—stept+2: Xo(n+1) = F(Xi(n+1))...
e Rule M3 (Figure 2.6 (1I)).

—stept: (Xi(n+1),Xa(n+2)) = (F1o Fy(X1(n)), Fro F1(Xz2(n+1))).

—stept+1: (Xi(n+2),Xa2(n+3))=(FioR(Xi(n+1)),Fyo Fi(Xa(n+2))...
Note that in the execution under rule M3, we perform function compositions, FyoF; and FjoFs.
Hence each step lasts two time units.

Rule M3 has several advantages. First, the number of pebbles needed to carry out the calcula-
tions, is easy to compute, it is equal to |A(¢)| (independent of ¢). Second, a regular execution
is interesting for implementation purposes. It provides an easy computation of the variables in
the new configuration from the ones in memory by always applying the same operator. A non
regular execution could be practically very intricate to implement.

My : Synchronous regular non-anticipative execution

e Several moves of type 1 and several moves of type 2 can be performed at the same step of
the game.

o If at step ¢ the configuration is \A(¢), then at step ¢ + 1, the configuration is (A(t) + 1)
defined by (i,n) € A(t) + 1< (i,n—1) € A(2).

e A path (see Definition 2.4.1) from a node in A(¢) to a node in A(t+ 1) contains only nodes
belonging either to A(t) or to A(t 4 1).

Let us consider the example of Figure 2.6. In Figure 2.6 (I1), we have an example of an execution
which verifies rule M3 but not My. For example (see above), the node (1,n + 2) is used at
step t but is computed only at step t + 1 . On the other hand, in Figure 2.6 (I1I), we have an
execution which verifies rule My. In the example of Figure 2.6. The corresponding computation
pattern is :

e Rule My (Figure 2.6 (I11)).

— step t : (Xy(n+1), Xo(n+ 1)) = (F1(Xa(n)), £y 0 F1(X3(n))).
—step t+1: (Xi(n+2), Xo(n+2)) = (Fi(Xa(n+ 1)), Fao Fi1(Xa(n + 1)) ...

Remark 2.3.5. In Figure 2.6, the number of pebbles is the same for the two set of rules M3
and My. It is not always the case, see Figure 2.10.

2.3.3 Summary

In the following, we will use the notations :

o & : the set of all possible (synchronous) executions under rule Ma.
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Figure 2.6: Rule My (1), rule M3 (II) and rule My (111).

e RE : the set of all possible executions under rule Mj3. Elements of RE will be called
regular executions.

e NRE : the set of all possible executions under rule My. Elements of NRE will be called
non-anticipative regular executions.

Note that

NRECRECE.

Complexity Results Under rule My, the problem of determining the minimal number of
pebbles to compute a general directed acyclic graph with one final node has been considered by
Sethi [128]. In that paper, it is proved that this problem is NP-complete. Here, we can easily
embed any directed acyclic graph on each level of a recycled dependence graph. We also embed
the same acyclic graph between two levels of D (see Figure 2.7).

Now, it is not difficult to see that the minimal number of pebbles needed under rule M in this
dependence graph is the minimal number of pebbles necessary to carry out the computation on
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Figure 2.7: Embedding of an arbitrary acyclic graph in a dependence graph.

the original acyclic graph plus the number of columns in D. Therefore, our problem under rule
My is also NP-complete.

In the following we will only consider synchronous executions, i.e. the set of rules M5, M3z and
My, In particular, we will characterize executions using a minimal number of pebbles under
rules My, M3 and My and we are going to prove that the minimal number of pebbles can be
found in polynomial time for the recycled case.

2.4 Cuts and Pebbles

From now on, we consider the recycled case, see §2.2.3. It is always implicitly assumed (unless
otherwise specified) that the system under study is recycled.

2.4.1 Cutsin D

Let us recall some classical definitions of graph theory, all defined in the dependence graph, D.
For further references, see [65] or [78] for example.

Definition 2.4.1 (path). A path is a sequence of nodes and arcs in D of the form --- —
(t0,n0) — (i1,m1) — (g, n2) — -+ — (ig,ng) — ---. A path is bi-infinite if it contains an
infinite number of negative nodes and an infinite number of positive nodes.

Definition 2.4.2 (cut). A cut C is a set of nodes in D such that any bi-infinite path contains
at least one node of C'. A cut of minimal size is called a minimal cut.

Definition 2.4.3 (flow). A flow is a set of bi-infinite paths such that any two paths do not
share any node. A flow containing a mazximal number of paths is called a mazximal flow.

The most classical notion of cut involves arcs rather than nodes and a flow is a set of paths
which do not share arcs rather than nodes. However a small transformation of each node into
two nodes connected by an arc would allow us to go back to the original notions.

Definition 2.4.4 (section). A section S in D is a set of nodes with exactly one node per

column, S = {(i,n;),1 € V}.

Note that since D is recycled, a cut contains at least one node per column. Using this property,
one can define the upper and lower sections of a cut.
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Figure 2.8: Consecutive and non consecutive cuts (on a non-recycled example).

Definition 2.4.5 (upper, lower section). The upper (resp. lower) section C,, (resp. C}) of
a cut C' is the set of nodes (i,n) in C' such that the nodes (i,n—h),h > 0 (resp. (i,n+h),h>0)
do not belong to C'.

Definition 2.4.6 (consecutive cut). A cut C' in D is consecutive if on each column of D, C
contains only consecutive nodes, i.e.

ForallieV, (i,n) € C and (i,n+1) ¢ C = (i,n+ k) ¢ C,¥k > 0.
An example of consecutive and non-consecutive cuts is displayed in Figure 2.8.
Lemma 2.4.7. There exists a minimal cut of D which is a minimal consecutive cut.

Proof. Let C' be a minimal consecutive cut. We will prove that C'is a minimal cut. First, note
that there are no arcs from C', to C; + k, k > 2, otherwise C' would not be a cut.

Now, consider the sub-graph G' of D made of the nodes ', U (C; + 1) and the arcs between C,
and C;+ 1 in D. See Figure 2.9.

A cut in a finite graph G is a set of nodes such that, when removed from G, there is no arc
remaining in G. Let A be a cut in G of minimal size. If |A| < |C,] then C\C\, U A would be
a consecutive cut in D strictly smaller than C', which contradicts the fact that C' is a minimal
consecutive cut. Therefore, we have |A] = |CY].

An adapted version of a famous “minimax” theorem first proved by Ford-Fulkerson (see [65])
states that we can find |A| node-disjoint arcs in . Since |A| = |Cy] = |C1+ 1|, these arcs define
a one to one mapping ¢ from C, to C;+ 1. From ¢ we construct a flow in C' in the following
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Figure 2.9: Graph G made from the lower and upper sections of C'

way. Select all the arcs of the form ((¢,n) + k) — (¢(,n) + k) for all (¢,n) € C,, and all k € Z.
These arcs form a flow F in D of size |C].
Let ', be a minimal cut in D. Since F is formed by node-disjoint paths, C',, must contain at

least | F| nodes, |Cy,| > |F| = |C|. We conclude that |C,,| = |C]. O

This lemma is interesting by its own. In particular, it gives a proof of the minimax theorem
(which exists in many versions) in an infinite graph D.

Corollary 2.4.8. The size of the minimal cut is equal to the size of the maximal flow in D.

Another immediate corollary of Lemma 2.4.7 is that there exists a maximal flow F in D which
is 1-periodic (i.e. if the arc (7,n) — (j, m) belongs to F, then (i,n+ 1) — (j, m + 1) belongs to
F).

Definition 2.4.9. We say that an arc crosses a section S = {(i,n;),1 € V'} downwards if it is
an arc of the form (i,n; —h) — (j,n;+ 1) with h > 0 and [ > 1. An arc (i,n; +1) = (j,n; — h)
crosses S upwards if L > 1 and h > 0.

Definition 2.4.10 (compatible section, compatible cut). A section in D is compatible if
no arc crosses the section upwards. A consecutive cut is said to be compatible if its lower section
is compatible.

Note that it can be that no minimal consecutive cut in D is compatible. This is the case in
Figure 2.10 where the minimal compatible cut contains 5 nodes while a minimal consecutive cut
of size 4 can be found.

2.4.2 Relations with executions of Game 1

Lemma 2.4.11. A configuration of any execution e € £ is a cut in D.

Proof. Let A(t) be the ¢-th configuration of some execution e belonging to £. Assume that A(t)
is not a cut. By definition, there exists a bi-infinite path P which does not have any node in
A(t). According to the rule My of Game 1, no positive node on P can ever be marked during
the execution after step ¢ and all of them cannot have received a pebble during the ¢ first steps.
This contradicts the fact that e is an execution of £. O

Lemma 2.4.12. A consecutive cut is a configuration of a reqular execution (RE).
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Figure 2.10: Compatible and non compatible cuts.

1 2 3

Figure 2.11: A non consecutive cut which is not a regular configuration.

Proof. Let C' be a consecutive cut in D. We have C'+ 1 = (C\Cy) U (C; + 1). Therefore, C' is
a regular configuration if and only if for each node (¢,n) in C; 4 1, there is no infinite path P
terminating in (¢, n) that does not intersect the cut. But if such a path could be found, then
the bi-infinite path PU{(¢,n+ h), h € N} would not intersect C'. This contradicts the fact that
C'is a cut. O

Remark 2.4.13. Note that a non consecutive cut may not be a regular configuration, as
illustrated in the example of Figure 2.11. In that example, the node (2,n + 2) belongs to
C' 4 1 but cannot be computed using only variables in C' (as it depends on (3, n) for example).
Therefore, the cut €' is not a regular configuration.

Lemma 2.4.14. A compatible cut is a configuration of a non-anticipative regular execution

(NRE).
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Proof. Let C' be a compatible cut. Since C' is consecutive by definition, Lemma 2.4.12 tells us
that C' is a configuration A(t) of a regular execution e. Suppose that e is anticipative. This
means that there exists a node (say (¢,7)) in A(t+1) with a predecessor (say (j, m)) not marked
at steps t or t + 1. The arc (j,m — 1) — (¢,n — 1) crosses the lower section of C' upwards. This
contradicts the fact that C' is compatible. O

We are now ready to state the main result of this section.

Theorem 2.4.15. Let us consider a recycled system of URE §. We perform Game 1 on its
associated dependence graph D. We have

nin Ple) = min Pe). (2.5)

In other words, there exists a regular execution which requires a minimal number of pebbles.

Proof. The proof of the theorem is a direct consequence of Lemmas 2.4.11, 2.4.12 and 2.4.7.
First, note that all configurations are cuts, Lemma 2.4.11. Let C' be a consecutive cut of
minimal size, which exists by Lemma 2.4.7. By Lemma 2.4.12, C' is a regular configuration. 0O

Theorem 2.4.15 has several interesting corollaries. First, it allows one to focus on regular exe-
cutions since no fancy irregular execution of the URE can be done with fewer pebbles. Then,
it provides a polynomial method to find an optimal execution as shown in §2.4.3. As for non-
anticipative executions, polynomial algorithms will be given in §2.6.4.

2.4.3 Complexity results

We are going to compute a maximal flow in D and then apply Corollary 2.4.8. If we want to
use the algorithm of Ford and Fulkerson [65] to compute a maximal flow in D, we need first to
restrict ourselves to a finite graph.

We call span of a cut the difference between the smallest level and the largest level containing
a node of the cut.

A slice of D from level 0 to level n will be sufflicient to compute the maximal flow in the graph
if a consecutive minimal cut spans over less than n levels. So it is important to determine, or
at least to bound, the span of a consecutive minimal cut.

Lemma 2.4.16. The span of a minimal consecutive cut is smaller than the total sum of the
delays in R.

Proof. Let C' be a minimal consecutive cut. The associated maximal 1-periodic flow F is a set
of paths in D. First, note that these paths cover all the nodes in D. Indeed, by the 1-periodicity
of F,if a node (¢,7n) is not in F, then the whole column (¢,.) is not in F, but this means that the
bi-infinite path {(¢,n),n € Z} can be added to flow F and this would contradict the maximality
of F.

Let Py be any path in F. We deduce from the 1-periodicity of F that P is periodic. Let
@0, 1, * 4 11y, @0, 11, - . . be the successive columns visited by the path P;. Let (ig,n) and (i, n+
k1) be the consecutive nodes visited by the path P; on column (ig,.). Using the 1-periodicity of

F, the total number of paths intersecting columns g, %1, ---,7;, in F is ky. It implies that the

1
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span of C' on columns 29,21, -+, ¢, is smaller than k. By definition of R, there exists a circuit

(L1) in R containing the nodes g, iy, -+, 7, and of total delay k;. The span of C' on columns

1
20,11, * , 2, is smaller than k;.

A new path % in F not intersecting columns ?g, %1, - - - , ¢;, ranges over different columns

1
7/11-|—17”1-|—27”'7”'7”27

and defines a circuit (Lg) in R similarly. The span of C' on columns 47,44, -+, 7, is smaller than

ko. We apply the same arguments to all the paths in F until all columns in D are covered. This
defines a set of circuits H in R covering K.

We build a new graph G starting with R and where each circuit in H is aggregated into one
node. The graph G has |H| nodes and the arcs of G do not belong to any circuit in H.

The span of €' is smaller than the sum of the spans on all the circuits in H plus the sum of the
delays on all the arcs in G . Note that no delay is counted twice in this upper bound. Therefore,
the total span (M) of C' is smaller than the total sum of the delays in R. a

Remark 2.4.17. This bound is tight since it is not difficult to exhibit examples in which the
span of the minimal cut is the sum of all the delays in R. However, in most cases, the span of
a minimal consecutive cut is significantly smaller.

Let M be the sum of the delays in R. A slice of D with M levels has the same cut size as D itself.
The computation of the minimal cut in a finite slice of D can be done using the augmenting path
algorithm, see [65] [78]. Starting with a 1-periodic flow (the recycled columns) and maintaining
the 1-periodicity throughout the construction yields a maximal 1-periodic flow. The complexity
of the construction of the maximal flow is O(M?2k?). By Corollary 2.4.8, it provides the size of
a minimal (consecutive) cut in D.

2.5 Cuts and Delays

In this section, we will exhibit the relations that can be found between cuts in D and values of
the delays in R.

2.5.1 Retiming

A retiming of R is a transformation of the graph resulting in a decrease or increase of the values
of the delays but with no transformation of the graph topology. This notion has been described
in digital circuits to move registers (see §2.6) and in Petri nets, where a retiming corresponds
to the firing of transitions (see §2.7).

Definition 2.5.1 (retiming). A retiming of R is a node function r : V. — N which specifies
a new value of the delays. After retiming r, the value of the delay on an arc (i,7) in the new

graph R, is v = v+ (i) —r(j).

In the example of Figure 2.12, the new values of the delays correspond to a retiming r such that
r(1)=1,7(2) =1and r(3) = 0.

Note that after a retiming r of R the delay on one arc can be negative as in Figure 2.12.
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Figure 2.12: Retimed reduced graph and dependence graph.
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Lemma 2.5.2. Two retimings r and r' yield the same value of the delays in a connected graph
R if and only if there exists a constant h € Z such that Vi € V,r(i) = r'(¢) + h.

Proof. First, if r(i) = #’(¢) + h for all © € V, then on any arc (¢,7), v, = v+ r(i) — r(j) =
v+ (i) = r'(j) = v,+. Conversely, if v,» = ~,., then r(i) = r'(i) + h and r(j) = r'(j) + h for some
h € Z. The fact that R is connected implies that the constant h is the same for all the nodes in
V. 0

The question that arises now is what is the corresponding notion in the graph DPI' To answer
this question, let us consider the graph D, associated with the retimed reduced graph R,. This
dependence graph can be constructed directly from D by shifting the columns as described in
Lemma 2.5.3.

Lemma 2.5.3. A retiming r in R corresponds to an isomorphism f, between D and D, defined
by:

fre D
(¢,n)

— D,
= (i,n—r(i))
The function f. will also be called a retiming of D.

Proof. By definition of D, there is an arc from (¢, n) to (j, m) in D, if the delay in R, on arc
(¢,7)is v, = m —n. We have v, = v+ (i) —r(j) = (m —r(j)) — (n — r(¢)). Therefore, f, is an
isomorphism between D and D,. O

We recall that the notion of section was defined in 2.4.4. A retiming r in R can be associated
with the section S, = {(¢,r(¢)),2€ V} in D.

Lemmas 2.5.2 and 2.5.3 tell us that two retimings r and r’ are similar (in the sense that they
yield the same value of the delays) if and only if they are associated with two sections S, and
S! with S, = S, + h, for some h € Z. This relation enables us to define a parallelism relation
between sections in D as well as between retimings in R. We say that section S, (resp. retiming
r) is equivalent to section S,s (resp. retiming r’) if S, = S,s+h, for some h € Z. In the following,
we will always consider one arbitrary section among the equivalence class and call it the section
associated with retiming r.

2.5.2 Counting the delays

Given a graph R, there are different possible ways to count the number of delays involved in
the graph. We are going to propose two different ways of counting, mode A and mode B.

Mode A : The number of delays in R is
Ta=» > 7. (2.6)

Mode A corresponds to the exact number of registers appearing in the graphical representation
of the reduced graph R as defined in §2.2.2. See for example, Figure 2.13 (A).
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Mode B : The number of delays in R is

I'p=> max{y| Jist. (j,7)€D;}. (2.7)
JEV

Let us explain this mode of counting. First, remark that I'g < I'4. Assume that node j € V has
several output arcs with respective delays v1, 72, -+, . If we allow the possibility to share the
delays between these [ arcs, the number of delays will be counted as maxy vy instead of Y, v
as in Mode A.

Graphically, I'g corresponds to the number of delays in a modified reduced graph where we
have performed a forward splitting of the nodes. An example is provided in Figure 2.13 (B).
We have added a “dummy” node, represented by a black dot, with function F' =Identity. The
other nodes remain unchanged. This reduced graph describes exactly the same system of URE.
More precisely, the variables computed at the white nodes in Figure 2.13 (B) are the same as
the variables computed in Figure 2.13 (A).

There is another way to interpret mode B. Let us assume for a moment that we modify the
definition of a reduced graph. We consider a reduced graph R where delays are put on nodes
instead of arcs. The total number of delays in graph R is equal to ['s. This is illustrated in
Figure 2.13 (B).

In the following, we will say, with some abuse of language, that counting mode A corresponds
to delays on arcs and counting mode B to delays on nodes.

Other ways of enumerating delays are conceivable. We will not consider them as they appear to
be less interesting, mathematically speaking as well as from a practical point of view.

Deciding which counting mode of the delays to choose is very important. Different modes will
yield different optimal graphs, after minimization of the number of delays.

2.5.3 Cuts and delays

We recall that the system under study is assumed to be recycled.

Consider a section S = {(¢,n;),7 € £} in D. We define a consecutive cut C(S) of the graph in
the following way. We define the set C(5) in the following way :

C(S) = {(i,n),ieV,n< i | 3j€V,m>ny, (i,n) = (j,m)}.

Note that C(S5) is a cut with lower section S. Furthermore, if any node is removed from the
upper section of C(5), then it is not a cut anymore.

In a cut C', a node (i,n) € C'is redundant if C\{(¢,n)} is a cut. Note that any consecutive cut C'
with no redundant node on its upper section is characterized by its lower section 57 only. More
precisely, we have C' = C(S)).

We are now ready to state the relations between delays in R and consecutive cuts in D.
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Figure 2.13: Different ways to enumerate the delays.

Lemma 2.5.4. Letr be a retiming of R and S, an associated section in D. Then the number
of delays in R, under mode B (I'g) is equal to the cardinal of the cut C(S,).

Proof. We recall that the section associated with r is S, = {(¢,r(7)),i € V'}. First, let us prove
that the size of C(S,) (cut in D) is the size of C(f.(S,)) (in D,). Note that by definition, f,(5,)
is on a single level, f,.(S,) = {(¢,0),7 € V}. From the definition of f., it should also be clear
that f,.(C(S,)) = C(f-(S,)) and a fortiori f.(C(S,)) and C(f-(S,)) have the same size.

It remains to be shown that the size of C(f,(S,)) is the number of delays counted according
to mode B. The delay on node ¢ of R is the maximum of all v, for all (j,+,) in D;,. This
maximum (m) induces an arc in D, from node (i, —m + 1) to node (j,1). By construction,
C(f-(S,)) contains exactly m nodes on column 7: nodes (¢,0), (¢,—1),---, (¢, —m + 1).

The same argument repeated on each column of D, finishes the proof. O

We recall that given a section 5, we defined the arcs crossing S upwards or downwards in
Definition 2.4.9.
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Lemma 2.5.5. Let r be a retiming of R and S, an associated section in D. The number
of delays in R, under mode A (I'4) is equal to the number of arcs in D crossing section S,
downwards minus the number of arcs crossing S, upwards.

Proof. By definition of f,, all the arcs crossing f.(S,) in D, are the transform by f, of the arcs
crossing S, in D. We will rather count the arcs in D,. Pick one arcin R, (¢, ) with delay v > 0.
In D,, this arc induces exactly 74 arcs crossing f,(S5,) downwards, the arcs:

(6,0) = (47
(6,-1) = Uv—-1

(h—v+1) > (1),

Similarly, an arc in R, (¢, 7) with delay v < 0 induces exactly —+ arcs crossing f,(S,) upwards:

(4, 0)
(j7 _1)

(i7_7) —
(iv -7 - 1) —

(6,1) = U+ 1.
The same argument applied to all the columns finishes the proof. O

Remark 2.5.6. Lemma 2.5.4 shows that one can describe the number of delays I'g as the
cardinal of a set of nodes of D. On the other hand, we deduce from Lemma 2.5.5 that the
number of delays I'4 is computed as the cardinal of a set of arcs in D. This is natural as we
have seen that (roughly speaking) mode A corresponds to delays on arcs and mode B to delays
on nodes.

The notion of compatible cut introduced in Definition 2.4.10 has a very natural interpretation
in terms of delays.

Proposition 2.5.7. Let r be a retiming of R and S, an associated section in D. The retimed
reduced graph R, has only non-negative delays if and only if the section S, is compatible in D.

In Figure 2.14 (this example is the same as the one of Figure 2.10), we have represented the
retimed reduced graphs associated with two sections (cuts). One of them is compatible, Figure
2.14 (I), and the other one is not compatible, Figure 2.14 (II).

In §2.4.2, we have established the relations between configurations (for Game 1) and cuts in the
dependence graph. In this paragraph, we have established the relations between cuts and delays.
As an immediate by-product, we obtain the relations between delays and pebble configurations.

e An execution e € £, e € RE has configurations with different shapes at each step. Since
any configuration can be viewed as a set of value of the delays in a retimed reduced graph,
then an execution which is not regular provides a different value of the delays in R at each
step of the computation.

e On the contrary, for an execution e € RE the configurations are just shifted between two
steps and this induces a fixed value of the delays in R.

e Finally, an execution e € N'RE corresponds to fixed and non-negative delays.
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Corresponding delays Minimal (non-compatible) cut

Figure 2.14: Compatible and non compatible cuts, non-negative and negative delays.
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2.5.4 Summary and open problems

In the recycled case, the following table gives a summary of the main relations established so
far between executions of a system of URE, cuts in D and delays in R.

Executions of Game 1 Cuts in D Delays in R
execution in £ arbitrary cut changing delays
regular execution, RE consecutive cut fixed delays
non-anticipative reg. exec., N'RE | compatible cut | non-negative fixed delays

To complete the picture, it would be nice to extend all the results presented in this section to the
non recycled case. The different definitions (cut, flow, section) extend easily to the non-recycled
case. The main results which would make everything else easy to generalize are of two types.
Results related with cuts in D, §2.4.1, and results linking cuts and regular configurations, §2.4.2.
For example, is it possible to find a minimal cut which is consecutive (generalization of Lemma
2.4.7) I' Can we find a minimal consecutive cut which is a regular configuration (generalization
of Lemma 2.4.12)I" It seems that most of these properties still hold in the non-recycled case but
at this point the problem is still open.

One of the main results so far is that the size of the minimal consecutive cut is the same as
the size of the minimal cut in D (see Lemma 2.4.7). However, the example displayed in Figure
2.14 shows that in some cases this minimal consecutive cut is not compatible and therefore, its
associated execution is anticipative. Although anticipative executions seems to have no or little
interest in practice, we will show in the two applications presented below (sections §2.6 and §2.7)
that there are particular situations in which they can be used efficiently.

2.6 Application 1 : Registers in Circuit Design

In this section we will show how the previous results relate to the problem of register minimiza-
tion in digital circuits. The interest of the relation will be two-fold. In a first part we show
how the notions we defined so far help to prove the optimality of retiming in digital circuits.
In a second part, we will use the algorithms developed in digital circuits to get optimal regular
executions of a system of URE.

2.6.1 Definition of a circuit

A digital circuit is constituted by functional gates, wires and registers. More precisely,

e A functional element computes an output data from one or several input data. For exam-
ple, in the case of a logical circuit, the functional elements will be boolean logical gates

(AND, OR,...)

e A wire between element 7 and element j enables to transfer the output data of ¢+ which
becomes an input data for j.

e A register corresponds to a storage facility. A register of size p (or equivalently p registers)
between elements ¢ and j enables to keep in memory the last p values computed by the
element 1.
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The model of the behavior of the system is the following. There is a global clock for the system.
Between two clock ticks, here are the operations taking place.

e [Functional element :

1. receive the input data from upstream registers.
2. compute a new output data.

3. send the output data to downstream registers.
o Register :

1. transmit the stored data downstream (to another register or a functional element

depending on the structure).
2. remove the stored data.

3. receive a new data from upstream (from another register or a functional element

depending on the structure).

Between two clock ticks, these operations are synchronously performed at all functional elements

and registers!.

Let X;(n) be the n-th variable computed at element 7. After n clock ticks, exactly n values have
been computed at each element ¢, i.e. the variables {X;(m), m < n} have been computed. The
number of registers on a wire between ¢ and j corresponds to the number of variables X;(n — k)
which need to be still in the memory in order to carry on the computation of the variables
X;(n+m),m e N.

It appears from the previous description that a digital circuit can be viewed as the reduced graph
R of some system of URE. The functional elements of the circuit correspond to the nodes of R,
the wires to the arcs and the registers to the delays. The computation operation corresponding
to the functional element ¢ is denoted by F; to be coherent with previous notations. In the
remainder of the section, we will use indifferently the terminology of digital circuits and the one
of reduced graphs.

We have represented an example of a digital circuit in Figure 2.15. We have represented the
flow of data between clock ticks. We have chosen on purpose a graphical convention coherent
with the one of reduced graphs.

Remark 2.6.1. It might be interesting to consider that the different operations described
above have a duration, let us say 1 unit of time for a computation and instantaneous for a
transmission-reception (same assumption as in Remark 2.3.3). According to this, the elementary
operations occurring between two ticks have a total execution time. It is 1 for the system
X;(n) = X;(n—7),7 > 0 and 2 for the system X;(n) = X;(n) (both variables are computed
successively during the same clock interval). Hence the length of the time interval between two
clock ticks has to be at least 1 in the first case and at least 2 in the second one. More generally
the time interval between two clock ticks has to be equal (at least) to the length (i.e. the number
of nodes) of the longest path without registers in the graph R. Hence it is often a problem of

'In particular, we do not consider systems where the computations times might be different from one element
to the other.
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Figure 2.15: Digital circuit computing X;(n) = F;(X;(n —2),...).

practical interest to minimize the longest path without registers, see [100] [34] [73]. We will not
consider this problem in the following. We consider the problem called min-area in [100]. It
consists in minimizing the number of registers.

2.6.2 Counting the registers

The two modes for counting delays (see §2.5.2) are interesting from a practical point of view,
when delays are viewed as registers in digital circuits. In order to explain it, we are going to focus
on the example of Figure 2.13. Let us compare the characteristics of the three digital circuits, A,
B and B, proposed in Figure 2.13. In circuit (A), there is a synchronous write operation (also
called fanout) performed by node ¢ when displaying its output data to downstream registers

J1,j2 and js. In circuit (B), there is a synchronous read operation performed by the nodes j;
and j3 when they get the variable stored in the first register of node ¢. According to physical and
technological constraints, it might be better to avoid either synchronous read or synchronous
write, hence to prefer either circuit (A) or (B).

Even if we assume that synchronous read has to be avoided (as it is often the case for digital
circuits), we might be interested in considering circuit (B) instead of circuit (A). In circuit (B),
we have less registers but more functional gates. Hence depending on the compared cost of a
node and a register, one shall consider one circuit or the other.

2.6.3 Minimizing the registers

A classical problem in circuit design is to minimize the number of registers used while preserving
the functional behavior of the circuit (i.e. while computing the same variables X;(n)), see the
seminal paper of Leiserson and Saxe [100]. If the circuit (i.e. the corresponding reduced graph)
is recycled, this problem is directly connected with the notions introduced in §2.4 and §2.5. It
enables us to propose some complements to the results of [100] for the special case of recycled
circuits.
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Optimality of retiming

In [100], Leiserson and Saxe define a notion of retiming which is exactly the one of Definition
2.5.1. They restrict their attention to legal retimings.a

Definition 2.6.2. A retiming r is legal if R, has only non-negative delays.

This is a natural restriction as legal retimings are the only one having a physical meaning for
circuits (at least apparently, see §2.6.3). They also define register sharing. This corresponds
exactly to the transformation from circuit (A) to circuit (B) in Figure 2.13. Leiserson and Saxe
prove that retiming and register sharing preserve the functional behavior of the circuit. Then
they propose an algorithm to compute the optimal circuit after retiming and also after retiming
and register sharing, see §2.6.4.

However the question whether other techniques can be used to get a circuit with even fewer
registers remains to be answered. Using the results of previous sections, we show that the
retiming technique combined with register sharing does in fact minimize the number of registers.

This result comes from the following argument. Let us consider a circuit. We consider the
same circuit where we have positioned the registers in an arbitrary way. We assume that the
functional behavior is not modified. These registers can be seen as delays in the reduced graph
R. If the functional behavior of the circuit is preserved, it means that the delays correspond
to a non-anticipative regular configuration in the associated dependence graph D. But in the
recycled case, such a configuration is also a compatible cut in R. The lower section of this cut
defines a compatible section which is in turn associated with a legal retiming of the circuit.
Therefore, the positions of the registers can be obtained from a retiming of the original circuit.

Corollary 2.6.3. If we count the number of registers according to mode B, then we can obtain
a circuit with a minimal number of registers solely by performing retiming.

Proof. This is a direct consequence of Lemma 2.5.4. O

Further modifications of the circuit

If we allow other modifications of the circuit than just register sharing, further improvements
on the number of registers can be obtained.

Let us consider the best possible retiming in the original circuit without restricting ourselves to
legal retimings (Definition 2.6.2). It corresponds to a minimal consecutive (but not necessarily
compatible) cut in the associated dependence graph D, see §2.5.4.

It is possible to perform some appropriate modifications to the structure of the circuit to go
back to positive delays. The procedure is as follows. For each node ¢ following a negative delay,
we track back the paths terminating at node ¢ until the total delay on each path is non-negative.
This is always possible for circuits associated with constructive URE. The nodes initiating such
paths are duplicated into 2 nodes computing the same function. In the example of Figure 2.16,
we have to track back two paths : 3+ 1+ 1 and 3 « 1 « 4 and node 1 is duplicated into 1
and 1’.

If the registers are counted according to mode B, the resulting circuit uses only 4 registers while
the best possible number of registers we can get with only legal retimings is 5. Of course, on
the other hand, we have to increase the number of functional nodes.
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Figure 2.16: A transformation of a circuit with negative delay into a circuit with non-negative
delay.

2.6.4 Complexity results

In [100], an algorithm is given to compute the best legal retiming of a circuit (with or without
using the register sharing technique). The complexity of this algorithm is O(|F|*log|V|). An
efficient implementation of this algorithm can be found in [129]. In the recycled case, this
algorithm can be used to compute the minimal compatible cut in D, using corollary 2.6.3.
And finally using the correspondence between compatible consecutive cuts and non-anticipative
regular executions, see Lemma 2.4.14, this also gives a way to find an optimal non-anticipative
regular execution of a system of URE. This is an example of results originally proved for digital
circuits and applied in the context of URE.

Further results developed for circuits can be applied in the computation of URE. It is the case
of the problem of the minimization of the clock period in digital circuits, see Remark 2.6.1. This
issue is not addressed here.

Conversely, the results of §2.4.3 (using the Ford-Fulkerson algorithm) can be applied in the con-
text of digital circuit to compute the optimal (non necessarily legal) retiming. This is interesting
as it is not straightforward to extend the original algorithm of Leiserson and Saxe to general
retimings.

2.7 Application 2: (max,+) Linear Systems and Parallel Simu-
lation

In the following we will apply our results to a particular class of URE: (max, +) linear systems,
and to issues arising in the distributed simulation of such systems.

Our interest for (max, ) systems comes originally from the analysis of a class of timed Petri
nets: Timed Event Graphs [8]. However, these systems arise naturally in the study of general

URE.
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To see this, assume that, in the computation of some URE of the form (2.2), computing X;(n) =
F;(X;(n—7),...) requires o; units of time. Assume moreover that the computation is performed
on a parallel computer with an unlimited supply of identical processors, common memory (or
instantaneous communication), and no synchronization overhead. If variables are computed as
soon as possible (greedy execution), then the makespan of the computation is given by an URE
with the same structure as (2.2). Indeed, if T;(n) is the instant at which the computation of
X;(n) starts, then T is given by T;(n) = max(T;(n —v)+0,,...).

We shall discuss below some issues arising in the computation of (max,+) systems. It should
be clear that the results will apply, or can be adapted to other linear recurrences, such as the
(+, X) linear systems of classical control theory.

According to the preliminary remarks above, an application of the results of this section will
therefore be an algorithm to compute the makespan of the greedy execution of some URE. Note
that this algorithm itself will not be greedy.

We shall first introduce some concepts and notations. We will then present the optimization
problem which arises in the parallel computation of (max,+4) URE, and apply the preceding

results to solve it. Finally, we shall mention some particularities of stochastic versions of (max, +)
systems.

2.7.1 Introduction

From now on, we therefore restrict our attention to “Linear Max-Plus Recurrences” (MPR),

which are URE of the form:

Xi(n) = max (Xj(n—7)+0i4), 0ijy €RT. (2.8)
(37)€D;i

The assumption that o; ;. is nonnegative is not necessary but natural because of the physical
interpretation we gave above.
Let us introduce some definitions and notation.
Definition 2.7.1. The (max,+) semi-ring Ruyax is the set R U {—oco}, equipped with max,
written additively (i.e. a &b = max(a,b)) and the usual sum, written multiplicatively (i.e.
a®@b=a+b). The zero element is noted € = —oo, and the unit element is noted e = 0.

For matrices of appropriate sizes, we define (A® B);; = A;; & B;; = max(A;;, Bi;), (A®@ B);; =

D, Air @ By; = maxy (A, + Byj), and for a scalar a, (¢ ® A);; = a @ A;; = a+ A;;. When no
confusion is possible, we abbreviate A ® B to AB.

We can rewrite Equation (2.8) with the previously defined notations. Let X (n) be the column
vectors of coordinates X;(n) and let A(y) be the matrix with coordinates A(y);; = o0, if
(4,7v) € D; and A(y);; = ¢ otherwise. We have

X(n)=A0)a Xn)aAl) o Xrh-1)d---aAl)@X(n-1), (2.9)
where I' is the maximum of the delays appearing in the sets D;,.
This algebraic formulation enables some simple transformations. Let us define

k

A(0) = P A©)" = P A",

n=0
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where k is the size of matrix A(0) and where A(0)° = [ is the identity matrix defined by
Ij; = eand I;; =e,i# j. It is easy to prove that A(0)* is the formal inverse of I — A(0), i.e.
A(0)*(I — A(0)) = ({ — A(0))A(0)* = I. Hence, Equation (2.9) can be transformed into:

X(n) = A0 AN X (n— 1)@ - & A0V AT)X (n—T) . (2.10)

Equation (2.10) is nicer, because it involves only strictly positive delays, and is therefore obvi-
ously constructive.

Dependence graph The dependence graph has a general form as presented in §2.2.1. Its
only characteristic is that the functions on the nodes are “max” applied to all entries.

Reduced graph A formalism naturally associated with (max, ) recurrences it that of Petri
nets. The graphical formalism of Petri nets is close but different from the one we used for
reduced graphs.

Petri nets consist of transitions, usually interpreted as service centers (processing units, etc.),
and places containing tokens, usually interpreted as entities (programs, customers...) receiving
services from transitions. Places are connected to transitions and transitions to places with
directed arcs. It is therefore natural to speak of “input places”, “output places” and so on.
The passage from the reduced graph associated with a MPR to the corresponding Petri net
consists in replacing nodes with transitions, and arcs with delay § with a place containing &
tokens, connected to the corresponding transitions. Values of the delay therefore correspond to
positions of tokens, called markings.

Figure 2.17 shows such a transformation.

Figure 2.17: Transformation of a reduced graph (a) into a Petri net (b).

The Petri nets corresponding to reduced graphs have the particular property that places have
exactly one input transition and one output transition. This property defines the class of Fvent
Graphs (EG).

Petri nets are dynamical systems, in which tokens may move, according to the following rule.
Transition may fire, thus removing one token from every input places and creating one in every
output place. A fundamental remark is that firings in a Petri net are equivalent to retimings in
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reduced graphs (see §2.5.1). Indeed, the equations describing the transformations of the marking
after a firing are precisely of the form 7' = v+ r (i) — r(j).

It is important to note that the usual convention for Petri nets is that a firing may occur only
when at least one token is present in every input place of the transition. This requirement is
dropped here. We therefore allow negative markings, which correspond to the negative delays
of §2.5.

In timed event graphs, durations are associated with firings. Linear (max, +) systems of the form
(2.8) describe the evolution of the associated event graphs in the following way. The variable
Xi(n) represents the instant at which the n-th firing of transition ¢ starts, given that transitions
start firing as soon as possible, that is, as soon as all tokens necessary are present in the input
places and available, i.e. not involved in another firing. This interpretation holds under the
assumption that the system is recycled, because the fact that tokens are involved in at most one
firing implies that tokens go through transitions in a first-in-first-out (FIFO) order. Therefore,
there are no overtaking of tokens, and the n-th firing of transition ¢ requires the (n — «;,;)-th
token produced by transition j.

2.7.2 MPR of order 1

A standard step in the analysis of linear systems is the transformation of recurrences of order I
such as (2.10) into an “equivalent” system of order 1. For general URE, this operation consists
in introducing new variables Xjy1,..., X, and new functions G;,7 € {1,...,(} such that

Xi(n):Gi(Xj(n—’y)),lgigf, (j,'y)EDi, neN, v<1. (2.11)

This is usually done by setting X(;_1)yr4y(n) = Xi(n —7),for I <t < kand 1 <y < T The
new number of variables is therefore ¢ = kI'.
In the case of (max,+) linear systems, the equivalent system of order 1 is characterized by a
matrix of size £ X £. The recurrence becomes

X(n+1) = An) @ X(n). (2.12)

In some practical applications, it may be desirable to reduce this size as much as possible. An
instance of such applications is described in the following section.

2.7.3 Parallel simulation of time varying MPR

For the purposes of this section, we informally introduce a generalization of the URE model
(2.2), in which the functions F; may additionally depend on n. The particular example we have
in mind is that of MPR of the form (2.8) in which the numbers o; ; ., are allowed to depend on n.
In the analysis of discrete event systems, these sequences are commonly assumed to be random.
Consider therefore an URE defined with a sequence of (possibly random) functions :

{(F', ..., F{), n € N}.

We consider the associated dependence graph D and the pebble game under the set of rules
Mas. Executions under this rule are regular, and therefore characterized by a finite set A(0) C
{1,...,k} x Z~ providing the position of the pebbles at step 0. Let X (n),n € N, be the vector
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whose coordinates are X;(p+ n) for (i,p) € A(0). By definition of rule M3, see §2.3.2, we have
that there exists a sequence of functions {¢", n € N} such that:

X(n41) = 6"(X (n)) = 6" 0 6" 0---0 (X (0)). (2.13)

The simulation of the system consists in computing the value of all X' (n). A possible algorithm
for doing this with a parallel computer uses the so-called parallel prefix principle. Using the
fact that the composition of functions is associative, it is possible to divide the computation of
¢" o---0¢Y in smaller products ¢” o --- o ¢? which may be computed by different processors.
Note that for this, it is necessary that the operators ¢ possess a numerical representation on
which composition may be performed. This is typically the case for linear operators, which
are represented by matrices, for which composition is equivalent to the common product. The
parallel prefix algorithm therefore directly applies to the parallel simulation of MPR (2.12).

A way to quantify the efficiency of the parallel algorithm is to evaluate its PRAM complexity.
It can be shown that the number of operations required to simulate the linear system up to
time N with P processors is O((*(N/P + log(P))), where ( is, as above, the size of the matrix
characterizing the linear system.

In order to minimize the complexity of this algorithm, it is therefore necessary to find a repre-
sentation of the MPR of minimal size.

2.7.4 Optimization results

We shall show in this section that finding the minimum possible size for an order 1 representation
of a MPR can be done in polynomial time with respect to k and I'. This problem appears to be
new in the context of event graphs. Some preliminary results, which correspond to our mode A
for counting memories may be found in [28].

The basic idea is that, given a marking of the event graph, it is possible to transform this graph
by adding new transitions and places, in such a way that the resulting event graph, restricted
to the original transitions, has the same dynamic behavior as the original one, and moreover,
the marking of the places is less than one (see [73] for further discussions).

To see this, recall the discussion of §2.5.2 on counting the delays, and in particular Figure
2.13 (B). Interpreted in terms of Petri nets, this construction amounts to “factor out” tokens
introducing dummy transitions in a tree-like fashion, as in Figure 2.18. The dummy transitions
are assumed to have a firing time of 0, and are recycled (this is not shown on the figure).

The number of transitions in the resulting event graph is I'g. The MPR associated with the new
graph has a maximum delay I' = 1 and by (2.10), it has the desired order 1 form with £ =1'g
This is already an improvement on the standard representation, but the results of §2.5 allow to
improve this, by finding first an optimal marking of the net, that is, a marking such that the
above transformation provides an event graph with £ = minge I'g or £ = minyre ['p transitions.
It is indeed necessary to distinguish the two cases, according to whether negative markings are
desirable or not. This can be understood as follows.

Assume that the marking corresponding to £ = minge I'p is negative. The event graph can be
transformed into another equivalent one in the same way as for circuits in 2.6.3. The newly
created transitions will then have firing times o;(n) equal to some of the o;(n+ ),y > 0 of the

original transitions. Therefore, the construction of matrices A(n) and A(n + ) in recurrence
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Figure 2.18: Forward transformation of event graphs.

(2.12) will use the same numbers . When two matrices do not use the same numbers, they are
called disjoint matrices

In the parallel computing context, where the computations using A(n) and A(n+7) are (possibly)
done by different processors, it may be acceptable to use matrices which are not disjoint. For
instance if o;(n) does not depend on n, or if it can be computed in a deterministic way by the
different processors.

However, it is not acceptable if the variables o;(n) are independent and identically distributed
(i.i.d.). In this case, we want the random matrices A(n) and A(n + v) to be independently
generated by their respective processor. This situation is the most common one in the context
of discrete event system modeling, which we have already mentioned. It requires that all the
matrices are disjoint.

In both cases, the optimal marking is found in polynomial time:

o If negative markings are acceptable, use the results of §2.4.3 to find a minimal consecutive
cut.

e If not, use the algorithm of §2.6.4 to find a minimum compatible cut.

Remark 2.7.2. The optimality of the size of representation should be understood as the best
possible that can be obtained without making assumptions on the value of the numbers o; ; (7).
When these numbers are constant and known, this knowledge may be exploited to obtain a
minimal representation in the sense of linear system theory [67], which is normally better than
ours. A deeper investigation of the relations between the two approaches is an interesting
direction for further research.
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2.7.5 Backward transformation

To conclude the section, we make the remark that there are actually two ways to perform graph
transformations : the forward transformation on downstream places as above (Figure 2.18), or

the backward transformation on upstream places (Figure 2.19).

P
tl t1 ( }
e
P2
t 4@@ " t ‘t4

e

bs by b

Figure 2.19: Backward transformation of event graphs.

Remark 2.7.3. It is important to note that the backward transformation is not possible for
a general system of URE. A system of URE associated with the example of Figure 2.19 (before

transformation) is of the form :
X4(n) = F4(X1(n - 2)7 XQ(TL - 3)7 Xg(n - 4)) .

If we perform the backward transformation, the form of an URE associated with the new graph
has to be :

Xa(n) = F(G( Xi(n=2), H( Xo(n = 3), [( Xz(n=3)) ) ) ),

for some functions F,G, H and [ associated with nodes t4, by, by and bs respectively. In general
it is not possible to perform such a factorization of the original F4 function. It becomes possible
in MPR, because of the special form of the functions F; which are involved.

In the context of event graphs, the backward transformation is interesting since it results in a
graph which might be smaller than the one obtained with the forward transformation.

The example displayed in Figure 2.20 has the following property. If we apply a forward trans-
formation (after optimal legal retiming) the number of transitions is 7. However, a backward
transformation yields a graph with only 6 transitions. It is also interesting to note that in this
example, the size of the minimal (non compatible) cut in the dependence graph is 5. Therefore,
this is an example where one can find an intermediate system of size 6, (strictly between the size

of the smallest compatible cut and the size of the smallest cut) which allows a representation of
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Figure 2.20: Optimal forward and backward transformations of this event graph yield to systems
of different size.

the original system with disjoint matrices of size 6.

Determining an optimal backward transformation can be done using the previous results. In
fact, it corresponds to the optimal forward transformation on the reversed event graph obtained
by reversing the direction of all the arcs.

More generally, it is easy to come up with examples where the optimal transformation of an event
graph involves both forward and backward transformations. Finding an algorithm to compute
such an optimal mixed transformation is an interesting open problem.

2.7.6 Stochastic issues

The retimings used above for deriving optimal representations necessitate changes in the initial
condition and shifts in the indices of the sequences {o; ;,(n)}.

When these sequences are random, these changes may be unnecessary, depending on the perfor-
mances that are measured on the system.

Indeed, it is proved in Chapter 8 that stationary statistics of the MPR (such as asymptotic
growth rate, and limit distributions for finite differences) are insensitive to the initial conditions
under minimal stochastic assumptions on the sequences.



Chapitre 3

Graphical Approach of the Spectral
Theory in the (max,+) Algebra

Approche Graphique de la Théorie Spectrale dans ’Algébre (max,+)

Dans ce chapitre, on étudie plus particulierement les systémes (max,+) linéaires déterministes de
dimension 3. On propose un nouvel outil de description du comportement spectral. Il s’agit de
la représentation graphique des vecteurs propres et des domaines d’attraction dans un “espace
projectif additif”.

Ce chapitre est une adaptation de I’article [104]. Une version courte du méme article paraitra
en octobre 95 dans IFEE Transactions on Automatic Control [106]. Cet article a grandement

profité de nombreuses suggestions de Francois Baccelli et de Stéphane Gaubert. Sa présentation
a également été améliorée grice aux remarques de Damien Artiges et d’un rapporteur anonyme.
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In this paper, we study matrices in the (max,+) algebra. We introduce a new tool for describ-
ing the deterministic spectral behaviour of matrices of size 3 x 3. It consists of a graphical
representation of eigenvectors and domains of attraction in the projective space.

3.1 Introduction

Discrete Events Dynamic Systems (DEDS’s) are a common framework to represent communica-
tion or manufacturing networks. Petri Nets, and more precisely Event Graphs, are an example
of a formalism to study DEDS’s. Event Graphs model phenomena such as synchronization or
blocking. They have a simple interpretation in a nonconventional algebra, the (max,+) algebra.
The spectral theory of matrices in the (max,+) algebra is now well known. It can be tracked
back to Cuninghame-Green [49], Gondran and Minoux [77] or, for the Russian school, to Ro-
manovskii [123]. One of the main differences with the classical spectral theory is that there is
a unique eigenvalue for irreducible matrices. As a consequence, the main interest and difficulty
is to study eigenvectors associated with the unique eigenvalue. For a timed Event Graph, the
eigenvalue is exactly the mean cycle time (inverse of the throughput rate). On the other hand,
eigenvectors are associated with quantities such as : number of tokens in a place, waiting times
or idle times. Multiple eigenvectors mean multiple possible regimes for these quantities.

In this paper, we present the classical spectral results under a new light. We develop a tool for
describing the spectral behaviour of matrices of size 3x 3. It consists of a graphical representation
of asymptotic regimes in a projective space.

The paper is organized as follows. In Section 3.2, we define the (max,+) algebra. In Section
3.3, we propose, as an illustration, an example of a manufacturing model. In Section 3.4,
we review some results on the spectral theory in the (max,+) algebra. In Section 3.5, we
present also a complete spectral analysis of matrices of size 3 with the help of the graphical
representation mentioned before. Sections 3.6 and 3.7 are devoted to applications of the
graphical representation.

3.2 The (max,+) Algebra

We consider systems whose dynamic behaviour is driven by a recursive equation of the form :

zin+1) = lrgjaé(k(Aij—l—wj(n)),i:l,...,k. (3.1)

We allow A;; to be equal to —oo. Let us introduce some new notations.

Definition 3.2.1 ((max,+) algebra). We consider the semiring (RU{—oo}, &, ®). The law
& is “maz” and @ is the usual addition. We set e = —oo and e = 0. The element ¢ is neutral for
the operation & and absorbing for ®. The element e is neutral for ®. The law & is idempotent,
i.e. adba=a. (RU{e}, B, @) is an idempotent semiring or dioid. It is usually referred to as the
(maz,+) algebra (although it is not an algebra !, see [8], p.21]). We shall denote it by R q0.

In the rest of the paper, the notations “+,x” will stand for the usual addition and multiplication.
We will write ab for @ ® b, however, whenever there is no possible confusion. For example, for

a€R,al=a% =dxa.
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kak

max? max*
a€Rpumu €RE . (a@u); =a®@u; = a+ u,.

The matrix product is defined in a natural way, replacing + and x by @ and ® respectively.
Let A, B € REXF

max?

We define the product spaces RF We define the product of a vector by a scalar :

(A®B)Z] :mlax( zl‘I'Bl] @A21®Bl] .

The matrix-vector product is defined in a similar way.

With these notations, the basic evolution Equation (3.1) takes a very simple and convenient
form. It can be rewritten as :

r(n+1) = A®@z(n). (3.2)

Here z(n) = (z1(n),22(n),...,z5(n)) and A is a k X k matrix.

We consider the following “eigenvalue problem”. We want to find nontrivial solutions of the
equation :

AQu=AQu, (3.3)

where A € R¥*¥is an irreducible (see Def. 3.4.2) matrix, u is a column vector (the “eigenvector”)
and A is a real constant (the “eigenvalue”). We also define periodic solutions of the eigenvalue

problem.
Definition 3.2.2. A periodic solution (or regime) of period d is a set of vectors {u', ..., u®} of
kverifying Aut = Mt i=1,...,d—1 and Au® = Xu'. It implies that the vectors u', ... u®

are eigenvectors of A%,

The eigenvalue of a matrix A gives the asymptotic growth rate of A”/n (see Theorem 3.4.7 for
a more precise statement). On the other hand, eigenvectors and periodic regimes are related
with the problem of computing differences such as A"*lu — A™u or (A"u); — (A"u);. These

differences are related to many quantities of interest, see Sections 3.3 and 3.6. In this paper, we
focus essentially on eigenvectors and periodic regimes.

3.3 A Simple Manufacturing Model

There are two types of items which have to be assembled together to form a part. There is
a stock for each kind of item. We suppose that these stocks are infinite. Each time a part is
completed at the assembly line, a new request is sent to the storage facilities. New items are
then sent to the assembly line. We denote :

e « : operating time at the assembly line.
e ;1= 1,2 : communication time between the assembly line and stock i.

e v;,t = 1,2 : transportation time between the stocks and the assembly line.
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51

Item required

trans. 1

Item required
trans. 2

Figure 3.1: A manufacturing model and its Petri net representation.

We consider three daters (z;(n), ¢ = 1, 2, 3) associated with this system. The first two correspond
to the instants at which an item is sent from the stocks. The third one corresponds to the instants
at which a part is completed at the assembly line. For example, z3(n) is the n-th instant of
completion of a part at the assembly line. Then the (max,+) linear system corresponding to
this system is the following one :

€ € b1
r(n+1)=M®z(n), M = € € Ba | . (3.4)
ntoe to o

The eigenvalue of M is A = max (o, (81 +71 + @) /2, (B2 + v2 + @)/2) (see Theorem 3.4.3). It
corresponds to the mean cycle time, i.e. the inverse of the throughput of the system. One can
also compute, for example, the idle time of the assembly line between the completion of a task
and the beginning of the next one. Let us denote it by §. We have :

d(n)=as3(n) —azs(n—1) — . (3.5)

This example will be continued in Section 3.6.

This manufacturing system can be modeled using an Event Graph representation as shown in
Figure 3.1. Event Graphs can efficiently model systems with synchronization, fork-join properties
and/or blocking. It has been proved in Baccelli [4] that all Event Graphs can be described by
an evolution equation of the form of Equation (3.1). For more insights on all modeling aspects,
the reader is referred to Baccelli, Cohen, Olsder and Quadrat [8].

3.4 Spectral Theory in R,,,,

The spectral theory of irreducible matrices in R,,,, is now classical. Most of the results have
been proved by several authors independently. It makes it quite difficult to determine precise
attributions. It seems that Theorem 3.4.3 is due to Cuninghame-Green [49]. It was also proved
by Reiter [121] and Romanovskii [123]. Versions of Theorem 3.4.6 were proved in [123] [50] and
Gondran and Minoux [77]. Under the form proposed here, the result is from [44]. Theorem 3.4.7
is due to Cohen, Dubois, Quadrat and Viot [43] and [44]. For event graphs, a similar result was
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proved by Chretienne [42]. A complete treatment of the spectral theory can be found in [8]. For
the spectral theory of reducible matrices, the reader is referred to Gaubert [67] and Wende and
al [139]. A spectral theory for non finite dimensions is proposed in Dudnikov [58]. However, the
idea of illustrating the spectral behaviours by graphical representations in a projective space, as
in Section 3.5, is new.

3.4.1 General presentation

kxk

We recall that we want to find non trivial solutions of the equation Au = Au, where A € RZ77.

Definition 3.4.1. The graph associated with a matriz A is a directed graph having a number
of nodes equal to the size of A. It contains an arc from i to j iff A;; # €. The valuation of this
arc 1s Aj;.

Definition 3.4.2. A matriz A is irreducible if : Vi,j In >0 | (A");; > ¢ (or equivalently if
its graph is strongly connected). A matriz A is aperiodic if : In > 0, Vi,j | (A%);; > ¢.

kxk

From now on, we consider only irreducible matrices in R} 7.

Theorem 3.4.3. For each circuit of the graph of A, ( = {t1,t2,--- ,t;,t;41 = t1}, we define
its average weight by :

P(CQ) = (Ant, @@ Agyr, @ Ay ) /7

(here the division is the conventional one). Matriz A has a unique (non ) eigenvalue, A. It
satisfies the relation X = max¢ p(C), where the maximum is taken over all the circuits of (the

graph of ) A.

There might be several eigenvectors. An eigenvector has all its coordinates different from ¢ (due
to the irreducibility assumption).

Definition 3.4.4. We normalize a matriz by dividing (in R4, i.e. by subtracting in the
conventional algebra) all its entries by its eigenvalue.

A normalized matrix has e as eigenvalue. Eigenvectors and periodic regimes are invariant by a
translation of all the entries of a matrix by the same real constant. In the rest of the paper,
we will write the matrix we want to study in a positive form (i.e. with all terms > €) or in a
normalized form depending on which one seems more convenient.

Definition 3.4.5. For a matriz A, with eigenvalue X\, we define :

Critical circuit A circuit { of A is said to be critical if its average weight is maximal, i.e. if

p(¢) = A

Critical graph [t consists of the nodes and arcs of A belonging to the critical circuit(s). A
critical column (resp. line) of A is a vector A; (resp. A; ) where i belongs to the critical
graph. A critical term of A is a term A;; where 1 and j belong to the critical graph.

For a general graph, we define :
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Cyclicity The cyclicity of a strongly connected graph is the greatest common divisor of the
lengths of all the circuits. The cyclicity of a general graph is the least common multiple of
the cyclicities of its maximal strongly connected subgraphs.

To study the spectral behaviour of a matrix A, it is enough to know :
e The number of maximal strongly connected subgraphs (s.c.s.) of its critical graph.
e The cyclicity of its critical graph.

In the following, a matrix is said to be of type SCSj-CYCk if its critical graph has j s.c.s. and
a cyclicity of k.

The two following theorems justify the previous assertion. For a normalized matrix A of size k,

we define AT = A A2 P .- A*. We check that AT & A1 = At We check also that At

has the same critical columns (resp. lines) as A.
Theorem 3.4.6. Let A be a normalized matriz.

a. Critical columns A"ZT are eigenvectors.

b. For i,j belonging to the critical graph, =(A) and ﬂ'(Af'}) are different iff 1 and j belong
to two different s.c.s. of the critical graph.

c. Bvery eigenvector of A writes as a linear combination (in R,,q., see Section 3.4.2) of

critical columns A.‘LT .

Because of c., the vectors At

¥, 1 belonging to the critical graph, are called the extremal eigenvec-

tors.

Theorem 3.4.7. For an irreducible matriz A of size k and whose eigenvalue is X, there exist
integers d and N such that :

Vo> N, A"t =)o g 4",

Furthermore the smallest d verifying the property is equal to the cyclicity of the critical graph of
A. From now on, we will call it the cyclicity of A. A cyclicity of d will provide periodic regimes
of period d for the eigenvalue problem.

The good interpretation is that there exists an initial transient regime for the powers of a matrix
A. After the transient regime, the sequence {A"} becomes periodic (more rigorously, it is the
sequence {7 (A")} which becomes periodic, see Definition 3.4.9).

The term A7, can be interpreted as the heaviest path of n steps starting from ¢ and arriving at

j in the graph of A. Theorems 3.4.3 and 3.4.7 state that the asymptotic growth rate of A™ is
given by the circuits of A having the maximal average weight.

Definition 3.4.8. Let A be an irreducible matriz and N be the smallest integer such that
Vn > N, A7td = X8 @ A" (see Theorem 3.4.7). The matrices {A, ..., AN~} constitute the
so-called transient regime and the matrices {A",n > N} the stationary regime. We say that a
matrix A%, n > N is a stationary matriz associated with A, or the stationary version of A.
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3.4.2 The projective space

A “linear combination” (in R, ) of eigenvectors is an eigenvector, i.e. if u; and uy are eigen-

vectors and aq, ay € R, then (a1 @ up) & (ag @ ug) is also an eigenvector. In particular, if w is an
eigenvector and a € R, then oo ® u is also one. This motivates the introduction of an “additive”

projective space PRF.

Definition 3.4.9 (PRF). The “additive” projective space PR* is defined as the quotient of R*
by the parallelism relation :

u,vERk u~v<da € Rsuchthatu=a®@v.

Let  be the canonical projection of R* into PRF.

The projection w can be interpreted geometrically. It is the orthogonal projection on the hyper-
space orthogonal to the vector 1l = (1,...,1). The projective space PR is isomorphic to R*~1,

For irreducible matrices of size 2 or 3, we can represent, in R ~ PR? and R? ~ PR? respectively,
eigenvectors and periodic regimes modulo the parallelism relation.

Figure 3.2: The projective space PR?.

We illustrate this on Figure 3.2 for the matrix :

e =2
= ( -1 e ) '
This matrix verifies Rt = R. By Theorem 3.4.6, the extremal eigenvectors are 7(e,—1)" and
m(—2,e)’ and the set of eigenvectors is the set of linear combinations of these two points. It is

the strip represented in Figure 3.2. The line D, in Figure 3.2, is the hyper-space orthogonal to

the first bisecting line. To obtain the set of eigenvectors of R in PR?, we consider the orthogonal
projection on D.

Let us introduce a distance d(.,.) on PR* which we are going to call the projective distance.
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Definition 3.4.10 (projective distance). We consider x,y € PR*. Let u,v € R* be two
representatives of v and y, i.e. 7(u) =z and 7(v) = y.

d(z,y) =d(u,v) = @(UZ —v) @ @(1}2 — ;) .

K3

It is easy to check that d(z,y) does not depend on the representatives u and v. It is also easy
to check that it is a distance in PR*. It corresponds to the L, distance on the projective space

PR*, see Figure 3.3. We write either d(,y) or d(u,v) with a little abuse of notation. We have
the following property.

k

Proposition 3.4.11. Let A be an irreducible matriz of size k. Let u, v be two vectors of R}, ..

We have :

d(Au, Av) < d(u,v) .

There is no simple criterion to get a strict inequality. For a proof of this result see Proposition
6.3.8. As an easy corollary of Theorem 3.4.7, we obtain that for an irreducible matrix A, there

exists N such that Yu,v € R*, ¥n > N, d(A%u, A%v) = d(ANu, ANv).

Figure 3.3: Unit ball of the projective distance in PR?.

Let us represent the unit ball of the projective distance in PR®. The regular hexagon in Figure 3.3
is the section of the unit square (i.e. the unit ball of R®for the £, norm) by the projection plane.
The three represented axes are the orthogonal projection of the basis of R®. The represented
points are w(e) = w(e,e,e), w(er) = w(1,e,¢), w(e2) = 7w(e,1,¢e), w(es) = n(e,e,1) and
D =r(0.2,0.6,0.8)".

The practical way of representing a point X of PR? is to choose a vector (€ R?) in the parallelism
class of X and to draw it in the three axes obtained by projection of the orthonormal basis of
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R? (it is easy to check that the point we obtain does not depend on the representative in the
parallelism class). The point D of Figure 3.3 illustrates this. We have drawn two constructions :
one corresponding to (0.2, 0.6, 0.8) and the other one to (0.8, 1.2, 1.4) = 0.6 ® (0.2, 0.6, 0.8).

Let us illustrate what the “linear combination” of two vectors means in PR*. We consider
examples of dimension 3. Let u = (uy, uz,u3)’ and v = (v, v2,v3) be two vectors of R®. Let
A peR.

U U1 (1 U1
TAQ | ug | Gp@| va |)=x(] w2z |B-AN| v2 |).
us U3 us U3

Let us assume for example that we have,
Uy — v L Uy — U L U3 — V3.
Depending on the value of o« = p — A, there are four possible cases.
1. If @ < uy — vy, then 7(u & av) = 7 (u).
2. If ug — vy < oo < ug — vy, then 7(u® aw) = w(awy, ug, us)’.
3. If ug — vy < o < uz — vs, then 7(u @ av) = 7(avy, ave, us)'.
4. If uz — v3 < o, then 7(u @ av) = 7(v).

This particular example corresponds to the case of points 7 (e3) (7(u)) and 7(ey) (7(v)) in Figure
3.3. The “line” between 7(e3) and 7 (ey), in Figure 3.3, is the set of linear combinations of the
two points. When two values are equal in {u; — v;, ¢ = 1,2, 3}, the picture is degenerate (see
Figure 3.5, matrix D).

The regular hexagon of Figure 3.3 is the convex hull of the points m(e;), 7(e2) and 7w (es), i.e.
the set :

{77(05®61@ﬁ®62@7®63)7 0475776 Rmal’}-

Let us denote by 7(f1),7(f2) and 7(f3) the three other vertices of the regular hexagon. More
precisely, 7(f1) = w(e,1,1), #(f2) = 7(1,¢e,1) and = (f3) = #(1,1,€)’. One can check that the
convex hull of these points is the union of the segments [7(f;), 7(€)].

3.4.3 Change of basis

A matrix A of REXE can be considered as a “linear” operator on R¥. We want to have a formula
of change of basis for the matrix associated with a given linear operator. We are only interested

in permutation of the coordinates and translation of the origin.

Definition 3.4.12. Let o be a permutation of {1,...,k}. The matriz of permutation associated
with o is P defined by :

Py =€ Pji=¢e, Yj#o(i).
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Lemma 3.4.13. Let A be a k x k matriz and let A be the matriz associated with the same
operator in a new basis obtained from the original one by a permutation o of the coordinates.

Matriz P is the permutation matriz associated with ¢ and P~' is the one associated with o~ !.

We haveA:P_1®A®P.

We consider a matrix A. We denote by A the matrix associated with the same operator in a
new basis obtained from the original one by a translation of the origin of the projective space.
Lemma 3.4.14. Let A be a k x k matriz. Let u € R” be (a representative of)) the new origin

written in the old basis. In the new basis, we have A=P 19 AR P, where Py =u;, P =
g, Vi #j.

Proof. Let v = (vy,---,vg) be a vector written in the old basis and let © = (0, -+, 0)’ be this
same vector in the new basis. We have v; + u; = v;. We set Av = w and w = (wy,---,wy) and
(w1, ,wg) in the new and the old basis respectively.

(Aﬁ)z = (P_l QAR Pﬁ)i = (P_l ® AU)Z'
= (P_lw)i = w;

ad

It might be interesting to get another intuition on what a change of origin means. We present

now an interpretation suggested by the modeling of Stochastic Event Graphs. Let us consider
the communication graph associated with a positive and irreducible matrix A € REXF. We

consider that there is a clock associated with each node of A. Let u be a vector of R*. We
interpret u; as a date of occurrence of a first event at node ¢. Then (Au); is interpreted as the

date of occurrence of the second event at node j. In this framework, a “change of origin” is just
a change of the origin of time for some or all of the daters. It does not modify of course the
evolution of the system.

The critical graph of a matrix is not modified by a change of basis. Lemma 3.4.15 shows that
some bases have a particular interest.

Lemma 3.4.15. We consider a matriz A, irreducible, of size k. Let A be the eigenvalue and
u an eigenvector of A. Let P be the matrix of change of the origin associated with w. Let

A=P '@ A@P. We have the following property Vi, j € 1,--- , k, flij < A and Vp, q such that
(p,q) belongs to the critical graph (i.e. for all critical terms), we have flqp =\

Proof. We set e = (e,...,€)".

o= (@A DAy
J J

But we also have that e is an eigenvector of A, Ae = P~'APe = P~ Au = P~ 'Au = le. It
implies that Ve, @j flij = A, which proves the first part of the lemma. Let us suppose there
exist p, ¢ such that (p, ¢) belongs to the critical graph and flqp < A. There is a critical circuit

involving the arc (p,¢). Using the first part of the lemma and flqp < A, we conclude that the
mean weight of this critical circuit is strictly smaller than A, which is a contradiction. O
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3.4.4 Classification

The set of eigenelements of a matrix is the set of eigenvectors and periodic regimes. FEach
spectral behaviour corresponds to a specific form for the set of eigenelements. It is possible
to prove that this set is compact iff the matrix is aperiodic (Def. 3.4.2). In the following, we
restrict our attention to aperiodic matrices.

It is enough to study the sets of eigenelements for some canonical matrices of each spectral type

scsp-cycl. Let A € REXE be a given irreducible and aperiodic matrix. Its set of eigenelements

can be obtained from the one of a canonical matrix by applying an homothety and a translation.
Next algorithm propose a systematic way to determine the canonical matrix associated with A
and to determine the homothety and the translation.

Algorithm

Step 1. Find the eigenvalue and normalize A.

Let A be the eigenvalue of A. Normalize matrix A. For sake of simplicity, we keep the original
notation, i.e. A := A — A. The set of eigenelements is not changed by the normalization.

Step 2. Find an eigenvector of A and write A in a new basis.

Let u be an eigenvector of A. Consider a new basis obtained from the original one by a translation
of w of the origin. For simplicity, we keep the notation A for the operator in the new basis. By

Lemma 3.4.14, we have A := P~YAP, where P;; = u;, Pj =£,1 # j.
By Lemma 3.4.15, all critical terms of A are now equal to e and all non-critical terms are less
than or equal to e.

Step 3. Determine the spectral type of A.

Compute the number of strongly connected subgraphs (p) and the cyclicity (/) of the critical
graph. The spectral type of A is sesp-cyecl.

Step 4. Compute the projective size of A.

Compute the matrix A' and the matrix (A')*. Let C be the set of couples (i, j) such that A ;
is a critical column (Definition 3.4.5). We set oo = |min(i7j)eC(Al);; . We call « the projective

size of A. If o # 1, we scale the matrix A. We set A := A/a , each entry of A is divided (in the
conventional algebra) by «a.

Step 5. Check non-critical terms of A. Final classification.

Consider the terms (Al);»l'j for the couples (i, j) such that (¢, j) € C and (%, j) is not a critical arc.

If they are all equal to —1, matrix A is said to be regular. We say that the set of eigenelements
of A has a basic form. If they are not all equal to —1, the set of eigenelements is modified and
is said to be non-basic.

With this algorithm, we have associated with the original matrix a canonical matrix. Let S
be the set of eigenelements of the canonical matrix. To obtain the set of eigenelements of the
original matrix, it is necessary to apply to S :
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1. An homothetic transformation of center e = (e,...,e)" and ratio o, where « is the
projective size defined in Step 4.
2. A translation of u, where u is the eigenvector computed in Step 2.

Remark For some details on the practical implementation of this algorithm and for complexity
results, see Chapter 5.

For matrices of dimension 3, a graphical representation of the sets of eigenelements of canonical
matrices is proposed in §3.5.

3.5 Illustrated Spectral Theory in Dimension 3

We are ready to take a closer look at irreducible and aperiodic matrices of size 3. Using Theorems
3.4.6 and 3.4.7, it is easy to show that there are only six possible spectral behaviours, which can
be sorted in four categories.

e scsl-cycl e scs3-cycl and scsl-cyc3.
® scs2-cyc? e scs2-cycl and scsl-cyc2.

For each spectral type, we are going to draw the set of eigenelements, in PR®. We will also
represent the domains of attraction of the different eigenelements. For a matrix A, we call
domain of attraction of an eigenvector (resp. of a periodic regime) the set of initial conditions
{0} such that 7(A"zq) converges to that eigenvector (resp. periodic regime). By Theorem
3.4.7, this convergence occurs in finite time.

Regular sets of eigenelements have been represented for each spectral type, see Table 1. Examples
of non-regular sets are also given for each spectral type, see Table 2.

Spectral type | Figure n° Spectral type | Figure n°
scs3-cycl 3.4 scs3-cycl 3.5
scsl-cyc3 3.6 scsl-cyc3 3.7
Table 1. scs2-cycl 3.8 |’ Table 2. scs2-cycl 3.9
scsl-cyc2 3.8,3.11 scsl-cyc2 3.9,3.10
scs2-cyc2 3.12 scs2-cyc2 3.13

3.5.1 Scs1-Cycl

Let A be a scsl-cycl matrix. We denote by v the unique eigenvector of A. By applying Theorem
3.4.7, we obtain :

AN, Yn > N,Vug € RF, w(A"up) = 7(v).

The domain of attraction of 7(v) is PR*. This case is of special importance for stochastic models
(see Chapter 6). There is no figure corresponding to this case as the spectral behaviour is trivial.



3.5 Illustrated Spectral Theory in Dimension 3 84

3.5.2 Scs3-Cycl and Scs1-Cyc3

If Ais a scsl-cye3 matrix, then A% is a scs3-cycl matrix (but the converse is false !). TFor
example,

where (.) stands for —1.

Figure 3.4: scs3-cycl, set of eigenvectors of B.

We consider first the scs3-cycl case. There are three extremal eigenvectors and no periodic
regime of period greater than one (Theorems 3.4.6 and 3.4.7). Let us consider more specifically
the matrix B defined in (3.6). It is a normalized matrix and we check that BT = B? = B. By
Theorem 3.4.6, the three columns By, By and Bjs of B are the extremal eigenvectors. The set of
eigenvectors is the R,,,, convex hull of these three eigenvectors. In Figure 3.4, it is represented
in dark gray.

If the initial condition ¢ is in the light gray zone number ¢, then the limit value of #(B"z¢) is
7(B;). If the initial condition is in one of the white strips, then the limit value is the nearest
point for the projective distance (and this limit is attained in one step as B? = B). For example,

for initial conditions ug or uy (resp. vy or v}) the limit value is u (resp. v).

We will now consider what happens if we modify the non-critical terms of the matrix B. We
consider three different examples to illustrate it.

€ .. e —0.6 . € . —%
C=| -+ e . |,D=[. e 06|, E=| -02 e . ,
. € . . € —-0.2 —% €

where (.) = —1. We have represented the sets of eigenvectors of these matrices in Figure 3.5.
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Figure 3.5: scs3-cycl, sets of eigenvectors of (', D and F.

We can represent these sets using the procedure described in Section 3.4.2. Let us consider the
matrix C' for example. We represent the three columns of Ct = C, 7(C}), 7(C3) and 7(C5).
The convex hull of these three points is the set of eigenvectors of C'.

Now we consider the case of scsl-cyc3 matrices. There is only one eigenvector but there are
periodic regimes of period 3. The set of periodic regimes of period 3 of a scsl-cye3 matrix M is

equal to the set of eigenvectors of M?>. Let us consider more specifically the matrix A defined in
(3.6) above. It is easy to check that the unique eigenvector of A is e = (e, e, ¢e)’. We know the
form of the set II of periodic regimes of A (it is the set of eigenvectors of A% = B, see Figure
3.4). To go further, we want to characterize, given an initial condition « # e in the hexagon II,
the periodic regime associated with u. By Theorem 3.4.7, this periodic regime is {u, Au, A%u}.
We have A%u = u which implies d(A%u,e) = d(u,e). By Proposition 3.4.11, we have that :

d(A%u,e) < d(A%u,e) < d(Au,e) < d(u,e).
We conclude that :
d(A%u,e) = d(Au,e) = d(u,e) .

The points of a periodic regime are at a constant distance (for the projective distance) of
the unique eigenvector e. Furthermore, the three points {u, Au, A%u} must be invariant by a
permutation of the three projective axes which characterize them completely. The direction of
rotation depends on the critical circuit. It will be counter-clockwise if the critical circuit (1,2, 3)
and clockwise if it is (1,3,2). For example A and A? have the same set of periodic regimes but
opposite directions of rotation.

We have represented in Figure 3.6, the set of eigenelements of matrix A. If the initial condition
is in one of the gray zones, then the stationary periodic regime is {7(A1),7(A43),7(As)}. If the
initial condition is in one of the white strips, the limit regime consists of three points on the
boundary of the hexagon. For example for an initial condition wug or ug, the limit regime is

{uy, ug, us}. More precisely, we have :

m(Auo) = m(w), m(A%uo) = m(uz), 7(A%u0) = 7(us), T(A*uo) = w(wa), ...,

m(Aup) = 7 (us), 7(A%uf) = 7(u1),... .
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Figure 3.6: scsl-cyc3, set of periodic regimes of A.

If the initial condition u belongs to II, the stationary periodic regime is {u, Au, A?u}. We have

also drawn an example of such a regime ({v1, vs, v3}).

What happens if we perturb non-critical termsI” To describe it, it will be useful to define the
notion of sub-diagonals.

Definition 3.5.1. Let M be a matriz of size k. We call i** sub-diagonal of M the terms

{Miy, Miya2y o s Migp—iggr—is Miogn—is - oo, Mici g} = {Mi_iyi iy VA)

For example, the first sub-diagonal is the diagonal of the matrix ! For the matrix A above, the
critical sub-diagonal is the second one. If we increase a non-critical term (i.e. a term of the first
or third sub-diagonal), after a transient regime, the whole sub-diagonal will be equal to this
term. Let us consider an example.

a by e a b e b e a
A= e — W= e a b |, AV=a b e],...,
by e b e a e a b

with () = =1, =1 < a,b1,b3 < e, b = by @ by' This provides us with specific pictures for the
sets of periodic regimes. When we increase continuously a non-critical term, this set evolves in
the same manner as the diaphragm of a camera. Let us illustrate it in Figure 3.7.

—0.8 . e —-0.5 . €
F= e -0.8 . , G = e -0.5 . ,
€ —0.8 . e —-0.5

'The projective size of matrix A’ is here inf (a,b), see Stage 6 of the algorithm of Section 3.4.4.
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—-0.2 . €
H= e —-0.2 . , () =-1.

Figure 3.7: scsl-cyc3, sets of periodic regimes of F', G and I1.

When the terms of the diagonal become equal to e, we obtain a scsl-cycl matrix with e =
(e,...,e)" as the unique eigenvector. When the terms of the diagonal become greater than e,

then we get a scs3-cycl matrix for which the set of eigenvectors is similar to the one of Figure
3.4.

Remark In the cases we have been dealing with so far, domains of attraction had a very easy
algebraic characterization. In fact for a matrix M and an initial condition u, the limit value
of #(M™u) was the “nearest” (for the projective distance) eigenvector or periodic regime. This
characterization will not be always true for the examples to come which makes the description
of domains of attraction more delicate. For more insights, see Proposition 4.4.1.

3.5.3 Scs2-Cycl and Scs1-Cyc2

In the same way as previously, if M is a scsl-cyc2 matrix then M? is a scs2-cycl matrix, the
converse being false. For example,

I=(e . . |,J="=.¢ . |,0)=-1,

Let us consider the scs2-cycl case and more precisely the matrix J. By Theorem (3.4.6), there
are two extremal eigenvectors 7(.J1) and 7(.J3) (the first two columns of J* = J? = J) and no
periodic regime of period greater than 1. In Figure 3.8, we have represented eigenvectors and
domains of attraction for .J.

There is a symmetry axis for the whole figure (corresponding to the fact that matrix J is
unchanged by a permutation of the first two columns). The set of eigenvectors is given by the
linear combinations of 7 (.J1) and 7 (J3). As opposed to the scs3-cycl case, no eigenvector has a
domain of attraction restricted to itself. If the initial condition zg is in the gray zones 1 or 2,
the limit value of 7(J*zo) will be 7(J;) or 7(J) respectively. If it is in zone 3, then the limit
value will be 7(j) = n(e,e,—1)". When the initial condition is in one of the white strips, the
limit value is given by the arrows. For example, if the initial condition is wug, uy or ug, the limit
regime is u.
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Figure 3.8: scs2-cycl (resp. scsl-cyc2), set of eigenelements of .J (resp. I).

The picture remains the same for matrix I which is scsl-cyc2. There is only one eigenvector
which is 7(j) = n(e, e, —1)". The “line” between 7 (.J;) and 7(J3) is the set of periodic regimes
of period 2. Two points of this set belong to the same periodic regime if they are “symmetric”
with respect to 7(j). For an initial condition in zone 3, the limit regime is the eigenvector 7 (j).
For an initial condition in zones 1 or 2, the limit regime is {7 (J1), 7(J2)} and so on.

We want to analyze what happens if we modify non-critical terms. We have to distinguish
between modifications of terms belonging to critical columns (columns 1 and 2 here) and of
terms belonging to non-critical columns. If we modify a term belonging to a critical column,
the set of eigenvectors (obtained as the convex hull of critical columns) will also be modified.
On the other hand, it is possible that a modification of a term of the non-critical column does
not affect the set of eigenvectors but only the domains of attraction. Let us illustrate this idea
on Figure 3.9. It corresponds to the matrices :

e . —05 e . 0.5
K= . e . L= . e . , () =-1.
-2 .. =2

For matrix K, the set of eigenvectors is not modified, but the domains of attraction are. Figure
3.9 has to be interpreted in the same way as previously. The extremal eigenvectors are 7(K7)
and 7 (K3), the critical columns of K. The gray zones 1 and 2 are the domains of attraction of
7(K4) and 7(K3) respectively. If the initial condition ug is in zone 3, the limit value of 7 (K ")
will be (k) = 7(1,0.5,¢)".

Matrix L is not stationary, see Definition 3.4.8. In fact, The stationary matrix associated with
Lis:

the domains of attraction and the set of eigenvectors are modified. In fact, The stationary
matrix associated with L is :

e =05 0.5
=1 . e —05],()=-1.
—0.5
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Figure 3.9: scs2-cycl, sets of eigenvectors of K and L.

For matrix L?, a term of a critical column has been modified. As a consequence, the domains
of attraction and the set of eigenvectors are modified. The extremal eigenvectors 7(L}) and
7(L3) are the critical columns of matrix L% In this example, zones 1 and 3 have melted. They

constitute the domain of attraction of 7(L?).

Let us now consider what happens when we modify non-critical terms of a scsl-cyc2 matrix,
M. The analysis made before remains valid. The set of periodic regimes of M is exactly the set
of eigenvectors of the scs2-cycl matrix M2. One interesting point to notice is that there might
be no symmetry axis although all the stationary regimes are periodic of period 2. Figure 3.10
provides an example of this behaviour. It corresponds to the matrix :

0= e . . , () =-1.
-05 . —1.5

Let 7(O%) and 7 (O2) be the two extremal points of the set of periodic regimes (i.e. the critical
columns of O, the stationary version of O). The unique eigenvector, (o) = (e, e, —0.5)" is
the point of the set of periodic regimes equidistant (for the projective distance) from 7 (O7) and

7(O3). A periodic regime consists of two points equidistant from point 7 (o).
The interpretation of the domains of attraction is the same as previously.

We have now to consider a special case of scsl-cyc2 matrices. It is a matrix whose critical graph
contains two circuits of length 2. Let P be such a matrix. The critical circuits of the graph of
P are (1,2) and(2, 3). From the point of view of its behaviour, this matrix is not very different
from a scsl-cyc2 matrix with only one critical circuit of length 2. In Figure 3.11, we compare P
with a matrix having the same set of periodic regimes but only one critical circuit of length 2,
matrix .

P={ec . el 0=c. . ), 0)=-1.
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Figure 3.11: scsl-cyc2, a special case with two critical circuits of length 2, set of periodic regimes

of P and Q).

For matrix P, the limit regime is (7(P;), 7 (F%)) for an initial condition in zone 1 or 2. The
unique eigenvector, 7(e) = 7 (e, e,€)’ has a domain of attraction restricted to itself. For matrix
Q, the limit regime is (7(Q1),7(Q2)) for an initial condition in zone 1 or 2. For an initial
condition in zone 3, it is the eigenvector m(e).

Remark All matrices having the same critical graph as P have exactly the same spectral
behaviour as P. More precisely, let us consider a matrix P obtained by modifying the non-

critical terms. Its stationary version is denoted PN (Definition 3.4.8).

P= e w3 € ,Oéi<€,PNI o = max «; .

1=1...5

g o L2

€
(87
€

g o L2

According to Stage 6 of the algorithm, the figure corresponding to P is obtained from the one
of P by an homothetic transformation of center 7 (e) = x(e, e, e)’ and ratio |a|.
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Remark In this section, matrices I to O are such that the critical columns are 1 and 2. If we
consider a matrix which is scs2-cycl or scsl-cyc2 but with different critical columns, one can get
back to the previous cases by a permutation of the coordinates. It means that the corresponding
picture can be obtained from the ones of this Section by performing a rotation of center e.
The same kind of remark applies to matrices which are scsl-cyc2 and have 2 critical circuits.
All figures corresponding to such matrices can be obtained by a rotation of Figure 3.11, matrix
P. The same kind of remark is also valid in the forthcoming case of scs2-cyc2 matrices

3.5.4 Scs2-Cyc2

The basic example of such a matrix is :
R=|e . . |,()=-1.

If a matrix M is scs2-cyc2 then the matrix M? is scs3-cycl. To find the set of eigenelements of

a scs2-cyc2 matrix M, one has to determine the set of eigenvectors of the scs3-cycl matrix M?
(see Section 3.5.2).

Let us represent graphically eigenvectors, periodic regimes of period 2 and domains of attraction
of matrix R in Figure 3.12.

" e 7(Rs)
\ < w(r)
7T(R3 V> /ﬂ'(Rl)

©

Figure 3.12: scs2-cyc2, set of eigenelements of R.

There is a symmetry axis for the whole figure (matrix R is unchanged by a permutation of the
first two coordinates). There are two extremal eigenvectors, 7(Rs3) and 7(r) = n(e, e, —1)". The
set of eigenvectors (the interval [m(R3),w(r)]) splits the set of periodic regimes in two equal
parts. The two points of a periodic regime of period 2 are symmetric with respect to the set of
eigenvectors. The analysis of domains of attraction is analog to the one of the scs3-cycl case. If
the initial condition belongs to the zones 1 or 2 (resp. 3), the limit value is the periodic regime
{m(R1),7(R2)} (resp. the eigenvector 7(R3)). If the initial condition belongs to one of the three



3.5 Illustrated Spectral Theory in Dimension 3 92

white strips, the limit regime is a periodic regime of period 2, corresponding to the “nearest”
point on the hexagon and its symmetrical point.

We have now to analyze what happens if we modify non-critical terms. The cases we have
already considered are enough to understand what is going to happen. We will represent two
characteristic examples in Figure 3.13, corresponding to matrices S and 7.

a e e ¢
S=1 e . T= e d |, ()=-1
b e e

The reals a, b, ¢ and d must satisfy the following constraints (in order for our matrices .S and 7'

to be scs2-cyc2) :
—1<a<e —1<b<1, -1<e< ], -1 <d< 1.

The stationary versions of the matrices are :

a e e cdd
SP=1 e a LT =1 e chdd |, ()=-1
b b e e

Figure 3.13: scs2-cyc2, sets of eigenelements of S and T.

The graphical representations of Figure 3.13 correspond to ¢ = —0.2,b = —0.5,¢ = —0.5 and
d=-0.9.

3.5.5 Transient regimes

We will now take a closer look at transient regimes of matrices. The matrices we have been
considering so far were chosen in order to be stationary or at least to have a very short transient
regime. To emphasize the transient behaviour, we will, on the other hand, consider matrices
with long transient regimes. The length of the transient regime is closely related to the “second
eigenvalue” of the matrix, i.e the second largest circuit weight (see [44]).
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First of all, one has to remark that a matrix can have an arbitrarily long transient regime. Let
us take an example.

B e —1 2 € -1
U_(—l _77)70<77<<17U—(_1 _2><77)7

n __ € —1 2 N e -1 g
(o Yo o () e

The length of the transient regime is thus [%] The matrix U is scsl-cycl, its unique eigenvector
is 7(u) = w(e,—1)". As we have seen previously, it implies that lim, 7(U"v) = 7 (u), Yo € R*.

Let us consider the initial condition v = (e,3). We have 7 (Uv) = m(e,1 — n), 7(U%u) =
m(e,1—=2%x7),....

/’ ,/// oy //:’_\\ N

\ / W ’ \ )

\‘ \ }%x]/ﬂ/ﬂ/ﬂ %\ ( (
m(v) = m(e, 3) m(e, 1 —n) m(u) = n(e, —1)

Figure 3.14: scsl-cycl, dimension 2, transient regime of U.

We have represented on Figure 3.14, the sequence {m(U™v)} in the projective space PR?. We
have also represented the same sequence for three other initial conditions. We are now going to
present analog figures corresponding to matrices of size 3.

First of all, we consider the example of scsl-cycl matrices.

e . . € . :
V= . . —p |, w=[. -2 -5 ), 0<n<1, ()=-1.

Both matrices have the same stationary version :

€ . .
imV¥=limWrk=|[ . -2 -2 |, ()=-1.
k k _9 _9

We have represented the transient behaviours of matrices V and W in Figure 3.15. Matrix V
is obtained by a small perturbation of matrix R (Section 3.5.4, Figure 3.12). The transient
behaviour reflects it, as the figure we obtain is very close to Figure 3.12. As a comparison, we
have also represented the matrix W whose behaviour is asymptotically identical.

Let us comment on the figure corresponding to V' a little further. The three points 7(V;), 7 (V3)
and 7w (V3) are the projections of the columns of matrix V. If the initial condition is in zone 1,
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Figure 3.15: Dimension 3, scs2-cyc2, transient regimes of V' and W.

there is convergence in one step to 7(Vy) = w(e,—1,—1)’, the unique eigenvector. If the initial
condition is in zone 2 (resp. 3), we have n(Vag) = 7(V3) = n(=1,—-1,—n) (resp. m(Vag) =
(V) = w(=1,-n,—1)"). We have represented the whole sequence {r(V"z¢)} for an initial
condition 7(z¢) = 7(V3). For an initial condition in one of the three white strips, for example
let us consider ug (or ug), then 7(Vug) (or m(Vuyg)) is the point pointed by the arrow in the
picture (it is the symmetric of the “nearest” point on the set Im(S)). For initial condition w,

we have also drawn the beginning of the sequence {m(V"u()}.

For matrix W, the set of periodic regimes is the same one as V. But the domains of attraction are
quite modified. It emphasizes the possible influence of transient regimes, especially in stochastic
models. Here we have drawn the sequences {7 (V" ug)} (or part of them) for several different
initial conditions. One of them is in zone 2, another one in the white strip between zones 2 and
3 and the last one is on the symmetry axis.

We consider now the transient regime of a scs2-cycl matrix.

Z=1 . e . ,0<yp<l, ()=—-1.
)

The stationary regime of 7 is matrix .J, the basic scs2-cycl matrix (Section 3.5.3). We can also
view Z as a small perturbation of matrix A the basic scs3-cycl matrix (Section 3.5.2. Figure
3.16 reflects these remarks.

The extremal eigenvectors are 7(Z1) and 7(Z3), the first two columns of Z. The point = (z) is
m(e,e, 1 —mn)". If the initial condition is in zone 1 (resp. 2) we have convergence to 7(Z1) (resp.
7(Z3)) in one step. The hexagon represented in dotted lines is Im(Z) = Z(R?3). For an initial
condition 7 (u) in one of the white strips, 7 (Zu) is the closest (for the projective distance) point
on the hexagon Im(Z). Then there is convergence of m(Z"u) to the eigenvector of Z which is
the closest to 7(Zu) (it is not necessary the closest to 7(u) !) We have represented, in Figure

3.16, the whole sequence {7(Z"xz¢)} for several different initial conditions.
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Figure 3.16: Dimension 3, scs2-cycl, transient regime of 7.

3.6 Application to the Manufacturing Model

We consider the manufacturing model of Section 3.3, Figure 3.1. Matrix M in (3.4) is either

scsl-cyc2 or scsl-cycl, depending on the values of o, 3; and ;. As an example, let « =2, §y =
2, B =1, 1 = 2 and vy = 0. We obtain :

e ¢ 2
r(n+1l)=M®ezn), M=1] ¢ ¢ 1
4 2 2
The eigenvalue of the matrix is :
M M.
A:$:3_

The circuit (1,3) is the unique critical circuit. Hence matrix M is scsl-cyc2. The unique
(in the projective space) eigenvector is w(ug) = 7(1,e,2). The set of periodic regimes is
{7(uy), 7(vy)} = {7 (1+n,1,2),7(1,e,24n)},n € [e, 1]. We have represented the set of eigenele-
ments of matrix M in Figure 3.17.

Let us consider a specific periodic regime {u,, v,}. We suppose that the system is in this regime,
ie. m(z(2n)) = m(u,) and 7(z(2n + 1)) = 7(v,). We recall the definition of the idle time as
given in Section 3.3, §(n) = z3(n) — z3(n — 1) — a. We have :

0(2n) = 14 (uy)s = (vg)3, 020+ 1) = 1+ (vg)3 = (ug)3 -

We see that the idle time of the assembly line depends on the periodic regime of the system.

In many practical cases, it is interesting to have a stationary regime such that the idle time is
constant. It implies that the stationary regime has to be the eigenvector ug. We also want to
have a control which consists in choosing the initial condition. We conclude that we have to
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Figure 3.17: scsl-cyc2, manufacturing model, set of periodic regimes of M.

choose the initial condition in the domain of attraction of ug. This domain can be observed on
Figure 3.17. It corresponds to the vectors :

{7(1,2,2), x €] — 00,3]} U {r(x,2,1), v €] — 0, ¢€]}. (3.7)

Suppose now that we want to minimize the minimal idle time. We still want to have a control
which consists in choosing the initial condition. The minimal idle time is :

d=mind(2n),52n+ 1) =min (1 —n,1+n)=1-17.

So we minimize § for n = 1, i.e. for the periodic regime {u,v;}. We have to choose the initial

condition in the domain of attraction of {uy,v;}. This domain is the union of zones 1 and 3 on
Figure 3.17.

The graphical representation has enabled us to illustrate a control problem in a manufacturing
model. As simple as the problem is, we see that the sets of solutions (for example the one given
in (3.7)) are far from being simple or intuitive. It enables one to get an idea of the potential
complexity of this kind of problems.

3.7 A Projectively Infinite Semigroup of Matrices

We consider a finite number of matrices A4;,..., 4, € REXk - We denote respectively by <

max*

Ar,..., A, > and 7< Ay, ..., A, > the semigroup generated by Ay,..., A, and its projection.

<Ay, Ay >=H{(Auy A Ay s ta, .. un € {1, ..., p), N finite}

< Ay, Ay >=A{r (A, A Ay )y wgy .o un € {1, ..., p}, N finite} |

where 7 is here the canonical projection of R¥X% into PREXE. The problem we are interested

in is the finiteness of 7< Ay,..., 4, >. It is in fact a version in the (max,+) algebra of the

classical Burnside problem (see Gaubert [70]).
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Let us consider the projective semigroup generated by a single irreducible matrix 7< A >=
{m(A"),n € N}. Theorem 3.4.7 tells us that 7< A > is finite.

Remark [t is the finiteness of the projective semigroup and not the finiteness of the semigroup
which is interesting. Indeed any irreducible matrix A with an eigenvalue different from e is such
that < A > is infinite.

A slightly stronger version of next theorem was proved in [70], see also Proposition 6.5.4.

Theorem 3.7.1. Let Ay,..., A, € QFxE. We assume that :

max”
Vu € {17 .. -vp}vv(ivj)v (Au)m > €.
Then the projective semigroup m<< Ay, ..., A, > is finite.

This theorem can not be extended to the case of matrices with non rational entries. We are
going to propose a counter-example.
We consider the semigroup generated by the matrices :

-m . . (& . . e . .
Al = . € . s A2 = P/ I s A3 = . € . s

e . . € .. =13

where (.) = —1, 0 < n; < 1 and 7; ¢ Q. We suppose also that ;/n; € Q, ¢,7 € {1,2,3}, ¢ # .
An easy way to show that the semigroup m< Ay, Ay, As > is infinite is to consider the initial con-
dition e = (e, e, €)’ and to prove that Il = 7(< Ay, A3, Az > e) = {w(Me), M €< Ay, Ay, Az >}
is infinite. We obtain a nice illustration of the phenomenon with the help of the graphical
representation in the projective space.

A
A matriz Ay
g : matriz A
ﬁ : matrix As
- RN

Figure 3.18: A finitely generated but projectively infinite semigroup of matrices.

The extremal eigenvectors of Ay, A; and As are respectively (7(ez), 7 (e3)), (7(e1),7(e3)) and
(m(e1),7(eg)). Figure 3.18 shows the effect of applying matrices Ay, Ay and Az to a vector.
Figure 3.18 is analog to Figure 3.16 but with three different transient regimes interacting.
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For a point u = (uy,ug,us)" such that d(u,e) < 1 —sup;_y 3%, where d is the projective
distance (Definition 3.4.10), we have :

U1 — " (1 (51
Ayu = U9 , Aqu = Uz — 12 , Asu = U2

us us U3 — 73

It is easy to prove that Il is dense in the hexagon H delimited by m(ey), 7(e1) and 7(es). In fact
let us consider three integers Ny, Ny and N3 such that :

sup (N;xn;) — inf (N;xm) <1.
i=1,2,3 1=1,2,3

Then it is quite obvious that there exists a matrix M € < A,B,C >, M = A,, @ ---Q Ay,
verifying : with N = Ny 4+ Ny + N3 where :

]\721\71—|—]\72—|—]\737 NZI#{R|Aun2A2}7’LIl72737
=Ny x'm

Me = —N2 X M2
—N3 X 13

In fact it is easy to understand, watching Figure 3.18, that we will obtain this formula for Me

iff Yn e {1,...,N}, 7(A,, @---@ A, e) belongs to the interior of the hexagon #.

Let us consider an arbitrary point 7(v) in the interior of the hexagon H. As n, 72, 73 are not

co-rational, there exists a sequence of integers N and a sequence of matrices {1\4(”)7 M e«
Ay, ..., A, >} with the following properties.

e The length of M) is N(") j.e M®) = ASZ;)(”) Q- Q@ Agﬁ)-

o N = {1147 = A}, i=1,2,3,

_N1(n) X
r(MMe)=x [ — 2(n) x| =5 w(v) .
- ?En) X N3

Remark If we consider another initial condition u # e, we will in general obtain a set of
reachable points 7(< Ay, ..., A, > u) dense in the hexagon H and whose intersection with II is

empty. Let us now consider a Markov chain x(n, 2¢) whose transition probabilities p(.,.) verify

Vv € R?naam p(ﬂ'(U),ﬂ'(Aﬂ])) = Pi, 1= 172737 pi > 07 prtp2t+p3= 1.

We take 7(e) as our initial condition. Then II is a set of transient states for the Markov chain.
Between the first and and the second hitting of the border of the hexagon H, the Markov chain
evolves on a set of transient states dense in the interior of H and whose intersection with II is
empty. It is however possible to show that the chain is positive recurrent. Points 7 (ey), 7(e2) or
7(e3) can be used as regenerative points (for example 7(A}" A% Abu) = 7(ey), Yu € R¥, when

n,n’ and n” are sufficiently large).
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3.8 Conclusion

The main contribution of this paper is the graphical characterization of the domains of attraction
of the eigenelements of a matrix. The drawback of the approach is that it considers only matrices
of size 3. However, it should be noted that for a general matrix, if the critical circuit is of size 3
or less, then the proposed approach applies. Moreover, the study of these 3x3 matrices provides
a good intuition of the general case. For example, in any dimension, the domains of attraction
will be “polyhedrons” and the sets of eigenelements, compact polyhedrons.

A C program has been written by Bruno Gaujal, which implements the algorithm of Sec-
tion 3.5. Given a matrix of dimension 3, this program provides the graphical representa-
tion of eigenvectors, periodic regimes and domains of attraction (as in Figures 3.4 to 3.13).
If you are interested in obtaining this program, send a request to gaujal@@sophia.inria.fr or
mairesse@@sophia.inria.fr.



Chapitre 4

Application in Cyclic Scheduling

Application & ’Ordonnancement Cyclique

On propose une application de la représentation graphique présentée au chapitre précédent.
Il s’agit d’illustrer des problemes propres a lordonnancement cyclique dans les systemes de
production.

Ce chapitre a bénéficié de nombreuse discussions avec Zhen Liu et Lucian Finta.
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4.1 Introduction

The scheduling problems that we are going to consider appear in manufacturing systems. We
have sets of jobs (or tasks) and machines. In general, the scheduling problem is to map in the
most efficient way the jobs on the machines. Our problem is a little bit different. We assume that
the mapping is given and we want to determine, in an optimal way, the initial delays between
jobs.

The basic model can be represented in the form of an oriented graph G with weights (in RT)
on the nodes and the arcs. A node corresponds to some tasks and its weight corresponds to the
execution time of that task. An arc corresponds to a precedence relation between two tasks and
its weight corresponds to the communication time between the tasks. Let us assume that there
is an arc from task ¢ to task j with weight 4. It means that the execution of task j can start
only & units of time after the completion of task ¢. Note that weights on nodes and arcs are
called execution and communication times respectively

One must distinguish between two different classes of problem.
1. Classical scheduling problem. In this case, there is a finite number of tasks to be executed.

2. Cyclic scheduling problem. There is a finite number of generic tasks, but each generic task
has to be processed an infinite number of times. This problem is modelled with a graph
as defined above. However, it is necessary to add a delay (with value in N) on arcs. Let
(¢,n),n € N, denote the n-th execution of task ¢. If there is an arc from task ¢ to task
J with delay [, it means that there are precedences from the tasks (¢,7n),Vn, to the tasks
(y,m+1),V¥n. This graph is precisely the reduced graph presented in Chapter 2 §2.2.2.

In the following, we consider the cyclic scheduling problem. It appears naturally to model mass
production in manufacturing systems.

There are different types of problems which can be considered within the framework of cyclic
scheduling. For a complete review on the subject, see Hanen and Munier [84]. We restrict our
attention to the so-called basic cyclic scheduling problem. 1t is assumed that the mapping of the
tasks on the machines is completely defined. The optimal schedule is the earliest schedule, also
called the “as soon as possible” schedule. Each task is executed as soon as all the preceding
tasks have been executed.

We have described above the cyclic scheduling problem as a weighted graph. As detailed in
Section §2.7, such a graph is also equivalent to an event graph. The as soon as possible evolution
can be represented by a (max,+) linear system, see §1.3 and §2.7. Practically, it is done by
constructing an equivalent graph where all the delays on arcs are equal to 1. This graph might
have more nodes, i.e. more generic tasks, than the original one. When all the delays are equal to
1, we define a (max,+) matrix A. The coordinate A;; corresponds to the sum of the execution
time of task ¢ and the communication time from task j to task 7.

As an example, we have represented in Figure 4.1 the reduced graph, (a part of) the dependence
graph and the (max,+) matrix of a given system. The graphical conventions are the ones
of Chapter 2. On the reduced graph, we have represented only the delays. FExecution and
communication times are represented on the dependence graph.
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Remark 4.1.1. It might appear unnatural to have execution and/or communication times
which are equal to 0, as in Figure 4.1. Such a matrix has been chosen for the sake of simplicity.
Exactly the same behaviour would be obtained for the matrix A + A where all the times have
been increased by a same constant.

Figure 4.1: Cyclic scheduling problem with 3 generic tasks.

We define the vectors of daters z(n) where z;(n) corresponds to the instant of completion of the
n-th occurrence of the generic task ¢. The vector zg is the initial condition. It corresponds to
the initial delays of the generic tasks (1,0),...,(k,0). The as soon as possible schedule (given
the initial condition z() corresponds to the (max,+) linear equation z(n) = A™ ® ao.

From now on, we work with the (max,+) matrix A € R¥X* and we assume that this matrix is

irreducible!.

The main problem of interest in such a model is to choose the initial condition zg in an optimal
way. From now on, we call “schedule” associated with an initial condition z¢ (in short : schedule
o), the earliest execution pattern {z(n) = A"zq,n € N}.

There are two main criteria for the performance evaluation of schedules.

1. The cycle time. It is the average time of execution of the set of generic tasks, i.e
lim,, max; z(n);/n.

2. The latency. The latency is the time elapsed between the first completion of a generic task
and the last completion of a generic task, i.e max; z(n); — min; z(n);.

The cycle time is the most important criterion. The latency is interesting, for example in
manufacturing systems when the tasks (objects) have to be packed together at the end of the
production line. Minimizing the latency will minimize the packing operation.

In our model, all schedules provide the same cycle time as a consequence of the spectral theory
in the (max,+) algebra, see Chapter 3 Theorem 3.4.3. The cycle time is the maximal eigenvalue
of matrix A. On the other hand, zg has a strong influence on the latency. When schedule zq is
a periodic regime, the latency will also be periodic. In this case, we define the latency as being
the average latency.

'In the reducible case, the latency, to be defined below, is often degenerate (equal to o). It is a non interesting

case for our study.
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Lemma 4.1.2. Let A € REXE be an irreducible matriz. Let xg be an eigenelement. The latency

of the schedule xq is d(e,xq) where d(.,.) is the projective distance (see Chapter 3 Definition
3.4.9).

The proof is a simple rephrasing of the definition of the latency. The problem we are going to
address in the following is to choose zg in order to minimize the latency. This problem was
considered by Lee [99]. In Parhi & Messerschmidt [116], they consider a specific question : is it
possible to choose zg in order to have a latency equal to 0. In this Chapter, our goal is not to
prove deep results. It is rather to illustrate the complexity of the phenomena involved and the
interest of the graphical approach to understand them. However, we will prove some results for
subclasses of (max,+) matrices in §4.4.

4.2 Periodicity of the Schedule

When deciding on a schedule, a first approach is to use the simplest one without computing
the eigenelements of the matrix A. In such a case, the most natural choice is to consider the
“as soon as possible” initial condition e = (0,...,0)". By monotonicity, this choice yields the
earliest execution of the daters z;(n), i.e.

(z(n,e) = A"€) < (z(n,29) = A"x), Voo @ Vi, (20); 2 0. (4.1)

On the other hand, such an initial condition might provide a transient regime (which can be
arbitrary long, see §3.5.5) and a p-periodic schedule with p > 1. This last point is illustrated in
Figure 4.2, where we propose the graphical representation of the matrix of Figure 4.1.

~

~r(Asg)

Figure 4.2: Graphical representation of matrix A.

Matrix A is scsl-cyc3. It has a unique eigenvector, 7(a) = 7(1,1,0). We have represented the
balls for the projective distance (see Chapter 3) of center 7(e) and respective radius 0.5, 1 and 1.5.
Starting from the initial condition e = (0,0, 0), one obtains a 3-periodic schedule corresponding
to the points m(A;),7(Az) and 7(As3). Starting from an initial condition zg = (1,1,0), we

obtain a 1-periodic schedule. Let us represent the schedules e and (1,1, 0) using Gantt charts.

2Gantt charts are a common representation for scheduling problems. Here, it is simply a representation of the
dependence graph incorporating the time.
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Figure 4.3: Chart [ : schedule e = (0,0,0)". Chart /] : schedule @ = (1,1, 0)".

We have materialized only the execution times and not the communication times on Figure 4.3.
The thin bars correspond to the execution times equal to 0.

In some cases, it might be important to avoid p-periodic regimes. We are going to explain why
using the language of parallel programs (but it is also relevant in manufacturing).

For parallel algorithms, there is an important distinction between schedules which are performed
at run time (dynamic strategy) or at compile time (static strategy). Following the terminology
of [131], we call them self-timed and fully-static schedules, respectively.

e Fully-static schedule. The instants of execution of the tasks are enforced by a finite state
controller (automaton). The controller is designed before the execution, at compile time.

e Self-timed schedule. Each processor has to synchronize with other processors without an
external control. This is done through the use of semaphore checks at run time.

For different reasons including the compared cost of controllers and semaphores, one might prefer
one solution or the other. When the fully-static schedule is the best solution, it is important to
minimize the number of states of the controller. In order to achieve this goal, it is necessary to
have a schedule which is as simple as possible. The simplest schedules are the 1-periodic ones,
they are associated with eigenvectors of the (max,+) matrix. For example, in Figure 4.3, the
1-periodic schedule of chart 1 is associated with the eigenvector (1,1,0) of matrix A.

To summarize what precedes, here are the three criteria which we would like, optimally, to see
verified by a schedule zg :

e P : Periodicity 1 = z( eigenvector.
e L : Minimal latency = 2 is such that d(A"zg, €) is minimal.

e S :as Soon as possible (Equation (4.1)) and Simplicity (no pre-computation) = z¢9 =€ =
(0,...,0)".
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More precisely, for a fully-static schedule the important criteria are P and L (S is irrelevant as the
pre-computation is necessary to build the controller). For a self-timed schedule, the important
criteria are L and S.

4.3 Graphical Illustration

We are going to illustrate the fact that the criteria P, L and S are not always compatible. We
start with a favorable example.

All the criteria can be satisfied

Let us consider :

2 & ¢ 3 2 2 -2 5 5 3 35 4
B = ¢ 0.5 ¢ ® 2 3 2 ® e =05 ¢ = 0.5 3 25 . (4.2)
e ¢ 0 2 2 3 e e 0 0 1 3

Matrix B has been written, in Equation (4.2), under a form which emphasizes that B is obtained
as a translation of a canonical scs3-cycl matrix, see §3.5.2.

Figure 4.4: Criteria P, L and S are satisfied at the same time.

The graphical representation of matrix B is proposed in Figure 4.4. We have only eigenvectors,
hence property P is always verified. We have represented B(1), the smallest ball with center 7 (e)
and intersecting the set of eigenelements. The intersection, the segment [7(m), 7 (n)], verifies
property L. We have represented in light gray the domain of attraction of [x(m),w(n)]. It
contains 7(e). We conclude that criteria P, L and S are compatible.

The criteria cannot be satisfied together



4.3 Graphical Illustration 106

In Figure 4.5, we consider:

2 ¢ ¢ 2 2 3 -2 5 5 2 25 b
C = e 15 ¢ @ 3 2 2 |® e =15 ¢ = 25 2 35
e ¢ 0 2 3 2 e e 0 0 15 2

Figure 4.5: Criteria P and L are not compatible with S.

Matrix ' is scsl-cyc3. The set of 3-periodic regimes is the ball delimited by the points
7(C1), 7(C3) and =(C3). There is a unique eigenvector, m(m) = =(2,1.5,0)’, hence a unique
1-periodic schedule. The set of eigenelements having a minimal latency is the ball delimited
by the points 7(C7), 7(C%) and 7(C%). For example, the latency of 7(m) is § = d(m,e) = 2.
The latency of the periodic regime (C7,C%,C%) is 6 = 1/3 X (d(C1,e) + d(Ch,e) + d(Ch,e)) =
1/3% (2542+1.5)=2.

From the initial condition e, we obtain the periodic regime (C7,C3, C'3) whose latency is 6 =

1/3x (3+3+1)=7/3>2.

In Figure 4.6, we consider:

—-05 ¢ ¢ 1 21 0.0 ¢ ¢ 1 15 1
D= 5 0 ¢ & 2 1 1 & e 0 ¢ = 25 1 1.5
e e 0 1 1 0 e e 0 1 05 0

Matrix D is scsl-cyc2. The set of 2-periodic regimes is [7(D3), 7 (m)]U [x(m), 7 (D1)]. There
is a unique eigenvector (1-periodic schedule) 7(m) = =(1,1.5,0). Its latency is 6 = 1.5. The
set of eigenelements having a minimal latency is [7(Dq), m(D%)]U [7(D]), 7(D1)]. Their latency
is 6 = 1/2x(1+1.5) = 1.25. The initial condition e belong to the domain of attraction of this set.

In order to further illustrate this example, we have represented, in Figure 4.7, the Gantt charts
associated with the schedules e and m = (1, 1.5,0)".
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Figure 4.7: Chart I : schedule e = (0,0,0)". Chart I : schedule m = (1,1.5,0)".

In Figure 4.8, we consider

0 ¢ ¢ 3 2 2 0 ¢ ¢ 3 1 3
F= e 1 ¢ & 2 3 2 @l ¢ -1 ¢ = 3 3 4
e ¢ —1 2 21 e ¢ 1 1 0 1

Matrix £ is scs2-cycl. The set of eigenvectors is [7(FEy), 7 (m)] U [x(m), 7 (£)]. The vector
e =(0,...,0) belongs to the domain of attraction of 7(m). The latency of 7(m) is § = 3. The
eigenvector m(F4) has a minimal latency § = 2.
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Figure 4.8: Criterion S is not compatible with L.

4.4 Quantitative Results

Here are some results for subclasses of (max,+) matrices.

Proposition 4.4.1. Let A € REXE be an irreducible matriz. We suppose that all the nodes
belong to the critical graph of A. Let 11 be the set of eigenelements of A, i.e. 11 = lim,, Im(A") =
lim,{u : I, A* @ v = u}. For all u € R¥, the limit of 7(A* @ u) is an eigenelement of A

containing at least one point minimizing the distance d(u,Il).
For a proof, see Tronel [133].

Remark 4.4.2. Proposition 4.4.1is not true for a general irreducible matrix A. For a counter-
example, consider the matrix F represented in Figure 4.8 and the initial condition e = (0,0, 0)".

The example of matrix (', Figure 4.5, is interesting. The schedule e converges to the schedule
associated with (Cy,Cy,C5). Proposition 4.4.1 is verified as we have that d(e,C3) = 1 which
minimizes d(e,Il). However the schedule (Cy,C5,C'3) has not a minimal average latency (as

d(e,Cl) = d(€702) = 3)

Corollary 4.4.3. We assume furthermore that A is scsk-cycl. The schedule e = (0,...,0)
converges to a 1-periodic schedule having minimal latency.

Proof. As a consequence of Theorem 3.4.7, we have that there exists a finite n such that 7(A"e)
is an eigenvector of A. We achieve by applying Proposition 4.4.1. O

Proposition 4.4.4. We assume now that matriz A is scsl-cyck, i.e. has a unique critical
circuit of length k. Let a be the unique eigenvector of matriz A. The schedule {xy = a} has a
minimal latency.

/

Proof. We denote by v = (v, vs,...,u)" a periodic regime of period k of A. For a scsl-cyck

matrix, the eigenvector a is the “barycentre” of the points (vy, vg, ..., vE)". Tt means that
v+ v+t g
wa) = w(AFEE,

=7k xa)=7@®) = w(vi+vg+---+vp).
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This result is due to Braker and Olsder [29], see also §5.3. We deduce that we have :
kxd(e,a) = d(e,a®) =d(e,v; +vy+ -+ vp)
< d(e,vr) +d(e,vz) + - - -+ d(e, vg)
— d(e,q) < % X (e, v1) + d(e, 02) + - -+ dle, vp)
It proves precisely that a has a minimal latency. O

An illustration of Proposition 4.4.4 is provided by matrix C', Figure 4.5. It is known, see [29] or
§5.3, that the equality m(a) = w(v1 + - - -v;/l) does not always hold when the matrix is scsl-cycl,

[ < k. In this case, we cannot conclude. A counter-example is provided by matrix D, Figure
4.6, where the unique eigenvector has a non minimal latency.



Chapitre 5

Algorithms

Algorithmes

On propose une méthode permettant de calculer tous les vecteurs propres et tous les régimes
périodiques d’une matrice (max,+). Les algorithmes proposés sont classiques. Leur application
pour 'obtention de la valeur propre et des vecteurs propres d’une matrice (max,+) aussi, voir
par exemple [78] et [44]. La nouveauté (a notre connaissance) est leur utilisation pour obtenir
I’ensemble des régimes périodiques. Cela nécessite une transformation préalable de la matrice.
On considere également un algorithme alternatif introduit dans [29]. On analyse cet algorithme
a ’aide de 'approche graphique du chapitre 3.
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kak

wer. The aim is to compute its eigenvalue and all its

We consider an irreducible matrix A €
eigenelements, i.e. all the eigenvectors and periodic regimes, of A. We propose an algorithm

with overall complexity in O(k*y/kTogk).

5.1 Algorithm

We consider A € REXE. We propose the following algorithm.
Determine if A is irreducible.

Determine if A is aperiodic.

Compute the eigenvalue of A.

Compute all the eigenvectors of A.

Determine the spectral type of A.

Compute all the eigenelements of A.

O U= W N

Let us detail the different stages.

Stage 1 (Determine if A is irreducible).

We consider the boolean matrix associated with A. It is defined in the following way: flij =c¢if
Ai; =€, flij = e if A;; > . We consider the graph of this matrix (see Def. 3.4.1). We apply an
algorithm of Tarjan, see [132]. It provides all the maximal strongly connected subgraphs (s.c.s)

of an oriented graph. It is a “depth first search” algorithm. It requires the construction of a
covering tree of the graph.

From now on, we assume that matrix A is irreducible i.e. has a unique s.c.s.

Stage 2 (Determine if A is aperiodic).

We determine the cyclicity of the matrix A defined above. We apply an algorithm of Denardo,
[55]. This algorithm uses a covering tree of the graph which is precisely the tree obtained with
Tarjan’s algorithm.

By definition, matrix A is aperiodic if and only if the cyclicity of A is 1. From now on, we assume
it is the case. When it is not the case, the set of eigenelements of matrix A is not projectively
bounded. See for example Chapter 6, Example 6.9.5.

Stage 3 (Compute the eigenvalue of A).
We compute A, the eigenvalue of A by applying an algorithm of Karp [92], see also [78] or [44].

We normalize matrix A, i.e. weset A:=A — A, i.e Vi, j, A;; = A;; — A

Stage 4 (Compute all the eigenvectors of A).

By Theorem 3.4.6, we know that it is sufficient to compute matrix At = A@ .- @ A* to obtain
all the extremal eigenvectors. Practically, we are going to compute A* = (E ¢ A)T and use
AT = AA*. We apply an algorithm of Floyd [64] to compute A* .
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The critical columns of AT are the extremal eigenvectors. Let us denote by u!,...u? the different
extremal eigenvectors. The complete set of eigenvectors is (see [43] [44]).

{ayu! @ agu* @ -+ P apu®, a; € Ropas) - (5.1)

We have obtained the eigenvectors but not the periodic regimes of matrix A. Let us illustrate
this on an example. We consider

-1 -1 e e €
A= e —1 -1 = AT = e e
-1 e -1 e € €

Matrix A is scsl-cyc3, see §3.5.2, Figure 3.6. In order to obtain the extremal periodic regimes, it

is necessary to compute (A*)* or more generally (A")* where [ is the cyclicity (Definition 3.4.5
and Theorem 3.4.7) of A.

Stage 5 (Determine the spectral type of A).
We need to determine the critical graph of A (Definition 3.4.5). Let w = (uq,...ux)" be one of
the eigenvectors of A as computed above. We consider

U1 £ £
A:= P 'AP, where P=| . .. . . (5.2)
£ £ Uk

All critical terms of A are now equal to e and all non-critical terms are less or equal to e, see
Lemma 3.4.15. With this trick, we can now consider the boolean “critical” matrix associated

with A and defined as flij =cif A;; <e, flij = e if A;; = e. We apply Tarjan’s algorithm, see
Stage 1. Let p be the number of m.s.c.s of A. We apply Denardo’s algorithm to each s.c.s., see
Stage 2. Let Iy,...,[, be the cyclicity of the different s.c.s. The spectral type of matrix A is scs
p-cyc | where [ =lem(ly,...,[,).

Stage 6 (Compute all the eigenelements of A).
We compute matrix A, We compute matrix (A)*, see Stage 4. The critical columns of (A!)*

are the extremal eigenelements. We denote by v!,...,v%, the different extremal eigenelements.
From Theorem 3.4.6, we deduce that ¢ = Y2 ;.
Given an extremal element v/, the period of the periodic regime (vj, Avl, A%, . .) is the cyclic-

ity of the corresponding s.c.s. of A as defined in Stage 5.
The complete set of eigenelements of A is

{ao! @ agv? @ @ vl a; € Roas) - (5.3)

Remark 5.1.1. In the first two stages, we check some structural properties of the graph as-
sociated with A. The algorithms considered were proposed more than twenty years ago for
general graphs. At that time, the motivation was the study of non-negative matrices (in the
usual algebra). The algorithm of Stage 3 was originally proposed in the general framework of
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valued graphs.

The problem of computing longest paths in a graph is very classical, see Gondran and Minoux for
a complete review, [78] Chapters 2 and 3. The algorithm used in Stage 4 was proposed for this
problem. When translated using (max,+) notations, it is exactly equivalent to the computation

of A™.

5.2 Complexity
Here are the PRAM complexities of the different algorithms used in §5.1.
1. O(k*). See Tarjan [132].
2. O(k?). See Denardo [55].
3. O(k®). See Karp [92].
4. O(K?). See Floyd [64].

5. O(k?). The computation of Equation (5.2) involves exactly two additions for each term of
the matrix. For the remaining, see Stages 1 and 2 above.

6. O(k*kTogk). Classically, the complexity of computing matrix A' is O(k*logl). Let us
denote by [(k) the maximal possible value of the cyclicity [ of a matrix of dimension & x k.
The asymptotic of I(k) when k& — oo is known, see Miller [110] for a survey paper on the
subject. We have log [(k) ~ v/klog k. We conclude that the complexity of the computation
of Alis O(k*\/kTogk). For the computation of (A see Stage 4.

Remark 5.2.1. If one wants to compute the set of eigenelements (5.3) but not the set of
eigenvectors (5.1), then it is possible to replace Floyd’s algorithm in Stage 4 by an algorithm of
Moore [111]. With this algorithm, only one column of matrix AT is computed. Moore’s algorithm

has a complexity O(k?) to be compared with the complexity O(k?) of Floyd’s algorithm.

5.3 Alternative Algorithm

In [40], Chou and Duffin obtain an eigenvector of matrix A as the solution of two linear programs.
In [29], Braker and Olsder propose yet another algorithm working only in the scsl-cycl case. We
are going to study this algorithm more closely.

We consider an irreducible matrix A of size k x k. We suppose that A is scsl-cycl (I < k).
For simplicity of notations, we suppose that A is normalized and that the critical circuit of
Ais (1,2,...,0,1) (we can obtain this just by considering a permutation of the coordinates,
see Lemma 3.4.13). The goal is to find its unique eigenvector u. An easy way to do so, is to
compute AT = @n>1 A", see Stage 4. It might be seen as the (max,+) translation of the power
algorithm of the traditional linear algebra, see [76]. Oddly enough, it is also possible in some
cases to compute the eigenvector by applying directly the power algorithm without translating
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it in the (max,+) algebra. It is this phenomenon, discovered by Braker and Olsder, which we
are going to illustrate using the graphical representation of Chapter 3.

Here is the algorithm.
1. Take an initial vector g # (g,¢,...,2)".
2. Compute the smallest integer m such that A" zq = A™zq, for some [ € N.
3. Consider v = (A™zg+ A" oo+ -+ A"+ =120} /1 (division in the conventional algebra).

In some cases, the vector v is the eigenvector of matrix A. Here are two examples. Figure 5.1
corresponds to matrices :

/
N .eigenvgctor
S /
Tﬂ'(Ae’xg)

xm(zo)

Figure 5.1: scsl-cyc3 and scsl-cyc2, matrices A and B. The algorithm of Braker and Olsder is
successful.

Matrix A is sesl-cyc3, its unique eigenvector is e = (e, e, €)’. For any periodic regime of period

3, {u1, uz, us}, we have w(e) = m((ug + w2 + u3)/3).
Matrix B is scsl-cyc2, its unique eigenvector is e = (e, e,e)’. We see on Figure 5.1 that the
algorithm still works.

Proposition 5.3.1. The first [ components, vy, ..., v;, of the vector v of the algorithm are the
correct eigenvector components. However, vector v is not always the eigenvector of A.

To determine whether v is the eigenvector of A, one has to check if Av = v. When v is not the
eigenvector of A, Braker and Olsder propose another algorithm which they call the extended
algorithm.

1. Define the vector ¢ in the following way :
b = v if (Av)i=wi,
o, = ¢ if (Av); #vi.
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2. Let m be the smallest integer such that A1 = A™p.

The integer m is finite and A™® is the unique eigenvector of A.

There exist a technical criterion to determine if the algorithm of Braker and Olsder is going to
work or if the extended algorithm is needed, see [29]. But the graphical representation in the
projective space gives a very simple illustration of the phenomenon.

Here is now an example where the use of the extended algorithm is necessary.

c={e. . ), 0)=-1.

Figure 5.2: scsl-cyc2, matrix C'. The algorithm of Braker and Olsder fails.

Matrix C' is scsl-cyc2 and its unique eigenvector is (e, e, —1)’. By the algorithm of Braker and
Olsder, we obtain v = (e, e, €)’. With the extended algorithm, we get C' @ (e, €,¢) = (e, e, —1)".

By Proposition 5.3.1, we have that for all matrices of size k£ X k which are scsl-cyck, the algorithm
of Braker and Olsder provides the eigenvector. For matrices which are sesl-cycl (1 < 1 < k),
the extended algorithm will, in general, be needed.

In terms of complexity, the algorithm of Braker and Olsder is not optimal. Indeed, one has to
compute the stationary version A™ of the matrix and we know that a transient regime can be
arbitrarily long, see Section 3.5.5. If we suppose that matrix A is stationary, the complexity is

of order O(k?).

Let us mention that we use Proposition 5.3.1 in a completely different framework in Chapter 4,
Proposition 4.4.4.
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Systemes Linéaires Stochastiques



Chapitre 6

Products of Random Matrices in the
(max,+) Algebra

Produits de Matrices Aléatoires dans ’Algébre (max,+)

On étudie les systémes (max,+) linéaires stochastiques. Le probléeme considéré est celui de la
stabilité de tels systemes. Les résultats proposés permettent de compléter les résultats obtenus
par Baccelli [4] et Cohen [46].

Ce chapitre est une adaptation de 'article [105]. Cet article a été accepté pour publication
dans Advances in Applied Probability. Nous remercions Frangois Baccelli, Serguei Foss, Stéphane
Gaubert et un rapporteur anonyme pour de nombreuses remarques et suggestions ayant grande-
ment contribué a amélioration de cet article.
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We consider a class of closed systems with synchronization, blocking and /or fork-join properties.
The main subclass of interest consists in Stochastic Event Graphs. They include cyclic Jackson
Networks, many manufacturing models, models with general blocking (such as kanban) and some
interacting particle systems. Other models which fit into our framework include task graphs and
task graphs with random precedences. For more details on modelling aspects, see Chapter 1.
The common feature of these systems is that they can be represented by a linear recursive
equation in the (max,+) algebra. We are interested in stationary regimes for quantities such as
queue length, waiting times or idle times.

6.1 Introduction

Let us consider the following recursive equation:

zi(n+1) = max;(Ai;(n) +2;(n))
(6.1)
zi(0) = (%o):
The sequences {A;;(n),4,j =1,...,k} are given (exogenous data). The process we want to study
is the sequence of vectors {z(n) = (z1(n),...,2x(n))’}. The vector xq is the initial condition.

It is very fruitful to use a matrix-vector notation for Equation (6.1). We define the following
“(max,+)” notations:

e=—o0, Yo,y e RU{e}, 2P y=max(z,y), 2Qy=z+y.

We define also the k& x k matrix A(n) = {A4;;(n),7,j=1,...,k} and the column vector z(n) =
(z1(n),...,25(n))". With these notations, the basic Equation (6.1) takes a very simple and
convenient form. In fact, it can be rewritten as:

z(n+1) = A(n) @ z(n) . (6.2)
The matrix-vector product is defined in a natural way just by replacing + and x by & and ®,
i.e. (A & ac)z = max; (Aij + xj) = @j Aij @ x;.

We are interested in stochastic versions of Equation (6.2), where {A;;(n)} is a sequence of
random matrices. As a consequence, here is an equivalent way of introducing our subject: it is
a counterpart of the classical theory of products of random matrices (see Furstenberg & Kesten
[66] or Bougerol & Lacroix [27]) but in another algebraic structure, the (max,+) algebra.

For systems described by Equation (6.2), we will consider two kinds of asymptotic results.

e First order limits, on ratios:

lim M , lim
n n n n

e Second order limits, on differences:

lim z;(n+1) — 2;(n), Vi, lim z;(n) — z;(n), Vi #J.
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A first order limit is a cycle time or equivalently the inverse of a throughput. Second order limits
are related to waiting and idle times, workload, queue length and frequency of occupation. More
insights on the relations between these limits and quantities of interest for the system will be
provided in Section 6.2, see also Chapter 1. Our goal is to find stationary regimes for second
order limits. Multiple stationary regimes will mean multiple possible regimes for waiting times
or queue lengths, depending on the initial condition.

Among the systems modeled by Equation (6.2), we can distinguish two classes: the open (or
non-autonomous) systems and the closed (or autonomous) ones. Open systems have been ex-
haustively treated by Baccelli [4] [8] (for both first and second order limits). Problems of
existence and uniqueness of first order limits for closed systems have been solved by Cohen [46]
(see also [4]). These results are recalled in §6.7.1. This paper deals with the open question of
existence and uniqueness of second order limits for closed systems. These problems were consid-
ered in several earlier papers (Resing, de Vries, Hooghiemstra, Keane & Olsder [122] and [115],
Baccelli [4]) but only sufficient conditions of uniqueness were known. The approach we use is
new and exploits completely the common hidden algebraic structure of the different models we
consider. It enables us to obtain necessary and sufficient conditions for stability (in some cases)
together with simple proofs.

The conditions we give are based on the structure of deterministic matrices chosen in the support
of the random matrix A(0). The main result states that the system has a unique stationary
regime if the support of A(0) contains a finite number of matrices, {A4;,..., 4,}, such that the
product A, ®---® Ay has a unique periodic regime. The proof makes use of Borovkov’s theory
of renovating events, see Borovkov & Foss [25] [26]. This theory appears to be much more
tractable than classical Harris regeneration due to the specific form of our recursive equations.
More details on this last remark are given at the end of Section 6.6.

In order to motivate the practical interest of this work, we present a specific model, a closed
cyclic Jackson Network. We are going to use this example throughout the paper to illustrate
the theoretical results.

The paper is organized as follows. We introduce two models in Section 6.2, cyclic Jackson
Networks and task graphs with random precedences. Sections 6.3, 6.4, 6.5 and 6.6 are presenting
the tools that we are using in the paper. They can be skipped by people knowing the subject.
Section 6.3 is devoted to the (max,+) algebra, Section 6.4 to the spectral theory in this algebra,
Section 6.5 to semigroup of matrices and Section 6.6 to Borovkov’s theory of renovating events.
Section 6.7 presents the main results. In 6.7.1, we recall some results from [4] and [46]. In
6.7.2, we state some preliminary results. In 6.7.3 and 6.7.4, we give sufficient conditions for the
stability of discrete and general models respectively. In Section 6.8, we establish the converses
of the results of the previous section. In Section 6.9, we weaken the assumptions under which
some of our results apply and we discuss the boundedness of the stationary regime. Finally, for
convenience, some of the proofs are given in Appendix.
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6.2 Two Motivating Models

6.2.1 Task graphs

We consider a parallel program executed on several identical processors. We model it by its
precedence graph 7. If we consider a system of k processors, the graph 7 has a set of nodes
which is £ x N. The node (¢,n) represents the n-th task to be executed at processor i. The
arcs between nodes represent the synchronization constraints. There is an arc between the node
(2,n) and the node (j, m) (notation : (¢, n) — (j,m)) if the n-th task at processor 7 has to be
completed in order for the m-th task at processor j to be enabled. The execution of a task
begins as soon as all the tasks of its incoming arcs are completed. Each task has a duration
which may depend on the processor.

Let us consider a task graph with synchronizations only between consecutive levels n (i.e. nodes
(1,n),...,(k,n)) and n + 1. We assume that the synchronizations depend on n. We denote
by L(i,n) the set of nodes j such that (i,n) — (j,n+ 1). We suppose that Vi, there exists a
probability law P on the subsets of (1,...,k) such that £(i,n) = (ji,...,J,) with probability
P{(j1,---,Jp)}- We denote by z;(n) the date of completion of task n at processor i, and by
Aji(n) the duration of the synchronization constraint between nodes (z,n) and (j,n+ 1) (it
may include a transmission time as well as the execution time at processor j). We adopt the
convention that A;;(n) = —oo if j € L(7,n). It is easy to check that such a model, we could call
it a task graph with random precedences, verifies Equation (6.2).

A Queuing Network model studied by Baccelli & Liu [14] corresponds to this model. It is a Kelly
type Network (i.e. routes are associated with customers) with a locally FIFO priority rule. The
task resource models to be studied in Chapter 9 also have this kind of structure.

6.2.2 Cyclic Jackson network

We consider a closed Jackson Network. The study of such closed networks can be traced back
to Gordon and Newell, [79]. In their original model, there is a given number of indistinguishable
customers. The routing of the customers leaving a given queue is provided by a sequence of i.i.d.
Bernouilli random variables. All the service times are exponential. They prove the existence of
an explicit product form for the unique stationary distribution.

A natural generalization of the basic model is to consider i.i.d. service times with general
distributions, i.e. to replace ./M/1/oc servers by ./GI/1/oc servers. Finding the minimal
assumptions leading to a unique stationary regime for this generalized closed Jackson Network
is still an open problem.

We consider a restriction of the previous model. There are k queues and all customers have the
same cyclic route (1,2,...,k, 1), see Figure 6.1. We will denote this model by CJN for Cyclic
Jackson Network, following the terminology of [94].

In the following, the numbering of queues has to be understood modulo [k], for example queue
(k+2) is queue 2. We denote by {o;(n), n € N}, the sequence of service times at queue j. This

sequence is i.i.d. We suppose also that the service times at the different queues are independent.
Instead of describing the system by the workload or the queue length process, as is usually done,
we propose to study this model by introducing the following variables. With each queue j, we
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.JGI/1/c0 FIFO .JGI/1/c0 FIFO
Queue 1 Queue 2

./GI/1/co FIFO

| - - -~ -~

Queue k

Figure 6.1: A Cyclic Jackson Network consisting of k queues.

associate a dater {z;(n),n € N}. The variable 2;(n) represents the date of completion of the
n—th service at queue j. All variables of interest for the network can be derived from these
daters and from the sequences of service times. More precisely, we have:

e Asymptotic throughput at queue j:

n

=i .
P e ()

e Idle time of queue j before the arrival of the n-th customer to visit queue j.

Ij(n) =z;(n) —oj(n) —zj(n—1).

e Workload at queue j at the instant of the arrival of the n-th customer to visit queue j.

This customer comes from queue j — 1. We suppose that it was the n’-th customer to visit
queue j — 1.

The variables (v;) which are obtained as ratios of daters will be called first order variables. The
ones (I;,W;) which are obtained as differences of daters will be called second order variables.

We want to derive conditions under which there is a unique stationary regime for both first and
second order variables. In such a case, we say that our model is stable.

Suppose for the moment that there are exactly k customers. We suppose also that there is ini-
tially one customer in each queue. These assumptions together with the FIFO service discipline
at each queue yields the following property. The n-th customer to visit queue j will be, at the
next step of its route, the (n + 1)-th customer to visit queue j + 1. As a consequence we are
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able to write a recursive evolution equation for the daters.

z1(n+1) = max(zi(n),zx(n)) + o1(n)
z2(n+1) = max(zz(n),z1(n)) + o2(n)
zj(n+1) = max(z;(n), zj-1(n)) +o;(n)

Using the (max,+) notation this can be rewritten as:

oi(n) ¢ e € o1(n)
oa(n) oa(n) . €
z(n+1) = A(n) @ z(n), where A(n) = e e : . (6.3)
€ e e og(n) ox(n)

The initial condition is #(0) > 0, where 2;(0) is the remaining service time of the customer being
served at queue ¢ at time 0.

When the service times are deterministic, it is possible to obtain many asymptotic behaviors,
depending on the initial condition z(0). In fact, initial delays between customers might never
vanish. Therefore, it is possible to have several stable regimes for second order quantities
(I;,W;,...) including periodic ones. For stochastic systems, when the service times are random
variables, it is still possible to have several stationary regimes if the system is not “stochastic
enough”. As an application of the results presented in this paper, we obtain the necessary and
sufficient conditions for the existence of a unique stationary regime for this CJN. This basic
CJN will be used as an illustration of the results throughout the paper (Examples 6.4.8, 6.7.9,
6.7.16 and 6.8.7).

When there are less than &k customers in the network, the system can be represented in the
same way as previously. The only difference is that the structure of matrices {A(n)} is more
complicated. When there are more than k customers, the trick consists in splitting queues. Each
queue which has originally (p > 1) customers in its buffer is transformed into p queues with one
customer per buffer. This is done by creating p — 1 fictive queues with service times identically
equal to zero. By doing this, one gets back to the previous case. The main difference is that we
have represented our model by a (max,+) linear system of dimension greater than the original
number of queues. For more details on these transformations, see Chapter 1, §1.3.

Many generalizations of this basic CJN can be made within the class of systems admitting a
(max,+) linear representation. For example, we can consider queues with stationary and ergodic
sequences of service times (the ./G/1/oco case). The modeling is exactly the same. The only
difference is that the sequence of random matrices { A(n)} is stationary-ergodic instead of being
i.i.d. Our results apply to the stationary-ergodic framework. We can also consider finite buffers
(the ./G/1/L case), see §1.3.3 for details. In the case of a CJN with i.i.d. general service
times (./Gl/1 servers), there is an alternative method for studying the network. We consider
the Markov chain formed by queue lengths and remaining service times, and we apply Harris
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regeneration techniques.

On the one hand, it is possible to obtain natural sufficient conditions of stability. Consider the
configuration where all the customers are blocked at the same queue. If this configuration is of
positive probability, it can be used as a regeneration point for the Markov chain. To obtain a
positive probability, it is enough to have one of the service times with an unbounded support.
This kind of ideas was first introduced for closed acyclic Jackson Networks by Borovkov, [23],
[24]. For closed Cyclic Jackson Networks, this technique, with some refinements, is used by
Bambos [16] and Kaspi & Mandelbaum [94].

On the other hand, obtaining necessary and sufficient conditions of stability is a difficult task.
As far as we know, it has been done only in the case of the basic Cyclic Jackson Network with
two queues, see [94]. For the basic Cyclic Jackson Networks with N queues, the best sufficient
conditions that we have found in the literature are given in [95], see Example 6.8.7. In this paper,
the authors show that, in some cases, there is stability of a CJN even if the configurations where
all the customers are blocked at the same queue never happen.

Our approach allows us to derive the necessary and sufficient conditions of stability, for all the
CJN mentioned above. The drawback is that it requires a preliminary modeling stage, the
translation of the “real system” into its (max,+) linear representation.

6.3 (max,+) Algebra

Definition 6.3.1 ((max,+) algebra). We consider the semiring (RU{—oo}, &, ®). The law
& is “maz” and @ is the usual addition. We set e = —oo and e = 0. The element ¢ is neutral for
the operation & and absorbing for ®. The element e is neutral for ®. The law & is idempotent,
i.e. ada=a. (RU{e}, B, ®) is an idempotent semiring, called a dioid. We shall denote it by
Rnae-

In the rest of the paper, the notations “+,x” will stand for the usual addition and multiplication.
Nevertheless, we will write ab for ¢ ® b whenever there is no possible confusion. For example,

fora € R, a® = a®? = d x a.

k kak

max? max*

ac Rmal’?u € anaam (a® u)l =a® U.

We define the product spaces R We define the product of a vector by a scalar:

Matrix product is defined in a natural way, replacing + and x by & and ® respectively. Let
A, Be REXE

max?

(A® B)i; = m,aX(Au + Bij) = @ Ai @ Byj .

Matrix-vector product is defined in a similar way.
Let us recall some definitions adapted to the R,,,, algebra.
Definition 6.3.2. The (communication) graph of a square matriz A is a directed graph having

a number of nodes equal to the size of A. This graph contains an arc from i to j iff A;; # <.
The valuation of this arc is Aj;.
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Definition 6.3.3. A square matriz A is irreducible if: Yi,5 3In > 0 | (A%)y > € (or

equivalently if its communication graph is strongly connected).

Definition 6.3.4. A square matriz A is aperiodic if: AN, ¥Yn > N, Vi, j, (A");; > ¢.
Definition 6.3.5. Let (Q,F, P) be a probability space. A stochastic matriz {A(w), w € Q}
has a fized structure if P(A;; =¢) =1 or P(A;; =¢) =0, Vi, 5.

Definition 6.3.6 (PRF). The projective space PR* is defined as the quotient of R* by the
parallelism relation:

u,vERk u~v<=da € Rsuchthatu =a®v.

Let  be the canonical projection of R* into PRF.

For example (e,—1)" and (2,1)’ = (e + 2,—1 4 2)" are in the same parallelism class, i.e. are
two representatives of the same element of PR*. We define in the same way PRE, ., PREX% and
PR%**. We use the same notation 7 for the different canonical projections. We define a norm

and a distance on PR* which we are going to call the projective norm and distance.

Definition 6.3.7. Let x € PR and u € R” be a representative of z, i.e. n(u) = z. We define:

|z|p = maxu; — min u; .
K3 K3

Let 2,y € PR* and u,v € R* be two representatives of x and y respectively. We define:

dlz,y) =d(u,v) = |z —ylp = @(UZ —v) ® @(1}2 — ;) .

K3
We write either d(z,y) or d(u,v) with some abuse of notation.

The space (PR¥,|.|p) is an Euclidean space. In particular, it is complete. Indeed, it is easy to

check that |z|p does not depend on the representative u, and is a norm on PR”, viewed as a

1

vectorial space on R. This norm corresponds to the £., norm! on the projective space PR*.

We have the following very important property.

Proposition 6.3.8. Let A € RFXE be an irreducible matriz. Let u,v be two vectors of RE. We

max
have:

d(Au, Av) < d(u,v) .

Tt is worth mentioning that d(.7 ) is the R, 4 analogue of a distance used in classical Perron-Frobenius theory,
which is called the Hilbert’s projective metric and is defined by “6(u,v) = In (inf{u/A | Au < v < pul})”.
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Proof. By definition, we have:

d(Au, Av) = P((Au); - (A0)) © P((Av); - (Au)y).

K3

We define j (i) such that (Au); = P, Ay @ uj = Ay @ (). Note that j(i) depends on A and
u. We have:

7 7

@((AU)F(AU%) - P (@Am@uy‘) = (@Azj@vy‘)

= D Ajn@ue) - (@B Ao
j

7

< @(Aij(i) D ujtiy = Aijgiy @ Vi)
= Do) —viey <P - v
We obtain d(Au, Av) < @, (u; —v;) @ @, (vi — u;) ie. d(Au, Av) < d(u,v). 0

There is no simple criterion to get a strict inequality. This monotonicity has to be interpreted
as a synchronization property.

Definition 6.3.9. We consider A € REXE. We set

D(A) = sup d(Au, Av).
u,vERFK

We call D(A) the projective diameter of A.
In order for the previous definition to be non-ambiguous, it is necessary that Vu € R*, Au € R
It implies that V7,35 s.t. A;; > e. It is easy to prove that D(A) is finite if and only if V¢, j, A;; > .

A matrix A can be considered as a “linear” (in the (max,+) sense) operator from PR* into

PR*. It is a bounded operator if the (decreasing) sequence D(A™) has a finite limit, i.e. if A is
aperiodic (Def. 6.3.4).

6.4 Deterministic Spectral Theory

We recall some results of the deterministic spectral theory in the R,,,, algebra. For references,
see Section 3.4.

We want to find non trivial solutions to the eigenvalue problem :

ARz =A®«z,
where A € RF*¥ is an irreducible matrix,  is a column vector (the “eigenvector”) and X is a
real constant (the “eigenvalue”). We define also periodic regimes for the eigenvalue problem.

A periodic regime of period d is a set of vectors {xy,..., 24} of R verifying Az; = Axyyq1, i =
1,...,d—1and Azg = Azq.
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Definition 6.4.1. For each path = {ty,t3,- -+ ,t;,t;41 = t1}, we define its average weight by:

gyt @ v Q) gy © Gyt

p(¢) = ;

9

(here the division is the conventional one).

Theorem 6.4.2. There is a unique (non ¢) eigenvalue, X. It satisfies the relation

A= max p(<),

where ¢ covers all the circuits of (the communication graph of ) A. We call also X the Lyapunov
exponent or the cycle time of A.

There might be several eigenvectors. A linear combination (in R,,q.) of eigenvectors is an
eigenvector. An eigenvector has all its coordinates different from ¢ (due to the irreducibility

assumption).
Definition 6.4.3. For a matriz A, we define:

Critical circuit A circuit { of A is said to be critical if its average weight is maximal, i.e. if

p(¢) = A
Critical graph [t consists of the nodes and arcs of A belonging to the critical circuit(s).
For a general graph, we define :

Cyclicity The cyclicity of a strongly connected graph is the greatest common divisor of the
lengths of all the circuits. The cyclicity of a connected graph is the least common multiple
of the cyclicities of its maximal strongly connected subgraphs (s.c.s.).

We normalize a matrix by subtracting (in the conventional algebra) the eigenvalue to all the
coordinates. The eigenvalue of a normalized matrix is e. For a normalized matrix A of size k,
we define:

At=Aq¢ A’ ... A" .
We check that A1 @ Akt = A+,
Theorem 6.4.4. Let A be a normalized matrix.

a. Critical columns AT

T, 1 belonging to the critical graph, are eigenvectors.

b. For i,j belonging to the critical graph, x(A%) and ﬂ'(Af'JT) are different iff they belong to
two different s.c.s. of the critical graph.

c. Bvery eigenvector of A writes as a linear combination (in R,,q,) of critical columns A"Z'
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A corollary of this result will be of particular use for us:
An irreducible matrix has a unique eigenvector (up to a multiplicative (®) constant) if and only
if its critical graph has a unique s.c.s.

In R4z, every irreducible matrix is cyclic in the sense of the following theorem.

Theorem 6.4.5. For an irreducible matriz A of size k and whose eigenvalue is A, there exists
integers d and M such that:

Ym > M, A" =)\ g A™ (6.4)

furthermore the smallest d verifying the property is equal to the cyclicity of the critical graph of
A. We call it the cyclicity of A.

A cyclicity greater than one will provide periodic regimes of period greater than one for the
eigenvalue problem.

Proposition 6.4.6. An irreducible matriz has a unique eigenvector and no periodic regimes of
period greater than one for the eigenvalue problem, if and only if its critical graph has a unique
s.c.s. and its cyclicity is one. Such a matriz will be called a scsl-cycl matriz.

The proof follows from Theorems 6.4.4 and 6.4.5.

Definition 6.4.7 (rank). By analogy with classical linear algebra, we define the “rank” of a
matriz A as the number of additively independent columns (resp. lines) of A. More precisely,
let A; denote the i-th column of A. Matriz A is of rank r if there exists J C {1,...,k} such
that |J|=r andVi# je J, n(A;) #7(A;) and Vi ¢ J, Ja;,j € T, such that

m(A)=7[Pa; 0 A
JeET
Let A be a rank 1 matrix. Then A is a scsl-cycl matrix and verifies A2 =A@ A (A is the
eigenvalue of A). The other way round, let A be a sesl-cycl matrix and M be defined as in
Equation (6.4). One can check that AM is a matrix of rank 1.

Example 6.4.8. [Cyclic Jackson Network 1]

Let us consider a basic Cyclic Jackson Network as presented in Section 6.2.2. We suppose
that the service times are deterministic, i.e ¢;(n) = o;. We suppose also that the number of
customers, k, is equal to the number of queues. Then we can consider the (max,+) matrix
associated with the network, see Equation (6.3). The graph associated with this matrix is
constituted by the circuit (1,2,...,%k,1) and the recycling loops (1,1) to (k, k). Let us define
I ={i| o, = max; o;}. There are two possible cases.

e If the cardinal |I| < k, then the critical graph of the matrix consists of the nodes i € [
and the arcs (¢,¢),7 € I. It implies that the matrix is scs|/|-cycl.

e If |[I| = k then the graph and the critical graph of the matrix coincide. It implies that the
matrix is scsl-cycl.

We conclude that the matrix is scsl-cycl if and only if |I| =1 or k.
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6.5 Semigroup of Matrices

Definition 6.5.1. Let us consider Ay,..., A, € REXE  We denote by < A, ... Ay >, the

max”®

semigroup generated by these matrices and by m < Ay, ...A, > its projection. We have

<Ay A > = {(Ay, o ALAY ), w, e, €41 phin e NY
< Ay, A, > = {r(Ay, A A ), wrs e, € {1, phine NY L

Definition 6.5.2. We say that the semigroup < Ay, ... A, > is primitive if there exists N such
that

V2 Nyug, .o u, € {1,008 Vi g, (A, - A Ay )ij > €. (6.5)

The following result follows from classical arguments.

Proposition 6.5.3. The semigroup < Ay, ... A, > is primitive if and only if all the matrices
of < Ay, ..., A, > are aperiodic (Def. 6.3.4).

Proof. 1f one of the matrices, say A, is not aperiodic, then Vn, 3¢, j such that (A™);; > . Hence
the semigroup is not primitive.

Let us prove the sufficient part of the proposition. This proof was mentioned to me by Stéphane
Gaubert (unpublished work). It is enough to prove the result for Boolean matrices, i.e. matrices
which coordinates are either e or €. The only idempotent aperiodic Boolean matrix is the matrix
E, E;; =e,Vi,j. In a finite semigroup, there exists N such that all products of length greater
than N contain an idempotent, see for example Pin [118]. It implies that long enough products
can be written under the form AEB where A and B are aperiodic (as all the matrices of the
semigroup are). Matrices of the form AFEB have all their coordinates different from ¢ which
concludes the proof. O

We consider the Euclidean space (PR¥*% |.|p) as introduced in Definition 6.3.7.

Proposition 6.5.4. Let Ay,..., A, € QF*F. For all compact set K of (PR¥** |.|p), we have

T < A, ..., A, > NK s finite. If we assume furthermore that < Ay, ..., A, > is primitive then
T < A, ..., Ay, > is finite.

Proof. The second part of the proposition was proved by Gaubert [70]. The first part is obtained
by a slight modification of the proof of [70]. O

Proposition 6.5.4 can be extended to matrices such that V¢ = 1,...,p, IX\; € R such that
X\ @ A; € QFXE . But it cannot be extended to matrices in RE** as shown in Chapter 3, §3.7 or

max*® max
in Example 6.8.2. It is the reason why some of our results apply only for models with matrices

in QFXk see Section §6.8.1.

max?
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6.6 Borovkov’s Renovating Events Theory

Borovkov’s theory deals with the problem of regeneration in so-called “Stochastic Recursive
Sequences”. For a complete treatment, the reader is referred to Borovkov [22], Borovkov &
Foss [25, 26] or Brandt, Franken & Lisek [32]. Let (2, F, P) be a probability space. Let 8 be a
measurable map from (€2, F) into itself such that P is f-invariant and §-ergodic. Let (£, &) and
(G, G) be two Polish spaces (complete, separable metric spaces) equipped with their respective
Borel o-algebra.

Definition 6.6.1. We call Stochastic Recursive Sequence (SRS), a sequence {z(n)} of E-
valued random variables defined by

z(n+1) = f(z(n),a(n)), n >0, 2(0) = w0,

where {a(n)} is an exogenous sequence of G-valued random variables, stationary with respect to
the shift 8. The function [ is a measurable function from F X G into E. The vector zg € F
is the initial condition. In order to stress the value of the initial condition, we will sometimes
denote the SRS by {z(n,z)}.

We talk of an i.i.d. SRS when the sequence a(n) is i.i.d. (an i.i.d. SRS is a Markov chain and

the converse is true!).

Definition 6.6.2. We consider {z(n)}, a SRS. We denote by F; the o-algebra F; = o{a(n),
n € {—o0,...,l—=1}}. The sequence of events {A(n) € Fym, n € N} is said to be a renovating
sequence of length m and of associated function ¢ : G™ — F if:

dng, Vn > ng, z(n+m) = ¢ (a(n),a(n+1),---,a(n+m—1)) on A(n).

A sequence {A(n),n € N} of renovating events of same length and associated function is said to

be stationary if A(n) = A(0) 00" = 0-"A(0).
We need the following notions of convergence:

Definition 6.6.3. We say that there is coupling convergence in finite time (or, merely, cou-
pling) of a sequence {X,} to a stationary sequence {Y o ™} if

P(Xpp =Y o™ vi>0)"25° 1.

It is easy to show that this notion of coupling convergence implies total variation convergence

(X, = Y in total variation if supycr |P(X, € A) — P(Y € A)| i 0).

Definition 6.6.4. We say that there is strong coupling convergence in finite time (or, merely,
strong coupling) of a sequence {X,} to a stationary sequence {Y o 6™} if:

v = min {n >0| X4 0 g—(n+l) — Y, Vil > 0} is a.s finite

(the sequence {X,, 0 8~"} corresponds to the famous Loynes scheme).

Remark Strong coupling implies coupling but the converse is not true.
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Theorem 6.6.5 (Borovkov’s renovating events). We consider a SRS {z(n)} defined by:
20 +1) = f(a(n), a(n), 7> 0, 2(0) = 2o

If the random process {z(n),n € N} admits a stationary sequence of renovating events {A(n)}
such that P(A(0)) > 0, then there exists a finite random variable Z such that:

708 = f(Z al0)).

The sequence {Z 08"} is a stationary regime for the SRS and x(n) converges with strong coupling
in finite time to Z o 6",

In the previous theorem, we have considered a SRS defined with a unique initial condition, zg.
In the rest of the paper, we will be interested in having results that hold uniformly over the
initial conditions. We will then use the following generalization of Borovkov’s theorem.

Theorem 6.6.6. We consider a subset V of E (V = FE is in particular possible). We suppose
that there exists a stationary sequence of events {A(n)} verifying P(A(0)) > 0 and which is
renovating for the SRS {x(n,z0)}, Vao € V. Then, for all (possibly random) initial condition
2(0) such that P(z(0) € V) = 1, the sequence {x(n)} converges with strong coupling to a unique
stationary regume.

Theorem 6.6.7 (converse of Th. 6.6.5 and 6.6.6). The conditions of Theorem 6.6.5 are
necessary and sufficient for strong coupling convergence. Let V be a compact subset of F.
The conditions of Theorem 6.6.6 are necessary and sufficient for strong coupling convergence
uniformly over initial conditions in V.

Next theorem was proved by Anantharam and Konstantopoulos in [2].

Theorem 6.6.8. Let (2, F, P) be a probability space. We assume that (2, F) is a Polish space
equipped with its Borel o-algebra. We consider a SRS “x(n + 1) = f(x(n),a(n))” defined on

E. Suppose that, for some o € E, the sequence {x(n,xq)} is tight? on E. Then there is a
stationary distribution for the SRS.

The stationary distribution is defined on © x F with an € marginal equal to P. It provides only
a weak stationary regime (wsr) for the SRS, see [2] or [32] for details. All we need to know about
wsr is that stationary regimes are wsr. Hence, the uniqueness of stationary regimes implies the
uniqueness of wsr.

Remark It is proved in [25], that for an i.i.d. SRS (i.e. Markov chain), the conditions
of Th. 6.6.5 are equivalent to the ones ensuring Harris ergodicity. In Harris’ framework, the
conditions are on the state space. In Borovkov’s framework, the conditions are on the exogenous
driving sequence. This second approach is better suited for our problem. On the one hand, a
direct analysis on the state space appears to be almost inextricable. On the other hand, the
renovating events will take a very convenient form because a product of matrices is still a matrix
(see Theorems 6.7.8, 6.7.10).

“Tightness on £ means that for any n > 0, there is a compact K of £ such that P{z(n,z0) € K} >1—n, for

all n.
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n-coupling Coupling and strong coupling, introduced above, are related to total variation
convergence. We define now the notion of n-coupling. It is related to weak convergence.

Definition 6.6.9 (n-coupling). We consider a metric space (F,d). We consider two se-
quences { X, Ynen and {Y, }nen defined on E. We say that there is n-coupling® of these two

sequences if for each n > 0, one can find versions of {X,} and {Y,} defined on a common
probability space and an a.s. finite random time N such that

n>2N=d(X,,Y.,) <n.

The following proposition is shown in Asmussen [3].

Proposition 6.6.10. We consider a sequence { X, },en and a stationary sequence {Y 0™ },cn
defined on the metric space . Let p be the invariant distribution of Y. If there is n-coupling
of the two sequences, then {X,} converges weakly to p.

6.7 Presentation of the Results

Let us consider a probability space (2, F, P,6). The probability P is stationary and ergodic
with respect to the shift 8. We are interested in systems of the type:

{x(n—l—l) = An)®@ax(n), neN
z(0) = zo

kxk_

maxr

where 2(n) and A(n) (Vn) are finite, respectively R%, and REX*-valued, random variables. We
are sometimes going to use the notation z(n, z¢) to emphasize the value of the initial condition.
We will consider models where the sequences {A(n),n € N} are respectively i.i.d or stationary

and ergodic (i.e A(n+ 1) = A(n) o). We are interested in two kinds of asymptotic limits.

e First order limits, on ratios:

lim M , lim
n n n n

e Second order limits, on differences:

lim z;(n+ 1) — 2;(n), Vi,

lim z;(n) —2;(n), Vi# 5.

n
First order limits and second order limits for open systems have been treated by Baccelli [4].
First order limits for closed systems have been treated by Cohen [46]. We are going to recall
these results, before completing the picture by solving the problem of second order results for
closed systems.

*The classical terminology is e-coupling. We change it to n-coupling to avoid confusions with the notation
e = —oo of the R4, algebra.
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6.7.1 Results from Baccelli [4] and Cohen [46]

For x € R¥ and A € REXE we use the notation ||z||., = @le 2 and ||Allee = @Y ._, Ajj.

max? 7,7=1

First order limits for closed systems

Theorem 6.7.1 (Cohen [46]). Let {A(n)} be a stationary and ergodic sequence of matrices.
We suppose that Vi,j, P(A;;(0) =¢) =0 and ¢ < E(A4;;(0)) < +oo. There exists a constant
A € R such that, for all initial condition xg and for alli € {1,... k}

nmﬁﬁﬁﬁznmE(ﬂﬂﬁﬁ):A7p_w&

n n n

The constant X is called the Lyapunov exponent of the stochastic matriz A(0).

Remark The assumptions of Th. 6.7.1 can be weakened and replaced by :
limP(An)@An—1)®@---@ A(0) irred. ) =1, ¢ < E(A;5(0) | A;;(0) #¢) < 400

Remark If the matrices are of dimension 1, Theorem 6.7.1 is exactly the Strong Law of Large
Numbers.

Remark This definition of a Lyapunov exponent is coherent with the one of Theorem 6.4.2.
Indeed, by Theorem 6.4.5, for every irreducible and deterministic matrix A, there exists d and

M such that Ym > M, A7t = X\ @ A™, where X is the eigenvalue of A. It implies that
Vag € RE .. lim, A%zo/n = A.

max?

Proof. 1t is straightforward to check that :

VA, BERM |A@ Bllew < [|A]lo0 @ | Bl

We define Z;,, = [|[A(n — 1) @ - - - @ A(l)]| o0, VI < n. We have for all [ < m < n,
[A(n = 1) - AD)loe < | AR = 1) - A(m) [0 @ |A(m = 1) - Ao

that is Zl,n < Zl,m + me.
We have furthermore that Vi, j,Vn :

(A(n = 1) - A0))s; > A(n — 1)ir--- A1) A(0) 5 -

If we denote K;; = E(A(0);;) and K = min;; K;;, we conclude that I(Zy,) > K X n. We set
e = (e,...,e). The sequence Z,, = z(n,e) verifies the conditions of application of Kingman’s
sub-additive ergodic theorem, see [97] and also Theorem 10.2.2 for a precise statement. We
conclude by remarking that for every finite initial condition zg, we have :

i, €)@ min (o) < (s 20) e < 1, )] @ max(ro):
O

Variants and generalizations of Theorem 6.7.1 are proposed in Chapter 9, Theorem 9.3.1 and
Chapter 10, Theorem 10.3.5.
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Aa > Ag > As > Az > Az > Ay

Figure 6.2: Behaviour of open systems.

First order limits for open systems

We assume in this paragraph that matrix A(0) has a fixed structure, see Definition 6.3.5. We
decompose the graph of A(0) into its maximal strongly connected subgraphs (s.c.s.). If we
replace each s.c.s. by one node, we obtain an associated reduced graph which is acyclic. We
associate with each node @ of the reduced graph a constant Az which is the Lyapunov exponent of
the corresponding s.c.s. in isolation, see Theorem 6.7.1. We denote by *4 the set of predecessors
of @ (including @) in the reduced graph. We have :

Theorem 6.7.2 (Baccelli [4]). Let {A(n)} be a stationary and ergodic sequence of matrices.
We suppose that A(0) has a fized structure. We suppose also that P(A;;(0) = ) = 1 or
e < I(A;;(0)) < 400,Yi, 5. Let us consider i € {1,...,k}, ¢ belongs to the s.c.s. .

. xi(n,zo) . zi(n, zo)
lim ——————~ =limF|——2) = Ag, P—a.s..
i 2 () s

vE *U

Intuitively, the dynamic of the system is imposed by the s.c.s. having the smallest throughput
(largest cycle time). We propose two illustrative examples in Figure 6.2. In order to get a deeper
intuition of this result, one can look at the examples following Theorem 6.7.3.

If the sequence A(n) is i.i.d., some additional results on convergence rates exist. Resing and
al [122] prove a Central Limit Theorem in some special cases. Glasserman and Yao [75], Chapter
7, propose results based on a martingale approach. Let us mention also that large deviation
results have been proved by Chang [37].

Second order limits for open systems

Matrices A(n) have a fixed structure. In order to simplify the presentation of the results, let us
assume that the structure consists of two s.c.s. The general case is completely similar. Up to a
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permutation of the coordinates, we have :

Uln) e
Aln)=1 = ~ .
=50 itm)
The block U is a square matrix of size I x I, irreducible. It is interpreted as the input of our

system. The block A is a square matrix of size (k —I) x (k—I) , irreducible. The block B is the

matrix of the communications between the sources () and (A). We suppose that the block U
in isolation has a unique stationary regime (for example if I = 1, case of a simple source). We
have the following theorem.

Theorem 6.7.3 (Baccelli [4]). Let u and a be the Lyapunov exponents of U and A respec-
tively (see Theorem 6.7.1). If a < u, there is a unique stationary regime for the SRS w(z(n)),
regardless of the initial condition. Convergence to the stationary regime occurs with strong cou-
pling. If a > u, then the differences of the form

d;i(n,z0) = zj(n, x0) — xi(ny20), t=1,...,1, j=1+1,...,k,
tend to +oo, P — a.s., for all finite initial condition.

A good way to intuit this result is to consider deterministic matrices. We consider a matrix for

which (u=1) > (a =¢).
(L) e( D)

We set zg = (u,v)’. We have A"2¢ = (nu, (n — 1)u & v)’. For n sufficiently large, we have

We consider now a case where (u =€) < (a = 1).

e € - € €
A_(e 1)’A _(n—l n)

T(A“xo)zﬂ( (n_l)@e(v—u)n) '

We check that z9(n) — 21(n) = (n — 1) & (v — u)n tends to +oo for all finite zg.

We have

For a stochastic model, the idea remains the same. If © > «a, the sources which are slower impose

their pace. If u < a, everything happens asymptotically as if A were in isolation.

Remark In the previous theorem, we need the assumption that U in isolation has a unique

stationary regime. But the problem of knowing if U has a unique stationary regime is precisely
the one which is going to be addressed in the following. Then, to determine if there is a unique

stationary regime for 7 (x(n)), we have in fact to use the results of Section 6.7.4 (applied to (7)

together with the comparison of Lyapunov exponents (of U and fl)
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6.7.2 Preliminary results

From now on, we concentrate on second order limits in the closed (i.e A(n) is P-a.s. irreducible)
case. The limits are expected to be random variables. We are interested in determining whether
the limiting distribution is unique. Furthermore, we want to investigate the type of convergence
to the limit. It appears that the notion of coupling convergence is central in our model. In fact,
we show that some of the quantities we are interested in are SRS (Def. 6.6.1).

We recall that 7 is the canonical projection R¥ -+ PRF (Def. 6.3.6). It is clear that the recursive
equation z(n+ 1) = A(n)z(n) defines a SRS. It is then easy to show that 7(z(n)) is also a SRS.
Indeed, let us consider z(n) and z’(n) such that 7(z(n)) = #(2'(n)). We define 2(n + 1) =
A(n)x(n) and 2'(n + 1) = A(n)a’(n). It is straightforward that m(z(n 4+ 1)) = x(2'(n + 1)).
We write with some abuse of notation that {7(z(n)), n € N} verifies the recursive equation

“r(e(n+1)) = rA(n)w(x(n))"™

Proposition 6.7.4. For i € {1,...,k}, we define z(n) = z;(n) — z;(n — 1). The vector
(zi(n),m(xz(n))) is a SRS.

Proof. This proposition was proved in [122].
s(n) = @Ay - Daj(n = 1] —ai(n - 1)
J

= @[A”(n — 1) @ (xj(n - 1) - xZ(n - 1))] )

J
and (z;(n — 1) — 2;(n — 1)) depends only on 7(z(n — 1)). 0

More precisely, we have : Vi, z(n) = F;( A(n — 1),7(z(n — 1)) ), where F; is an absolutely
continuous function. The sequence {A(n)} being stationary, it implies the following corollary.

Corollary 6.7.5. A sufficient condition for (z1(n), ..., zk(n))’ to converge weakly (resp. in total

variation) to a unique invariant distribution, uniformly over initial conditions in PR, is that
m(x(n)) has the same property.

This sufficient condition is not necessary ... as demonstrated by the following deterministic
example.

Example 6.7.6. Let us consider

a=(5 )

We have AT = A, so ug = (e,—1)" and uz = (—1,¢)’ are eigenvectors of A. The set

{u/\:/\®u1 b (1_/\)®u27 /\6[071]}7

Tt would be more rigorous to use different notations 7 and # for the canonical projections in PR* and PREX%

respectively. Then we would define more formally 7(A(n))=(z(n)) = 7(A(n)z(n)).
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is the set of eigenvectors of A, see Theorem 6.4.4. There is a continuum of stationary regimes
for m(z(n)). For example, it is easy to check that for an initial condition uy, A € [0, 1], we have:

z1(n,uy) — za(n,uy) =2x A —1.

But on the other hand, we have a unique stationary regime for z;(n). As a direct consequence
of the equality A? = A, we have z1(n) = z2(n) =€, Vn > 2.
We can also easily build stochastic counter-examples of the same kind.

Remark The variables w(z(n)) depend only on the sequence {m(A(n))}. Therefore, all the
results on 7w(z(n)) would still be true under the weaker assumption that only the sequence
{m(A(n))} is stationary and ergodic. But, on the other hand, the variables z;(n) depend on
the sequence {A(n)} and not only on {7 (A(n))}. Corollary 6.7.5 would not be true under the
assumption that {m(A(n))} only is stationary and ergodic.

In the rest of the paper, we investigate the existence of a stationary regime for the SRS = (z(n)),
i.e. the existence of a finite r.v. Z : Q — PR” such that®

Zob0=r(A0)x"(2)) .

We are interested by conditions ensuring the uniqueness of the stationary regime and the con-

vergence of m(z(n, zo)) toward it, for all 29 € R*. In such cases, we say that the model is stable.
Two types of convergence will appear, convergence with n-coupling and convergence with cou-
pling. They imply, respectively, weak convergence and total variation convergence as recalled in

§6.6.

6.7.3 Stability of discrete models

Let {A;, € L or [ € N}, be a finite or countable collection of irreducible matrices of size k x
k. We suppose that there exists a discrete probability law {p;} such that A(n,w) = A; with
probability p; > 0.

Definition 6.7.7 (pattern, 1).
A matriz A is called a pattern of the random sequence {A(n),n € N} if:

1LAN|A= Ay, @@ Ay, withug,...,un_1 €L (or N).

2. PLAIN-1)®@---®@ A(0) = A) > 0.
If the sequence {A(n)} is i.i.d. then the second condition is always verified.

Theorem 6.7.8. The sequence of matrices {A(n)} is i.i.d. If there exists a pattern of {A(n)}
whose critical graph has a unique s.c.s. and whose cyclicity is 1 (scsl-cyel matriz), then
{m(x(n))} converges with strong coupling to a unique stationary regime. It implies total variation
convergence of {w(x(n))} to its stationary distribution.

SWe will write Z 08 = 7A(0)Z with some abuse of notations.
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Proof. Let C' = Ay, _,
assumption (Th. 6.4.5),

@ -+ @ Ay, be a scsl-cycl pattern. We have, using the cyclicity 1

M |Ym > M, C™T = C™

where X\ is the Lyapunov exponent of C'. We conclude that for all initial condition y, CM+ly =
C(CMy) =A@ CMy. Tt means that CMy is an eigenvector of C'. By the assumption on the
critical graph of C', there is a unique eigenvector (up to a constant) denoted yo (Th. 6.4.4). We
have CM @y = u(y) @ yo, u(y) € R, or equivalently 7(CMy) = n(yo). We define

Bi ={w| A(i+ MN = 1,0)@---@ Ali + 1,w) @ A(i,w) = CM} .

From the i.i.d. assumption, it follows that P(B;) > 0. On B;, and for all initial condition y, we
have:

z(i+MN) = CM@z()

= n(z(i+MN)) = 7(yo).

We check that the sequence B; is compatible with the shift, i.e. B; = By o 6. We conclude
that B; is a stationary renovating event sequence for the SRS 7w (z(n)). We apply Borovkov
Theorem (version 6.6.6 for the set V = PR*, as we have obtained a sequence of renovating

events independent of the initial condition) and the uniqueness of the stationary regime follows.
O

Remark This theorem is in particular true in the important case where one of the matrices A;
is a scsl-cycl matrix.

Example 6.7.9. [Cyclic Jackson Network 2]

We consider a basic Cyclic Jackson Network with & queues and &k customers. Such a network
can be represented by the (max,+) matrix given in §6.2.2, Equation (6.3). We suppose that the
sequence of service times {(o1(n),...,01(n)), n € N} is i.i.d. However the random variables
o1(n),...,0r(n) need not be independent for a given n. We suppose also that the service times
have a discrete support, i.e. can only take a countable number of values. We are in the framework
of Theorem 6.7.8. We conclude that a sufficient condition of stability is to find a scsl-cycl matrix
among the (max,+) matrices corresponding to this network. As a direct application of the result
stated in Example 6.4.8, we obtain that a condition of stability is:

P(3i|oi(n) > 0;(n),Vj#1)>0o0r Ploy(n) =0ox(n) =---=o0x(n)) >0.

We now give a version of Theorem 6.7.8 in the stationary and ergodic case.

Theorem 6.7.10. The sequence {A(n)} is stationary and ergodic. We suppose that there exists
a finite pattern C' = Ay, _, @ -+ @ Ay, which is scsl-cycl and of rank 1 (see Def. 6.4.7). We
suppose that B = {w| AN —1)A(N —2)---A(1)A(0) = C} is of strictly positive probability.

Then {m(xz(n))} converges with strong coupling to a unique stationary regime.
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Proof. The proof resembles the one of Theorem 6.7.8. As C' is of rank 1, we have (see Def.
6.4.7): C* = X @ C, where X is the Lyapunov exponent of C'. We conclude that:

Yy e RY, C%y = C(Cy) = \Cy.

It implies that C'y is an eigenvector of C'. As matrix C' is scsl, it has a unique eigenvector yo,

up to a constant. On B; = Bo 6, we have

m(z(i+N)) = 7 (Cu(1))

We check that the sequence B; is compatible with the shift and we apply Borovkov’s Theorem
6.6.6. O

Remark If the dependence between matrices is markovian, a sufficient condition to get P(B) >
0 is that p(Ay,, Ayy,) >0, Vi=1,...,N — 1, where p(.,.) is the markovian transition kernel.

Remark The conditions of this theorem are, of course, weaker than the i.i.d. assumption of
Theorem 6.7.8. However we made an additional assumption, namely that the pattern C' is of
rank 1. This assumption cannot be relaxed, as shown by the counter-example 6.7.11.

Example 6.7.11. Let Q = {wy,ws} be the probability space, P:{%7 %} the probability law,
and 6 the stationary and ergodic shift defined by: #(wy) = wy and #(ws) = wy. We consider

_{1-=n e (1 e
(YD) e

{A(n,w1)} = A, B,A,B,... {A(n,w2)} =B, A, B,A,....

Both matrices A and B are scsl-cycl patterns of length 1. But patterns which are scsl-cycl
and of rank 1 are for example A™ or B" for n > [1/5]. We have, of course, for any n > [1/7],
PEAN | AN -1)---A(0) = A") = PEAN | A(N —1)---A(0) = B") = 0. Hence the conditions
of Theorem 6.7.10 are not verified. In fact, there is a continuum of possible periodic limits.
Consider z¢ = (a,b)’ with —14+n < a—b < 1—17. Then the limit regime of m(z(n)) has a state
space which is either {(a,b)’, 7(a+ n,b)’} (with probability 1), or {m(a,b)’, 7(a,b+ 1)’} (with
probability %)

When 7 becomes arbitrarily small, we can build more complex counter-examples to Theorem
6.7.10 by limiting the number of times that one can get the same matrix 4 or B in a row. This

idea is used in Example 6.8.2. Such models, where there exist patterns which are scsl-cycl but
no patterns of rank 1, will be called pseudo-periodic.

6.7.4 Stability of general models

In this section, we consider a general model where the coordinates of our matrices have a support
which can be discrete, absolutely continuous with respect to Lebesgue measure or a mixture of
these two cases.
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We need the following definitions, extending the notion of pattern we have been using for finite
models. Let M be a deterministic matrix and 7 > 0. We denote by B(M,n) the open ball of

center M and of radius 7 for the supremum norm of R¥**. We have N € B(M,n) iff

Definition 6.7.12 (pattern, 2). Let A be a random matriz. We say that A is a pattern of

A if A is a deterministic matriz verifying
Vi > 0, P{Ae B(A,n)} >0.

Equivalently, we can say that A belongs to the support of the random matriz A. It includes the

cases where A is an accumulation point (discrete case) or a boundary point (continuous case) of
the support.

Definition 6.7.13 (pattern, 3). Let {A(n),n € N} be a sequence of random matrices. We
say that the deterministic matriz A is a pattern of the sequence {A(n)} if

3N s.t.Vn > 0, P{A(N—l)@---@A(O) GB(M)}>0-

Equivalently, we can say that A is a pattern (Def. 6.7.12) of the random matriz A(N — 1) @
- ® A(0). We say that A is an asymptotic pattern of {A(n)} if

Vi > 0, 3N, st P{r(A(N, = 1) @@ A(0)) € m(B(A,m) } > 0.

Remark This definition is coherent with the one given in Definition 6.7.7 for a discrete model.
Note that, for convenience reasons, asymptotic patterns are defined in the projective space

PRka.

Theorem 6.7.14. The matrices A(n) are i.i.d. (resp. stationary and ergodic). We suppose
that there exists a matriz C' which is a pattern of {A(n)} (see Def. 6.7.13) and which is scsi-
cycl (resp. of rank 1). Then the SRS {m(x(n))} has a unique stationary regime {Z o §"}.
The convergence occurs with n—coupling. It implies weak convergence of w(x(n)) to its unique
stationary distribution.

Proof. 1t is done in Appendix, §6.10.2. A stronger version of Theorem 6.7.14, together with a
rather different proof, is provided by Theorem 6.8.4. O

Theorem 6.7.15. The sequence of matrices {A(n)} is i.i.d. or stationary and ergodic. We
assume that there exists a set C of matrices such that :

1. ¥C € C, C is a matriz of rank 1.
2. ¥C € C, C is a pattern of {A(n)}.

3. AN | P(A(N —1)---A(0) € C) > 0.



6.8 Converse Theorems 140

Then {m(xz(n))} converges with strong coupling to a unique stationary regime.

The conditions of Theorem 6.7.15 are stronger than the ones of Theorem 6.7.14 as we require
the patterns of rank 1 to be of positive probability. On the other hand, we obtain a stronger
type of convergence.

Proof. Let us define B = {w| A(N — 1)A(N — 2)---A(1)A(0) € C} and B; = Bo#'. Using that
the matrices C' € C are of rank 1, we obtain that, on the event B;, m(z(¢+ N)) is independent of
the value of 7(z(7)). It implies that {B,,n € N} is a stationary sequence of renovating events.
The result follows. a

Remark Theorems 6.7.8 to 6.7.15 do not require any aperiodicity (Def. 6.3.4) assumption on
the matrices A(n). However, the pattern C' whose existence is essential in all of these theorems
is aperiodic. The condition “scsl-cycl” implies aperiodicity.

Example 6.7.16. [Cyclic Jackson Network 3]

We consider the same i.i.d. model as in Example 6.7.9. However, the distributions of the service
times are now general. We obtain, by using Theorems 6.7.14 and 6.7.15, the stability under the
condition:

The support of the random vector (o1(n),...,ok(n)) contains at least one point such that:

di| o;(n) > 0;(n),Vj # ior such that oq(n) = o3(n) = --- = ox(n) .

If the previous condition occurs with strictly positive probability, we obtain total variation
convergence. Otherwise, we obtain weak convergence. Here is a case with only weak convergence.
We consider an i.i.d. CJN with three queues and three customers. We assume that oy = 09 = 1
and o3 is uniformly distributed over [0, 1].

6.8 Converse Theorems

We are going to prove converses of Theorems 6.7.8, 6.7.10, 6.7.14 and 6.7.15. We will consider
successively finite and general models of type: “z(n+ 1) = A(n)z(n)” where the matrices are
of size k x k and are P — a.s irreducible. We will, moreover, always suppose that there exists,
with positive probability, a pattern whose projective diameter (Def. 6.3.9) is finite, i.e.:

3n | P{D( A(n)---A(0)) < +00} > 0. (6.6)

It implies lim,, P{D( A(n)---A(0)) < 400} = 1, see the proof of Lemma 6.10.1. This condition
is very weak. In the i.i.d. case, it is enough that there exists a pattern which is irreducible and
aperiodic. We comment further on this condition in Section 6.9.1.

6.8.1 Finite models in QF**

We consider a finite model: “z(n+ 1) = A(n)z(n)”, with A(n) € {4, le L={1,...,L}}. We
assume that the matrices are irreducible. We assume also that the matrices A;,l € L, belong to

QFxk ie. that their coordinates are rational.
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Theorem 6.8.1. The sequence of matrices {A(n)} is i.i.d. or stationary and ergodic. When
there is a unique stationary regime, convergence to this regime occurs with strong coupling. A
necessary and sufficient condition for the model to have a unique stationary regime is that there
exists a matriz C' verifying

1. Cis a matriz of rank 1 (Def. 6.4.7).

2. C is a pattern of {A(n)} (Def. 6.7.13).

Proof. 1t is given in Appendix, §6.10.3. O

kxk

wik. see the

Theorem 6.8.1 is not true in general when the matrices A;,! € L, belong to R
following counter-example.

Example 6.8.2. We consider the matrices

(e -1 (= -1
(D))

where 0 < 7,7' < 1 and 7, 5’ are not co-rational, i.e. 1/’ ¢ Q.

Let u = (u1,uz) € R? we set ¢(u) = ug —u;. We identify PR? and R using the function ¢omx~1.
The matrices A and B are scsl-cycl. Their respective and unique eigenvectors are 1(e;) = —1
and ¢ (eg) = 1. For a vector w = (uy, uz)’ such that ¢(u) € [—1, 1], we have

Y (Au) = max(¢(u) — n, —1), ¥(Bu) = min(¢(u)+7',1). (6.7)

We consider a Markov chain defined on the set »=![—1,1] C R? The transition probabilities
are

e For w such that ¢¥(u) €] — 14,1 = 7], p(u, Au) = 1/2, p(u, Bu) = 1/2.
e For w such that ¢(u) € [1 — 7, 1], p(u, Au) = 1.
e For w such that ¢ (u) € [-1, -1+ 5], p(u, Bu) = 1.

The behaviour of the Markov chain is illustrated in Figure 6.3.

B A B A
-1 —1+47 1—-7 1 PR? ~ R

Figure 6.3: Markov chain (X (n)) on R.

Let X (n) be a realization of the Markov chain. It is easy to check that this Markov chain
is aperiodic. Under the assumption /5’ € Q, one can prove using classical arguments that
the set {¢(X(n)),n € N} is P-as. dense in [—1,1]. It implies that the Markov chain is
v-irreducible where v is the Lebesgue measure on ¢~![—1,1]. Hence there exists a unique
stationary distribution @ for the Markov chain. It verifies Q(A) > 0 for all event A such that
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v(A) > 0. For a complete presentation of Markov chains on continuous state spaces, see Meyn
& Tweedie [109].

Let us consider a stationary realization X (n) of the Markov chain (i.e. Vn, P{X (n) € .} = Q(.)).
We define

A f X(n+1,w) = AX(n,w),

A(n,w) =
(m,) {B if X(n+1,w) = BX(n,w

As X (n) is stationary, it follows that {A(n)} is a stationary and ergodic sequence.

Let us consider the stationary-ergodic finite model “z(n+ 1) = A(n)z(n)” and z(0) = zo € R?
is non-random. Note that {z(n)} is not a Markov chain anymore.

Let us consider a pattern C' = A,,_; - - - Ag of {A(n) },i.e. P{A(n—1)---A(0)=A,_;---Ap} > 0.
Let g, ..., 2, be a corresponding path for the Markov chain X (n), i.e.

) €¢_1]—171[7 [z} IA0$07...7$nIAn_1$n_17

and P{X(n)=a,,...,X(1)=a; | X(0)=2a0}>0.

Let us denote by ¢ and ¢ the minimal distances between z,,p < n and the extremal points of

=11

¢ = min(p(z,) +1), &= min(l - (x,)) -

PR pgn

It follows from (6.7) that
p(Im(A,_y -+ Ag)) = [2n — ¢, 2, + 7], (6.8)

where Im(A) = {Au, u € R¥}. From the definition of the Markov chain X (n), it follows that
c¢>0,¢> 0. We conclude that A,_1 ---Ag is not a rank 1 matrix. There exists no finite pattern

of rank 1 for {A(n)}.

On the other hand, let us prove that there exists asymptotic patterns of rank 1 for {A(n)}.
We define ¢(n) = min,¢, (¥ (X (p)) + 1) and €(n) = min,¢,(1 — ¥(X(p))). As {¥(X(n)),n €
N} is dense in [—1,1], we obtain that ¢(n) — 0 and é(n) — 0. Using (6.8), we obtain that
D(A(n)---A(0)) — 0, P-a.s. We conclude following the lines of Theorem 6.8.4, §6.10.4. There is
a unique stationary regime for the model. For an arbitrary initial condition, we have n-coupling
(weak convergence) with this stationary regime.

To summarize, we have exhibited a finite model with a unique stationary regime and no coupling
convergence. This type of behaviour is closely related to the non-finiteness of the projective
semigroup © < A, B > (see Def. 6.5.1 for a definition and Chapter 3, §3.7 for more insights).

6.8.2 General models

We consider a general model of type “z(n+1) = A(n)x(n)”. Stability no longer implies coupling
in finite time. It was illustrated by Example 6.8.2. Here is another example, for an i.i.d. model.
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Example 6.8.3.

where U(n) are i.i.d. random variables of uniform distribution over [0,1]. There is a unique
stationary regime for 7(z(n)) which is 7 (e, €)’. We denote by d(.,.) the projective distance. For
an initial condition (y,e)’ with y > 1, we have d (z(n); (e, e)’) = min,g, U(p). Thus convergence
to 7 (e, €)’ occurs only asymptotically. There is no coupling but only n-coupling with the unique
stationary regime.

We can show the following results.

Theorem 6.8.4. The sequence of matrices {A(n)} is i.i.d. or stationary and ergodic. The
necessary and sufficient condition for the model to converge with n-coupling to a unique sta-
tionary regime is the existence of an asymptotic pattern C' of {A(n)} of rank 1 (Def. 6.7.13).

Proof. 1t is given in Appendix, §6.10.4. O

Theorem 6.8.5. The sequence of matrices {A(n)} is i.i.d. or stationary and ergodic. The
necessary and sufficient conditions for the model to converge with coupling to a unique stationary
regime are :

There exists a set C of matrices such that :

1. ¥C € C, C is a matriz of rank 1.
2. ¥C € C, C is a pattern of {A(n)}.
3. IN|P(A(N —1)---A(0) €C) > 0.

We can say equivalently that we must have patterns of rank 1 but with strictly positive probability.

Proof. We have already proved the sufficient part (Th. 6.7.15). We prove the necessary part of
the theorem in Appendix, §6.10.5. O

Remark Convergence with n—coupling appears as a limiting case of coupling in finite time. In
a discrete model, we will have only n-coupling when the set C of scsl-cycl patterns is non empty
but is of probability 0. It means that the scsl-cycl patterns are only accumulation points of
the support. In a general model, we will have only n-coupling when the scsl-cycl patterns are
isolated points of the support (which implies that they are boundary points of the support).

Example 6.8.6. To illustrate the previous remark, let us continue the analysis of Example

6.8.3. There is only one matrix (in the projective space ]P’Rf%’;) verifying the first two conditions

of Theorem 6.8.5. It is the matrix
e e
T(C)=m=m ( . e ) ,
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But condition 3. of Th. 6.8.5 is not verified as VN, P (7 (A(N — 1) ---A(0)) = =(C)) = 0.

Let us consider a slightly modified sequence of matrices {A(n)} where the diagonal elements are
two random variables U(n) and U’(n) defined on [0, 1] and such that

P{U(m) >U'(n)} >0 or P{U'(n) >U(n)} >0.

Now, we have scsl-cycl patterns with strictly positive probability and there is coupling in finite
time with the unique stationary regime.

Example 6.8.7. [Cyclic Jackson Network 4]

We consider the model of Example 6.7.16. The condition
P({3i]| oi(n) > 0;(n),Vji#i}U{o1(n)="---=0or(n)}) >0.

is necessary and sufficient for strong coupling convergence to a unique stationary regime. For
i.i.d. Cyclic Jackson Networks, the sufficient condition P ({3¢| o;(n) > o;(n),Vj # ¢}) > 0 was
obtained in [94]. The method of proof was completely different, see the remarks at the end of
Section 6.2.2.

In Figure 6.4, at the end of the chapter, we propose a diagram summarizing the different results
proved.

6.9 Complementary Results

6.9.1 Without irreducibility

We have supposed from the beginning that the matrices { A(n)} were irreducibles. The relaxation
of the irreducibility assumption is very important in terms of modeling power. It enables us to
consider, for example, the task graphs with random precedences introduced in Section 6.2.1.

Let us come back to the places where this assumption is used. First of all, it is used in Prop. 6.3.8.
But in fact, the only point we need in order to prove this proposition is: “Vu € R*, Au € R¥”,
i.e. if w has only non-¢ coordinates then Aw has the same property. So the only assumption we
need on the matrices {A(n)} is:

I Vi, P{3js.t. A;(0) > e} =1.

Secondly, the irreducibility is essential for the R, 4, spectral theory of Section 6.4. A reducible

matrix A € RF** may have several eigenvalues. Definition 6.4.3 and Theorem 6.4.4 have to
be reinterpreted by replacing the unique eigenvalue by the maximal eigenvalue. Theorem 6.4.5
is not true anymore. But as far as the direct theorems (6.7.8, 6.7.10, 6.7.14 and 6.7.15) are
concerned, we use results of the R,,,, spectral theory only for the pattern " whose existence is
critical for the proofs. They are still valid, then, if we state that condition I is verified and that
there exists a pattern €' which is scsl-cycl and irreducible.

Dropping the irreducibility assumption does not influence the converse results. More precisely,
the proofs of Theorems 6.8.1, 6.8.4 and 6.8.5 are still valid. Only two points need to be verified:
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I Vi, P{djs.t. 4;(0) >} =1.

I1 dn | P{D( A(n)---A(0)) < 400} > 0.
Of course, irreducibility P — a.s. is not necessary to ensure that these conditions hold. We
conclude that we can state our converse results under the previous two minimal assumptions.

Let us discuss condition II a little further. First of all, we propose a counter-example showing
that without II, the uniqueness of the stationary regime does not imply the existence of a rank
1 pattern.

Example 6.9.1. Let Q = {w;,wy} be the probability space, P = {%, %} the probability law,

and 6 the ergodic shift defined by: #(w;) = wy and #(wy) = w;. We consider
£ e e e
()
{A(n,w1)} = A, B,A,B,... {A(n,w2)} =B, A, B,A,....

All patterns have an infinite projective diameter. Therefore, condition II is not verified. Nev-
ertheless, there is coupling in finite time with a unique periodic regime. More precisely, there
is coupling of w(x(n,u)) to the periodic regime {x(e,e)’,7(e,1)’} and coupling occurs for n >
2 X [P (ur —ug, ug—uy)]. We conclude that there is coupling in finite time to a unique stationary
regime but no rank 1 pattern. Without condition II, Theorem 6.8.1 is not true anymore.

Another class of systems where condition IT is not verified is the class of open systems studied
by Baccelli in [4]. The results for this type of systems have been recalled in §6.7.1. In this
case also, Theorem 6.8.1 fails to be true. In such models, there are no patterns which are scsl-
cycl and irreducible (matrices are non-irreducible with probability 1 !), even when there is a
unique stationary regime. In fact, we cannot exhibit a type of pattern which would decide the
uniqueness of the stationary regimes. The good criterion is the comparison between Lyapunov
exponents, see Theorem 6.7.3. The computation of such exponents involves the whole structure
of the stochastic matrices {A(n)}, and not only an extracted pattern.

For the class of open systems, it is not even true that coupling of the trajectories mean the
existence of a stationary regime, see Example 6.9.2. Hence Lemma 6.10.1 fails to be true.

Example 6.9.2. Let us consider the i.i.d. model “z(n+ 1) = A(n)a(n)” with

and the random variables a(n) are such that P{a(n) = —1} = P{a(n) = 1} = 1/2. We identify
PR? and R in the following way 7(a,b)’ ~ b — a. For an initial condition u = (uy, us)’, we have

z(n+ 1) = (uy, max(z(n); + a(n),u;)” which implies
m(z(n+1)) = max(w(z(n))+ a(n),0) .

This is a classical birth and death process with state space N. Two trajectories which cross each
other get coupled as the only jumps allowed are -1 and 1. We conclude that there is coupling in
finite time of the trajectories of w(z(n)). However the process is recurrent null as a consequence

of I(a(0)) = 0. Hence there exists no stationary distribution.
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Condition IT is weak and will be verified in most cases. For a discrete i.i.d. model, for example, it
is sufficient to have one pattern of finite length A, ---A4,, which is irreducible and aperiodic to
verify it. For a general i.i.d. model, it is sufficient to have P{ A(0) irreducible and aperiodic } >
0. In a stationary and ergodic framework, condition II is a little bit stronger, as shown by
Example 6.9.1 where P{ A(0) irreducible and aperiodic} = 1 and where condition II is not
verified.

Remark For a general model which does not verify condition II, we decompose the model into
its maximal sub-models verifying it. Then the complete analysis of the system boils down to an
analysis of the sub-models (using the results of Section 6.7.4) and of their interactions (using
Theorem 6.7.3 and its generalizations, see [4]).

6.9.2 Boundedness

We have seen that we do not need irreducibility and aperiodicity assumptions in order to get
our results. Anyway, there are more precise results when we make these assumptions.

Proposition 6.9.3. We consider a finite model verifying the assumptions of Theorem 6.8.1.
If we assume furthermore that all the matrices Ay Ay, - Ay, u; € {1,..., L} are aperiodic,
then the unique stationary distribution has a bounded state space.

Proof. The existence and uniqueness of the stationary regime is a consequence of Theorem 6.7.8.
We define: Im(A4;) = {v € RF | Ju € R¥, v = Aju}. We recall that a matrix has a bounded image

if and only if all its coordinates are different from . Let us consider S =< Ay,..., A; > the
semigroup generated by the matrices Ay, ..., A (Def. 6.5.1). It follows from Proposition 6.5.3
that the semigroup .S is primitive. Let N be such that

V> Nyug, .o u, € {1,000, LY, Vi g, (Ay Ay, -+ Ay, )i > €.

We define I1 = U(Im(A,, ---A,,) ), where the union is taken over all the products of length N.

It follows from the primitivity that IT is bounded. We have that Yz € R*, 7(z(n,z0)) € Il for
n > N. It implies that the support of the stationary measure is included in II. O

Proposition 6.9.3 is not true without the aperiodicity assumption, as is shown by Examples 6.9.4
and 6.9.5.

Example 6.9.4. Let us consider an i.i.d. model with 2 matrices and verifying conditions 1

and IL Let p; = P(A(0) = A;) and p; =1 — p; = P(A(0) = Ag).

e ¢ 1 e
w=(ci)a=(01)

We identify PR? and R in the following way: m(a,b)’ ~ b — a. We consider an initial condition
w = (uy,uz)’ with uz —u; > 1. One verifies that 7(z(n, 2)) is a Markov chain on N\{0} whose
transition probabilities are

p(i,i+ 1) =p1, p(i,1)=1—py, Vie N\{0}.
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This is a classical recurrent positive Markov chain whose stationary distribution is:

p(1)=1-py, p(n) = (1 - p)pi~", Vn > 2.

The state space is unbounded. The scsl-cycl pattern proving the stability is for example C' =
A As.

There exist also examples of models where all the matrices are irreducible and where the state
space of the unique stationary regime is unbounded.

Example 6.9.5. We consider:

= () 1 )ome (10

A possible pattern to prove the uniqueness of the stationary regime is C' = B; B3 Bs. We show
that the state space is unbounded by remarking that By By, = A; and By = A,, where A; and
Ag are defined in Example 6.9.4.

6.10 Appendix

6.10.1 Loynes scheme

Lemma 6.10.1 is going to be used in several of the forthcoming proofs. Under an assumption of
n-coupling of the trajectories, we build a stationary regime using a Loynes’ type construction.

Lemma 6.10.1. We consider a general model “x(n+ 1) = A(n)z(n)” (see §6.7.4). The se-
quence {A(n)} is stationary and ergodic. We assume that there exists N such that

P{D(A(N)---A(0)) < +o0} >0

We assume also that Yo, yo € R¥, d(z(n,z0),z(n,y0)) = 0, P a.s. (n-coupling of the trajecto-
ries). Then there exists a r.v. Z : Q — PR* verifying Z 00 = 7(A(0))Z. The sequence {Z 06"}
is the unique stationary regime of the model.

Proof. We are going to show that the sequence {7(A(—1)---A(-n)u), n € N}, u € R*, has a

simple limit in PR*. The argument is an analog of the famous backward scheme proposed by
Loynes in [103] for G/G/1 queues.

We want to show that D( A(n)---A(0)) = 0, P — a.s. It is easy to see that the event
A=A{w|3IN, D(A(N)---A(0)) < +oo} ={w|IN,Vn > N, D( A(n)---A(0)) < +oo}

is invariant by the translation shift. Then by the ergodic Lemma 10.2.1, it is of probability 0 or
1. We have made the assumption that P(A) > 0, hence P(A) = 1.
Using the stationarity of the sequence {A(n),n € Z}, we have that 3N (w) such that

D(A(=1)--A(=N)) < +00.
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Then we can define the projective image of A(—1)---A(—N) which is a bounded subset of PR*
and that we denote by II. The boundedness implies that

¢ = maxd(e,v) < 400,
vell

where e = (e,...,e). Let us define the vectors
c1=(cyey .. ) ea=(e,coe ... e) o ep=(e,...,ec) . (6.9)
It is immediate that II is included in the convex hull of these vectors, i.e.
HCc{r(mm@ca1FGar@cy---PapDck), a; ER}.

In the (max,+) algebra, we have the following property, forall A € RFXE w, v € RE, . A(udv) =
Au @ Av. It implies

Ve ell, n(Az) € {m(oq @ Ay & -+ - & o @ Acy), o; € R} . (6.10)

We fix n > 0. Using the n—coupling assumption, we have that the random variable N'(w) is
P — a.s. finite, where N’ is defined by:

N’ =inf{n | d(z(n,c;),x(n,¢;)) <, ¥i,j}.
As both N and N’ are P — a.s. finite, we have
V6 >0, 3L, 1 : PINSLN'<L}>1-6.
As a direct consequence of (6.10), we have on the event {N < L, N' < L'} :
D(AL' -1 @ - @ A0)A(-1)@---@ A(-L)) < 7.
We deduce, using the stationarity of {A(n)}, that

PADA(-1)- AL — L) < u} = P{D(A(L = 1)--A(-L)) < 1}
> 1-4.
It implies that the random variables D(A(—1)---A(—n)) converge in probability to 0. But as

D(A(—1)---A(—n)) is pathwise decreasing, the convergence occurs also P — a.s.

We have in particular, for all w € R, d (A(=1)---A(=n)u, A(=1) -+ A(=n — p)u) — 0, P —
a.s. It implies that {7w(A(—1)---A(—n)u)} is a Cauchy sequence which converges. The limit
does not depend on u. We denote it by Z. We have :

Zol = liin T(A(0)A(-1) ---A(—n)u)
= 7A(0) 1i7£n T(A(=1)---A(—n)u) = 7(A(0))Z .
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The sequence {Z 0 "} is a stationary regime. Let us prove it is the unique one. We want to
prove that

Voo € R, d(z(n,x0), Zo6") 20, P—as. (6.11)

As Zis P—a.s. finite, for all > 0, there exists a compact K € PR* such that P{Z € K} > 1—.
We proceed as above (Equation (6.9)) in order to define vectors ¢;,4 =1,...,k such that

Kc{r(a1 @@ az®@ca---Pap@cg), a; € R} .
We have
ZeK=Zob ec{r(am[A(p—1)---A0)c1] & --- P ax[A(p—1)---A(0)cr]), oy € R}.
Using the n—coupling of trajectories, we also have
Ve, d(z(n, zo), 2(n,¢;)) = 0.

We conclude easily that there is 7—coupling of {7z (n, z¢)} and {Z068"}. We can apply Proposi-
tion 6.6.10. There is weak convergence of {mz(n, z¢)} to the distribution of Z and relation (6.11)
establishes the a.s. convergence of {ma(n,z¢)} to Z 08". As a direct consequence, {Z 00"} is
the unique stationary regime.

In fact it is not necessary to use Proposition 6.6.10. The backward scheme gives us the following
result.
Vag € RE, m( A(=1)A(=2)---A(=n)zo ) "25° 7, P — a.s.

We consider a function f :PR* — R, continuous and bounded. We have

E(f(ra(nze)) = E(f(xA(n—1)---A(0)zo))
= B(f(RA(=1)---A(=n)z0) ) = E(f(2)), P - a.s.,

using Lebesgue dominated convergence theorem (f is bounded). It proves weak convergence.
We conclude in the same manner. The introduction of the notion of n-coupling is useful to show
the continuity with the finite model where there is coupling. Furthermore, if we assume that
there exists a solution to Z o8 = 7 (A(0))Z, Prop. 6.6.10 enables us to prove the uniqueness of
the stationary regime without needing a backward scheme. O

Remark Without the assumption P {D( A(N)---A(0)) < 400} > 0, it is not always true that
n-coupling of the trajectories implies the existence of a stationary regime, see Example 6.9.2.

6.10.2 Proof of Theorem 6.7.14

The general idea consists in using Theorems 6.7.8 and 6.7.10 after having discretized the matrices
A(n). This discretization goes in the following way. We consider a;;, 7,7 = 1,..., k. We define
Ao by (Ao)i; = ai;. In general, we have: P(A(0,w) = Ag) = 0. We consider n > 0 fixed. We
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define A", the discretization of step n and of skeleton Ag, in the following way. For i, j fixed,
we define:

AG(0,0) = (agj + 2nn) if Aij(0,w) € Jaij + (2n — L, aij+ 2n+ 1)), n € Z..
We check easily that we have ||A(n,w) — A7(n,w)||o < 2n with probability 1. Furthermore, the

random variables A7(0) converge to A(0) a.s. as n — 0.

In the whole proof, d(.,.) represents the projective distance as defined in Def. 6.3.7. Let N be
such that C' is a rank 1 pattern of A(N — 1) ® --- @ A(0). We can write C' in the following
form: C'=Cn_1 @ ---® Cp where C; is a pattern of A(7) (i.e. of A(0)),Ve=0,...,N —1. We
define a decreasing sequence 1; > 0 such that: SNn; < % The N matrices Cy,...,Cy_y define
N possible skeletons for discretizing matrices {A(n)}. More precisely, for [ € {0,...,N — 1},
we can define the intervals: ](C7);; + (2p — 1)n, (C))i; + (2p + 1)5], p € Z. By realizing all
possible intersections between these intervals, we define a new countable set of disjoint intervals,
whose union is R. The discretization of A(n) will be done with respect to this new set. It is
straightforward to prove that

Yu,v € R, | d(A(0)u, A(0)v) — d(A"(0)u, A"(0)v) | < 87. (6.12)
We are now going to prove that Vu, v, we have
d(A(n) - A(0)u, A(n) - -- A(0)v) "Z5E°0 P — a.s.
We define the events B¢, in the following way:
By={w|A"(N-1,0)@---@ A" (0,w)=C}, B, =Byof".

We fix i. The event A = {w | [J°Z, B.} is such that 8(A) C A. By the ergodic lemma, we
deduce that it is of probability 0 or 1. Because of the assumption that C' is a pattern, we have
P (Bj) > 0. We conclude that P (22, B%) = 1.

On the event B!, we have:

d ( A"(N+n-1)®@ ---@A"(n)An—-1) @ - @ A(0)y,
A"(N4+n-1)@---@ AT"(n)An-1)®@---@ A(0)v) =0.

This is a consequence of the fact that A(N +n —1)®---® A" (n) is of rank 1 on the event

B¢ . Using the inequality (6.12), we obtain:
1
dAN+n-1)@---@A0)u, AIN+n—-1)®@---@ A0)v) < 8N < —.
i

From the monotonicity of d(.,.) (see Prop. 6.3.8), we obtain, on the event B¢,

liin d(A(n)---A0)u, A(n)---A(0)v) <

<L =
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We conclude that Vi fixed,

1

B c {hmn%m d(A(n) - A0)u, A(n) -~ A(0)v) < l}

1
= P {limn_>_|_oo d(A(n)---A(0)u, A(n) ---A(0)v) < —,} =1.
By letting ¢ go to 400, we obtain that d(A(n)---A(0)u, A(n)---A(0)v) 20, P - as.
The assumptions of Lemma 6.10.1 are verified (there exists N such that P{D(A(N)---A(0)) <

+oo} > 0 as a direct consequence of the existence of a pattern of rank 1). It concludes the proof.
|

6.10.3 Proof of Theorem 6.8.1

We are going to prove that the existence of a unique stationary regime implies the existence of
a pattern of rank 1 (Def. 6.7.7). Using Theorem 6.7.10, the proof will then be complete. Let us
prove a lemma first.

Lemma 6.10.2. We consider a finite model “c(n+1) = A(n)z(n)” with A(n) € {A,..., Ay}

and A; € QFXE i =1,...,p. We suppose that there is a unique stationary regime. It implies
d(A(n)A(n—1)---A(0)zg, A(n)A(n — 1) --- A(0)yo) "0, P—a.s. (6.13)

Equivalently, it implies n-coupling of the trajectories corresponding to different initial conditions.

Proof. We assume that Equation (6.13) is not verified. It implies, using Proposition 6.3.8, that
there exists 2o, yo € R* and ¢ > 0 such that

P(A) >0, A= {liin d(A(n)A(n—1)---A(0)zg, A(n)A(n —1)---A(0)yo) > ¢} > 0. (6.14)

Let S =< Ay,..., A, > be the projective semigroup generated by the matrices of the model
(Def. 6.5.1). For z € R*, we define S(z) = {r(Az), A € S}. If we assume that all the matrices of
< Ay, ..., A, > are aperiodic, then the semigroup S is projectively finite as a direct consequence
of Proposition 6.5.4. It implies that S(z) is finite for all 2. When it is not the case, we still have
that 7 < Ay,..., A, > NK is finite for all compact K of PR¥*%. It implies that S(z) N K is
finite for all compact K of PR*. We conclude that S(z) has no accumulation point and verifies
S(z) = S(z), where S(z) is the closure of S(z) in PR

We want to apply Theorem 6.6.8. It is required that the probability space be a Polish space. In

order to fulfill this, we consider the canonical probability space consisting of one-sided infinite
sequences of matrices {Ay,...4,}, i.e.

Q={(Au, Auyy--rAupy---)s wi €{1,...,p}}.
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When the set S(z) is finite, it is immediate that the sequence {m(2(n,z))} is tight in S(z). Let
us prove it is still true in the general case. We recall that we made the assumption (6.6), which
implies

liin P{D(A(n)---A(0)) < +oo} =1.

It implies that for all 7 > 0, there exists N € N and K, a compact set of PR*** such that
Vn> N, P{r(A(N)---A(0)) e K} >1—1.
There exists a compact K’ (which depends on ) of PR such that
{7(A(N)---A(0)) € K} = {r(A(N)---A(0)z) € K'}.

We conclude that the sequence {7 (z(n,2))} is tight in PR*. It implies that it is tight in S(z) =
S(z). We can view m(z(n,z)) as a SRS defined on S(z) only. Applying Theorem 6.6.8, we
obtain that, for all z, there exists a stationary distribution @), defined on  x S(z).

Let us consider the initial conditions zg and yo as defined in (6.14). It is a-priori possible to
have S(20) NS(yo) # 0. As a consequence, one cannot rule out that 0, = Q,,. We are going to
prove that there exists @ € R such that S(zg) NS (azg @ yo) = 0. It will provide two stationary
distributions Qz, # Qaweay,, Which contradicts the uniqueness of the stationary regime.

We work on the event A, see (6.14). We have d(z(n,zo),z(n, yo)) > c for all n. Let z,y € R*

]
be two different points. Then there exists an open interval |A, A[ such that

X_A:d($7y)7 {Xw@yvax@y}:{x7y}7

VALN M, dady#NeDy.

The proof is straightforward, for more insights, see Chapter 3, §3.4.2. We consider the (random)
intervals JA(n), A(n)[ defined as above for the couples of points {z(n, o),z (n,y0)}. For any
A€ REXE 2y € RE, . and A € R, we have A(Az & y) = Mz @ Ay. As a consequence, the

sequence JA(n), A(n)[ is decreasing. Let A and X be the limits of A(n) and A(n). On the event
A, we have A — A > ¢ (see (6.14)).

We define the sets

A(n) = {A| 7m(Az(n,20) @ z(n, o)) € S(zo)}, A= | A(n).
neN

Let 2,y, 2 € PR* be three different points. It is immediate to prove that there exists a unique
A € R such that z = Az & y. As a consequence, the sets A(n) are countable and A is countable.
It implies that the set JA, A[\A is non-empty on A. For all A €]\, A[\A, we have, by definition of
A, that S(Azo @ yo) N S(zg) = 0. The conclusion follows. 0
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kak

v . In this case, it is

Remark The proof does not work when matrices Ay,..., A, belong to

possible to have S(z) # S(z). In the model detailed in Example 6.8.2, all the sets S(z) are dense
in the interval [—1, 1] (as a classical consequence of the assumption n/5’ € Q). It implies that
S(z) = [-1,1],Yz. The stationary distributions ), are all defined on the same set, Q x [—1, 1],

which prevents the previous proof from working.

We want to prove the existence of a rank 1 pattern of {A(n)} (Def. 6.7.7). There exists a r.v.
N such that A(N)---A(0);; > e,Vi,j (consequence of Equation (6.6)).
It follows from the ergodic Lemma 10.2.1, that the set

T={n| n>N, An)---A(n— N) = A(N)--- A(0)} (6.15)

isinfinite, P-a.s. Let 0 : N — N be the strictly increasing function such that Z = {¢(0), o (1), ...}.
We define the subsequence {B(n) = A(o(n))A(o(n) —1)---A(0), n € N}. The matrices B(n)
can be written under the form B(n) = A(N)---A(0)B(n)A(N) ---A(0) for n > 3. We have
max B(n);; < max A(N)---A(0);; ® max B(n);; @ max A(N) - -- A(0);
ij ij ij ij
< max A(N) - A(0)i; @ B(n)yy ® max A(N) -+~ A(0)5, (6.16)

) J

for some indices u, v belonging to the argmax in max;; B(n)” We also have

Vi g, B(n)ij > AN) - A(0)i @ B(n)uw @ AN) - A(0);
min B(n); > min A(N)---A(0);; @ B(n)y, ® ng;n A(N)---A(0);5 . (6.17)

1% 1%

We consider the Euclidean space (PR*** |.|p) where |.|p is the norm introduced in Definition
6.3.7. It follows from (6.16) and (6.17) that

[Blp = max B(n)y; = min Bn);; < 2 x (max A(N) -+ A(0);; = min A(N) - A(0))

= 2 JA(N)---A(0)]p.

It implies that the sequence {7 (B(n))} belongs to a compact of (PR**% |.|p). Hence there
exists a strictly increasing function o : N — N such that #(B(o(n))) is converging. Let A, be

a representative (in Rka) of the limit. By continuity of the projective distance, we have that
Vu,v € R¥ d(Au, Awv) = 0. Therefore A, is a rank 1 matrix.

As the products {m(A(n)---A(0))} can only take a finite number of values in compact sets
(Proposition 6.5.4), it implies that the limit matrix A., is attained in finite time. More precisely,
there exists NV such that

Vn > N, m(B(o(n))) =n(Ax) .

The matrix B(c(NV)) is a rank 1 pattern for {A(n)}. It concludes the proof. [
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6.10.4 Proof of Theorem 6.8.4

We first prove the necessary part of the Theorem, i.e. n—coupling with a unique stationary
regime implies the existence of an asymptotic pattern.

Let Z 08" be the unique stationary regime. We have for all zg, 39 € R¥,
d(x(m $0), Zo On) — 07 d($(n7 y0)7 Zo On) -0 = d(x(n, $0)7 x(m yO)) —+0.

We have assumed that 3N such that P{D(A(N —1)---A(0)) < 400} > 0, see Equation (6.6),
Section §6.8. Let K € R be such that P{D(A(-1)---A(=N)) < K} > 0. Tt implies that there
exists K’ such that P{|A(—1)---A(=N)|p < K'} > 0. Let us denote

Eo=Hw]| |A(=1)---A(=N)|p < K'}.
It follows from the stationary-ergodic assumption, that there exists a minimal n; > 1 such that
P{gl} > 07 51 = 50 N {|A(—n1) .. -A(—m — N+ 1)|7) < I(’} .

We define in the same way an increasing sequence 7, > --- > ny > n; and a decreasing sequence
of events £, C --- C & C & verifying

P{E} >0, & =& nN{|A(=ny) - - A(=np — N+ 1)|p < K'}.
On the event &,,p > 1, we have
|A(=1)---A(=n, - N+ 1)|p <2 x K'.

The proof is exactly similar to the one proposed in the proof of Theorem 6.8.1 (§6.10.3, Equation
(6.15) and after). Let B(E, K') denote the open ball of (PR**% |.|p) of center 7 (E), E;; = e,Vi,j
and of radius K’. For all p, we choose a deterministic matrix B, belonging to B(L, K') and

verifying
1
P {{Ep} N{rA(-1)---A(—n, — N +1) € B(B,, ;)}} > 0. (6.18)

As the matrices {B,,p € N} belong to a compact, there exists a subsequence {B,;} which

converges to a limit B.,. We have (see the proof of Lemma 6.10.1) that D(A(—1)---A(—n)) —
0, P — a.s.. We conclude that B, is a rank 1 matrix.
We fix > 0. Let C' be such that Vp > C, we have |B., — By(p)|p < 1/2. For p > max(C,2/n),

we have B(B, (), 1/p) C B(Bao, ). It implies
P{rA(=1) - A(=n,p) = N+ 1) € B(Boo,n)} 2

P{{gg(p)} N {TA(—l) . --A(—ng(p) -N+ 1) S B(Bg(p),%)}} >0.

It means precisely that B, is an asymptotic pattern of {A(n)}, see Definition 6.7.13.
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Let us prove the sufficient part of the theorem. We assume that there exists a deterministic
matrix A which is a rank 1 asymptotic pattern of {A(n)}. We want to prove the n-coupling

convergence of w(z(n)) to a unique stationary regime.
We fix n > 0. Let IV,, be such that

P{RA(N, = 1) A(0) € B(A,m) } > 0. (6.19)

Using the ergodic Lemma 10.2.1, we have

P{Ii>0] AN, —1+i)--A@G) € B(A,n)}=1.

Let u be the unique eigenvector of the rank 1 matrix A and B(u,n) the ball of center 7(u) and
radius 7 in PRF. We have that for all zg € R,

{r(2(n,20)) € B(u,n)} C {rA(n—1)---A(n — Ny) € B(A, )}

In particular, it implies that Vzq, yo € R* and n large enough,

{d(e(n,20),x(n,yo) <ny € |J {rA(p—1)---Alp— Ny) € B(A, 1)}
Np<pgn

We deduce that P{d(z(n,zo),z(n,y0)) < n} — 1. We conclude by using Lemma 6.10.1 (the

existence of n such that P{D(A(n)---A(0) < 400} > 0 comes from Equation (6.19)).
]

6.10.5 Proof of Theorem 6.8.5

We want to prove that the conditions given in Theorem 6.8.5 are necessary. We suppose that our
model couples in finite time with a unique stationary regime, uniformly over initial conditions

in R*. Let us prove a lemma first.

Lemma 6.10.3. [f there is a unique stationary regime for w(x(n)), coupling in finite time
uniformly over initial conditions in R* implies strong coupling in finite time uniformly over

initial conditions in R”.

Proof. Let {Z 08"} be the unique stationary regime with which the SRS #(z(n)) couples. We
consider the event:

Y, = {w | 7(x(n, 20)) 00 "w = Zw, Vag € Rk} .
The assumption of coupling in finite time, uniformly over R*, may be written :

P(Y,) "TE 1.
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Here we implicitly use the assumption that the projective image of A(—1)---A(—n) is asymp-
totically bounded (see Equation (6.6)). Let us consider w € )Y, and p an integer > 0, we
have:

m(z(n+p,2) 00" Pw = 7 (ax(n,z(p,xe)0f ") )0l "w (6.20)
= Zw (asw € V,). (6.21)

The passage from (6.20) to (6.21) uses the fact that coupling occurs uniformly over initial
conditions. We have:

Y, = {w | 7(x(n+ p, o)) 0 9="tP) = Zw, Vp >0, Vag € Rk} ,

and
PY,) "2,
This is exactly the definition of strong coupling (Def. 6.6.4). a

We can now use the converse Theorem 6.6.7. There exists a stationary sequence of events
{A 06"} which is renovating for the SRS {r (@ (n,z0) )}, Yao € R¥, and verifies P(A) > 0. Let

m be the common length and & the common function of these renovating events. We have, on

A:

7(x(m)) = ® (A(m —1),..., A(0)), Yo € RF.
But we also have:

z(m)=A(m—1)@ @ A(0) @ zo, Vzo € R".

We conclude that, on A, 7 (A(m — 1,w) @ ---® A(0,w) @ x¢) is independent of zq. It implies
that C' = A(m — 1,w)® -+ - ® A(0,w) is a matrix of rank 1. [
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We have not represented in Figure 6.4 all the implications which are true, but only the ones which
are used in the proofs. The exclamation mark “!” stands for a trivial proof, the question mark
kxk

wxk, the diagram is completely

“I” for an open question. For finite models with matrices in Q
commutative. We have the necessary and sufficient conditions of uniqueness of the stationary
regime. For general models, we have two commutative sub-diagrams. They correspond to the
necessary and sufficient conditions of stability with n—coupling and coupling respectively.

Unsolved problems Here are two questions which we have not been able to solve. They
would enable to complete the stability picture as shown in Figure 6.4.

1. Is Lemma 6.10.2 still true if we consider a finite model with matrices in REXE T Is it still

true for a general model I’

kak

v, do we have that the existence of an

2. For a finite and i.i.d. model with matrices in
asymptotic pattern of rank 1 implies the existence of a pattern of rank 1 I' The counter-

example proposed in Example 6.8.2, was for a finite and stationary-ergodic model with
kak

matrices in R775.

If the answer to both questions is positive, then we can extend Theorem 6.8.1 to finite and i.i.d.
kak

models with matrices in R},
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kxk

maxr

Finite model in

Lem. 6.10.2

Unique stationary regime —_— Vo, yo,

d(z(n,z0),z(n,y0)) — 0

1 Th. 6.8.1

Unique stationary regime

’ Asymptotic pattern of rank 1
+ n-coupling convergence

| Th. 6.8.1

Unique stationary regime  a—— Pattern of rank 1

+ coupling conv. Th. 6.7.10 with proba. > 0

General model

. . . ___{?——> Vl‘o,@/o,
Unique stationary regime 1 d(x(n, o), 2(n,y0)) = 0

Th. 6.8.4

Unique stationary regime < Asymptotic pattern of rank 1

+ n-coupling convergence Th. 6.8.4
>
Th. 6.8.5
Unique stationary regime —_—a Pattern of rank 1
i - with proba. >0
+ coupling conv. Th. 6.7.15 p

Figure 6.4: Summary of the results.




Chapitre 7

Illustration of Multiple Stationary
Regimes

Tllustration des Régimes Stationnaires Multiples

Ce chapitre est une illustration des résultats du chapitre 6 a ’aide de 'outil graphique du
chapitre 3.
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The purpose of this Chapter is to study the uniqueness or multiplicity of stationary regimes
for stochastic (max,+) linear systems. We will see that stability is by far the most common
situation. We obtain multiple stationary regimes when the system is not “stochastic enough” in
some sense. The main cases of multiplicity will be illustrated using the graphical representation
of Chapter 3.

7.1 Introduction

We consider a stochastic (max,+) linear system

{x(n—l—l) = A(n)z(n), n€N (7.1)

z(0) = zo ,
The matrices A(n) € REXE verify the minimal assumptions of §6.9.1. We deduce from Theo-
rems 6.8.1 and 6.8.5, that a good way to show the stability of system (7.1) is to extract some
deterministic matrices from the support of A(0) and to build a product of these matrices which
is scsl-cycl. In most cases, an extracted model with two matrices is enough to conclude. In the
following, we are going to illustrate the phenomena of uniqueness or multiplicity of stationary
regimes with models of two matrices.

From now on, when no other specific assumption is made, it is assumed that A(n) = A with
probability p > 0 and A(r) = B with probability 1 — p > 0, A and B being irreducible
deterministic matrices. It is also assumed that the sequence {A(n)} is i.i.d.

7.2 Multiple Stationary Regimes

It is clear that there are several stationary regimes when the sets of eigenvectors of matrices A
and B contain more than one point. Let us propose two examples.

Example 7.2.1. We consider in Figure 7.1.1., the matrices :

e -1 -1 14 ¢ ¢
A=| -1 e -1 |, B=PAP'withP=| ¢ 13 ¢
-1 -1 e € c e

The intersection II of the sets of eigenvectors of A and B is not empty. It implies a continuum
of stationary regimes. Indeed if we consider an initial condition zo € II, we have 7(z(n, z¢)) =

7 (o), Vn.

Example 7.2.2. We consider in Figure 7.1.11., a system with the same matrix A as above and

0.7 ¢ ¢ —0.5 -0.5 e —0.7 e e
B = e 0.8 ¢ e -0.5 -0.5 5 -0.8 ¢
e e e —-0.5 € —-0.5 5 5 €

Matrix B has been written under a form which emphasizes that B is obtained as a translation
(see §3.4.3) of a canonical scsl-cyc3 matrix. Let £4 be the set of eigenvectors of A and &g
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Figure 7.1: I : Example 7.2.1. IT : Example 7.2.2

the set of periodic regimes (of period 3) of B. Let u = (0.7,0.8,¢)" be the unique eigenvector
of B. The vector u is in the interior of the closed polyhedral set £4 N Ep. There is a ball
B(m(u), 3) (for the projective distance) centered in 7(u) and of radius # > 0 which is contained
in 7(€4NEp). We consider a new basis of center u. For an initial condition & = (ay, 23, 23)’
such that 7(z) € B(n(e), 8) (in the new basis), the state space of the Markov chain m(z(n)) is

{ﬂ' (Un(acl, T, 363)') ,n=1,2 3} with o(z1, 22, 23) = (22,23, 21)" .

Let us denote «; = 7 (0'(21, 22, 23)'). The probability transitions of the Markov chain 7 (z(n))

are p(a, aip1) =1 —p, plaj, o) = p

Under the light of the previous examples, a natural conjecture would be the following one

Let A and B be two irreducible matrices. There is a finite product of A and B which is scs1-cycl
if and only if the sets of eigenelements (eigenvectors + periodic regimes) of A and B have an
intersection which is empty or restricted to one point.

However, this result is false as illustrated by Example 7.2.3.

Example 7.2.3. In Figure 7.2, we consider :

A= . e . |,()=-1, B=PAP ' with P =
—2

(OO RN
o o M

0.5

Both matrices are scs2-cycl. The set of eigenvectors of B is obtained from the one of A by
a translation of m(e,e,0.5)". There is a one to one correspondence between eigenvectors of
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o (B1)

Figure 7.2: Matrices A and B are scs2-cycl. Continuum of stationary regimes.

A and B, see the domains of attraction of scs2-cycl matrices as illustrated in §3.5.3, Figure
3.8. Let a = (ay,az,as3)’ be an eigenvector of A and b = (ay, az,as + 0.5) the corresponding
eigenvector of B. If we consider an initial condition ¢ = @, 7w(2(n)) is a Markov chain over
the state space {w(a),n(b)} with transition probabilities P(w(a),7(a)) = p, P(r(a), (b)) =
1= py Pr(8), 7(5)) = 1 — p, P(r(b), 7(@)) = p.

To further illustrate the complexity of the phenomena which are involved, let us consider a slight
modification of Example 7.2.3.

7T(B1)

Figure 7.3: Matrices A and B are scsl-cyc2. Unique stationary regimes.
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Figure 7.4: The Markov chain 72 (n, () has two absorbing sets.

Example 7.2.4. In Figure 7.3, we consider :

. e . 0.1 ¢ ¢
A=e . . |, ()=-1, B=PAP'withP=| ¢ e ¢
-2 e ¢ 05

Both matrices are scsl-cyc2. The set of periodic regimes of matrix B is the one of A translated
by 7(0.1,€,0.5). If we had considered a translation of 7 (e, e, 0.5), we would have obtained exactly
the same Figure as in 7.2, with periodic regimes instead of eigenvectors. There would have been

multiple stationary regimes. For example, the set {r(a),r(b),7(a),7(b)} would have been a
possible state space for the Markov chain 7(2(n)). On the other hand, with a translation of
7(0.1,0,0.5), we obtain a unique stationary regime as illustrated in Figure 7.3. The points 7(A;)
or m(B;),i= 1,2, are regenerative points for the Markov chain 7 (z(n)).

We have presented above some examples of different stationary regimes corresponding to dif-
ferent initial conditions. Here is another problem worth considering : what happens for a fixed
deterministic initial condition z¢ I' Is it possible for the Markov Chain 72 (n, 2¢) to be transient I
to have several classes of recurrence I' The answer to both questions is positive.

Example 7.2.5. In Figure 7.4, we consider :

e =2 =2 e £ ¢ € e £ ¢
A= -2 e -2 |,B=|¢ e ¢ e e e e |,()=-1.
-2 =2 -4 e e =2 e g g 2

The intersection between the sets of eigenvectors of matrices A and B is not empty, hence
there are multiple stationary regimes. We consider the initial condition zg = (0.5,¢,¢€)’. By
direct computation, we obtain that #Axzg = 7y = 7(2,1.5,¢) and rABxg = 7#AB 2y =
mxy = 7(2,2,€). Vectors 1 and x2 are common eigenvectors of A and B. We conclude that

lim,, P(rz(n,z9) = 7a1) = p and lim, P(rz(n,z9) = 7a2) = 1 — p.
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Example 7.2.6. We consider a system verifying Equation (7.1) with

ao= ("1l )

where the random variables U(n) are i.i.d and uniform over [1,2]. For an initial condition
zo = (a,b) with a > b+ 2, we have 7 (n, 2¢) = 7 (infr¢, U(k),0)". We have a transient Markov
chain.

Example 7.2.7. We can mix the previous examples. For a given initial condition, we can
obtain a transient Markov chain with probability p and a recurrent Markov chain with probability

1—p.
More precisely, we consider a system verifying Equation (7.1). With probability p, A(0) = A
where A is the matrix of Example 7.2.5, and with probability 1 — p, A(0) has the following law:

where the random variable U(0) is uniform over [0.5,1]. We consider the initial condition
(0.5,€,€)".

7.3 Quantitative Results

7.3.1 Systems with two matrices

Theorem 7.3.1. Let matrices A and B have the following properties :
1. k, the size of the matrices, is prime.
2. A and B have a critical circuit of length k.
3. m(uy) # w(ug) where uy and uy are the (unique) eigenvectors of A and B respectively.

There exists a finite product of matrices A and B which is scsl-cycl. Fquivalently, the associated
stochastic system has a unique stationary regime.

Before proving it, let us show that Theorem 7.3.1 fails to be true when we try to relax some of
the assumptions.

Example 7.3.2. [A and B have the same eigenvector]

We denote by u the common eigenvector of A and B. Let us define

a = lim sup d(Alv7 u), = lim sup d(Blv7 u).
! vERF ! vERF

The balls B(7wu, «) and B(wu, 3) are the sets of periodic regimes of matrices A and B respectively.
We set v = min(e, 3). It is easy to check that the ball B(u,v) is a set of periodic regimes of
period k for both matrices. We propose an example on Figure 7.5.
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Figure 7.5: Matrices A and B are scsl-cyc3 with the same eigenvector, w(e). Multiplicity of
stationary regimes.

Example 7.3.3. [k is not prime]

We consider :

The eigenvectors of A and B are (e,...,e)" and (—1,e,—1,¢)" respectively. We consider the
initial vector zg = (a,b,a,b)’ with a — 2 < b < a + 2. We verify easily that the Markov chain
m(x(n)) evolves in the state space

-+ -+ + . - +
{ﬂ'(a,b,a,b)’,ﬂ'(b,a,b, a),mla+1,b—1,a+ 1,b— 1), 7(b+1,a — 1,0+ 1,a — 1)’} .

There is an infinite number of stationary regimes.

Here is another counter-example of the same kind. Suppose k is not prime. Let 1 < [ < k
be a divisor of k. We consider (by,...,b;) % (e,...,e) and Y ,;b; = 0. We define A and

B in the following way: A and B have (1,2,...,k,1)" as unique critical circuit. The non-
critical elements of A and B are —1. The critical elements of A and B are (e,...,e) and
(b1,b2,...,b1,01,b2,...,b1,...,01,b2,...,b;) respectively.

Proof of Theorem 7.3.1
In the following, indices have to be interpreted modulo k. For example,

bk-|—1 =0y or Ak+3,k+2 = A3,2 .

Let A4 and Ap be the eigenvalues of A and B. We normalize the matrices, i.e. weset A := A—Xy4
and B := B—Ap (we keep the notations A and B for simplicity). Let u be the unique eigenvector
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of A. We consider the matrix of change of basis P defined by P; = u; and P;; = ¢,i # j, see

Lemma 3.4.14. We set A := P~'AP and B := P~'BP. By permuting the coordinates, Lemma
3.4.13, we come down to the case where the critical circuit of A is (1,2,...,k). We have :

The dots (.) correspond to terms which are less or equal than e by Lemma 3.4.15. Let us assume
there exists p, ¢,p # (¢ + 1) such that A,, = e. It implies that the circuit (¢,p,p+1,...,¢—1)
has a mean weight equal to e, hence is critical. Let [ be the length of this circuit. We have
ppem(l, k) = 1 as k is prime. By Theorem 3.4.7, it implies that matrix A is scsl-cycl which
completes the proof. In the following, we assume that A,, < e,¥(p,q),p# (¢+1).

Let us consider matrix B. If matrix B has more than one critical circuit, then it is scsl-cycl,
see above. We assume that matrix B has a unique critical circuit. We assume for the moment
(and for the sake of simplicity) that is is the same as the one of A4, (1,2,...,k).

Let v be the unique eigenvector of B. Let P be the matrix of change of basis associated

with v, i.e. Nii = v; and ]N%j = ¢e,t # j. We set B = P~!BP. We have Bi-l-l,i = e and

B,, < e,p# (¢+ 1), see above. We define matrix V such that V;; = v; — v;. The equalities
B = PBP~', B" = PB"P~" can be rewritten as (“4+” is the usual sum of matrices) :

B=B+V, B"=B"4+V,¥n. (7.2)
Matrix V' is anti-symmetrical, V;; = —V;; and Vi; = e. Let us denote M = max;; V;;. If
M = e, it implies that V;; = e,Vi, 5. By Equation (7.2), we obtain B = B, which means that
e = (e,...,e)' is the eigenvector of B. It contradicts assumption 3. of Theorem 7.3.1. We

conclude that M > e.
We choose (ig, jo) such that V; ;, = M. We consider the sub-diagonal (see Definition 3.5.1) of

V associated with (o, jo), i.e
{Viojov Viet1,jo+1, -5 ‘/i0+k—17]0+k—1} .

We set [ = k+io—jo—1. The matrix B! has a critical sub-diagonal which is (1, 141, 14+2x1,...).
It coincides with the previously chosen sub-diagonal of V. We conclude that the maximal
terms of matrix B! = B! + V all are on the same sub—diagonall. We denote by 7 the set of
columns of B! containing a maximal term. We sort the elements of J in increasing order :
J ={j1 < j2 <+ <Jg}- We proceed in the following way.

1. For each j, € J, we define the matrix C,, = AF~I=int1Blgm—1,

'When iy > Jo, 1t is possible to consider | = 19 — jo — 1. The choice of | = k + 10 — jo — 1 enables to always
have I > 0.
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2. We consider C' = C1Cy -+ -C 7.

In order to illustrate and explain the choice of matrix €', we consider an example of dimension
5 with [ = 2.

M
B*=| M . . . .|, AB?*= ... . . |.,B*A= .. ..M
M ... M ... M .
M . . .M. .M

The dots (.) correspond to terms which are strictly less than M. The effect of a left multiplica-
tion by A is to translate the maximal terms down. The right multiplication by A translates the
maximal terms to the left. In each of the matrices C'; = A3B?,Cy = A?B?A and C3 = AB? A?,
there is a maximal term M in place (1,1) and the other maximal terms are on the diagonal.
The matrix C' = C1C5C5 has the same property, i.e C1; = M®? and C;; < M®?, 4 # j. In fact it

is easy to see on this example that we also have Cy; < M®3, Vi # 1. Hence matrix (' is scsl-cycl.

We want to prove that the same result holds for the general matrix C defined above. By
construction, we have :

Cy = (Ak—l—jl-l—lBlAjl—l)H . (Ak—l—j|J|+lBlAJ|J|—1)11 (7.3)
_ pk-l=nitlpl si—1 k=l=jj71+1 N71-1
= Al Bira i Ay e Bigradisn (7.4)
= F MMt = preld (7.5)

To get Equation (7.3), we use that the matrices AF=l=int1 Bl A7n=1 have only one maximal term
on column 1 which is the term (1,1). To get Equation (7.4), we use that the matrices A¥=I=/n+1,
B! and A»~1 have at most one maximal term in each column.

Let us consider (z,7) # (1,1). It is clear that C;; < Cp;. We want to show that C;; < Cyy.
As the matrices C,,n = 1,...|J| have all their maximal terms on the diagonal, it is immediate
that C5; < C1y when 7 # j.

Suppose there exists ¢ # 1 such that Cy; = Chp = MeWVI 1t implies that (same reasons as above
for Equations (7.3) (7.4))

Ci = (Cii - (Claa
_ ak=l—ji+1 gl a-1
- Alﬂjl-I-i—l-l—lle+i—1+l7j1+i—1Aj1+i—17i
_ k—l—jit1pl fi-1
= €T iy i€ (7.6)

Comparing Equation (7.6) and Cj; = M@V we deduce that Bé‘n-l—i—l-l—l,jn-l—i—l = M. It implies :

j:{]h7]|.7|}:{]1‘|’7/_177]|j|—|—l—1}

In particular, there exists p € {1,...,|J|} such that j; + (¢ — 1) = j,, there exists ¢ such that
J1+2x(i—1) = j,+(i—1) = j;. We prove by recurrence that Vp =1,...,k, j1 = px(i—1) € J.
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But {p x (i — 1) [mod k], p € N} is a subring of (Z/kZ). As k is prime, there exists no proper
subring of (Z/kZ). We conclude that :

{px (i—=1)[mod k], pe N} =Z/kZ= T = Z/kZ.

Matrix B has a critical cycle (the one corresponding to the sub-diagonal considered above) whose

terms are all equal to M. It implies that 7 (e, ..., €)’ is an eigenvector of B!, hence of B which is in
contradiction with assumption 3. of Theorem 7.3.1. We conclude that V(7, j) # (1, 1), Ci; < Cha.
Matrix C' is scsl-cycl.

We have now to relax the assumption that the critical circuit of B is (1,2,...,k) (i.e. the same
as the one of A).

In general B has a critical circuit which can be described as (¢(1),0(2),0(3),---,0(k)) where o
is a permutation of {1, ..., k}. Let P be the permutation matrix associated with o, see Definition

3.4.12. Let us consider B = P~'BP. The critical circuit of B is (1,...,k). We associate with

matrix B an integer [ and a set j in the same way as above. We define :

Cn — Ak—g(jn+i)+1BiAg(jn)_17 C = ch .

We prove that C' has a unique maximal element on the diagonal, C71, and the conclusion follows.
|

Remark 7.3.4. Let us propose a mathematical trivia. Consider & reals, {by,bs,...,b;} on a
ring (i.e. we identify bg41 = b1, bpq2 = ba,...). We suppose that the b; are not all equal.

Does there exist n, 1 < n < k, such that :
Among the k partial sums of length n, S(i) = b; + bjy1 + ... + biyn_1, 1 =0,...,k — 1, there is
one and only one maximal sum.

If the answer was positive, it would provide a very simple and elegant proof of Theorem 7.3.1.
Let the critical terms of B be the reals b; and consider the matrix B’ where [ is a solution to
the trivia. Matrix B! has a unique maximal term and it is easy to obtain a matrix of the form
AP B' A% which is scsl-cyel.

However the answer is always negative except for Kk = 3 and &k = 5! We leave the proof to

the reader. Here are some hints. For k = 4, consider {1,—1,1,—1} and for k¥ = 7 consider
{1,0,-1,1,-1,0,0}.

It should be possible to prove other results similar to Theorem 7.3.1 for other spectral behaviours
of the matrices A and B. We feel however that entering into too much details would be of limited
interest for our purpose which is to get a global understanding of the uniqueness and multiplicity
of stationary regimes.
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7.3.2 Other systems

We consider a different type of system. Each coordinate of the matrix A(n) can take two different
values. Theorem 7.3.5 illustrates the introductory remark that most stochastic systems have a
unique stationary regime.

Theorem 7.3.5. We consider a set of reals {(a;;,bi;),1,j = 1,...k} such that a;; < b;;, Vi,j.
We consider a stochastic (maz,+) linear system xz(n + 1) = A(n)xz(n), where the sequence
{A(n),n € N} is i.i.d. We assume also that the coordinates A;;(0) are independent random
variables and verify

P{A;(0) = a;;} = pi; >0, P{A;;(0)=b;;} =1—p;; > 0.
This system has a unique stationary regime.

Proof. We provide only a sketch of the proof. We consider the deterministic matrix A defined
by A;; = a;;.

Let us assume that there exists p € {1,...,k} such that (p,p) is a critical circuit of A. We
define the matrix C' by Cp, = by, and C; = A;; = a5, Y(¢, 7) # (p,p). As byy, > ayyp, we deduce
that (p,p) is the unique critical circuit. Hence matrix C' is scsl-cycl. The uniqueness of the

stationary regime follows.
Now we assume that there is no critical circuit of length 1. By a permutation of the coordinates,

we come down to the case where (1,2,...,1),1 < [ < k, is a (non-necessarily unique) critical
circuit of A. We define two matrices C' and D in the following way :

Cro =b12,Cy5 = As; = a5, V(1,5) # (1,2), Diy=bu, Dij = Ay; = a3;,9(i,j) # (1, 1)

We have two matrices with a common critical circuit, (1,2,...,[). Furthermore, we have that the
term Cyg (resp. Djy) belongs to any critical circuit of C' (resp. D). It implies that the matrices C'
and D are scsl. The terms of the critical circuit (1,2,...,!) are different for matrices C' and D.

It implies that their unique eigenvector is different. By adapting slightly the proof of Theorem
7.3.1, we obtain that there exists a finite product of matrices C' and D which is scsl-cycl. O



Chapitre 8

Application to Stochastic Event
Graphs

Application aux Graphes d’Evénements Stochastiques

Dans ce chapitre, nous montrons comment adapter les résultats du chapitre 6 a I’étude de la
stabilité des Graphes d’Evénements stochastiques.
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We show how to apply the results on stochastic (max,+) linear systems to Stochastic Event
Graphs (SEG). Let 2(n+1) = A(n)®@z(n) be a (max,+) linear system representing the evolution
of the SEG, see Chapter 1. We assume that the (max,+) system has a unique stationary regime.
Then, under some weak additional assumptions, we prove that the SEG converges to a unique
stationary regime, independently of the initial (reachable) marking.

8.1 Event Graph

For the basic definitions relative to an Event Graph, the reader is referred to Section §1.3 or
§2.7. We consider a closed Event Graph (£, M). The set E corresponds to the underlying graph
(the set of places, transitions and arcs). This graph is assumed to be strongly connected. Let T’

and P be the number of transitions and places respectively. The vector M € NP is the marking,
i.e. the number of tokens in each place.

Let us recall some basic properties of Event Graphs. For more details, the reader is referred to
[112] [30].

Definition 8.1.1 (Incidence matrix). The incidence matriz G of the Event Graph is a ma-
triz of dimension T x P defined as :

o Gi;; =1 if there is an arc from transition t; to place p;.
o Gi;; = —1 if there is an arc from place p; to transition t;.
o Gi;; = 0 otherwise.

Definition 8.1.2 (Reachability). A marking M is reachable from a marking M if there is a
sequence of transitions tg,...,t, and a sequence of markings My, ..., M, such that :

M My B My M, 2 M

More precisely, transition t; is enabled in marking M; and the firing of t; transforms marking
M; into marking M;iq.

Definition 8.1.3 (Synchronic distance). We denote by d;; the synchronic distance between
two transitions t; and t;. It is defined as d;; = e;; + €;;, where e;; is the minimal number of
tokens in a directed path from transition t; to transition t;.

Proposition 8.1.4. In a strongly connected Fvent Graph, we have the following properties

1. The number of tokens in a circuit is an invariant.

2. Marking M is reachable from a marking M if and only if (matriz-vector product is in the
usual algebra)

JzeN' . G'xae=M-M, (8.1)

where G’ is the transpose of G. The vector x is called the firing count vector. The coor-
dinate x; corresponds to the number of firings of transition t; in the transformation from

M to M.
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3. Matriz G is of rank T —1. The solutions of G'x = 0 are & = (n,...,n)". The interpretation
is that we go from a marking to itself if and only if each transition has fired the same number

of times. As a consequence, if M is reachable from M then M is reachable from M.
We are going to need the following lemma.

Lemma 8.1.5. Let us denote by K the mazimal number of tokens in a circuit of (K, M). Let

M be a marking reachable from M. Let = be a minimal solution of G' x @ = M — M, x € N7,
We have max; z; < K.

Proof. We recall that & = (n, ..., n) verifies G’z = 0, Proposition 8.1.4.3. Let us assume that the
minimal firing vector z is such that min; z; > 0. Then we obtain G’ X [z — (min; z;, ..., min; z;)] =
G’ x z which contradicts the minimality of z. Let iy be such that z;, = 0. From the interpretation
of the synchronic distance given in Definition 8.1.3, we deduce that

2=2— Zig S i, Vi=1,...,T.

But we have d;; < K, Vi, j, as a consequence of Proposition 8.1.4.1. We conclude that max; z; <
K.
O

8.2 Stochastic Event Graph

We consider a closed FIFO Stochastic Event Graph S = (F, M,%,Y). The set (E, M) is a
strongly connected Event Graph, see §8.1. The sequence of firing times of transitions and
holding times of places is ¥ = {(a1(n),...,ar(n)), n € N, (ay,...,ap)}. The holding times
are assumed to be constant in order for the FIFO assumption to be fulfilled, see [8], p. 71 or
Chapter 1. The vector Y € R” is the vector of initial condition, i.e. the remaining firing time
at instant zero for each transition. We set Y; = 0 if transition ¢; is not enabled at instant 0.

There are several equivalent ways of representing the SEG S by means of a stochastic (max,+)
linear equation. Roughly speaking, a different representation is associated with each different
reachable marking. For more details, see Chapter 2 §2.5 and 2.7.

We consider

L [ en+1) = A@m(n)
b { p0) = oz

a (max,+) linear system describing the evolution of the SEG S. In this modelling, the matrices
A(n) do not depend on the vector of lag times Y. It is only the initial condition z¢ which
depends on Y, see §1 for more details.

We recall that the necessary and sufficient condition of stability of a (max,+) linear system
is given in Theorem 6.8.5. We say that the SEG S is stable if the system L is stable (i.e.
has a unique stationary regime). It implies in particular that the stationary distribution of
S = (F,M,XY) does not depend on the vector Y. For stable SEG, we will often omit to
specify the value of Y.

We are now ready to prove the main Theorem.
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Theorem 8.2.1. We consider a closed FIFO Stochastic Event Graph S = (E,M,Y). Let us
assume that S is stable. We assume that the sequence {(a1(n),...,ar(n)),n € N} is stationary
and ergodic and that the sequences

{(ar(n+n1),a2(n + n2),...,ar(n + nr)), n € N}
are jointly stationary (i.e. have the same distribution) ¥V 0 < n; < K,...,0 < ny < K, where
K is the mazimal number of tokens in a circuit of (E, M).
Then all Stochastic Event Graphs S = (F, M, i]) where Y has the same distribution as ¥ and
M is a marking reachable from M, are stable. The unique stationary regime of S has the same
distribution as the one of §.
Remark 8.2.2. The condition “sequences {(aq(n + n1),az2(n+ ng),...,ar(n + nr)), n € N}

are jointly stationary” is verified in particular when the sequences {a;(n), n € N} are mutually
independent. But it is a slightly weaker assumption than mutual independence.

Proof. Let us consider system S = (E,Z\Z7 i]) We consider the time evolution of S given a
vector of initial lag times Y. Let us assume that there exists an instant d > 0 such that the

instantaneous marking M(d) is equal to M. We block system S at instant d. From Lemma 8.1.5,
the difference in the number of firings of the transitions is less than K. From the assumption on
the joint stationarity of the sequences {(ai(n 4 n1),...,ar(n+ nr))}, we deduce that system

S from instant d on has the same firing sequence (in distribution) than system S. Having the

same marking and the same firing sequence, we deduce that system S after time d is equivalent
in distribution to system S.

The problem is that it is absolutely possible to have M(d) # M, Vd > 0, i.e. the marking of S

never appears during the evolution of S. Coming down to the marking of S is the basic idea of
the forthcoming proof. However, we are going to use it in a more subtle way. It is possible to

come down to marking M by considering the system S at a virtual instant (dv,...,dr),d; > 0.
The real d; corresponds to the date of the clock associated with transition ¢;. The reals d; are
not required to be equal which is the reason why we call (dy,...,dr) a virtual instant.

Let us detail the construction. To be coherent with previous notations, we denote
S = {(@),...,ar(n),n € N, (au, .., ap)}

Let us denote by Z;(n) the n-th completion of a firing at transition ¢;, for system S. By
Proposition 8.1.4.3, the marking M is reachable from M. We denote by z the minimal solution
of G’z = M — M. We define a virtual instant d by :

(dy,....dr) = (31(z1),...57(e7) . (8.2)

Let us consider system S at instant d. A rigorous way to define system S at a virtual instant is
to consider the following modified system :

S = (B, M,S) with © = {(&1(n),...,ar(n)),n € N, (ar,...,ap)} and

() = {di(n) if n <z

a; .
400  otherwise
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As a consequence of Proposition 8.1.4.2, this system gets actually blocked after exactly z; firings
of transition ¢;. The marking of the blocked system is M.

The sequence of firing times of S after time d, equivalently the sequence of firing times which

have not been used in the modified system S, is

Y ={(ar(n+ z1),a2(n+ z2),...,ar(n + z7)), n € N}.

Because of the assumption on the joint stationarity of the sequences {(ai(n + n1),...,ar(n+

nr))}, we obtain that the distribution of ¥ is the same as the one of 3, hence the same as the
one of .

System S after time d is equivalent to system (K, M, i]) The only difficulty is to determine the
new initial condition for the system (£, M, i]) In particular this initial condition will not be

compatible in the sense of [8] p. 70. However, system (£, M, i]) is equivalent in distribution to
system (F, M, ) which, by hypothesis, converges to a unique stationary regime, independently
of the initial condition. O

In Theorem 8.2.1, If we remove the assumption “sequences {(ai(n+ ny1),...,ar(n+ nt))} are
jointly stationary”, Theorem 8.2.1 is not true anymore. Let us propose a counter-example.

Example 8.2.3. We work on a probability space (2, P, 8), where Q = {wq, w2}, P = {1/2,1/2}
and 6 is the stationary ergodic shift defined by : #(w;) = w2 and §(w;) = w;. We consider the
Event Graph of Figure 8.1 with the sequence of firing times :

{a1(n,w1)} ={3,0,3,0,...}, {a1(n,w2)} =40,3,0,3...},

{az(n,w1)} ={0,3,0,3...}, {az(n,w2)} =43,0,3,0,...}.

The holding times are 1 on both places p; and ps.

1

Figure 8.1: Strongly connected FIFO Event Graph.

We obtain a R,,,; linear representation for this model which is

s =( o e

az(n)
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There are two possible values for matrices A(n) and the sequence {A(n)} alternates between the
two values. There are also two possible values for the products A(n 4+ 1)A(n). One of them is

c:(f ‘0‘)(2 ;):(i ;) P(A(n+2p—1)---A(n—|—1)A(n):Cp):%.

Matrix C' is a scsl-cycl matrix, hence there exists p such that C? is a rank 1 matrix. As a
conclusion, Theorems 6.7.14 or 6.8.5 hold, there is a unique stationary regime for the system.

Now let us consider the same Event Graph with another initial marking : two tokens in place
po and no tokens in place p;. This marking is reachable from the one of Figure 8.1. We consider
the new system at the following “virtual” instant : transition ¢; has fired once and transition
t2 has not fired yet. This system is equivalent to the previous one with the firing sequences
{a1(n+1),as(n), n € N}. Its linear representation is

o) — ap(n+1) aa(n+1)+1 eln—
(n) (az(n)—l—l az(n) ) (n=1).

It is easy to check that the products A(n)A(n —1)---A(0) have only two possible forms

e 1 1 e
m®( )orm®( ),mEN.
1 e e 1

These matrices are respectively scs2-cycl and scsl-cyc2. There is a multiplicity of stationary
regimes.

In this example, the sequence {(a1(n),az(n))} has not the same distribution as the sequence

{(ar(n +1), a2(n))3-

Remark 8.2.4. Note also that in this example, the throughput of the Event Graph (inverse
of the eigenvalue of the (max,+) matrix) depends on the initial condition.



Chapitre 9

Task Resource Models and (max,+)
Automata

Modéles Tache Ressource et Automates (max,+)

On montre dans ce chapitre comment 'utilisation d’automates (max,+) permet d’élargir assez
sensiblement la classe des systémes (max,+) linéaires classiques tels qu’ils étaient par exemple
présentés au chapitre 1.

On s’intéresse plus spécifiquement & un modele de ressources partagées, dit modele Tache
Ressource, représentable sous forme d’automate (max,+). La représentation sous forme d’auto-
mate (max,+) permet d’utiliser les résultats du chapitre 6. On propose également des résultats
du type optimisation.

Ce chapitre est tiré d’un travail réalisé en commun avec Stéphane Gaubert [72].
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We show that a typical class of timed concurrent systems can be modeled as automata with
multiplicities in the (max,+) semiring. This representation can be seen as a timed extension
of the logical modeling in terms of trace monoids. We briefly discuss the applications of this
algebraic modeling to performance evaluation.

9.1 Introduction

Different variations of (stochastic) queuing networks with precedence-based relations between
customers have been studied for quite a long time in the performance evaluation community,
see [14, 17, 136]. In the combinatorics community on the other hand, concurrent systems are
usually modeled in terms of traces —elements of free partially commutative monoids—, see
[35, 56]. An equivalent formalism is that of heaps of pieces [134].

One of the purposes of this note is to bridge the gap between the two approaches. In the
first part of the paper, we establish the relations between the models. An important feature is
that execution times of these models can be represented as finite dimensional (max,+) linear
dynamical systems. In an essentially equivalent way, they are recognized by automata with
multiplicities in the (max,+) semiring. The existence of similar (max,+) models was already
noticed in the context of queuing theory [136, 33]. Their analogue for trace monoids seems to
be new.

In the second part of the paper, we apply this algebraic modeling to performance evaluation
problems. We present asymptotic results on the existence of mean execution time for random
schedules, and for optimal and worst schedules. They are obtained by appealing to subadditive
arguments borrowed from the theory of random (max,+) matrices [4].

In the third part, we apply the machinery of (max,+) rational series to the exact computation
of the asymptotic worst case mean execution time, when the set of admissible schedules is given
by a rational language.

At last, some generalizations of Task Resource models are considered (heaps of pieces with
arbitrary shapes) for which all the results can be extended. These models provide an algebraic
framework to handle scheduling problems.

9.2 Basic Task Resource Model

9.2.1 General presentation

Definition 9.2.1 (Task Resource System). A (timed) Task Resource system is a jf-uple
T = (AR, R, h) where:

o A is a finite set whose elements are called tasks.
o R is a finite set whose elements are called resources.

e R: A — P(R) gives the subset of resources required by a task. We assume that each task
requires at least one resource: Ya € A, R(a) # 0.

o h: A— Rt gives the execution time of a task.
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A length n scheduleis a sequence of n tasks a1, ... , a,, that we will write as a word! w = a; .. .a,.
The functioning of the system under the schedule w is as follows.

1. All the resources become initially available at time zero.

2. Task a; begins as soon as all the required resources r € R(a;) used by the earlier tasks a;, j < 7,
become free, say, at time ;.

3. Task a; uses each resource r € R(a;) during h(a;) times units. Thus, resource r is released at
time ¢; + h(a;).

The execution time or makespan of the schedule w = aq...a, is the completion time of the
latest task of the schedule (which is not necessarily a,):
def

y(w) = max (ti + h(a:)) - (9.1)

Task Resource systems are intimately related with the classical trace monoids that we next

define.

Definition 9.2.2. A dependence alphabet is an alphabet A equipped with a reflexive symmetric
relation called dependence relation, denoted D, and written graphically —. We denote by I the
complement of D (called independence relation).

Definition 9.2.3. The trace monoid M(A, D) is the quotient of the free monoid A* by the

congruence ~ generated by the relations ab = ba,Ya I'b. The elements of M(A, D) will be called
traces.

Let alph(w) denote the set of letters appearing in word w. The word W ~ w is a Cartier-Foata

normal form of w [35, 56] if we have a factorization W = uy ... u,, u; € AT, such that:
a,b € alph(u;) = alb, a € alph(u;) = 3b € alph(uj—1),aDb . (9.2)

Such a normal form is unique up to a reordering of the letters inside factors. We shall denote
by {(w) = p the length (number of factors) of the normal form of w.

With each Task Resource system is associated a dependence relation over the alphabet A; tasks
are dependent when they share some resource:

aDbe R(a)NR(b)£0 . (9.3)

Conversely, starting from an arbitrary trace monoid M(.A, D), one can build an associated Task
Resource system. For example, one can consider 7 = (A, R, R,h = 1) with R = {{a,b} | a Db}
and R(a) = {r € R| a € r}. The problem of finding a system 7 such that the cardinality of R
is minimal is considered in Appendix.

'We recall the following usual notation. Given a finite set (alphabet) A, we denote by A" the set of words of
length n on .A. We denote by A" the free monoid on .4, that is, the set of finite words equipped with concatenation.
The unit (empty word) will be denoted e. We denote by At = A*\ {e} the free semigroup on A. The length of

the word w will be denoted |w|. We shall write |w|, for the number of occurrences of a given letter a in w.
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Proposition 9.2.4. (i) When h =1, y(w) = {(w): the makespan is equal to the length of the
Cartier-Foata normal form of w. (ii) For general execution times h,

p

y(w) = maXZh(aij) , (9.4)

i=1

where the maz is taken over the subwords a;, ...a; of w = a;...a,, composed of consecutive

P

dependent letters (i.e. a;; Da; ., ).

The first assertion is classical [36]. It implies in particular that the makespan of Task-Resource
systems with i = 1 can be represented in a more intrinsic way in terms of trace monoid. The
second one can easily be proved by elementary means, or deduced from the (max,+)-linear
representation given below. It provides an alternative formula for (9.1).

Example 9.2.5.
For the sequential dependence alphabet a Db, we have y(w) = h(a)|w|s + h(b)|w|p. For the
purely parallel dependence alphabet a b, we have y(w) = max(h(a)|w|q, h(b)|w]s).

Example 9.2.6. [Ring Network] Consider a ring shaped communication network with & sta-
tions R = {ry,...,rr}. Messages can be sent between neighbor stations. The possible messages
are A = {ay,...,ar} where a; corresponds to a communication between r; and r;4q (with the
convention k+1 = 1). Therefore, we have R(a;) = {r;,r;+1}. This system can also be viewed as
a variant of the classical dining philosophers model [57] (replace stations by chopsticks, messages
by philosophers). E.g., for k = 5, y(a1a2a4a1a5) = max(2h(a1) + h(az) + h(as), h(as) + h(as))
(direct application of 9.2.4,(ii) since the maximal dependent subwords taken from ajazasa;as

are ajazaias and aqas).

9.2.2 Linear representation over the (max,+) semiring

Definition 9.2.7. The (max,+) semiring Ry is the set RU{—o0}, equipped with max, written
additively (i.e. a®b = max(a, b)) and the usual sum, written multiplicatively (i.e. a®@b = a+b).
We write € = —oo for the zero element, and e = 0 for the unit element.

We shall use throughout the paper the matrix and vector operations induced by the semiring
structure?. The identity matrix (I = e, I; = £,i # j) with entries indexed by X will be denoted
by Ix. The row vector with entries indexed by X and all equal to e will be denoted by ex. We
denote by [|M|| = B;; Mij (resp. ||v]| = €D, vi) the (max,+) norm of a matrix M (vector v).

1xk
max?

A (max,+) automaton® of dimension k over the alphabet A is a triple (o, M, 3), where & € R

B € REXL and M is a morphism from A* to the multiplicative monoid of matrices REXE. A

map y : A* = Ruyax is recognizable if there is an automaton such that y(w) = aM(w)g.

%I.e. for matrices A, B of appropriate sizes, (A®B)i; = Ai; & B:; = max(Aij, Bijy), (A®B)iy; =@, Ai®By; =
maxy(Aix + Bxj), and for a scalar a, (a ® A)i; = a ® A;; = a + Aij. We will abbreviate A ® B to AB as usual.
3This is a specialization to the Ry,.x case of the notion of automaton with multiplicities over a semiring (or

equivalently, of recognizable series over a semiring). See [60, 21].
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In a spirit closer to discrete event systems theory, automata may be seen as (max,+) linear
systems whose dynamics is indexed by letters. Indeed, introducing the “state vector” z(w) def
aM(w) € RLXE we get

v(e) =a, z(wa) = z(w)M(a), y(w)=z(w)s , or (9-5)

ylay...a,) = aMlay).. . Ma,)p .

Definition 9.2.8 (Task & Resource Daters). A dater over the alphabet A is a scalar map
A* = RU{—o0}. With each task a € A is associated a task dater z,: z,(w) gives the time of
completion of the last task of type a in the schedule w. With each resource r € R is associated

a resource dater z,: x,(w) gives the last instant of release of the resource r under the schedule
w. We shall denote by x4 and zr the vectors of task and resource daters.

Note the important duality relations

ra(w) = P v (w), v(w)= P walw). (9.7)

reR(a) a€R~1(r)
We identify each subset R(a) with a boolean matrix of size |R| x |A| denoted Z(a).

[ e ifreR(a)andb=a
Va € A, Z(a);, = { c otherwise .

We define the following matrices:

Vac A, Mg(a) = Ir@h(a)Z(a)Z(a)t

—~
Nej
0

N2

Mu(a) = I4Ph(a) (@z(b)T) I(a) , (9.9)

or more explicitly

€ if r=s,5 ¢ R(a),
Mp(a),s = S h(a) if r € R(a),s € R(a), (9.10)

£ otherwise.

e if a # (b=c¢),
My(a)pe = < h(a) if a =c,bDc, (9.11)

£ otherwise.

We extend M4 (resp. M) to a morphism A* — RAXA (resp. A* — RRXR),

max max

Theorem 9.2.9. The dater functions of task resource systems admit the following linear rep-
resentations over the (max,+) semiring:

rr(w)Mpla), zr(e)=er , (9.12)
ra(wa) = zg(w)Mayla), za(e) =eq (9.13)

y(w) = [lea)] = llzr ()| = [Maw)]| = [Mz(w)]] - (9.14)

wa) =
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In other words, y is recognized both by the resource automaton (ex, Mg, e%) and by the task

automaton (e, M, e}).
Proof. We have

a(wh) = {%(w) ifa 75, (9.15)

max,ep(q) Tr(w) + h(a) if a =10,

z.(e) = z.(e)=c€ . (9.16)

These relations are a simple translation of the functioning of the system, as described after
Definition 9.2.1 (items 1,2,3). Eliminating 2, in (9.15) using (9.7), we get the task equation

2a(wh) = {%(w) ifazb (9.17)

max.pq T.(w) + h(a) if a =0b.

Dually, it is not difficult to obtain the resource equation

r if R

o(wa) = { 71 i Rla) 37 (9.18)
maXsecR(a) $5(w) + h(@) if R(a) Sr.

Rewriting (9.17) and (9.18) with the semiring notations, we get (9.12),(9.13). 0

Remark 9.2.10. Note that the duality is not perfect in a task resource model. In both Equa-
tions (9.12) and (9.13), the dynamic of the system is driven by a word w which is a sequence of

tasks. A sequence of resources would have no meaning.

{
R(b) ={r} bh(b) B adc ch(c) Ba®b
R(c) = {s} ch(c) @ ah(a) &b

Resource Automaton Task Automaton

Figure 9.1: Task and Resource Automata for b—a—c.

Example 9.2.11. We consider a Task Resource model. Let b—a—c be its dependence al-

phabet. In Fig. 9.1, we have represented? the resource automaton (e, Mg, e%) and the task

*An automaton (o, M, B) of dimension k over an alphabet A is usually represented as a graph with nodes

1,...,k, and three kinds of labeled and weighted arcs. There is an internal arc i — 7 with label a € A and weight
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automaton (e4, M4, 65) associated with the dependence alphabet b—a—c. The matrices asso-
ciated with the resource automaton are:

et =[50 Gy | e = [0 ] o= 215

The makespan y(w) is equal to the maximal weight of a path labeled w between two arbitrary

nodes of the graph. E.g., y(cba) = max(h(c) + h(a), h(b) + h(a)).

Example 9.2.12. We consider a Task Resource model with A = {ay, as, a3, a4,a5} and R =
{ri,re2,r3,raf. Let R(ay) = (r1,r2), R(az) = (re,ra), R(as) = (r1,r2,1r3,74), R(as) = (r3),
R(a5):(r3) and h(al) =1li= {17 .. '74}7 h(a5) = 3.

Let us give the matrices associated with letter ag. We have :

MR(QQ) = 7MA(02) =

M M O o
= M =M
M O O
= M =M
M M & 0 o
M M O = O
M M o ™ O
M o M = 0O
a M M & o™

For letter as, we have Mg (as)ss = 3, Mr(as)i; = ,V(4,7) # (3,3) and My(as)s; = 3,j =
{3,4,5}, M a(as);; = e, otherwise.

9.2.3 Interpretation in terms of hypergraphs

Task resource models can be introduced as hypergraphs. It is the approach used for example
by Vincent [137] in a work concurrent to this one. An hypergraph is a direct generalization of
a non-oriented graph. It has a set of vertices and a set of edges which are subsets of vertices
(instead of couples of vertices). Let us define R(A) = {R(a), a € A}. The couple (R, R(A))
defines an hypergraph. The set of vertices is R and the set of edges is R(.A). Let us define the
function A : R — P(A) by A(r) ={a € A|r € R(a)} and let us define A(R) = {A(r),r € R}.
The couple (A, A(R)) is an hypergraph. These two hypergraphs are dual, see Berge [20].

The dual (max,+) equations describing a task resource model, see Equations (9.12) and (9.13)
correspond to this duality.

9.2.4 Interpretation in terms of heaps of pieces

There is a useful geometrical interpretation of Task Resource Models in terms of heaps of pieces.
This interpretation was first noticed by Viennot for trace monoids. The reader is referred to
[134] for a more formal presentation. Imagine an horizontal axis with as many slots as resources.
With each letter @ is associated a piece, i.e. a solid “rectangle” occupying the slots r € R(a),
with height h(a). The heap associated with the word w = @y ...a, is built by piling up the

M(a);; whenever M(a)i; = ¢t # . We will write = « y but we omit the unit valuations (when ¢ = e). When
7
there are two arcs * — y with respective labels a,b and weights ¢, ¢, we shall write gt y as a shorthand for

1
the two arcs » <5 Y, & % y. There is an input arc at node ¢ with weight «;, whenever a; # e. Qutput arcs are
obtained in a dual way from 3.
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pieces aq,...,a,, in this order. The makespan y(w) coincides with the height of the heap. The
vector 2R (w) = eg Mg (w) can be interpreted as the upper contour of the heap. Adding one
piece above the heap amounts to right multiplication by the corresponding matrix.

Example 9.2.13. Consider the Task Resource model of Example 9.2.12. We have represented,
in Figure 9.2, the heap associated with the word w = ajayasagazaiazay. Piece ay is an example
of a solid but not connected piece.

| | | | Execution of the sequence of tasks
az

a1

1 T2 T3 T4

Figure 9.2: Heap of pieces for a Task Resource model.

9.3 Performance Evaluation

9.3.1 Stochastic case

The simplest® stochastic extension of task resource systems arises when the sequence of tasks
is given by a sequence of random variables a(n) € A: we get the random schedule w, =
a(l)...a(n), and consider the asymptotics of y(w,), z(w,), that we shall shorten to y(n), z(n).
For stochastic Task Resource models, we propose two types of asymptotic results.

1. First order limits or mean execution times z(n);/n.

2. Second order limits or asymptotics of relative delays z(n); — z(n); (e.g. differences of last

occupation times of the different resources).

Second order quantities are best defined in terms of (max,+) projective space. The (max,+)
k

max

projective space PR is the quotient of R* by the parallelism relation z ~ y < 3\ € R,

= Ay. We write 7 : RE__— PRE the canonical projection. The relative delays x(n); — z(n);

max max

can be computed from 7z (n). Geometrically, 72 (n) corresponds to the upper shape of the heap

5In order to simplify the presentation, we shall not consider more general cases with random initial conditions,
random executions times and random arrival times, which can be dealt with along the same lines.
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(the quotient by ~ identifies two heaps with the same upper contour but different heights, see
Fig. 9.3).

We assume that the random variables a(n) are defined on a common probability space (2, F, P),
equipped with a stationary and ergodic shift 8. We consider a connected Task Resource system,
i.e. such that the graph of the dependence relation is connected (if it is not the case, the theorem
has to be applied to each connected sub-system).

Theorem 9.3.1. Let {a(n),n € N} be a stationary and ergodic sequence (i.e. a(n+ 1,w) =
a(n,0(w))) of integrable random variables, such that Vb € A, P(a(1) =b) > 0.

1. There exists a constant Ay € R (stochastic Lyapunov exponent) such that, Vi € AUTR,

lim z(n)i =lim F (m) =Ag P—as. (9.19)
n n n n
2. Moreover, if the sequence {a(n),n € N} is i.i.d. then the random variable 7z (n) converges in
total variation to a unique stationary distribution.

Proof. In order to prove point 1, the main tool is the subadditivity of the sequence {y(w) =
||z (w)]|}, more precisely:

Vwy, we € A, y(wiws) < y(wy) + y(ws) . (9.20)

This property enables to apply Kingman’s subadditive ergodic theorem, see [4]. More generally,
this result is just a special case of a general theorem on homogeneous and monotone operators,
see [136] or Theorem 10.3.5.

We show point 2 for the resource dater g (w) = eg Mg (w) (the behavior of 2 4 can be deduced
easily from that of 2z by appealing to (9.7)). The following necessary and sufficient condition
of existence and uniqueness of a stationary distribution for 7z (w(n)) is stated in Chapter 6:

There is a word w such that the matriz Mg (w) is of rank one,
with non-c entries.

The matrix Mz (w) constitutes a regeneration pattern for the model. Indeed, the rank one
condition is equivalent to a forgetting of the initial condition.

Vao, 2, 7(zoMpr(w)) = m(ziMr(w)) . (9.21)
This pattern enables us to use regeneration theory to obtain stability of the model. The existence
of the pattern is guaranteed by the following lemma.

Lemma 9.3.2. Let w = ay...a, be a path in the graph of the dependence relation (a; D a;t1 ),
visiting all the nodes. Let W = a,, ...ay denote the mirror image of w. The matriz Mg (ww) is
of rank one with non-¢ entries.
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Rather than proving formally the result (which can be done using representation (9.8), (9.12)
and the fact that Z(a) has rank one), we provide a geometrical justification using heaps of pieces.
Condition (9.21) is equivalent to the following: the upper shape of the heap is independent of
the shape of the ground (which corresponds to the initial condition z¢). The property a; D a;41
of the word ww means that the heap is staircase shaped. It implies condition (9.21), see the
example below.

Example 9.3.3. Consider the ring model of Example 9.2.6 with £k = 4 and h = 1. We have
represented in Fig. 9.3.(1), the heap associated with the word ajazaszasasasaza;.

r(er MRz (ww))
_ 7 (ro Mz (ww))
= (64 Mz (wm))
e
(I) o (11) (I11) —— -
T Tes **’ ———————— \E‘:—‘ ——————————— ‘— - -

mer = w(e.€ e e) wo = w(—2,-2,¢,¢) mis = m(e.eee)

Figure 9.3: Heaps of pieces for a ring model.

The upper shape is independent of the shape of the ground as illustrated in the different
heaps (I),(1I),(Ill) shown on Fig. 9.3 (corresponding to the respective initial conditions eg,
(=2,-2,¢,¢e) and (¢,¢,¢,€)).

O

Remark 9.3.4. A result analog to Theorem 9.3.1, point 2. was proved by Saheb [126] for
trace monoids, using a Markovian argument. The advantage of the method presented here is
that it can be applied to the various extensions mentioned in footnote 5.

When the sequence {a(n),n € N} is only stationary and ergodic, the necessary and sufficient
condition of stability for 7azr(w(n)) is (see Chapter 6) :

There is a word w of length m such that the matriz Mg (w) is of rank one with non-c entries,

and P{a(1)...a(m)=w} > 0.

Under stationary and ergodic assumptions, Theorem 9.3.1, point 2. is not true. Indeed, the
mirror words ww defined in Lemma 9.3.2 might appear with probability 0. Here is an example.

Example 9.3.5. Consider the ring model of Example 9.2.6 with £ = 5 and 2 = 1. We consider
a probability space (€2, P) with Q@ = {wy,...,ws} and P = {%, cer, é} Let € be the stationary
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and ergodic shift defined by : Vi, 8(w;) = w41 [¢]- We consider the sequence of random variables :

{a(n7w1)7 n €N} = (020404010103)(020404010103) T

{a(n,w2),n € N} = (asaqa1a1a3a02)(asasa1a1a3az) - -,

m(er @ Mg (w)) m(zo ©® Mr(w))

= y2
ai as
ai aq ‘
az aq
> ;--_--_--*_
rer =7(e, ... €) nro = w(e,e,e,¢,¢€)

Figure 9.4: Heap of pieces associated with the word w = (a2a4a4a1a1a3)2.

We have represented the heaps of pieces associated with the word w = (a2a4a4a1a1a3)2 for two
different initial conditions (Figure 9.4). Their upper contour is not the same, hence matrix
Mg (w) is not of rank 1. It is easy to verify that it is the case for all the matrices which appear
in this model.

9.3.2 Optimal case and worst case

Given a language L C A* describing the set of admissible schedules, a natural problem consists
in finding an admissible schedule of length n with minimal or maximal makespan. The following
theorem shows the existence of an asymptotic mean execution time, under optimal or worst
case schedules. It can be seen as a (weak) analogue for optimization problems of the first order
ergodic theorem 9.3.1,1.

Theorem 9.3.6. I. For a language L such that L? C L, the following limit (optimal Lyapunov
exponent) exists
y(w) y(w)

lim min ——= = inf —~* . (9.22)
n—vco, ANNL£D weAnL 1 wel |w|

Amin(L) d:ef

2. For a bifix language L (such that wv € L = u,v € L), the following limit (worst Lyapunov

exponent) exists

Amax (L) ' lim  max y(w) = inf max y(w) . (9.23)
n—oo weAPNL N nzlweA™NL n
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Proof. Let m,, = infecannry(w). Since L* C L, w € LNA", 2 € LN AP = wz € [ N A™*P.
Using the subadditivity property (9.20), we get m,4, < my + m,, from which (9.22) readily
follows. The argument for Ay, is similar. a

The assumption that L? C L for the optimal case is practically reasonable. For instance, for
usual scheduling problems, it is natural to impose a fixed proportion of the different tasks, i.e.
L=A{w]| |w|, = rq|w|}, for some fixed r, € R*,>" r, = 1. Such a language satisfies L C L.
The restriction to bifix languages for the worst case behavior is an artefact due to the subadditive
argument.

The following theorem shows that the worst case performance can be exactly computed for the
subclass of rational schedule languages. The reader is referred to [21] for the notation concerning
series.

Theorem 9.3.7.
Consider the generating series of the worst case behavior, z = €, cry 222" € Rpay[[2]], where

Zp = SUPeannr, Y(w). If the admissible language L is rational, the series z is rational.

Proof. Let charl, € Ryax{{A)) denote the characteristic series® of the language L. Then, charL
is rational. Introduce the morphism ¢ : Ryax((A) — Rmax[[2]] such that Va, p(a) = 2. Recall
that the Hadamard product of series is defined by (s ® t)(w) = s(w)t(w). Since rational series
are closed under alphabetical morphisms and Hadamard product, z = ¢(charL ©y) € Rpay[[x]]
is rational. a

Corollary 9.3.8. Let «, u, 3 denote a trim linear representation of charl.. Then,

limsup = = p(4), A =Pnula) &' Mr(a) , (9.24)
" acA

where p denotes the (maz,+) mazimal eigenvalue and &' the tensor product of matrices.

This is an immediate consequence of the (max,+) spectral theorem, together with the fact [60, 21]
that charl.®y is recognized by the tensor product of the representations («, y, 3), (ex, Mg, e%)
(see [69, §3.2] for details).

Remark 9.3.9. More generally, Theorem 9.3.7 holds for an algebraic (=context-free) language
L and not only for a rational one. Indeed, it is an easy extension” of Parikh theorem [47] that
algebraic series in several commuting indeterminates, with coefficients in Ryay, are rational.
Since algebraic series are closed by Hadamard product with recognizable series and alphabetical
morphism, the above proof shows that, when L is algebraic, the series z = ¢(charl @ y) is
algebraic, hence rational. This shows that the generating series z of the worst case behavior
of an algebraic language L is rational. In this case, the effective computation of z, along the
lines of [47, Ch. XI] is less immediate, since it requires solving (max,+) commutative rational
equations.

6The coefficient of charL at w is equal to e if w € L, ¢ otherwise.
"By algebraic series, we mean constructive algebraic series as defined in [63]. The argument given in [47, Ch.

XI] can be adapted to algebraic series in commuting indeterminates with coefficients in commutative idempotent

semirings.
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Example 9.3.10. Consider the dependence alphabet b—a—c, together with the set of admis-
sible schedules L = (a & be*b)*. Its characteristic series is recognized by

e £

S P L U R T L

We get from Ex. 9.2.11 and (9.24),

ha) o) hit)
A= h(@) el g4 = ha) @ h(e) @ h(b) .
€ e e h(c)

where p(A) is obtained from its characterization as maximal mean weight of the circuits of A [8].
Note that the different terms in p(A) are attained asymptotically for the sequences of schedules
a”,n € N, bc™b,n € N, 2", n € N (whose periodic parts correspond to circuits of A).

Remark 9.3.11. Cérin and Petit [36] study the absolute worst case behavior defined by

Nnax = sup,er, |w]™! X y(w). This can be obtained along the same lines:

>

max — ,O(A) @ @ CAZb s (925)
1<igdim A

where ¢ = a @' eg,b = 3 @' k. These quantities can be computed in O((dim A)?) steps (using
Karp algorithm [8] for p(A)). Observe that the dual quantity inf,er y(w)/|w]| treated in [36]
cannot be obtained by such simple arguments due to its “min-max” structure.

9.4 Extensions of Task Resource Models

9.4.1 Tetris game

Tetris is a famous electronic game. It consists in pieces of different forms (tetraminos in the
original version). They fall from above one after the other. They stop as soon as they meet
another piece. In fact, a game of Tetris looks exactly like Figure 9.2, except for the form of the
pieces.

Definition 9.4.1. We define a Tetris type model (or generalized Task Resource model) as a
5-uple (A, R, R, Ba,T4), where :

e A is a finite set of pieces (or tasks).

e R is a finite set of slots (or resources).

e R: A— P(R) gives the subset of slots covered by a piece.

o B, : R(a) — R%, a € A. The letter B stands for Bottom of the piece. By convention,
the map B, is chosen such that max,cg(q) Ba(r) = 0.

oT,: R(a) — R%, a € A The letter T' stands for Top of the piece. The map T, satisfies
the relation T, > B,.
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Remark 9.4.2. The basic Task Resource model (Definition 9.2.1) is a Tetris type model where
each piece a verifies Vr € R(a), B,(r) = 0 and Vr € R(a), Ty(r) = h(a).

We extend the definition of task and resource daters, Def. 9.2.8, to Tetris type models. Let us
define

e if r=s,5 ¢ R(a),
Mr(a)rs = § Tu(s) — Ba(r) if r € R(a),s € R(a), (9.26)
€ otherwise.

We extend Mg to a morphism A* — REX%. Theorem 9.2.9 still applies, i.e. we have :

rr(wa) = zp(w)Mg(a), zr(e) =er . (9.27)

It is also possible to define a dual (max,+) representation for Tetris models. However the ex-

pressions for the matrices M 4(a) are not as simple as in Equation (9.26).

Theorem 9.4.3.
All the results of §9.3 can be extended to Tetris type models.

Example 9.4.4. We consider, as an example, the tetramino of Figure 9.5.

1 L) s T4

Figure 9.5: Piece of a Tetris type model.

This tetramino a is defined by R(a) = (re,r3), Ba(r2) = 0, By(r3) = 1, Ta(re) = 2,T,(r3) = 3.
The matrix associated with piece a is :

Mg (a) =

M M o o
M = N ™
M N W M
M M O
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r
DRSO
Railway 1
RV

Railway

Figure 9.6: A simplified model of the Gagny's triangle.

9.4.2 Gagny’s triangle

Gagny is a town near Paris. The railway network in Gagny has a structure which is presented
in Figure 9.6.

It consists of three tracks. A train using track ¢ can leave the triangle if and only if track
(¢ + 1) [3] is empty. Otherwise, it has to wait until the train on track (¢ + 1) [3] leaves. An
inter-blocking is possible if there is a train on each track at the same time. This event has to
be avoided. One easy way to avoid deadlocks is the following : as soon as a train enters track
i, a light switches to red at track (i 4 1) [3] preventing any train to enter it (the red light has
no effect on a train already on track (¢ + 1)). When the train leaves track ¢, the light at track
(¢+ 1) switches back to green. With this control, there is a maximum of two trains at the same
time in the triangle.

It might not be very intuitive but this network can be represented as a Tetris type model. Track
i is modelled as consisting of two portions, r; and 7;. The set of resources is {7, r;, i = 1,2,3}.
The set of tasks is {a;,¢ = 1,2,3}, where a; corresponds to the passage of a train on track i. We
consider a simple model where the passage of a train can be decomposed in two stages.

1. The train enters track ¢. It requires the railway portions r; and #; during ¢; units of time.

2. The train leaves track ¢. It requires the railway portions r; and #;11 during 7; units of
time.

Once it enters the triangle, say at instant ¢, a train a; blocks three resources : tracks r; and 7;
but also track 7,41 (because of the red light). By blocking, we mean that the tracks can not be
used by the next trains. However in a first time, only the tracks r; and 7; are used by train «;.
At instant ¢ +¢;, the train is ready to leave track ;. There are two possible cases. First, if track
7i41 is empty at instant ¢ +¢;, the train enters it immediately and leaves the network at instant
t+t; + n;. Second, if track 7;41 is not empty, train a; waits on tracks r; and 7; until it empties.

With the help of Figure 9.7, one can convince oneself that the behaviour described above corre-
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sponds to a Tetris model with matrices :

T r re Ty T3 r3
th t1+m ti+m € € ¢
th t1+m ti+m € € ¢
Mg (a1) = e m mo e £ €
€ € € e ¢ €
€ € € € e €
€ € € £ € e

Matrices Mg (az) and Mg (as) have the same form, up to the replacement of 71, ry, 73, t1, 71 by

T3y Ty Tig1, biy 5

——

Sequence of trains arrivals :

w = azdi1ds
ai

a2

&1 ri 2 r2 3 r3 &1 ri 2 r2 3 r3

Figure 9.7: Heap of pieces associated with Gagny’s triangle.

We propose, in Figure 9.7, the heap of pieces associated with the trains : w = agaia3. Note
that in Figure 9.7 the train of railway 3 is a high speed train (TGV).

9.5 Appendix

Let M(A, D) be a trace monoid. We want to find an associated Task Resource model 7 =
(A, R,R,h = 1) with a set R of minimal cardinality. This will be referred as problem PP. We
show that problem P is related to some classical problems in graph theory.

We need to recall some definitions from graph theory. A graph (V,E), £ C V x V is simple
if it contains no loops, i.e. no edge of the form (v,v),v € V. We have already introduced
hypergraphs in §9.2.3. In the same way, we say that an hypergraph is simple if it contains no
loops. Till the end of the chapter, a graph (resp. hypergraph) is always simple, even if it is not
explicitly stated. A graph is complete if £ = (V x V) —{U(v,v)}. The complete graph of order®
n is denoted by K. A clique of a graph is a complete subgraph. A bipartite graph is a graph
with two types of vertices and with edges only between vertices of different types. The graph

8The order of a graph (or hypergraph) is the number of its vertices.
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K, 4 is the complete bipartite graph with p vertices of one type and ¢ of the other. Let us define
the 2-section of an hypergraph.

Definition 9.5.1. Let H = (X, F) be an hypergraph. The set of vertices is X and the set of
edges is (E1,..., Fy), B € P(X). We define its 2-section, denoted by [H]3, as the graph with :
o A set of vertices X.
o An edge between x; and x; iff i # j, ALy € E s.t. 2,25 € Fy.

We associate with the trace monoid M(A, D) a graph ¢ with vertices A and edges D = {(a, b) |
a # b,aDb}. The problem P can be reformulated as follows. Given the graph G = (A, D), find
an hypergraph H with a minimal number of edges such that [H]; = G. The minimal number of
edges is denoted by Q(G'). The interpretation is that each edge corresponds to a resource.

It is immediate that [G]y = G. It implies that Q(G) < |D|. The equality case is characterized
in Theorem 9.5.2. For a proof, see for example Harary [86], p.19 or Berge [20], p.36.

Theorem 9.5.2. Let G = (V, F) be a connected graph. We have Q(G) = |F| if and only if G
has no triangles (i.e 3-cliques).

Next theorem is due to Erdés, Goodman and Pésa [62].

Theorem 9.5.3. Let G = (V, E) be a connected graph of order n. We have Q(G) < {%}

This bound is the best possible one. It is attained for the graphs K, , if n = 2p or K, p41 if
n=2p+ 1.

Except for the cases described in Theorem 9.5.2, solving problem P is NP difficult. Let us give
some hints on why it is so. For more details and related results, the reader is referred to Gondran
and Minoux [78], ch.10.

1. Let C = {¢;} be a set of cliques of GG covering all the edges D. We consider the hypergraph
H = (A,C). We verify that [H]; = (. Problem P is equivalent to the search of a minimal
covering of ¢ into cliques.

2. We denote by C = {¢;} the set of the mazimal cliques of G. We consider the hypergraph
H(G) = (AQ).

We define the matrix B of dimension |D| X |C| by : Bg. = 1if d € ¢ and Bg. = 0 otherwise.
Problem P reduces to a problem of linear programming in integer numbers :

min 31, @
Bx >1 ,
x € {0,1}7

where ¢ = |C].

3. We consider the associated linear program obtained by replacing z; = {0,1} by 0 < z; < 1.
There exists a polynomial algorithm to solve it. But, in general, the solutions will not be
integer ones. The main case where the algorithm provides integer solutions is when B
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is totally unimodular?, see Hoffman & Kruskal [89]. In general, incidence matrices of
hypergraphs are not totally unimodular, hence problem P can not be solved in polynomial
time.

Remark 9.5.4. Incidence matrices of graphs are totally unimodular. However it is not an
interesting case. In fact, assume that H(G) is a graph. It implies that the maximal cliques of
G are of cardinal strictly less than 3. It means precisely that there are no triangles in G'. But
we know by Theorem 9.5.2 that problem P is trivial for such graphs.

We propose in Figure 9.8 an example of a graph G where Q(G) is strictly less than the number

’“ V

TS

of maximal cliques of G.

Figure 9.8: Graph with 4 maximal cliques and Q(G) = 3.

There are four maximal cliques, of order 3. However, the clique represented in doted lines is
redundant and we have Q(G) = 3.

%A matrix is totally unimodular if the determinant of each extracted matrix is equal to -1, 0 or 1.
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Chapitre 10

Ergodic Theory of Stochastic
Operators and Discrete Event
Networks

Théorie Ergodique des Opérateurs et des Réseaux & Evénements Discrets Stochas-
tiques

On considere une classe de systémes généralisant strictement les systémes (max,+) linéaires.
Ces systemes peuvent étre décrits de facon tres imprécise comme des opérateurs (min,max,+,x)
linéaires. On montre comment les résultats de [4] ainsi que ceux du chapitre 6 peuvent étre (par-
tiellement) étendus a cette classe de systemes. On étudie également les réseaux a événements
discrets. On montre que les théoremes ergodiques démontrés dans le cadre des réseaux a événe-
ments discrets peuvent étre vus comme une généralisation de ceux obtenus pour les opérateurs.
Nous donnons pour conclure divers exemples de systemes analysables par ce type d’outils.

Ce chapitre provient d’un article réalisé en commun avec Francois Baccelli, [15]. Les auteurs
tiennent a souligner 'importance de 'atelier HP-BRIMS Idempotency pour la maturation de
ce travail. Cet atelier, organisé par Jeremy Gunawardena, s’est déroulé & Hewlett-Packard
Laboratories, Bristol, en octobre 94. Nous tenons également a remercier Serguei Foss et Jean-
Marc Vincent pour de nombreuses et instructives discussions sur le sujet.
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We present a survey of the main ergodic theory techniques which are used in the study of it-
erates of monotone and homogeneous stochastic operators. It is shown that ergodic theorems
on discrete event networks (queueing networks and/or Petri nets) are a generalization of these
stochastic operator theorems. Kingman’s subadditive ergodic Theorem is the key tool for de-
riving what we call first order ergodic results. We also show how to use backward constructions
(also called Loynes schemes in network theory) in order to obtain second order ergodic results.
We will propose a review of systems entering the framework insisting on two models, precedence
constraints networks and Jackson type networks.

10.1 Introduction

Many systems appearing in manufacturing, communication or computer science accept a descrip-
tion in terms of discrete event systems. A usual characteristic of these systems is the existence
of some sources of randomness affecting their behaviour. Hence a natural framework to study
them is the one of stochastic discrete event systems.

In this paper, we are concerned with two different types of models. First, we consider the study

of the iterates T,,0T,,_j0---01y, where T; : R*%xQ — R*is a random monotone and homogeneous
operator. Second, we introduce and study stochastic discrete event networks entering the so-
called monotone-separable framework. A subclass of interest is that of stochastic open discrete
event networks.

It will appear that these models, although they have been studied quite independently in the
past years, have a lot of common points. They share the same kind of assumptions and prop-
erties : monotonicity, homogeneity and non-expansiveness. In fact, we are going to show that
monotone-separable discrete event networks are a generalization of monotone-homogeneous op-
erators. However, when a system can be modelled as an operator, it provides a more precise
description and stronger results.

In both types of models, we are working with daters. Typically, we have to study a random
process X (n) € R where X (n); represents the n — th occurrence of some event in the system.
We are going to propose two types of asymptotic results :

1. First order results, concerning the asymptotic rates lim,, X (n);/n.

2. Second order results, concerning the asymptotic behaviour of differences such as X (n); —

X(n);.

The main references for the results proposed in the paper are the following ones. First order
results for operators appear in Vincent [136]. Second order results for operators are new. First
and second order results for open discrete event networks are proved in Baccelli and Foss [10].
First order results for general discrete event networks are new. A more complete presentation
will be done in a forthcoming paper [?].

The paper is organized as follows. In Part I, we treat first order results and in Part 11, second
order ones. In each part, we consider operators and discrete event networks separately. In
a last part, we propose a review of systems entering the frameworks insisting on two models,
precedence constraints networks and Jackson type networks.

We aim at emphasizing how theorems on stochastic systems are obtained as an interaction be-
tween structural properties of deterministic systems and probabilistic tools. In order to do so,
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we introduce first the probabilistic tools (§10.2 and 10.6). Then we present some properties on
deterministic systems. At last, we prove the main theorem for stochastic systems.

First Order Ergodic Results

10.2 Probabilistic Tools

We consider a probability space (2, F, P). We consider a bijective and bi-measurable shift
operator 8 : 2 — 2. We assume that 8 is stationary and ergodic with respect to the probability
P.

Lemma 10.2.1 (Ergodic lemma). If A € F is such that §(A) C A then P{A} =0 or 1.

Theorem 10.2.2 (Kingman’s subadditive ergodic theorem [97]). Let X;,,l < n € Z,
be a doubly-indexed sequence of integrable random variables such that

e stationarity : X, .1, = Xo,00", Yn,p, p>0.
e boundedness : E[Xg,] > —Cn, Vn >0, for some finite constant C' > 0.
o subadditivity : X;, < X; .+ Xy, Vi<m<n.

Then there exists a constant v such that the following convergence holds both in expectation and
a.s.

1. E[XO,n] o . XO,n
im ——— =+, lim ——
n—00 n n—oo M

=~ P as. (10.1)

Remark 10.2.3. The convergence in expectation is straightforward. In fact, we have by sub-
additivity, £(Xo,) < E(Xom) + E(X ). By stationarity, it implies F(Xg,) < E(Xom) +
E(Xo,—m). The real valued sequence u,, = {£/(Xy )} is subadditive, hence u,/n converges in

RU{—o00}. Because of the boundedness assumption, we conclude that the limit is finite.

Remark 10.2.4. If we have additivity instead of subadditivity, then the previous theorem
reduces to the following result:

lim =0t 2% g ,) Pas.

n—o0o n
When the sequence {X,, ,41,n € N} is i.id., this is simply the Strong Law of Large Num-
bers. More generally, when the sequence {X,, ,41,n € N} is stationary ergodic (i.e. X, n41 =
Xo,10867"), it is Birkhoff’s ergodic theorem.
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10.3 Application to Stochastic Operators

10.3.1 Subadditivity

We call (deterministic) operator a map 7" : R* — R* which is measurable with respect to B, the
Borel o-field of R*. Let {T,,,n € N} be a sequence of operators. We associate with it and an

initial condition z¢ € R*, a sequence on R” :

{ v(n+1) = Tu(e(n) = Ty 00 To(x(0)) (10.2)

z(0) = 2¢ .
We will sometimes use the notation z(n, z¢) to emphasize the value of the initial condition.

We consider a probability space (2, F, P,8) as defined above. We call random (or stochastic)
operator a map T : R* x Q@ — R* which is measurable with respect to B x F. As usual, we
will often write T'(x) for T(z,w),z € R*,w € Q. A stationary and ergodic sequence of random
operators is a sequence {T,,,n € N} verifying T, (z,w) = To(z,8"w). In the same way as in
Equation (10.2), we associate with {7),,n € N} and a (possibly random) initial condition ¢, a

random process {z(n),n € N} taking its values in R*.

In what follows, definitions apply to deterministic and random operators. For random operators,
the properties have to be verified with probability 1.

Definition 10.3.1.

1. Homogeneity T is homogeneous if for all x € R* and X\ in R, T(x + /\f) =X+ T(z),

where 1 is the vector of R¥ with all its coordinates equal to 1.
2. Monotonicity 7' is monotone if v < y implies T'(z) < T'(y) coordinatewise.

For a “physical” interpretation of these conditions, see Remark 10.3.11. The next theorem is a
key tool in understanding the importance of homogeneity and monotonicity in what follows.

Theorem 10.3.2 (Crandall-Tartar [48]). We consider an operator T : R¥ — R* and the
Sfollowing properties

e H. T is homogeneous.
e M. T is monotone.

e NE. T is non-expansive with respect to the sup-norm, i.e Yo,y € R* ||T(2) — T(y)||eo <
2 = lleo-

If H holds, then there is equivalence between M and NE. Such operators will be referred to as
monotone-homogeneous operators.

Corollary 10.3.3. Let us consider a sequence T, : R¥ — R¥, n € N, of monotone-homogeneous
operators. If 3z € R*, 3i € {1,...,k} such that lim, T, o ---o To(x);/n exists then :

Tp o0 Toly);
n

Tho-oTh(z);
. .

Yy € R¥, lim = lim (10.3)
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Proof. Straightforward from non-expansiveness

P o0 To(y) = Tuo -0 To(a)lee

n n n n

ad

Proposition 10.3.4. Let T, : RF — R* be a sequence of monotone-homogeneous operators.
We define e = (0,...,0)" and forl <n, z;, =T,_10---0Tj(e). The mazimal (resp. minimal)
coordinate of x;,, forms a subadditive (resp. super-additive) process, i.e.

Vi<m<neN, max;(z1,); < max(Tim); + max(zm,,);
1 1

ming(27,,); > min(zgm,); + min(z, ,); . (10.4)

K3

Proof. We have VI < m < n € N,

i, = Thq0---0T, 0T, yo---0T(e)=T,_y0---0Ty (x1m)

—

< T,_10---0T, (e + (max(whm)i)l) (monotonicity)

< Tpor0---0Tn(e) + (max(zy,,):)1  (homogeneity).

Therefore,
m?X(wl,n)i < m?X(xl,m)i + mlax(wm,n)z

The proof of the super-additivity of the minimal coordinate is equivalent. O
We are now ready to prove the following theorem on stochastic operators.

Theorem 10.3.5 (Vincent [136]). Let {1,,,n € N} be a stationary ergodic sequence of mo-

notone-homogeneous random operators. We define the process x(n,y),y € R*, as in FEquation
(10.2). 1If, for all n, the random variable T}, o ---oTy(0) is integrable and such that F(T,0---o
Ti(0)) > =Cn, for some positive C, then 37,7 € R such that Vy € R¥,

max; x(n, y)z E(max; z(n,y);)

n

lim
n

(10.5)

=% Pas., lim,

2|

mini x(n, y)z E(min; z(n,y);)

n

lim

n

(10.6)

=5 Pas., lim,

[-2

Proof. We define as previously the doubly-indexed sequence z;,, = T},,_j0- - -0Tj(e);, | < n. Using
Prop. 10.3.4, the sequences max;(z, ,); and —min;(z, ,); are subadditive. Hence they satisfy
the conditions of Theorem 10.2.2. So Equation (10.5) holds for y = e = (0,...,0). For any
other initial condition y, we obtain lim, (n,y)/n = lim, (n, €)/n using the non-expansiveness
as in Corollary 10.3.3. O

The convergence for the maximal and minimal rates does not imply that of the coordinates.
Here is a counter-example borrowed from [136].
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Example 10.3.6. We consider a random operator Ty : R? — R? verifying:
= (21,22, xg)’, To(z) = (z1+ 1,22+ 2, Upzr + (1 - U0)$2)/ .
where Uy is a [0, 1]-uniform random variable. We have
liminf(7, ... To(z)s)/n =1 and limsup(7,...To(z)s)/n=2.
Here is another example of the same kind:
To(z) = (do(max(z1,z2)+2)+ (1 —do)(min(aq,2z2)+ 1), (1 — o)
(max(z1,22) + 2) 4 do(min(z1, z2) + 1), Uy + (1 — Up)zz)’,
where Uy is a [0, 1]-uniform random variable and d¢ is a (0,1) Bernouilli random variable. The
random variables Uy and &g are independent.
10.3.2 Projective boundedness
In order to complete Proposition 10.3.4 or Theorem 10.3.5, the two main questions are :
i. Does a limit exist for the vector (T, 0---0Ty(y)1/n,...,Tyo---0To(y)r/n) T
i1. Is this limit equal to a “constant” (vy,...,v) [

The general answers to these questions are not known (even for deterministic operators). We

are going to propose a suflicient condition to answer positively i. and 2:. Let us introduce some
definitions.

Definition 10.3.7 (PR*). We consider the parallelism relation :
u,v € R¥ u~v<= 3a R such that Vi, u; = a + v; .

We define the projective space PR* as the quotient of R* by this parallelism relation. Let 7 be
the canonical projection of R* into PR*.

Definition 10.3.8. Let T be an operator of R* into RF.

1. T is projectively bounded if AK a compact of PR* such that the image of T is included in K,
ie. 7(Im(7T)) C K.

2. T has a generalized fized point if 3v € R,z € R* such that T(zo) = 'yf—l— xg. It is equivalent
to say that T has a fized point in the projective space (see Def. 10.3.7).

Proposition 10.3.9. Let us consider T : R* — R* a monotone-homogeneous operator. Let us
consider the following assumptions.

A. T is projectively bounded.

B. T has a generalized fized point.

C. Ve, im, T™(z)/n = (v,...,7).
The following implications hold : A = B = C'. The other implications are false, C' A& B % A
and C' % A.
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Proof. 1. A = B. Let K be a compact of PR* such that =(T(R¥)) c K. It implies that
(1) : K — K. Hence w(T') is continuous on a compact and has a fixed point by application
of Brouwer’s Theorem.

2.B = C. Let * € R* be a generalized fixed point of T, i.e T(z) = AT 4 . It implies
T"(x) = nyl + 2« and lim, T"(z)/n = (v,...,7)". From Corollary 10.3.3, we have Vy €
R* lim, T"(y)/n = (v,...,7)".

3. B# Aand C' A A. An easy counter-example is obtained by considering the identity operator
[:RF = RE I(2) = 2.

4. C # B There exist counter-examples of dimension 2, [83].

This Proposition has an interesting application for stochastic operators.

Theorem 10.3.10. Let {1}, n € N} be a stationary and ergodic sequence of random operators.
We assume that there exist | € N and K a compact of PR such that :

E=A{r(Im(T)-10---0Tp)) C K}, P()>0. (10.7)
Then Ay € R, such that
g .. Tho---0Tp(a) p
Vo € R, hmf:('y,...,'y) .

Proof. We define recursively the random variables

Ny = min{n e N|T,3;_y0---0T, € £},
Niz1 = min{fn e N|n> N;+ [, Tyyj_10---0T, € E}.

First of all, let us prove that the random variables V; are almost surely finite. Let us consider
the event Ay = {N|; < 4oo}. It is easy to see that Ay is invariant by the shift 6. In fact
Ni(07'w) = Ny(w) + 1 or 0. Hence {N;(w) < +oo} = {N1(87'w) < +oc}, ie. 6(A) C A.
By Lemma 10.2.1, it implies that A is of probability 0 or 1. But ({N; = 0} = &) C A and by
assumption P(£) > 0. We conclude that P(A) = 1. A similar argument can now be applied to
Ny. For A € F, we define the indicator function 14 : Q2 — Q, 14(w) =1 iff w € A. We have

P(Nz <+400) = FE(l{n,cioo}y) = Zl{Nl AN, <+o0})
= Zl{Nl M LN opt+ < oo)) = Zl{M =k})

We conclude the proof by induction.
Let 7 and v be the maximal and minimal rates as defined in Theorem 10.3.5. Let us assume

that 7 # v. It implies, Vo € R*,

lim inf(max 2(n); — min z(n);) = 400 . (10.8)

n K3 K3
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But we also have that Vi € N, w(z(N;+1)) C K. It implies that (max; 2(N; 4+ {); — min; 2 (N; +
);) ¢ K’ where K’ is a compact of R. Hence there exists a subsequence No(iy such that
(max; &(Ny(;y+1); —min; 2(Ny ;) +1);) converges to a finite limit. This is in contradiction with
(10.8). 0

Remark 10.3.11. In many applications, the operator will be applied on a vector of dates for
a physical system. The vectors z(n) and z(n+1) = T}, (x(n)) will represent the dates of the n-th
and (n+ 1)-th occurrences of some events in a system. In such a case, the homogeneity property
can be interpreted as the fact that changing the absolute origin of times does not modify the
dynamic of the system. Hence it becomes a very natural assumption. The monotonicity is
interpreted as the fact that delaying an event delays all following events.

10.4 Application to Stochastic Discrete Event Networks

10.4.1 Discrete event networks

A discrete event network is characterized by

1. A sequence

N = N[_Oopo] = {U(k),M(k), ke Z},

where o(k) € Rt and {M(k)} is a sequence of F-valued variables, where I’ is some
measurable space. With N and n < m € Z, we associate the sequence N defined by:

n,m]

N[n,m] d:ef {U[n,m](k)7M(n+ k)? ke N}7

where o, .1 (k) def a(n+k), for 0 <k <m —n, and oy, 1 (k) def oo, for k> m — n.

2. Measurable functions ®(k,.) and ¥(.): (Rt x F)"' = RU {00}, k € N*, through which are
defined

[n, n,m])7

Remark These variables receive the following interpretations: X[; m](k) is the initiation date

of the k-th event on some reference node, for the driving sequence Ny, ).

X+m](k) L ](k)—l—a[mm](k), n<m, k>0

[n, [n,m

is the completion date of this event. X' ](k) and X m](k) are called internal daters. Xy, .

[n,m

is the mazimal dater, i.e. the date of the last event in the network, for the sequence N, ).
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10.4.2 The monotone—separable framework

Let N and N be two driving sequences such that o (k) < &(k) < oo for all k, and with M (k) =

M (k) for all k. We denote X k), Xt (k) and X[y, the daters associated with Ny, and

[1,m]
Xitm
A network is said to be monotone-separable if it satisfies the following properties for all m >

1, k£ > 1 and for all N and N as above:

L)
](k)7 etc. those associated with N[Lm].

e causality X[I m](m—l— 1) < X[ < 00.

e monotonicity X[_ ](k) < )~([I m](k) and Xpj ) < X[l,m]'

1,m

e non-expansiveness ! )?[I m](k) - X m](k) < z and )~([17m] — Xpm € 2, if (k) = o(k)
forall k# 1, and 6({) = o(l) + z, > 0.

e separability For 1 <! < m,if Xp; 5 < X[‘il' m](l—l— 1) then X7 ) < Xp m](l—l— D+ Xp41,m)-

Proposition 10.4.1. Under the above assumptions, the sequence X satisfies the sub-addi-

m,n]
tive inequality
X[m,n] < X[m,l] + X[l-l-l,n]? Ym <[ < n.

Proof. 1t is enough to prove the property for m = 1, since the general relation will then be
obtained by applying the relation for m = 1 to the variables associated with some adequate
sequence. Let 1 <! < n. There are two cases:

Case 1: X[ < X[‘" ](l + 1). Then, in view of separability

1,n

Xpm S X[I,n](l + 1)+ X410
< Xpg+ Xt

where we used the fact that Xp 5 > X/ l](l +1) > Xp n](l + 1), which follows from causality
o n](l—l— 1) with o(k) = o(k) for 1 < k <! and o(k) = oo for

and monotonicity (X[I,l](l +1)=X
k>1).

Case 2: X[ > X[‘;n](l +1).
Consider the two sequences {o(k)} and {o(k)}, which only differ in their ({ 4+ 1)-st coordinate,
for which we take o(l + 1) = o(l+ 1) + 2, 2 > 0. In view of monotonicity, Xp; ) < )?[l,n]' In

Yf one sees (U(.), ®(k,.), k > 1) as a function: (RT)Y = (RU {cc}) — the sequence {M(k)} being fixed —

this is indeed non-expansiveness when taking a L' norm on (R"’)N and a L°° norm on (RU {co})™.



10.4 Application to Stochastic Discrete Event Networks 204

particular, if we take 2 = 2* with 2™ = Xy j — X[‘il' n](l + 1) > 0, then
Xi 0+1) = X (+D)+o(l+1)+2"
= )?[;m](z + 1) +o(l+ 1)+ Xpg— XT 0+ 1)
= X+ X+ 1) = X (+1). (10.9)
But X[y does not depend on o(/+ 1), and so X[y = )?[171]. Therefore

X[J{m](l +1) = Xpg+ X[;m](l +1) — X[;m](l +1)

Xp, (monotonicity)

A\

We finally obtain that, for z = «*

X < [ ](l +1) + X[l-|—1 n]:  (separability)
- )}[—ll—m](l +1)+ X (l +1) - X [, + X[1+1 a]» (Equation (10.9))
< )?[J{,n](l‘|‘1)‘|‘X (1) = Xp g+ 2"+ X1, (non —exp.)
= Xt (41 + X5 40+ 1) = X+ X = X0+ 1) + X
(D) + X0 (1) + Xy

= X[Jin](l +1) - X1
z* |

< —I—X[ m](l—l—l)—l—X[H_ln], (non—exp.)
= (l+1) [M (l+1)+X[1 0+ X[ig1,n]
< Xpg+ X

ad

Remark 10.4.2. Under the additional assumption that X7 m](l—l—l) is a function of {o(k),1 <

k <1, and M(p), 1 < p < m} only, non-expansiveness can be replaced by the following property:

e sub-homogeneity X[Lm] < Xpm+ A if (1) =o(1) + A and o(k) = o(k) for all k > 1,
A>0and m > 1.

The proof is exactly the same for case 1. For case 2, taking 2™ as in the proof of Proposition

10.4.1 gives )?[T 0+ 1) = Xp and

Xpin < )?[I,n](l +1)+ )?[l-l-l,n]? (separability)
= X+ + X410
< XU+ D) + X + Xpg = X (4 1), (sub — homog.)
< Xpg+ Xpgna



10.4 Application to Stochastic Discrete Event Networks 205

Remark 10.4.3. Some generalizations of the framework, with internal daters, will be pro-
posed in [?]. See also the Jackson network example of §10.9.2. The comments on the physical
interpretation of homogeneity or monotonicity made in Remark 10.3.11 also apply to discrete
event networks.

10.4.3 Open discrete event networks

A discrete event network is said to be open if the following additional assumption holds for all
m > 1:

V1< k<m, X g(k+1) = X7 (k+1) = X 4(k), and X (1) = 0.

[1,m] [1,00] [1,m
One can then define a point process {Ay}r>1 by
A=A+ X[ioo](k).

The origin of this point process is arbitrary. It is then possible to interpret { A;} as an external
arrival process, the inter-arrival times being the sequence {o(k)}. To summarize, an open
discrete network is described by a sequence N = Nj_q o) = { A, M(k), k € Z}.

The conditions of the monotone separable framework take the following form for an open network
(which corresponds to the conditions of [10]) : for all m > 1, the following properties hold:

e causality A, < A; + X[y ;) < 0.
e monotonicity )~([17m] 2 X[y ) for N and N with &(k) > o (k) for all k.

e homogeneity Let N be the point process obtained by shifting the points of N Ay, k£ > 1,
of A > 0 to the right. Then )?[1771] = X
e separability A4, + X[1,m] € A4+ X[g1,m) for all 1 <1 < m such that Ay + X[y ;) < Arg1.

For an open network, monotonicity can be interpreted as the fact that delaying an arrival delays
all forthcoming events in the network. For a possible interpretation of separability, see Remark
10.7.1.

10.4.4 Stochastic discrete event networks

We consider a probability space (2, F, P,0) as in §10.2. The following stochastic assumptions
are made:

e compatibility (o(k), M(k)) = (a(0), M(0))o 6 for all k € Z.
e integrability 3C' > 0, —C'm < E[X[; ;] < oo for all m > 0.

Theorem 10.4.4. For all discrete event network which satisfies the monotone-separable as-
sumptions and the above stochastic assumptions, we have

X1 E[X0,
lim —2 — v as. and lim M =7 (10.10)

n—o0o n n—o0o n

Jor some finite constant .
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Proof. We have X|
X[m,n]- From Proposition 10.4.1, for all m <1 < n,

mym4p] = X[o,p) © 0", for all m € Z and p > 0. For m < n, define Y[, ,11] =

Yv[m,n—l—l] < Yv[m,l—l—l] + Yv[l—l—l,n—l—l]'

So {¥[pn)}, m < m, satisfies all the assumptions of Theorem 10.2.2. 0

10.5 Relations Between Operators and Networks

Let us investigate the relation between the operator framework considered in §10.3 and the
monotone-separable framework considered above. Let {T,} be a sequence of monotone and
homogeneous operators. Let o(n) =0 and M(n) = T),. Let z(n,0) be the variables associated
with the operator recurrence equation (10.2) with initial condition zg = 0. With these variables,
we associate

X-

[Om](k) = X[‘&n](k) =maxz(k—1,0);, k=1, and X, = mlaxw(n, 0);,

K3

Note that these variables are functions of {M(l)}. We have

o X

o0 n](n + 1) = Xjg,) < o0, s0 that causality holds.

e Monotonicity and non-expansiveness trivially hold as neither )([6771](16)7 k> 1, nor Xpg

depend upon {o({)}.
e Separability holds because it is always true that X = X[B m](l + 1) and

Xom) = max (T 0...0T41(2(1,0)));

—

= max (T o0 T (2 (1, 0) + (Xpo - X[07l])1))i

= Xpq+ max (Tm o...0oT1(2(1,0) — X[OJ]T)) ,  (homog.)

K3

< Xpg+ max (I 0...0T141(0)) (monotonicity)

'R

Hence, monotone separable operators are a special case of monotone separable discrete event
networks. On the other hand, it should be remarked that an operator can not be represented
as an open discrete event network. A representation in terms of operators is interesting as it is
more precise than the corresponding discrete event network one. In particular, we will see that
we are able to obtain second order results for operators, §10.8, and not for non-open discrete
event networks, §10.7.2.

Second Order Ergodic Results

We will introduce a construction which is known as the Loynes scheme. This type of construction
will be used for both types of models, discrete event networks and operators, but in a rather
different way.
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10.6 Basic Example and Probabilistic Tools

The basic construction was introduced by Loynes in [103] to study the stability of the G'/G//1/0
queue. A G/G arrival process is a stationary and ergodic marked point process

N ={(rn,00),n € Z},

where o(n) € RT is the service time required by customer n and 7, = A, 41 — A, the inter-arrival
time between customers n and n+ 1. The 1/cc part describes the queueing mechanism. There is
a single server and an infinite waiting room or buffer. Upon arrival at instant A,,, customer n is
served immediately if the server is idle at A and is queued in the buffer otherwise. The server
operates at unit rate until all customers present in the buffer have been served. Let X[ ,; be
the time of last activity in the system, i.e. the departure of the last customer, for the restriction
Nji.n)- Here are two equivalent ways to describe the system :

e As a stochastic operator,

An—l—l ) ( Tn ‘|’ An )
= 10.11
( X[l,n—l—l] maX(Tn + Ony1 + Ay, Ont1 + X[l,n]) ( )
Tn 5 A,
= 10.12
( Tn @ Ont1 Ontt ) ? ( Xi,n] ) ( )

Equation (10.11) can be written X ,11) = max(A,y1, X[ 5)) + 0ny1. The meaning is that the
server starts working on customer n + 1 as soon as this customer has arrived (A,41) and the
server has completed the services of the previous customers (Xp; ;). Equation (10.12) is just a

re-writing using the (max,+) notations, see also §10.9.1. It is easy to verify that this operator
is monotone and homogeneous.

e As an open network, by means of the function ¥ of §10.4.

X = ¥(m,0ni€{l,...,n})
; k
= (An - Al) + Op + n’la;X(O7 l’il_a,lxz:(o‘n_l — Tn—i)) . (1013)

T =1

The easiest way to understand Equation (10.13) is to look at Figure 10.1. Function ¥ is mono-
tone, homogeneous and separable.
Let us consider the sequence of variables {7} ., | < n € Z} defined by 7 ;) = Xy ) — (A, — A)).

The variables Zj; , verify Lindley’s equation? Zipi1] = (Zin) — )t + ot

Theorem 10.6.1 (Loynes [103]). The sequence Z[_,, o is increasing in n, i.e. Zj_,_10 >
Z1_pq)- The limit Z = lim, Z]_,, ) verifies P{Z < +oo} = 0 or 1. Furthermore Z is a stationary
solution of Lindley’s equation, i.e. Z(8w) = (Z(w) — 10)T + 1. When P{Z < 400} = 1, the
sequence {Zjg n),m € N} couples in finite time with the stationary sequence {7 o 6" }.

2Tt is more classical, but equivalent, to work with the workload variable W,, = Xio,n] — An — o(n), yielding

equation W41 = (Wn + 0y — Tn)+.
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A
o_3 ‘
|
| Zi-3,0
v< _____ _ ‘ —ols0
A_s T3 A, A_q  Ag
Z[-4,0] 2 Z]-3,0]
Z[—4,0]
R | | ‘
A_y A_s A_s A, Ao

Figure 10.1: Loynes scheme for the G/G//1/00 queue.

Proof. The monotonicity of Z|_, o is easy to obtain from Equation (10.13). It is also illustrated
in Figure 10.1. Hence the limit Z = lim, Z[_, o] exists. Let us denote A = {Z < 4o0}. From
Z1on] = (Zj—no) — 7o)t + o1 and the fact that oy is a.s. finite, we obtain

Z(w) < 400 IK Yn, Zi_,qw) < K = 3K'VYn, Z_,j(w) < K'.

But we also have

Z1n1) (@) = Zpo1,0(00) - (10.14)

We conclude that Z(fw) < 4oo. We have proved that §(A) C A which implies, Ergodic
Lemma 10.2.1, that P{A} = 0 or 1. From Equation (10.14), letting n go to co, we deduce that
Z(0w) = (Z(w) — 70)T + o1. For a proof of the remaining point, see [103] or [6]. a

The limit 7 is usually referred to as Loynes variable. We can obtain, using Equation (10.13),
P{Z < 4} =1 F(o) < E(r). The condition F(o) < E(r) defines the stability region.
This condition is usually written under the form p = F'(o)/FE (1) < 1. We will see a similar type
of stability condition in Theorem 10.7.3.

10.7 Application to Stochastic Discrete Event Networks

10.7.1 Open discrete event networks
The assumptions and notations are those of §10.4.3 but we replace the separability assumption

by

e strong separability For 1 <1 < m, if Ay + Xy € Aigr then Ay + Xy ) = Aipr +
Xi41,m]-



10.7 Application to Stochastic Discrete Event Networks 209

Remark 10.7.1. Strong separability can be interpreted as follows. If the arrival of customer
[+ 1 takes place later than the last activity for the arrival process [1,], then the evolution of
the network after time A;y; is the same as in the network which starts “empty” at this time.

We define A = E(A, 41 — A,)"! interpreted as the arrival rate and

i) = X — (An = A1), <0 (10.15)

Proposition 10.7.2 (Internal monotonicity). Under the above assumptions, we have

Zyim) 2 Ly LS

Proof. Consider the point process N with 5(I — 1) = o(l — 1) + Zj—1,-1) and (k) = o(k)
everywhere else. For N[l_lm], we have separability in [ so that

Xi—1m) = )?[z,n] + A - Ay
= Xqn+ A — A, (strong — separability)
= X+ A= A+ - (10.16)
Therefore
i1 = Xp—ig) — (An — A1)

= Xjoin) — (An — A)) — (A — A1)
Xpo0] — (An = AD) + X — X1 + Zu_riey (by (10.16))

i) T Xp—1,0) = X[i=1,0) + Z[i=1,-1)

Z1,n]s (non — expansiveness).

A\

ad

Let 7 = lim, Z[_, q(N), which exists by internal monotonicity of Zj_, qj(N). We define a

c-scaling of the arrival point process N in the following way :
0<c<+4oo, cN=A{cA,,M(n),n€Z}.

From Equation (10.15) and Prop. 10.4.1, we obtain that Z; ,,; is subadditive. Applying Theorem

10.4.4, we obtain the existence of the limits

7y 1(eN 7 a(eN
lim [t ](C ) = lim [ ’0](C ) =v(c)
n n n n
From Equation (10.15), we obtain
Xy a(eN Xr_, q(eN
lim L )(cl) = lim =L a(el) =v(c) <.
n n n n A

For ¢ > ¢, we have ¢N > éN. We obtain by internal monotonicity and by monotonicity
respectively :
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L. Z_,0(cN) is decreasing in ¢ == v(c) is decreasing in c.
2. Xjon)(eN) is increasing in ¢ = 7y(c) + ¢/ is increasing in c.

We deduce the existence of a constant v(0) defined by :

. c .

lim N\ y(e) + 1 = 7(0) = lim 7" 5(c). (10.17)
The intuitive interpretation is that v(0)~! is the throughput of the network when we saturate
the input, i.e. when 4, = 0,Vn. It is the maximal possible throughput.

Theorem 10.7.3. Let N = {A,,M,,n € Z} be a stationary ergodic point process. We set
p=A(0). If p>1, then P(Z = +o0) = 1. If p < 1, then P(Z < 400) = 1 and {Zjg ), n € N}

couples in finite time with the stationary sequence {Z o 0" }.

Proof. The first part of the theorem is immediate. In fact relation (10.17) implies v(1) + 1/A >

v(0). We have :
Zy_ 1 -1
o Z=n0] 4
(h?gn - 7(1)) > (7(0) D )

Therefore p — 1 > 0 implies P(Z = +o0) = 1. For a complete proof of the result, the reader is
referred to [10]. O

Remark 10.7.4. For p < 1, Z is the smallest stationary regime for the response time of the
system (which is defined as the time to the last activity under the restriction [—oo, 0] of N).
Intuitively it is the stationary regime corresponding to an “empty” initial condition as it is
the limit of the systems starting “empty” and fed up with the restrictions [—n,0] of N. In
many cases, there will be multiple stationary regimes depending on the initial condition. A
simple example of a monotone and separable open network having multiple stationary regimes
is proposed in [6], p.83. It is a G /G /2/00 queue with a “shortest workload” allocation rule (see
also Theorem 10.8.6).

10.7.2 General discrete event networks

For discrete event networks which are not open, there are no such second order results. The
reason is the absence of internal monotonicity of the variables Z_, o) = X[_, g — X[_—n,o]' We
illustrate the phenomenon on Figure 10.2 where we compare the case of a general network and
the case of an open network.

For open and general networks, we consider successively the restrictions [—n, 0] and [—n — 1, 0].
In the open case, the internal monotonicity has been illustrated in Figure 10.2. In the general
case, the variables X = are internal variables, hence their value are modified when we go from

the restriction [—n,0] to [-n — 1,0]. As a consequence, there is no internal monotonicity. On

Figure 10.2, for the ease of comparison, we have assumed that X[__n_LO](—n) = X[__n_LO](—n)

(these quantities are defined up to an additive constant).
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Open network : Zj_,,_1,0] 2 Z[—n,0]

Zl—n,0]
: S ‘
A_, Ag
Z{_n_1,0]
: } e R
A_n1  A_, Ao
General network
Zl—n,0]
} SSEL = |
Ko (=7 X0 (0)
‘ ){[in_l)g](_”) 7<___Z—n—1,0]
X[_—n—l,U](_n -1 X[_—n—l,D](O)

Figure 10.2: Loynes scheme for monotone-separable networks.

10.8 Application to Stochastic Operators

We propose in Sections 10.8.1 and 10.8.2 two very different approaches. They correspond to
two different types of operators, see Remark 10.8.4. The first approach is directly based on the
Loynes scheme. The second one uses fixed points results.

10.8.1 Monotonicity

Definition 10.8.1. We say that the operator T : R* — R* has a minimal value if there exists
zo € R such that Yy > zo, T(y) > 0.

Let us consider a sequence of monotone operators {1,,,n € Z}. If all the operators have a
common minimal value xg, then we are able to construct a Loynes scheme, in the same way as
in §10.6. In fact, we have Ty(zg) > @9 and Topo T_1(zo) > To(2zo) > @0 using monotonicity. We
obtain that

37 € (RU{4+oco})", limTpoT_1o0---0T_,(z0) = Z. (10.18)

The main question is whether the limit Z is finite or not, the finite case being the interesting one.
In particular, if we consider a sequence of monotone-homogeneous operators, then the limits 7
and v as defined in Proposition 10.3.4 exist. Because of the existence of the minimal value g,

we have 7 > v > 0. If ¥ > 0 then there exists ¢ such that Z; = 400 (the proof is immediate).

For this reason, it is usually not interesting to construct a Loynes scheme directly on the sequence
of operators T,. For example, in the case of the operator of the G/G/1 queue, see Equation
(10.11), the Loynes scheme was not built on (A,, X[ ,)’ but on the differences Z; ,; = X[ ,)—Ax-

In order to generalize the construction, the good approach is to consider the operators T, in a
projective space.

We have already defined the projective space PR* in Definition 10.3.7. The space PR* is iso-
morphic to R¥~1. Here are different possible ways to map PR* onto R*~'. Let i € {1,...,k},
we define :
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o R R m(@) = (31 — @4y ooy @imt — iy Tigt — Ty oy T — 25)
¢ PRESRFL ¢y =mont,

where m was defined in Definition 10.3.7. It is easy to verify that ¢; is defined without ambiguity
and is bijective.

Definition 10.8.2. Let 2 € R*. We define |z|p = max; 2; — min; ;. Let u € PR* (resp.
u € R¥=1) and = be a representative of u, i.e. w(z) = u (resp. m;(z) = u) We define |ulp =
max; ¥; — min; ;.

The function |.|p is a semi-norm on R* as |z|p = 0 = 2; = A, Vi. On the other hand, it defines
a norm on PR* or R*~!. We call it the projective norm. We use the same notation for the
semi-norm on R”* and the norms on PR* and R*~! in order not to carry too many notations.
Form now on, we are going to work on R*~1 equipped with the projective norm. Without loss

of generality, we will restrict our attention to w1, ¢;. Working on R*~! rather than on PR*
enables us to have a natural partial order. The projective norm is indeed compatible with the

coordinatewise partial ordering on R*™', i.e. u,v € RF "\ u > v = |ulp > |v|p.
Let T : R¥ — R* be an homogeneous operator. We define

T: RFV S RFY T(w) = m(T(2), 2 € 77 (u) .

Because of homogeneity, 7'(u) is unambiguously defined. We can write, with abbreviated nota-

tions, T'= m OTO7T1_1.

Lemma 10.8.3. We consider an homogeneous operator T : R¥ — R* and the associated oper-

ator T : R¥=1 — R*¥=1, satisfying the following assumptions:

A. T is monotone.
B. T(z)y — z1 is independent of x € RF.
C. 3z such that T'(z9)1 — (20)1 = min;(T'(zo); — (20)s).

Under Assumption A, T is non-expansive. Under Assumptions A+ B, T is monotone. Under

Assumptions A+B+C, T has minimal value 3¢ = 71 (o).

Proof. We consider u, v € RF~! verifying u > v. Let z,y € R¥ be such that 71(z) = u, 7y (y) = v
and z1 = yq.

1. A = T is non-expansive. The representatives z and y are such that |u—v|p = |z —y|p = ||z —
Y||oo. By monotonicity of T', we have T'(z) > T'(y), hence |T'(z) — T'(y)|p < ||T(z) = T(y)||o-
By non-expansiveness of T' (Theorem 10.3.2), we have ||T(z) — T'(y)||cc < || = Y||oo. We
conclude that :

T (u) = T(v)lp = |T(x) = T(y)lp 1T (z) = Tyl

<
< e = ylloo = Ju—vlp.
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2. A4+ B = T is monotone. Let the representatives 2 and y verify 1 = y;. Hence by Assumption
B, we have T(z); = T(y)1. We conclude that T(z) > T(y) = T(u) > T(v).

3. A+ B+ C = T has minimal value 7g = m1(x0). We have

To(To)i = T(xo); — T(xo)1 =T (x0); — (x0)i + (z0)i — T(zo)1
> T(x0)1 — (z0)1 + (z0)i — T(x0)1 = (%0); -

We conclude with the monotonicity of T that Vy € R¥"1 y > &g = T(y) > Ig.
O

The operator T is not homogeneous in general. Hence the conditions ensuring monotonicity and
non-expansiveness are not the same (to be compared with Theorem 10.3.2).

Remark 10.8.4. Assumption B. can be easily weakened and replaced by :
B Va,y €RF, a1 —yr = mina; —y; = T(x)y — T(y)r = min T (x); — T(y): -

In Lemma 10.8.3, we have presented the assumptions which appear naturally in physical systems.
In particular, Assumption B is verified when the first coordinate of T’ is the dater of an exogenous
arrival process. Assumption C is verified if the other coordinates of T' correspond to events which
are induced by the arrivals (hence occur later on). It was the case for the operator associated
with the G/G/1/00 queue, see Equation (10.11). In that example, the minimal value was
e=1(0,...,0)".

These assumptions are of course restrictive. Roughly speaking, they will apply only to some
operators associated with ‘open systems’. For operators associated with ‘closed systems’, the
conditions and results of Section 10.8.2 are more appropriate.

Theorem 10.8.5. Let {1,,,n € N} be a stationary and ergodic sequence of homogeneous ran-

dom operators on R* and {Tn,n € N} the associated sequence on R¥='. We assume that As-
sumptions A,B and C of Lemma 10.8.3 are verified with probability 1 by the operators {T,}
(in particular they have a constant minimal value xo). We set &g = m1(x0). Then the limit
Z =1lim, Too---o T_n(io) exists and verifies P{Z < +oc} = 0 or 1. Furthermore Z is a sta-
tionary solution, i.e. Z(0w) = Ti(Z(w)). When P{Z < 400} = 1, the sequence {T,0- - -oTy ()}

couples in finite time with the stationary sequence {Z o 6" }.

Proof. 1t is exactly similar to the one of Loynes Theorem 10.6.1. O

The main difficulty is often to prove the finiteness of Z. Moreover, when finite, Z is usually not
the unique stationary solution. Indeed, we have that YA € R, #o+ Al is a minimal value for the

operators T,,. Hence by Theorem 10.8.5, the limits
Z) =limTgo---o T—n(fco + /\f)
e
exist and are stationary solutions. The variables Z* are increasing in A by monotonicity of T,.
Hence we can define the limit

Z% = lim 7", (10.19)

A— 4o
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Next theorem was originally proved by Brandt for a special operator associated with the queue
G/G[k[cc.

Theorem 10.8.6 (Brandt [31]). We have P{Z*> < 400} =0 or 1. If P{Z* < 400} =1,
then Z° is the mazimal finite stationary solution, i.e Z(0w) = Ty (Z(w)) and

V(o) =T1(Y (), P{Y <40} =1= P{Z° >Y}=1.

Proof. The essential ingredient is the non-expansiveness of T,,. For more details, the reader is
referred to [31] or [32], Theorem 1.3.2. O

Remark 10.8.7. The results presented in this section §10.8.1 are just a specialization to op-
erators of finite dimension of more general results. Let (£,&) be a Polish space (complete
separable metric space) equipped with its Borel o-field. We consider {¢,,n € Z} a stationary
and ergodic sequence of measurable random functions ¢,, : X — F. The recursive equations
z(n+ 1) = ¢n(x(n)),2(0) = z¢ define a Stochastic Recursive Sequence, following the terminol-
ogy of Borovkov [22]. If the functions ¢, are monotone and verify ¢, (2¢) > zo then the results
of Theorem 10.8.5 hold (replace just T, by ¢,). If we assume furthermore that the functions
¢n, are non-expansive (with respect to the metric of F) then the results of Theorem 10.8.6 hold.
For a detailed presentation of this framework, see [32] [25].

10.8.2 Fixed point

In this section, we will see a rather different use of Loynes backward construction.

Here is a result generalizing Proposition 10.3.9. The proof of A = B in Prop. 10.3.9 was using
only the continuity of the operator T. In fact, using the non-expansiveness of T, we can get
stronger results.

Theorem 10.8.8 (Weller [138], Sine [130]). Let C be a compact of R¥. We consider an
operator T : C'— C', non-expansive with respect to the sup-norm ||.||s. Then we have :

VeeC,dpe N,Jue C : lim T (z) =uw and TP (u) = u. (10.20)

n—0oo

Corollary 10.8.9. Let T be defined as in Theorem 10.8.8. We assume that ¥n > 1, T™ has a
unique fized point w. Then Ve > 0,3AN € N such that

Vn > N @ sup ||[T"(z) — ul|leo < €. (10.21)
zeC

In other words, there is uniform convergence of T™ to u.

Proof. Let us prove first that T" converges simply to u. Let z belong to C'. As wu is the unique
fixed point of the powers of T, we obtain by application of Theorem 10.8.8 :

VeeC,dpeN, Ve >0, IM(z,e) e N,V > M(z,e) :+ ||T(2) — ul]e < €.

By non-expansiveness, we have (||T o T"(z) — T(u)||eo = ||T""T! (2) — ul|o) < ||T7P(2) — ul|oo
and by induction, Yq € N, ||T""T(z) — u||o, < ||T™(2) — u||oo. It implies that

Vo € C, ¥e >0, AN(z,¢) € N,Vn > N(z,e), [|[T"(2) — ulle < €.
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We are now ready to prove that the convergence is uniform. Let us denote by B(z,e) the
open ball of center x and radius ¢ for the sup-norm. Using non-expansiveness, we have that
Yy € B(z,¢),Vn > N(z,¢),

1T (y) — ulloo <IT"(y) = T"(@)]oc + [[T"(2) — ullec < 22. (10.22)

Using Borel-Lebesgue’s characterization of compact sets, there exists a finite number of points
x; such that C' C {J; B(x;,¢). Using Equation (10.22), we obtain :

Ve >0, Vn > max N(z;,¢), Ve € C' : ||T"(2) — ul|eo < 2¢.

K3
This completes the proof. O

We are now ready to prove the main theorem of this section which generalizes the results of
Chapter 6.

Theorem 10.8.10. Let {T,,n € N} be a stationary ergodic sequence of monotone homoge-
neous random operators on R* and {T,} the associated sequence on R¥='. We assume that

there exists a deterministic monotone homogeneous operator S on R* (S on R*=) such that
i. S is bounded, i.e. there exists a compact K of RF=" such that Im(S) C K.
ii. ¥Yn > 1, S™ has a unique fized point, u.

iii. There exists a deterministic constant | such that S belongs to the support of the random

operator Tyo---oTy and ¥n > 0,5™ belongs to the support of Tyo- - -oTy, with the following
precise meaning :

Ve >0, P{ sup |[T;...Ti(z) = S(z)|p <&} >0,
xERk_l

P{ sup |Tp...Ti(z) = S™(z)|p <<} >0.
weRk—l

ThenVx € R¥=' &(n) =T,_10---0To(x) converges weakly to a unique stationary distribution.
Proof. We first prove the theorem when replacing Assumptions ¢2¢. by the stronger assumption

. Hlst P{TloOT1:S}>0aHan>O,P{TnlOolesn}>()
For # € R*=! we define the variables :
Z_po(z) = Too---oT_, () =2 (n,z)0 0 ". (10.23)

We now prove that Z_, o(2) admits P.a.s. a limit which is independent of z.
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The compact K of Assumption i. is stable by S and by Assumption #i., there is a unique fixed
point u € R*¥=1 for the powers of S. From Lemma 10.8.3, S is non-expansive with respect to

the projective norm. Hence Corollary 10.8.9 can be applied to S on (R¥~',|.|p). It implies
Ve >0, IN(e), Vn > N(g), Vo € RF |S™(2) —ulp < e. (10.24)

We define the random variables

¥e > 0, M(s) = min{n > N(e)l | T_p0-- 0T, n(yp =SV}, (10.25)

where N (¢) and [ are defined in Equation (10.24) and in Assumption 7v. respectively. Assump-
tion 7v. also implies that P{M (¢) < +o0} > 0. We obtain

P{M(s) < +oc} =1, (10.26)

in exactly the same way as we obtained P{N; < +o0} = 1 in the proof of Theorem 10.3.10.
Let us fix e = 1. We define the events A, = {M(1,w) = n} which form a countable partition of
Q.

Let us work for a moment on the event A = A,, for a given integer m. Let us consider the

variables Z_,, _(2) =T_, 0...T_,(2), n > m. We have
Vo2 m+ N, Zopom(@) = SV, _yayo- 0T u(x)). (10.27)

Hence, on A,,, the image of Z_, _,, is included in the closed ball of center » and radius 1
(Equation (10.24)) that we denote by K (1),

¥ > m o+ N In(Zon ) C K(1). (10.28)

We consider the sequence of random variables {M (1/¢),7 € N}. By definition of the variables
M (), (10.25), the sequence M (1/7) is increasing in 7 in particular M (1/7) > M (1). We have, for
all n > M(1/i) + N(1/¢)l (note that we consider the variables Z with respect to an unchanged
ending point —m).

Zpem(@) =T 00T _,(2)

= T_m O---0 T—M(l/i)-l—l o) SN(I/Z) o) T—M(l/i)—N(l/i)l O---0 T_n($) .

Using Equation (10.24), we have that SN/ OT—M(I/i)—N(l/i)lO ---0 T_n(x) is included in the
closed ball of center u and radius 1/i. Using the non-expansiveness of the operators, we obtain
the existence of a compact set, denoted K(1/¢) such that

Vi > M(S)+ N (7o) C K (5. (10.29)

1 1
2 2 2
We have built a decreasing sequence of compact sets K (1/:¢) whose radius goes to zero. By a clas-
sical theorem on decreasing sequences of compact sets (Borel-Lebesgue Theorem), the intersec-
tion of the sets K (1/1) is a single point. It means precisely that the limit of Z_,, _,,, (z), n — 400,

exists and is independent of x. We define the following notations
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Vo € Ay, Ve e R¥ Y Tim Z_p (%) = Zoons Z=Too 0T i1 (Zoom) -
n— 0o
It is straightforward to prove that Z = lim, 4. Z_, o(z). By applying the same construction
to all the events A,,, m € N, we prove the a.s. existence of Z = lim,, Z_,, o(2), the limit being
independent of z. By analogy with §10.6, we call Z the Loynes variable.

We are now going to prove the existence of the Loynes variable Z under the weaker Assumption
We define the random variables N (¢) as previously, (10.24). On the other hand, the definition
of the variables M (<) is modified

Ve, M(e) = min{n > N(&)l| sup |[T_,yn(ey-.-Ton(z) = SVE(2)]p < <} (10.30)
weRk—l

From Assumption ¢i¢. and the Ergodic Lemma 10.2.1, we obtain P{M () < 400} = 1.
We define the variable M (1), then the partition A, the event A and the variables M (1/7) as
before. We define the variables :

ZAim_m ($) = T_m .. 'T—M(l/i)-l—l e} (SN(I/Z)) e} T—M(l/i)—l—N(l/i)l . T_n($) (1031)

There exists a sequence of compacts K (1/i) of radius 1/i such that (see the first part of the
proof)

Yn > M(1/i)+ N(1/i)l, Im(Z2, _,,) C K(1/7). (10.32)

From the definition of M(1/t), Equation (10.30), we get

Vn > M(1/i)+ N1/, Ve e R¥ | Z_, apya () - Zin,—M(l/i)($)|P < % -
Using non-expansiveness, we obtain
W > ML)+ N(1/i), Ve € R | Zoy _(a) = 25, (2)]p < % .
We conclude that Vn > M(1/i) + N(1/i)l,Yz,y € R¥?
2 (@)= Zmpemn )P < | Z oo (@) = 72, ()| +
@) = Zo Wl + 17 ) = 7ol < 5

Hence there exists a sequence of compacts K (1/7) of radius 3/¢ such that Vn > M(1/¢) +
N(1/9)l,Im(Z_,, ) C K(1/7). We conclude as in the first part of the proof.



10.8 Application to Stochastic Operators 218

Our aim is now to prove that we have weak convergence of the process z(n) = T, 0- - -0 Ty (2(0))
to the stationary distribution of Z. We consider a function f :R* — R, continuous and bounded.

We have, using the stationarity of {7}

E(f(n2(0) = B([(Tuyo---To((0))
= E(f(Tyo- T (2(0))) = E f(2) (10.33)

The convergence in (10.33) is obtained from Lebesgue’s dominated convergence theorem (f is
bounded). It proves weak convergence. a

Remark 10.8.11. It would be nice to replace Assumption ¢¢z. by the following weaker As-
sumption

v. Ve > 0, VK compact , P{sup |[Tj...Ty(z) — S(z)|p <} >0,
zeK

P{sup |Tp;... Ty(x) = S™(z)|p <} > 0.
zeK
Assumption v. means precisely that S is in the support of Ty for the topology of weak convergence

on the functional space Co(R*~1, R*~!) (continuous functions of R*~1).
However, Theorem 10.8.10 is not true under Assumption v. Here is a counter-example. We

consider a,b € RT and we define the monotone homogeneous operators on R? :

Ta(z) = ( o ) (10.34)

o+ a

Vi e NT, Tg,(2) = (max( o ) (10.35)

T — Zb, $1)

We consider a sequence of i.i.d. random operators {1, n € N} with the following distribution :

1 .
P{TOITA}:§7P{T0:TB1‘}: i €NT.

We define the monotone homogeneous operator S : R? — R%, S(z) = (z1,21)". It is clear that
S verifies the Assumptions i. and ii. as S is constant. Let K be a compact set of R and n be
such that K C [-n,n]. We obtain immediately that Vo € K, Tp,(z) = S(x) as soon as ib > n.
Hence S verifies also Assumption v.

The description of the process &(n) = Tj,_j 0---0Tp(0) is very easy. It is a random walk on the
real line with an absorbing barrier at 0. The drift of the random walk is

a =, b a
5:§_ZQ¢+1:§_I"

=1

We conclude that the process &(n) is transient if @ > 2b which provides the announced counter-
example.

Practically speaking, the main difficulty consists in finding a deterministic operator S verifying
the assumptions of Theorem 10.8.10. We discuss this point for some specific models in §10.9.1.



10.9 Models Entering the Framework 219

10.9 Models Entering the Framework

10.9.1 Stochastic operators

Let A and B be two arbitrary sets. We define applications (M} denotes the set of matrices of
dimension k X k)

P:AXxB—-M(R), A: Ax B — M (RU{-00,40}),

where the matrices P(a, ) are “markovian”, i.e. verify

k
Vi€ {L,....k}, pijla, ) >0, > pijla, f) =1. (10.36)
7=1
Let us consider the following “(min,max,+,X)” operator
k
reRNie{l,... k), T(z); = irelasup Zpij(a,ﬁ) (z; 4 aij(a, B)) . (10.37)
VA peB

Equation (10.37) arises in stochastic control of dynamic games, see for example [19]. If T'(z);
is finite (VaVi) then it defines a monotone-homogeneous operator. For example, let us prove

homogeneity. We have for z € T*, A € R,

k
T(x 4 M); = infsup Zpij(% B) (z; + A+ ai; (o, 5))
[0 ﬁ j—l

k k
= inf s%p(zpm‘(% BN+ pij(en B) (@) + aij (e, B)) = A+ T ()i
=1 j=1

The following representation theorem provides a precise idea of the degree of generality of the
class of monotone-homogeneous operators.

Theorem 10.9.1 (Kolokoltsov [98]). Let T : R — R* be a monotone-homogeneous opera-
tor. Then it can be represented in the form of Equation (10.37).

The next lemma which is based on this representation, is proved in [98]. It can be coupled with
Theorem 10.8.10 to obtain second order results for some stochastic operators.

Lemma 10.9.2. Let T : R* — R* be a monotone-homogeneous operator, written in the form
of Equation (10.37). Let us assume that

377 >0: VZ7]E|Z : va7ﬁ7 pil(avﬁ) > 1, pjl(a7ﬁ) > 1.
Then the operators T™, n € N, have a unique generalized fized point.

From the point of view of applications, the interesting case is when the sets A and B are finite.
Here are some specializations of Equation (10.37).
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(4+,x) linear systems The operator 7' is just a markovian matrix P, see Equation (10.36).
We have T'(z) = Pz (matrix-vector multiplication in the usual algebra). Matrix P can be
interpreted as the matrix of transition probabilities of a Markov Chain (MC) having state space
{1,...,k}. The most interesting operator for a MC is S(y) = yP where y is a row vector. It is
well known that the limit of S™(y),y > 0, , y; = 1 is the stationary distribution of the MC. But
the operator T'(z) = Pz is also interesting from the point of view of applications. It appeared
in [54] to model the problem of reaching agreement on subjective opinions. More generally, it
has been studied as a special case of the general theory of products of non-negative matrices,
see for example [127], Chapter 4.6.

For any markovian matrix P, we have T(I) = PI = I. Hence the vector 1 is a generalized
fixed point (Def. 10.3.8) of operator 7. By application of the Perron-Frobenius Theorem, it
is the only one. Hence, applying the ergodic results of this paper to a stochastic sequence of
matrices P,, is going to yield trivial results (the convergence of 7(P, ... Pyz) to w(I) ). In fact
much stronger results are known for such models. The necessary and sufficient conditions of
convergence of w(P, ...Pyz) to w(I), are known for a general sequence of matrices P,, without
any stochastic assumptions, see [127], Th. 4.18.

(max,+) linear systems Such operators have the following form
v eRF e {l,... .k}, T(z);=max(z;+a;), (10.38)
J
T)y=A® . (10.39)

Equation (10.38) can be interpreted as a matrix-vector product in the (max,+) algebra. Equation
(10.39) is simply a rewriting of Equation (10.38) using (max,+) notations. The (min,+) linear
case boils down to the (max,+) case by switching to operator —7".

Such systems appear in many domains of applications, under various forms. For example (with-
out any kind of exhaustiveness)

e Computer science : parallel algorithms, shared memory systems, PERT graphs, see [136]
or [72].

e Queueing theory : G/G/1/00 queue (see §10.6), queues in series, queues in series with
blocking, fork-join networks [8].

e Operations research and manufacturing : Job-shop models, event graphs (a subclass of
Petri nets), see [44], [85] and [8].

e Economy or control theory : dynamic optimization, see [142].
e Physics of crystal structures : Frenkel-Kontorova model, see [80].

Among the very large and complete literature on the theoretical aspects of deterministic (max,+)
systems, let us quote only [8] [107] and the references therein. As far as we know, the first refer-
ences on stochastic (max,+) linear systems are [46] and [115]. Thanks to the rich deterministic

theory, Theorems 10.3.5, 10.8.10 become very operational for (max,+) systems. The different
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assumptions in these theorems can be interpreted as properties of the underlying graph structure
of the model. For more details, see [105].

(min,max,~+) linear systems These systems can be represented in one of the following dual
forms. We use the symbol @ for the (max,+) matrix-vector product, see (10.39), and the symbol
© for the (min,+) matrix-vector product.

z€RF, T(z)=min (4 @z,402,...,4,01),
T(z)=max (B 0z, BoOuz,...,B,®z) .

Here are some domains of application where such systems appear

e Minimax control in dynamic game theory, see [19].

e Study of timed digital circuits, see [82]. The (min,max) structure arises from the (and,or)
operations of logical circuits.

e Queueing theory. G/G/s/oc file, resequencing file, see for example [6]. Parallel processing
systems [17] : there are k processors. A customer requires to use concurrently p out of the
k processors to be executed.

e Motion of interfaces in particle systems [61]. As an illustration, let us describe a little bit
more precisely a special case known as the marching soldier model. There is a row of &
soldiers which advance in the same direction. In order to try to keep a common pace, they
adopt the following strategy. At regular instants of time, each soldier checks the position
of his right and left neighbours. He advances of 1 if they both are ahead of him and stays

at the same position otherwise. Let # € R* denote the position of the soldiers at instant
0. Their position at instant 1, will be (with the convention zg = 2341 = +00)

T(z); = max (min(z;—1, 2, zi41) + 1, 25) .

The study of deterministic (min,max,~+) systems (existence of generalized fixed points, projective
boundedness,...) has been considered in several papers [114] [81]. However, it is far from being

complete. For this reason, the only references on stochastic (min,max,+) systems concern first
order results [61] [91].

(max,+,x) linear systems These systems can be represented under the following form
z € RF, T(z); = mgj(zp”(a) (z; + a;(a)) . (10.40)

Equation (10.40) appears in many domains of applications like operational research, management

science and engineering. It is in fact one of the optimality equation of stochastic® dynamic

®The term stochastic refers here to the markovian interpretation of matrices P(a). According to our termi-

nology, Equation (10.40) is that of a deterministic operator.
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programming in discrete time, on a finite state space and with undiscounted rewards. A
controller observes a system which evolves in a state space {1,...,k}. The set of possible
decisions for the controller is A. Under decision o € A, the system evolves from a state 7 to a
state j according to the transition probabilities p;;(«). Also, under decision a € A, there is an
immediate reward for being originally in state ¢ which is a;(«). It is well known that the optimal
decision and the reward vector are obtained as lim,, 7" (), see for example [140], Chapter 3.2.
There is a very important literature on deterministic operators of type (10.40), see [124] or [140]

and the references there. Next theorem is classical, for a proof see for example [140] Chapter
4.3.

Theorem 10.9.3. Let T be an operator verifying Fquation (10.40). A sufficient condition for
the existence of a unique generalized fixed point for T is :

Va € A, matriz P(a) is ergodic, i.e. the graph of the non-zero terms of P(«) is strongly
connected and aperiodic.

Remark 10.9.4. A (max,+) system can be viewed as a (max,+,x ) system with A = {1,...,k}
and P(a) is defined by P;(a) = 11if j = a and P;;(«) = 0 otherwise. Such matrices do not
verify the assumption of Theorem 10.9.3.

The theorems presented in this paper, when coupled with results like Theorem 10.9.3 can be used
in an efficient way for systems verifying (10.40) when the rewards a(«) and/or the transition
matrices P(a) become random. The authors do not know of any reference on the subject.

10.9.2 Discrete event networks

We are now going to review some classes of discrete event networks. We restrict our attention
to systems which can not be modeled as monotone-homogeneous operators. The references that
are quoted are only the ones using the monotone separable framework or similar approaches.

e Precedence constraints models. Their study has been motivated by database systems.
Different variations are considered in [13] [18] [51].

e Polling models. A wide class of polling models with general routing policies and stationary
ergodic inputs enters the monotone separable framework, see [39].

e Lree choice Petri nets. Event graphs, which are represented as (max,+) linear operators,
see §10.9.1, or Jackson networks, see below, are subclasses of Free choice Petri nets. Free
choice Petri nets enter the monotone separable framework, see [11] [9] [?].

Let us detail two of these models. First we propose a simple example of precedence constraint
system and second Jackson networks.

Precedence constraints models There is a stream of customers j(n), n € N. Each customer
j(n) has a service time requirement ¢(n) and precedence constraints under the form of a list L(n)
of customers. More precisely, we have L(n) = {j(i1),7(¢2),...j(i1,)} with n > i3 > i3 > --- >
i, = 0. Job j, starts its execution as soon as all the customers of the list L(n) have completed
their execution. The execution of customer j(n) takes t(n) units of time.

Let us distinguish two cases.
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1. We assume that the length of the precedence list is uniformly bounded by k,i.e. ¥Yn € N, [, < k.
We define the vector (n) € R* such that x(n); is the instant of completion of customer
j(n—1). From the dynamic described above, we have z(n+1) = T,,((n)), where the operator
T, : R¥ — R¥ is defined as follows

Tn(x)l = MaxX{; | j(n—i)eL(n)} i + t(n)
Tn(w)z = Ti—1, i = {27 .. 7k}

This operator is monotone homogeneous. It is in fact a (max,+) linear system, see §10.9.1.

2. Let us assume now that the length [,, is not uniformly bounded. It is not possible to describe
the system as an operator of finite dimension. Let X[ ,,; be the last instant of completion of
one of the customers j(z),7 € {1,...,n}. It is easy to verify that X[y , verifies the properties

of the monotone-separable framework for discrete event networks, see §10.4.

In both cases, when {t(n), L(n),n € N} forms a stationary ergodic sequence of random variables,
we can apply the ergodic theorems presented in this paper.

Jackson networks Jackson networks were introduced by Jackson in [90]. It is a queueing
network with I nodes, where each node is a single server FIFO queue, see Figure 10.3.

./G/1/o0 FIFO ./G/1/o0 FIFO '
O O+
Node 1 \V Node 2

Figure 10.3: A Jackson network.

Customers move from node to node in order to receive some service there. The data are (21)
sequences

{Ui(n),n € N}, {Vi(n),n eN}, ie{l,... I},

where o'(n) € R and v'(n) € {1,..., 1,1+ 1}.
In the nominal network, the n-th, n > 1, customer to be served by node ¢ after the origin of
time requires a service time Ui(n); after completion of its service there, it moves to node 1/(71)7

where I + 1 is the exit. We say that v*(n) is the n-th routing variable on node 1.
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We are going to describe the closed (resp. open) Jackson network as a discrete event network

(resp. open discrete event network), using the notations of §10.4.

1. Closed case: the state at the origin of time is that with all customers in node 1, and service
1 is just starting on node 1. There are no external arrivals and vi(n) € {1,...,I}, for all i
and n. The total number of customers in the network is then a constant. We take

The internal daters Xffoo](n) and XE;"OO](n)7 n > 1,17 € {l,...,1}, are the initiation and

completion instants of the n-th service on node 7. We take

_ def _
X[lm](n) = X[llpo](n)v

so that X,

[1,00

(1) =0.

2. Open case: the state at the origin of time is that with all queues empty and a customer
is just arriving in the network. There is an external arrival point process {A,,n > 1}, with
Ay = 0, or equivalently an additional saturated node (numbered 0), which produces customers
with inter-arrival times Uo(n) = A,+1— A, n = 1, regardless of the state of the network. The

n-th external arrival is routed to node v°(n) € {1,...,I}. We take
o(n) e a’(n).
We can extend the definition of internal daters, which is the same as above, to ¢ = 0 by taking

X? ](n) = A, and X2 ](n) = A, +o0(n)=A,41. We take

[17_00 [1,00
- def -
X[lm](n) = X[(i,oo](n) ,
so that X[;OO](l) =0.

In both cases, the restrictions [1, m] of the process are obtained by modifying the {o(n),n € N}
sequence in the following way

1 and ¢ # 1 (resp. 7 # 0);

n<mandi=1 (resp. i = 0);

o'(n) forall n >
O'El my(n) = o'(n) forall 1<

oo forall n>m and ¢ =1 (resp. i = 0).

The corresponding variables are denoted X7 m](n)7 X[‘il' m](n) In both cases, the maximal dater

is defined as

7,n

Xp,m = max (sup {X[Z;m](n) s. t. X[Z;m](n) < oo} ,

sup {X[Zf:m](n) s. t. Xff:m](n) < oo}) )

(R
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where the supremum bears on n > 1 and 7 € {1,...,I} (resp. ¢« € {0,...,1}) in the closed
(resp. open) case.
The following lemma follows from results proved in [7].

Lemma 10.9.5. Foralli € {l,...,1} and | > 1, there exist finite sets A(i,l) C N, B(i,l,p) C
N where p € A(i,1) and C(i,l,p,q) C N x N where q € B(i,1,p), which depend on the routing
sequences only (not on the service sequences). These sets are such that

Ym,n > 1, X oa(n) = zeilizf',n)perél(?ﬁ,z) | Z 011 g (10)- (10.41)
(zq,nq)EC(z,n,l,p)

A pair (i,n) appears at most once in each set C(i,n,l,p).

This lemma has to be interpreted as the fact that Jackson networks have a (min,max,+) struc-
ture, although a very complicated one. Hence, it should come as no surprise that they enter the
monotone separable framework. Let us prove it.

Causality In both cases, the assumption is that X[, is a.s. finite for all m. Note that this
implies causality as defined in § 10.4.

Lemma 10.9.6. Causality is satisfied whenever the routing sequences {v*(n) }pen are i.i.d. and
independent of the service times, and the routing matriz

P=(p;), pi;=P01)=j), i,je{l,..., I}

is without capture in the open case, and irreducible in the closed case.

Proof. The proof is based on the following coupling idea: consider a Kelly network (i.e. a route
is attached to a customer, see [96]) where the routes are independent and sampled according to
the stopped Markov chain with transition matrix PP. By this we mean that in the [1, m]-network,
the route of the first customer to leave node 1 (resp. 0) is

{No=1,Ny,..., Ny} in the closed case
{No=D,Ny,...,Ny,,,} in the open case,

where {N,} is a path of the Markov chain P, U; is the return time to state ¢, and D is an

independent random variable on {1,..., I}, with distribution 7 (i) = P(¥°(1) = i). The routes
of the m first customers to be served at node 1 (resp. to arrive from node 0) are assumed to be
independent and identically distributed. In this Kelly network, the routes of these m customers
are not affected by the service times (in contrast with what happens in the initial network).
Thus, in the closed (resp. open) case, all m customers eventually return to node 1 (resp. leave)
provided P is irreducible (resp. P is without capture). In addition, such a Kelly network is
identical in law to the [1, m] restriction of the original network. So P(Xp ,,) < 00) = 1. a

In what follows, we will adopt the assumptions of Lemma 10.9.6 and assume in addition that
the service times are integrable.
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Monotonicity As an immediate corollary of Lemma 10.9.5, for all fixed routing sequences,
7

for all m,n > 1 and ¢, the variable X[l_m](n) (and therefore X'* ](n) as well) is a monotone

[1,m
non-decreasing function of {o7(n), j € [2,...,1],n > 1, a'(n), 1 < n < m} (resp. {0?(n), j €

[1,...,1],n>1, ¢°(n), 1 <n < m}). This monotonicity extends to the maximal dater as well.

Non-expansiveness Let j < I and [ > 1 be fixed. Consider ¢7(l) as a variable and all other

service times as constants. Then, it follows from Lemma 10.9.5 that X[l_m](n) is a (min, max)

function of /(). Thus non-expansiveness as defined in § 10.4 holds.

Separability Let c,ofLm] =sup{n > 1| Xff:m](n) < oo}, m 21, (the total number of events
which ever complete on station ¢ in the [1, m]-network). Of course 99[11 m] = M in the closed case,
and c,o&m] = m in the open case.

The following two properties hold:

1. For all ¢ and m, c,of ] does not depend on the (finite) values of the variables {o'(n), j €

1,m
[2,...,0,n>1, a'(n), 1 <n<m} (vesp. {o7(n), j€[1,...,Il,n>1, 0°n), 1 <n<
m}) —this follows from Lemma 10.9.5.

2. For all m > 1, the random variables {cpfl m] i < I} form a stopping time of the sequences

1
{v*(n), i < I, n > 1} in the sense that
(i <0t i< Ty e FUA(D), 1<ty i< T,

where F(u) denotes the o-algebra generated by the random variable u.

We are now in a position to complete the definition of N = {o(n), M(n), n € N*} (see §10.4)
for this network, by taking

def

M(n) = {02(1)7 Vi(l)7 [ = @Elm_l] + 17 s 7@%1771]7 [ < I}7 n > 17

with the convention L'QELO] = 0.

With this definition, the [m, occ]-network, 1 < m, is a Jackson network as defined above, but
with the driving sequences

(n 1])7 n> 17

O-Em,oo](n) = O-i + S‘Qfl,m—
V[Zm,oo](n) = Vi(n + @El,m—l])v n > 1.

From the i.i.d. assumptions on the sequences {o*(n),v*(n),n € N} and the fact that the r. v.

c,ofl m—1] are stopping times, we obtain that the [m, oo]-network is equal in distribution to the

original [1, oo]-network. Separability is now clear:
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e Open case: if Ajy1 > Ay + X[y 5, then from monotonicity, for all i,
Al—l—l > Al + X[Zl—ljl](@f17l]) D Al + X[Zl—ljn](g‘oflj]%

and so, the (I 4+ 1)-st external arrival finds an empty network (we know that if there

are [ external arrivals and c,ofl 1 departures from node ¢, then the network is empty). In

addition, the next customer to be served on node ¢ is that with index @El,l] + 1, < 1.

Thus Ay + X ) = A1 + Xpg1,m]-

e Closed case: if X[‘il' m]

[+ 1) 2 Xy, then
(1,4

X[-ll—,m](l +1) > X[Zf,—z](@ﬁ,l]) > X[Z;fm](@ﬁ,l])v

and so, by the same argument as above, when the (/4 1)-st service ends on node 1, all
customers are present in node 1. Separability follows in a way which is similar to that of
the previous case.

First order ergodic theorem

Compatibility is immediate from Property 2 of {c,ofLm]}. To prove integrability, it is enough
to prove that X[ ;) is integrable. This follows from the fact that the stopping times Uy (resp.
Ury1) of PP are integrable and from the assumption that service times are integrable.
Therefore, Theorem 10.4.4 applies and
. X[im)

lim —— =+, as.

m—00 m
for some positive and finite constant, both in the open and closed cases. More generally, it can

be shown that the above limit implies that there exist finite constants rates v* such that

lim —md 'yi, a.s., 1</,
m

both in the open and closed cases. For more details on the explicit computation of these rates
see [9] and [?].
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birth and death process, 145
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Borovkov theory, 129

Brandt maximal solution, 214

Burnside problem, 96
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causality, 203
characteristic series, 187
cott, 31

configuration, 43
convergence
étroite, 9
coupling, 129
strong coupling, 129
total variation, 9, 129, 136
variation, 9
weak, 9, 131, 136, 149
coupling
e-, 131
n-, 131, 136
critical circuit, 76
cut, 48
compatible, 50
consecutive, 49
span of a, 52
cycle time, 75, 102, 119, 126
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maximal value of, 113

dater, 180

degree of parallelism, 41
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dependence relation, 178

digital circuit, 60-64
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discrete event network, 202
monotone—separable, 203
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event graph, 66, 171
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stochastic, 172
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event, 66
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idle time, 121
internal monotonicity, 209

Jackson network, 120, 223

cyclic, 120, 127, 137, 140, 144
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Kelly network, 225
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Kingman theorem, 197
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reconnu, 27
language
algebraic, 187
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Loynes scheme, 147, 207
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matrix
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Boolean, 128
change of basis, 81
discretization, 150
fixed structure, 124
incidence, 171
irreducible, 76
markovian, 219
normalized, 76, 126
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semigroup of, 96
skeleton, 150
stationary, 77
max,+ algebra, 73, 123
merci (beaucoup), 1
minimal value, 211
mise en abime polyphonique, 10
monoid, 178
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operator, 198
(+,%), 220
(max,+), 220
(max,+,x), 221
(min,max,+), 221
(min,max,+,x ), 219
bounded, 125

optimisation dynamique, 31-33

PAPS, 21
path, 48
pattern, 136, 139
asymptotic, 139
pebble game, 42-46
configuration, 43
execution, 43
periodic regime, 74
Petri
net, 66
réseau de, 17
réseau de — avec choix, 29-31
place, 17, 66
Polish space, 129
polonais (espace), 9
power algorithm, 113
precedence constraints model, 222
primitive, 128
programmation dynamique, 31-33
projective
boundedness, 200
diameter, 125
distance, 79, 124
size, 82
space, 78, 124
pseudo-periodic model; 138

raillway network, 190
rank, 127
reachability, 171
recognizable, 179
register, 60
renovating event, 129
retiming, 53

legal, 63
reward, 222
ring network, 179, 185

s.c.s., 111, 133
schedule, 42, 102, 178
fully-static, 104
linear, 42
optimal, 186
self-timed, 104
worst, 186
scheduling, 101
cyclic, 101
scs-cyc, 77
scsl-cyc2, 87-91
scsl-cyc3, 84-87
scs2-cycl, 87-91
scs2-cyc2, 91-92
scsd-cycl, 84-87
scsl-cycl, 83, 127
section, 48
compatible, 50
semigroup, 96, 128
primitive, 128
separability, 203
strong, 208
shift, 197
simulation, 67
span, 52
spectral theory, 75
SRS, 129
stabilité, 9
stability, 121, 136, 208
stationary regime, 77, 130, 136
weak, 130
stochastic recursive sequence, 129
subadditivity, 197
subdiagonal, 86
synchronic distance, 171
systémes a événements discrets, 7

task graph, 120

task resource system, 177
Tetris model, 188
throughput, 75, 119, 121
tightness, 130

token, 66

totally unimodular, 193
trace monoid, 178
transformation

backward, 70
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transient regime, 77, 92-94
transition, 17, 66

firing of a, 66
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