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Chapitre 0Introduction0.1 Syst�emes �a Ev�enements DiscretsLa motivation premi�ere de ce travail est l'�etude des syst�emes �a �ev�enements discrets (SED).De tels syst�emes peuvent se d�e�nir de fa�con n�egative par opposition aux syst�emes classiquesdont l'�evolution est continue et d�ecrite par des �equations di��erentielles. Dans un SED, lestransformations sont d�eclench�ees par des \�ev�enements" ponctuels, typiquement l'arriv�ee d'unclient, d'un signal ou l'ach�evement d'une tâche. Ces �ev�enements donnent lieu �a des ph�enom�enesde synchronisation et de concurrence.De tels syst�emes apparaissent de fa�con naturelle dans la mod�elisation d'un certain nombre desyst�emes physiques. On peut mentionner les exemples suivants.� Syst�emes informatiques, architecture interne des ordinateurs.� R�eseaux de t�el�ecommunications, r�eseaux de transport.� Syst�emes de production : lignes d'assemblage, ateliers exibles.Pour d�ecrire ou �etudier ces SED, il existe de nombreux mod�eles et techniques math�ematiques.On s'int�eressera plus particuli�erement aux suivants :� R�eseaux de �les d'attente.� R�eseaux de Petri et automates.� Syst�emes dynamiques dans des alg�ebres non-conventionnelles.R�eseaux de �les d'attente, r�eseaux de Petri et automates seront utilis�es comme formalismes dedescription et de repr�esentation graphique des objets �etudi�es. L'essentiel de l'analyse aussi bienquantitative que qualitative portera sur les syst�emes dynamiques.0.2 Approche alg�ebriqueLa dynamique est cod�ee par des �equations de r�ecurrence dans des structures alg�ebriques non-conventionnelles telles l'alg�ebre (max,+). Une telle approche permet de mettre en �uvre unensemble de techniques et de r�esultats proprement alg�ebriques et similaires �a ceux utilis�es en



0.3 Syst�emes D�eterministes-Stochastiques 8alg�ebre classique. Cette approche permet aussi de s'a�ranchir de certaines des caract�eristiquespropres au mod�ele. Les r�esultats seront obtenus au niveau alg�ebrique quitte �a être ensuitetraduits.Cette d�emarche est illustr�ee par les chapitres 6 et 8. Dans le chapitre 6, on d�emontre des r�esultatsergodiques pour les produits de matrices al�eatoires dans l'alg�ebre (max,+). Le chapitre 8 estconsacr�e �a l'application de ces r�esultats aux graphes d'�ev�enements stochastiques.La mod�elisation alg�ebrique permet �egalement de mettre en �uvre des techniques de simulatione�caces. Ce domaine est abord�e dans le chapitre 2, x2.7.D�etaillons les di��erents mod�eles alg�ebriques consid�er�es.Syst�emes (max,+) lin�eaires On consid�ere les syst�emes d�ecrits par une �equation de la forme\x(n+1) = A
x(n)", o�u x(n) et x(n+1) sont des vecteurs et A une matrice carr�ee. Le produitmatrice vecteur 
 s'interpr�ete en rempla�cant les op�erations \+" et \�" par \max" et \+"respectivement. De tels syst�emes sont les analogues dans une structure alg�ebrique di��erente dessyst�emes lin�eaires classiques.Op�erateurs monotones et homog�enes On consid�ere des fonctions (ou op�erateurs)T : Rk!Rk v�eri�ant des propri�et�es de monotonie, i.e. x > y ) T (x) > T (y), et d'homog�en�eit�e, i.e.T (x + �~1) = T (x) + �~1, o�u ~1 est le vecteur dont toutes les coordonn�ees sont �egales �a 1. Detels op�erateurs g�en�eralisent strictement les op�erateurs (max,+) lin�eaires (T (x) = A 
 x). Ilscorrespondent, de fa�con tr�es impr�ecise, �a des op�erateurs (min,max,+,�) lin�eaires.R�eseaux monotones et s�eparables De fa�con sch�ematique, on appelle ici r�eseau un syst�emeo�u un processus ponctuel (arriv�ee de clients, de tâches, : : : ) d�eclenche un ensemble d'�ev�enementsinternes. Sous des hypoth�eses ad�equates de monotonie et de s�eparabilit�e, on obtient une classede syst�emes g�en�eralisant strictement les op�erateurs monotones et homog�enes.0.3 Syst�emes D�eterministes-StochastiquesLes syst�emes cit�es pr�ec�edemment ont �et�e, historiquement, d'abord �etudi�es sous des hypoth�esesd�eterministes. De nombreux arguments, variabilit�e intrins�eque des ph�enom�enes �etudi�es ou im-possibilit�e de les �evaluer avec pr�ecision, plaident en faveur d'extensions stochastiques de cesmêmes syst�emes.Cette th�ese se d�ecompose en deux moiti�es. La premi�ere (Partie I) est consacr�ee aux syst�emesd�eterministes et la seconde (Parties II et III) aux syst�emes stochastiques.Dans l'�etude d�eterministe, on s'int�eresse �a des probl�emes d'optimisation et de conception (re-pr�esentation minimale) ainsi qu'�a une analyse �ne des comportements asymptotiques (bassinsd'attraction des points limites).Dans l'�etude stochastique, on s'int�eresse �egalement au comportement limite par l'interm�ediaired'une analyse de la stabilit�e. Par stabilit�e d'un SED al�eatoire, on entend l'existence d'un r�egimestationnaire et la convergence vers ce r�egime pour des quantit�es telles que le d�ebit, le nombrede tâches (clients, donn�ees, : : :) ou le temps d'attente dans le syst�eme. Plus pr�ecis�ement, on



0.3 Syst�emes D�eterministes-Stochastiques 9consid�ere deux notions de convergence, la convergence faible ou �etroite (weak convergence) etla convergence en variation (total variation convergence).Soit (E; E) un espace polonais (i.e. m�etrique, complet et s�eparable) muni de sa tribu bor�elienne.On noteM(E) l'ensemble des mesures de probabilit�e sur (E; E) et Cb(E) l'ensemble des fonctionscontinues et born�ees de E vers R. Soit fPn; n 2 Ng et fP 0n; n 2 Ng 2 M(E).Convergence D�e�nition Th�eor�eme de repr�esentation�etroite 8f 2 Cb(E); R fdPn � R fdP 0n ! 0 Xn ! X 0n; P � p:s:variation supA2E � R 1AdPn � R 1AdP 0n �! 0 8n > N; Xn = X 0n et P (N <1) = 1Les th�eor�emes de repr�esentation doivent s'interpr�eter comme l'existence d'un espace de prob-abilit�e (
;F ; P ) et de variables al�eatoires Xn; X 0n; n 2 N d�e�nies sur cet espace et de lois deprobabilit�es respectives Pn; P 0n; n 2 N. Pour la convergence en variation, ce r�esultat est du �aGoldstein (voir Lindvall [102]). Ils permettent une approche trajectorielle et intuitive. La con-vergence faible correspond au couplage asymptotique et la convergence en variation au couplageen temps �ni.Mentionnons quelques-unes des raisons justi�ant l'int�erêt d'une �etude de stabilit�e.� En g�en�eral, on attend d'un r�eseau que le nombre de tâches en attente ou la dur�ee d'ex�ecutiond'une tâche restent �nis au cours du fonctionnement. La zone de stabilit�e du r�eseau corre-spond �a sa zone de bon fonctionnement. Lors de la conception d'un r�eseau, un des crit�erescommun�ement utilis�es est la maximisation de la zone de stabilit�e.� L'�etude de la stabilit�e a connu un vif regain d'int�erêt avec la d�ecouverte r�ecente de r�eseauxnon-stables sous les conditions usuelles de charge (\� < 1"), voir Rybko et Stolyar [125]ou Dumas [59] (zone de stabilit�e non-convexe et poss�edant une fronti�ere quadratique). Al'inverse, et de fa�con compl�ementaire, notre approche va consister �a d�e�nir des classes desyst�emes stables sous des conditions naturelles.� La connaissance de la d�ependance du r�egime stationnaire en fonction de la conditioninitiale (analyse �ne de stabilit�e) est utile pour le contrôle ou la simulation d'un r�eseau.On choisira une condition initiale en fonction du mode de fonctionnement que l'on cherche�a obtenir ou simuler.Dans le cadre de l'analyse des syst�emes stochastiques, on supposera parfois que les suites devariables al�eatoires sont i.i.d. (ind�ependantes et identiquement distribu�ees). Le plus souvent,cependant, on m�enera l'�etude sous des hypoth�eses de type stationnaire et ergodique. Les justi-�cations en sont multiples.� D'un point de vue th�eorique, il est toujours satisfaisant de d�emontrer les r�esultats sous deshypoth�eses minimales.� Le cadre stationnaire et ergodique permet de prendre en compte les ph�enom�enes de p�eri-odicit�e, telle la d�ependance des variables al�eatoires en fonction du moment de la journ�eeou de l'ann�ee.



0.4 R�esum�e et Contributions 10� Des �etudes exp�erimentales men�ees r�ecemment sur des donn�ees r�eelles (tra�c sur r�eseaulocal Ethernet) ont permis de mettre en lumi�ere des ph�enom�enes de longues d�ependanceset même d'auto-similarit�e (nature fractale) du tra�c, voir [141]. De tels tra�cs ne sont�evidemment pas i.i.d. Il apparâ�t par contre qu'ils peuvent être e�cacement repr�esent�es�a l'aide de processus stationnaires et ergodiques tels les mouvements browniens fraction-naires.0.4 R�esum�e et ContributionsLe chapitre 0 consiste en une introduction g�en�erale. Il contient un r�esum�e de la th�ese.Partie ILe premier chapitre, le seul �ecrit en fran�cais1, propose une pr�esentation d'un ensemble de sys-t�emes repr�esentables sous forme (max,+) lin�eaire. Ce chapitre a aussi pour fonction de montrerque les m�ethodes et r�esultats pr�esent�es par la suite peuvent s'appliquer �a des domaines autresque les SED, tels l'�economie math�ematique ou la m�ecanique statistique.Le chapitre 2 est consacr�e �a l'�etude de syst�emes d'Equations R�ecurrentes Uniformes. Un telsyst�eme peut être vu comme un graphe in�ni et p�eriodique de calculs �a e�ectuer. L'objectif estde minimiser le nombre de cases m�emoires n�ecessaires pour mener �a bien ce calcul. Le mod�ele�etudi�e est tr�es g�en�eral et se situe en amont des mod�eles consid�er�es par la suite.Le chapitre 3 traite le cas des syst�emes (max,+) lin�eaires d�eterministes de dimension 3. Onpropose un nouvel outil de description du comportement spectral. Il s'agit de la repr�esentationgraphique des vecteurs propres et des domaines d'attraction dans un \espace projectif additif".Le chapitre 4 compl�ete le chapitre pr�ec�edent. Il s'agit d'illustrer �a l'aide de la repr�esentationgraphique des probl�emes propres �a l'ordonnancement cyclique dans les syst�emes de production.Le chapitre 5 propose un algorithme permettant de calculer tous les vecteurs propres et tous lesr�egimes p�eriodiques d'une matrice (max,+).Partie IILe chapitre 6 �etudie les produits de matrices al�eatoires dans l'alg�ebre (max,+). On obtient desconditions n�ecessaires et su�santes pour que de tels syst�emes couplent en temps �ni avec ununique r�egime stationnaire.Le chapitre 7 vient en compl�ement du chapitre pr�ec�edent. Il illustre les ph�enom�enes de r�egimesstationnaires multiples �a l'aide de l'outil graphique du chapitre 3.Le chapitre 8 applique les r�esultats du chapitre 6 au probl�eme de la stabilit�e des graphesd'�ev�enements stochastiques.Le chapitre 9 introduit un mod�ele de ressources partag�ees, dit mod�ele Tâche Ressource. Celui-cise repr�esente sous la forme d'automate (max,+), c'est-�a-dire de syst�eme (max,+) lin�eaire dontla dynamique est index�ee par des lettres. On �etudie sa stabilit�e �a l'aide des r�esultats du chapitre6. 1Editor's note : almost the only one, chapter 0 is also in french.



0.4 R�esum�e et Contributions 11Partie IIILe chapitre 10 propose un cadre g�en�eral pour aborder le probl�eme de la stabilit�e des syst�emes�a �ev�enements discrets stochastiques. D'une part, on �etudie les it�er�es d'op�erateurs al�eatoireshomog�enes et monotones, d'autre part les r�eseaux �a �ev�enements discrets monotones et s�eparables.On propose des th�eor�emes ergodiques dits du premier et du second ordre. Ces r�esultats g�en�era-lisent ceux obtenus au chapitre 6. On traite ensuite plus sp�eci�quement le mod�ele des r�eseauxde Jackson.Contributions

Ch. 10

Syst�emesmonotoness�eparablesal�eatoires

Syst�emeslin�eaires(max,+)d�eterministes(max,+)lin�eairesSyst�emesOp�erateursal�eatoiresmonotoneshomog�enes
1 ordre :Cuninghame-Green [49]1 ordre :1 ordre :Vincent [136]2 ordre :Baccelli, J.M. Ch. 10 Baccelli, Foss [10]1 ordre :2 ordre :

1 ordre :2 ordre :1 ordre :Baccelli [4]1 ordre :Vincent [136]2 ordre :Borovkov [22]1 ordre :Baccelli, Foss [10]2 ordre :
al�eatoires

Quadrat, Viot [43]Cohen, Dubois,

Baccelli, Foss, J.M. Brandt, Franken, Lisek [32]
2 ordre :Appr. graph. J.M. Ch. 3Quadrat, Viot [45]Cohen, Moller, 2 ordre :2 ordre :J.M. Ch. 6Cohen [46] Baccelli [4]Gaubert [67]Wende & al [139]

;

Ferm�e (autonome) Ouvert (non-autonome)

Figure 1: Principales contributions.



0.5 Probl�emes Non R�esolus 12On propose, en �gure 1, un sch�ema simpli��e permettant de situer une partie des contributionsde la th�ese. Seuls certains des chapitres sont mentionn�es, les autres s'y rattachent (voir leplan pr�ec�edant ce chapitre) ou portent sur des domaines connexes (mod�elisation : Ch. 1,9, etoptimisation : Ch. 2).Les r�esultats originaux de cette th�ese portent principalement sur les syst�emes ferm�es. Consid-�erons un r�eseau avec des serveurs et des clients. Ce r�eseau sera dit ouvert s'il existe un ux declients arrivant, circulant puis quittant le r�eseau. Au contraire, il sera dit ferm�e si le nombre declients dans le r�eseau est �xe. Ces d�e�nitions demanderont bien sûr �a être pr�ecis�ees.En langage alg�ebrique, les r�esultats du premier ordre sont ceux relatifs aux valeurs propres etles r�esultats du second ordre aux vecteurs propres. En langage r�eseau, les r�esultats du premierordre portent sur le d�ebit et les r�esultats du second ordre sur le nombre de tâches ou le tempsd'attente dans le syst�eme. Les r�ef�erences donn�ees en �gure 1 sont tr�es incompl�etes. Pour plusde d�etails, on se reportera aux chapitres correspondants.0.5 Probl�emes Non R�esolusLes probl�emes ouverts �evoqu�es ici constituent autant de pistes de recherches dans la continuit�ede ce travail.� Pouvoir de mod�elisation des syst�emes �etudi�es.Le pouvoir d'expression des syst�emes (max,+) lin�eaires est maintenant bien compris, voir chapitre1. En terme de r�eseaux de Petri, ils correspondent �a la sous-classe des graphes d'�ev�enements.Il n'en est pas du tout de même pour la classe des syst�emes (min,max,+) lin�eaire ou celle desr�eseaux monotones-s�eparables (voir chapitre 10). En particulier, l'intersection entre ces syst�emeset la classe des r�eseaux de Petri reste �a �eclaircir.� Etude des syst�emes (max,+) lin�eaires stochastiques de dimension in�nie.Une th�eorie spectrale relativement compl�ete existe pour les syst�emes (max,+) lin�eaires d�etermi-nistes de dimension in�nie, voir [107]. Il n'existe par contre pas, �a notre connaissance, de th�eorieergodique pour les versions stochastiques de ces syst�emes. Une application potentiellementint�eressante serait l'�etude du mod�ele d'exclusion asym�etrique, exemple de syst�eme de particulesen interaction [101]. Ce mod�ele apparâ�t entre autre dans le fameux probl�eme de la suite in�niede �les en tandem et peut se mod�eliser sous la forme d'un syst�eme (max,+) lin�eaire de dimensionin�nie d�enombrable, voir [5].� Etude des op�erateurs monotones-homog�enes de dimension in�nie.Les r�eseaux de Jackson sont un exemple de r�eseaux monotones-s�eparables pouvant s'interpr�etercomme un op�erateur (min,max,+) �a d�ependances non-born�ees (Lemme 10.9.5). De fa�con g�en�e-rale, on peut se demander s'il y a �equivalence entre la classe des r�eseaux monotones-s�eparableset celle des op�erateurs monotones-homog�enes. La r�eponse �a une telle question constituerait unpremier pas dans l'�etude des op�erateurs de dimension in�nie.



Partie ISyst�emes Lin�eaires D�eterministes



Chapitre 1Exemples de Syst�emes (max,+)Lin�eairesUne importante caract�eristique des syst�emes (max,+) lin�eaires est leur simplicit�e math�ematique.Il s'agit en e�et de consid�erer des produits de matrices mais dans une structure alg�ebrique nonusuelle. Avoir un mod�ele th�eorique simple est certainement un atout, encore faut-il que celas'accompagne d'une puissance de mod�elisation raisonnable. Les syst�emes lin�eaires dans l'alg�ebre(max,+) r�ealisent ce compromis. Ce chapitre illustre le second aspect, le pouvoir de mod�elisation.Ce chapitre doit parâ�tre dans la Revue Scienti�que et Technique de la D�efense. Mes remer-ciements vont �a Camille Terray, Sophie Lefebvre-Barbaroux et Alain Jean-Marie pour leur relec-ture attentive d'une premi�ere version.



1.1 Introduction 151.1 IntroductionOn pr�esente un ensemble de mod�eles dont la caract�eristique commune est de pouvoir êtrerepr�esent�es par un syst�eme lin�eaire dans l'alg�ebre (max,+).On ne cherchera pas �a �etablir un catalogue exhaustif de mod�eles mais plutôt �a illustrer la vari�et�edes domaines o�u ils apparaissent.Ce chapitre a �egalement pour objet, �a un modeste niveau, d'�eviter l'�ecueil consistant �a se limiter�a une vision ou �a un domaine d'application. La multiplicit�e des domaines est susceptible desugg�erer et d'�eclairer des probl�emes di��erents et compl�ementaires.Le chapitre est organis�e de la fa�con suivante. En section 1.2, on pr�esente le mod�ele math�ema-tique th�eorique. Les quatre sections suivantes sont ind�ependantes les unes des autres. Ellessont consacr�ees �a quatre types d'applications : les graphes d'�ev�enements (sous-classe de r�eseauxde Petri), les automates temporis�es, l'optimisation dynamique et en�n le mod�ele de Frenkel-Kontorova en m�ecanique statistique. Ces di��erents mod�eles ne sont pas originaux en ce sensqu'ils �etaient d�ej�a r�epertori�es, au moins par les membres de leur communaut�e scienti�que re-spective, en tant que syst�emes (max,+) lin�eaires. La seule exception est le mod�ele de r�eseau dePetri avec choix pr�esent�e en section 1.4.2 et qui est inspir�e d'un travail en pr�eparation [71].1.2 Mod�ele Math�ematiqueOn consid�ere le syst�eme d'�equations r�ecurrentes :xi(n+ 1) = max16j6k(Aij + xj(n)); i = 1; : : : ; k ; (1.1)xi(0) = (x0)i :Les quantit�es xi(n) et Aij appartiennent �a R[ f�1g. On veut �etudier la suite de vecteursfx1(n); : : : ; xk(n)g.Il est fructueux de r�ecrire l'�equation (1.2) en utilisant une notation matrice-vecteur.D�e�nition 1.2.1. L'alg�ebre (max,+) ou Rmax est l'ensemble R[ f�1g, muni de la loi max,not�ee additivement (i.e. a� b = max(a; b)) et de la loi +, not�ee multiplicativement (i.e. a
 b =a+ b).On d�e�nit la matrice A de dimension k�k dont les coordonn�ees sont Aij . On d�e�nit �egalementle vecteur colonne x(n) = (x1(n); : : : ; xk(n))0 ainsi que le vecteur de conditions initiales x0. Avecces nouvelles notations, l'�equation (1.2) prend une forme simple et agr�eable :x(n+ 1) = A
 x(n); i.e. x(n+ 1) = A
n+1 
 x0 : (1.2)Le produit matriciel est d�e�ni de fa�con naturelle en rempla�cant simplement les op�erations +et � de l'alg�ebre usuelle par � et 
. Soit A et B deux matrices de taille appropri�ee, on a(A�B)ij = Aij �Bij = max(Aij ; Bij), (A
B)ij =Lk Aik 
Bkj = maxk(Aik +Bkj). Dans lasuite, on omettra souvent le symbole 
, rempla�cant par exemple A 
B par AB.



1.3 R�eseaux de Petri 16Une g�en�eralisation naturelle, et souvent essentielle dans la mod�elisation de syst�emes physiques,consiste �a consid�erer que la matrice A n'est pas constante. L'�equation (1.2) prend d�es lors laforme suivante : x(n+ 1) = A(n)x(n); i.e. x(n+ 1) = A(n) � � �A(0)x0 : (1.3)La suite fA(n)g est donn�ee de fa�con exog�ene. En g�en�eral, ce sera le cas dans les chapitres dela partie II, on suppose que la suite fA(n)g est une suite i.i.d. ou stationnaire ergodique dematrices al�eatoires.Pour les syst�emes d'�equations (1.2) ou (1.3), on d�e�nit deux types de limites asymptotiques :� Les limites dites du premier ordre : limn jjx(n)jj=n ; limn xi(n)=n (division dans l'alg�ebreusuelle).� Les limites dites du second ordre : limn xi(n+ 1)� xi(n); limn xj(n)� xi(n); 8i; j.Dans le cas d'un syst�eme d�eterministe, i.e. A(n) � A, ces limites sont directement reli�ees aux�el�ements propres de la matrice A. Ceux-ci sont d�e�nis de la fa�con suivante. On cherche � 2 Ret x 2 Rk solutions de l'�equation spectrale :max16j6k(Aij + xj) = �+ xi; i = 1; : : : ; kA
 x = �
 x ; (1.4)Par analogie avec l'alg�ebre classique, on appelle � une valeur propre et x un vecteur propre dela matrice A. Une particularit�e importante de l'alg�ebre (max,+) est l'existence d'une uniquevaleur propre pour une matrice A irr�eductible 1. Par contre, il peut y avoir une multiplicit�e devecteurs propres ainsi que des r�egimes p�eriodiques2. Pour plus de d�etails, voir chapitre 3.On verra dans la suite quelle interpr�etation donner aux limites du premier et du deuxi�eme ordreen fonction du mod�ele physique consid�er�e.Alg�ebre de chemin L'alg�ebre (max,+) est souvent appel�ee une alg�ebre de chemin pour laraison suivante. A toute matrice A 2 Rk�kmax, on peut associer un graphe �a k n�uds comportantun arc de j vers i de poids Aij si Aij > �1. Le terme A
pij ; p 2 N; s'interpr�ete alors comme lepoids maximum des chemins de longueur (mesur�ee en nombre de n�uds) p joignant j �a i. Cetteinterpr�etation sera utile par la suite.1.3 R�eseaux de PetriL'�evaluation de performances de syst�emes informatiques et de t�el�ecommunications n�ecessite unemod�elisation pr�ealable de ces mod�eles. Cette mod�elisation utilise souvent le paradigme desSyst�emes Dynamiques �a �Ev�enements Discrets (SED). Pour de plus amples d�etails sur le champd'application des SED, on pourra se r�ef�erer au num�ero sp�ecial de Proceedings of the IEEE [88]1i.e. 8i; j; 9n s.t. Anij > �1.2Un r�egime p�eriodique est un ensemble �ni x1; : : : ; xd tel que Ax1 = �x2;Ax2 = �x3; : : : ;Axd = �x1.



1.3 R�eseaux de Petri 17ou aux ouvrages r�ecents de Baccelli, Cohen, Olsder & Quadrat [8] et de Glasserman & Yao [75].Une excellente r�ef�erence r�ecente en fran�cais est Gaubert [68].Parmi les formalismes de mod�elisation des SED les plus largement utilis�es, on peut mentionnerles GSMP (Generalized Semi-Markov Process) et les r�eseaux de Petri. Il est montr�e dans [75]qu'un GSMP v�eri�ant certaines propri�et�es de convexit�e et d'homog�en�eit�e peut être repr�esent�esous la forme d'une �equation de type (1.3).On va insister dans la suite de cette section sur le second formalisme, celui des r�eseaux de Petri.Ils ont �et�e introduit par Carl Petri en 1962 dans sa th�ese soutenue �a l'universit�e de Bonn [117].Notre but n'est pas de pr�esenter le formalisme dans toute sa richesse mais d'arriver le plus vitepossible �a la sous-classe qui nous int�eresse, celle des graphes d'�ev�enements temporis�es. Pour unedescription plus compl�ete, on se reportera �a Murata [112] ou Brams [30].1.3.1 Pr�esentation g�en�eraleUn r�eseau de Petri est d�e�ni comme le quadruplet G = (P ; T ;F ;M), o�u :� P est un ensemble �ni. Ses �el�ements sont appel�es places.� T est un ensemble �ni. Ses �el�ements sont appel�es transitions.� F � (P � T ) [ (T � P) d�e�nit une relation de d�ependance entre places et transitions.� M est une fonction de P dans N. L'entierM(p) est appel�e le marquage de la place p 2 P .Un r�eseau de Petri peut être interpr�et�e comme un graphe orient�e. Les n�uds sont de deux types :les places et les transitions. Un �el�ement de F est un arc reliant une place et une transition oubien une transition et une place. Il devient d�es lors naturel de parler de \places d'entr�ee" (d'unetransition), de \transitions de sortie" (d'une place), etc.Un formalisme graphique sp�eci�que est associ�e aux r�eseaux de Petri. Les places sont repr�esen-t�ees par des cercles et les transitions par des barres. Un marquage n =M(p) est repr�esent�e parn jetons dans la place p. Un exemple de ce formalisme est fourni par la �gure 1.1.Un r�eseau de Petri est �egalement un objet dynamique. Le triplet (P ; T ;F) n'est jamais modi��emais le marquage �evolue suivant une r�egle intitul�ee tir d'une transition. Cette r�egle est d�e�niecomme suit :1. Une transition t est dite habilit�ee si il y a au moins un jeton dans chaque place d'entr�eede t.2. Une transition t peut tirer si et seulement si elle est habilit�ee.3. Le tir de t enl�eve un jeton dans chaque place d'entr�ee et ajoute un jeton dans chaque placede sortie.La r�egle de tir est illustr�ee par la �gure 1.1. On a repr�esent�e un r�eseau de Petri avant et apr�esle tir de la transition t. Il est possible qu'un même jeton puisse participer au tir de plusieurstransitions (il faut que la place correspondante ait plusieurs transitions en sortie). Dans ce cas,on dit être en pr�esence d'un choix. C'est le cas pour la �gure 1.1, la transition t0 �etant �egalementinitialement habilit�ee.



1.3 R�eseaux de Petri 18
Avant Apr�estt0 tt0Figure 1.1: R�eseau de Petri. Avant : les transitions t et t0 sont habilit�ees. Apr�es : la transitiont vient d'être tir�ee. Aucune transition n'est habilit�ee.Le plus souvent, les places repr�esentent des conditions (pr�esence de clients, de ressources, : : : )et les transitions des �ev�enements.Temporisation Un r�eseau de Petri est �a l'origine un objet logique. Cependant, la temporisa-tion de cet objet s'est av�er�ee une approche tr�es riche permettant en particulier l'�evaluation deperformance du syst�eme mod�elis�e.A chaque transition t (resp. place p), on associe �t 2 R+ (resp. �p 2 R+).� Le r�eel �p correspond au temps de s�ejour d'un jeton en place p. Plus pr�ecis�ement, si unjeton arrive en place p �a l'instant u, il ne sera disponible pour l'habilitation des transitions(i.e. l'�etape 1 de la r�egle de tir) en sortie de t qu'�a l'instant u+ �p.� Le r�eel �t correspond au temps de tir de la transition t. Il s'agit du temps qui s'�ecouleentre le d�ebut et la �n du tir de t. Pendant la dur�ee �t, les jetons participant au tir sont\gel�es" et ne peuvent participer �a une autre habilitation ou �a un autre tir.Dans la suite de cette section, on va se restreindre �a une sous-classe de r�eseaux de Petri, lesgraphes d'�ev�enements (parfois appel�ees graphes marqu�es ou r�eseaux de Petri sans d�ecisions).D�e�nition 1.3.1 (Graphe d'�ev�enements). Un graphe d'�ev�enements est un r�eseau de Petridans lequel chaque place a exactement une transition en entr�ee et une en sortie.Les graphes d'�ev�enements permettent de mod�eliser la synchronisation mais excluent les choix.On reviendra sur les r�eseaux de Petri avec choix en section x1.4.2.Un graphe d'�ev�enements est vivant si chaque circuit contient au moins un jeton. Lorsque cettepropri�et�e n'est pas v�eri��ee, le r�eseau se bloque apr�es un nombre �ni de tirs. Dans toute la suite,il est implicite que l'on ne consid�ere que des graphes d'�ev�enements vivants.Consid�erons un graphe d'�ev�enements temporis�e G = (P ; T ;F ;M; f�t; t 2 T g; f�p; p 2 Pg). Oncherche �a le repr�esenter sous forme d'un syst�eme (max,+) lin�eaire. Pour ce faire, commen�cons



1.3 R�eseaux de Petri 19par r�ealiser une transformation du graphe. Chaque place p comprenant M(p) > 1 jetons estremplac�ee par M(p) places en s�erie avec exactement 1 jeton par place. Les nouvelles transi-tions et les nouvelles places ont des temps de tir et de s�ejour identiquement �egaux �a 0. Cettetransformation a �et�e illustr�ee en �gure (1.2). pt t0�t0�t �p
p~t p~p t�t �t0t t0�~p = 0 �~t = 0 �p�t = 0�p = 0Figure 1.2: Eclatement d'une place comprenant plusieurs jetons.Pour simpli�er, on conserve les notations G = (P ; T ;F ;M; f�tg; f�pg) pour le nouveau graphe.On d�e�nit une suite de vecteurs fx(n); n 2 Ng de dimension k = jT j, le nombre de transitions.Le terme x(n)i correspond �a la date de d�ebut du n-i�eme tir de la transition ti. Pour des raisonsde convenance, on note �i � T l'ensemble des transitions en entr�ee de la transition ti, i.e.l'ensemble des tj tels que 9p 2 P j (tj ; p) 2 F ; (p; ti) 2 F . D'autre part, si il existe une placeentre les transitions ti et tj , on la note pij .Soit j 2 �i. On consid�ere le n-i�eme jeton produit par la transition tj . En raison de la propri�et�eM(p) 6 1; 8p, deux cas seulement sont possibles : soit ce jeton habilite le n-i�eme tir de ti (siM(pji) = 0), soit il habilite le (n+ 1)-i�eme tir de ti (siM(pji) = 1). La r�egle de tir au niveaude la transition ti se traduit par l'�equation suivante :xi(n+ 1) > maxj2 �i � xj(n + 1�M(pji)) + �tj + �pji 	 : (1.5)En particulier l'instant u = xj(n+1�M(pji))+�tj correspond �a la �n du ( n+1�M(pji) )-i�emetir de la transition tj . Le jeton correspondant habilite donc la transition ti �a partir de l'instantu+ �pji .On d�e�nit les matrices Au; u = 0 ou 1, de la fa�con suivante :(Au)ij = (�tj + �pji si j 2 �i etM(pji) = u�1 sinon :L'�equation (1.5) se r�ecrit sous la forme :x(n+ 1) > A0x(n+ 1)� A1x(n) : (1.6)



1.3 R�eseaux de Petri 20Introduisons la matrice A?0 =L1p=0Ap0 =Lkp=0Ap0, o�u A00 est la matrice identit�e I d�e�nie parIii = 0 et Iij = �1; i 6= j. On montre ais�ement que cette matrice est l'inverse formel de I�A0,i.e. A(0)?(I � A(0)) = (I � A(0))A(0)? = I . On peut montrerx(n+ 1) > A�0A1x(n) : (1.7)Le passage de (1.6) �a (1.7) illustre la puissance formelle de la repr�esentation alg�ebrique sousforme matricielle. En parcourant le chemin inverse de celui r�ealis�e pr�ec�edemment, on peutassocier �a l'�equation (1.7) un graphe d'�ev�enements avec exactement un jeton par place. Il estinstructif de comparer ce nouveau graphe avec le graphe initial. Un exemple simple est propos�een �gure 1.3.�t1 �p12 �t2 �p23 �t3t3p23t2p12t1 �t1t1 �p12 �t2p13�p13 = �t2 + �p12 + �p23 �t3t3t2p12Figure 1.3: La multiplication par A�0 a pour e�et de court-circuiter les chemins sans jetons.Evolution au plus tôt On est en g�en�eral particuli�erement int�eress�e par l'�evolution au plustôt du graphe d'�ev�enements, c'est-�a-dire qu'une transition tire d�es qu'elle est habilit�ee. Cette�evolution correspond �a la solution minimale de (1.7), c'est-�a-dire �a l'�equation (max,+) lin�eaire :x(n+ 1) = A�0A1x(n) : (1.8)Une propri�et�e remarquable des graphes d'�ev�enements est que le marquage est pr�eserv�e lorsquel'on tire chaque transition une fois, voir chapitre 8 proposition 8.1.4. Cela explique que lar�ecurrence (1.8) soit uniforme en n, le marquage �a l'\instant" x(n) (apr�es n tirs de chaquetransition) �etant exactement le marquage initial M. Il est toutefois important de comprendrequ'il s'agit d'un marquage \virtuel", au sens o�u il apparâ�t �a un \instant" x(n) correspondant�a des dates di��erentes des horloges associ�ees �a chaque transition. En g�en�eral, une photographiedu r�eseau �a un instant t > 0 ne permettra pas d'observer le marquageM. En e�et il faudraitpour cela qu'il existe une occurrence n et un r�eel t tel que (x1(n); : : : ; xk(n)) = (t; : : : ; t), ce quin'est pas toujours le cas.Remarque 1.3.2. Il existe des syst�emes (max,+) lin�eaires autres que celui de l'�equation (1.7)et qui repr�esentent l'�evolution du graphe d'�ev�enements. En particulier, on aurait pu consid�ererdes dates de �n de tir au lieu de dates de d�ebut de tir. De fa�con plus essentielle, il existe desm�ethodes plus astucieuses d'�eclatement des places marqu�ees que celle pr�esent�ee en �gure 1.2.Cela permet d'obtenir une repr�esentation �a l'aide d'une matrice de taille inf�erieure. La recherched'une repr�esentation de taille minimale constitue l'objet du chapitre 2.



1.3 R�eseaux de Petri 21Temporisations al�eatoires Une g�en�eralisation naturelle est de consid�erer que les tempori-sations des places et transitions du graphe d'�ev�enements sont donn�ees par des suites f�t(n); n 2Ng; t 2 T ; et f�p(n); n 2 Ng; p 2 P ; de variables al�eatoires. On aimerait pouvoir �ecrire lesanalogues des �equations (1.5) (1.6) (1.7) et (1.8).Cependant, dans un graphe d'�ev�enements stochastique, il devient possible pour les jetons de sed�epasser (il su�t d'imaginer que �p(n) � �p(n + 1)). Si on �etudie de pr�es l'�equation (1.5), onse rend compte qu'elle n'est plus vraie d�es lors que des d�epassements sont possibles. Pour con-tourner cette di�cult�e, il faut se limiter �a une sous-classe de graphes d'�ev�enements stochastiques,dits PAPS (Premier Arriv�e Premier Servi), pour lesquels les d�epassements sont impossibles. Sousles hypoth�eses qui suivent, un graphe d'�ev�enements est PAPS.� Toute transition ti v�eri�e une des deux propri�et�es suivantes : 1) il existe un rebouclageavec un unique jeton, i.e. i 2 �i et M(pii) = 1. 2) le temps de tir est constant, i.e.�t(n) = �t; 8n.� Toute place p a un temps de s�ejour constant, i.e. �p(n) = �p; 8n.Il existe d'autres types de conditions permettant d'assurer une �evolution de type PAPS. Ainsiun graphe d'�ev�enements avec au plus un jeton par circuit sera toujours PAPS, voir l'exemple dela �gure 1.5.Pour un graphe d'�ev�enements stochastique PAPS, on d�e�nit les suites de matrices fAu(n); n 2Ng; u= 0 ou 1 :Au(n)ij = (�tj(n+ 1�M(pij)) + �pji si j 2 �i etM(pji) = u�1 sinon :L'�evolution au plus tôt du graphe d'�ev�enements est donn�e par le syst�eme (max,+) lin�eaire :x(n+ 1) = A0(n)�A1(n)x(n) : (1.9)On propose, sections x1.3.2 et x1.3.3, deux exemples de syst�emes se mod�elisant sous forme degraphe d'�ev�enements et donc de syst�eme (max,+) lin�eaire.1.3.2 Atelier exibleUn atelier exible (job-shop en anglais) est un type particulier de syst�eme de production. Ondispose d'un nombre �ni de machines et d'un nombre �ni de types de produit. Chaque produitdoit subir une suite d'op�erations �el�ementaires sur di��erentes machines et ce dans un ordre biend�etermin�e. Chaque machine travaille de fa�con s�equentielle sur un produit �a la fois. Nous avonsrepr�esent�e en �gure 1.4 un exemple avec deux machines (M1;M2) et deux types de produits(j1; j2) repr�esent�es par leur routage le long des machines.On suppose qu'il y a un stock in�ni de chaque type de produit. D�es qu'un produit de type pach�eve son cycle de production, un nouveau produit p commence le sien.Pour que le mod�ele soit compl�etement sp�eci��e, il faut d�e�nir l'ordre de passage, ou ordonnance-ment, des produits sur les machines. On consid�ere dans la suite que cet ordonnancement est



1.3 R�eseaux de Petri 22M2M1 j2j1Figure 1.4: Atelier exible constitu�e de deux machines et deux types de produits.�x�e (impos�e par les contraintes technologiques) et p�eriodique. Suivant les notations de Hillionet Proth [87], on note �(M) l'ordonnancement des produits sur la machine M . Le routage duproduit j est not�e �(j). Pour le mod�ele de la �gure 1.4 par exemple, on a �(j1) = (M1;M2),�(j2) =M1. Un ordonnancement possible est �(M1) = (j1j1j2)(j1j1j2) � � � et �(M2) = j1j1 � � � .On peut d�e�nir la p�eriode minimale commune des suites �(Mi). Cette p�eriode minimale peutcomprendre plusieurs produits de chaque type. Ainsi dans l'exemple cit�e ci-dessus, la p�eriodeest 3 et correspond �a deux produits j1 et un produit j2. L'ensemble des produits correspondant�a une p�eriode minimale est appel�e MPS (Minimal Part Set, Lee [99]).Un atelier exible peut être repr�esent�e sous forme d'un graphe d'�ev�enements, voir [87]. Plutôtque de pr�esenter la construction g�en�erale, on se propose de l'illustrer �a l'aide d'un exemple.On consid�ere l'atelier de la �gure 1.4 avec l'ordonnancement suivant :�(M1) = (j2; j1)(j2; j1) � � � et �(M2) = (j1) � � �Le MPS est form�e par un produit de chaque type. La repr�esentation sous forme de graphed'�ev�enements de ce syst�eme est donn�ee en �gure 1.5.machine M1
machine M2t1 produit j2t3M2t2

produit j1
Figure 1.5: Atelier exible. Mod�elisation sous forme de graphe d'�ev�enements.



1.3 R�eseaux de Petri 23La synth�ese de ce graphe est r�ealis�ee en deux �etapes. A chaque produit p du MPS, on associe uncycle comportant un nombre de transitions �egal au cardinal de �(p). Une transition correspondau passage du produit p sur une machine. Chaque cycle-produit comporte exactement 1 jeton.Ceci correspond au m�ecanisme d�ecrit plus haut : d�es que la fabrication d'un produit est achev�ee,la fabrication d'un nouveau produit du même type commence.Il faut ensuite mod�eliser le fait que certaines de ces transitions correspondent �a la même machinephysique. Les transitions correspondant �a la machine Mi sont reli�ees par un cycle suivantl'ordre donn�e par �(Mi). Chacun de ces cycles-machines comprend exactement un jeton, cecicorrespondant au fonctionnement s�equentiel des machines.La m�ethode g�en�erale permettant de d�ecrire l'ex�ecution au plus tôt d'un graphe d'�ev�enements parune matrice (max,+) s'applique. Les dateurs x1(n); x2(n) et x3(n) sont associ�es aux transitionst1, t2 et t3 de la �gure 1.5. Soit (�; �; ) les temps de tir de ces transitions (dur�ee de passagedu produit sur la machine). On suppose que les temps de transport entre machines sont nuls.Tous calculs e�ectu�es, on obtient le syst�eme lin�eaire suivant :x(n+ 1) = 0@ �+  � 2� 2� �+  � + � �+ 2� � �1  1A
 x(n) :L'inverse de la valeur propre de la matrice, 1=�, correspond au taux de production de l'atelier.On obtient ici 1=� = ( � + max(�; ) )�1. Si on contrôle l'atelier en imposant une conditioninitiale x(0) qui soit un vecteur propre, on obtient un fonctionnement r�egulier de l'atelier, o�u lesop�erations se r�ep�etent �a l'identique toutes les � unit�es de temps.1.3.3 Files d'attente avec blocageLa notation de Kendall est une fa�con simple et synth�etique de d�ecrire une �le d'attente. Aveccette notation, la �le la plus simple s'�ecrit3 �=1=1 : il y a un serveur (1) et un bu�er d'entr�ee�a capacit�e illimit�ee (1). Le terme (:) correspond aux caract�eristiques du temps de service de-mand�e par un client au serveur. On note (:) = D, (:) = M , (:) = GI ou (:) = G suivant que lasuite f�(n); n 2 Ng des temps de service, est constante, i.i.d. exponentiellement distribu�ee, i.i.d.ou en�n stationnaire ergodique. On peut adjoindre �a la notation de Kendall une informationsur la politique de service consid�er�ee. Dans la suite, on consid�ere toujours et de fa�con impliciteune politique PAPS.On a repr�esent�e ci-dessous, �gure 1.6, quelques exemples �el�ementaires de �les d'attente sousforme de graphes d'�ev�enements.La transition t correspond au serveur, la place p au bu�er d'entr�ee. On mod�elise un bu�er �acapacit�e limit�ee �a l'aide d'une place suppl�ementaire p0 comprenant autant de jetons qu'il y a deplaces dans le bu�er. Le nombre de jetons dans la place rebouclant la transition t correspondau nombre de serveurs.On peut maintenant consid�erer des r�eseaux de �les d'attente. On a repr�esent�e en �gure 1.7quatre variations de r�eseaux �a deux �les d'attente en s�erie.3La notation compl�ete est �= � =1=1. Le premier terme (:) correspond au processus d'arriv�ee.
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File multiserveur �=2=1File �a capacit�e limit�ee �=1=3File �=1=1 tp

p0Figure 1.6: Repr�esentation de �les d'attente sous forme de graphes d'�ev�enements.Dans les trois derniers exemples de la �gure 1.7, la deuxi�eme �le est �a capacit�e limit�ee, encons�equence certains clients peuvent se trouver bloqu�es. D�ecrivons plus pr�ecis�ement les m�eca-nismes de blocage repr�esent�es en �gure 1.7.(A) Aucun blocage.(B) Blocage avant service. Un service ne peut commencer en �le 1 que si il y a une place delibre dans le bu�er de la �le 2.(C) Blocage apr�es service. Un client ayant termin�e son service en �le 1 et trouvant le bu�erde la �le 2 plein, doit attendre au niveau de la �le 1 (son lieu d'attente est mat�erialis�e parla place p). Ce faisant, il interdit �a un nouveau client d'être servi en �le 1. Ce m�ecanismeest repr�esent�e par le circuit (p; ~t; ~p; t1). Le m�ecanisme est le(D) Blocage g�en�eral (introduit par Cheng et Yao [38]). La �le dispose de deux bu�ers, un enentr�ee et un en sortie. Il existe d'autre part une limitation sur le nombre total de clientspr�esents dans la �le. Une telle �le est not�ee �=1=(a; b; c) o�u a; b et c sont respectivementles capacit�es des bu�ers d'entr�ee et de sortie et la capacit�e totale de la �le (qui peut êtredi��erente de a+ b). L'exemple de la �gure 1.7.(D) correspond �a une �le �=1=(1; 0;1) en
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(D) : �=1=(1; 0;1)! �=1=(2; 3; 3), blocage g�en�eralp1 t1 t2p2

t1 t2p1 p2(A) : �=1=1! �=1=1
(B) : �=1=1! �=1=2, blocage avant service t1t1p1

t1t1p1 t2p2p ~t~pp2 t2
(C) : �=1=1! �=1=2, blocage apr�es service

Figure 1.7: Files d'attente en s�erie. Repr�esentation sous forme de graphes d'�ev�enements.tandem avec une �le �=1=(2; 3; 3). Le cas a = b = c correspond �a une des variantes duc�el�ebre m�ecanisme de kanban.La notation de Kendall g�en�eralis�ee �= � =(a; b; c) permet de d�e�nir compl�etement un r�eseau sansavoir �a sp�eci�er le mode de blocage.Un mode de blocage qui ne peut être repr�esent�e �a l'aide d'un graphe d'�ev�enements est le blocageavec \r�e�emission" : un client se trouvant bloqu�e apr�es service en �le 1 recommence un nouveauservice en �le 1.Dans les syst�emes d�ecrits en �gures 1.6 et 1.7, la mod�elisation du ux d'arriv�ee de clients n'a pas�et�e r�ealis�ee. On propose en �gure 1.8, deux exemples de r�eseaux de �les d'attente compl�etementsp�eci��es.� Syst�eme ouvert, �gure 1.8.I. On consid�ere un ux d'arriv�ee de clients mod�elis�e par la tran-sition recycl�ee u. La suite des temps de tir de la transition u correspond aux interarriv�eesentre clients.� Syst�eme ferm�e, �gure 1.8.II. On consid�ere un syst�eme autonome avec un nombre de clientsconstant. Un client terminant son service en �le 2 est rout�e vers la �le 1. Dans l'exempleconsid�er�e, �gure 1.8.II, il y a 3 clients (nombre de jetons dans les places p1 et p2).A partir des ingr�edients des �gures 1.6, 1.7 et 1.8, on peut construire de nombreuses variantes de



1.4 Automates temporis�es 26
p1u t1 t2p2

p1 p2t1 t2
Syst�eme ouvert
Syst�eme ferm�e(I)

(II)Figure 1.8: Files d'attente en s�erie. Syst�eme ouvert et syst�eme ferm�e.s�eries de �les d'attente de longueur arbitraire. Le mod�ele de la �gure 1.8.II avec k �les G=1=1sera sp�eci�quement �etudi�e au chapitre 6.On consid�ere le r�eseau de la �gure 1.8.II. Soit f�(n); n 2 Ng et �(n); n 2 Ng, la suite des tempsde service des serveurs 1 (t1) et 2 (t2) respectivement. L'�evolution au plus tôt du r�eseau peutêtre mod�elis�ee par un syst�eme (max,+) de dimension 3 (la place p1 doit être �eclat�ee en deuxplaces, voir �gure 1.2). Les deux premiers dateurs correspondent aux transitions t1 et t2 et letroisi�eme �a la transition �ctive ajout�ee. On obtient :x(n+ 1) = A1(n)
 x(n); A1(n) = 0@ �(n) �1 0�(n) �(n) �1�1 �(n) 0 1A :Les limites du premier ordre limn n=xi(n) correspondent au d�ebit du r�eseau. A partir des limitesdu second, on peut calculer des quantit�es telles que le nombre de clients par �le ou le tempsd'attente avant service. Ainsi le temps d'attente avant le n-i�eme service �a la �le 2 est donn�e parz(n) = y2(n)� ( y1(n� 1) + �(n� 1) ).1.4 Automates temporis�esUn formalisme utilis�e pour l'�etude des SED et non encore mentionn�e est celui des automates etdes langages formels. Cette approche a �et�e introduite par Ramadge et Wonham [120].



1.4 Automates temporis�es 27Il s'agit d'un outil math�ematique traitant des aspects purement \logiques" des SED. De fa�contr�es sch�ematique, �a chaque �ev�enement pouvant se produire dans le syst�eme est associ�e une lettre,celles-ci formant un alphabet. L'ensemble des comportements possibles ou souhait�es du syst�emecorrespond �a un langage L sur cet alphabet. Le langage L est repr�esent�e sous la forme du langagereconnu par un automate (voir d�e�nition 1.4.1).Des travaux r�ecents ont consist�e �a temporiser cet objet logique. La notion d'automate temporis�e,ou encore automate (max,+), que nous pr�esentons ici a �et�e propos�ee par Gaubert [69]. Un desexemples propos�es, le mod�ele de stockage, est une adaptation de celui consid�er�e dans [69]. Lesecond exemple, un r�eseau de Petri avec choix, est inspir�e d'un travail en pr�eparation [71].Les syst�emes tâches-ressources sont un autre exemple de mod�eles se repr�esentant sous formed'automates (max,+). Ils seront introduits et �etudi�es au chapitre 9.D�e�nition 1.4.1. On appelle automate (d�eterministe) sur l'alphabet A un quadruplet(K; �;Ke; Ks) :K est l'ensemble des �etats, Ke � K l'ensemble des �etats d'entr�ee et Ks � K celui des �etats desortie. L'application partielle (i.e. non n�ecessairement partout d�e�nie) � : A � K ! K estdite fonction de transition de l'automate.Un automate est repr�esent�e sous forme d'un graphe �a k = jKj n�uds comportant trois typesd'arcs, les arcs d'entr�ee, de sortie et les arcs internes, ces derniers �etant valu�es. Un arc internevalu�e par a 2 A relie les n�uds i et j si �(a; i) = j. On rep�ere les �etats d'entr�ee par un arcentrant et les �etats de sortie par un arc sortant, voir �gure 1.9.A tout chemin dans le graphe, on associe un mot constitu�e par la suite des labels des arcs ren-contr�es. Un mot est dit reconnu si il correspond �a un chemin menant d'un �etat d'entr�ee �a un�etat de sortie. L'ensemble des mots reconnus forme le langage reconnu par l'automate.Un automate (max,+) est d�e�ni comme un automate avec une temporisation (2 R+) associ�ee�a chaque arc interne. On note A(a; i; j) la temporisation associ�ee �a l'arc i ! j valu�e par a. Sil'on n'a pas �(a; i) = j, on pose A(a; i; j) = �1. On d�e�nit le vecteur ligne d'entr�ee � et levecteur colonne de sortie � de la fa�con suivante : �i = 0 (resp. �i = 0) si i 2 Ke (resp. i 2 Ks)et �i = �1 (resp. �i = �1) sinon.Ceci permet d'associer une dur�ee �nie �a chaque mot reconnu par l'automate. La dur�ee d'un motw est la temporisation maximale des chemins de label w. Au contraire, un mot non reconnuaura une dur�ee �1. Cette dur�ee est calcul�ee de fa�con r�ecursive.On associe un dateur xi �a chaque �etat i. On note X la dur�ee d'un mot. Soit w un mot et a 2 Aune lettre, on a : (xi(wa) = maxjfxj(w) +A(a; j; i)g; x(;) = �X(wa) = maxjfxj(wa) + �jg :Il apparâ�t maintenant clairement que ce mod�ele poss�ede une structure (max,+) lin�eaire. Achaque lettre a 2 A, on associe une matrice (max,+) d�e�nie comme suit :A(a) = (A(a; i; j); i; j 2 f1; : : : ; kg) :



1.4 Automates temporis�es 28On obtient �a partir de l'�equation (1.4) et pour un mot w = a1a2 : : :an :X(w) = �A(a1)A(a2) � � �A(an)� :La sp�eci�cit�e du mod�ele provient de ce que le produit de matrices (max,+) est contraint par unlangage reconnaissable par un automate4.Un probl�eme sp�eci�que int�eressant est celui de l'analyse de performance dans le pire des cas.On d�e�nit la dur�ee maximale d'un mot reconnu de longueur jwj = n parT (n) = maxw; jwj=nX(w) = �( Mw; jwj=n x(w))� = �Mn� ;o�u la matrice M est d�e�nie par M =La2AA(a); i:e: Mij = maxaA(a; i; j).Nous proposons maintenant une application puis une g�en�eralisation de ce mod�ele.1.4.1 Un mod�ele de stockageOn consid�ere un stock pouvant contenir 0, 1 ou 2 objets. On consid�ere un alphabet �a troislettres correspondant aux �ev�enements suivants :a : Un objet est ajout�e au stock.b : Deux objets sont retir�es du stock.c : Un objet est retir�e du stock.L'�etat 0 est l'�etat d'entr�ee et l'�etat 2 celui de sortie. Cela signi�e que l'on part d'un stock vide etque l'on souhaite terminer avec un stock plein. On a repr�esent�e l'automate associ�e �a ce mod�eleen �gure 1.9. Les temporisations sont repr�esent�ees entre parenth�eses. Ainsi enlever deux objetsdu stock n�ecessite n1 unit�es de temps.0 1 2a (m1) a (m2)c (p2)c (p1) b (n1)Figure 1.9: Automate temporis�e associ�e �a un mod�ele de stockage.Le langage reconnu par l'automate est5 : L = (ac)�a2 (c(ca)�a)� �b(ac)�a2 (c(ca)�a)���.4On remarquera que le produit de matrices est e�ectu�e de la gauche vers la droite, contrairement au cas des�equations (1.3) et (1.9).5On utilise la notation (classique) a� pour le langage f;g[fag[fa2g[� � � , la loi produit �etant la concat�enation,i.e. a2 = aa.



1.4 Automates temporis�es 29Les matrices (max,+) associ�ees au syst�eme sont :A(a) = 0@ �1 m1 �1�1 �1 m2�1 �1 �1 1A ; A(b) = 0@ �1 �1 �1�1 �1 �1n1 �1 �1 1A ; A(c) = 0@ �1 �1 �1p1 �1 �1�1 p2 �1 1A :1.4.2 R�eseaux de Petri avec choixLe mod�ele que nous pr�esentons maintenant est une g�en�eralisation de l'automate (max,+) d�e�nien section x1.4. On consid�ere un mod�ele �a deux niveaux.� Niveau logique : on dispose d'un automate classique (i.e. non temporis�e) sur l'alphabetA. Cet automate d�e�nit un langage reconnaissable L.� Niveau temporel : on dispose d'un ensemble de matrices fA(a); a 2 Ag �a valeur dans Rk�kmax.A chaque mot w = a1 : : :an du langage L, on associe une matrice A(w) d�e�nie comme suit :A(w) = A(a1)
A(a2) � � �A(an) :La g�en�eralisation provient de ce que les matrices A(a) peuvent être quelconques (en particulierleur dimension k n'est pas �a priori li�ee �a la taille de l'espace d'�etat de l'automate).Reprenons le mod�ele d'atelier exible de la �gure 1.4. Deux types de produits j1 et j2 sontfabriqu�es sur deux machines M1 et M2. Le routage des produits est �(j1) = M1M2 et �(j2) =M1. Les temps d'ex�ecution sont (�; �; ) comme d�e�nis en x1.3.2. La di��erence avec l'atelier�etudi�e en x1.3.2 provient de ce que l'ordonnancement des produits sur les machines est libre etnon �x�e. Un tel atelier peut se mod�eliser par le r�eseau de Petri (avec choix) de la �gure 1.10.
M2 p33produit j2p21 t3p12M1

t2 t3(0; 1; 1)(1; 0; 1)t1 t2t3t1produit j1
Figure 1.10: Atelier exible. Mod�elisation sous forme de r�eseau de Petri. Graphe des marquagesassoci�es.On a �egalement repr�esent�e en �gure 1.10, le graphe G des marquages associ�es �a ce r�eseau dePetri. Les n�uds de G sont les marquages atteignables (pour une d�e�nition formelle, voir x8.1,



1.4 Automates temporis�es 30d�e�nition 8.1.2). On repr�esente un arc valu�e par ti entre le n�ud M et le n�ud M 0 si le tir deti fait passer du marquage M au marquage M 0.Dans l'exemple consid�er�e, on repr�esente le marquage par le triplet (M(p21);M(p12);M(p33)).Il n'y a que deux marquages atteignables, (1; 0; 1) et (0; 1; 1).Ce graphe des marquages peut être vu comme un automate, d�e�nition 1.4.1. L'�etat initialcorrespond au marquage initial et tous les �etats sont des �etats �naux (on peut �egalement sp�eci�erun �etat �nal particulier). Soit L le langage reconnu par l'automate, pour l'exemple de la �gure1.10, on a L = (t�3t1t�3t2)� [ (t�3t1t�3t2)�t1. On d�e�nit un vecteur-ligne de dateurs :x : L! R4+ :Le dateur x1(w) correspond �a la date de disponibilit�e du jeton du circuit (t1; p12; t2; p21) apr�estir des transitions dans l'ordre d�e�ni par w. Les dateurs x2(w); x3(w) et x4(w) sont d�e�nis dela même fa�con pour les jetons des places p33, M1 et M2 respectivement.On d�e�nit les matrices :A(t1) = 0BB@ � �1 � �1�1 0 �1 �1� �1 � �1�1 �1 �1 0 1CCA ; A(t2) = 0BB@ � �1 �1 ��1 0 �1 �1�1 �1 0 �1� �1 �1 � 1CCA ;A(t3) = 0BB@ 0 �1 �1 �1�1   �1�1   �1�1 �1 �1 0 1CCA :Le dateur x(w) associ�e au mot w = ti1ti2 � � � tin est solution du syst�eme (max,+) lin�eaire :x(w) = x(0)
 A(ti1)A(ti2) � � �A(tin) :Cette mod�elisation s'applique �a la classe g�en�erale des r�eseaux de Petri conservatifs, voir [71].Toutefois, on ne peut pas mod�eliser toutes les politiques de r�esolution des conits. Pr�ecisons cedernier point.Dans un r�eseau de Petri avec choix, il est n�ecessaire lorsqu'un jeton habilite plusieurs transi-tions de pr�eciser la s�emantique du tir (comp�etition ou pr�e-s�election). On parle de politique der�esolution de conits. La politique de comp�etition consiste �a allouer le jeton �a la transition dontle tir s'ach�eve le premier. Dans le cas de la pr�e-s�election, une fonction de routage associ�ee auxplaces d�ecide de l'allocation des jetons. En g�en�eral, les d�ependances entre les tirs des transitionsne sont pas born�ees (i.e. le n-i�eme tir de ti peut être d�eclench�e par le (n� p)-i�eme tir de tj avecp arbitrairement grand) ce qui rend l'�ecriture d'�equations de r�ecurrence beaucoup plus di�cile,voir [7]. L'approche classique consiste �a se limiter au cas o�u les temps de tir des transitions sontexponentiellement distribu�es. En raison de la propri�et�e sans m�emoire de la loi exponentielle, onpeut d�ecrire l'�evolution du syst�eme �a l'aide d'une châ�ne de Markov �a temps continu sur l'espacedes marquages atteignables, voir par exemple [1]. Si l'on souhaite consid�erer d'autres types detemps de tir, l'espace d'�etat doit incorporer les temps de tir r�esiduels des transitions ce qui rend



1.5 Optimisation Dynamique 31la mod�elisation plus di�cile �a op�erer (explosion de l'espace d'�etat,: : :).Dans notre mod�ele, l'ordre de d�eclenchement des �ev�enements n'est pas d�etermin�e par des r�e-gles temporelles mais par une suite de d�ecisions logiques prises au niveau de l'automate (non-temporis�e) des marquages. Cette restriction permet de mod�eliser une politique de pr�e-s�electionmais pas une politique de comp�etition (dans ce dernier cas, la r�esolution des conits est faiteau niveau temporel). En contrepartie, il devient possible de consid�erer n'importe quel type deloi pour les temps de tir des transitions sans modi�er les dimensions du mod�ele. Pour le niveaulogique, cette dimension est celle du graphe des marquages (comme dans l'approche markovienneclassique), et pour le niveau temporel, la dimension des matrices (max,+) est �egale au nombrede jetons dans le r�eseau de Petri.1.5 Optimisation DynamiqueCette section est inspir�e de l'article de Yakovenko et Kontorer [142]. Dans ce papier, les auteursfont le point sur les syst�emes (max,+) lin�eaires en �economie et en th�eorie de la d�ecision.Rappelons bri�evement ce qu'est un probl�eme d'optimisation dynamique en temps discret et �aespace d'�etat �ni. On consid�ere un espace d'�etat �ni K. La dynamique du syst�eme est d�ecritepar un ensemble de chemins ou trajectoires. Une trajectoire est une suite d'�etats dans l'espaceK. Soit une �economie compos�ee de k biens consommables. On d�ecrit le niveau de stock en bienspar un �el�ement de Nk. Si on suppose qu'il existe un stock maximal pour chaque bien, on obtientun espace d'�etat �ni K � Nk. Une trajectoire correspond �a l'�evolution temporelle des quantit�esde biens disponibles. Une fonction de transition a : K � K ! R[ f�1g est associ�ee aupassage d'un �etat �a un autre. Certaines transitions peuvent être interdites, ce qui est sp�eci��e endonnant la valeur �1 �a a(:; :). Cette fonction est souvent appel�ee fonction de coût en contrôleet utilit�e en �economie. En �economie, l'interdiction de certaines transitions correspond souvent�a des limitations en terme de capacit�e de production.En th�eorie du contrôle, l'objectif est de d�eterminer une trajectoire optimale, c'est-�a-dire min-imisant le coût. En �economie classique, sous une hypoth�ese dite d'information parfaite, onconsid�ere que l'�economie �evolue de fa�con rationnelle. Cela signi�e que la trajectoire r�eelle este�ectivement celle qui maximise l'utilit�e. Le choix signi�catif devient celui du choix de l'�etat�nal �etant donn�e l'�etat initial. Dans les deux cas, il est essentiel de d�eterminer les trajectoiresoptimales.Le crit�ere �a optimiser en l'absence de taux d'actualisation, resp. avec un taux d'actualisation r,est : Xn a(x(n); x(n+ 1)); resp. Xn rn � a(x(n); x(n+ 1)) ;o�u x = fx(0); x(1); : : : ; x(n); : : :g est la trajectoire. On se restreint par la suite au crit�ere sansactualisation. On ajoute souvent au probl�eme un gain6 terminal. Le gain maximal en horizon6Par la suite, on consid�ere des gains plutôt que des coûts de fa�con �a travailler avec la fonction max plutôt quela fonction min.



1.5 Optimisation Dynamique 32N (souvent appel�e fonction valeur) est alors obtenu comme solution de l'�equation :v(x(0)) = maxx N�1Xn=0 a(x(n); x(n+ 1)) + g(x(N)) ; (1.10)o�u la fonction g correspond au gain terminal. On introduit la matrice A d�e�nit par Aij = a(i; j)et on identi�e la fonction g : K ! R �a un vecteur colonne. L'�equation (1.10) peut se r�ecriresous la forme de (1.2) : v(x(0)) = (AN 
 g)x(0); v = AN 
 g : (1.11)La valeur propre de la matrice A, voir x1.2, correspond au gain (resp. �a l'utilit�e) moyen(ne) lelong d'une trajectoire optimale.En g�en�eral, en optimisation, on s'int�eresse plus �a la forme des trajectoires optimales qu'�a la valeurdu gain moyen. Ces trajectoires sont directement reli�ees aux vecteurs propres de l'�equationspectrale (1.4), plus connue en optimisation sous le nom d'�equation de Bellman stationnaire.Essayons d'expliquer cela.Lorsque l'on r�esout l'�equation (1.10) en horizon �ni, on se heurte au probl�eme de l'existenced'e�ets de bord. On peut �eliminer ces e�ets en choisissant une fonction g adapt�ee. On choisit gde fa�con �a ce que la solution de (1.11) soit ind�ependante de l'horizon N . Plus pr�ecis�ement, latrajectoire optimale du probl�eme (1.11) sous l'horizon N doit constituer les N premi�eres �etapesde la trajectoire optimale sous l'horizon N 0 pour N 0 > N .Les fonctions g v�eri�ant cette propri�et�e sont les solutions de l'�equation de Bellman, c'est-�a-direles vecteurs propres de la matrice (max,+) A.Un autre probl�eme classique est celui de l'optimisation en horizon in�ni. Soit g un vecteur proprede la matrice A. D'apr�es ce que l'on vient de voir, on peut associer �a g une trajectoire optimaleind�ependante de l'horizon N et donc, par passage �a la limite, une trajectoire in�nie optimale.Notons qu'il n'y a pas unicit�e de la trajectoire optimale, une matrice (max,+) pouvant avoirplusieurs vecteurs propres. Ce ph�enom�ene a �et�e tr�es �etudi�e en �economie math�ematique sous lenom de turnpike theory, voir McKenzie [108]. En particulier il existe une importante litt�eratured�e�nissant des crit�eres permettant de choisir entre trajectoires in�nies optimales, voir [142] etses r�ef�erences.Il est �egalement classique de consid�erer une fonction de transition an(:; :) variable au cours dutemps. En �economie, les variations peuvent correspondre �a des changements technologiques, �ades variations de la taille ou de la composition de la population voir �a des modi�cations desgoûts et des comportements. La mod�elisation doit alors se faire �a l'aide de matrices (max,+)variables. L'�equation (1.11) devient donc :v = A(1)A(2) � � �A(N)
 g : (1.12)Pour pouvoir calculer v de fa�con r�ecursive, il est n�ecessaire d'introduire les variables vk =A(k)A(k+ 1) � � �A(N)
 g. On obtient :vk = A(k)vk+1 et v0 = v : (1.13)



1.6 M�ecanique Statistique 33L'�equation r�etrograde (1.13) est connue sous le nom d'�equation de la programmation dynamique.1.6 M�ecanique StatistiqueLe mod�ele de Frenkel-Kontorova est �etudi�e en m�ecanisme statistique. Ce mod�ele simpli��e permetd'appr�ehender les ph�enom�enes de transitions de phase apparaissant dans l'�etude des structurescristallines et du magn�etisme des m�etaux rares. Pour une pr�esentation plus d�etaill�ee, on sereportera �a Chou et Gri�ths [41] et surtout �a l'article de synth�ese de Gri�ths [80].Le mod�ele de Frenkel-Kontorova peut être d�ecrit comme un syst�eme de particules reli�ees pardes ressorts et plac�ees dans un potentiel p�eriodique, voir �gure 1.11. x1k 2k 1 2Figure 1.11: Mod�ele de Frenkel-Kontorova.L'�energie potentielle totale de ce syst�eme est de la forme :H =Xn H(xn; xn+1) =Xn (W (xn+1 � xn) + V (xn)) ; (1.14)o�u xn est la position de la n-i�eme particule, V est un potentiel p�eriodique de p�eriode 1 et W estl'�energie potentielle du ressort. On a le plus souvent V (u) = K cos(2�u) et W (u) = 1=2(u� )2o�u  est la longueur du ressort au repos.L'approche physique classique pour �etudier un tel syst�eme est de rechercher les solutions del'�equation �a l'�equilibre @H=@xn = 0. La r�esolution de cette �equation est dans le cas pr�esentparticuli�erement di�cile. On propose ici une analyse sensiblement di��erente.Etant donn�e une �energie de la forme (1.14), une proc�edure standard en m�ecanique statistiqueconsiste �a introduire l'op�erateur de transfert F d�e�ni ci-dessous :F (x; x0) = exp�� 1T H(x; x0)� ; (1.15)o�u T est la temp�erature. Les propri�et�es du syst�eme original sont �etudi�ees �a travers la limite del'op�erateur de transfert lorsque la temp�erature tend vers 0.



1.6 M�ecanique Statistique 34On consid�ere dans la suite le mod�ele de Frenkel-Kontorova discr�etis�e avec une grille de r�esolutionde pas 1=k. Ainsi l'intervalle unit�e est-il d�ecoup�e en f1=k; 2=k; : : : ; 1g. L'op�erateur F se d�ecritcomme une matrice positive de dimension k�k dont les coordonn�ees sont Fij = exp( �1=T ~Hij ),o�u la matrice ~H est d�e�nie par :( ~Hij = H(i=k; j=k) = W (j=k � i=k) + V (i=k) si i 6 j~Hij = H(i=k; j=k+ 1) = W (1 + j=k� i=k) + V (i=k) si i > j :Les propri�et�es thermodynamiques du syst�eme sont d�etermin�ees par la plus grande valeur propre(dans l'alg�ebre usuelle) de F . Par le th�eor�eme de Perron Frobenius, celle-ci est r�eelle positiveainsi que son vecteur propre associ�e. On �ecrit la valeur propre sous la forme exp(�1=T �) et levecteur propre sous la forme exp(�1=T x) = ( exp(�1=T x1); : : : ; exp(�1=T xk) )0. On a :exp��1=T ~H� exp (�1=T x) = exp (�1=T �) exp (�1=T x) : (1.16)Lorsque la temp�erature tend vers 0, on peut simpli�er l'�equation (1.16) en ne conservant que lestermes dominants. On obtient alors l'�equation (pour la ligne i) :maxj expf(� 1T ~Hij + xj)g ' expf� 1T (�+ xi)g) minj ( ~Hij + xj ) = �+ xi : (1.17)L'�equation (1.17) obtenue apr�es passage au logarithme est une �equation spectrale dans Rmin entout point similaire �a celle d�e�nie en (1.4). On peut bien sûr se ramener �a un syst�eme (max,+)lin�eaire en consid�erant � ~H;�� et �x.Il existe une autre m�ethode, dans l'esprit de la programmation dynamique, voir x1.5, pouraboutir �a l'�equation (1.17). On commence par �xer la position x1 de la premi�ere particule dansle potentiel, puis on d�etermine la position x2 > x1 de la deuxi�eme particule de fa�con �a minimiserl'�energie H pour l'ensemble des deux particules. On proc�ede ensuite par r�ecurrence. On noteh(n)i; i = 1; : : : ; k; l'�energie minimale d'un syst�eme �a n particules dont la plus �a gauche est enposition i=k. En particulier, on a h(1)i = V (i=k). On obtient :h(2)i = minj>i ( W (i=k� j=k) + V (i=k) + V (j=k) ) = minj ( ~Hij + h(1)j ) : (1.18)Par r�ecurrence et en utilisant les notations de l'alg�ebre (min,+), on obtient :h(n+ 1) = ~H 
 h(n) = ~Hn 
 h(1) : (1.19)L'�equation (1.17) est l'�equation spectrale associ�ee �a (1.19).La valeur propre � de H est l'enthalpie moyenne par particule. On s'int�eresse �egalement auxcon�gurations de particules minimisant l'�energie H . Soit h un vecteur propre de ~H . On d�e�nitune fonction � o�u �(i) est un des indices r�ealisant le minimum de ( ~Hij + hj). A partir des it�er�esde cette fonction, on obtient une con�guration p�eriodique d'�energie minimale.



1.7 Conclusion 35La densit�e spatiale de particules dans une con�guration minimale est le param�etre physique leplus �etudi�e. Pour une con�guration p�eriodique, cette densit�e est un rationnel. Le ph�enom�enede transition de phase consiste en l'existence de discontinuit�es de cette densit�e en fonctiondes param�etres (;K) du mod�ele. D'un point de vue alg�ebrique, cela s'interpr�ete comme ladiscontinuit�e de la cyclicit�e (voir chapitre 3) en fonction des coordonn�ees de la matrice. De tr�esbeaux graphiques illustrant le ph�enom�ene sont propos�es dans [80].Un syst�eme est �a interaction de type plus proche voisin si son �energie potentielle est de la formeH = PH(xn; xn+1) (g�en�eralisation de (1.14)). L'approche pr�esent�ee ici s'applique �a de telssyst�emes �a condition de pouvoir borner uniform�ement la distance entre deux particules de fa�con�a repr�esenter le syst�eme par une matrice de taille �nie.1.7 ConclusionLes exemples propos�es dans ce chapitre sont loin d'�epuiser l'ensemble des probl�emes et mod�elesrepr�esentables sous forme (max,+) lin�eaire.Parmi les mod�eles que l'on a pas pr�esent�es, le plus c�el�ebre et le plus ancien est celui de larecherche du plus long (ou court) chemin dans un graphe valu�e. Il s'agit d'une application di-recte de l'interpr�etation alg�ebre de chemin d�ecrite en x1.2. Cette application est connue depuisla �n des ann�ees 50, voir les r�ef�erences de [50], chapitre 1. De nombreux probl�emes en rechercheop�erationnelle peuvent être abord�es de cette fa�con, voir [78] pour une pr�esentation d�etaill�ee.L'ordonnancement au plus tôt sans contraintes de ressources est une instance du même prob-l�eme et sera consid�er�e au chapitre 4. Le probl�eme plus compliqu�e de l'ordonnancement aveccontraintes de ressources peut �egalement être abord�e par une approche (max,+) lin�eaire [71].On peut �egalement repr�esenter sous forme (max,+) lin�eaire des r�eseaux de communication, voir[8] ou Braker [28] pour le r�eseau ferroviaire hollandais.D'autre types de r�eseaux de �les d'attente que ceux pr�esent�es en x1.3.3 peuvent être consid�er�es.Parmi ceux-ci, on peut mentionner les r�eseaux s�erie-parall�ele, les mod�eles de rendez-vous et en�ndes r�eseaux avec relations de pr�ec�edence entre clients.Un autre domaine tr�es riche et non abord�e dans ce chapitre (et dans cette th�ese) est celui dessyst�emes (max,+) lin�eaires continus. On consid�ere l'espace F des fonctions d'un ensemble Edans R[ f�1g. On d�e�nit l'op�erateur A : F ! F par :Af(x) = supy2E (a(x; y) + f(y)) def= 	ZEa(x; y)
 f(y) :On parle parfois d'int�egrale de Maslov de f par rapport �a la \mesure" a. Il existe une th�eoriecompl�ete de l'int�egration de Maslov. Parmi les domaines d'application, on peut mentionnerl'�etude des solutions de certaines �equations aux d�eriv�ees partielles (�equation de Schr�odinger, deHamilton-Jacobi). Pour de plus amples d�etails, on se reportera au volume [107].



Chapitre 2Minimal Representation of UniformRecurrence EquationsRepr�esentation Minimale d'�Equations R�ecurrentes UniformesDans ce chapitre, nous �etudions des syst�emes d'�Equations R�ecurrentes Uniformes. L'objectif estde minimiser le nombre de cases m�emoires n�ecessaires pour mener le calcul d'un tel syst�eme.Le mod�ele �etudi�e est tr�es g�en�eral et se situe en amont des mod�eles �etudi�es par la suite. De fait,on verra en section 2.7 que les syst�emes (max,+) lin�eaires sont un cas particulier d'�EquationsR�ecurrentes Uniformes. Une application des r�esultats de ce chapitre est la minimisation de lataille du syst�eme (max,+) lin�eaire repr�esentant un graphe d'�ev�enement donn�e.Ce chapitre provient d'un travail commun avec Bruno Gaujal et Alain Jean-Marie [74]. Unepartie des r�esultats a �et�e pr�esent�ee dans [73]. Les auteurs tiennent �a remercier tout parti-culi�erement Jean-Claude Bermond, Alain Darte, Mike Robson et St�ephane Gaubert pour denombreuses discussions.



2.1 Introduction 37We consider a system of uniform recurrence equations of dimension one. We show how thecomputation can be carried using minimal memory size with several synchronous processors.This result has applications in register minimization for digital circuitry and parallel simulationof timed event graphs.2.1 IntroductionThe model under study will be the Uniform Recurrence Equations (URE) [93].De�nition 2.1.1 (URE). We consider E-valued variables Xi(n); i 2 V = f1; : : : ; kg; n 2 K,where E is an arbitrary set and K �Zp for some p 2 N. These variables satisfy the equationsXi(n) = Fi(Xj(n � )); (j; ) 2 Di; 8n 2 K : (2.1)The sets Di are �nite non empty subsets of f1; : : : ; kg �Zp.The integers  are called the delays. The system S de�ned by Equation (2.1) is said to beuniform because the dependence sets Di do not depend on n. Note that it is possible to havetwo delays ;  0 2 Zp;  6=  0 such that (j; ) 2 Di and (j;  0) 2 Di. There is no restriction onthe generality of the functions Fi considered.There are various motivations to study URE. They appear in the description of di�erentialequations using �nite di�erence methods or in the study of discrete event systems. The casep > 1; K = Zp has often been studied in the literature, see [93]. In such a case, some of themajor issues are the constructivity [93] and loop parallelization [53]. These problems and othersappearing in this framework will be discussed in x2.3.1.In this paper, we consider only the simple case where K = Z(systems of dimension one). Weinvestigate the problem of minimizing the number of \memory locations": we want to determinethe minimal memory size that is needed to compute all the variables Xi(n) of Equation (2.1)using parallel processors with a shared memory.We show that the solution of this problem has many applications. It can be used in order toobtain the most e�cient representation of the system for simulation purposes. This aspect of theproblem will be investigated in x2.7. In a quite di�erent context, URE appear in the modelingof logical circuits, systolic arrays or program loops. The minimization for URE enables us toobtain an optimal design of such circuits (in terms of number of registers). This application willbe discussed in x2.6.The paper is organized as follows. In Section 2.2, we precise the de�nition of a system of UREand we present two associated graphs, the dependence graph and the reduced graph. In Section2.3 we describe the problem that we are going to address. Section 2.4 investigates the relationsthat can be found between cuts in the dependence graph and the memory size required foran execution of the URE; section 2.5 presents the interpretation of the above quantities in thereduced graph. Finally in Sections 2.6 and 2.7, two applications are described, for digital circuitsand (max,+) linear systems respectively.



2.2 Basic Models 382.2 Basic ModelsFrom now on, we consider URE of dimension 1. More precisely, we consider the set of variablesXi(n); i 2 V = f1; : : : ; kg; n 2Zand the equationsXi(n) = Fi(Xj(n � )); (j; ) 2 Di; n 2Z ; (2.2)where the sets Di are �nite non empty subsets of f1; : : : ; kg � N.A system of URE S is constructive if given the values of the \negative" variables Xi(n); n 6 0,involved in S (initial data), there exists an ordering of the equations such that, 8i; 8n > 0, allthe variables present in the right hand side of the equation de�ning Xi(n) are either \negative"variables or can be computed before Xi(n). This condition is satis�ed if and only if there isno cycle in the dependences, i.e. there does not exist i1; : : : ; ip; ip+1 = i1 such that (i2; 0) 2Di1 ; (i3; 0) 2 Di2 ; : : : ; (i1; 0) 2 Dip .Remark 2.2.1. We could have considered an apparently more general de�nition of URE allow-ing the delays  to be negative in Equation (2.1.1). In this case, the constructivity assumptionbecomesFor each cycle (i1; 1); : : : ; (ip; p); ip+1 = i1 such that (ij+1; j+1) 2 Dij ; j 2 f1; : : : ; pg thenPpj=1 j > 0. Under the constructivity assumption, it is possible to come back to Equation(2.1.1) through a simple renumbering of the variables (i.e. Xi(n) := Xi(n + ci) for some con-stant ci 2Zindependent of n).From now on, the system S that we consider is always assumed to be constructive. We are goingto present two equivalent ways to describe S : the dependence graph and the reduced graph.Example 2.2.2. The illustrative examples to be presented in the following correspond to thesystem : 8>><>>: X1(n) = F1(X3(n� 1))X2(n) = F2(X1(n� 2))X3(n) = F3(X2(n); X4(n� 2))X4(n) = F4(X3(n� 1); X4(n� 1)); (2.3)2.2.1 Dependence graphWe introduce the graph D of the dependences between the variables Xi(n).De�nition 2.2.3 (Dependence graph). The dependence graph associated with a system ofURE is the graph D with (V �Z) as the set of nodes. There is an arc from the node (i; n)to the node (j;m) if Xj(m) = Fj(Xi(n); : : :) or equivalently if (i;m � n) 2 Dj (notation:(i; n)! (j;m)).The n-th level in D is the set of nodes f(i; n); 1 6 i 6 kg. The i-th column in D is the set ofnodes f(i; n); n 2Zg. In the following, we will refer to nodes (i; n); n 6 0 as negative nodes andnodes (i; n); n > 0 as positive nodes.



2.2 Basic Models 39It is immediate from the de�nition of an URE that D is 1-periodic, i.e.(i; n)! (j;m)) (i; n+ 1)! (j;m+ 1) :Note also that the constructivity assumption implies that the graph D is acyclic.We have represented in Figure 2.1 the dependence graph corresponding to the system of Example2.2.2.

1 2 3 4 Columns
Levels1234

0-1
...Figure 2.1: Dependence graph associated with the system S of Equation (2.3).The dependence graph appears under various forms and names in the literature. For example, wecan mention the following names: developed graph, task graph, PERT graph, unfolded processgraph or activity network.2.2.2 Reduced graphSince the dependence graph is 1-periodic, it can be folded into a more compact form. This ishow we construct the reduced graph R associated with the system S.De�nition 2.2.4 (Reduced graph).The reduced graph is an arc valued graph R = (V;E;�). The set of nodes is V = f1; � � � ; kg.There is an oriented arc in E from i to j if9 2 N s.t. (i; ) 2 Dj : (2.4)



2.2 Basic Models 40This arc is valued with the delay . If there exist several delays  verifying condition (2.4), Econtains several arcs between the nodes i and j, with corresponding values.There is an arc from i to j in E, if and only if there are arcs from the column (i; :) to the column(j; :) in the dependence graph. Note that system S is constructive if and only if the sum of thedelays along any circuit in R is positive.The reduced graph associated with the system S of Example 2.2.2 is represented in Figure 2.2.The delays  associated with the arcs are depicted in boxes. 122 10 12 31 4Figure 2.2: Reduced graph associated with the system S of Equation (2.3).Reduced graphs appear in the literature under the following names : computation graph, Syn-chronous Data Flow (SDF) graphs, process graphs or uniform graphs.2.2.3 Recycled caseIn the following, we will particularly study a special case of URE, where the computation of thevariable Xi(n) cannot be done before the computation of Xi(n�1). This case appears naturallyin marked graphs to impose a FIFO behavior (see section 2.7) and in other applications. Thisconstraint can be modeled by imposing a dependence between Xi(n�1) and Xi(n), for all i andn. Formally, it results in having (i; 1) 2 Di; 8i; for the system of URE. Equivalently, it resultsin having a self loop with delay one (hence the name recycled) in each node of R, or in havingarcs between the nodes (i; n) and (i; n+ 1) in D.Figure 2.3 depicts an example of a recycled system.2.2.4 Preliminary remarksIt should be clear from the de�nitions that there is a one to one correspondence between thethree models. Indeed, a system can be given by its reduced graph as well as its dependencegraph or system of equations.If R is not connected, then the system of URE is made of two or more independent systemswhich can be studied independently. In the rest of the paper we will always assume that thegraph R is connected.
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1 11 100 32 1 1 2 3Recycled reduced graph Recycled dependence graphFigure 2.3: Recycled reduced and dependence graphs.In the following, we will study more precisely the relations between D and R.2.3 Parallel ExecutionsIn this part, we will de�ne the problem to be investigated in the rest of the paper. Roughlyspeaking, we want to minimize the memory size required to compute a system S. In x2.3.1, wediscuss the main issues that have been studied in the �eld of uniform recurrence equations andwe explain the di�erence with the aim of this paper. Section x2.3.2 gives a formal de�nition ofthe question we investigate in the following.2.3.1 Relations with the basic scheduling problemOrganizing e�cient computations for uniform recurrence equations on parallel computers hasnow taken a considerable importance in the literature. In the past, the investigations have oftenbeen oriented towards speeding up the execution with no or little consideration for memoryrequirements.Assume that initially the negative variables Xi(n); n 6 0 are known. Assume also that eachcomputation of a variable requires a time equal to 1. In a system of URE, the date at which thevariable Xi(n); n > 0 will be computed is necessarily larger than the length of a longest path inD from level 0 to (i; n). A computation of a system of URE is as soon as possible if the time ittakes to compute the variable Xi(n) is exactly given by the longest path from level 0 to (i; n).A �rst question that can be addressed is :What is the number of processors required to carry outa computation as soon as possible ?This number is often called the degree of parallelism of the URE. In general, the solution is givenby the size of the maximal anti-clique in the dependence graph.



2.3 Parallel Executions 42Once this question is settled and provided a su�cient number of processors are available (i.e.larger than the degree of parallelism of the system), a problem is to characterize the as soon aspossible schedule. This problem is often called the basic scheduling problem, see also Chapter4. It has been proved that for the as soon as possible schedule, the time at which the variableXi(n) is computed is of the form �n + di, where � is called the cycle time of the system (see[42] [44]). Such a schedule is said to be linear. For systems of higher dimension (i.e. whenK = Zp; p > 1 in Equation (2.1)), partial results on the optimality of linear schedules can befound in [52, 53].When the number of available processors is �xed and less than the degree of parallelism of theURE, �nding the optimal schedule becomes NP-hard, see [85].All the results mentioned above are related with the problem of minimizing the number ofprocessors used. This paper is concerned with the following dual problem : how much memoryis necessary to carry out the computations of an URE, the number of processors being unlimited.First, we should say that, in general, a computation as soon as possible requires a lot of memory.It may not even be bounded in n when the reduced graph R is connected but not stronglyconnected. This makes the alternative to �nd a computation using a smaller memory sizeattractive. Second, the usual time-space trade-o� tells us that some interesting results can beexpected to arise when minimizing the memory size.As one can expect, the schedule we will propose will not be as soon as possible in general.The time required to carry out the computation of variable Xi(n) will be of the form �0n+ d0i,where �0 > �. Furthermore, the number of processors needed to carry out the computationwill be greater than the degree of parallelism, but smaller than the memory size involved in thecomputation. In spite of these two drawbacks, the schedule we propose provides a new insighton the best ways to compute a system of URE and has interesting practical applications, seex2.6 and x2.7.As shown in the following, the minimal size of the memory is related with cuts in the dependencegraph (instead of anti-cliques for the minimal number of processors).2.3.2 Pebble gameLet us work with an URE, S and its associated dependence graphD as de�ned in x2.2.1. We wantto compute iteratively all the variables Xi(n). At each step, the variables which are necessaryto carry out the computations have to be stored in some memory locations.We want to determine the minimal number of memory locationsneeded to compute all the variables Xi(n).We give a description of this problem in terms of a pebble game (see [119]).Game 1. We consider a dependence graph D. At step 0, one puts a �nite number of pebbles onnegative nodes, i.e. on nodes (i; n); n 6 0. By convention, we assume that at least one of thesepebbles is on level 0. At each step of the game, the following moves are allowed.Move 1 : Put a pebble on a node (i; n) if on each in�nite oriented path (see De�nition2.4.1) ending in (i; n) there is at least one node with a pebble.Move 2 : Remove a pebble from a node.



2.3 Parallel Executions 43An execution of the game is successful if all positive nodes receive a pebble during the execution.In the following, we will always refer to successful executions simply as executions. The set of(successful) executions will be denoted E . Several variants for the number of moves allowedduring a step are to be considered later on. Accordingly, a step of the game may have aduration di�erent from 1 unit of time, see the discussion in Remark 2.3.3.De�nition 2.3.1 (con�guration). In an execution, the position of the pebbles at step t 2 N,is called the t-th con�guration and is denoted A(t). In particular, A(0) corresponds to the setof initial pebbles.Pebbles correspond to memory locations. A pebble put on a node corresponds to the computa-tion of a new data and its storage in the memory. The removal of a pebble corresponds to theerasing of a data from the memory. An execution corresponds to a computation of all the nodesin the dependence graph. Our objective will be to �nd an execution of the game using a numberof pebbles which is as small as possible. The total number of pebbles used by an execution e 2 Eis P(e) def= maxt2N jA(t)j ;where jA(t)j represents the cardinal of A(t).Remark 2.3.2. Note that this de�nition of P(e) considers only the number of pebbles at theend of the step and not in intermediate stages (after move 1 and before move 2 for example). Itcorresponds to the assumption that both moves can be performed simultaneously.Our objective can be rede�ned as follows:Problem 1. We want to �nd an execution eo 2 E such that P(eo) = mine2E P(e):The de�nition of Move 1 implies that we are allowed to perform function compositions duringone step of the execution (see for example Figure 2.6, ruleM3).We have to take care of the fact that function composition has a cost. In order to do so, weassume that step t lasts l time units where l is the length of the longest path in D joining a nodemarked at step t�1 to a node marked at step t. This is coherent with the assumption that eachcomputation requires 1 time unit. Note that l is also the longest chain of function compositionsperformed during step t.Remark 2.3.3. Here is a possible execution of the game. The initial pebbles A(0) remainunchanged along the execution. An additional pebble is used to mark successively all the nodesin the graph. In this case, marking a node on level n takes 
(n) units of time and marking allthe nodes up to level n takes 
(n2) units of time. On the other hand, we say that an executionhas a linear time complexity if it puts a pebble on node (i; n) within O(n) time units for all n.The set of linear executions is not empty. For example, if we mark the nodes as soon as possible,then node (i; n) is marked at time �n+ di.The executions that we are going to propose to solve Problem 1 will not be optimal in terms oftime complexity (i.e. will not be asap). However, they will always be linear, which means thatthe loss in terms of time e�ciency is kept under control (see also the discussion in x2.3.1).In order for the pebble game to be rigorously de�ned, we need to have some additional rules.We are going to de�ne four di�erent set of rulesM1,M2,M3 andM4.



2.3 Parallel Executions 44M1 : Asynchronous execution We consider two additional rules. In particular, we furtherconstrain the rule of Move 1.� Move 1' : Put a pebble on a node if all the predecessors (for the precedence relation) ofthis node have a pebble.� It is possible to perform one move of type 1' and several moves of type 2 during one stepof the game. On the other hand, it is not possible to perform several moves of type 1'.Let us consider the example of Figure 2.4. We have represented a small part of the dependencegraph of the URE Xi(n) = Fi(X1(n� 1); X2(n� 1); X3(n� 1)); 8i = 1; 2; 3.1 2 3nn+ 1 step t+ 1step t + 2 step t+ 3step t
Figure 2.4: Asynchronous rule,M1, �ve pebbles are needed.At step t, there are pebbles on the nodes (1; n); (2; n) and (3; n). At step t + 1, we can put apebble on node (1; n + 1) as all the predecessors (i; n) have a pebble. At step t + 2, and forthe same reason, we can put a pebble on node (2; n + 1). At step t + 3, we put a pebble onnode (3; n+ 1) and we remove the pebbles on nodes (i; n) (they are not needed anymore). Theminimal number of pebbles needed to describe the dependence graph of Figure 2.4 is 5.This rule corresponds to the necessity of performing asynchronous computations. It is relevantif we use a sequential computer to perform the calculations. In this case, the maximal number ofpebbles used during the game corresponds to the minimal number of memory locations neededto carry out the computation.Remark 2.3.4. When Game 1, rule M1, is performed on a binary tree, the minimal numberof pebbles is known as the Strahler's number. This Strahler's number appears in various �eldsranging from hydrology or combinatorics to molecular biology. For a nice review paper, thereader is referred to Viennot [135].In the forthcoming set of rules, we switch back to the original de�nition of Move 1, see Game 1.



2.3 Parallel Executions 45M2 : Synchronous execution We consider Game 1 with the following additional rule.� Several moves of type 1 and several moves of type 2 can be performed at the same step ofthe game.We consider, in Figure 2.5, the same example as previously under the new set of rules.
step t step t+ 1 step t+ 2Figure 2.5: Synchronous rule,M2. Three pebbles are needed.At step n, we have three pebbles on nodes (i; n), i = 1; 2; 3. At step n+1, we put simultaneouslythree pebbles on nodes (i; n+1) and we remove the initial pebbles. Hence, the number of pebblesneeded by this execution is three.This rule corresponds to the case where several synchronous processors are used during thecomputations. It will be adapted if we use parallel synchronous processors with shared memoryto carry out the calculations.M3 : Synchronous regular execution We consider Game 1 with two additional rules� Several moves of type 1 and several moves of type 2 can be performed at the same step ofthe game.� If at step t the con�guration is A(t), then at step t + 1, the con�guration is (A(t) + 1)de�ned by : (i; n) 2 A(t) + 1, (i; n� 1) 2 A(t) :The example of Figure 2.5 was also verifying the set of rules M3. To see that M2 and M3are di�erent, let us consider the example of Figure 2.6. It corresponds to the URE X1(n) =F1(X2(n� 1)); X2(n) = F2(X1(n)).In Figure 2.6 (I), only one pebble is needed. The corresponding execution veri�es rule M2 butnot rule M3. In Figure 2.6 (II), two pebbles are needed. The corresponding execution veri�esruleM3. The computations are performed according to the following patterns :� Rule M2 (Figure 2.6 (I)).{ step t : X2(n) = F2(X1(n)).{ step t+ 1 : X1(n+ 1) = F1(X2(n)).



2.3 Parallel Executions 46{ step t+ 2 : X2(n+ 1) = F2(X1(n+ 1)) : : :� Rule M3 (Figure 2.6 (II)).{ step t : (X1(n+ 1); X2(n+ 2)) = (F1 � F2(X1(n)); F2 � F1(X2(n+ 1))).{ step t+ 1 : (X1(n+ 2); X2(n+ 3)) = (F1 � F2(X1(n+ 1)); F2 � F1(X2(n+ 2))) : : :Note that in the execution under ruleM3, we perform function compositions, F2�F1 and F1�F2.Hence each step lasts two time units.RuleM3 has several advantages. First, the number of pebbles needed to carry out the calcula-tions, is easy to compute, it is equal to jA(t)j (independent of t). Second, a regular executionis interesting for implementation purposes. It provides an easy computation of the variables inthe new con�guration from the ones in memory by always applying the same operator. A nonregular execution could be practically very intricate to implement.M4 : Synchronous regular non-anticipative execution� Several moves of type 1 and several moves of type 2 can be performed at the same step ofthe game.� If at step t the con�guration is A(t), then at step t + 1, the con�guration is (A(t) + 1)de�ned by (i; n) 2 A(t) + 1, (i; n� 1) 2 A(t).� A path (see De�nition 2.4.1) from a node in A(t) to a node in A(t+1) contains only nodesbelonging either to A(t) or to A(t + 1).Let us consider the example of Figure 2.6. In Figure 2.6 (II), we have an example of an executionwhich veri�es rule M3 but not M4. For example (see above), the node (1; n + 2) is used atstep t but is computed only at step t + 1 . On the other hand, in Figure 2.6 (III), we have anexecution which veri�es ruleM4. In the example of Figure 2.6. The corresponding computationpattern is :� Rule M4 (Figure 2.6 (III)).{ step t : (X1(n+ 1); X2(n+ 1)) = (F1(X2(n)); F2 � F1(X2(n))).{ step t+ 1 : (X1(n+ 2); X2(n+ 2)) = (F1(X2(n+ 1)); F2 � F1(X2(n+ 1))) : : :Remark 2.3.5. In Figure 2.6, the number of pebbles is the same for the two set of rulesM3andM4. It is not always the case, see Figure 2.10.2.3.3 SummaryIn the following, we will use the notations :� E : the set of all possible (synchronous) executions under ruleM2.
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(II)
(III)
(I)

Figure 2.6: Rule M2 (I), ruleM3 (II) and ruleM4 (III).� RE : the set of all possible executions under rule M3. Elements of RE will be calledregular executions.� NRE : the set of all possible executions under ruleM4. Elements of NRE will be callednon-anticipative regular executions.Note that NRE � RE � E :Complexity Results Under rule M1, the problem of determining the minimal number ofpebbles to compute a general directed acyclic graph with one �nal node has been considered bySethi [128]. In that paper, it is proved that this problem is NP-complete. Here, we can easilyembed any directed acyclic graph on each level of a recycled dependence graph. We also embedthe same acyclic graph between two levels of D (see Figure 2.7).Now, it is not di�cult to see that the minimal number of pebbles needed under ruleM1 in thisdependence graph is the minimal number of pebbles necessary to carry out the computation on



2.4 Cuts and Pebbles 481 2 3 4 5125 3 4Figure 2.7: Embedding of an arbitrary acyclic graph in a dependence graph.the original acyclic graph plus the number of columns in D. Therefore, our problem under ruleM1 is also NP-complete.In the following we will only consider synchronous executions, i.e. the set of rulesM2,M3 andM4. In particular, we will characterize executions using a minimal number of pebbles underrules M2,M3 and M4 and we are going to prove that the minimal number of pebbles can befound in polynomial time for the recycled case.2.4 Cuts and PebblesFrom now on, we consider the recycled case, see x2.2.3. It is always implicitly assumed (unlessotherwise speci�ed) that the system under study is recycled.2.4.1 Cuts in DLet us recall some classical de�nitions of graph theory, all de�ned in the dependence graph, D.For further references, see [65] or [78] for example.De�nition 2.4.1 (path). A path is a sequence of nodes and arcs in D of the form � � � !(i0; n0) ! (i1; n1) ! (i2; n2) ! � � � ! (ik; nk) ! � � � . A path is bi-in�nite if it contains anin�nite number of negative nodes and an in�nite number of positive nodes.De�nition 2.4.2 (cut). A cut C is a set of nodes in D such that any bi-in�nite path containsat least one node of C. A cut of minimal size is called a minimal cut.De�nition 2.4.3 (ow). A ow is a set of bi-in�nite paths such that any two paths do notshare any node. A ow containing a maximal number of paths is called a maximal ow.The most classical notion of cut involves arcs rather than nodes and a ow is a set of pathswhich do not share arcs rather than nodes. However a small transformation of each node intotwo nodes connected by an arc would allow us to go back to the original notions.De�nition 2.4.4 (section). A section S in D is a set of nodes with exactly one node percolumn, S = f(i; ni); i 2 V g.Note that since D is recycled, a cut contains at least one node per column. Using this property,one can de�ne the upper and lower sections of a cut.
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A consecutive cutA non consecutive cutFigure 2.8: Consecutive and non consecutive cuts (on a non-recycled example).De�nition 2.4.5 (upper, lower section). The upper (resp. lower) section Cu (resp. Cl) ofa cut C is the set of nodes (i; n) in C such that the nodes (i; n�h); h > 0 (resp. (i; n+h); h > 0)do not belong to C.De�nition 2.4.6 (consecutive cut). A cut C in D is consecutive if on each column of D, Ccontains only consecutive nodes, i.e.For all i 2 V , (i; n) 2 C and (i; n+ 1) 62 C ) (i; n+ k) 62 C; 8k > 0.An example of consecutive and non-consecutive cuts is displayed in Figure 2.8.Lemma 2.4.7. There exists a minimal cut of D which is a minimal consecutive cut.Proof. Let C be a minimal consecutive cut. We will prove that C is a minimal cut. First, notethat there are no arcs from Cu to Cl + k; k > 2, otherwise C would not be a cut.Now, consider the sub-graph G of D made of the nodes Cu [ (Cl + 1) and the arcs between Cuand Cl + 1 in D. See Figure 2.9.A cut in a �nite graph G is a set of nodes such that, when removed from G, there is no arcremaining in G. Let � be a cut in G of minimal size. If j�j < jCuj then CnCu [ � would bea consecutive cut in D strictly smaller than C, which contradicts the fact that C is a minimalconsecutive cut. Therefore, we have j�j = jCuj.An adapted version of a famous \minimax" theorem �rst proved by Ford-Fulkerson (see [65])states that we can �nd j�j node-disjoint arcs in G. Since j�j = jCuj = jCl+1j, these arcs de�nea one to one mapping � from Cu to Cl + 1. From � we construct a ow in C in the following



2.4 Cuts and Pebbles 50C CuCl + 1GFigure 2.9: Graph G made from the lower and upper sections of Cway. Select all the arcs of the form ((i; n) + k)! (�(i; n) + k) for all (i; n) 2 Cu and all k 2 Z.These arcs form a ow F in D of size jCj.Let Cm be a minimal cut in D. Since F is formed by node-disjoint paths, Cm must contain atleast jFj nodes, jCmj > jFj = jCj. We conclude that jCmj = jCj. utThis lemma is interesting by its own. In particular, it gives a proof of the minimax theorem(which exists in many versions) in an in�nite graph D.Corollary 2.4.8. The size of the minimal cut is equal to the size of the maximal ow in D.Another immediate corollary of Lemma 2.4.7 is that there exists a maximal ow F in D whichis 1-periodic (i.e. if the arc (i; n)! (j;m) belongs to F , then (i; n+ 1)! (j;m+ 1) belongs toF).De�nition 2.4.9. We say that an arc crosses a section S = f(i; ni); i 2 V g downwards if it isan arc of the form (i; ni� h)! (j; nj + l) with h > 0 and l > 1. An arc (i; ni+ l)! (j; nj � h)crosses S upwards if l > 1 and h > 0.De�nition 2.4.10 (compatible section, compatible cut). A section in D is compatible ifno arc crosses the section upwards. A consecutive cut is said to be compatible if its lower sectionis compatible.Note that it can be that no minimal consecutive cut in D is compatible. This is the case inFigure 2.10 where the minimal compatible cut contains 5 nodes while a minimal consecutive cutof size 4 can be found.2.4.2 Relations with executions of Game 1Lemma 2.4.11. A con�guration of any execution e 2 E is a cut in D.Proof. Let A(t) be the t-th con�guration of some execution e belonging to E . Assume that A(t)is not a cut. By de�nition, there exists a bi-in�nite path P which does not have any node inA(t). According to the rule M2 of Game 1, no positive node on P can ever be marked duringthe execution after step t and all of them cannot have received a pebble during the t �rst steps.This contradicts the fact that e is an execution of E . utLemma 2.4.12. A consecutive cut is a con�guration of a regular execution (RE).
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Minimal cut Minimal compatible cutFigure 2.10: Compatible and non compatible cuts.n+ 1nn+ 2 1 2 3Figure 2.11: A non consecutive cut which is not a regular con�guration.Proof. Let C be a consecutive cut in D. We have C + 1 = (CnCu) [ (Cl + 1). Therefore, C isa regular con�guration if and only if for each node (i; n) in Cl + 1, there is no in�nite path Pterminating in (i; n) that does not intersect the cut. But if such a path could be found, thenthe bi-in�nite path P [ f(i; n+ h); h 2 Ng would not intersect C. This contradicts the fact thatC is a cut. utRemark 2.4.13. Note that a non consecutive cut may not be a regular con�guration, asillustrated in the example of Figure 2.11. In that example, the node (2; n + 2) belongs toC + 1 but cannot be computed using only variables in C (as it depends on (3; n) for example).Therefore, the cut C is not a regular con�guration.Lemma 2.4.14. A compatible cut is a con�guration of a non-anticipative regular execution(NRE).



2.4 Cuts and Pebbles 52Proof. Let C be a compatible cut. Since C is consecutive by de�nition, Lemma 2.4.12 tells usthat C is a con�guration A(t) of a regular execution e. Suppose that e is anticipative. Thismeans that there exists a node (say (i; n)) in A(t+1) with a predecessor (say (j;m)) not markedat steps t or t+ 1. The arc (j;m� 1)! (i; n� 1) crosses the lower section of C upwards. Thiscontradicts the fact that C is compatible. utWe are now ready to state the main result of this section.Theorem 2.4.15. Let us consider a recycled system of URE S. We perform Game 1 on itsassociated dependence graph D. We havemine2RE P(e) = mine2E P(e): (2.5)In other words, there exists a regular execution which requires a minimal number of pebbles.Proof. The proof of the theorem is a direct consequence of Lemmas 2.4.11, 2.4.12 and 2.4.7.First, note that all con�gurations are cuts, Lemma 2.4.11. Let C be a consecutive cut ofminimal size, which exists by Lemma 2.4.7. By Lemma 2.4.12, C is a regular con�guration. utTheorem 2.4.15 has several interesting corollaries. First, it allows one to focus on regular exe-cutions since no fancy irregular execution of the URE can be done with fewer pebbles. Then,it provides a polynomial method to �nd an optimal execution as shown in x2.4.3. As for non-anticipative executions, polynomial algorithms will be given in x2.6.4.2.4.3 Complexity resultsWe are going to compute a maximal ow in D and then apply Corollary 2.4.8. If we want touse the algorithm of Ford and Fulkerson [65] to compute a maximal ow in D, we need �rst torestrict ourselves to a �nite graph.We call span of a cut the di�erence between the smallest level and the largest level containinga node of the cut.A slice of D from level 0 to level n will be su�cient to compute the maximal ow in the graphif a consecutive minimal cut spans over less than n levels. So it is important to determine, orat least to bound, the span of a consecutive minimal cut.Lemma 2.4.16. The span of a minimal consecutive cut is smaller than the total sum of thedelays in R.Proof. Let C be a minimal consecutive cut. The associated maximal 1-periodic ow F is a setof paths in D. First, note that these paths cover all the nodes in D. Indeed, by the 1-periodicityof F , if a node (i; n) is not in F , then the whole column (i; :) is not in F , but this means that thebi-in�nite path f(i; n); n 2Zg can be added to ow F and this would contradict the maximalityof F .Let P1 be any path in F . We deduce from the 1-periodicity of F that P1 is periodic. Leti0; i1; � � � ; il1; i0; i1; : : : be the successive columns visited by the path P1. Let (i0; n) and (i0; n+k1) be the consecutive nodes visited by the path P1 on column (i0; :). Using the 1-periodicity ofF , the total number of paths intersecting columns i0; i1; � � � ; il1 in F is k1. It implies that the



2.5 Cuts and Delays 53span of C on columns i0; i1; � � � ; il1 is smaller than k1. By de�nition of R, there exists a circuit(L1) in R containing the nodes i0; i1; � � � ; il1 and of total delay k1. The span of C on columnsi0; i1; � � � ; il1 is smaller than k1.A new path P2 in F not intersecting columns i0; i1; � � � ; il1 ranges over di�erent columnsil1+1; il1+2; � � � ; � � � ; il2 ;and de�nes a circuit (L2) in R similarly. The span of C on columns il1+1; � � � ; il2 is smaller thank2. We apply the same arguments to all the paths in F until all columns in D are covered. Thisde�nes a set of circuits H in R covering R.We build a new graph G starting with R and where each circuit in H is aggregated into onenode. The graph G has jH j nodes and the arcs of G do not belong to any circuit in H .The span of C is smaller than the sum of the spans on all the circuits in H plus the sum of thedelays on all the arcs in G . Note that no delay is counted twice in this upper bound. Therefore,the total span (M) of C is smaller than the total sum of the delays in R. utRemark 2.4.17. This bound is tight since it is not di�cult to exhibit examples in which thespan of the minimal cut is the sum of all the delays in R. However, in most cases, the span ofa minimal consecutive cut is signi�cantly smaller.LetM be the sum of the delays in R. A slice of D withM levels has the same cut size as D itself.The computation of the minimal cut in a �nite slice of D can be done using the augmenting pathalgorithm, see [65] [78]. Starting with a 1-periodic ow (the recycled columns) and maintainingthe 1-periodicity throughout the construction yields a maximal 1-periodic ow. The complexityof the construction of the maximal ow is O(M2k2). By Corollary 2.4.8, it provides the size ofa minimal (consecutive) cut in D.2.5 Cuts and DelaysIn this section, we will exhibit the relations that can be found between cuts in D and values ofthe delays in R.2.5.1 RetimingA retiming of R is a transformation of the graph resulting in a decrease or increase of the valuesof the delays but with no transformation of the graph topology. This notion has been describedin digital circuits to move registers (see x2.6) and in Petri nets, where a retiming correspondsto the �ring of transitions (see x2.7).De�nition 2.5.1 (retiming). A retiming of R is a node function r : V ! N which speci�esa new value of the delays. After retiming r, the value of the delay on an arc (i; j) in the newgraph Rr is r =  + r(i)� r(j).In the example of Figure 2.12, the new values of the delays correspond to a retiming r such thatr(1) = 1; r(2) = 1 and r(3) = 0.Note that after a retiming r of R the delay on one arc can be negative as in Figure 2.12.
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2.5 Cuts and Delays 55Lemma 2.5.2. Two retimings r and r0 yield the same value of the delays in a connected graphR if and only if there exists a constant h 2Zsuch that 8i 2 V; r(i) = r0(i) + h.Proof. First, if r(i) = r0(i) + h for all i 2 V , then on any arc (i; j), r =  + r(i) � r(j) =+ r0(i)� r0(j) = r0 . Conversely, if r0 = r, then r(i) = r0(i)+h and r(j) = r0(j)+h for someh 2Z. The fact that R is connected implies that the constant h is the same for all the nodes inV . utThe question that arises now is what is the corresponding notion in the graph D? To answerthis question, let us consider the graph Dr associated with the retimed reduced graph Rr. Thisdependence graph can be constructed directly from D by shifting the columns as described inLemma 2.5.3.Lemma 2.5.3. A retiming r in R corresponds to an isomorphism fr between D and Dr de�nedby: fr : D ! Dr(i; n) ! (i; n� r(i))The function fr will also be called a retiming of D.Proof. By de�nition of Dr, there is an arc from (i; n) to (j;m) in Dr if the delay in Rr on arc(i; j) is r = m� n. We have r =  + r(i)� r(j) = (m� r(j))� (n� r(i)). Therefore, fr is anisomorphism between D and Dr. utWe recall that the notion of section was de�ned in 2.4.4. A retiming r in R can be associatedwith the section Sr = f(i; r(i)); i2 V g in D.Lemmas 2.5.2 and 2.5.3 tell us that two retimings r and r0 are similar (in the sense that theyyield the same value of the delays) if and only if they are associated with two sections Sr andS0r with Sr = Sr0 + h, for some h 2 Z. This relation enables us to de�ne a parallelism relationbetween sections in D as well as between retimings in R. We say that section Sr (resp. retimingr) is equivalent to section Sr0 (resp. retiming r0) if Sr = Sr0+h, for some h 2Z. In the following,we will always consider one arbitrary section among the equivalence class and call it the sectionassociated with retiming r.2.5.2 Counting the delaysGiven a graph R, there are di�erent possible ways to count the number of delays involved inthe graph. We are going to propose two di�erent ways of counting, mode A and mode B.Mode A : The number of delays in R is�A =Xi2V X(j;)2Di  : (2.6)Mode A corresponds to the exact number of registers appearing in the graphical representationof the reduced graph R as de�ned in x2.2.2. See for example, Figure 2.13 (A).



2.5 Cuts and Delays 56Mode B : The number of delays in R is�B =Xj2V maxf j 9i s.t. (j; ) 2 Dig : (2.7)Let us explain this mode of counting. First, remark that �B 6 �A. Assume that node j 2 V hasseveral output arcs with respective delays 1; 2; � � � ; l. If we allow the possibility to share thedelays between these l arcs, the number of delays will be counted as maxk k instead of Pk kas in Mode A.Graphically, �B corresponds to the number of delays in a modi�ed reduced graph where wehave performed a forward splitting of the nodes. An example is provided in Figure 2.13 (B).We have added a \dummy" node, represented by a black dot, with function F =Identity. Theother nodes remain unchanged. This reduced graph describes exactly the same system of URE.More precisely, the variables computed at the white nodes in Figure 2.13 (B) are the same asthe variables computed in Figure 2.13 (A).There is another way to interpret mode B. Let us assume for a moment that we modify thede�nition of a reduced graph. We consider a reduced graph ~R where delays are put on nodesinstead of arcs. The total number of delays in graph ~R is equal to �B. This is illustrated inFigure 2.13 ( ~B).In the following, we will say, with some abuse of language, that counting mode A correspondsto delays on arcs and counting mode B to delays on nodes.Other ways of enumerating delays are conceivable. We will not consider them as they appear tobe less interesting, mathematically speaking as well as from a practical point of view.Deciding which counting mode of the delays to choose is very important. Di�erent modes willyield di�erent optimal graphs, after minimization of the number of delays.2.5.3 Cuts and delaysWe recall that the system under study is assumed to be recycled.Consider a section S = f(i; ni); i 2 Eg in D. We de�ne a consecutive cut C(S) of the graph inthe following way. We de�ne the set C(S) in the following way :C(S) def= f(i; n); i2 V; n 6 ni j 9j 2 V;m > nj ; (i; n)! (j;m)g :Note that C(S) is a cut with lower section S. Furthermore, if any node is removed from theupper section of C(S), then it is not a cut anymore.In a cut C, a node (i; n) 2 C is redundant if Cnf(i; n)g is a cut. Note that any consecutive cut Cwith no redundant node on its upper section is characterized by its lower section Sl only. Moreprecisely, we have C = C(Sl).We are now ready to state the relations between delays in R and consecutive cuts in D.
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Figure 2.13: Di�erent ways to enumerate the delays.Lemma 2.5.4. Let r be a retiming of R and Sr an associated section in D. Then the numberof delays in Rr under mode B (�B) is equal to the cardinal of the cut C(Sr).Proof. We recall that the section associated with r is Sr = f(i; r(i)); i 2 V g. First, let us provethat the size of C(Sr) (cut in D) is the size of C(fr(Sr)) (in Dr). Note that by de�nition, fr(Sr)is on a single level, fr(Sr) = f(i; 0); i 2 V g. From the de�nition of fr , it should also be clearthat fr(C(Sr)) = C(fr(Sr)) and a fortiori fr(C(Sr)) and C(fr(Sr)) have the same size.It remains to be shown that the size of C(fr(Sr)) is the number of delays counted accordingto mode B. The delay on node i of R is the maximum of all r for all (j; r) in Di;r. Thismaximum (m) induces an arc in Dr from node (i;�m + 1) to node (j; 1). By construction,C(fr(Sr)) contains exactly m nodes on column i: nodes (i; 0); (i;�1); � � � ; (i;�m+ 1).The same argument repeated on each column of Dr �nishes the proof. utWe recall that given a section S, we de�ned the arcs crossing S upwards or downwards inDe�nition 2.4.9.



2.5 Cuts and Delays 58Lemma 2.5.5. Let r be a retiming of R and Sr an associated section in D. The numberof delays in Rr under mode A (�A) is equal to the number of arcs in D crossing section Srdownwards minus the number of arcs crossing Sr upwards.Proof. By de�nition of fr, all the arcs crossing fr(Sr) in Dr are the transform by fr of the arcscrossing Sr in D. We will rather count the arcs in Dr. Pick one arc in Rr (i; j) with delay  > 0.In Dr, this arc induces exactly  arcs crossing fr(Sr) downwards, the arcs:(i; 0) ! (j; )(i;�1) ! (j;  � 1)...(i;� + 1) ! (j; 1):Similarly, an arc in Rr, (i; j) with delay  < 0 induces exactly � arcs crossing fr(Sr) upwards:(i;�) ! (j; 0)(i;� � 1) ! (j;�1)...(i; 1) ! (j; + 1):The same argument applied to all the columns �nishes the proof. utRemark 2.5.6. Lemma 2.5.4 shows that one can describe the number of delays �B as thecardinal of a set of nodes of D. On the other hand, we deduce from Lemma 2.5.5 that thenumber of delays �A is computed as the cardinal of a set of arcs in D. This is natural as wehave seen that (roughly speaking) mode A corresponds to delays on arcs and mode B to delayson nodes.The notion of compatible cut introduced in De�nition 2.4.10 has a very natural interpretationin terms of delays.Proposition 2.5.7. Let r be a retiming of R and Sr an associated section in D. The retimedreduced graph Rr has only non-negative delays if and only if the section Sr is compatible in D.In Figure 2.14 (this example is the same as the one of Figure 2.10), we have represented theretimed reduced graphs associated with two sections (cuts). One of them is compatible, Figure2.14 (I), and the other one is not compatible, Figure 2.14 (II).In x2.4.2, we have established the relations between con�gurations (for Game 1) and cuts in thedependence graph. In this paragraph, we have established the relations between cuts and delays.As an immediate by-product, we obtain the relations between delays and pebble con�gurations.� An execution e 2 E ; e 62 RE has con�gurations with di�erent shapes at each step. Sinceany con�guration can be viewed as a set of value of the delays in a retimed reduced graph,then an execution which is not regular provides a di�erent value of the delays in R at eachstep of the computation.� On the contrary, for an execution e 2 RE the con�gurations are just shifted between twosteps and this induces a �xed value of the delays in R.� Finally, an execution e 2 NRE corresponds to �xed and non-negative delays.
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Figure 2.14: Compatible and non compatible cuts, non-negative and negative delays.



2.6 Application 1 : Registers in Circuit Design 602.5.4 Summary and open problemsIn the recycled case, the following table gives a summary of the main relations established sofar between executions of a system of URE, cuts in D and delays in R.Executions of Game 1 Cuts in D Delays in Rexecution in E arbitrary cut changing delaysregular execution, RE consecutive cut �xed delaysnon-anticipative reg. exec., NRE compatible cut non-negative �xed delaysTo complete the picture, it would be nice to extend all the results presented in this section to thenon recycled case. The di�erent de�nitions (cut, ow, section) extend easily to the non-recycledcase. The main results which would make everything else easy to generalize are of two types.Results related with cuts in D, x2.4.1, and results linking cuts and regular con�gurations, x2.4.2.For example, is it possible to �nd a minimal cut which is consecutive (generalization of Lemma2.4.7) ? Can we �nd a minimal consecutive cut which is a regular con�guration (generalizationof Lemma 2.4.12)? It seems that most of these properties still hold in the non-recycled case butat this point the problem is still open.One of the main results so far is that the size of the minimal consecutive cut is the same asthe size of the minimal cut in D (see Lemma 2.4.7). However, the example displayed in Figure2.14 shows that in some cases this minimal consecutive cut is not compatible and therefore, itsassociated execution is anticipative. Although anticipative executions seems to have no or littleinterest in practice, we will show in the two applications presented below (sections x2.6 and x2.7)that there are particular situations in which they can be used e�ciently.2.6 Application 1 : Registers in Circuit DesignIn this section we will show how the previous results relate to the problem of register minimiza-tion in digital circuits. The interest of the relation will be two-fold. In a �rst part we showhow the notions we de�ned so far help to prove the optimality of retiming in digital circuits.In a second part, we will use the algorithms developed in digital circuits to get optimal regularexecutions of a system of URE.2.6.1 De�nition of a circuitA digital circuit is constituted by functional gates, wires and registers. More precisely,� A functional element computes an output data from one or several input data. For exam-ple, in the case of a logical circuit, the functional elements will be boolean logical gates(AND, OR,: : : )� A wire between element i and element j enables to transfer the output data of i whichbecomes an input data for j.� A register corresponds to a storage facility. A register of size p (or equivalently p registers)between elements i and j enables to keep in memory the last p values computed by theelement i.



2.6 Application 1 : Registers in Circuit Design 61The model of the behavior of the system is the following. There is a global clock for the system.Between two clock ticks, here are the operations taking place.� Functional element :1. receive the input data from upstream registers.2. compute a new output data.3. send the output data to downstream registers.� Register :1. transmit the stored data downstream (to another register or a functional elementdepending on the structure).2. remove the stored data.3. receive a new data from upstream (from another register or a functional elementdepending on the structure).Between two clock ticks, these operations are synchronously performed at all functional elementsand registers1.Let Xi(n) be the n-th variable computed at element i. After n clock ticks, exactly n values havebeen computed at each element i, i.e. the variables fXi(m); m 6 ng have been computed. Thenumber of registers on a wire between i and j corresponds to the number of variables Xi(n� k)which need to be still in the memory in order to carry on the computation of the variablesXj(n+m); m 2 N.It appears from the previous description that a digital circuit can be viewed as the reduced graphR of some system of URE. The functional elements of the circuit correspond to the nodes of R,the wires to the arcs and the registers to the delays. The computation operation correspondingto the functional element i is denoted by Fi to be coherent with previous notations. In theremainder of the section, we will use indi�erently the terminology of digital circuits and the oneof reduced graphs.We have represented an example of a digital circuit in Figure 2.15. We have represented theow of data between clock ticks. We have chosen on purpose a graphical convention coherentwith the one of reduced graphs.Remark 2.6.1. It might be interesting to consider that the di�erent operations describedabove have a duration, let us say 1 unit of time for a computation and instantaneous for atransmission-reception (same assumption as in Remark 2.3.3). According to this, the elementaryoperations occurring between two ticks have a total execution time. It is 1 for the systemXj(n) = Xi(n � );  > 0 and 2 for the system Xj(n) = Xi(n) (both variables are computedsuccessively during the same clock interval). Hence the length of the time interval between twoclock ticks has to be at least 1 in the �rst case and at least 2 in the second one. More generallythe time interval between two clock ticks has to be equal (at least) to the length (i.e. the numberof nodes) of the longest path without registers in the graph R. Hence it is often a problem of1In particular, we do not consider systems where the computations times might be di�erent from one elementto the other.
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Xi(n� 1)Xi(n)Xi(n + 1) Xi(n� 1)Xi(n� 2) Xj (n� 1)Xj (n)Xj (n + 1)Figure 2.15: Digital circuit computing Xj(n) = Fj(Xi(n� 2); : : :).practical interest to minimize the longest path without registers, see [100] [34] [73]. We will notconsider this problem in the following. We consider the problem called min-area in [100]. Itconsists in minimizing the number of registers.2.6.2 Counting the registersThe two modes for counting delays (see x2.5.2) are interesting from a practical point of view,when delays are viewed as registers in digital circuits. In order to explain it, we are going to focuson the example of Figure 2.13. Let us compare the characteristics of the three digital circuits, A,B and ~B, proposed in Figure 2.13. In circuit (A), there is a synchronous write operation (alsocalled fanout) performed by node i when displaying its output data to downstream registersj1; j2 and j3. In circuit ( ~B), there is a synchronous read operation performed by the nodes j2and j3 when they get the variable stored in the �rst register of node i. According to physical andtechnological constraints, it might be better to avoid either synchronous read or synchronouswrite, hence to prefer either circuit (A) or ( ~B).Even if we assume that synchronous read has to be avoided (as it is often the case for digitalcircuits), we might be interested in considering circuit (B) instead of circuit (A). In circuit (B),we have less registers but more functional gates. Hence depending on the compared cost of anode and a register, one shall consider one circuit or the other.2.6.3 Minimizing the registersA classical problem in circuit design is to minimize the number of registers used while preservingthe functional behavior of the circuit (i.e. while computing the same variables Xi(n)), see theseminal paper of Leiserson and Saxe [100]. If the circuit (i.e. the corresponding reduced graph)is recycled, this problem is directly connected with the notions introduced in x2.4 and x2.5. Itenables us to propose some complements to the results of [100] for the special case of recycledcircuits.



2.6 Application 1 : Registers in Circuit Design 63Optimality of retimingIn [100], Leiserson and Saxe de�ne a notion of retiming which is exactly the one of De�nition2.5.1. They restrict their attention to legal retimings.aDe�nition 2.6.2. A retiming r is legal if Rr has only non-negative delays.This is a natural restriction as legal retimings are the only one having a physical meaning forcircuits (at least apparently, see x2.6.3). They also de�ne register sharing. This correspondsexactly to the transformation from circuit (A) to circuit (B) in Figure 2.13. Leiserson and Saxeprove that retiming and register sharing preserve the functional behavior of the circuit. Thenthey propose an algorithm to compute the optimal circuit after retiming and also after retimingand register sharing, see x2.6.4.However the question whether other techniques can be used to get a circuit with even fewerregisters remains to be answered. Using the results of previous sections, we show that theretiming technique combined with register sharing does in fact minimize the number of registers.This result comes from the following argument. Let us consider a circuit. We consider thesame circuit where we have positioned the registers in an arbitrary way. We assume that thefunctional behavior is not modi�ed. These registers can be seen as delays in the reduced graphR. If the functional behavior of the circuit is preserved, it means that the delays correspondto a non-anticipative regular con�guration in the associated dependence graph D. But in therecycled case, such a con�guration is also a compatible cut in R. The lower section of this cutde�nes a compatible section which is in turn associated with a legal retiming of the circuit.Therefore, the positions of the registers can be obtained from a retiming of the original circuit.Corollary 2.6.3. If we count the number of registers according to mode B, then we can obtaina circuit with a minimal number of registers solely by performing retiming.Proof. This is a direct consequence of Lemma 2.5.4. utFurther modi�cations of the circuitIf we allow other modi�cations of the circuit than just register sharing, further improvementson the number of registers can be obtained.Let us consider the best possible retiming in the original circuit without restricting ourselves tolegal retimings (De�nition 2.6.2). It corresponds to a minimal consecutive (but not necessarilycompatible) cut in the associated dependence graph D, see x2.5.4.It is possible to perform some appropriate modi�cations to the structure of the circuit to goback to positive delays. The procedure is as follows. For each node i following a negative delay,we track back the paths terminating at node i until the total delay on each path is non-negative.This is always possible for circuits associated with constructive URE. The nodes initiating suchpaths are duplicated into 2 nodes computing the same function. In the example of Figure 2.16,we have to track back two paths : 3  1  1 and 3  1  4 and node 1 is duplicated into 1and 10.If the registers are counted according to mode B, the resulting circuit uses only 4 registers whilethe best possible number of registers we can get with only legal retimings is 5. Of course, onthe other hand, we have to increase the number of functional nodes.
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Figure 2.16: A transformation of a circuit with negative delay into a circuit with non-negativedelay.2.6.4 Complexity resultsIn [100], an algorithm is given to compute the best legal retiming of a circuit (with or withoutusing the register sharing technique). The complexity of this algorithm is O(jEj2logjV j). Ane�cient implementation of this algorithm can be found in [129]. In the recycled case, thisalgorithm can be used to compute the minimal compatible cut in D, using corollary 2.6.3.And �nally using the correspondence between compatible consecutive cuts and non-anticipativeregular executions, see Lemma 2.4.14, this also gives a way to �nd an optimal non-anticipativeregular execution of a system of URE. This is an example of results originally proved for digitalcircuits and applied in the context of URE.Further results developed for circuits can be applied in the computation of URE. It is the caseof the problem of the minimization of the clock period in digital circuits, see Remark 2.6.1. Thisissue is not addressed here.Conversely, the results of x2.4.3 (using the Ford-Fulkerson algorithm) can be applied in the con-text of digital circuit to compute the optimal (non necessarily legal) retiming. This is interestingas it is not straightforward to extend the original algorithm of Leiserson and Saxe to generalretimings.2.7 Application 2: (max,+) Linear Systems and Parallel Simu-lationIn the following we will apply our results to a particular class of URE: (max;+) linear systems,and to issues arising in the distributed simulation of such systems.Our interest for (max;+) systems comes originally from the analysis of a class of timed Petrinets: Timed Event Graphs [8]. However, these systems arise naturally in the study of generalURE.



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 65To see this, assume that, in the computation of some URE of the form (2.2), computing Xi(n) =Fi(Xj(n�); : : :) requires �i units of time. Assume moreover that the computation is performedon a parallel computer with an unlimited supply of identical processors, common memory (orinstantaneous communication), and no synchronization overhead. If variables are computed assoon as possible (greedy execution), then the makespan of the computation is given by an UREwith the same structure as (2.2). Indeed, if Ti(n) is the instant at which the computation ofXi(n) starts, then Ti is given by Ti(n) = max(Tj(n � ) + �j ; : : :).We shall discuss below some issues arising in the computation of (max;+) systems. It shouldbe clear that the results will apply, or can be adapted to other linear recurrences, such as the(+;�) linear systems of classical control theory.According to the preliminary remarks above, an application of the results of this section willtherefore be an algorithm to compute the makespan of the greedy execution of some URE. Notethat this algorithm itself will not be greedy.We shall �rst introduce some concepts and notations. We will then present the optimizationproblem which arises in the parallel computation of (max;+) URE, and apply the precedingresults to solve it. Finally, we shall mention some particularities of stochastic versions of (max;+)systems.2.7.1 IntroductionFrom now on, we therefore restrict our attention to \Linear Max-Plus Recurrences" (MPR),which are URE of the form:Xi(n) = max(j;)2Di(Xj(n� ) + �i;j;); �i;j; 2 R+ : (2.8)The assumption that �i;j; is nonnegative is not necessary but natural because of the physicalinterpretation we gave above.Let us introduce some de�nitions and notation.De�nition 2.7.1. The (max,+) semi-ring Rmax is the set R [ f�1g, equipped with max,written additively (i.e. a � b = max(a; b)) and the usual sum, written multiplicatively (i.e.a
 b = a + b). The zero element is noted " = �1, and the unit element is noted e = 0.For matrices of appropriate sizes, we de�ne (A�B)ij = Aij �Bij = max(Aij ; Bij), (A
B)ij =Lk Aik 
 Bkj = maxk(Aik + Bkj), and for a scalar a, (a
 A)ij = a 
Aij = a+ Aij . When noconfusion is possible, we abbreviate A
B to AB.We can rewrite Equation (2.8) with the previously de�ned notations. Let X(n) be the columnvectors of coordinates Xi(n) and let A() be the matrix with coordinates A()ij = �i;j; if(j; ) 2 Di and A()ij = " otherwise. We haveX(n) = A(0)
X(n)� A(1)
X(n� 1)� � � � � A(�)
X(n� �) ; (2.9)where � is the maximum of the delays appearing in the sets Di.This algebraic formulation enables some simple transformations. Let us de�neA(0)? = 1Mn=0A(0)n = kMn=0A(0)n ;



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 66where k is the size of matrix A(0) and where A(0)0 = I is the identity matrix de�ned byIii = e and Iij = "; i 6= j. It is easy to prove that A(0)? is the formal inverse of I � A(0), i.e.A(0)?(I �A(0)) = (I � A(0))A(0)? = I . Hence, Equation (2.9) can be transformed into:X(n) = A(0)?A(1)X(n� 1)� � � � �A(0)?A(�)X(n� �) : (2.10)Equation (2.10) is nicer, because it involves only strictly positive delays, and is therefore obvi-ously constructive.Dependence graph The dependence graph has a general form as presented in x2.2.1. Itsonly characteristic is that the functions on the nodes are \max" applied to all entries.Reduced graph A formalism naturally associated with (max;+) recurrences it that of Petrinets. The graphical formalism of Petri nets is close but di�erent from the one we used forreduced graphs.Petri nets consist of transitions, usually interpreted as service centers (processing units, etc.),and places containing tokens, usually interpreted as entities (programs, customers...) receivingservices from transitions. Places are connected to transitions and transitions to places withdirected arcs. It is therefore natural to speak of \input places", \output places" and so on.The passage from the reduced graph associated with a MPR to the corresponding Petri netconsists in replacing nodes with transitions, and arcs with delay � with a place containing �tokens, connected to the corresponding transitions. Values of the delay therefore correspond topositions of tokens, called markings.Figure 2.17 shows such a transformation. 312 4122 10 12 31 4(a) (b)Figure 2.17: Transformation of a reduced graph (a) into a Petri net (b).The Petri nets corresponding to reduced graphs have the particular property that places haveexactly one input transition and one output transition. This property de�nes the class of EventGraphs (EG).Petri nets are dynamical systems, in which tokens may move, according to the following rule.Transition may �re, thus removing one token from every input places and creating one in everyoutput place. A fundamental remark is that �rings in a Petri net are equivalent to retimings in



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 67reduced graphs (see x2.5.1). Indeed, the equations describing the transformations of the markingafter a �ring are precisely of the form  0 =  + r(i)� r(j).It is important to note that the usual convention for Petri nets is that a �ring may occur onlywhen at least one token is present in every input place of the transition. This requirement isdropped here. We therefore allow negative markings, which correspond to the negative delaysof x2.5.In timed event graphs, durations are associated with �rings. Linear (max;+) systems of the form(2.8) describe the evolution of the associated event graphs in the following way. The variableXi(n) represents the instant at which the n-th �ring of transition i starts, given that transitionsstart �ring as soon as possible, that is, as soon as all tokens necessary are present in the inputplaces and available, i.e. not involved in another �ring. This interpretation holds under theassumption that the system is recycled, because the fact that tokens are involved in at most one�ring implies that tokens go through transitions in a �rst-in-�rst-out (FIFO) order. Therefore,there are no overtaking of tokens, and the n-th �ring of transition i requires the (n � j;i)-thtoken produced by transition j.2.7.2 MPR of order 1A standard step in the analysis of linear systems is the transformation of recurrences of order �such as (2.10) into an \equivalent" system of order 1. For general URE, this operation consistsin introducing new variables Xk+1; : : : ; X` and new functions Gi; i 2 f1; : : : ; `g such thatXi(n) = Gi(Xj(n� )); 16 i 6 `; (j; ) 2 Di; n 2 N ;  6 1 : (2.11)This is usually done by setting X(i�1)��+(n) = Xi(n � ), for 1 6 i 6 k and 1 6  6 �. Thenew number of variables is therefore ` = k�.In the case of (max;+) linear systems, the equivalent system of order 1 is characterized by amatrix of size `� `. The recurrence becomesX(n+ 1) = A(n)
X(n) : (2.12)In some practical applications, it may be desirable to reduce this size as much as possible. Aninstance of such applications is described in the following section.2.7.3 Parallel simulation of time varying MPRFor the purposes of this section, we informally introduce a generalization of the URE model(2.2), in which the functions Fi may additionally depend on n. The particular example we havein mind is that of MPR of the form (2.8) in which the numbers �i;j; are allowed to depend on n.In the analysis of discrete event systems, these sequences are commonly assumed to be random.Consider therefore an URE de�ned with a sequence of (possibly random) functions :f(Fn1 ; : : : ; Fnk ); n 2 Ng :We consider the associated dependence graph D and the pebble game under the set of rulesM3. Executions under this rule are regular, and therefore characterized by a �nite set A(0) �f1; : : : ; kg �Z� providing the position of the pebbles at step 0. Let X(n); n 2 N, be the vector



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 68whose coordinates are Xi(p+ n) for (i; p) 2 A(0). By de�nition of ruleM3, see x2.3.2, we havethat there exists a sequence of functions f�n; n 2 Ng such that:X(n+ 1) = �n(X(n)) = �n � �n�1 � � � � � �0(X(0)) : (2.13)The simulation of the system consists in computing the value of all X(n). A possible algorithmfor doing this with a parallel computer uses the so-called parallel pre�x principle. Using thefact that the composition of functions is associative, it is possible to divide the computation of�n � � � � � �0 in smaller products �p � � � � � �q which may be computed by di�erent processors.Note that for this, it is necessary that the operators � possess a numerical representation onwhich composition may be performed. This is typically the case for linear operators, whichare represented by matrices, for which composition is equivalent to the common product. Theparallel pre�x algorithm therefore directly applies to the parallel simulation of MPR (2.12).A way to quantify the e�ciency of the parallel algorithm is to evaluate its PRAM complexity.It can be shown that the number of operations required to simulate the linear system up totime N with P processors is O(`3(N=P + log(P ))), where ` is, as above, the size of the matrixcharacterizing the linear system.In order to minimize the complexity of this algorithm, it is therefore necessary to �nd a repre-sentation of the MPR of minimal size.2.7.4 Optimization resultsWe shall show in this section that �nding the minimum possible size for an order 1 representationof a MPR can be done in polynomial time with respect to k and �. This problem appears to benew in the context of event graphs. Some preliminary results, which correspond to our mode Afor counting memories may be found in [28].The basic idea is that, given a marking of the event graph, it is possible to transform this graphby adding new transitions and places, in such a way that the resulting event graph, restrictedto the original transitions, has the same dynamic behavior as the original one, and moreover,the marking of the places is less than one (see [73] for further discussions).To see this, recall the discussion of x2.5.2 on counting the delays, and in particular Figure2.13 (B). Interpreted in terms of Petri nets, this construction amounts to \factor out" tokensintroducing dummy transitions in a tree-like fashion, as in Figure 2.18. The dummy transitionsare assumed to have a �ring time of 0, and are recycled (this is not shown on the �gure).The number of transitions in the resulting event graph is �B . The MPR associated with the newgraph has a maximum delay � = 1 and by (2.10), it has the desired order 1 form with ` = �BThis is already an improvement on the standard representation, but the results of x2.5 allow toimprove this, by �nding �rst an optimal marking of the net, that is, a marking such that theabove transformation provides an event graph with ` = minRE �B or ` = minNRE �B transitions.It is indeed necessary to distinguish the two cases, according to whether negative markings aredesirable or not. This can be understood as follows.Assume that the marking corresponding to ` = minRE �B is negative. The event graph can betransformed into another equivalent one in the same way as for circuits in 2.6.3. The newlycreated transitions will then have �ring times �i(n) equal to some of the �j(n+ );  > 0 of theoriginal transitions. Therefore, the construction of matrices A(n) and A(n + ) in recurrence



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 69a1 a2 a3t p1p2p3 p1p2p3t b1 b2 b3
Figure 2.18: Forward transformation of event graphs.(2.12) will use the same numbers �. When two matrices do not use the same numbers, they arecalled disjoint matricesIn the parallel computing context, where the computations using A(n) and A(n+) are (possibly)done by di�erent processors, it may be acceptable to use matrices which are not disjoint. Forinstance if �i(n) does not depend on n, or if it can be computed in a deterministic way by thedi�erent processors.However, it is not acceptable if the variables �i(n) are independent and identically distributed(i.i.d.). In this case, we want the random matrices A(n) and A(n + ) to be independentlygenerated by their respective processor. This situation is the most common one in the contextof discrete event system modeling, which we have already mentioned. It requires that all thematrices are disjoint.In both cases, the optimal marking is found in polynomial time:� If negative markings are acceptable, use the results of x2.4.3 to �nd a minimal consecutivecut.� If not, use the algorithm of x2.6.4 to �nd a minimum compatible cut.Remark 2.7.2. The optimality of the size of representation should be understood as the bestpossible that can be obtained without making assumptions on the value of the numbers �i;j;(n).When these numbers are constant and known, this knowledge may be exploited to obtain aminimal representation in the sense of linear system theory [67], which is normally better thanours. A deeper investigation of the relations between the two approaches is an interestingdirection for further research.



2.7 Application 2: (max,+) Linear Systems and Parallel Simulation 702.7.5 Backward transformationTo conclude the section, we make the remark that there are actually two ways to perform graphtransformations : the forward transformation on downstream places as above (Figure 2.18), orthe backward transformation on upstream places (Figure 2.19).p2b3 b2 b1p3p1p2p3 t4t1t2t3
p1 t4t1t2t3Figure 2.19: Backward transformation of event graphs.Remark 2.7.3. It is important to note that the backward transformation is not possible fora general system of URE. A system of URE associated with the example of Figure 2.19 (beforetransformation) is of the form :X4(n) = F4(X1(n� 2); X2(n� 3); X3(n� 4)) :If we perform the backward transformation, the form of an URE associated with the new graphhas to be : X4(n) = F ( G( X1(n� 2); H( X2(n� 3); I( X3(n� 3) ) ) ) ) ;for some functions F;G;H and I associated with nodes t4, b1, b2 and b3 respectively. In generalit is not possible to perform such a factorization of the original F4 function. It becomes possiblein MPR because of the special form of the functions Fi which are involved.In the context of event graphs, the backward transformation is interesting since it results in agraph which might be smaller than the one obtained with the forward transformation.The example displayed in Figure 2.20 has the following property. If we apply a forward trans-formation (after optimal legal retiming) the number of transitions is 7. However, a backwardtransformation yields a graph with only 6 transitions. It is also interesting to note that in thisexample, the size of the minimal (non compatible) cut in the dependence graph is 5. Therefore,this is an example where one can �nd an intermediate system of size 6, (strictly between the sizeof the smallest compatible cut and the size of the smallest cut) which allows a representation of
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Figure 2.20: Optimal forward and backward transformations of this event graph yield to systemsof di�erent size.the original system with disjoint matrices of size 6.Determining an optimal backward transformation can be done using the previous results. Infact, it corresponds to the optimal forward transformation on the reversed event graph obtainedby reversing the direction of all the arcs.More generally, it is easy to come up with examples where the optimal transformation of an eventgraph involves both forward and backward transformations. Finding an algorithm to computesuch an optimal mixed transformation is an interesting open problem.2.7.6 Stochastic issuesThe retimings used above for deriving optimal representations necessitate changes in the initialcondition and shifts in the indices of the sequences f�i;j;(n)g.When these sequences are random, these changes may be unnecessary, depending on the perfor-mances that are measured on the system.Indeed, it is proved in Chapter 8 that stationary statistics of the MPR (such as asymptoticgrowth rate, and limit distributions for �nite di�erences) are insensitive to the initial conditionsunder minimal stochastic assumptions on the sequences.



Chapitre 3Graphical Approach of the SpectralTheory in the (max,+) AlgebraApproche Graphique de la Th�eorie Spectrale dans l'Alg�ebre (max,+)Dans ce chapitre, on �etudie plus particuli�erement les syst�emes (max,+) lin�eaires d�eterministes dedimension 3. On propose un nouvel outil de description du comportement spectral. Il s'agit dela repr�esentation graphique des vecteurs propres et des domaines d'attraction dans un \espaceprojectif additif".Ce chapitre est une adaptation de l'article [104]. Une version courte du même article parâ�traen octobre 95 dans IEEE Transactions on Automatic Control [106]. Cet article a grandementpro�t�e de nombreuses suggestions de Fran�cois Baccelli et de St�ephane Gaubert. Sa pr�esentationa �egalement �et�e am�elior�ee grâce aux remarques de Damien Artiges et d'un rapporteur anonyme.



3.1 Introduction 73In this paper, we study matrices in the (max,+) algebra. We introduce a new tool for describ-ing the deterministic spectral behaviour of matrices of size 3 � 3. It consists of a graphicalrepresentation of eigenvectors and domains of attraction in the projective space.3.1 IntroductionDiscrete Events Dynamic Systems (DEDS's) are a common framework to represent communica-tion or manufacturing networks. Petri Nets, and more precisely Event Graphs, are an exampleof a formalism to study DEDS's. Event Graphs model phenomena such as synchronization orblocking. They have a simple interpretation in a nonconventional algebra, the (max,+) algebra.The spectral theory of matrices in the (max,+) algebra is now well known. It can be trackedback to Cuninghame-Green [49], Gondran and Minoux [77] or, for the Russian school, to Ro-manovski�� [123]. One of the main di�erences with the classical spectral theory is that there isa unique eigenvalue for irreducible matrices. As a consequence, the main interest and di�cultyis to study eigenvectors associated with the unique eigenvalue. For a timed Event Graph, theeigenvalue is exactly the mean cycle time (inverse of the throughput rate). On the other hand,eigenvectors are associated with quantities such as : number of tokens in a place, waiting timesor idle times. Multiple eigenvectors mean multiple possible regimes for these quantities.In this paper, we present the classical spectral results under a new light. We develop a tool fordescribing the spectral behaviour of matrices of size 3�3. It consists of a graphical representationof asymptotic regimes in a projective space.The paper is organized as follows. In Section 3.2, we de�ne the (max,+) algebra. In Section3.3, we propose, as an illustration, an example of a manufacturing model. In Section 3.4,we review some results on the spectral theory in the (max,+) algebra. In Section 3.5, wepresent also a complete spectral analysis of matrices of size 3 with the help of the graphicalrepresentation mentioned before. Sections 3.6 and 3.7 are devoted to applications of thegraphical representation.3.2 The (max,+) AlgebraWe consider systems whose dynamic behaviour is driven by a recursive equation of the form :xi(n+ 1) = max16j6k(Aij + xj(n)); i = 1; : : : ; k : (3.1)We allow Aij to be equal to �1. Let us introduce some new notations.De�nition 3.2.1 ((max,+) algebra). We consider the semiring (R[f�1g;�;
). The law� is \max" and 
 is the usual addition. We set " = �1 and e = 0. The element " is neutral forthe operation � and absorbing for 
. The element e is neutral for 
. The law � is idempotent,i.e. a�a = a. (R[f"g;�;
) is an idempotent semiring or dioid. It is usually referred to as the(max,+) algebra (although it is not an algebra !, see [8], p.214). We shall denote it by Rmax.In the rest of the paper, the notations \+,�" will stand for the usual addition and multiplication.We will write ab for a 
 b, however, whenever there is no possible confusion. For example, fora 2 R; ad = a
d = d� a.



3.3 A Simple Manufacturing Model 74We de�ne the product spaces Rkmax; Rk�kmax. We de�ne the product of a vector by a scalar :a 2 Rmax; u 2 Rkmax; (a
 u)i = a
 ui = a+ ui.The matrix product is de�ned in a natural way, replacing + and � by � and 
 respectively.Let A;B 2 Rk�kmax, (A
 B)ij = maxl (Ail +Blj) =Ml Ail 
Blj :The matrix-vector product is de�ned in a similar way.With these notations, the basic evolution Equation (3.1) takes a very simple and convenientform. It can be rewritten as : x(n+ 1) = A
 x(n) : (3.2)Here x(n) = (x1(n); x2(n); : : : ; xk(n))0 and A is a k � k matrix.We consider the following \eigenvalue problem". We want to �nd nontrivial solutions of theequation : A
 u = �
 u ; (3.3)where A 2 Rk�k is an irreducible (see Def. 3.4.2) matrix, u is a column vector (the \eigenvector")and � is a real constant (the \eigenvalue"). We also de�ne periodic solutions of the eigenvalueproblem.De�nition 3.2.2. A periodic solution (or regime) of period d is a set of vectors fu1; : : : ; udg ofRk verifying Aui = �ui+1; i = 1; : : : ; d� 1 and Aud = �u1. It implies that the vectors u1; : : : ; udare eigenvectors of Ad.The eigenvalue of a matrix A gives the asymptotic growth rate of An=n (see Theorem 3.4.7 fora more precise statement). On the other hand, eigenvectors and periodic regimes are relatedwith the problem of computing di�erences such as An+1u � Anu or (Anu)i � (Anu)j . Thesedi�erences are related to many quantities of interest, see Sections 3.3 and 3.6. In this paper, wefocus essentially on eigenvectors and periodic regimes.3.3 A Simple Manufacturing ModelThere are two types of items which have to be assembled together to form a part. There isa stock for each kind of item. We suppose that these stocks are in�nite. Each time a part iscompleted at the assembly line, a new request is sent to the storage facilities. New items arethen sent to the assembly line. We denote :� � : operating time at the assembly line.� �i; i = 1; 2 : communication time between the assembly line and stock i.� i; i = 1; 2 : transportation time between the stocks and the assembly line.



3.4 Spectral Theory in Rmax 75�1�2 �1trans. 1trans. 2Assembly lineItem requiredItem requiredStockStockItemsentsentItem 2 trans. 3Figure 3.1: A manufacturing model and its Petri net representation.We consider three daters (xi(n); i = 1; 2; 3) associated with this system. The �rst two correspondto the instants at which an item is sent from the stocks. The third one corresponds to the instantsat which a part is completed at the assembly line. For example, x3(n) is the n-th instant ofcompletion of a part at the assembly line. Then the (max,+) linear system corresponding tothis system is the following one :x(n+ 1) =M 
 x(n); M = 0@ " " �1" " �21 + � 2 + � � 1A : (3.4)The eigenvalue of M is � = max (�; (�1+ 1 + �)=2; (�2+ 2 + �)=2) (see Theorem 3.4.3). Itcorresponds to the mean cycle time, i.e. the inverse of the throughput of the system. One canalso compute, for example, the idle time of the assembly line between the completion of a taskand the beginning of the next one. Let us denote it by �. We have :�(n) = x3(n)� x3(n� 1)� � : (3.5)This example will be continued in Section 3.6.This manufacturing system can be modeled using an Event Graph representation as shown inFigure 3.1. Event Graphs can e�ciently model systems with synchronization, fork-join propertiesand/or blocking. It has been proved in Baccelli [4] that all Event Graphs can be described byan evolution equation of the form of Equation (3.1). For more insights on all modeling aspects,the reader is referred to Baccelli, Cohen, Olsder and Quadrat [8].3.4 Spectral Theory in RmaxThe spectral theory of irreducible matrices in Rmax is now classical. Most of the results havebeen proved by several authors independently. It makes it quite di�cult to determine preciseattributions. It seems that Theorem 3.4.3 is due to Cuninghame-Green [49]. It was also provedby Reiter [121] and Romanovski�� [123]. Versions of Theorem 3.4.6 were proved in [123] [50] andGondran and Minoux [77]. Under the form proposed here, the result is from [44]. Theorem 3.4.7is due to Cohen, Dubois, Quadrat and Viot [43] and [44]. For event graphs, a similar result was



3.4 Spectral Theory in Rmax 76proved by Chretienne [42]. A complete treatment of the spectral theory can be found in [8]. Forthe spectral theory of reducible matrices, the reader is referred to Gaubert [67] and Wende andal [139]. A spectral theory for non �nite dimensions is proposed in Dudnikov [58]. However, theidea of illustrating the spectral behaviours by graphical representations in a projective space, asin Section 3.5, is new.3.4.1 General presentationWe recall that we want to �nd non trivial solutions of the equation Au = �u, where A 2 Rk�kmax.De�nition 3.4.1. The graph associated with a matrix A is a directed graph having a numberof nodes equal to the size of A. It contains an arc from i to j i� Aji 6= ". The valuation of thisarc is Aji.De�nition 3.4.2. A matrix A is irreducible if : 8i; j 9n > 0 j (An)ij > " (or equivalently ifits graph is strongly connected). A matrix A is aperiodic if : 9n > 0; 8i; j j (An)ij > ".From now on, we consider only irreducible matrices in Rk�kmax.Theorem 3.4.3. For each circuit of the graph of A, � = ft1; t2; � � � ; tj ; tj+1 = t1g, we de�neits average weight by : p(�) = (At1tj 
 � � � 
 At3t2 
 At2t1)=j ;(here the division is the conventional one). Matrix A has a unique (non ") eigenvalue, �. Itsatis�es the relation � = max� p(�), where the maximum is taken over all the circuits of (thegraph of) A.There might be several eigenvectors. An eigenvector has all its coordinates di�erent from " (dueto the irreducibility assumption).De�nition 3.4.4. We normalize a matrix by dividing (in Rmax, i.e. by subtracting in theconventional algebra) all its entries by its eigenvalue.A normalized matrix has e as eigenvalue. Eigenvectors and periodic regimes are invariant by atranslation of all the entries of a matrix by the same real constant. In the rest of the paper,we will write the matrix we want to study in a positive form (i.e. with all terms > e) or in anormalized form depending on which one seems more convenient.De�nition 3.4.5. For a matrix A, with eigenvalue �, we de�ne :Critical circuit A circuit � of A is said to be critical if its average weight is maximal, i.e. ifp(�) = �.Critical graph It consists of the nodes and arcs of A belonging to the critical circuit(s). Acritical column (resp. line) of A is a vector A:i (resp. Ai:) where i belongs to the criticalgraph. A critical term of A is a term Aij where i and j belong to the critical graph.For a general graph, we de�ne :



3.4 Spectral Theory in Rmax 77Cyclicity The cyclicity of a strongly connected graph is the greatest common divisor of thelengths of all the circuits. The cyclicity of a general graph is the least common multiple ofthe cyclicities of its maximal strongly connected subgraphs.To study the spectral behaviour of a matrix A, it is enough to know :� The number of maximal strongly connected subgraphs (s.c.s.) of its critical graph.� The cyclicity of its critical graph.In the following, a matrix is said to be of type SCSj-CYCk if its critical graph has j s.c.s. anda cyclicity of k.The two following theorems justify the previous assertion. For a normalized matrix A of size k,we de�ne A+ = A � A2 � � � � � Ak . We check that A+ � Ak+1 = A+. We check also that A+has the same critical columns (resp. lines) as A.Theorem 3.4.6. Let A be a normalized matrix.a. Critical columns A+:i are eigenvectors.b. For i; j belonging to the critical graph, �(A+:i ) and �(A+:j) are di�erent i� i and j belongto two di�erent s.c.s. of the critical graph.c. Every eigenvector of A writes as a linear combination (in Rmax, see Section 3.4.2) ofcritical columns A+:i .Because of c:, the vectors A+:i , i belonging to the critical graph, are called the extremal eigenvec-tors.Theorem 3.4.7. For an irreducible matrix A of size k and whose eigenvalue is �, there existintegers d and N such that : 8n > N; An+d = �
d 
An :Furthermore the smallest d verifying the property is equal to the cyclicity of the critical graph ofA. From now on, we will call it the cyclicity of A. A cyclicity of d will provide periodic regimesof period d for the eigenvalue problem.The good interpretation is that there exists an initial transient regime for the powers of a matrixA. After the transient regime, the sequence fAng becomes periodic (more rigorously, it is thesequence f�(An)g which becomes periodic, see De�nition 3.4.9).The term Anji can be interpreted as the heaviest path of n steps starting from i and arriving atj in the graph of A. Theorems 3.4.3 and 3.4.7 state that the asymptotic growth rate of An isgiven by the circuits of A having the maximal average weight.De�nition 3.4.8. Let A be an irreducible matrix and N be the smallest integer such that8n > N; An+d = �
d 
 An (see Theorem 3.4.7). The matrices fA; : : :; AN�1g constitute theso-called transient regime and the matrices fAn; n > Ng the stationary regime. We say that amatrix An; n > N is a stationary matrix associated with A, or the stationary version of A.



3.4 Spectral Theory in Rmax 783.4.2 The projective spaceA \linear combination" (in Rkmax) of eigenvectors is an eigenvector, i.e. if u1 and u2 are eigen-vectors and �1; �2 2 R, then (�1
u1)� (�2
u2) is also an eigenvector. In particular, if u is aneigenvector and � 2 R, then �
 u is also one. This motivates the introduction of an \additive"projective space PRk.De�nition 3.4.9 (PRk). The \additive" projective space PRk is de�ned as the quotient of Rkby the parallelism relation :u; v 2 Rk u ' v () 9a 2 R such that u = a
 v :Let � be the canonical projection of Rk into PRk.The projection � can be interpreted geometrically. It is the orthogonal projection on the hyper-space orthogonal to the vector 11 = (1; : : : ; 1)0. The projective space PRk is isomorphic to Rk�1.For irreducible matrices of size 2 or 3, we can represent, in R' PR2 and R2 ' PR3 respectively,eigenvectors and periodic regimes modulo the parallelism relation.
eigenvectors12
p22 PR2�p2b c R2��(b) �(c)

D
Figure 3.2: The projective space PR2.We illustrate this on Figure 3.2 for the matrix :R = � e �2�1 e � :This matrix veri�es R+ = R. By Theorem 3.4.6, the extremal eigenvectors are �(e;�1)0 and�(�2; e)0 and the set of eigenvectors is the set of linear combinations of these two points. It isthe strip represented in Figure 3.2. The line D, in Figure 3.2, is the hyper-space orthogonal tothe �rst bisecting line. To obtain the set of eigenvectors of R in PR2, we consider the orthogonalprojection on D.Let us introduce a distance d(:; :) on PRk which we are going to call the projective distance.



3.4 Spectral Theory in Rmax 79De�nition 3.4.10 (projective distance). We consider x; y 2 PRk. Let u; v 2 Rk be tworepresentatives of x and y, i.e. �(u) = x and �(v) = y.d(x; y) = d(u; v) =Mi (ui � vi) 
 Mi (vi � ui) :It is easy to check that d(x; y) does not depend on the representatives u and v. It is also easyto check that it is a distance in PRk. It corresponds to the L1 distance on the projective spacePRk, see Figure 3.3. We write either d(x; y) or d(u; v) with a little abuse of notation. We havethe following property.Proposition 3.4.11. Let A be an irreducible matrix of size k. Let u; v be two vectors of Rkmax.We have : d(Au;Av) 6 d(u; v) :There is no simple criterion to get a strict inequality. For a proof of this result see Proposition6.3.8. As an easy corollary of Theorem 3.4.7, we obtain that for an irreducible matrix A, thereexists N such that 8u; v 2 Rk; 8n > N; d(Anu;Anv) = d(ANu;ANv).
0.6D 1.2

0.2

0.8

0.8

e2e3 e1 �(e1)�(e3) �(e2)�(e)Figure 3.3: Unit ball of the projective distance in PR3.Let us represent the unit ball of the projective distance in PR3. The regular hexagon in Figure 3.3is the section of the unit square (i.e. the unit ball ofR3 for the L1 norm) by the projection plane.The three represented axes are the orthogonal projection of the basis of R3. The representedpoints are �(e) = �(e; e; e)0; �(e1) = �(1; e; e)0; �(e2) = �(e; 1; e)0; �(e3) = �(e; e; 1)0 andD = �(0:2; 0:6; 0:8)0.The practical way of representing a point X of PR3 is to choose a vector (2 R3) in the parallelismclass of X and to draw it in the three axes obtained by projection of the orthonormal basis of



3.4 Spectral Theory in Rmax 80R3 (it is easy to check that the point we obtain does not depend on the representative in theparallelism class). The point D of Figure 3.3 illustrates this. We have drawn two constructions :one corresponding to (0:2; 0:6; 0:8) and the other one to (0:8; 1:2; 1:4) = 0:6
 (0:2; 0:6; 0:8).Let us illustrate what the \linear combination" of two vectors means in PRk. We considerexamples of dimension 3. Let u = (u1; u2; u3)0 and v = (v1; v2; v3)0 be two vectors of R3. Let�; � 2 R. �(�
0@ u1u2u3 1A� �
0@ v1v2v3 1A) = �(0@ u1u2u3 1A� (� � �)
0@ v1v2v3 1A) :Let us assume for example that we have,u1 � v1 6 u2 � v2 6 u3 � v3 :Depending on the value of � = � � �, there are four possible cases.1. If � 6 u1 � v1, then �(u� �v) = �(u).2. If u1 � v1 6 � 6 u2 � v2, then �(u� �v) = �(�v1; u2; u3)0.3. If u2 � v2 6 � 6 u3 � v3, then �(u� �v) = �(�v1; �v2; u3)0.4. If u3 � v3 6 �, then �(u� �v) = �(v).This particular example corresponds to the case of points �(e3) (�(u)) and �(e1) (�(v)) in Figure3.3. The \line" between �(e3) and �(e1), in Figure 3.3, is the set of linear combinations of thetwo points. When two values are equal in fui � vi; i = 1; 2; 3g, the picture is degenerate (seeFigure 3.5, matrix D).The regular hexagon of Figure 3.3 is the convex hull of the points �(e1); �(e2) and �(e3), i.e.the set : f�(�
 e1 � � 
 e2 �  
 e3); �; �;  2 Rmaxg.Let us denote by �(f1); �(f2) and �(f3) the three other vertices of the regular hexagon. Moreprecisely, �(f1) = �(e; 1; 1)0, �(f2) = �(1; e; 1)0 and �(f3) = �(1; 1; e)0. One can check that theconvex hull of these points is the union of the segments [�(fi); �(e)].3.4.3 Change of basisA matrix A of Rk�kmax can be considered as a \linear" operator on Rk. We want to have a formulaof change of basis for the matrix associated with a given linear operator. We are only interestedin permutation of the coordinates and translation of the origin.De�nition 3.4.12. Let � be a permutation of f1; : : : ; kg. The matrix of permutation associatedwith � is P de�ned by : P�(i);i = e; Pji = "; 8j 6= �(i) :



3.4 Spectral Theory in Rmax 81Lemma 3.4.13. Let A be a k � k matrix and let Â be the matrix associated with the sameoperator in a new basis obtained from the original one by a permutation � of the coordinates.Matrix P is the permutation matrix associated with � and P�1 is the one associated with ��1.We have Â = P�1 
 A
 P .We consider a matrix A. We denote by ~A the matrix associated with the same operator in anew basis obtained from the original one by a translation of the origin of the projective space.Lemma 3.4.14. Let A be a k � k matrix. Let u 2 Rk be (a representative of) the new originwritten in the old basis. In the new basis, we have ~A = P�1 
 A 
 P; where Pii = ui; Pij ="; 8i 6= j.Proof. Let v = (v1; � � � ; vk)0 be a vector written in the old basis and let ~v = (~v1; � � � ; ~vk)0 be thissame vector in the new basis. We have ~vi + ui = vi. We set Av = w and w = (w1; � � � ; wk)0 and( ~w1; � � � ; ~wk)0 in the new and the old basis respectively.( ~A~v)i = (P�1 
A 
 P ~v)i = (P�1 
Av)i= (P�1w)i = ~wi utIt might be interesting to get another intuition on what a change of origin means. We presentnow an interpretation suggested by the modeling of Stochastic Event Graphs. Let us considerthe communication graph associated with a positive and irreducible matrix A 2 Rk�kmax. Weconsider that there is a clock associated with each node of A. Let u be a vector of Rk. Weinterpret ui as a date of occurrence of a �rst event at node i. Then (Au)j is interpreted as thedate of occurrence of the second event at node j. In this framework, a \change of origin" is justa change of the origin of time for some or all of the daters. It does not modify of course theevolution of the system.The critical graph of a matrix is not modi�ed by a change of basis. Lemma 3.4.15 shows thatsome bases have a particular interest.Lemma 3.4.15. We consider a matrix A, irreducible, of size k. Let � be the eigenvalue andu an eigenvector of A. Let P be the matrix of change of the origin associated with u. Let~A = P�1 
A
P . We have the following property 8i; j 2 1; � � � ; k; ~Aij 6 � and 8p; q such that(p; q) belongs to the critical graph (i.e. for all critical terms), we have ~Aqp = �.Proof. We set e = (e; : : : ; e)0. ~Ae = 0@Mj ~A1j ; : : : ;Mj ~Akj1A :But we also have that e is an eigenvector of ~A, ~Ae = P�1APe = P�1Au = P�1�u = �e. Itimplies that 8i; Lj ~Aij = �, which proves the �rst part of the lemma. Let us suppose thereexist p; q such that (p; q) belongs to the critical graph and ~Aqp < �. There is a critical circuitinvolving the arc (p; q). Using the �rst part of the lemma and ~Aqp < �, we conclude that themean weight of this critical circuit is strictly smaller than �, which is a contradiction. ut



3.4 Spectral Theory in Rmax 823.4.4 Classi�cationThe set of eigenelements of a matrix is the set of eigenvectors and periodic regimes. Eachspectral behaviour corresponds to a speci�c form for the set of eigenelements. It is possibleto prove that this set is compact i� the matrix is aperiodic (Def. 3.4.2). In the following, werestrict our attention to aperiodic matrices.It is enough to study the sets of eigenelements for some canonical matrices of each spectral typescsp-cycl. Let A 2 Rk�kmax be a given irreducible and aperiodic matrix. Its set of eigenelementscan be obtained from the one of a canonical matrix by applying an homothety and a translation.Next algorithm propose a systematic way to determine the canonical matrix associated with Aand to determine the homothety and the translation.AlgorithmStep 1. Find the eigenvalue and normalize A.Let � be the eigenvalue of A. Normalize matrix A. For sake of simplicity, we keep the originalnotation, i.e. A := A� �. The set of eigenelements is not changed by the normalization.Step 2. Find an eigenvector of A and write A in a new basis.Let u be an eigenvector ofA. Consider a new basis obtained from the original one by a translationof u of the origin. For simplicity, we keep the notation A for the operator in the new basis. ByLemma 3.4.14, we have A := P�1AP; where Pii = ui; Pij = "; i 6= j.By Lemma 3.4.15, all critical terms of A are now equal to e and all non-critical terms are lessthan or equal to e.Step 3. Determine the spectral type of A.Compute the number of strongly connected subgraphs (p) and the cyclicity (l) of the criticalgraph. The spectral type of A is scsp-cycl.Step 4. Compute the projective size of A.Compute the matrix Al and the matrix (Al)+. Let C be the set of couples (i; j) such that A:jis a critical column (De�nition 3.4.5). We set � = jmin(i;j)2C(Al)+ij j. We call � the projectivesize of A. If � 6= 1, we scale the matrix A. We set A := A=� , each entry of A is divided (in theconventional algebra) by �.Step 5. Check non-critical terms of A. Final classi�cation.Consider the terms (Al)+ij for the couples (i; j) such that (i; j) 2 C and (i; j) is not a critical arc.If they are all equal to �1, matrix A is said to be regular. We say that the set of eigenelementsof A has a basic form. If they are not all equal to �1, the set of eigenelements is modi�ed andis said to be non-basic.With this algorithm, we have associated with the original matrix a canonical matrix. Let Sbe the set of eigenelements of the canonical matrix. To obtain the set of eigenelements of theoriginal matrix, it is necessary to apply to S :



3.5 Illustrated Spectral Theory in Dimension 3 831. An homothetic transformation of center e = (e; : : : ; e)0 and ratio �, where � is theprojective size de�ned in Step 4.2. A translation of u, where u is the eigenvector computed in Step 2.Remark For some details on the practical implementation of this algorithm and for complexityresults, see Chapter 5.For matrices of dimension 3, a graphical representation of the sets of eigenelements of canonicalmatrices is proposed in x3.5.3.5 Illustrated Spectral Theory in Dimension 3We are ready to take a closer look at irreducible and aperiodic matrices of size 3. Using Theorems3.4.6 and 3.4.7, it is easy to show that there are only six possible spectral behaviours, which canbe sorted in four categories.� scs1-cyc1 � scs3-cyc1 and scs1-cyc3.� scs2-cyc2 � scs2-cyc1 and scs1-cyc2.For each spectral type, we are going to draw the set of eigenelements, in PR3. We will alsorepresent the domains of attraction of the di�erent eigenelements. For a matrix A, we calldomain of attraction of an eigenvector (resp. of a periodic regime) the set of initial conditionsfx0g such that �(Anx0) converges to that eigenvector (resp. periodic regime). By Theorem3.4.7, this convergence occurs in �nite time.Regular sets of eigenelements have been represented for each spectral type, see Table 1. Examplesof non-regular sets are also given for each spectral type, see Table 2.Table 1. Spectral type Figure n�scs3-cyc1 3.4scs1-cyc3 3.6scs2-cyc1 3.8scs1-cyc2 3.8,3.11scs2-cyc2 3.12 , Table 2. Spectral type Figure n�scs3-cyc1 3.5scs1-cyc3 3.7scs2-cyc1 3.9scs1-cyc2 3.9,3.10scs2-cyc2 3.13 .3.5.1 Scs1-Cyc1Let A be a scs1-cyc1 matrix. We denote by v the unique eigenvector of A. By applying Theorem3.4.7, we obtain : 9N; 8n > N; 8u0 2 Rk; �(Anu0) = �(v) :The domain of attraction of �(v) is PRk. This case is of special importance for stochastic models(see Chapter 6). There is no �gure corresponding to this case as the spectral behaviour is trivial.



3.5 Illustrated Spectral Theory in Dimension 3 843.5.2 Scs3-Cyc1 and Scs1-Cyc3If A is a scs1-cyc3 matrix, then A3 is a scs3-cyc1 matrix (but the converse is false !). Forexample, A = 0@ : : ee : :: e : 1A ; B = A3 = 0@ e : :: e :: : e 1A ; (3.6)where (.) stands for �1.
123 u00 v00v0u0 uv �(B1)�(B2)�(B3)Figure 3.4: scs3-cyc1, set of eigenvectors of B.We consider �rst the scs3-cyc1 case. There are three extremal eigenvectors and no periodicregime of period greater than one (Theorems 3.4.6 and 3.4.7). Let us consider more speci�callythe matrix B de�ned in (3.6). It is a normalized matrix and we check that B+ = B2 = B. ByTheorem 3.4.6, the three columns B1; B2 and B3 of B are the extremal eigenvectors. The set ofeigenvectors is the Rmax convex hull of these three eigenvectors. In Figure 3.4, it is representedin dark gray.If the initial condition x0 is in the light gray zone number i, then the limit value of �(Bnx0) is�(Bi). If the initial condition is in one of the white strips, then the limit value is the nearestpoint for the projective distance (and this limit is attained in one step as B2 = B). For example,for initial conditions u0 or u00 (resp. v0 or v00) the limit value is u (resp. v).We will now consider what happens if we modify the non-critical terms of the matrix B. Weconsider three di�erent examples to illustrate it.C = 0@ e : :�12 e :: : e 1A ; D = 0@ e �0:6 :: e 0:6: : e 1A ; E = 0@ e : �12�0:2 e :�0:2 �12 e 1A ;where (:) = �1. We have represented the sets of eigenvectors of these matrices in Figure 3.5.



3.5 Illustrated Spectral Theory in Dimension 3 85�(C1) �(D3)�(C3) �(E2) �(E1)�(E3)�(D1)�(D+1 )�(D2)�(C2)Figure 3.5: scs3-cyc1, sets of eigenvectors of C, D and E.We can represent these sets using the procedure described in Section 3.4.2. Let us consider thematrix C for example. We represent the three columns of C+ = C, �(C1); �(C2) and �(C3).The convex hull of these three points is the set of eigenvectors of C.Now we consider the case of scs1-cyc3 matrices. There is only one eigenvector but there areperiodic regimes of period 3. The set of periodic regimes of period 3 of a scs1-cyc3 matrix M isequal to the set of eigenvectors of M3. Let us consider more speci�cally the matrix A de�ned in(3.6) above. It is easy to check that the unique eigenvector of A is e = (e; e; e)0. We know theform of the set � of periodic regimes of A (it is the set of eigenvectors of A3 = B, see Figure3.4). To go further, we want to characterize, given an initial condition u 6= e in the hexagon �,the periodic regime associated with u. By Theorem 3.4.7, this periodic regime is fu;Au;A2ug.We have A3u = u which implies d(A3u; e) = d(u; e). By Proposition 3.4.11, we have that :d(A3u; e) 6 d(A2u; e) 6 d(Au; e) 6 d(u; e) :We conclude that : d(A2u; e) = d(Au; e) = d(u; e) :The points of a periodic regime are at a constant distance (for the projective distance) ofthe unique eigenvector e. Furthermore, the three points fu;Au;A2ug must be invariant by apermutation of the three projective axes which characterize them completely. The direction ofrotation depends on the critical circuit. It will be counter-clockwise if the critical circuit (1; 2; 3)and clockwise if it is (1; 3; 2). For example A and A2 have the same set of periodic regimes butopposite directions of rotation.We have represented in Figure 3.6, the set of eigenelements of matrix A. If the initial conditionis in one of the gray zones, then the stationary periodic regime is f�(A1); �(A2); �(A3)g. If theinitial condition is in one of the white strips, the limit regime consists of three points on theboundary of the hexagon. For example for an initial condition u0 or u00, the limit regime isfu1; u2; u3g. More precisely, we have :�(Au0) = �(u1); �(A2u0) = �(u2); �(A3u0) = �(u3); �(A4u0) = �(u1); : : : ;�(Au00) = �(u3); �(A2u00) = �(u1); : : : :
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3 12 v1v3v2 u1u0u00 �(A1)u3u2 �(A3) �(A2)

Figure 3.6: scs1-cyc3, set of periodic regimes of A.If the initial condition u belongs to �, the stationary periodic regime is fu;Au;A2ug. We havealso drawn an example of such a regime (fv1; v2; v3g).What happens if we perturb non-critical terms? To describe it, it will be useful to de�ne thenotion of sub-diagonals.De�nition 3.5.1. Let M be a matrix of size k. We call ith sub-diagonal of M the termsfMi1;Mi+1;2; : : : ;Mi+k�i;1+k�i;M1;2+k�i; : : : ;Mi�1;kg = fMi�1+k;k [k]; 8kg :For example, the �rst sub-diagonal is the diagonal of the matrix ! For the matrix A above, thecritical sub-diagonal is the second one. If we increase a non-critical term (i.e. a term of the �rstor third sub-diagonal), after a transient regime, the whole sub-diagonal will be equal to thisterm. Let us consider an example.A0 = 0@ a b1 ee : :b2 e : 1A �! (A0)4 = 0@ a b ee a bb e a 1A ; (A0)5 = 0@ b e aa b ee a b 1A ; : : : ;with (:) = �1; �1 < a; b1; b2 < e; b = b1 � b21 This provides us with speci�c pictures for thesets of periodic regimes. When we increase continuously a non-critical term, this set evolves inthe same manner as the diaphragm of a camera. Let us illustrate it in Figure 3.7.F = 0@ �0:8 : ee �0:8 :: e �0:8 1A ; G = 0@ �0:5 : ee �0:5 :: e �0:5 1A ;1The projective size of matrix A0 is here inf (a; b), see Stage 6 of the algorithm of Section 3.4.4.



3.5 Illustrated Spectral Theory in Dimension 3 87H = 0@ �0:2 : ee �0:2 :: e �0:2 1A ; (:) = �1 :�(F2) �(G2)�(G1) �(H3) �(H1)�(F3) �(F1) �(G3) �(H2)Figure 3.7: scs1-cyc3, sets of periodic regimes of F , G and H .When the terms of the diagonal become equal to e, we obtain a scs1-cyc1 matrix with e =(e; : : : ; e)0 as the unique eigenvector. When the terms of the diagonal become greater than e,then we get a scs3-cyc1 matrix for which the set of eigenvectors is similar to the one of Figure3.4.Remark In the cases we have been dealing with so far, domains of attraction had a very easyalgebraic characterization. In fact for a matrix M and an initial condition u, the limit valueof �(Mnu) was the \nearest" (for the projective distance) eigenvector or periodic regime. Thischaracterization will not be always true for the examples to come which makes the descriptionof domains of attraction more delicate. For more insights, see Proposition 4.4.1.3.5.3 Scs2-Cyc1 and Scs1-Cyc2In the same way as previously, if M is a scs1-cyc2 matrix then M2 is a scs2-cyc1 matrix, theconverse being false. For example,I = 0@ : e :e : :: : �2 1A ; J = I2 = 0@ e : :: e :: : �2 1A ; (:) = �1 ;Let us consider the scs2-cyc1 case and more precisely the matrix J . By Theorem (3.4.6), thereare two extremal eigenvectors �(J1) and �(J2) (the �rst two columns of J+ = J2 = J) and noperiodic regime of period greater than 1. In Figure 3.8, we have represented eigenvectors anddomains of attraction for J .There is a symmetry axis for the whole �gure (corresponding to the fact that matrix J isunchanged by a permutation of the �rst two columns). The set of eigenvectors is given by thelinear combinations of �(J1) and �(J2). As opposed to the scs3-cyc1 case, no eigenvector has adomain of attraction restricted to itself. If the initial condition x0 is in the gray zones 1 or 2,the limit value of �(Jkx0) will be �(J1) or �(J2) respectively. If it is in zone 3, then the limitvalue will be �(j) = �(e; e;�1)0. When the initial condition is in one of the white strips, thelimit value is given by the arrows. For example, if the initial condition is u0, u1 or u2, the limitregime is u.
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3 12 u2u1u0 u�(J2) �(J1)�(j)Figure 3.8: scs2-cyc1 (resp. scs1-cyc2), set of eigenelements of J (resp. I).The picture remains the same for matrix I which is scs1-cyc2. There is only one eigenvectorwhich is �(j) = �(e; e;�1)0. The \line" between �(J1) and �(J2) is the set of periodic regimesof period 2. Two points of this set belong to the same periodic regime if they are \symmetric"with respect to �(j). For an initial condition in zone 3, the limit regime is the eigenvector �(j).For an initial condition in zones 1 or 2, the limit regime is f�(J1); �(J2)g and so on.We want to analyze what happens if we modify non-critical terms. We have to distinguishbetween modi�cations of terms belonging to critical columns (columns 1 and 2 here) and ofterms belonging to non-critical columns. If we modify a term belonging to a critical column,the set of eigenvectors (obtained as the convex hull of critical columns) will also be modi�ed.On the other hand, it is possible that a modi�cation of a term of the non-critical column doesnot a�ect the set of eigenvectors but only the domains of attraction. Let us illustrate this ideaon Figure 3.9. It corresponds to the matrices :K = 0@ e : �0:5: e :: : �2 1A ; L = 0@ e : 0:5: e :: : �2 1A ; (:) = �1 :For matrix K, the set of eigenvectors is not modi�ed, but the domains of attraction are. Figure3.9 has to be interpreted in the same way as previously. The extremal eigenvectors are �(K1)and �(K2), the critical columns of K. The gray zones 1 and 2 are the domains of attraction of�(K1) and �(K2) respectively. If the initial condition u0 is in zone 3, the limit value of �(Knu0)will be �(k) = �(1; 0:5; e)0.Matrix L is not stationary, see De�nition 3.4.8. In fact, The stationary matrix associated withL is :the domains of attraction and the set of eigenvectors are modi�ed. In fact, The stationarymatrix associated with L is :L2 = 0@ e �0:5 0:5: e �0:5: : �0:5 1A ; (:) = �1 :
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13 2 1 2�(k) �(L1)�(K2) �(K1) �(L22)

Figure 3.9: scs2-cyc1, sets of eigenvectors of K and L.For matrix L2, a term of a critical column has been modi�ed. As a consequence, the domainsof attraction and the set of eigenvectors are modi�ed. The extremal eigenvectors �(L21) and�(L22) are the critical columns of matrix L2. In this example, zones 1 and 3 have melted. Theyconstitute the domain of attraction of �(L21).Let us now consider what happens when we modify non-critical terms of a scs1-cyc2 matrix,M . The analysis made before remains valid. The set of periodic regimes of M is exactly the setof eigenvectors of the scs2-cyc1 matrix M2. One interesting point to notice is that there mightbe no symmetry axis although all the stationary regimes are periodic of period 2. Figure 3.10provides an example of this behaviour. It corresponds to the matrix :O = 0@ : e :e : :�0:5 : �1:5 1A ; (:) = �1 :Let �(O21) and �(O22) be the two extremal points of the set of periodic regimes (i.e. the criticalcolumns of O2, the stationary version of O). The unique eigenvector, �(o) = �(e; e;�0:5)0 isthe point of the set of periodic regimes equidistant (for the projective distance) from �(O21) and�(O22). A periodic regime consists of two points equidistant from point �(o).The interpretation of the domains of attraction is the same as previously.We have now to consider a special case of scs1-cyc2 matrices. It is a matrix whose critical graphcontains two circuits of length 2. Let P be such a matrix. The critical circuits of the graph ofP are (1; 2) and(2; 3). From the point of view of its behaviour, this matrix is not very di�erentfrom a scs1-cyc2 matrix with only one critical circuit of length 2. In Figure 3.11, we compare Pwith a matrix having the same set of periodic regimes but only one critical circuit of length 2,matrix Q. P = 0@ : e :e : e: e : 1A ; Q = 0@ : e :e : :: e : 1A ; (:) = �1 :
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13 2 �(o)�(O22) �(O21 )Figure 3.10: scs1-cyc2, a non-symmetrical example, set of periodic regimes of O.

13 221 �(Q2)�(P2) �(Q1)�(P1)�(e)Figure 3.11: scs1-cyc2, a special case with two critical circuits of length 2, set of periodic regimesof P and Q.For matrix P , the limit regime is (�(P1); �(P2)) for an initial condition in zone 1 or 2. Theunique eigenvector, �(e) = �(e; e; e)0 has a domain of attraction restricted to itself. For matrixQ, the limit regime is (�(Q1); �(Q2)) for an initial condition in zone 1 or 2. For an initialcondition in zone 3, it is the eigenvector �(e).Remark All matrices having the same critical graph as P have exactly the same spectralbehaviour as P . More precisely, let us consider a matrix ~P obtained by modifying the non-critical terms. Its stationary version is denoted ~PN (De�nition 3.4.8).~P = 0@ �1 e �2e �3 e�4 e �5 1A ; �i < e; ~PN = 0@ � e �e � e� e � 1A ; � = maxi=1:::5�i :According to Stage 6 of the algorithm, the �gure corresponding to ~P is obtained from the oneof P by an homothetic transformation of center �(e) = �(e; e; e)0 and ratio j�j.



3.5 Illustrated Spectral Theory in Dimension 3 91Remark In this section, matrices I to O are such that the critical columns are 1 and 2. If weconsider a matrix which is scs2-cyc1 or scs1-cyc2 but with di�erent critical columns, one can getback to the previous cases by a permutation of the coordinates. It means that the correspondingpicture can be obtained from the ones of this Section by performing a rotation of center e.The same kind of remark applies to matrices which are scs1-cyc2 and have 2 critical circuits.All �gures corresponding to such matrices can be obtained by a rotation of Figure 3.11, matrixP . The same kind of remark is also valid in the forthcoming case of scs2-cyc2 matrices3.5.4 Scs2-Cyc2The basic example of such a matrix is :R = 0@ : e :e : :: : e 1A ; (:) = �1 :If a matrix M is scs2-cyc2 then the matrix M2 is scs3-cyc1. To �nd the set of eigenelements ofa scs2-cyc2 matrix M , one has to determine the set of eigenvectors of the scs3-cyc1 matrix M2(see Section 3.5.2).Let us represent graphically eigenvectors, periodic regimes of period 2 and domains of attractionof matrix R in Figure 3.12.
3 1

2 �(R2) �(r)�(R3) �(R1)Figure 3.12: scs2-cyc2, set of eigenelements of R.There is a symmetry axis for the whole �gure (matrix R is unchanged by a permutation of the�rst two coordinates). There are two extremal eigenvectors, �(R3) and �(r) = �(e; e;�1)0. Theset of eigenvectors (the interval [�(R3); �(r)]) splits the set of periodic regimes in two equalparts. The two points of a periodic regime of period 2 are symmetric with respect to the set ofeigenvectors. The analysis of domains of attraction is analog to the one of the scs3-cyc1 case. Ifthe initial condition belongs to the zones 1 or 2 (resp. 3), the limit value is the periodic regimef�(R1); �(R2)g (resp. the eigenvector �(R3)). If the initial condition belongs to one of the three



3.5 Illustrated Spectral Theory in Dimension 3 92white strips, the limit regime is a periodic regime of period 2, corresponding to the \nearest"point on the hexagon and its symmetrical point.We have now to analyze what happens if we modify non-critical terms. The cases we havealready considered are enough to understand what is going to happen. We will represent twocharacteristic examples in Figure 3.13, corresponding to matrices S and T .S = 0@ a e :e : :b : e 1A ; T = 0@ : e ce : d: : e 1A ; (:) = �1 :The reals a; b; c and d must satisfy the following constraints (in order for our matrices S and Tto be scs2-cyc2) : �1 6 a < e; �1 6 b < 1; �1 6 c < 1; �1 6 d < 1 :The stationary versions of the matrices are :S3 = 0@ a e :e a :b b e 1A ; T 3 = 0@ : e c� de : c� d: : e 1A ; (:) = �1 :
3 2 12 13 �(S3) �(S1)�(S2) �(T3) �(T1)�(T2)

Figure 3.13: scs2-cyc2, sets of eigenelements of S and T .The graphical representations of Figure 3.13 correspond to a = �0:2; b = �0:5; c = �0:5 andd = �0:9.3.5.5 Transient regimesWe will now take a closer look at transient regimes of matrices. The matrices we have beenconsidering so far were chosen in order to be stationary or at least to have a very short transientregime. To emphasize the transient behaviour, we will, on the other hand, consider matriceswith long transient regimes. The length of the transient regime is closely related to the \secondeigenvalue" of the matrix, i.e the second largest circuit weight (see [44]).



3.5 Illustrated Spectral Theory in Dimension 3 93First of all, one has to remark that a matrix can have an arbitrarily long transient regime. Letus take an example.U = � e �1�1 �� � ; 0 < � � 1; U2 = � e �1�1 �2� � � ;Un = � e �1�1 �n � � � ; n < [ 2� ] + 1; Un = � e �1�1 �2 � ; n > [ 2� ] + 1 :The length of the transient regime is thus [ 2� ]. The matrix U is scs1-cyc1, its unique eigenvectoris �(u) = �(e;�1)0. As we have seen previously, it implies that limn �(Unv) = �(u), 8v 2 Rk.Let us consider the initial condition v = (e; 3)0. We have �(Uv) = �(e; 1 � �)0; �(U2u) =�(e; 1� 2� �); : : : . �(v) = �(e; 3)0 �(e; 1� �)0 �(u) = �(e;�1)0Figure 3.14: scs1-cyc1, dimension 2, transient regime of U .We have represented on Figure 3.14, the sequence f�(Unv)g in the projective space PR2. Wehave also represented the same sequence for three other initial conditions. We are now going topresent analog �gures corresponding to matrices of size 3.First of all, we consider the example of scs1-cyc1 matrices.V = 0@ e : :: : ��: �� : 1A ; W = 0@ e : :: �2 ��: �� �2 1A ; 0 < � � 1; (:) = �1 :Both matrices have the same stationary version :limk V k = limk W k = 0@ e : :: �2 �2: �2 �2 1A ; (:) = �1 :We have represented the transient behaviours of matrices V and W in Figure 3.15. Matrix Vis obtained by a small perturbation of matrix R (Section 3.5.4, Figure 3.12). The transientbehaviour reects it, as the �gure we obtain is very close to Figure 3.12. As a comparison, wehave also represented the matrix W whose behaviour is asymptotically identical.Let us comment on the �gure corresponding to V a little further. The three points �(V1); �(V2)and �(V3) are the projections of the columns of matrix V . If the initial condition is in zone 1,



3.5 Illustrated Spectral Theory in Dimension 3 9423 2 1 3 1�(V3) �(V2) �(V1) �(W1)�(W2)�(W3)Figure 3.15: Dimension 3, scs2-cyc2, transient regimes of V and W .there is convergence in one step to �(V1) = �(e;�1;�1)0, the unique eigenvector. If the initialcondition is in zone 2 (resp. 3), we have �(V x0) = �(V3) = �(�1;�1;��)0 (resp. �(V x0) =�(V2) = �(�1;��;�1)0). We have represented the whole sequence f�(V nx0)g for an initialcondition �(x0) = �(V3). For an initial condition in one of the three white strips, for examplelet us consider u0 (or u00), then �(V u0) (or �(V u00)) is the point pointed by the arrow in thepicture (it is the symmetric of the \nearest" point on the set Im(S)). For initial condition u00,we have also drawn the beginning of the sequence f�(V nu00)g.For matrixW , the set of periodic regimes is the same one as V . But the domains of attraction arequite modi�ed. It emphasizes the possible inuence of transient regimes, especially in stochasticmodels. Here we have drawn the sequences f�(V nu0)g (or part of them) for several di�erentinitial conditions. One of them is in zone 2, another one in the white strip between zones 2 and3 and the last one is on the symmetry axis.We consider now the transient regime of a scs2-cyc1 matrix.Z = 0@ e : :: e :: : �� 1A ; 0 < � � 1; (:) = �1 :The stationary regime of Z is matrix J , the basic scs2-cyc1 matrix (Section 3.5.3). We can alsoview Z as a small perturbation of matrix A the basic scs3-cyc1 matrix (Section 3.5.2. Figure3.16 reects these remarks.The extremal eigenvectors are �(Z1) and �(Z2), the �rst two columns of Z. The point �(z) is�(e; e; 1� �)0. If the initial condition is in zone 1 (resp. 2) we have convergence to �(Z1) (resp.�(Z2)) in one step. The hexagon represented in dotted lines is Im(Z) = Z(R3). For an initialcondition �(u) in one of the white strips, �(Zu) is the closest (for the projective distance) pointon the hexagon Im(Z). Then there is convergence of �(Znu) to the eigenvector of Z which isthe closest to �(Zu) (it is not necessary the closest to �(u) !) We have represented, in Figure3.16, the whole sequence f�(Znx0)g for several di�erent initial conditions.



3.6 Application to the Manufacturing Model 95
1

2
3 eigenvectors�(Z2)�(z) �(Z1)Figure 3.16: Dimension 3, scs2-cyc1, transient regime of Z.3.6 Application to the Manufacturing ModelWe consider the manufacturing model of Section 3.3, Figure 3.1. Matrix M in (3.4) is eitherscs1-cyc2 or scs1-cyc1, depending on the values of �; �i and i. As an example, let � = 2; �1 =2; �2 = 1; 1 = 2 and 2 = 0. We obtain :x(n+ 1) =M 
 x(n); M = 0@ " " 2" " 14 2 2 1A :The eigenvalue of the matrix is : � = M13 +M312 = 3 :The circuit (1; 3) is the unique critical circuit. Hence matrix M is scs1-cyc2. The unique(in the projective space) eigenvector is �(u0) = �(1; e; 2)0. The set of periodic regimes isf�(u�); �(v�)g = f�(1+�; �; 2); �(1; e; 2+�)g; � 2 [e; 1]. We have represented the set of eigenele-ments of matrix M in Figure 3.17.Let us consider a speci�c periodic regime fu�; v�g. We suppose that the system is in this regime,i.e. �(x(2n)) = �(u�) and �(x(2n + 1)) = �(v�). We recall the de�nition of the idle time asgiven in Section 3.3, �(n) = x3(n)� x3(n� 1)� �. We have :�(2n) = 1 + (u�)3 � (v�)3; �(2n+ 1) = 1 + (v�)3 � (u�)3 :We see that the idle time of the assembly line depends on the periodic regime of the system.In many practical cases, it is interesting to have a stationary regime such that the idle time isconstant. It implies that the stationary regime has to be the eigenvector u0. We also want tohave a control which consists in choosing the initial condition. We conclude that we have to



3.7 A Projectively In�nite Semigroup of Matrices 963 1�(e)�(v1) �(u1)�(u0)Figure 3.17: scs1-cyc2, manufacturing model, set of periodic regimes of M .choose the initial condition in the domain of attraction of u0. This domain can be observed onFigure 3.17. It corresponds to the vectors :f�(1; x; 2)0; x 2]�1; 3]g [ f�(x; 2; 1)0; x 2]�1; e]g : (3.7)Suppose now that we want to minimize the minimal idle time. We still want to have a controlwhich consists in choosing the initial condition. The minimal idle time is :� = min �(2n); �(2n+ 1) = min (1� �; 1+ �) = 1� � :So we minimize � for � = 1, i.e. for the periodic regime fu1; v1g. We have to choose the initialcondition in the domain of attraction of fu1; v1g. This domain is the union of zones 1 and 3 onFigure 3.17.The graphical representation has enabled us to illustrate a control problem in a manufacturingmodel. As simple as the problem is, we see that the sets of solutions (for example the one givenin (3.7)) are far from being simple or intuitive. It enables one to get an idea of the potentialcomplexity of this kind of problems.3.7 A Projectively In�nite Semigroup of MatricesWe consider a �nite number of matrices A1; : : : ; Ap 2 Rk�kmax. We denote respectively by <A1; : : : ; Ap > and �< A1; : : : ; Ap > the semigroup generated by A1; : : : ; Ap and its projection.< A1; : : : ; Ap >= f(AuN � � �Au2Au1) ; u1; : : : ; uN 2 f1; : : : ; pg; N �niteg ;�< A1; : : : ; Ap >= f�(AuN � � �Au2Au1) ; u1; : : : ; uN 2 f1; : : : ; pg; N �niteg ;where � is here the canonical projection of Rk�kmax into PRk�kmax. The problem we are interestedin is the �niteness of �< A1; : : : ; Ap >. It is in fact a version in the (max,+) algebra of theclassical Burnside problem (see Gaubert [70]).



3.7 A Projectively In�nite Semigroup of Matrices 97Let us consider the projective semigroup generated by a single irreducible matrix �< A >=f�(An); n 2 Ng. Theorem 3.4.7 tells us that �< A > is �nite.Remark It is the �niteness of the projective semigroup and not the �niteness of the semigroupwhich is interesting. Indeed any irreducible matrix A with an eigenvalue di�erent from e is suchthat < A > is in�nite.A slightly stronger version of next theorem was proved in [70], see also Proposition 6.5.4.Theorem 3.7.1. Let A1; : : : ; Ap 2 Qk�kmax. We assume that :8u 2 f1; : : : ; pg; 8(i; j); (Au)ij > " :Then the projective semigroup �< A1; : : : ; Ap > is �nite.This theorem can not be extended to the case of matrices with non rational entries. We aregoing to propose a counter-example.We consider the semigroup generated by the matrices :A1 = 0@ ��1 : :: e :: : e 1A ; A2 = 0@ e : :: ��2 :: : e 1A ; A3 = 0@ e : :: e :: : ��3 1A ;where (:) = �1; 0 < �i � 1 and �i 62 Q. We suppose also that �i=�j 62 Q; i; j 2 f1; 2; 3g; i 6= j.An easy way to show that the semigroup �< A1; A2; A3 > is in�nite is to consider the initial con-dition e = (e; e; e)0 and to prove that � = �(< A1; A2; A3 > e) = f�(Me); M 2< A1; A2; A3 >gis in�nite. We obtain a nice illustration of the phenomenon with the help of the graphicalrepresentation in the projective space. : matrix A2: matrix A3: matrix A1ABCFigure 3.18: A �nitely generated but projectively in�nite semigroup of matrices.The extremal eigenvectors of A1; A2 and A3 are respectively (�(e2); �(e3)), (�(e1); �(e3)) and(�(e1); �(e2)). Figure 3.18 shows the e�ect of applying matrices A1; A2 and A3 to a vector.Figure 3.18 is analog to Figure 3.16 but with three di�erent transient regimes interacting.



3.7 A Projectively In�nite Semigroup of Matrices 98For a point u = (u1; u2; u3)0 such that d(u; e) < 1 � supi=1;2;3 �i, where d is the projectivedistance (De�nition 3.4.10), we have :A1u = 0@ u1 � �1u2u3 1A ; A2u = 0@ u1u2 � �2u3 1A ; A3u = 0@ u1u2u3 � �3 1A :It is easy to prove that � is dense in the hexagon H delimited by �(e1); �(e1) and �(e3). In factlet us consider three integers N1; N2 and N3 such that :supi=1;2;3(Ni � �i)� infi=1;2;3(Ni � �i) < 1 :Then it is quite obvious that there exists a matrix M 2 < A;B;C >; M = AuN 
 � � � 
 Au1verifying : with N = N1 +N2 +N3 where :N = N1 +N2 +N3; Ni = #fn jAun = Aig; i = 1; 2; 3 ;Me = 0@ �N1 � �1�N2 � �2�N3 � �3 1A :In fact it is easy to understand, watching Figure 3.18, that we will obtain this formula for Mei� 8n 2 f1; : : : ; Ng; �(Aun 
 � � � 
 Au1e) belongs to the interior of the hexagon H.Let us consider an arbitrary point �(v) in the interior of the hexagon H. As �1; �2; �3 are notco-rational, there exists a sequence of integers N (n) and a sequence of matrices fM (n); M (n) 2<A1; : : : ; Ap >g with the following properties.� The length of M (n) is N (n), i.e M (n) = A(n)uN(n) 
 � � � 
A(n)u1 .� N (n)i = #fl jA(n)ul = Aig; i = 1; 2; 3,�(M (n)e) = �0B@ �N (n)1 � �1�N (n)2 � �2�N (n)3 � �3 1CA n!1�! �(v) :Remark If we consider another initial condition u 6= e, we will in general obtain a set ofreachable points �(< A1; : : : ; Ap > u) dense in the hexagon H and whose intersection with � isempty. Let us now consider a Markov chain x(n; x0) whose transition probabilities p(:; :) verify8v 2 R3max; p(�(v); � (Aiv)) = pi; i = 1; 2; 3; pi > 0; p1 + p2 + p3 = 1 :We take �(e) as our initial condition. Then � is a set of transient states for the Markov chain.Between the �rst and and the second hitting of the border of the hexagon H, the Markov chainevolves on a set of transient states dense in the interior of H and whose intersection with � isempty. It is however possible to show that the chain is positive recurrent. Points �(e1); �(e2) or�(e3) can be used as regenerative points (for example �(An002 An03 An2u) = �(e1); 8u 2 Rk, whenn; n0 and n00 are su�ciently large).



3.8 Conclusion 993.8 ConclusionThe main contribution of this paper is the graphical characterization of the domains of attractionof the eigenelements of a matrix. The drawback of the approach is that it considers only matricesof size 3. However, it should be noted that for a general matrix, if the critical circuit is of size 3or less, then the proposed approach applies. Moreover, the study of these 3x3 matrices providesa good intuition of the general case. For example, in any dimension, the domains of attractionwill be \polyhedrons" and the sets of eigenelements, compact polyhedrons.A C program has been written by Bruno Gaujal, which implements the algorithm of Sec-tion 3.5. Given a matrix of dimension 3, this program provides the graphical representa-tion of eigenvectors, periodic regimes and domains of attraction (as in Figures 3.4 to 3.13).If you are interested in obtaining this program, send a request to gaujal@@sophia.inria.fr ormairesse@@sophia.inria.fr.



Chapitre 4Application in Cyclic SchedulingApplication �a l'Ordonnancement CycliqueOn propose une application de la repr�esentation graphique pr�esent�ee au chapitre pr�ec�edent.Il s'agit d'illustrer des probl�emes propres �a l'ordonnancement cyclique dans les syst�emes deproduction.Ce chapitre a b�en�e�ci�e de nombreuse discussions avec Zhen Liu et Lucian Finta.



4.1 Introduction 1014.1 IntroductionThe scheduling problems that we are going to consider appear in manufacturing systems. Wehave sets of jobs (or tasks) and machines. In general, the scheduling problem is to map in themost e�cient way the jobs on the machines. Our problem is a little bit di�erent. We assume thatthe mapping is given and we want to determine, in an optimal way, the initial delays betweenjobs.The basic model can be represented in the form of an oriented graph G with weights (in R+)on the nodes and the arcs. A node corresponds to some tasks and its weight corresponds to theexecution time of that task. An arc corresponds to a precedence relation between two tasks andits weight corresponds to the communication time between the tasks. Let us assume that thereis an arc from task i to task j with weight �. It means that the execution of task j can startonly � units of time after the completion of task i. Note that weights on nodes and arcs arecalled execution and communication times respectivelyOne must distinguish between two di�erent classes of problem.1. Classical scheduling problem. In this case, there is a �nite number of tasks to be executed.2. Cyclic scheduling problem. There is a �nite number of generic tasks, but each generic taskhas to be processed an in�nite number of times. This problem is modelled with a graphas de�ned above. However, it is necessary to add a delay (with value in N) on arcs. Let(i; n); n 2 N, denote the n-th execution of task i. If there is an arc from task i to taskj with delay l, it means that there are precedences from the tasks (i; n); 8n, to the tasks(j; n+ l); 8n. This graph is precisely the reduced graph presented in Chapter 2 x2.2.2.In the following, we consider the cyclic scheduling problem. It appears naturally to model massproduction in manufacturing systems.There are di�erent types of problems which can be considered within the framework of cyclicscheduling. For a complete review on the subject, see Hanen and Munier [84]. We restrict ourattention to the so-called basic cyclic scheduling problem. It is assumed that the mapping of thetasks on the machines is completely de�ned. The optimal schedule is the earliest schedule, alsocalled the \as soon as possible" schedule. Each task is executed as soon as all the precedingtasks have been executed.We have described above the cyclic scheduling problem as a weighted graph. As detailed inSection x2.7, such a graph is also equivalent to an event graph. The as soon as possible evolutioncan be represented by a (max,+) linear system, see x1.3 and x2.7. Practically, it is done byconstructing an equivalent graph where all the delays on arcs are equal to 1. This graph mighthave more nodes, i.e. more generic tasks, than the original one. When all the delays are equal to1, we de�ne a (max,+) matrix A. The coordinate Aij corresponds to the sum of the executiontime of task i and the communication time from task j to task i.As an example, we have represented in Figure 4.1 the reduced graph, (a part of) the dependencegraph and the (max,+) matrix of a given system. The graphical conventions are the onesof Chapter 2. On the reduced graph, we have represented only the delays. Execution andcommunication times are represented on the dependence graph.



4.1 Introduction 102Remark 4.1.1. It might appear unnatural to have execution and/or communication timeswhich are equal to 0, as in Figure 4.1. Such a matrix has been chosen for the sake of simplicity.Exactly the same behaviour would be obtained for the matrix A + � where all the times havebeen increased by a same constant.0 A = 0@ 1 1 2:51:5 1 20 0:5 1 1A1 01 00.50 1.5100.5 111 11 11 11 1Figure 4.1: Cyclic scheduling problem with 3 generic tasks.We de�ne the vectors of daters x(n) where xi(n) corresponds to the instant of completion of then-th occurrence of the generic task i. The vector x0 is the initial condition. It corresponds tothe initial delays of the generic tasks (1; 0); : : : ; (k; 0). The as soon as possible schedule (giventhe initial condition x0) corresponds to the (max,+) linear equation x(n) = An 
 x0.From now on, we work with the (max,+) matrix A 2 Rk�kmax and we assume that this matrix isirreducible1 .The main problem of interest in such a model is to choose the initial condition x0 in an optimalway. From now on, we call \schedule" associated with an initial condition x0 (in short : schedulex0), the earliest execution pattern fx(n) = Anx0; n 2 Ng.There are two main criteria for the performance evaluation of schedules.1. The cycle time. It is the average time of execution of the set of generic tasks, i.elimnmaxi x(n)i=n.2. The latency. The latency is the time elapsed between the �rst completion of a generic taskand the last completion of a generic task, i.e maxi x(n)i �mini x(n)i.The cycle time is the most important criterion. The latency is interesting, for example inmanufacturing systems when the tasks (objects) have to be packed together at the end of theproduction line. Minimizing the latency will minimize the packing operation.In our model, all schedules provide the same cycle time as a consequence of the spectral theoryin the (max,+) algebra, see Chapter 3 Theorem 3.4.3. The cycle time is the maximal eigenvalueof matrix A. On the other hand, x0 has a strong inuence on the latency. When schedule x0 isa periodic regime, the latency will also be periodic. In this case, we de�ne the latency as beingthe average latency.1In the reducible case, the latency, to be de�ned below, is often degenerate (equal to1). It is a non interestingcase for our study.



4.2 Periodicity of the Schedule 103Lemma 4.1.2. Let A 2 Rk�kmax be an irreducible matrix. Let x0 be an eigenelement. The latencyof the schedule x0 is d(e; x0) where d(:; :) is the projective distance (see Chapter 3 De�nition3.4.9).The proof is a simple rephrasing of the de�nition of the latency. The problem we are going toaddress in the following is to choose x0 in order to minimize the latency. This problem wasconsidered by Lee [99]. In Parhi & Messerschmidt [116], they consider a speci�c question : is itpossible to choose x0 in order to have a latency equal to 0. In this Chapter, our goal is not toprove deep results. It is rather to illustrate the complexity of the phenomena involved and theinterest of the graphical approach to understand them. However, we will prove some results forsubclasses of (max,+) matrices in x4.4.4.2 Periodicity of the ScheduleWhen deciding on a schedule, a �rst approach is to use the simplest one without computingthe eigenelements of the matrix A. In such a case, the most natural choice is to consider the\as soon as possible" initial condition e = (0; : : : ; 0)0. By monotonicity, this choice yields theearliest execution of the daters xi(n), i.e.(x(n; e) = Ane) 6 (x(n; x0) = Anx0) ; 8x0 : 8i; (x0)i > 0 : (4.1)On the other hand, such an initial condition might provide a transient regime (which can bearbitrary long, see x3.5.5) and a p-periodic schedule with p > 1. This last point is illustrated inFigure 4.2, where we propose the graphical representation of the matrix of Figure 4.1.�(A3) �(A2) �(A1)�(a)�(e)B(0:5) B(1:5)B(1)Figure 4.2: Graphical representation of matrix A.Matrix A is scs1-cyc3. It has a unique eigenvector, �(a) = �(1; 1; 0). We have represented theballs for the projective distance (see Chapter 3) of center �(e) and respective radius 0:5; 1 and 1:5.Starting from the initial condition e = (0; 0; 0), one obtains a 3-periodic schedule correspondingto the points �(A1); �(A2) and �(A3). Starting from an initial condition x0 = (1; 1; 0)0, weobtain a 1-periodic schedule. Let us represent the schedules e and (1; 1; 0) using Gantt charts2.2Gantt charts are a common representation for scheduling problems. Here, it is simply a representation of thedependence graph incorporating the time.



4.2 Periodicity of the Schedule 104t0 2.511 2 211 221 4IIIFigure 4.3: Chart I : schedule e = (0; 0; 0)0. Chart II : schedule a = (1; 1; 0)0.We have materialized only the execution times and not the communication times on Figure 4.3.The thin bars correspond to the execution times equal to 0.In some cases, it might be important to avoid p-periodic regimes. We are going to explain whyusing the language of parallel programs (but it is also relevant in manufacturing).For parallel algorithms, there is an important distinction between schedules which are performedat run time (dynamic strategy) or at compile time (static strategy). Following the terminologyof [131], we call them self-timed and fully-static schedules, respectively.� Fully-static schedule. The instants of execution of the tasks are enforced by a �nite statecontroller (automaton). The controller is designed before the execution, at compile time.� Self-timed schedule. Each processor has to synchronize with other processors without anexternal control. This is done through the use of semaphore checks at run time.For di�erent reasons including the compared cost of controllers and semaphores, one might preferone solution or the other. When the fully-static schedule is the best solution, it is important tominimize the number of states of the controller. In order to achieve this goal, it is necessary tohave a schedule which is as simple as possible. The simplest schedules are the 1-periodic ones,they are associated with eigenvectors of the (max,+) matrix. For example, in Figure 4.3, the1-periodic schedule of chart II is associated with the eigenvector (1; 1; 0) of matrix A.To summarize what precedes, here are the three criteria which we would like, optimally, to seeveri�ed by a schedule x0 :� P : Periodicity 1 ) x0 eigenvector.� L : Minimal latency ) x0 is such that d(Anx0; e) is minimal.� S : as Soon as possible (Equation (4.1)) and Simplicity (no pre-computation)) x0 = e =(0; : : : ; 0)0.



4.3 Graphical Illustration 105More precisely, for a fully-static schedule the important criteria are P and L (S is irrelevant as thepre-computation is necessary to build the controller). For a self-timed schedule, the importantcriteria are L and S.4.3 Graphical IllustrationWe are going to illustrate the fact that the criteria P, L and S are not always compatible. Westart with a favorable example.All the criteria can be satis�edLet us consider :B = 0@ 2 " "" 0:5 "" " 0 1A
0@ 3 2 22 3 22 2 3 1A
0@ �2 " "" �0:5 "" " 0 1A = 0@ 3 3:5 40:5 3 2:50 1 3 1A : (4.2)Matrix B has been written, in Equation (4.2), under a form which emphasizes that B is obtainedas a translation of a canonical scs3-cyc1 matrix, see x3.5.2.�(e) �(B1)�(B2)�(m)�(n)�(B3)B(1)
Figure 4.4: Criteria P, L and S are satis�ed at the same time.The graphical representation of matrix B is proposed in Figure 4.4. We have only eigenvectors,hence property P is always veri�ed. We have represented B(1), the smallest ball with center �(e)and intersecting the set of eigenelements. The intersection, the segment [�(m); �(n)], veri�esproperty L. We have represented in light gray the domain of attraction of [�(m); �(n)]. Itcontains �(e). We conclude that criteria P, L and S are compatible.The criteria cannot be satis�ed together



4.3 Graphical Illustration 106In Figure 4.5, we consider:C = 0@ 2 " "" 1:5 "" " 0 1A
0@ 2 2 33 2 22 3 2 1A
0@ �2 " "" �1:5 "" " 0 1A = 0@ 2 2:5 52:5 2 3:50 1:5 2 1A :
�(C01)�(C1)�(C2)�(C3) �(C03) �(C02)�(e) �(m)B(1) B(2) B(3)Figure 4.5: Criteria P and L are not compatible with S.Matrix C is scs1-cyc3. The set of 3-periodic regimes is the ball delimited by the points�(C1); �(C2) and �(C3). There is a unique eigenvector, �(m) = �(2; 1:5; 0)0, hence a unique1-periodic schedule. The set of eigenelements having a minimal latency is the ball delimitedby the points �(C 01); �(C 02) and �(C 03). For example, the latency of �(m) is � = d(m; e) = 2.The latency of the periodic regime (C 01; C02; C 03) is � = 1=3 � (d(C 01; e) + d(C 02; e) + d(C 03; e)) =1=3� (2:5 + 2 + 1:5) = 2.From the initial condition e, we obtain the periodic regime (C1; C2; C3) whose latency is � =1=3� (3 + 3 + 1) = 7=3 > 2.In Figure 4.6, we consider:D = 0@ �0:5 " "" 0 "" " 0 1A
0@ 1 2 12 1 11 1 0 1A
0@ 0:5 " "" 0 "" " 0 1A = 0@ 1 1:5 12:5 1 1:51 0:5 0 1A :Matrix D is scs1-cyc2. The set of 2-periodic regimes is [�(D2); �(m)][ [�(m); �(D1)]. Thereis a unique eigenvector (1-periodic schedule) �(m) = �(1; 1:5; 0). Its latency is � = 1:5. Theset of eigenelements having a minimal latency is [�(D2); �(D02)][ [�(D01); �(D1)]. Their latencyis � = 1=2�(1+1:5) = 1:25. The initial condition e belong to the domain of attraction of this set.In order to further illustrate this example, we have represented, in Figure 4.7, the Gantt chartsassociated with the schedules e and m = (1; 1:5; 0)0.



4.3 Graphical Illustration 107
B(1) B(1:5)

�(D2) �(D02)�(D01)�(D1)�(m)�(e)Figure 4.6: Criteria L and S are not compatible with P.
2211.5 1 1.51 1 221.5 1.5III 1 0 00.51.51 00.500.51 1 0

Figure 4.7: Chart I : schedule e = (0; 0; 0)0. Chart II : schedule m = (1; 1:5; 0)0.In Figure 4.8, we considerE = 0@ 0 " "" 1 "" " �1 1A
0@ 3 2 22 3 22 2 1 1A
0@ 0 " "" �1 "" " 1 1A = 0@ 3 1 33 3 41 0 1 1A :Matrix E is scs2-cyc1. The set of eigenvectors is [�(E2); �(m)] [ [�(m); �(E1)]. The vectore = (0; : : : ; 0)0 belongs to the domain of attraction of �(m). The latency of �(m) is � = 3. Theeigenvector �(E1) has a minimal latency � = 2.
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�(e) �(E1)�(E2) �(m)B(2)Figure 4.8: Criterion S is not compatible with L.4.4 Quantitative ResultsHere are some results for subclasses of (max,+) matrices.Proposition 4.4.1. Let A 2 Rk�kmax be an irreducible matrix. We suppose that all the nodesbelong to the critical graph of A. Let � be the set of eigenelements of A, i.e. � = limn Im(An) =limnfu : 9v; Ak 
 v = ug. For all u 2 Rk, the limit of �(Ak 
 u) is an eigenelement of Acontaining at least one point minimizing the distance d(u;�).For a proof, see Tronel [133].Remark 4.4.2. Proposition 4.4.1 is not true for a general irreducible matrix A. For a counter-example, consider the matrix E represented in Figure 4.8 and the initial condition e = (0; 0; 0)0.The example of matrix C, Figure 4.5, is interesting. The schedule e converges to the scheduleassociated with (C1; C2; C3). Proposition 4.4.1 is veri�ed as we have that d(e; C3) = 1 whichminimizes d(e;�). However the schedule (C1; C2; C3) has not a minimal average latency (asd(e; C1) = d(e; C2) = 3).Corollary 4.4.3. We assume furthermore that A is scsk-cyc1. The schedule e = (0; : : : ; 0)0converges to a 1-periodic schedule having minimal latency.Proof. As a consequence of Theorem 3.4.7, we have that there exists a �nite n such that �(Ane)is an eigenvector of A. We achieve by applying Proposition 4.4.1. utProposition 4.4.4. We assume now that matrix A is scs1-cyck, i.e. has a unique criticalcircuit of length k. Let a be the unique eigenvector of matrix A. The schedule fx0 = ag has aminimal latency.Proof. We denote by v = (v1; v2; : : : ; vk)0 a periodic regime of period k of A. For a scs1-cyckmatrix, the eigenvector a is the \barycentre" of the points (v1; v2; : : : ; vk)0. It means that�(a) = �(v1 + v2 + � � �+ vkk )) �(k � a) = �(a
k) = �(v1 + v2 + � � �+ vk) :



4.4 Quantitative Results 109This result is due to Braker and Olsder [29], see also x5.3. We deduce that we have :k � d(e; a) = d(e; a
k) = d(e; v1+ v2 + � � �+ vk)6 d(e; v1) + d(e; v2) + � � �+ d(e; vk)=) d(e; a) 6 1k � (d(e; v1) + d(e; v2) + � � �+ d(e; vk))It proves precisely that a has a minimal latency. utAn illustration of Proposition 4.4.4 is provided by matrix C, Figure 4.5. It is known, see [29] orx5.3, that the equality �(a) = �(v1+ � � �vl=l) does not always hold when the matrix is scs1-cycl,l < k. In this case, we cannot conclude. A counter-example is provided by matrix D, Figure4.6, where the unique eigenvector has a non minimal latency.



Chapitre 5AlgorithmsAlgorithmesOn propose une m�ethode permettant de calculer tous les vecteurs propres et tous les r�egimesp�eriodiques d'une matrice (max,+). Les algorithmes propos�es sont classiques. Leur applicationpour l'obtention de la valeur propre et des vecteurs propres d'une matrice (max,+) aussi, voirpar exemple [78] et [44]. La nouveaut�e (�a notre connaissance) est leur utilisation pour obtenirl'ensemble des r�egimes p�eriodiques. Cela n�ecessite une transformation pr�ealable de la matrice.On consid�ere �egalement un algorithme alternatif introduit dans [29]. On analyse cet algorithme�a l'aide de l'approche graphique du chapitre 3.



5.1 Algorithm 111We consider an irreducible matrix A 2 Rk�kmax. The aim is to compute its eigenvalue and all itseigenelements, i.e. all the eigenvectors and periodic regimes, of A. We propose an algorithmwith overall complexity in O(k3pk log k).5.1 AlgorithmWe consider A 2 Rk�kmax. We propose the following algorithm.1. Determine if A is irreducible.2. Determine if A is aperiodic.3. Compute the eigenvalue of A.4. Compute all the eigenvectors of A.5. Determine the spectral type of A.6. Compute all the eigenelements of A.Let us detail the di�erent stages.Stage 1 (Determine if A is irreducible).We consider the boolean matrix associated with A. It is de�ned in the following way: ~Aij = " ifAij = ", ~Aij = e if Aij > ". We consider the graph of this matrix (see Def. 3.4.1). We apply analgorithm of Tarjan, see [132]. It provides all the maximal strongly connected subgraphs (s.c.s)of an oriented graph. It is a \depth �rst search" algorithm. It requires the construction of acovering tree of the graph.From now on, we assume that matrix A is irreducible i.e. has a unique s.c.s.Stage 2 (Determine if A is aperiodic).We determine the cyclicity of the matrix ~A de�ned above. We apply an algorithm of Denardo,[55]. This algorithm uses a covering tree of the graph which is precisely the tree obtained withTarjan's algorithm.By de�nition, matrix A is aperiodic if and only if the cyclicity of ~A is 1. From now on, we assumeit is the case. When it is not the case, the set of eigenelements of matrix A is not projectivelybounded. See for example Chapter 6, Example 6.9.5.Stage 3 (Compute the eigenvalue of A).We compute �, the eigenvalue of A by applying an algorithm of Karp [92], see also [78] or [44].We normalize matrix A, i.e. we set A := A � �, i.e. 8i; j; Aij := Aij � �.Stage 4 (Compute all the eigenvectors of A).By Theorem 3.4.6, we know that it is su�cient to compute matrix A+ = A� � � ��Ak to obtainall the extremal eigenvectors. Practically, we are going to compute A� = (E � A)+ and useA+ = AA�. We apply an algorithm of Floyd [64] to compute A� .



5.1 Algorithm 112The critical columns of A+ are the extremal eigenvectors. Let us denote by u1; : : :up the di�erentextremal eigenvectors. The complete set of eigenvectors is (see [43] [44]).f�1u1 � �2u2 � � � � � �pup; �i 2 Rmaxg : (5.1)We have obtained the eigenvectors but not the periodic regimes of matrix A. Let us illustratethis on an example. We considerA = 0@ �1 �1 ee �1 �1�1 e �1 1A) A+ = 0@ e e ee e ee e e 1A :Matrix A is scs1-cyc3, see x3.5.2, Figure 3.6. In order to obtain the extremal periodic regimes, itis necessary to compute (A3)+ or more generally (Al)+ where l is the cyclicity (De�nition 3.4.5and Theorem 3.4.7) of A.Stage 5 (Determine the spectral type of A).We need to determine the critical graph of A (De�nition 3.4.5). Let u = (u1; : : :uk)0 be one ofthe eigenvectors of A as computed above. We considerA := P�1AP; where P = 0B@ u1 " "" . . . "" " uk 1CA : (5.2)All critical terms of A are now equal to e and all non-critical terms are less or equal to e, seeLemma 3.4.15. With this trick, we can now consider the boolean \critical" matrix associatedwith A and de�ned as ~Aij = " if Aij < e, ~Aij = e if Aij = e. We apply Tarjan's algorithm, seeStage 1. Let p be the number of m.s.c.s of ~A. We apply Denardo's algorithm to each s.c.s., seeStage 2. Let l1; : : : ; lp be the cyclicity of the di�erent s.c.s. The spectral type of matrix A is scsp-cyc l where l = lcm(l1; : : : ; lp).Stage 6 (Compute all the eigenelements of A).We compute matrix Al. We compute matrix (Al)+, see Stage 4. The critical columns of (Al)+are the extremal eigenelements. We denote by v1; : : : ; vq, the di�erent extremal eigenelements.From Theorem 3.4.6, we deduce that q =Ppi=1 li.Given an extremal element vj , the period of the periodic regime (vj ; Avj; A2vj ; : : :) is the cyclic-ity of the corresponding s.c.s. of ~A as de�ned in Stage 5.The complete set of eigenelements of A isf�1v1 � �2v2 � � � � � �qvq; �i 2 Rmaxg : (5.3)Remark 5.1.1. In the �rst two stages, we check some structural properties of the graph as-sociated with A. The algorithms considered were proposed more than twenty years ago forgeneral graphs. At that time, the motivation was the study of non-negative matrices (in theusual algebra). The algorithm of Stage 3 was originally proposed in the general framework of



5.2 Complexity 113valued graphs.The problem of computing longest paths in a graph is very classical, see Gondran and Minoux fora complete review, [78] Chapters 2 and 3. The algorithm used in Stage 4 was proposed for thisproblem. When translated using (max,+) notations, it is exactly equivalent to the computationof A�.5.2 ComplexityHere are the PRAM complexities of the di�erent algorithms used in x5.1.1. O(k2). See Tarjan [132].2. O(k2). See Denardo [55].3. O(k3). See Karp [92].4. O(k3). See Floyd [64].5. O(k2). The computation of Equation (5.2) involves exactly two additions for each term ofthe matrix. For the remaining, see Stages 1 and 2 above.6. O(k3pk log k). Classically, the complexity of computing matrix Al is O(k3 log l). Let usdenote by l(k) the maximal possible value of the cyclicity l of a matrix of dimension k�k.The asymptotic of l(k) when k ! 1 is known, see Miller [110] for a survey paper on thesubject. We have log l(k) � pk log k. We conclude that the complexity of the computationof Al is O(k3pk log k). For the computation of (Al)+, see Stage 4.Remark 5.2.1. If one wants to compute the set of eigenelements (5.3) but not the set ofeigenvectors (5.1), then it is possible to replace Floyd's algorithm in Stage 4 by an algorithm ofMoore [111]. With this algorithm, only one column of matrixA+ is computed. Moore's algorithmhas a complexity O(k2) to be compared with the complexity O(k3) of Floyd's algorithm.5.3 Alternative AlgorithmIn [40], Chou and Du�n obtain an eigenvector of matrix A as the solution of two linear programs.In [29], Braker and Olsder propose yet another algorithm working only in the scs1-cycl case. Weare going to study this algorithm more closely.We consider an irreducible matrix A of size k � k. We suppose that A is scs1-cycl (l 6 k).For simplicity of notations, we suppose that A is normalized and that the critical circuit ofA is (1; 2; : : : ; l; 1) (we can obtain this just by considering a permutation of the coordinates,see Lemma 3.4.13). The goal is to �nd its unique eigenvector u. An easy way to do so, is tocompute A+ =Ln>1 An, see Stage 4. It might be seen as the (max,+) translation of the poweralgorithm of the traditional linear algebra, see [76]. Oddly enough, it is also possible in somecases to compute the eigenvector by applying directly the power algorithm without translating



5.3 Alternative Algorithm 114it in the (max,+) algebra. It is this phenomenon, discovered by Braker and Olsder, which weare going to illustrate using the graphical representation of Chapter 3.Here is the algorithm.1. Take an initial vector x0 6= ("; "; : : : ; ")0.2. Compute the smallest integer m such that Am+lx0 = Amx0, for some l 2 N.3. Consider v = (Amx0+Am+1x0+ � � �+Am+l�1x0)=l (division in the conventional algebra).In some cases, the vector v is the eigenvector of matrix A. Here are two examples. Figure 5.1corresponds to matrices :A = 0@ : e :: : ee : : 1A ; B0@ : e :e : :e : : 1A ; (:) = �1 :eigenvector eigenvector�(A2x0)�(Ax0) �(A3x0) �(B2x0) �(Bx0)�(x0)�(x0)Figure 5.1: scs1-cyc3 and scs1-cyc2, matrices A and B. The algorithm of Braker and Olsder issuccessful.Matrix A is scs1-cyc3, its unique eigenvector is e = (e; e; e)0. For any periodic regime of period3, fu1; u2; u3g, we have �(e) = �((u1 + u2 + u3)=3).Matrix B is scs1-cyc2, its unique eigenvector is e = (e; e; e)0. We see on Figure 5.1 that thealgorithm still works.Proposition 5.3.1. The �rst l components, v1; : : : ; vl, of the vector v of the algorithm are thecorrect eigenvector components. However, vector v is not always the eigenvector of A.To determine whether v is the eigenvector of A, one has to check if Av = v. When v is not theeigenvector of A, Braker and Olsder propose another algorithm which they call the extendedalgorithm.1. De�ne the vector v̂ in the following way :v̂i = vi if (Av)i = vi ;v̂i = " if (Av)i 6= vi :



5.3 Alternative Algorithm 1152. Let m be the smallest integer such that Am+1v̂ = Amv̂.The integer m is �nite and Amv̂ is the unique eigenvector of A.There exist a technical criterion to determine if the algorithm of Braker and Olsder is going towork or if the extended algorithm is needed, see [29]. But the graphical representation in theprojective space gives a very simple illustration of the phenomenon.Here is now an example where the use of the extended algorithm is necessary.C = 0@ : e :e : :: : �2 1A ; (:) = �1 :We have represented this example on Figure 5.2. �(C2x0)�(Cx0)�(v) eigenvector�(x0) v̂ = (e; e; ")0
Figure 5.2: scs1-cyc2, matrix C. The algorithm of Braker and Olsder fails.Matrix C is scs1-cyc2 and its unique eigenvector is (e; e;�1)0. By the algorithm of Braker andOlsder, we obtain v = (e; e; e)0. With the extended algorithm, we get C 
 (e; e; ")0 = (e; e;�1)0.By Proposition 5.3.1, we have that for all matrices of size k�k which are scs1-cyck, the algorithmof Braker and Olsder provides the eigenvector. For matrices which are scs1-cycl (1 < l < k),the extended algorithm will, in general, be needed.In terms of complexity, the algorithm of Braker and Olsder is not optimal. Indeed, one has tocompute the stationary version Am of the matrix and we know that a transient regime can bearbitrarily long, see Section 3.5.5. If we suppose that matrix A is stationary, the complexity isof order O(k4).Let us mention that we use Proposition 5.3.1 in a completely di�erent framework in Chapter 4,Proposition 4.4.4.
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Chapitre 6Products of Random Matrices in the(max,+) AlgebraProduits de Matrices Al�eatoires dans l'Alg�ebre (max,+)On �etudie les syst�emes (max,+) lin�eaires stochastiques. Le probl�eme consid�er�e est celui de lastabilit�e de tels syst�emes. Les r�esultats propos�es permettent de compl�eter les r�esultats obtenuspar Baccelli [4] et Cohen [46].Ce chapitre est une adaptation de l'article [105]. Cet article a �et�e accept�e pour publicationdans Advances in Applied Probability. Nous remercions Fran�cois Baccelli, Serguei Foss, St�ephaneGaubert et un rapporteur anonyme pour de nombreuses remarques et suggestions ayant grande-ment contribu�e �a l'am�elioration de cet article.



6.1 Introduction 118We consider a class of closed systems with synchronization, blocking and/or fork-join properties.The main subclass of interest consists in Stochastic Event Graphs. They include cyclic JacksonNetworks, many manufacturing models, models with general blocking (such as kanban) and someinteracting particle systems. Other models which �t into our framework include task graphs andtask graphs with random precedences. For more details on modelling aspects, see Chapter 1.The common feature of these systems is that they can be represented by a linear recursiveequation in the (max,+) algebra. We are interested in stationary regimes for quantities such asqueue length, waiting times or idle times.6.1 IntroductionLet us consider the following recursive equation:� xi(n+ 1) = maxj(Aij(n) + xj(n))xi(0) = (x0)i (6.1)The sequences fAij(n); i; j = 1; : : : ; kg are given (exogenous data). The process we want to studyis the sequence of vectors fx(n) = (x1(n); : : : ; xk(n))0g. The vector x0 is the initial condition.It is very fruitful to use a matrix-vector notation for Equation (6.1). We de�ne the following\(max,+)" notations:" = �1; 8x; y 2 R[ f"g; x� y = max(x; y); x
 y = x+ y :We de�ne also the k � k matrix A(n) = fAij(n); i; j = 1; : : : ; kg and the column vector x(n) =(x1(n); : : : ; xk(n))0. With these notations, the basic Equation (6.1) takes a very simple andconvenient form. In fact, it can be rewritten as:x(n+ 1) = A(n)
 x(n) : (6.2)The matrix-vector product is de�ned in a natural way just by replacing + and � by � and 
,i.e. (A
 x)i = maxj(Aij + xj) =Lj Aij 
 xj .We are interested in stochastic versions of Equation (6.2), where fAij(n)g is a sequence ofrandom matrices. As a consequence, here is an equivalent way of introducing our subject: it isa counterpart of the classical theory of products of random matrices (see Furstenberg & Kesten[66] or Bougerol & Lacroix [27]) but in another algebraic structure, the (max,+) algebra.For systems described by Equation (6.2), we will consider two kinds of asymptotic results.� First order limits, on ratios:limn kx(n)k1n ; limn xi(n)n :� Second order limits, on di�erences:limn xi(n+ 1)� xi(n); 8i; limn xj(n)� xi(n); 8i 6= j :



6.1 Introduction 119A �rst order limit is a cycle time or equivalently the inverse of a throughput. Second order limitsare related to waiting and idle times, workload, queue length and frequency of occupation. Moreinsights on the relations between these limits and quantities of interest for the system will beprovided in Section 6.2, see also Chapter 1. Our goal is to �nd stationary regimes for secondorder limits. Multiple stationary regimes will mean multiple possible regimes for waiting timesor queue lengths, depending on the initial condition.Among the systems modeled by Equation (6.2), we can distinguish two classes: the open (ornon-autonomous) systems and the closed (or autonomous) ones. Open systems have been ex-haustively treated by Baccelli [4] [8] (for both �rst and second order limits). Problems ofexistence and uniqueness of �rst order limits for closed systems have been solved by Cohen [46](see also [4]). These results are recalled in x6.7.1. This paper deals with the open question ofexistence and uniqueness of second order limits for closed systems. These problems were consid-ered in several earlier papers (Resing, de Vries, Hooghiemstra, Keane & Olsder [122] and [115],Baccelli [4]) but only su�cient conditions of uniqueness were known. The approach we use isnew and exploits completely the common hidden algebraic structure of the di�erent models weconsider. It enables us to obtain necessary and su�cient conditions for stability (in some cases)together with simple proofs.The conditions we give are based on the structure of deterministic matrices chosen in the supportof the random matrix A(0). The main result states that the system has a unique stationaryregime if the support of A(0) contains a �nite number of matrices, fA1; : : : ; Apg, such that theproduct Ap 
 � � �
A1 has a unique periodic regime. The proof makes use of Borovkov's theoryof renovating events, see Borovkov & Foss [25] [26]. This theory appears to be much moretractable than classical Harris regeneration due to the speci�c form of our recursive equations.More details on this last remark are given at the end of Section 6.6.In order to motivate the practical interest of this work, we present a speci�c model, a closedcyclic Jackson Network. We are going to use this example throughout the paper to illustratethe theoretical results.The paper is organized as follows. We introduce two models in Section 6.2, cyclic JacksonNetworks and task graphs with random precedences. Sections 6.3, 6.4, 6.5 and 6.6 are presentingthe tools that we are using in the paper. They can be skipped by people knowing the subject.Section 6.3 is devoted to the (max,+) algebra, Section 6.4 to the spectral theory in this algebra,Section 6.5 to semigroup of matrices and Section 6.6 to Borovkov's theory of renovating events.Section 6.7 presents the main results. In 6.7.1, we recall some results from [4] and [46]. In6.7.2, we state some preliminary results. In 6.7.3 and 6.7.4, we give su�cient conditions for thestability of discrete and general models respectively. In Section 6.8, we establish the conversesof the results of the previous section. In Section 6.9, we weaken the assumptions under whichsome of our results apply and we discuss the boundedness of the stationary regime. Finally, forconvenience, some of the proofs are given in Appendix.



6.2 Two Motivating Models 1206.2 Two Motivating Models6.2.1 Task graphsWe consider a parallel program executed on several identical processors. We model it by itsprecedence graph � . If we consider a system of k processors, the graph � has a set of nodeswhich is k � N. The node (i; n) represents the n-th task to be executed at processor i. Thearcs between nodes represent the synchronization constraints. There is an arc between the node(i; n) and the node (j;m) (notation : (i; n) ! (j;m)) if the n-th task at processor i has to becompleted in order for the m-th task at processor j to be enabled. The execution of a taskbegins as soon as all the tasks of its incoming arcs are completed. Each task has a durationwhich may depend on the processor.Let us consider a task graph with synchronizations only between consecutive levels n (i.e. nodes(1; n); : : : ; (k; n)) and n + 1. We assume that the synchronizations depend on n. We denoteby L(i; n) the set of nodes j such that (i; n) ! (j; n+ 1). We suppose that 8i, there exists aprobability law P i on the subsets of (1; : : : ; k) such that L(i; n) = (j1; : : : ; jp) with probabilityP if(j1; : : : ; jp)g. We denote by xi(n) the date of completion of task n at processor i, and byAji(n) the duration of the synchronization constraint between nodes (i; n) and (j; n + 1) (itmay include a transmission time as well as the execution time at processor j). We adopt theconvention that Aji(n) = �1 if j 62 L(i; n). It is easy to check that such a model, we could callit a task graph with random precedences, veri�es Equation (6.2).A Queuing Network model studied by Baccelli & Liu [14] corresponds to this model. It is a Kellytype Network (i.e. routes are associated with customers) with a locally FIFO priority rule. Thetask resource models to be studied in Chapter 9 also have this kind of structure.6.2.2 Cyclic Jackson networkWe consider a closed Jackson Network. The study of such closed networks can be traced backto Gordon and Newell, [79]. In their original model, there is a given number of indistinguishablecustomers. The routing of the customers leaving a given queue is provided by a sequence of i.i.d.Bernouilli random variables. All the service times are exponential. They prove the existence ofan explicit product form for the unique stationary distribution.A natural generalization of the basic model is to consider i.i.d. service times with generaldistributions, i.e. to replace :=M=1=1 servers by :=GI=1=1 servers. Finding the minimalassumptions leading to a unique stationary regime for this generalized closed Jackson Networkis still an open problem.We consider a restriction of the previous model. There are k queues and all customers have thesame cyclic route (1; 2; : : : ; k; 1), see Figure 6.1. We will denote this model by CJN for CyclicJackson Network, following the terminology of [94].In the following, the numbering of queues has to be understood modulo [k], for example queue(k+ 2) is queue 2. We denote by f�j(n); n 2 Ng, the sequence of service times at queue j. Thissequence is i.i.d. We suppose also that the service times at the di�erent queues are independent.Instead of describing the system by the workload or the queue length process, as is usually done,we propose to study this model by introducing the following variables. With each queue j, we



6.2 Two Motivating Models 121Queue 1 Queue 2:=GI=1=1 FIFO :=GI=1=1 FIFO:=GI=1=1 FIFOQueue kFigure 6.1: A Cyclic Jackson Network consisting of k queues.associate a dater fxj(n); n 2 Ng. The variable xj(n) represents the date of completion of then�th service at queue j. All variables of interest for the network can be derived from thesedaters and from the sequences of service times. More precisely, we have:� Asymptotic throughput at queue j:j = limn�!+1 nxj(n) :� Idle time of queue j before the arrival of the n-th customer to visit queue j.Ij(n) = xj(n)� �j(n)� xj(n� 1) :� Workload at queue j at the instant of the arrival of the n-th customer to visit queue j.This customer comes from queue j� 1. We suppose that it was the n0-th customer to visitqueue j � 1. Wj(n) = xj(n)� �j(n)� xj�1(n0) :The variables (i) which are obtained as ratios of daters will be called �rst order variables. Theones (Ij ;Wj) which are obtained as di�erences of daters will be called second order variables.We want to derive conditions under which there is a unique stationary regime for both �rst andsecond order variables. In such a case, we say that our model is stable.Suppose for the moment that there are exactly k customers. We suppose also that there is ini-tially one customer in each queue. These assumptions together with the FIFO service disciplineat each queue yields the following property. The n-th customer to visit queue j will be, at thenext step of its route, the (n + 1)-th customer to visit queue j + 1. As a consequence we are



6.2 Two Motivating Models 122able to write a recursive evolution equation for the daters.8>>>><>>>>: x1(n+ 1) = max(x1(n); xk(n)) + �1(n)x2(n+ 1) = max(x2(n); x1(n)) + �2(n)� � �xj(n+ 1) = max(xj(n); xj�1(n)) + �j(n)� � � :Using the (max,+) notation this can be rewritten as:x(n+ 1) = A(n)
 x(n); where A(n) = 0BBBBBBB@ �1(n) " � � � " �1(n)�2(n) �2(n) . .. "" . . . . . . " ...... . . . . . . . . . "" � � � " �k(n) �k(n) 1CCCCCCCA : (6.3)The initial condition is x(0) > 0, where xi(0) is the remaining service time of the customer beingserved at queue i at time 0.When the service times are deterministic, it is possible to obtain many asymptotic behaviors,depending on the initial condition x(0). In fact, initial delays between customers might nevervanish. Therefore, it is possible to have several stable regimes for second order quantities(Ij ;Wj; : : :) including periodic ones. For stochastic systems, when the service times are randomvariables, it is still possible to have several stationary regimes if the system is not \stochasticenough". As an application of the results presented in this paper, we obtain the necessary andsu�cient conditions for the existence of a unique stationary regime for this CJN. This basicCJN will be used as an illustration of the results throughout the paper (Examples 6.4.8, 6.7.9,6.7.16 and 6.8.7).When there are less than k customers in the network, the system can be represented in thesame way as previously. The only di�erence is that the structure of matrices fA(n)g is morecomplicated. When there are more than k customers, the trick consists in splitting queues. Eachqueue which has originally (p > 1) customers in its bu�er is transformed into p queues with onecustomer per bu�er. This is done by creating p� 1 �ctive queues with service times identicallyequal to zero. By doing this, one gets back to the previous case. The main di�erence is that wehave represented our model by a (max,+) linear system of dimension greater than the originalnumber of queues. For more details on these transformations, see Chapter 1, x1.3.Many generalizations of this basic CJN can be made within the class of systems admitting a(max,+) linear representation. For example, we can consider queues with stationary and ergodicsequences of service times (the :=G=1=1 case). The modeling is exactly the same. The onlydi�erence is that the sequence of random matrices fA(n)g is stationary-ergodic instead of beingi.i.d. Our results apply to the stationary-ergodic framework. We can also consider �nite bu�ers(the :=G=1=L case), see x1.3.3 for details. In the case of a CJN with i.i.d. general servicetimes (./GI/1 servers), there is an alternative method for studying the network. We considerthe Markov chain formed by queue lengths and remaining service times, and we apply Harris



6.3 (max,+) Algebra 123regeneration techniques.On the one hand, it is possible to obtain natural su�cient conditions of stability. Consider thecon�guration where all the customers are blocked at the same queue. If this con�guration is ofpositive probability, it can be used as a regeneration point for the Markov chain. To obtain apositive probability, it is enough to have one of the service times with an unbounded support.This kind of ideas was �rst introduced for closed acyclic Jackson Networks by Borovkov, [23],[24]. For closed Cyclic Jackson Networks, this technique, with some re�nements, is used byBambos [16] and Kaspi & Mandelbaum [94].On the other hand, obtaining necessary and su�cient conditions of stability is a di�cult task.As far as we know, it has been done only in the case of the basic Cyclic Jackson Network withtwo queues, see [94]. For the basic Cyclic Jackson Networks with N queues, the best su�cientconditions that we have found in the literature are given in [95], see Example 6.8.7. In this paper,the authors show that, in some cases, there is stability of a CJN even if the con�gurations whereall the customers are blocked at the same queue never happen.Our approach allows us to derive the necessary and su�cient conditions of stability, for all theCJN mentioned above. The drawback is that it requires a preliminary modeling stage, thetranslation of the \real system" into its (max,+) linear representation.6.3 (max,+) AlgebraDe�nition 6.3.1 ((max,+) algebra). We consider the semiring (R[f�1g;�;
). The law� is \max" and 
 is the usual addition. We set " = �1 and e = 0. The element " is neutral forthe operation � and absorbing for 
. The element e is neutral for 
. The law � is idempotent,i.e. a� a = a. (R[ f"g;�;
) is an idempotent semiring, called a dioid. We shall denote it byRmax.In the rest of the paper, the notations \+,�" will stand for the usual addition and multiplication.Nevertheless, we will write ab for a 
 b whenever there is no possible confusion. For example,for a 2 R; ad = a
d = d� a.We de�ne the product spaces Rkmax; Rk�kmax. We de�ne the product of a vector by a scalar:a 2 Rmax; u 2 Rkmax; (a
 u)i = a
 ui.Matrix product is de�ned in a natural way, replacing + and � by � and 
 respectively. LetA;B 2 Rk�kmax, (A
B)ij = maxl (Ail + Blj) =Ml Ail 
 Blj :Matrix-vector product is de�ned in a similar way.Let us recall some de�nitions adapted to the Rmax algebra.De�nition 6.3.2. The (communication) graph of a square matrix A is a directed graph havinga number of nodes equal to the size of A. This graph contains an arc from i to j i� Aji 6= ".The valuation of this arc is Aji.



6.3 (max,+) Algebra 124De�nition 6.3.3. A square matrix A is irreducible if: 8i; j 9n > 0 j (An)ij > " (orequivalently if its communication graph is strongly connected).De�nition 6.3.4. A square matrix A is aperiodic if: 9N; 8n > N; 8i; j; (An)ij > ".De�nition 6.3.5. Let (
;F ; P ) be a probability space. A stochastic matrix fA(!); ! 2 
ghas a �xed structure if P (Aij = ") = 1 or P (Aij = ") = 0; 8i; j.De�nition 6.3.6 (PRk). The projective space PRk is de�ned as the quotient of Rk by theparallelism relation: u; v 2 Rk u ' v () 9a 2 R such that u = a
 v :Let � be the canonical projection of Rk into PRk.For example (e;�1)0 and (2; 1)0 = (e + 2;�1 + 2)0 are in the same parallelism class, i.e. aretwo representatives of the same element of PRk. We de�ne in the same way PRkmax, PRk�kmax andPRk�k. We use the same notation � for the di�erent canonical projections. We de�ne a normand a distance on PRk which we are going to call the projective norm and distance.De�nition 6.3.7. Let x 2 PRk and u 2 Rk be a representative of x, i.e. �(u) = x. We de�ne:jxjP = maxi ui �mini ui :Let x; y 2 PRk and u; v 2 Rk be two representatives of x and y respectively. We de�ne:d(x; y) = d(u; v) = jx� yjP =Mi (ui � vi) 
Mi (vi � ui) :We write either d(x; y) or d(u; v) with some abuse of notation.The space (PRk; j:jP) is an Euclidean space. In particular, it is complete. Indeed, it is easy tocheck that jxjP does not depend on the representative u, and is a norm on PRk, viewed as avectorial space on R. This norm corresponds to the L1 norm1 on the projective space PRk.We have the following very important property.Proposition 6.3.8. Let A 2 Rk�kmax be an irreducible matrix. Let u; v be two vectors of Rk. Wehave: d(Au;Av) 6 d(u; v) :1It is worth mentioning that d(:; :) is the Rmax analogue of a distance used in classical Perron-Frobenius theory,which is called the Hilbert's projective metric and is de�ned by \�(u; v) = ln (inff�=� j �u 6 v 6 �ug)".



6.4 Deterministic Spectral Theory 125Proof. By de�nition, we have:d(Au;Av) =Mi ((Au)i � (Av)i) 
 Mi ((Av)i � (Au)i) :We de�ne j(i) such that (Au)i =Lj Aij 
 uj = Aij(i) 
 uj(i). Note that j(i) depends on A andu. We have: Mi ((Au)i � (Av)i) = Mi 0@ (Mj Aij 
 uj) � (Mj Aij 
 vj)1A= Mi 0@ (Aij(i) 
 uj(i)) � (Mj Aij 
 vj)1A6 Mi (Aij(i) 
 uj(i) �Aij(i) 
 vj(i))= Mi uj(i) � vj(i) 6Mi ui � viWe obtain d(Au;Av) 6Li(ui � vi) 
 Li(vi � ui) i.e. d(Au;Av)6 d(u; v). utThere is no simple criterion to get a strict inequality. This monotonicity has to be interpretedas a synchronization property.De�nition 6.3.9. We consider A 2 Rk�kmax. We setD(A) = supu;v2Rk d(Au;Av) :We call D(A) the projective diameter of A.In order for the previous de�nition to be non-ambiguous, it is necessary that 8u 2 Rk; Au 2 Rk.It implies that 8i; 9j s.t. Aij > ". It is easy to prove that D(A) is �nite if and only if 8i; j; Aij > ".A matrix A can be considered as a \linear" (in the (max,+) sense) operator from PRk intoPRk. It is a bounded operator if the (decreasing) sequence D(An) has a �nite limit, i.e. if A isaperiodic (Def. 6.3.4).6.4 Deterministic Spectral TheoryWe recall some results of the deterministic spectral theory in the Rmax algebra. For references,see Section 3.4.We want to �nd non trivial solutions to the eigenvalue problem :A
 x = �
 x ;where A 2 Rk�k is an irreducible matrix, x is a column vector (the \eigenvector") and � is areal constant (the \eigenvalue"). We de�ne also periodic regimes for the eigenvalue problem.A periodic regime of period d is a set of vectors fx1; : : : ; xdg of Rk verifying Axi = �xi+1; i =1; : : : ; d� 1 and Axd = �x1.



6.4 Deterministic Spectral Theory 126De�nition 6.4.1. For each path � = ft1; t2; � � � ; tj ; tj+1 = t1g, we de�ne its average weight by:p(�) = at1tj 
 � � � 
 at3t2 
 at2t1j ;(here the division is the conventional one).Theorem 6.4.2. There is a unique (non ") eigenvalue, �. It satis�es the relation� = max� p(�) ;where � covers all the circuits of (the communication graph of) A. We call also � the Lyapunovexponent or the cycle time of A.There might be several eigenvectors. A linear combination (in Rmax) of eigenvectors is aneigenvector. An eigenvector has all its coordinates di�erent from " (due to the irreducibilityassumption).De�nition 6.4.3. For a matrix A, we de�ne:Critical circuit A circuit � of A is said to be critical if its average weight is maximal, i.e. ifp(�) = �.Critical graph It consists of the nodes and arcs of A belonging to the critical circuit(s).For a general graph, we de�ne :Cyclicity The cyclicity of a strongly connected graph is the greatest common divisor of thelengths of all the circuits. The cyclicity of a connected graph is the least common multipleof the cyclicities of its maximal strongly connected subgraphs (s.c.s.).We normalize a matrix by subtracting (in the conventional algebra) the eigenvalue to all thecoordinates. The eigenvalue of a normalized matrix is e. For a normalized matrix A of size k,we de�ne: A+ = A�A2 � � � � �Ak :We check that A+ �Ak+1 = A+.Theorem 6.4.4. Let A be a normalized matrix.a. Critical columns A+:i , i belonging to the critical graph, are eigenvectors.b. For i; j belonging to the critical graph, �(A+:i ) and �(A+:j) are di�erent i� they belong totwo di�erent s.c.s. of the critical graph.c. Every eigenvector of A writes as a linear combination (in Rmax) of critical columns A+:i .



6.4 Deterministic Spectral Theory 127A corollary of this result will be of particular use for us:An irreducible matrix has a unique eigenvector (up to a multiplicative (
) constant) if and onlyif its critical graph has a unique s.c.s.In Rmax, every irreducible matrix is cyclic in the sense of the following theorem.Theorem 6.4.5. For an irreducible matrix A of size k and whose eigenvalue is �, there existsintegers d and M such that: 8m >M; Am+d = �
d 
 Am ; (6.4)furthermore the smallest d verifying the property is equal to the cyclicity of the critical graph ofA. We call it the cyclicity of A.A cyclicity greater than one will provide periodic regimes of period greater than one for theeigenvalue problem.Proposition 6.4.6. An irreducible matrix has a unique eigenvector and no periodic regimes ofperiod greater than one for the eigenvalue problem, if and only if its critical graph has a uniques.c.s. and its cyclicity is one. Such a matrix will be called a scs1-cyc1 matrix.The proof follows from Theorems 6.4.4 and 6.4.5.De�nition 6.4.7 (rank). By analogy with classical linear algebra, we de�ne the \rank" of amatrix A as the number of additively independent columns (resp. lines) of A. More precisely,let A:i denote the i-th column of A. Matrix A is of rank r if there exists J � f1; : : : ; kg suchthat jJ j = r and 8i 6= j 2 J ; �(A:i) 6= �(A:j) and 8i 62 J ; 9�j ; j 2 J , such that�(A:i) = �[Mj2J �j 
 A:j ] :Let A be a rank 1 matrix. Then A is a scs1-cyc1 matrix and veri�es A2 = � 
 A (� is theeigenvalue of A). The other way round, let A be a scs1-cyc1 matrix and M be de�ned as inEquation (6.4). One can check that AM is a matrix of rank 1.Example 6.4.8. [Cyclic Jackson Network 1]Let us consider a basic Cyclic Jackson Network as presented in Section 6.2.2. We supposethat the service times are deterministic, i.e �j(n) � �j . We suppose also that the number ofcustomers, k, is equal to the number of queues. Then we can consider the (max,+) matrixassociated with the network, see Equation (6.3). The graph associated with this matrix isconstituted by the circuit (1; 2; : : : ; k; 1) and the recycling loops (1; 1) to (k; k). Let us de�neI = fi j �i = maxj �jg. There are two possible cases.� If the cardinal jI j < k, then the critical graph of the matrix consists of the nodes i 2 Iand the arcs (i; i); i2 I . It implies that the matrix is scsjI j-cyc1.� If jI j = k then the graph and the critical graph of the matrix coincide. It implies that thematrix is scs1-cyc1.We conclude that the matrix is scs1-cyc1 if and only if jI j = 1 or k.



6.5 Semigroup of Matrices 1286.5 Semigroup of MatricesDe�nition 6.5.1. Let us consider A1; : : : ; Ap 2 Rk�kmax. We denote by < A1; : : :Ap >, thesemigroup generated by these matrices and by � < A1; : : :Ap > its projection. We have< A1; : : : ; Ap > = f(Aun � � �Au2Au1) ; u1; : : : ; un 2 f1; : : : ; pg; n 2 Ng ;�< A1; : : : ; Ap > = f�(Aun � � �Au2Au1) ; u1; : : : ; un 2 f1; : : : ; pg; n 2 Ng :De�nition 6.5.2. We say that the semigroup < A1; : : :Ap > is primitive if there exists N suchthat 8n > N; u1; : : : ; un 2 f1; : : : ; pg; 8i; j; (Aun � � �Au2Au1)ij > " : (6.5)The following result follows from classical arguments.Proposition 6.5.3. The semigroup < A1; : : :Ap > is primitive if and only if all the matricesof < A1; : : : ; Ap > are aperiodic (Def. 6.3.4).Proof. If one of the matrices, say A, is not aperiodic, then 8n; 9i; j such that (An)ij > ". Hencethe semigroup is not primitive.Let us prove the su�cient part of the proposition. This proof was mentioned to me by St�ephaneGaubert (unpublished work). It is enough to prove the result for Boolean matrices, i.e. matriceswhich coordinates are either e or ". The only idempotent aperiodic Boolean matrix is the matrixE; Eij = e; 8i; j. In a �nite semigroup, there exists N such that all products of length greaterthan N contain an idempotent, see for example Pin [118]. It implies that long enough productscan be written under the form AEB where A and B are aperiodic (as all the matrices of thesemigroup are). Matrices of the form AEB have all their coordinates di�erent from " whichconcludes the proof. utWe consider the Euclidean space (PRk�k; j:jP) as introduced in De�nition 6.3.7.Proposition 6.5.4. Let A1; : : : ; Ap 2 Qk�kmax. For all compact set K of (PRk�k; j:jP), we have� < A1; : : : ; Ap > \K is �nite. If we assume furthermore that < A1; : : : ; Ap > is primitive then� < A1; : : : ; Ap > is �nite.Proof. The second part of the proposition was proved by Gaubert [70]. The �rst part is obtainedby a slight modi�cation of the proof of [70]. utProposition 6.5.4 can be extended to matrices such that 8i = 1; : : : ; p; 9�i 2 R such that�i 
Ai 2 Qk�kmax. But it cannot be extended to matrices in Rk�kmax as shown in Chapter 3, x3.7 orin Example 6.8.2. It is the reason why some of our results apply only for models with matricesin Qk�kmax, see Section x6.8.1.



6.6 Borovkov's Renovating Events Theory 1296.6 Borovkov's Renovating Events TheoryBorovkov's theory deals with the problem of regeneration in so-called \Stochastic RecursiveSequences". For a complete treatment, the reader is referred to Borovkov [22], Borovkov &Foss [25, 26] or Brandt, Franken & Lisek [32]. Let (
;F ; P ) be a probability space. Let � be ameasurable map from (
;F) into itself such that P is �-invariant and �-ergodic. Let (E; E) and(G;G) be two Polish spaces (complete, separable metric spaces) equipped with their respectiveBorel �-algebra.De�nition 6.6.1. We call Stochastic Recursive Sequence (SRS), a sequence fx(n)g of E-valued random variables de�ned byx(n+ 1) = f(x(n); a(n)); n > 0; x(0) = x0 ;where fa(n)g is an exogenous sequence of G-valued random variables, stationary with respect tothe shift �. The function f is a measurable function from E � G into E. The vector x0 2 Eis the initial condition. In order to stress the value of the initial condition, we will sometimesdenote the SRS by fx(n; x0)g.We talk of an i.i.d. SRS when the sequence a(n) is i.i.d. (an i.i.d. SRS is a Markov chain andthe converse is true!).De�nition 6.6.2. We consider fx(n)g, a SRS. We denote by Fl the �-algebra Fl = �fa(n);n 2 f�1; : : : ; l� 1gg. The sequence of events fA(n) 2 Fn+m; n 2 Ng is said to be a renovatingsequence of length m and of associated function � : Gm ! E if:9n0; 8n > n0; x(n+m) = � (a(n); a(n+ 1); � � � ; a(n+m� 1)) on A(n) :A sequence fA(n); n 2 Ng of renovating events of same length and associated function is said tobe stationary if A(n) = A(0) � �n = ��nA(0).We need the following notions of convergence:De�nition 6.6.3. We say that there is coupling convergence in �nite time (or, merely, cou-pling) of a sequence fXng to a stationary sequence fY � �ng ifP (Xn+l = Y � �n+l; 8l > 0) n!+1�! 1 :It is easy to show that this notion of coupling convergence implies total variation convergence(Xn ! Y in total variation if supA2F jP (Xn 2 A)� P (Y 2 A)j n!+1�! 0).De�nition 6.6.4. We say that there is strong coupling convergence in �nite time (or, merely,strong coupling) of a sequence fXng to a stationary sequence fY � �ng if:� = min nn > 0 j Xn+l � ��(n+l) = Y; 8l > 0o is a:s �nite(the sequence fXn � ��ng corresponds to the famous Loynes scheme).Remark Strong coupling implies coupling but the converse is not true.



6.6 Borovkov's Renovating Events Theory 130Theorem 6.6.5 (Borovkov's renovating events). We consider a SRS fx(n)g de�ned by:x(n+ 1) = f(x(n); a(n)); n > 0; x(0) = x0 :If the random process fx(n); n 2 Ng admits a stationary sequence of renovating events fA(n)gsuch that P (A(0)) > 0, then there exists a �nite random variable Z such that:Z � � = f(Z; a(0)) :The sequence fZ��ng is a stationary regime for the SRS and x(n) converges with strong couplingin �nite time to Z � �n.In the previous theorem, we have considered a SRS de�ned with a unique initial condition, x0.In the rest of the paper, we will be interested in having results that hold uniformly over theinitial conditions. We will then use the following generalization of Borovkov's theorem.Theorem 6.6.6. We consider a subset V of E (V = E is in particular possible). We supposethat there exists a stationary sequence of events fA(n)g verifying P (A(0)) > 0 and which isrenovating for the SRS fx(n; x0)g, 8x0 2 V . Then, for all (possibly random) initial conditionx(0) such that P (x(0) 2 V ) = 1, the sequence fx(n)g converges with strong coupling to a uniquestationary regime.Theorem 6.6.7 (converse of Th. 6.6.5 and 6.6.6). The conditions of Theorem 6.6.5 arenecessary and su�cient for strong coupling convergence. Let V be a compact subset of E.The conditions of Theorem 6.6.6 are necessary and su�cient for strong coupling convergenceuniformly over initial conditions in V .Next theorem was proved by Anantharam and Konstantopoulos in [2].Theorem 6.6.8. Let (
;F ; P ) be a probability space. We assume that (
;F) is a Polish spaceequipped with its Borel �-algebra. We consider a SRS \x(n + 1) = f(x(n); a(n))" de�ned onE. Suppose that, for some x0 2 E, the sequence fx(n; x0)g is tight2 on E. Then there is astationary distribution for the SRS.The stationary distribution is de�ned on 
�E with an 
 marginal equal to P . It provides onlya weak stationary regime (wsr) for the SRS, see [2] or [32] for details. All we need to know aboutwsr is that stationary regimes are wsr. Hence, the uniqueness of stationary regimes implies theuniqueness of wsr.Remark It is proved in [25], that for an i.i.d. SRS (i.e. Markov chain), the conditionsof Th. 6.6.5 are equivalent to the ones ensuring Harris ergodicity. In Harris' framework, theconditions are on the state space. In Borovkov's framework, the conditions are on the exogenousdriving sequence. This second approach is better suited for our problem. On the one hand, adirect analysis on the state space appears to be almost inextricable. On the other hand, therenovating events will take a very convenient form because a product of matrices is still a matrix(see Theorems 6.7.8, 6.7.10).2Tightness on E means that for any � > 0, there is a compact K of E such that Pfx(n; x0) 2 Kg > 1� �, forall n.



6.7 Presentation of the Results 131�-coupling Coupling and strong coupling, introduced above, are related to total variationconvergence. We de�ne now the notion of �-coupling. It is related to weak convergence.De�nition 6.6.9 (�-coupling). We consider a metric space (E; d). We consider two se-quences fXngn2N and fYngn2N de�ned on E. We say that there is �-coupling3 of these twosequences if for each � > 0, one can �nd versions of fXng and fYng de�ned on a commonprobability space and an a.s. �nite random time N such thatn > N =) d(Xn; Yn) 6 � :The following proposition is shown in Asmussen [3].Proposition 6.6.10. We consider a sequence fXngn2N and a stationary sequence fY ��ngn2Nde�ned on the metric space E. Let � be the invariant distribution of Y . If there is �-couplingof the two sequences, then fXng converges weakly to �.6.7 Presentation of the ResultsLet us consider a probability space (
;F ; P; �). The probability P is stationary and ergodicwith respect to the shift �. We are interested in systems of the type:� x(n + 1) = A(n)
 x(n); n 2 Nx(0) = x0where x(n) and A(n) (8n) are �nite, respectively Rkmax and Rk�kmax-valued, random variables. Weare sometimes going to use the notation x(n; x0) to emphasize the value of the initial condition.We will consider models where the sequences fA(n); n 2 Ng are respectively i.i.d or stationaryand ergodic (i.e A(n+ 1) = A(n) � �). We are interested in two kinds of asymptotic limits.� First order limits, on ratios: limn kx(n)k1n ; limn xi(n)n :� Second order limits, on di�erences:limn xi(n+ 1)� xi(n); 8i ;limn xj(n)� xi(n); 8i 6= j :First order limits and second order limits for open systems have been treated by Baccelli [4].First order limits for closed systems have been treated by Cohen [46]. We are going to recallthese results, before completing the picture by solving the problem of second order results forclosed systems.3The classical terminology is "-coupling. We change it to �-coupling to avoid confusions with the notation" = �1 of the Rmax algebra.



6.7 Presentation of the Results 1326.7.1 Results from Baccelli [4] and Cohen [46]For x 2 Rk and A 2 Rk�kmax, we use the notation kxk1 =Lki=1 xi and kAk1 =Lki;j=1Aij .First order limits for closed systemsTheorem 6.7.1 (Cohen [46]). Let fA(n)g be a stationary and ergodic sequence of matrices.We suppose that 8i; j; P (Aij(0) = ") = 0 and " < E(Aij(0)) < +1. There exists a constant� 2 R such that, for all initial condition x0 and for all i 2 f1; : : : ; kglimn xi(n; x0)n = limn E �xi(n; x0)n � = �; P � a:s:The constant � is called the Lyapunov exponent of the stochastic matrix A(0).Remark The assumptions of Th. 6.7.1 can be weakened and replaced by :limn P (A(n)
A(n� 1)
 � � � 
A(0) irred. ) = 1; " < E(Aij(0) jAij(0) 6= ") < +1 :Remark If the matrices are of dimension 1, Theorem 6.7.1 is exactly the Strong Law of LargeNumbers.Remark This de�nition of a Lyapunov exponent is coherent with the one of Theorem 6.4.2.Indeed, by Theorem 6.4.5, for every irreducible and deterministic matrix A, there exists d andM such that 8m > M; Am+d = �d 
 Am, where � is the eigenvalue of A. It implies that8x0 2 Rkmax; limnAnx0=n = �.Proof. It is straightforward to check that :8A;B 2 Rk�kmax; kA
 Bk1 6 kAk1 
 kBk1We de�ne Zl;n = kA(n� 1)
 � � � 
A(l)k1, 8l < n. We have for all l < m < n,kA(n� 1) � � �A(l)k1 6 kA(n� 1) � � �A(m)k1 
 kA(m� 1) � � �A(l)k1 ;that is Zl;n 6 Zl;m + Zm;n.We have furthermore that 8i; j; 8n :(A(n� 1) � � �A(0))ij > A(n� 1)ii � � �A(1)iiA(0)ij :If we denote Kij = E(A(0)ij) and K = minijKij , we conclude that E(Z0;n) > K � n. We sete = (e; : : : ; e)0. The sequence Z0;n = x(n; e) veri�es the conditions of application of Kingman'ssub-additive ergodic theorem, see [97] and also Theorem 10.2.2 for a precise statement. Weconclude by remarking that for every �nite initial condition x0, we have :kx(n; e)k1 
mini (x0)i 6 kx(n; x0)k1 6 kx(n; e)k1 
maxi (x0)i : utVariants and generalizations of Theorem 6.7.1 are proposed in Chapter 9, Theorem 9.3.1 andChapter 10, Theorem 10.3.5.



6.7 Presentation of the Results 133�1 < �2
�2�1 �3 �5�4 �6�4 > �6 > �5 > �2 > �3 > �1
�2 �1 �2�1�1�1 �1 > �2

Figure 6.2: Behaviour of open systems.First order limits for open systemsWe assume in this paragraph that matrix A(0) has a �xed structure, see De�nition 6.3.5. Wedecompose the graph of A(0) into its maximal strongly connected subgraphs (s.c.s.). If wereplace each s.c.s. by one node, we obtain an associated reduced graph which is acyclic. Weassociate with each node ~u of the reduced graph a constant �~u which is the Lyapunov exponent ofthe corresponding s.c.s. in isolation, see Theorem 6.7.1. We denote by �~u the set of predecessorsof ~u (including ~u) in the reduced graph. We have :Theorem 6.7.2 (Baccelli [4]). Let fA(n)g be a stationary and ergodic sequence of matrices.We suppose that A(0) has a �xed structure. We suppose also that P (Aij(0) = ") = 1 or" < E(Aij(0)) < +1; 8i; j. Let us consider i 2 f1; : : : ; kg, i belongs to the s.c.s. ~u.limn xi(n; x0)n = limn E �xi(n; x0)n � = M~v2 �~u�~v; P � a:s: :Intuitively, the dynamic of the system is imposed by the s.c.s. having the smallest throughput(largest cycle time). We propose two illustrative examples in Figure 6.2. In order to get a deeperintuition of this result, one can look at the examples following Theorem 6.7.3.If the sequence A(n) is i.i.d., some additional results on convergence rates exist. Resing andal [122] prove a Central Limit Theorem in some special cases. Glasserman and Yao [75], Chapter7, propose results based on a martingale approach. Let us mention also that large deviationresults have been proved by Chang [37].Second order limits for open systemsMatrices A(n) have a �xed structure. In order to simplify the presentation of the results, let usassume that the structure consists of two s.c.s. The general case is completely similar. Up to a



6.7 Presentation of the Results 134permutation of the coordinates, we have :A(n) = � ~U(n) "~B(n) ~A(n) � :The block ~U is a square matrix of size I � I , irreducible. It is interpreted as the input of oursystem. The block ~A is a square matrix of size (k� I)� (k� I) , irreducible. The block ~B is thematrix of the communications between the sources ( ~U) and ( ~A). We suppose that the block ~Uin isolation has a unique stationary regime (for example if I = 1, case of a simple source). Wehave the following theorem.Theorem 6.7.3 (Baccelli [4]). Let u and a be the Lyapunov exponents of ~U and ~A respec-tively (see Theorem 6.7.1). If a < u, there is a unique stationary regime for the SRS �(x(n)),regardless of the initial condition. Convergence to the stationary regime occurs with strong cou-pling. If a > u, then the di�erences of the form�ji(n; x0) = xj(n; x0)� xi(n; x0); i = 1; : : : ; I; j = I + 1; : : : ; k ;tend to +1, P � a:s:, for all �nite initial condition.A good way to intuit this result is to consider deterministic matrices. We consider a matrix forwhich (u = 1) > (a = e). A = � 1 "e e � ; An = � n "n� 1 e � :We set x0 = (u; v)0. We have Anx0 = (nu; (n� 1)u� v)0. For n su�ciently large, we haveAnx0 = nu
 � e�1 � =) �(Anx0) = �� e�1 � :We consider now a case where (u = e) < (a = 1).A = � e "e 1 � ; An = � e "n� 1 n � :We have �(Anx0) = �� e(n� 1)� (v � u)n � :We check that x2(n)� x1(n) = (n� 1)� (v � u)n tends to +1 for all �nite x0.For a stochastic model, the idea remains the same. If u > a, the sources which are slower imposetheir pace. If u < a, everything happens asymptotically as if ~A were in isolation.Remark In the previous theorem, we need the assumption that ~U in isolation has a uniquestationary regime. But the problem of knowing if ~U has a unique stationary regime is preciselythe one which is going to be addressed in the following. Then, to determine if there is a uniquestationary regime for �(x(n)), we have in fact to use the results of Section 6.7.4 (applied to ~U)together with the comparison of Lyapunov exponents (of ~U and ~A).



6.7 Presentation of the Results 1356.7.2 Preliminary resultsFrom now on, we concentrate on second order limits in the closed (i.e A(n) is P -a.s. irreducible)case. The limits are expected to be random variables. We are interested in determining whetherthe limiting distribution is unique. Furthermore, we want to investigate the type of convergenceto the limit. It appears that the notion of coupling convergence is central in our model. In fact,we show that some of the quantities we are interested in are SRS (Def. 6.6.1).We recall that � is the canonical projectionRk ��! PRk (Def. 6.3.6). It is clear that the recursiveequation x(n+1) = A(n)x(n) de�nes a SRS. It is then easy to show that �(x(n)) is also a SRS.Indeed, let us consider x(n) and x0(n) such that �(x(n)) = �(x0(n)). We de�ne x(n + 1) =A(n)x(n) and x0(n + 1) = A(n)x0(n). It is straightforward that �(x(n + 1)) = �(x0(n + 1)).We write with some abuse of notation that f�(x(n)); n 2 Ng veri�es the recursive equation\�(x(n+ 1)) = �A(n)�(x(n))"4.Proposition 6.7.4. For i 2 f1; : : : ; kg, we de�ne zi(n) = xi(n) � xi(n � 1). The vector(zi(n); �(x(n))) is a SRS.Proof. This proposition was proved in [122].zi(n) = Mj [Aij(n� 1)xj(n� 1)]� xi(n� 1)= Mj [Aij(n� 1)
 (xj(n � 1)� xi(n� 1))] ;and (xj(n� 1)� xi(n� 1)) depends only on �(x(n� 1)). utMore precisely, we have : 8i; zi(n) = Fi( A(n � 1); �(x(n � 1)) ), where Fi is an absolutelycontinuous function. The sequence fA(n)g being stationary, it implies the following corollary.Corollary 6.7.5. A su�cient condition for (z1(n); : : : ; zk(n))0 to converge weakly (resp. in totalvariation) to a unique invariant distribution, uniformly over initial conditions in PRk, is that�(x(n)) has the same property.This su�cient condition is not necessary ... as demonstrated by the following deterministicexample.Example 6.7.6. Let us consider A = � e �1�1 e � :We have A+ = A, so u1 = (e;�1)0 and u2 = (�1; e)0 are eigenvectors of A. The setfu� = �
 u1 � (1� �)
 u2; � 2 [0; 1]g ;4It would be more rigorous to use di�erent notations � and ~� for the canonical projections in PRk and PRk�kmaxrespectively. Then we would de�ne more formally ~�(A(n))�(x(n)) � �(A(n)x(n)).



6.7 Presentation of the Results 136is the set of eigenvectors of A, see Theorem 6.4.4. There is a continuum of stationary regimesfor �(x(n)). For example, it is easy to check that for an initial condition u�; � 2 [0; 1], we have:x1(n; u�)� x2(n; u�) = 2� �� 1 :But on the other hand, we have a unique stationary regime for zi(n). As a direct consequenceof the equality A2 = A, we have z1(n) = z2(n) = e; 8n > 2.We can also easily build stochastic counter-examples of the same kind.Remark The variables �(x(n)) depend only on the sequence f�(A(n))g. Therefore, all theresults on �(x(n)) would still be true under the weaker assumption that only the sequencef�(A(n))g is stationary and ergodic. But, on the other hand, the variables zi(n) depend onthe sequence fA(n)g and not only on f�(A(n))g. Corollary 6.7.5 would not be true under theassumption that f�(A(n))g only is stationary and ergodic.In the rest of the paper, we investigate the existence of a stationary regime for the SRS �(x(n)),i.e. the existence of a �nite r.v. Z : 
! PRk such that5Z � � = � �A(0)��1(Z)� :We are interested by conditions ensuring the uniqueness of the stationary regime and the con-vergence of �(x(n; x0)) toward it, for all x0 2 Rk. In such cases, we say that the model is stable.Two types of convergence will appear, convergence with �-coupling and convergence with cou-pling. They imply, respectively, weak convergence and total variation convergence as recalled inx6.6.6.7.3 Stability of discrete modelsLet fAl; l 2 L or l 2 Ng, be a �nite or countable collection of irreducible matrices of size k �k. We suppose that there exists a discrete probability law fplg such that A(n; !) = Al withprobability pl > 0.De�nition 6.7.7 (pattern, 1).A matrix ~A is called a pattern of the random sequence fA(n); n 2 Ng if:1. 9N j ~A = AuN�1 
 � � � 
Au0 with u0; : : : ; uN�1 2 L (or N).2. P (A(N � 1)
 � � � 
 A(0) = ~A) > 0.If the sequence fA(n)g is i.i.d. then the second condition is always veri�ed.Theorem 6.7.8. The sequence of matrices fA(n)g is i.i.d. If there exists a pattern of fA(n)gwhose critical graph has a unique s.c.s. and whose cyclicity is 1 (scs1-cyc1 matrix), thenf�(x(n))g converges with strong coupling to a unique stationary regime. It implies total variationconvergence of f�(x(n))g to its stationary distribution.5We will write Z � � = �A(0)Z with some abuse of notations.



6.7 Presentation of the Results 137Proof. Let C = AuN�1 
 � � � 
 Au0 be a scs1-cyc1 pattern. We have, using the cyclicity 1assumption (Th. 6.4.5), 9M j 8m >M; Cm+1 = �Cm ;where � is the Lyapunov exponent of C. We conclude that for all initial condition y, CM+1y =C(CMy) = � 
 CMy. It means that CMy is an eigenvector of C. By the assumption on thecritical graph of C, there is a unique eigenvector (up to a constant) denoted y0 (Th. 6.4.4). Wehave CM 
 y = �(y)
 y0; �(y) 2 R, or equivalently �(CMy) = �(y0). We de�neBi = f!jA(i+MN � 1; !)
 � � � 
 A(i+ 1; !)
 A(i; !) = CMg :From the i.i.d. assumption, it follows that P(Bi) > 0. On Bi, and for all initial condition y, wehave: x(i+MN) = CM 
 x(i)= �(x(i))
 y0=) �(x(i+MN)) = �(y0) :We check that the sequence Bi is compatible with the shift, i.e. Bi = B0 � �i. We concludethat Bi is a stationary renovating event sequence for the SRS �(x(n)). We apply BorovkovTheorem (version 6.6.6 for the set V = PRk, as we have obtained a sequence of renovatingevents independent of the initial condition) and the uniqueness of the stationary regime follows.utRemark This theorem is in particular true in the important case where one of the matrices Alis a scs1-cyc1 matrix.Example 6.7.9. [Cyclic Jackson Network 2]We consider a basic Cyclic Jackson Network with k queues and k customers. Such a networkcan be represented by the (max,+) matrix given in x6.2.2, Equation (6.3). We suppose that thesequence of service times f(�1(n); : : : ; �k(n)) ; n 2 Ng is i.i.d. However the random variables�1(n); : : : ; �k(n) need not be independent for a given n. We suppose also that the service timeshave a discrete support, i.e. can only take a countable number of values. We are in the frameworkof Theorem 6.7.8. We conclude that a su�cient condition of stability is to �nd a scs1-cyc1 matrixamong the (max,+) matrices corresponding to this network. As a direct application of the resultstated in Example 6.4.8, we obtain that a condition of stability is:P (9i j �i(n) > �j(n); 8j 6= i) > 0 or P (�1(n) = �2(n) = � � � = �k(n)) > 0 :We now give a version of Theorem 6.7.8 in the stationary and ergodic case.Theorem 6.7.10. The sequence fA(n)g is stationary and ergodic. We suppose that there existsa �nite pattern C = AuN�1 
 � � � 
 Au0 which is scs1-cyc1 and of rank 1 (see Def. 6.4.7). Wesuppose that B = f! jA(N � 1)A(N � 2) � � �A(1)A(0) = Cg is of strictly positive probability.Then f�(x(n))g converges with strong coupling to a unique stationary regime.



6.7 Presentation of the Results 138Proof. The proof resembles the one of Theorem 6.7.8. As C is of rank 1, we have (see Def.6.4.7): C2 = �
 C, where � is the Lyapunov exponent of C. We conclude that:8y 2 Rk; C2y = C(Cy) = �Cy :It implies that Cy is an eigenvector of C. As matrix C is scs1, it has a unique eigenvector y0,up to a constant. On Bi = B � �i, we have�(x(i+N)) = � (Cx(i))= �(y0) :We check that the sequence Bi is compatible with the shift and we apply Borovkov's Theorem6.6.6. utRemark If the dependence between matrices is markovian, a su�cient condition to get P (B) >0 is that p(Aui ; Aui+1) > 0; 8i = 1; : : : ; N � 1, where p(:; :) is the markovian transition kernel.Remark The conditions of this theorem are, of course, weaker than the i.i.d. assumption ofTheorem 6.7.8. However we made an additional assumption, namely that the pattern C is ofrank 1. This assumption cannot be relaxed, as shown by the counter-example 6.7.11.Example 6.7.11. Let 
 = f!1; !2g be the probability space, P=f12 , 12g the probability law,and � the stationary and ergodic shift de�ned by: �(!1) = !2 and �(!2) = !1. We considerA = � 1� � ee 1 � ; B = � 1 ee 1� � � ; e < � << 1 :fA(n; !1)g = A;B;A;B; : : : fA(n; !2)g = B;A;B;A; : : : :Both matrices A and B are scs1-cyc1 patterns of length 1. But patterns which are scs1-cyc1and of rank 1 are for example An or Bn for n > [1=�]. We have, of course, for any n > [1=�],P (9N jA(N � 1) � � �A(0) = An) = P (9N jA(N � 1) � � �A(0) = Bn) = 0. Hence the conditionsof Theorem 6.7.10 are not veri�ed. In fact, there is a continuum of possible periodic limits.Consider x0 = (a; b)0 with �1 + � < a� b < 1� �. Then the limit regime of �(x(n)) has a statespace which is either f�(a; b)0; �(a+ �; b)0g (with probability 12), or f�(a; b)0; �(a; b+ �)0g (withprobability 12).When � becomes arbitrarily small, we can build more complex counter-examples to Theorem6.7.10 by limiting the number of times that one can get the same matrix A or B in a row. Thisidea is used in Example 6.8.2. Such models, where there exist patterns which are scs1-cyc1 butno patterns of rank 1, will be called pseudo-periodic.6.7.4 Stability of general modelsIn this section, we consider a general model where the coordinates of our matrices have a supportwhich can be discrete, absolutely continuous with respect to Lebesgue measure or a mixture ofthese two cases.



6.7 Presentation of the Results 139We need the following de�nitions, extending the notion of pattern we have been using for �nitemodels. Let M be a deterministic matrix and � > 0. We denote by B(M; �) the open ball ofcenter M and of radius � for the supremum norm of Rk�k. We have N 2 B(M; �) i�8i; j; Nij 2]Mij � �;Mij + �[De�nition 6.7.12 (pattern, 2). Let A be a random matrix. We say that ~A is a pattern ofA if ~A is a deterministic matrix verifying8� > 0; P nA 2 B( ~A; �)o > 0 :Equivalently, we can say that ~A belongs to the support of the random matrix A. It includes thecases where ~A is an accumulation point (discrete case) or a boundary point (continuous case) ofthe support.De�nition 6.7.13 (pattern, 3). Let fA(n); n 2 Ng be a sequence of random matrices. Wesay that the deterministic matrix ~A is a pattern of the sequence fA(n)g if9N s.t. 8� > 0; P nA(N � 1)
 � � � 
A(0) 2 B( ~A; �)o > 0 :Equivalently, we can say that ~A is a pattern (Def. 6.7.12) of the random matrix A(N � 1) 
� � � 
A(0). We say that ~A is an asymptotic pattern of fA(n)g if8� > 0; 9N� s.t. P n�(A(N� � 1)
 � � � 
 A(0)) 2 �(B( ~A; �))o > 0 :Remark This de�nition is coherent with the one given in De�nition 6.7.7 for a discrete model.Note that, for convenience reasons, asymptotic patterns are de�ned in the projective spacePRk�k.Theorem 6.7.14. The matrices A(n) are i.i.d. (resp. stationary and ergodic). We supposethat there exists a matrix C which is a pattern of fA(n)g (see Def. 6.7.13) and which is scs1-cyc1 (resp. of rank 1). Then the SRS f�(x(n))g has a unique stationary regime fZ � �ng.The convergence occurs with ��coupling. It implies weak convergence of �(x(n)) to its uniquestationary distribution.Proof. It is done in Appendix, x6.10.2. A stronger version of Theorem 6.7.14, together with arather di�erent proof, is provided by Theorem 6.8.4. utTheorem 6.7.15. The sequence of matrices fA(n)g is i.i.d. or stationary and ergodic. Weassume that there exists a set C of matrices such that :1. 8C 2 C, C is a matrix of rank 1.2. 8C 2 C, C is a pattern of fA(n)g.3. 9N j P (A(N � 1) � � �A(0) 2 C) > 0.



6.8 Converse Theorems 140Then f�(x(n))g converges with strong coupling to a unique stationary regime.The conditions of Theorem 6.7.15 are stronger than the ones of Theorem 6.7.14 as we requirethe patterns of rank 1 to be of positive probability. On the other hand, we obtain a strongertype of convergence.Proof. Let us de�ne B = f! jA(N � 1)A(N � 2) � � �A(1)A(0) 2 Cg and Bi = B � �i. Using thatthe matrices C 2 C are of rank 1, we obtain that, on the event Bi, �(x(i+N)) is independent ofthe value of �(x(i)). It implies that fBn; n 2 Ng is a stationary sequence of renovating events.The result follows. utRemark Theorems 6.7.8 to 6.7.15 do not require any aperiodicity (Def. 6.3.4) assumption onthe matrices A(n). However, the pattern C whose existence is essential in all of these theoremsis aperiodic. The condition \scs1-cyc1" implies aperiodicity.Example 6.7.16. [Cyclic Jackson Network 3]We consider the same i.i.d. model as in Example 6.7.9. However, the distributions of the servicetimes are now general. We obtain, by using Theorems 6.7.14 and 6.7.15, the stability under thecondition:The support of the random vector (�1(n); : : : ; �k(n)) contains at least one point such that:9i j �i(n) > �j(n); 8j 6= i or such that �1(n) = �2(n) = � � � = �k(n) :If the previous condition occurs with strictly positive probability, we obtain total variationconvergence. Otherwise, we obtain weak convergence. Here is a case with only weak convergence.We consider an i.i.d. CJN with three queues and three customers. We assume that �1 = �2 = 1and �3 is uniformly distributed over [0; 1].6.8 Converse TheoremsWe are going to prove converses of Theorems 6.7.8, 6.7.10, 6.7.14 and 6.7.15. We will considersuccessively �nite and general models of type: \x(n + 1) = A(n)x(n)" where the matrices areof size k � k and are P � a:s irreducible. We will, moreover, always suppose that there exists,with positive probability, a pattern whose projective diameter (Def. 6.3.9) is �nite, i.e.:9n j P fD(A(n) � � �A(0) ) < +1g > 0 : (6.6)It implies limn PfD(A(n) � � �A(0) ) < +1g = 1, see the proof of Lemma 6.10.1. This conditionis very weak. In the i.i.d. case, it is enough that there exists a pattern which is irreducible andaperiodic. We comment further on this condition in Section 6.9.1.6.8.1 Finite models in Qk�kmaxWe consider a �nite model: \x(n+ 1) = A(n)x(n)", with A(n) 2 fAl; l 2 L = f1; : : : ; Lgg. Weassume that the matrices are irreducible. We assume also that the matrices Al; l 2 L; belong toQk�kmax, i.e. that their coordinates are rational.



6.8 Converse Theorems 141Theorem 6.8.1. The sequence of matrices fA(n)g is i.i.d. or stationary and ergodic. Whenthere is a unique stationary regime, convergence to this regime occurs with strong coupling. Anecessary and su�cient condition for the model to have a unique stationary regime is that thereexists a matrix C verifying1. C is a matrix of rank 1 (Def. 6.4.7).2. C is a pattern of fA(n)g (Def. 6.7.13).Proof. It is given in Appendix, x6.10.3. utTheorem 6.8.1 is not true in general when the matrices Al; l 2 L; belong to Rk�kmax, see thefollowing counter-example.Example 6.8.2. We consider the matricesA = � e �1�1 �� � ; B = � ��0 �1�1 e � ;where 0 < �; �0� 1 and �, �0 are not co-rational, i.e. �=�0 62 Q.Let u = (u1; u2)0 2 R2, we set  (u) = u2�u1. We identify PR2 and Rusing the function  ���1.The matrices A and B are scs1-cyc1. Their respective and unique eigenvectors are  (e1) = �1and  (e2) = 1. For a vector u = (u1; u2)0 such that  (u) 2 [�1; 1], we have (Au) = max( (u)� �;�1);  (Bu) = min( (u) + �0; 1) : (6.7)We consider a Markov chain de�ned on the set  �1[�1; 1] � R2. The transition probabilitiesare � For u such that  (u) 2]� 1 + �; 1� �0[; p(u;Au) = 1=2; p(u;Bu) = 1=2.� For u such that  (u) 2 [1� �0; 1]; p(u;Au) = 1.� For u such that  (u) 2 [�1;�1 + �]; p(u;Bu) = 1.The behaviour of the Markov chain is illustrated in Figure 6.3.
-1 1

BB A�1 + � 1� �0 PR2 ' RAFigure 6.3: Markov chain  (X(n)) on R.Let X(n) be a realization of the Markov chain. It is easy to check that this Markov chainis aperiodic. Under the assumption �=�0 62 Q, one can prove using classical arguments thatthe set f (X(n)); n 2 Ng is P -a.s. dense in [�1; 1]. It implies that the Markov chain is�-irreducible where � is the Lebesgue measure on  �1[�1; 1]. Hence there exists a uniquestationary distribution Q for the Markov chain. It veri�es Q(A) > 0 for all event A such that



6.8 Converse Theorems 142�(A) > 0. For a complete presentation of Markov chains on continuous state spaces, see Meyn& Tweedie [109].Let us consider a stationary realization X(n) of the Markov chain (i.e. 8n; PfX(n) 2 :g = Q(:)).We de�ne A(n; !) = (A if X(n+ 1; !) = AX(n; !),B if X(n+ 1; !) = BX(n; !).As X(n) is stationary, it follows that fA(n)g is a stationary and ergodic sequence.Let us consider the stationary-ergodic �nite model \x(n+ 1) = A(n)x(n)" and x(0) = x0 2 R2is non-random. Note that fx(n)g is not a Markov chain anymore.Let us consider a patternC = An�1 � � �A0 of fA(n)g, i.e. PfA(n�1) � � �A(0) = An�1 � � �A0g > 0.Let x0; : : : ; xn be a corresponding path for the Markov chain X(n), i.e.x0 2  �1]� 1; 1[; x1 = A0x0; : : : ; xn = An�1xn�1;and PfX(n) = xn; : : : ; X(1) = x1 j X(0) = x0g > 0 :Let us denote by c and c the minimal distances between xp; p 6 n and the extremal points of �1[�1; 1]. c = minp6n( (xp) + 1); c = minp6n (1�  (xp)) :It follows from (6.7) that  (Im(An�1 � � �A0)) = [xn � c; xn + c] ; (6.8)where Im(A) = fAu; u 2 Rkg. From the de�nition of the Markov chain X(n), it follows thatc > 0; c > 0. We conclude that An�1 � � �A0 is not a rank 1 matrix. There exists no �nite patternof rank 1 for fA(n)g.On the other hand, let us prove that there exists asymptotic patterns of rank 1 for fA(n)g.We de�ne c(n) = minp6n( (X(p)) + 1) and c(n) = minp6n(1 �  (X(p))). As f (X(n)); n 2Ng is dense in [�1; 1], we obtain that c(n) ! 0 and c(n) ! 0. Using (6.8), we obtain thatD(A(n) � � �A(0))! 0; P -a.s. We conclude following the lines of Theorem 6.8.4, x6.10.4. There isa unique stationary regime for the model. For an arbitrary initial condition, we have �-coupling(weak convergence) with this stationary regime.To summarize, we have exhibited a �nite model with a unique stationary regime and no couplingconvergence. This type of behaviour is closely related to the non-�niteness of the projectivesemigroup � < A;B > (see Def. 6.5.1 for a de�nition and Chapter 3, x3.7 for more insights).6.8.2 General modelsWe consider a general model of type \x(n+1) = A(n)x(n)". Stability no longer implies couplingin �nite time. It was illustrated by Example 6.8.2. Here is another example, for an i.i.d. model.



6.8 Converse Theorems 143Example 6.8.3. A(n) = � U(n) ee U(n) � ;where U(n) are i.i.d. random variables of uniform distribution over [0; 1]. There is a uniquestationary regime for �(x(n)) which is �(e; e)0. We denote by d(:; :) the projective distance. Foran initial condition (y; e)0 with y > 1, we have d (x(n); (e; e)0) = minp6n U(p). Thus convergenceto �(e; e)0 occurs only asymptotically. There is no coupling but only �-coupling with the uniquestationary regime.We can show the following results.Theorem 6.8.4. The sequence of matrices fA(n)g is i.i.d. or stationary and ergodic. Thenecessary and su�cient condition for the model to converge with �-coupling to a unique sta-tionary regime is the existence of an asymptotic pattern C of fA(n)g of rank 1 (Def. 6.7.13).Proof. It is given in Appendix, x6.10.4. utTheorem 6.8.5. The sequence of matrices fA(n)g is i.i.d. or stationary and ergodic. Thenecessary and su�cient conditions for the model to converge with coupling to a unique stationaryregime are :There exists a set C of matrices such that :1. 8C 2 C, C is a matrix of rank 1.2. 8C 2 C, C is a pattern of fA(n)g.3. 9N j P (A(N � 1) � � �A(0) 2 C) > 0.We can say equivalently that we must have patterns of rank 1 but with strictly positive probability.Proof. We have already proved the su�cient part (Th. 6.7.15). We prove the necessary part ofthe theorem in Appendix, x6.10.5. utRemark Convergence with ��coupling appears as a limiting case of coupling in �nite time. Ina discrete model, we will have only �-coupling when the set C of scs1-cyc1 patterns is non emptybut is of probability 0. It means that the scs1-cyc1 patterns are only accumulation points ofthe support. In a general model, we will have only �-coupling when the scs1-cyc1 patterns areisolated points of the support (which implies that they are boundary points of the support).Example 6.8.6. To illustrate the previous remark, let us continue the analysis of Example6.8.3. There is only one matrix (in the projective space PRk�kmax) verifying the �rst two conditionsof Theorem 6.8.5. It is the matrix �(C) = �� e ee e � ;



6.9 Complementary Results 144But condition 3. of Th. 6.8.5 is not veri�ed as 8N;P (�(A(N � 1) � � �A(0)) = �(C)) = 0.Let us consider a slightly modi�ed sequence of matrices f ~A(n)g where the diagonal elements aretwo random variables U(n) and U 0(n) de�ned on [0; 1] and such thatP �U(n) > U 0(n)	 > 0 or P �U 0(n) > U(n)	 > 0 :Now, we have scs1-cyc1 patterns with strictly positive probability and there is coupling in �nitetime with the unique stationary regime.Example 6.8.7. [Cyclic Jackson Network 4]We consider the model of Example 6.7.16. The conditionP (f9i j �i(n) > �j(n); 8j 6= ig [ f�1(n) = � � � = �k(n)g) > 0 :is necessary and su�cient for strong coupling convergence to a unique stationary regime. Fori.i.d. Cyclic Jackson Networks, the su�cient condition P (f9i j �i(n) > �j(n); 8j 6= ig) > 0 wasobtained in [94]. The method of proof was completely di�erent, see the remarks at the end ofSection 6.2.2.In Figure 6.4, at the end of the chapter, we propose a diagram summarizing the di�erent resultsproved.6.9 Complementary Results6.9.1 Without irreducibilityWe have supposed from the beginning that the matrices fA(n)g were irreducibles. The relaxationof the irreducibility assumption is very important in terms of modeling power. It enables us toconsider, for example, the task graphs with random precedences introduced in Section 6.2.1.Let us come back to the places where this assumption is used. First of all, it is used in Prop. 6.3.8.But in fact, the only point we need in order to prove this proposition is: \8u 2 Rk; Au 2 Rk",i.e. if u has only non-" coordinates then Au has the same property. So the only assumption weneed on the matrices fA(n)g is:I 8i; P f9j s.t. Aij(0) > "g = 1 :Secondly, the irreducibility is essential for the Rmax spectral theory of Section 6.4. A reduciblematrix A 2 Rk�k may have several eigenvalues. De�nition 6.4.3 and Theorem 6.4.4 have tobe reinterpreted by replacing the unique eigenvalue by the maximal eigenvalue. Theorem 6.4.5is not true anymore. But as far as the direct theorems (6.7.8, 6.7.10, 6.7.14 and 6.7.15) areconcerned, we use results of the Rmax spectral theory only for the pattern C whose existence iscritical for the proofs. They are still valid, then, if we state that condition I is veri�ed and thatthere exists a pattern C which is scs1-cyc1 and irreducible.Dropping the irreducibility assumption does not inuence the converse results. More precisely,the proofs of Theorems 6.8.1, 6.8.4 and 6.8.5 are still valid. Only two points need to be veri�ed:



6.9 Complementary Results 145I 8i; P f9j s.t. Aij(0) > "g = 1 :II 9n j P fD(A(n) � � �A(0) ) < +1g > 0.Of course, irreducibility P � a:s: is not necessary to ensure that these conditions hold. Weconclude that we can state our converse results under the previous two minimal assumptions.Let us discuss condition II a little further. First of all, we propose a counter-example showingthat without II, the uniqueness of the stationary regime does not imply the existence of a rank1 pattern.Example 6.9.1. Let 
 = f!1; !2g be the probability space, P = f12 ; 12g the probability law,and � the ergodic shift de�ned by: �(!1) = !2 and �(!2) = !1. We considerA = � " ee 1 � ; B = � e e1 " � :fA(n; !1)g = A;B;A;B; : : : fA(n; !2)g = B;A;B;A; : : : :All patterns have an in�nite projective diameter. Therefore, condition II is not veri�ed. Nev-ertheless, there is coupling in �nite time with a unique periodic regime. More precisely, thereis coupling of �(x(n; u)) to the periodic regime f�(e; e)0; �(e; 1)0g and coupling occurs for n >2� [L(u1�u2; u2�u1)]. We conclude that there is coupling in �nite time to a unique stationaryregime but no rank 1 pattern. Without condition II, Theorem 6.8.1 is not true anymore.Another class of systems where condition II is not veri�ed is the class of open systems studiedby Baccelli in [4]. The results for this type of systems have been recalled in x6.7.1. In thiscase also, Theorem 6.8.1 fails to be true. In such models, there are no patterns which are scs1-cyc1 and irreducible (matrices are non-irreducible with probability 1 !), even when there is aunique stationary regime. In fact, we cannot exhibit a type of pattern which would decide theuniqueness of the stationary regimes. The good criterion is the comparison between Lyapunovexponents, see Theorem 6.7.3. The computation of such exponents involves the whole structureof the stochastic matrices fA(n)g, and not only an extracted pattern.For the class of open systems, it is not even true that coupling of the trajectories mean theexistence of a stationary regime, see Example 6.9.2. Hence Lemma 6.10.1 fails to be true.Example 6.9.2. Let us consider the i.i.d. model \x(n+ 1) = A(n)x(n)" withA(n) = � e "e a(n) � ;and the random variables a(n) are such that Pfa(n) = �1g = Pfa(n) = 1g = 1=2. We identifyPR2 and R in the following way �(a; b)0 ' b� a. For an initial condition u = (u1; u2)0, we havex(n+ 1) = (u1;max(x(n)1 + a(n); u1)0 which implies�(x(n+ 1)) = max(�(x(n)) + a(n); 0) :This is a classical birth and death process with state space N. Two trajectories which cross eachother get coupled as the only jumps allowed are -1 and 1. We conclude that there is coupling in�nite time of the trajectories of �(x(n)). However the process is recurrent null as a consequenceof E(a(0)) = 0. Hence there exists no stationary distribution.



6.9 Complementary Results 146Condition II is weak and will be veri�ed in most cases. For a discrete i.i.d. model, for example, itis su�cient to have one pattern of �nite length AuN � � �Au1 which is irreducible and aperiodic toverify it. For a general i.i.d. model, it is su�cient to have P fA(0) irreducible and aperiodicg >0. In a stationary and ergodic framework, condition II is a little bit stronger, as shown byExample 6.9.1 where P fA(0) irreducible and aperiodicg = 1 and where condition II is notveri�ed.Remark For a general model which does not verify condition II, we decompose the model intoits maximal sub-models verifying it. Then the complete analysis of the system boils down to ananalysis of the sub-models (using the results of Section 6.7.4) and of their interactions (usingTheorem 6.7.3 and its generalizations, see [4]).6.9.2 BoundednessWe have seen that we do not need irreducibility and aperiodicity assumptions in order to getour results. Anyway, there are more precise results when we make these assumptions.Proposition 6.9.3. We consider a �nite model verifying the assumptions of Theorem 6.8.1.If we assume furthermore that all the matrices Au1Au2 � � �Aun ; ui 2 f1; : : : ; Lg are aperiodic,then the unique stationary distribution has a bounded state space.Proof. The existence and uniqueness of the stationary regime is a consequence of Theorem 6.7.8.We de�ne: Im(Al) = �v 2 Rk j 9u 2 Rk; v = Alu	. We recall that a matrix has a bounded imageif and only if all its coordinates are di�erent from ". Let us consider S =< A1; : : : ; AL > thesemigroup generated by the matrices A1; : : : ; AL (Def. 6.5.1). It follows from Proposition 6.5.3that the semigroup S is primitive. Let N be such that8n > N; u1; : : : ; un 2 f1; : : : ; Lg; 8i; j; (Au1Au2 � � �Aun)ij > " :We de�ne � = [( Im(Au1 � � �AuN ) ), where the union is taken over all the products of length N .It follows from the primitivity that � is bounded. We have that 8x0 2 Rk; �( x(n; x0) ) 2 � forn > N . It implies that the support of the stationary measure is included in �. utProposition 6.9.3 is not true without the aperiodicity assumption, as is shown by Examples 6.9.4and 6.9.5.Example 6.9.4. Let us consider an i.i.d. model with 2 matrices and verifying conditions Iand II. Let p1 = P (A(0) = A1) and p2 = 1� p1 = P (A(0) = A2).A1 = � e "" 1 � ; A2 = � 1 ee 1 � :We identify PR2 and R in the following way: �(a; b)0 ' b� a. We consider an initial conditionu = (u1; u2)0 with u2� u1 > 1. One veri�es that �(x(n; x0)) is a Markov chain on N nf0g whosetransition probabilities arep(i; i+ 1) = p1; p(i; 1) = 1� p1; 8i 2 N nf0g :



6.10 Appendix 147This is a classical recurrent positive Markov chain whose stationary distribution is:�(1) = 1� p1; �(n) = (1� p1)pn�11 ; 8n > 2 :The state space is unbounded. The scs1-cyc1 pattern proving the stability is for example C =A1A2.There exist also examples of models where all the matrices are irreducible and where the statespace of the unique stationary regime is unbounded.Example 6.9.5. We consider:B1 = � " 1=2e " � ; B2 = � " e1=2 " � ; B3 = � 1 ee 1 � :A possible pattern to prove the uniqueness of the stationary regime is C = B1B2B3. We showthat the state space is unbounded by remarking that B1B2 = A1 and B3 = A2, where A1 andA2 are de�ned in Example 6.9.4.6.10 Appendix6.10.1 Loynes schemeLemma 6.10.1 is going to be used in several of the forthcoming proofs. Under an assumption of�-coupling of the trajectories, we build a stationary regime using a Loynes' type construction.Lemma 6.10.1. We consider a general model \x(n + 1) = A(n)x(n)" (see x6.7.4). The se-quence fA(n)g is stationary and ergodic. We assume that there exists N such thatP fD(A(N) � � �A(0) ) < +1g > 0We assume also that 8x0; y0 2 Rk; d(x(n; x0); x(n; y0))! 0; P a.s. (�-coupling of the trajecto-ries). Then there exists a r.v. Z : 
! PRk verifying Z � � = �(A(0))Z. The sequence fZ � �ngis the unique stationary regime of the model.Proof. We are going to show that the sequence f�(A(�1) � � �A(�n)u); n 2 Ng, u 2 Rk, has asimple limit in PRk. The argument is an analog of the famous backward scheme proposed byLoynes in [103] for G/G/1 queues.We want to show that D(A(n) � � �A(0) ) n! 0; P � a:s. It is easy to see that the eventA = f! j 9N; D(A(N) � � �A(0) ) < +1g = f! j 9N; 8n > N; D(A(n) � � �A(0) ) < +1gis invariant by the translation shift. Then by the ergodic Lemma 10.2.1, it is of probability 0 or1. We have made the assumption that P (A) > 0, hence P (A) = 1.Using the stationarity of the sequence fA(n); n 2Zg, we have that 9N(!) such thatD (A(�1) � � �A(�N) ) < +1 :



6.10 Appendix 148Then we can de�ne the projective image of A(�1) � � �A(�N) which is a bounded subset of PRkand that we denote by �. The boundedness implies thatc = maxv2� d(e; v)< +1 ;where e = (e; : : : ; e)0. Let us de�ne the vectorsc1 = (c; e; : : : ; e)0; c2 = (e; c; e; : : : ; e)0; : : : ; ck = (e; : : : ; e; c)0 : (6.9)It is immediate that � is included in the convex hull of these vectors, i.e.� � f�(�1 
 c1 � �2 
 c2 � � � � �k 
 ck); �i 2 Rg :In the (max,+) algebra, we have the following property, for all A 2 Rk�kmax; u; v 2 Rkmax; A(u�v) =Au�Av. It implies8x 2 �; �(Ax) 2 f�(�1 
Ac1 � � � � � �k 
 Ack); �i 2 Rg : (6.10)We �x � > 0. Using the ��coupling assumption, we have that the random variable N 0(!) isP � a:s: �nite, where N 0 is de�ned by:N 0 = inffn j d(x(n; ci); x(n; cj)) 6 �; 8i; jg :As both N and N 0 are P � a:s: �nite, we have8� > 0; 9L; L0 : PfN 6 L;N 0 6 L0g > 1� � :As a direct consequence of (6.10), we have on the event fN 6 L;N 0 6 L0g :D �A(L0 � 1)
 � � � 
A(0)A(�1)
 � � � 
 A(�L)� 6 � :We deduce, using the stationarity of fA(n)g, thatP �D(A(�1) � � �A(�L � L0)) 6 �	 = P �D(A(L0 � 1) � � �A(�L)) 6 �	> 1� � :It implies that the random variables D(A(�1) � � �A(�n)) converge in probability to 0. But asD(A(�1) � � �A(�n)) is pathwise decreasing, the convergence occurs also P � a:s:We have in particular, for all u 2 Rk, d (A(�1) � � �A(�n)u;A(�1) � � �A(�n � p)u) �! 0; P �a:s: It implies that f�(A(�1) � � �A(�n)u)g is a Cauchy sequence which converges. The limitdoes not depend on u. We denote it by Z. We have :Z � � = limn �(A(0)A(�1) � � �A(�n)u)= �A(0) limn �(A(�1) � � �A(�n)u) = �(A(0))Z :



6.10 Appendix 149The sequence fZ � �ng is a stationary regime. Let us prove it is the unique one. We want toprove that 8x0 2 Rk; d (x(n; x0); Z � �n) n!+1�! 0 ; P � a:s: (6.11)As Z is P�a:s: �nite, for all � > 0, there exists a compactK 2 PRk such that PfZ 2 Kg > 1��.We proceed as above (Equation (6.9)) in order to de�ne vectors ci; i = 1; : : : ; k such thatK � f�(�1 
 c1 � �2 
 c2 � � � � �k 
 ck); �i 2 Rg :We haveZ 2 K ) Z � �p 2 f�(�1[A(p� 1) � � �A(0)c1]� � � � � �k [A(p� 1) � � �A(0)ck]); �i 2 Rg :Using the ��coupling of trajectories, we also have8ci; d(x(n; x0); x(n; ci))! 0 :We conclude easily that there is ��coupling of f�x(n; x0)g and fZ ��ng. We can apply Proposi-tion 6.6.10. There is weak convergence of f�x(n; x0)g to the distribution of Z and relation (6.11)establishes the a.s. convergence of f�x(n; x0)g to Z � �n. As a direct consequence, fZ � �ng isthe unique stationary regime.In fact it is not necessary to use Proposition 6.6.10. The backward scheme gives us the followingresult. 8x0 2 Rk; �(A(�1)A(�2) � � �A(�n)x0 ) n!+1�! Z ; P � a:s:We consider a function f : PRk! R, continuous and bounded. We haveE ( f(�x(n; x0)) ) = E( f(�A(n� 1) � � �A(0)x0) )= E( f(�A(�1) � � �A(�n)x0) ) n�! E( f(Z) ) ; P � a:s: ;using Lebesgue dominated convergence theorem (f is bounded). It proves weak convergence.We conclude in the same manner. The introduction of the notion of �-coupling is useful to showthe continuity with the �nite model where there is coupling. Furthermore, if we assume thatthere exists a solution to Z � � = �(A(0))Z, Prop. 6.6.10 enables us to prove the uniqueness ofthe stationary regime without needing a backward scheme. utRemark Without the assumption P fD(A(N) � � �A(0) ) < +1g > 0, it is not always true that�-coupling of the trajectories implies the existence of a stationary regime, see Example 6.9.2.6.10.2 Proof of Theorem 6.7.14The general idea consists in using Theorems 6.7.8 and 6.7.10 after having discretized the matricesA(n). This discretization goes in the following way. We consider aij ; i; j = 1; : : : ; k. We de�neA0 by (A0)ij = aij . In general, we have: P (A(0; !) = A0) = 0. We consider � > 0 �xed. We



6.10 Appendix 150de�ne A�, the discretization of step � and of skeleton A0, in the following way. For i; j �xed,we de�ne:A�ij(0; !) = (aij + 2n�) if Aij(0; !) 2 ]aij + (2n� 1)�; aij + (2n+ 1)�]; n 2Z:We check easily that we have kA(n; !)�A�(n; !)k1 6 2� with probability 1. Furthermore, therandom variables A�(0) converge to A(0) a.s. as � ! 0.In the whole proof, d(:; :) represents the projective distance as de�ned in Def. 6.3.7. Let N besuch that C is a rank 1 pattern of A(N � 1) 
 � � � 
 A(0). We can write C in the followingform: C = CN�1 
 � � � 
 C0 where Ci is a pattern of A(i) (i.e. of A(0)), 8i = 0; : : : ; N � 1. Wede�ne a decreasing sequence �i > 0 such that: 8N�i 6 1i . The N matrices C0; : : : ; CN�1 de�neN possible skeletons for discretizing matrices fA(n)g. More precisely, for l 2 f0; : : : ; N � 1g,we can de�ne the intervals: ](Cl)ij + (2p � 1)�; (Cl)ij + (2p + 1)�]; p 2 Z. By realizing allpossible intersections between these intervals, we de�ne a new countable set of disjoint intervals,whose union is R. The discretization of A(n) will be done with respect to this new set. It isstraightforward to prove that8u; v 2 Rk; j d(A(0)u;A(0)v)� d(A�(0)u;A�(0)v) j 6 8� : (6.12)We are now going to prove that 8u; v, we haved(A(n) � � �A(0)u;A(n) � � �A(0)v) n!+1�! 0 P � a:s:We de�ne the events Bin in the following way:Bi0 = f! j A�i(N � 1; !)
 � � � 
A�i(0; !) = Cg ; Bin = Bi0 � �n :We �x i. The event A = �! j S1n=0 Bin	 is such that �(A) � A. By the ergodic lemma, wededuce that it is of probability 0 or 1. Because of the assumption that C is a pattern, we haveP �Bi0� > 0. We conclude that P �S1n=0 Bin� = 1.On the event Bin, we have:d ( A�i(N + n� 1)
 � � � 
 A�i(n)A(n� 1)
 � � � 
 A(0)u;A�i(N + n � 1)
 � � � 
 A�i(n)A(n� 1)
 � � � 
 A(0)v ) = 0 :This is a consequence of the fact that A�i(N + n � 1)
 � � � 
 A�i(n) is of rank 1 on the eventBin. Using the inequality (6.12), we obtain:d(A(N + n � 1)
 � � � 
 A(0)u;A(N + n� 1)
 � � � 
A(0)v) 6 8N�i 6 1i :From the monotonicity of d(:; :) (see Prop. 6.3.8), we obtain, on the event Bin,limn d(A(n) � � �A(0)u;A(n) � � �A(0)v) 6 1i :



6.10 Appendix 151We conclude that 8i �xed,1[n=0Bin � �limn!+1 d(A(n) � � �A(0)u;A(n) � � �A(0)v) 6 1i�) P �limn!+1 d(A(n) � � �A(0)u;A(n) � � �A(0)v) 6 1i� = 1 :By letting i go to +1, we obtain that d(A(n) � � �A(0)u;A(n) � � �A(0)v) n!+1�! 0; P � a:s:The assumptions of Lemma 6.10.1 are veri�ed (there exists N such that PfD(A(N) � � �A(0)) <+1g > 0 as a direct consequence of the existence of a pattern of rank 1). It concludes the proof.6.10.3 Proof of Theorem 6.8.1We are going to prove that the existence of a unique stationary regime implies the existence ofa pattern of rank 1 (Def. 6.7.7). Using Theorem 6.7.10, the proof will then be complete. Let usprove a lemma �rst.Lemma 6.10.2. We consider a �nite model \x(n+1) = A(n)x(n)" with A(n) 2 fA1; : : : ; Apgand Ai 2 Qk�kmax; i = 1; : : : ; p. We suppose that there is a unique stationary regime. It impliesd(A(n)A(n� 1) � � �A(0)x0; A(n)A(n� 1) � � �A(0)y0) n!+1�! 0; P � a:s : (6.13)Equivalently, it implies �-coupling of the trajectories corresponding to di�erent initial conditions.Proof. We assume that Equation (6.13) is not veri�ed. It implies, using Proposition 6.3.8, thatthere exists x0; y0 2 Rk and c > 0 such thatP (A) > 0; A = flimn d(A(n)A(n� 1) � � �A(0)x0; A(n)A(n� 1) � � �A(0)y0) > cg > 0 : (6.14)Let S =< A1; : : : ; Ap > be the projective semigroup generated by the matrices of the model(Def. 6.5.1). For x 2 Rk, we de�ne S(x) = f�(Ax); A 2 Sg. If we assume that all the matrices of< A1; : : : ; Ap > are aperiodic, then the semigroup S is projectively �nite as a direct consequenceof Proposition 6.5.4. It implies that S(x) is �nite for all x. When it is not the case, we still havethat � < A1; : : : ; Ap > \K is �nite for all compact K of PRk�k. It implies that S(x) \ K is�nite for all compact K of PRk. We conclude that S(x) has no accumulation point and veri�esS(x) = S(x), where S(x) is the closure of S(x) in PRk.We want to apply Theorem 6.6.8. It is required that the probability space be a Polish space. Inorder to ful�ll this, we consider the canonical probability space consisting of one-sided in�nitesequences of matrices fA1; : : :Apg, i.e.
 = f(Au0 ; Au1 ; : : : ; Aun ; : : :); ui 2 f1; : : : ; pgg :



6.10 Appendix 152When the set S(x) is �nite, it is immediate that the sequence f�(x(n; x))g is tight in S(x). Letus prove it is still true in the general case. We recall that we made the assumption (6.6), whichimplies limn P fD(A(n) � � �A(0) ) < +1g = 1 :It implies that for all � > 0, there exists N 2 N and K, a compact set of PRk�k such that8n > N; P f�(A(N) � � �A(0)) 2 Kg > 1� � :There exists a compact K 0 (which depends on x) of PRk such thatf�(A(N) � � �A(0)) 2 Kg ) f�(A(N) � � �A(0)x) 2 K 0g :We conclude that the sequence f�(x(n; x))g is tight in PRk. It implies that it is tight in S(x) =S(x). We can view �(x(n; x)) as a SRS de�ned on S(x) only. Applying Theorem 6.6.8, weobtain that, for all x, there exists a stationary distribution Qx de�ned on 
� S(x).Let us consider the initial conditions x0 and y0 as de�ned in (6.14). It is a-priori possible tohave S(x0)\S(y0) 6= ;. As a consequence, one cannot rule out that Qx0 = Qy0 . We are going toprove that there exists � 2 R such that S(x0)\ S(�x0 � y0) = ;. It will provide two stationarydistributions Qx0 6= Q�x0�y0 , which contradicts the uniqueness of the stationary regime.We work on the event A, see (6.14). We have d(x(n; x0); x(n; y0)) > c for all n. Let x; y 2 Rkbe two di�erent points. Then there exists an open interval ]�; �[ such that�� � = d(x; y); f�x� y; �x� yg = fx; yg ;8� 6= �0 2 [�; �]; �x� y 6= �0x� y :The proof is straightforward, for more insights, see Chapter 3, x3.4.2. We consider the (random)intervals ]�(n); �(n)[ de�ned as above for the couples of points fx(n; x0); x(n; y0)g. For anyA 2 Rk�kmax; x; y 2 Rkmax and � 2 R, we have A(�x � y) = �Ax � Ay. As a consequence, thesequence ]�(n); �(n)[ is decreasing. Let � and � be the limits of �(n) and �(n). On the eventA, we have �� � > c (see (6.14)).We de�ne the sets�(n) = f� j �(�x(n; x0)� x(n; y0)) 2 S(x0)g; � = [n2N�(n) :Let x; y; z 2 PRk be three di�erent points. It is immediate to prove that there exists a unique� 2 R such that z = �x� y. As a consequence, the sets �(n) are countable and � is countable.It implies that the set ]�; �[n� is non-empty on A. For all � 2]�; �[n�, we have, by de�nition of�, that S(�x0� y0) \ S(x0) = ;. The conclusion follows. ut



6.10 Appendix 153Remark The proof does not work when matrices A1; : : : ; Ap belong to Rk�kmax. In this case, it ispossible to have S(x) 6= S(x). In the model detailed in Example 6.8.2, all the sets S(x) are densein the interval [�1; 1] (as a classical consequence of the assumption �=�0 62 Q). It implies thatS(x) = [�1; 1]; 8x. The stationary distributions Qx are all de�ned on the same set, 
� [�1; 1],which prevents the previous proof from working.We want to prove the existence of a rank 1 pattern of fA(n)g (Def. 6.7.7). There exists a r.v.N such that A(N) � � �A(0)ij > "; 8i; j (consequence of Equation (6.6)).It follows from the ergodic Lemma 10.2.1, that the setI = fn j n > N; A(n) � � �A(n�N) = A(N) � � �A(0)g (6.15)is in�nite, P -a.s. Let � : N! N be the strictly increasing function such that I = f�(0); �(1); : : :g.We de�ne the subsequence fB(n) = A(�(n))A(�(n)� 1) � � �A(0); n 2 Ng. The matrices B(n)can be written under the form B(n) = A(N) � � �A(0) ~B(n)A(N) � � �A(0) for n > 3. We havemaxij B(n)ij 6 maxij A(N) � � �A(0)ij 
maxij ~B(n)ij 
maxij A(N) � � �A(0)ij6 maxij A(N) � � �A(0)ij 
 ~B(n)uv 
maxij A(N) � � �A(0)ij ; (6.16)for some indices u; v belonging to the argmax in maxij ~B(n)ij . We also have8i; j; B(n)ij > A(N) � � �A(0)iu 
 ~B(n)uv 
A(N) � � �A(0)vjminij B(n)ij > minij A(N) � � �A(0)ij 
 ~B(n)uv 
minij A(N) � � �A(0)ij : (6.17)We consider the Euclidean space (PRk�k; j:jP) where j:jP is the norm introduced in De�nition6.3.7. It follows from (6.16) and (6.17) thatjB(n)jP = maxij B(n)ij �minij B(n)ij 6 2� (maxij A(N) � � �A(0)ij �minij A(N) � � �A(0)ij)= 2� jA(N) � � �A(0)jP :It implies that the sequence f�(B(n))g belongs to a compact of (PRk�k; j:jP). Hence thereexists a strictly increasing function � : N! N such that �(B(�(n))) is converging. Let A1 bea representative (in Rk�k) of the limit. By continuity of the projective distance, we have that8u; v 2 Rk; d(A1u;A1v) = 0. Therefore A1 is a rank 1 matrix.As the products f�(A(n) � � �A(0))g can only take a �nite number of values in compact sets(Proposition 6.5.4), it implies that the limit matrix A1 is attained in �nite time. More precisely,there exists N such that 8n > N; � (B(�(n))) = �(A1) :The matrix B(�(N)) is a rank 1 pattern for fA(n)g. It concludes the proof.



6.10 Appendix 1546.10.4 Proof of Theorem 6.8.4We �rst prove the necessary part of the Theorem, i.e. ��coupling with a unique stationaryregime implies the existence of an asymptotic pattern.Let Z � �n be the unique stationary regime. We have for all x0; y0 2 Rk,d(x(n; x0); Z � �n)! 0; d(x(n; y0); Z � �n)! 0 ) d(x(n; x0); x(n; y0))! 0 :We have assumed that 9N such that PfD(A(N � 1) � � �A(0)) < +1g > 0, see Equation (6.6),Section x6.8. Let K 2 R be such that PfD(A(�1) � � �A(�N)) < Kg > 0. It implies that thereexists K 0 such that PfjA(�1) � � �A(�N)jP < K 0g > 0. Let us denoteE0 = f! j jA(�1) � � �A(�N)jP < K 0g :It follows from the stationary-ergodic assumption, that there exists a minimal n1 > 1 such thatPfE1g > 0; E1 = E0 \ fjA(�n1) � � �A(�n1 �N + 1)jP < K 0g :We de�ne in the same way an increasing sequence np > � � � > n2 > n1 and a decreasing sequenceof events Ep � � � � � E2 � E1 verifyingPfEpg > 0; Ep = Ep�1 \ fjA(�np) � � �A(�np �N + 1)jP < K 0g :On the event Ep; p > 1, we havejA(�1) � � �A(�np �N + 1)jP < 2�K 0 :The proof is exactly similar to the one proposed in the proof of Theorem 6.8.1 (x6.10.3, Equation(6.15) and after). Let B(E;K 0) denote the open ball of (PRk�k; j:jP) of center �(E); Eij = e; 8i; jand of radius K 0. For all p, we choose a deterministic matrix Bp belonging to B(E;K 0) andverifying P �fEpg \ f�A(�1) � � �A(�np �N + 1) 2 B(Bp; 1p)g� > 0 : (6.18)As the matrices fBp; p 2 Ng belong to a compact, there exists a subsequence fB�(p)g whichconverges to a limit B1. We have (see the proof of Lemma 6.10.1) that D(A(�1) � � �A(�n))!0; P � a:s:. We conclude that B1 is a rank 1 matrix.We �x � > 0. Let C be such that 8p > C, we have jB1 � B�(p)jP 6 �=2. For p > max(C; 2=�),we have B(B�(p); 1=p) � B(B1; �). It impliesPf�A(�1) � � �A(�n�(p) �N + 1) 2 B(B1; �)g >P �fE�(p)g \ f�A(�1) � � �A(�n�(p) �N + 1) 2 B(B�(p); 1p)g� > 0 :It means precisely that B1 is an asymptotic pattern of fA(n)g, see De�nition 6.7.13.



6.10 Appendix 155Let us prove the su�cient part of the theorem. We assume that there exists a deterministicmatrix ~A which is a rank 1 asymptotic pattern of fA(n)g. We want to prove the �-couplingconvergence of �(x(n)) to a unique stationary regime.We �x � > 0. Let N� be such thatP n�A(N� � 1) � � �A(0) 2 B( ~A; �)o > 0 : (6.19)Using the ergodic Lemma 10.2.1, we havePf9i > 0 j �A(N� � 1 + i) � � �A(i) 2 B( ~A; �)g= 1 :Let u be the unique eigenvector of the rank 1 matrix ~A and B(u; �) the ball of center �(u) andradius � in PRk. We have that for all x0 2 Rk,f�(x(n; x0)) 2 B(u; �)g � f�A(n� 1) � � �A(n �N�) 2 B( ~A; �)g :In particular, it implies that 8x0; y0 2 Rk and n large enough,fd(x(n; x0); x(n; y0)) < �g � [N�6p6nf�A(p� 1) � � �A(p�N�) 2 B( ~A; �)g :We deduce that Pfd(x(n; x0); x(n; y0)) < �g ! 1. We conclude by using Lemma 6.10.1 (theexistence of n such that PfD(A(n) � � �A(0) < +1g > 0 comes from Equation (6.19)).6.10.5 Proof of Theorem 6.8.5We want to prove that the conditions given in Theorem 6.8.5 are necessary. We suppose that ourmodel couples in �nite time with a unique stationary regime, uniformly over initial conditionsin Rk. Let us prove a lemma �rst.Lemma 6.10.3. If there is a unique stationary regime for �(x(n)), coupling in �nite timeuniformly over initial conditions in Rk implies strong coupling in �nite time uniformly overinitial conditions in Rk.Proof. Let fZ � �ng be the unique stationary regime with which the SRS �(x(n)) couples. Weconsider the event: Yn = n! j �(x(n; x0)) � ��n! = Z!; 8x0 2 Rko :The assumption of coupling in �nite time, uniformly over Rk, may be written :P (Yn) n!+1�! 1 :



6.10 Appendix 156Here we implicitly use the assumption that the projective image of A(�1) � � �A(�n) is asymp-totically bounded (see Equation (6.6)). Let us consider ! 2 Yn and p an integer > 0, wehave: �(x(n+ p; x0)) � ��n�p! = � � x(n; x(p; x0) � ��p) � � ��n! (6.20)= Z! (as ! 2 Yn) : (6.21)The passage from (6.20) to (6.21) uses the fact that coupling occurs uniformly over initialconditions. We have:Yn = n! j �(x(n+ p; x0)) � ��(n+p)! = Z!; 8p > 0; 8x0 2 Rko ;and P (Yn) n!+1�! 1 :This is exactly the de�nition of strong coupling (Def. 6.6.4). utWe can now use the converse Theorem 6.6.7. There exists a stationary sequence of eventsfA � �ng which is renovating for the SRS f� ( x(n; x0) )g; 8x0 2 Rk, and veri�es P (A) > 0. Letm be the common length and � the common function of these renovating events. We have, onA: �(x(m)) = � (A(m� 1); : : : ; A(0)) ; 8x0 2 Rk :But we also have: x(m) = A(m� 1)
 � � � 
A(0)
 x0; 8x0 2 Rk :We conclude that, on A, � (A(m� 1; !)
 � � � 
A(0; !)
 x0) is independent of x0. It impliesthat C = A(m� 1; !)
 � � � 
A(0; !) is a matrix of rank 1.



6.10 Appendix 157We have not represented in Figure 6.4 all the implications which are true, but only the ones whichare used in the proofs. The exclamation mark \!" stands for a trivial proof, the question mark\?" for an open question. For �nite models with matrices in Qk�kmax, the diagram is completelycommutative. We have the necessary and su�cient conditions of uniqueness of the stationaryregime. For general models, we have two commutative sub-diagrams. They correspond to thenecessary and su�cient conditions of stability with ��coupling and coupling respectively.Unsolved problems Here are two questions which we have not been able to solve. Theywould enable to complete the stability picture as shown in Figure 6.4.1. Is Lemma 6.10.2 still true if we consider a �nite model with matrices in Rk�kmax ? Is it stilltrue for a general model ?2. For a �nite and i.i.d. model with matrices in Rk�kmax, do we have that the existence of anasymptotic pattern of rank 1 implies the existence of a pattern of rank 1 ? The counter-example proposed in Example 6.8.2, was for a �nite and stationary-ergodic model withmatrices in Rk�kmax.If the answer to both questions is positive, then we can extend Theorem 6.8.1 to �nite and i.i.d.models with matrices in Rk�kmax.
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with proba. > 0

Pattern of rank 1with proba. > 0

8x0; y0;d(x(n; x0); x(n; y0))! 0Asymptotic pattern of rank 1
8x0; y0;d(x(n; x0); x(n; y0))! 0Asymptotic pattern of rank 1
Pattern of rank 1Th. 6.8.1!! Th. 6.8.1Th. 6.7.10

Th. 6.8.4Th. 6.8.5Th. 6.7.15
General model ?!

Finite model in Qk�kmaxUnique stationary regimeUnique stationary regimeUnique stationary regimeUnique stationary regimeUnique stationary regime+ �-coupling convergenceUnique stationary regime

+ �-coupling convergence+ coupling conv.
+ coupling conv.

Lem. 6.10.2
Th. 6.8.4

Figure 6.4: Summary of the results.



Chapitre 7Illustration of Multiple StationaryRegimesIllustration des R�egimes Stationnaires MultiplesCe chapitre est une illustration des r�esultats du chapitre 6 �a l'aide de l'outil graphique duchapitre 3.



7.1 Introduction 160The purpose of this Chapter is to study the uniqueness or multiplicity of stationary regimesfor stochastic (max,+) linear systems. We will see that stability is by far the most commonsituation. We obtain multiple stationary regimes when the system is not \stochastic enough" insome sense. The main cases of multiplicity will be illustrated using the graphical representationof Chapter 3.7.1 IntroductionWe consider a stochastic (max,+) linear system� x(n + 1) = A(n)x(n); n 2 Nx(0) = x0 ; (7.1)The matrices A(n) 2 Rk�kmax verify the minimal assumptions of x6.9.1. We deduce from Theo-rems 6.8.1 and 6.8.5, that a good way to show the stability of system (7.1) is to extract somedeterministic matrices from the support of A(0) and to build a product of these matrices whichis scs1-cyc1. In most cases, an extracted model with two matrices is enough to conclude. In thefollowing, we are going to illustrate the phenomena of uniqueness or multiplicity of stationaryregimes with models of two matrices.From now on, when no other speci�c assumption is made, it is assumed that A(n) = A withprobability p > 0 and A(n) = B with probability 1 � p > 0, A and B being irreducibledeterministic matrices. It is also assumed that the sequence fA(n)g is i.i.d.7.2 Multiple Stationary RegimesIt is clear that there are several stationary regimes when the sets of eigenvectors of matrices Aand B contain more than one point. Let us propose two examples.Example 7.2.1. We consider in Figure 7.1.I., the matrices :A = 0@ e �1 �1�1 e �1�1 �1 e 1A ; B = PAP�1 with P = 0@ 1:4 " "" 1:3 "" " e 1A :The intersection � of the sets of eigenvectors of A and B is not empty. It implies a continuumof stationary regimes. Indeed if we consider an initial condition x0 2 �, we have �(x(n; x0)) =�(x0); 8n.Example 7.2.2. We consider in Figure 7.1.II., a system with the same matrix A as above andB = 0@ 0:7 " "" 0:8 "" " e 1A0@ �0:5 �0:5 ee �0:5 �0:5�0:5 e �0:5 1A0@ �0:7 " "" �0:8 "" " e 1A :Matrix B has been written under a form which emphasizes that B is obtained as a translation(see x3.4.3) of a canonical scs1-cyc3 matrix. Let EA be the set of eigenvectors of A and EB



7.2 Multiple Stationary Regimes 161
uIII�(A3) �(A1)�(B3) �(B1)�(B2)�(A2) �(B1)�(A1)�(A3) �(B3)�(A2) �(B2)

Figure 7.1: I : Example 7.2.1. II : Example 7.2.2the set of periodic regimes (of period 3) of B. Let u = (0:7; 0:8; e)0 be the unique eigenvectorof B. The vector u is in the interior of the closed polyhedral set EA \ EB. There is a ballB(�(u); �) (for the projective distance) centered in �(u) and of radius � > 0 which is containedin �(EA \ EB). We consider a new basis of center u. For an initial condition x = (x1; x2; x3)0such that �(x) 2 B(�(e); �) (in the new basis), the state space of the Markov chain �(x(n)) is�� ��n(x1; x2; x3)0� ; n = 1; 2; 3	 with �(x1; x2; x3)0 = (x2; x3; x1)0 :Let us denote �i = � ��i(x1; x2; x3)0�. The probability transitions of the Markov chain �(x(n))are p(�i; �i+1) = 1� p; p(�i; �i) = p.Under the light of the previous examples, a natural conjecture would be the following oneLet A and B be two irreducible matrices. There is a �nite product of A and B which is scs1-cyc1if and only if the sets of eigenelements (eigenvectors + periodic regimes) of A and B have anintersection which is empty or restricted to one point.However, this result is false as illustrated by Example 7.2.3.Example 7.2.3. In Figure 7.2, we consider :A = 0@ e : :: e :: : �2 1A ; (:) = �1; B = PAP�1 with P = 0@ e " "" e "" " 0:5 1A :Both matrices are scs2-cyc1. The set of eigenvectors of B is obtained from the one of A bya translation of �(e; e; 0:5)0. There is a one to one correspondence between eigenvectors of
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�(~a)�(~b) �(a)�(b) �(B1) �(A1)

�(A2)�(B2)
Figure 7.2: Matrices A and B are scs2-cyc1. Continuum of stationary regimes.A and B, see the domains of attraction of scs2-cyc1 matrices as illustrated in x3.5.3, Figure3.8. Let a = (a1; a2; a3)0 be an eigenvector of A and b = (a1; a2; a3 + 0:5) the correspondingeigenvector of B. If we consider an initial condition x0 = a, �(x(n)) is a Markov chain overthe state space f�(a); �(b)g with transition probabilities P (�(a); �(a)) = p; P (�(a); �(b)) =1� p; P (�(b); �(b)) = 1� p; P (�(b); �(a)) = p.To further illustrate the complexity of the phenomena which are involved, let us consider a slightmodi�cation of Example 7.2.3.

�(A1)�(B2) �(A2)
�(B1)�(v) �(u)

Figure 7.3: Matrices A and B are scs1-cyc2. Unique stationary regimes.
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�(x0) �(A)1 �(B)1�(B)2�(B)3 �(x2)�(x1)�(A)2

Figure 7.4: The Markov chain �x(n; x0) has two absorbing sets.Example 7.2.4. In Figure 7.3, we consider :A = 0@ : e :e : :: : �2 1A ; (:) = �1; B = PAP�1 with P = 0@ 0:1 " "" e "" " 0:5 1A :Both matrices are scs1-cyc2. The set of periodic regimes of matrix B is the one of A translatedby �(0:1; e; 0:5). If we had considered a translation of �(e; e; 0:5), we would have obtained exactlythe same Figure as in 7.2, with periodic regimes instead of eigenvectors. There would have beenmultiple stationary regimes. For example, the set f�(a); �(b); �(~a); �(~b)g would have been apossible state space for the Markov chain �(x(n)). On the other hand, with a translation of�(0:1; 0; 0:5), we obtain a unique stationary regime as illustrated in Figure 7.3. The points �(Ai)or �(Bi); i = 1; 2; are regenerative points for the Markov chain �(x(n)).We have presented above some examples of di�erent stationary regimes corresponding to dif-ferent initial conditions. Here is another problem worth considering : what happens for a �xeddeterministic initial condition x0 ? Is it possible for the Markov Chain �x(n; x0) to be transient ?to have several classes of recurrence ? The answer to both questions is positive.Example 7.2.5. In Figure 7.4, we consider :A = 0@ e �2 �2�2 e �2�2 �2 �4 1A ; B = 0@ e " "" e "" " �2 1A0@ e : :: e :: : e 1A0@ e " "" e "" " 2 1A ; (:) = �1 :The intersection between the sets of eigenvectors of matrices A and B is not empty, hencethere are multiple stationary regimes. We consider the initial condition x0 = (0:5; e; e)0. Bydirect computation, we obtain that �Ax0 = �x1 = �(2; 1:5; e)0 and �ABx0 = �ABnx0 =�x2 = �(2; 2; e)0. Vectors x1 and x2 are common eigenvectors of A and B. We conclude thatlimn P (�x(n; x0) = �x1) = p and limn P (�x(n; x0) = �x2) = 1� p.



7.3 Quantitative Results 164Example 7.2.6. We consider a system verifying Equation (7.1) withA(n) = � U(n) ee U(n) � ;where the random variables U(n) are i.i.d and uniform over [1; 2]. For an initial conditionx0 = (a; b)0 with a > b+2, we have �x(n; x0) = �(infk6n U(k); 0)0. We have a transient Markovchain.Example 7.2.7. We can mix the previous examples. For a given initial condition, we canobtain a transient Markov chain with probability p and a recurrent Markov chain with probability1� p.More precisely, we consider a system verifying Equation (7.1). With probability p, A(0) = Awhere A is the matrix of Example 7.2.5, and with probability 1� p, A(0) has the following law:A(0) = 0@ U(0) e 4e U(0) 4�4 �4 U(0) 1A ;where the random variable U(0) is uniform over [0:5; 1]. We consider the initial condition(0:5; e; e)0.7.3 Quantitative Results7.3.1 Systems with two matricesTheorem 7.3.1. Let matrices A and B have the following properties :1. k, the size of the matrices, is prime.2. A and B have a critical circuit of length k.3. �(u1) 6= �(u2) where u1 and u2 are the (unique) eigenvectors of A and B respectively.There exists a �nite product of matrices A and B which is scs1-cyc1. Equivalently, the associatedstochastic system has a unique stationary regime.Before proving it, let us show that Theorem 7.3.1 fails to be true when we try to relax some ofthe assumptions.Example 7.3.2. [A and B have the same eigenvector]We denote by u the common eigenvector of A and B. Let us de�ne� = liml supv2Rkd(Alv; u) ; � = liml supv2Rk d(Blv; u) :The balls B(�u; �) and B(�u; �) are the sets of periodic regimes of matrices A and B respectively.We set  = min(�; �). It is easy to check that the ball B(u; ) is a set of periodic regimes ofperiod k for both matrices. We propose an example on Figure 7.5.
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�(A2)�(B2)�(B3) �(e)�(A2)�(B1)�(A3)Figure 7.5: Matrices A and B are scs1-cyc3 with the same eigenvector, �(e). Multiplicity ofstationary regimes.Example 7.3.3. [k is not prime]We consider : A = 0BB@ : : : ee : : :: e : :: : e : 1CCA ; B = 0BB@ : : : �11 : : :: �1 : :: : 1 : 1CCA ; (:) = �3 :The eigenvectors of A and B are (e; : : : ; e)0 and (�1; e;�1; e)0 respectively. We consider theinitial vector x0 = (a; b; a; b)0 with a � 2 6 b 6 a + 2. We verify easily that the Markov chain�(x(n)) evolves in the state space��(a; b; a; b)0; �(b; a; b; a)0; �(a �+ 1; b +� 1; a �+ 1; b +� 1)0; �(b �+ 1; a +� 1; b �+ 1; a +� 1)0� :There is an in�nite number of stationary regimes.Here is another counter-example of the same kind. Suppose k is not prime. Let 1 < l < kbe a divisor of k. We consider (b1; : : : ; bl) 6' (e; : : : ; e) and Pi bi = 0. We de�ne A andB in the following way: A and B have (1; 2; : : : ; k; 1)0 as unique critical circuit. The non-critical elements of A and B are �1. The critical elements of A and B are (e; : : : ; e) and(b1; b2; : : : ; bl; b1; b2; : : : ; bl; : : : ; b1; b2; : : : ; bl) respectively.Proof of Theorem 7.3.1In the following, indices have to be interpreted modulo k. For example,bk+1 = b1 or Ak+3;k+2 = A3;2 :Let �A and �B be the eigenvalues of A and B. We normalize the matrices, i.e. we set A := A��Aand B := B��B (we keep the notations A and B for simplicity). Let u be the unique eigenvector



7.3 Quantitative Results 166of A. We consider the matrix of change of basis P de�ned by Pii = ui and Pij = "; i 6= j, seeLemma 3.4.14. We set A := P�1AP and B := P�1BP . By permuting the coordinates, Lemma3.4.13, we come down to the case where the critical circuit of A is (1; 2; : : : ; k). We have :A = 0BBB@ : : : ee : : :: . . . : :: : e : 1CCCA :The dots (.) correspond to terms which are less or equal than e by Lemma 3.4.15. Let us assumethere exists p; q; p 6= (q + 1) such that Apq = e. It implies that the circuit (q; p; p+ 1; : : : ; q � 1)has a mean weight equal to e, hence is critical. Let l be the length of this circuit. We haveppcm(l; k) = 1 as k is prime. By Theorem 3.4.7, it implies that matrix A is scs1-cyc1 whichcompletes the proof. In the following, we assume that Apq < e; 8(p; q); p 6= (q + 1).Let us consider matrix B. If matrix B has more than one critical circuit, then it is scs1-cyc1,see above. We assume that matrix B has a unique critical circuit. We assume for the moment(and for the sake of simplicity) that is is the same as the one of A, (1; 2; : : : ; k).Let v be the unique eigenvector of B. Let ~P be the matrix of change of basis associatedwith v, i.e. ~Pii = vi and ~Pij = "; i 6= j. We set ~B = ~P�1B ~P . We have ~Bi+1;i = e and~Bp;q < e; p 6= (q + 1), see above. We de�ne matrix V such that Vij = vi � vj . The equalitiesB = ~P ~B ~P�1; Bn = ~P ~Bn ~P�1 can be rewritten as (\+" is the usual sum of matrices) :B = ~B + V; Bn = ~Bn + V; 8n : (7.2)Matrix V is anti-symmetrical, Vij = �Vji and Vii = e. Let us denote M = maxij Vij . IfM = e, it implies that Vij = e; 8i; j. By Equation (7.2), we obtain B = ~B, which means thate = (e; : : : ; e)0 is the eigenvector of B. It contradicts assumption 3. of Theorem 7.3.1. Weconclude that M > e.We choose (i0; j0) such that Vi0j0 = M . We consider the sub-diagonal (see De�nition 3.5.1) ofV associated with (i0; j0), i.efVi0j0 ; Vi0+1;j0+1; : : : ; Vi0+k�1;j0+k�1g :We set l = k+i0�j0�1. The matrix ~Bl has a critical sub-diagonal which is (1; 1+l; 1+2�l; : : :).It coincides with the previously chosen sub-diagonal of V . We conclude that the maximalterms of matrix Bl = ~Bl + V all are on the same sub-diagonal1. We denote by J the set ofcolumns of Bl containing a maximal term. We sort the elements of J in increasing order :J = fj1 < j2 < � � � < jjJ jg. We proceed in the following way.1. For each jn 2 J , we de�ne the matrix Cn = Ak�l�jn+1BlAjn�1.1When i0 > j0, it is possible to consider l = i0 � j0 � 1. The choice of l = k + i0 � j0 � 1 enables to alwayshave l > 0.



7.3 Quantitative Results 1672. We consider C = C1C2 � � �CjJ j.In order to illustrate and explain the choice of matrix C, we consider an example of dimension5 with l = 2.B2 = 0BBBB@ : : : : :: : : : :M : : : :: M : : :: : M : : 1CCCCA ; AB2 = 0BBBB@ : : M : :: : : : :: : : : :M : : : :: M : : : 1CCCCA ; B2A = 0BBBB@ : : : : :: : : : :: : : : MM : : : :: M : : : 1CCCCAThe dots (:) correspond to terms which are strictly less than M . The e�ect of a left multiplica-tion by A is to translate the maximal terms down. The right multiplication by A translates themaximal terms to the left. In each of the matrices C1 = A3B2; C2 = A2B2A and C3 = AB2A2,there is a maximal term M in place (1; 1) and the other maximal terms are on the diagonal.The matrix C = C1C2C3 has the same property, i.e C11 =M
3 and Cij < M
3; i 6= j. In fact itis easy to see on this example that we also have Cii < M
3; 8i 6= 1. Hence matrix C is scs1-cyc1.We want to prove that the same result holds for the general matrix C de�ned above. Byconstruction, we have :C11 = (Ak�l�j1+1BlAj1�1)11 � � �(Ak�l�jjJ j+1BlAjjJ j�1)11 (7.3)= Ak�l�j1+11j1+l Blj1+l;j1Aj1�1j11 � � �Ak�l�jjJ j+11jjJ j+l BljjJ j+l;j1AjjJ j�1jjJ j1 (7.4)= ek�lMej1�1 � � �ek�lMejjJ j�1 =M
jJ j (7.5)To get Equation (7.3), we use that the matrices Ak�l�jn+1BlAjn�1 have only one maximal termon column 1 which is the term (1; 1). To get Equation (7.4), we use that the matrices Ak�l�jn+1,Bl and Ajn�1 have at most one maximal term in each column.Let us consider (i; j) 6= (1; 1). It is clear that Cij 6 C11. We want to show that Cij < C11.As the matrices Cn; n = 1; : : : jJ j have all their maximal terms on the diagonal, it is immediatethat Cij < C11 when i 6= j.Suppose there exists i 6= 1 such that Cii = C11 =M
jJ j. It implies that (same reasons as abovefor Equations (7.3) (7.4))Cii = (C1)ii � � � (CjJ j)ii= Ak�l�j1+1i;j1+i�1+lBlj1+i�1+l;j1+i�1Aj1�1j1+i�1;i � � �= ek�l�j1+1Blj1+i�1+l;j1+i�1ej1�1 � � � (7.6)Comparing Equation (7.6) and Cii =M
jJ j, we deduce that Bljn+i�1+l;jn+i�1 =M . It implies :J = fj1; : : : ; jjJ jg = fj1 + i� 1; : : : ; jjJ j + i� 1g :In particular, there exists p 2 f1; : : : ; jJ jg such that j1 + (i� 1) = jp, there exists q such thatj1+2�(i�1) = jp+(i�1) = jq. We prove by recurrence that 8p = 1; : : : ; k; j1 = p�(i�1) 2 J .



7.3 Quantitative Results 168But fp� (i� 1) [mod k]; p 2 Ng is a subring of (Z=kZ). As k is prime, there exists no propersubring of (Z=kZ). We conclude that :fp� (i� 1) [mod k]; p 2 Ng =Z=kZ) J =Z=kZ:MatrixBl has a critical cycle (the one corresponding to the sub-diagonal considered above) whoseterms are all equal toM . It implies that �(e; : : : ; e)0 is an eigenvector of Bl, hence ofB which is incontradiction with assumption 3. of Theorem 7.3.1. We conclude that 8(i; j) 6= (1; 1); Cij < C11.Matrix C is scs1-cyc1.We have now to relax the assumption that the critical circuit of B is (1; 2; : : : ; k) (i.e. the sameas the one of A).In general B has a critical circuit which can be described as (�(1); �(2); �(3); � � � ; �(k)) where �is a permutation of f1; : : : ; kg. Let P̂ be the permutation matrix associated with �, see De�nition3.4.12. Let us consider B̂ = P̂�1BP̂ . The critical circuit of B̂ is (1; : : : ; k). We associate withmatrix B̂ an integer l̂ and a set Ĵ in the same way as above. We de�ne :Cn = Ak��(|̂n+l̂)+1B l̂A�(|̂n)�1; C =Yn Cn :We prove that C has a unique maximal element on the diagonal, C11, and the conclusion follows.Remark 7.3.4. Let us propose a mathematical trivia. Consider k reals, fb1; b2; : : : ; bkg on aring (i.e. we identify bk+1 = b1; bk+2 = b2; : : :). We suppose that the bi are not all equal.Does there exist n, 1 6 n 6 k, such that :Among the k partial sums of length n, S(i) = bi + bi+1 + :::+ bi+n�1; i = 0; : : : ; k � 1; there isone and only one maximal sum.If the answer was positive, it would provide a very simple and elegant proof of Theorem 7.3.1.Let the critical terms of B be the reals bi and consider the matrix Bl where l is a solution tothe trivia. Matrix Bl has a unique maximal term and it is easy to obtain a matrix of the formApBlAq which is scs1-cyc1.However the answer is always negative except for k = 3 and k = 5 ! We leave the proof tothe reader. Here are some hints. For k = 4, consider f1;�1; 1;�1g and for k = 7 considerf1; 0;�1; 1;�1; 0; 0g.It should be possible to prove other results similar to Theorem 7.3.1 for other spectral behavioursof the matrices A and B. We feel however that entering into too much details would be of limitedinterest for our purpose which is to get a global understanding of the uniqueness and multiplicityof stationary regimes.



7.3 Quantitative Results 1697.3.2 Other systemsWe consider a di�erent type of system. Each coordinate of the matrixA(n) can take two di�erentvalues. Theorem 7.3.5 illustrates the introductory remark that most stochastic systems have aunique stationary regime.Theorem 7.3.5. We consider a set of reals f(aij ; bij); i; j = 1; : : :kg such that aij < bij ; 8i; j.We consider a stochastic (max,+) linear system x(n + 1) = A(n)x(n), where the sequencefA(n); n 2 Ng is i.i.d. We assume also that the coordinates Aij(0) are independent randomvariables and verifyPfAij(0) = aijg = pij > 0; PfAij(0) = bijg = 1� pij > 0 :This system has a unique stationary regime.Proof. We provide only a sketch of the proof. We consider the deterministic matrix A de�nedby Aij = aij .Let us assume that there exists p 2 f1; : : : ; kg such that (p; p) is a critical circuit of A. Wede�ne the matrix C by Cpp = bpp and Cij = Aij = aij ; 8(i; j) 6= (p; p). As bpp > app; we deducethat (p; p) is the unique critical circuit. Hence matrix C is scs1-cyc1. The uniqueness of thestationary regime follows.Now we assume that there is no critical circuit of length 1. By a permutation of the coordinates,we come down to the case where (1; 2; : : : ; l); 1 < l 6 k; is a (non-necessarily unique) criticalcircuit of A. We de�ne two matrices C and D in the following way :C12 = b12; Cij = Aij = aij ; 8(i; j) 6= (1; 2); Dl1 = bl1; Dij = Aij = aij ; 8(i; j) 6= (l; 1) :We have two matrices with a common critical circuit, (1; 2; : : : ; l). Furthermore, we have that theterm C12 (resp. Dl1) belongs to any critical circuit of C (resp. D). It implies that the matrices Cand D are scs1. The terms of the critical circuit (1; 2; : : : ; l) are di�erent for matrices C and D.It implies that their unique eigenvector is di�erent. By adapting slightly the proof of Theorem7.3.1, we obtain that there exists a �nite product of matrices C and D which is scs1-cyc1. ut



Chapitre 8Application to Stochastic EventGraphsApplication aux Graphes d'�Ev�enements StochastiquesDans ce chapitre, nous montrons comment adapter les r�esultats du chapitre 6 �a l'�etude de lastabilit�e des Graphes d'Ev�enements stochastiques.



8.1 Event Graph 171We show how to apply the results on stochastic (max,+) linear systems to Stochastic EventGraphs (SEG). Let x(n+1) = A(n)
x(n) be a (max,+) linear system representing the evolutionof the SEG, see Chapter 1. We assume that the (max,+) system has a unique stationary regime.Then, under some weak additional assumptions, we prove that the SEG converges to a uniquestationary regime, independently of the initial (reachable) marking.8.1 Event GraphFor the basic de�nitions relative to an Event Graph, the reader is referred to Section x1.3 orx2.7. We consider a closed Event Graph (E;M). The set E corresponds to the underlying graph(the set of places, transitions and arcs). This graph is assumed to be strongly connected. Let Tand P be the number of transitions and places respectively. The vectorM 2 NP is the marking,i.e. the number of tokens in each place.Let us recall some basic properties of Event Graphs. For more details, the reader is referred to[112] [30].De�nition 8.1.1 (Incidence matrix). The incidence matrix G of the Event Graph is a ma-trix of dimension T � P de�ned as :� Gij = 1 if there is an arc from transition ti to place pj .� Gij = �1 if there is an arc from place pj to transition ti.� Gij = 0 otherwise.De�nition 8.1.2 (Reachability). A marking ~M is reachable from a marking M if there is asequence of transitions t0; : : : ; tn and a sequence of markings M1; : : : ;Mn such that :M t0�!M1 t1�!M2 � � �Mn tn�! ~M ;More precisely, transition ti is enabled in marking Mi and the �ring of ti transforms markingMi into marking Mi+1.De�nition 8.1.3 (Synchronic distance). We denote by dij the synchronic distance betweentwo transitions ti and tj . It is de�ned as dij = eij + eji, where eij is the minimal number oftokens in a directed path from transition ti to transition tj .Proposition 8.1.4. In a strongly connected Event Graph, we have the following properties1. The number of tokens in a circuit is an invariant.2. Marking ~M is reachable from a marking M if and only if (matrix-vector product is in theusual algebra) 9x 2 NT : G0 � x = ~M �M ; (8.1)where G0 is the transpose of G. The vector x is called the �ring count vector. The coor-dinate xi corresponds to the number of �rings of transition ti in the transformation fromM to ~M .



8.2 Stochastic Event Graph 1723. Matrix G is of rank T�1. The solutions of G0x = 0 are x = (n; : : :; n)0. The interpretationis that we go from a marking to itself if and only if each transition has �red the same numberof times. As a consequence, if ~M is reachable from M then M is reachable from ~M .We are going to need the following lemma.Lemma 8.1.5. Let us denote by K the maximal number of tokens in a circuit of (E;M). Let~M be a marking reachable from M . Let z be a minimal solution of G0 � x = ~M �M; x 2 NT .We have maxi zi 6 K.Proof. We recall that x = (n; : : :; n)0 veri�es G0x = 0, Proposition 8.1.4.3. Let us assume that theminimal �ring vector z is such that mini zi > 0. Then we obtain G0� [z�(mini zi; : : : ;mini zi)] =G0�z which contradicts the minimality of z. Let i0 be such that zi0 = 0. From the interpretationof the synchronic distance given in De�nition 8.1.3, we deduce thatzi = zi � zi0 6 di0;i; 8i = 1; : : : ; T :But we have dij 6 K; 8i; j; as a consequence of Proposition 8.1.4.1. We conclude that maxi zi 6K. ut8.2 Stochastic Event GraphWe consider a closed FIFO Stochastic Event Graph S = (E;M;�; Y ). The set (E;M) is astrongly connected Event Graph, see x8.1. The sequence of �ring times of transitions andholding times of places is � = f(a1(n); : : : ; aT(n)); n 2 N; (�1; : : : ; �P )g. The holding timesare assumed to be constant in order for the FIFO assumption to be ful�lled, see [8], p. 71 orChapter 1. The vector Y 2 RT is the vector of initial condition, i.e. the remaining �ring timeat instant zero for each transition. We set Yi = 0 if transition ti is not enabled at instant 0.There are several equivalent ways of representing the SEG S by means of a stochastic (max,+)linear equation. Roughly speaking, a di�erent representation is associated with each di�erentreachable marking. For more details, see Chapter 2 x2.5 and 2.7.We consider L : � x(n+ 1) = A(n)x(n)x(0) = x0 ;a (max,+) linear system describing the evolution of the SEG S. In this modelling, the matricesA(n) do not depend on the vector of lag times Y . It is only the initial condition x0 whichdepends on Y , see x1 for more details.We recall that the necessary and su�cient condition of stability of a (max,+) linear systemis given in Theorem 6.8.5. We say that the SEG S is stable if the system L is stable (i.e.has a unique stationary regime). It implies in particular that the stationary distribution ofS = (E;M;�; Y ) does not depend on the vector Y . For stable SEG, we will often omit tospecify the value of Y .We are now ready to prove the main Theorem.



8.2 Stochastic Event Graph 173Theorem 8.2.1. We consider a closed FIFO Stochastic Event Graph S = (E;M;�). Let usassume that S is stable. We assume that the sequence f(a1(n); : : : ; aT(n)); n 2 Ng is stationaryand ergodic and that the sequencesf(a1(n+ n1); a2(n+ n2); : : : ; aT (n+ nT )); n 2 Ngare jointly stationary (i.e. have the same distribution) 8 0 6 n1 6 K; : : :; 0 6 nT 6 K, whereK is the maximal number of tokens in a circuit of (E;M).Then all Stochastic Event Graphs ~S = (E; ~M; ~�) where ~� has the same distribution as � and~M is a marking reachable from M , are stable. The unique stationary regime of ~S has the samedistribution as the one of S.Remark 8.2.2. The condition \sequences f(a1(n + n1); a2(n + n2); : : : ; aT(n + nT )); n 2 Ngare jointly stationary" is veri�ed in particular when the sequences fai(n); n 2 Ng are mutuallyindependent. But it is a slightly weaker assumption than mutual independence.Proof. Let us consider system ~S = (E; ~M; ~�). We consider the time evolution of ~S given avector of initial lag times ~Y . Let us assume that there exists an instant d > 0 such that theinstantaneous marking ~M(d) is equal toM . We block system ~S at instant d. From Lemma 8.1.5,the di�erence in the number of �rings of the transitions is less than K. From the assumption onthe joint stationarity of the sequences f(a1(n + n1); : : : ; aT (n + nT ))g, we deduce that system~S from instant d on has the same �ring sequence (in distribution) than system S. Having thesame marking and the same �ring sequence, we deduce that system ~S after time d is equivalentin distribution to system S.The problem is that it is absolutely possible to have ~M(d) 6= M; 8d > 0, i.e. the marking of Snever appears during the evolution of ~S. Coming down to the marking of S is the basic idea ofthe forthcoming proof. However, we are going to use it in a more subtle way. It is possible tocome down to marking M by considering the system ~S at a virtual instant (d1; : : : ; dT); di > 0.The real di corresponds to the date of the clock associated with transition ti. The reals di arenot required to be equal which is the reason why we call (d1; : : : ; dT) a virtual instant.Let us detail the construction. To be coherent with previous notations, we denote~� = f(~a1(n); : : : ; ~aT(n)); n 2 N; (�1; : : : ; �P )g :Let us denote by ~xi(n) the n-th completion of a �ring at transition ti, for system ~S. ByProposition 8.1.4.3, the marking M is reachable from ~M . We denote by z the minimal solutionof G0x =M � ~M . We de�ne a virtual instant d by :(d1; : : : ; dT) = (~x1(z1); : : : ~xT (zT )) : (8.2)Let us consider system ~S at instant d. A rigorous way to de�ne system ~S at a virtual instant isto consider the following modi�ed system :~~S = (E; ~M; ~~�) with ~~� = f(~~a1(n); : : : ; ~~aT (n)); n 2 N; (�1; : : : ; �P )g and~~ai(n) = (~ai(n) if n 6 zi+1 otherwise :



8.2 Stochastic Event Graph 174As a consequence of Proposition 8.1.4.2, this system gets actually blocked after exactly zi �ringsof transition ti. The marking of the blocked system is M .The sequence of �ring times of ~S after time d, equivalently the sequence of �ring times whichhave not been used in the modi�ed system ~~S, is�̂ = f(~a1(n+ z1); ~a2(n+ z2); : : : ; ~aT(n + zT )); n 2 Ng :Because of the assumption on the joint stationarity of the sequences f(a1(n + n1); : : : ; aT (n +nT ))g, we obtain that the distribution of �̂ is the same as the one of ~�, hence the same as theone of �.System ~S after time d is equivalent to system (E;M; �̂). The only di�culty is to determine thenew initial condition for the system (E;M; �̂). In particular this initial condition will not becompatible in the sense of [8] p. 70. However, system (E;M; �̂) is equivalent in distribution tosystem (E;M;�) which, by hypothesis, converges to a unique stationary regime, independentlyof the initial condition. utIn Theorem 8.2.1, If we remove the assumption \sequences f(a1(n+ n1); : : : ; aT(n+ nT ))g arejointly stationary", Theorem 8.2.1 is not true anymore. Let us propose a counter-example.Example 8.2.3. We work on a probability space (
; P; �), where 
 = f!1; !2g, P = f1=2; 1=2gand � is the stationary ergodic shift de�ned by : �(!1) = !2 and �(!2) = !1. We consider theEvent Graph of Figure 8.1 with the sequence of �ring times :fa1(n; !1)g = f3; 0; 3; 0; : : :g; fa1(n; !2)g = f0; 3; 0; 3 : : :g ;fa2(n; !1)g = f0; 3; 0; 3 : : :g; fa2(n; !2)g = f3; 0; 3; 0; : : :g :The holding times are 1 on both places p1 and p2.t1 t2p2p1Figure 8.1: Strongly connected FIFO Event Graph.We obtain a Rmax linear representation for this model which isx(n) = � a1(n) a1(n) + 1a2(n) + 1 a2(n) � x(n� 1) :



8.2 Stochastic Event Graph 175There are two possible values for matrices A(n) and the sequence fA(n)g alternates between thetwo values. There are also two possible values for the products A(n+ 1)A(n). One of them isC = � 3 41 0 �� 0 14 3 � = � 8 74 3 � ; P (A(n+ 2p� 1) � � �A(n + 1)A(n) = Cp) = 12 :Matrix C is a scs1-cyc1 matrix, hence there exists p such that Cp is a rank 1 matrix. As aconclusion, Theorems 6.7.14 or 6.8.5 hold, there is a unique stationary regime for the system.Now let us consider the same Event Graph with another initial marking : two tokens in placep2 and no tokens in place p1. This marking is reachable from the one of Figure 8.1. We considerthe new system at the following \virtual" instant : transition t1 has �red once and transitiont2 has not �red yet. This system is equivalent to the previous one with the �ring sequencesfa1(n+ 1); a2(n); n 2 Ng. Its linear representation isx(n) = � a1(n+ 1) a1(n+ 1) + 1a2(n) + 1 a2(n) � x(n� 1) :It is easy to check that the products A(n)A(n� 1) � � �A(0) have only two possible formsm
 � e 11 e � or m
 � 1 ee 1 � ; m 2 N :These matrices are respectively scs2-cyc1 and scs1-cyc2. There is a multiplicity of stationaryregimes.In this example, the sequence f(a1(n); a2(n))g has not the same distribution as the sequencef(a1(n+ 1); a2(n))g.Remark 8.2.4. Note also that in this example, the throughput of the Event Graph (inverseof the eigenvalue of the (max,+) matrix) depends on the initial condition.



Chapitre 9Task Resource Models and (max,+)AutomataMod�eles Tâche Ressource et Automates (max,+)On montre dans ce chapitre comment l'utilisation d'automates (max,+) permet d'�elargir assezsensiblement la classe des syst�emes (max,+) lin�eaires classiques tels qu'ils �etaient par exemplepr�esent�es au chapitre 1.On s'int�eresse plus sp�eci�quement �a un mod�ele de ressources partag�ees, dit mod�ele TâcheRessource, repr�esentable sous forme d'automate (max,+). La repr�esentation sous forme d'auto-mate (max,+) permet d'utiliser les r�esultats du chapitre 6. On propose �egalement des r�esultatsdu type optimisation.Ce chapitre est tir�e d'un travail r�ealis�e en commun avec St�ephane Gaubert [72].



9.1 Introduction 177We show that a typical class of timed concurrent systems can be modeled as automata withmultiplicities in the (max,+) semiring. This representation can be seen as a timed extensionof the logical modeling in terms of trace monoids. We briey discuss the applications of thisalgebraic modeling to performance evaluation.9.1 IntroductionDi�erent variations of (stochastic) queuing networks with precedence-based relations betweencustomers have been studied for quite a long time in the performance evaluation community,see [14, 17, 136]. In the combinatorics community on the other hand, concurrent systems areusually modeled in terms of traces |elements of free partially commutative monoids|, see[35, 56]. An equivalent formalism is that of heaps of pieces [134].One of the purposes of this note is to bridge the gap between the two approaches. In the�rst part of the paper, we establish the relations between the models. An important feature isthat execution times of these models can be represented as �nite dimensional (max,+) lineardynamical systems. In an essentially equivalent way, they are recognized by automata withmultiplicities in the (max,+) semiring. The existence of similar (max,+) models was alreadynoticed in the context of queuing theory [136, 33]. Their analogue for trace monoids seems tobe new.In the second part of the paper, we apply this algebraic modeling to performance evaluationproblems. We present asymptotic results on the existence of mean execution time for randomschedules, and for optimal and worst schedules. They are obtained by appealing to subadditivearguments borrowed from the theory of random (max,+) matrices [4].In the third part, we apply the machinery of (max,+) rational series to the exact computationof the asymptotic worst case mean execution time, when the set of admissible schedules is givenby a rational language.At last, some generalizations of Task Resource models are considered (heaps of pieces witharbitrary shapes) for which all the results can be extended. These models provide an algebraicframework to handle scheduling problems.9.2 Basic Task Resource Model9.2.1 General presentationDe�nition 9.2.1 (Task Resource System). A (timed) Task Resource system is a 4-upleT = (A;R; R; h) where:� A is a �nite set whose elements are called tasks.� R is a �nite set whose elements are called resources.� R : A ! P(R) gives the subset of resources required by a task. We assume that each taskrequires at least one resource: 8a 2 A; R(a) 6= ;.� h : A ! R+ gives the execution time of a task.



9.2 Basic Task Resource Model 178A length n schedule is a sequence of n tasks a1; : : : ; an, that we will write as a word1 w = a1 : : :an.The functioning of the system under the schedule w is as follows.1. All the resources become initially available at time zero.2. Task ai begins as soon as all the required resources r 2 R(ai) used by the earlier tasks aj ; j < i,become free, say, at time ti.3. Task ai uses each resource r 2 R(ai) during h(ai) times units. Thus, resource r is released attime ti + h(ai).The execution time or makespan of the schedule w = a1 : : : an is the completion time of thelatest task of the schedule (which is not necessarily an):y(w) def= max16i6n(ti + h(ai)) : (9.1)Task Resource systems are intimately related with the classical trace monoids that we nextde�ne.De�nition 9.2.2. A dependence alphabet is an alphabet A equipped with a reexive symmetricrelation called dependence relation, denoted D, and written graphically |. We denote by I thecomplement of D (called independence relation).De�nition 9.2.3. The trace monoid M (A; D) is the quotient of the free monoid A� by thecongruence � generated by the relations ab = ba; 8a I b. The elements of M (A; D) will be calledtraces.Let alph(w) denote the set of letters appearing in word w. The word w � w is a Cartier-Foatanormal form of w [35, 56] if we have a factorization w = u1 : : : up, ui 2 A+, such that:a; b 2 alph(ui)) a I b; a 2 alph(ui)) 9b 2 alph(ui�1); aDb : (9.2)Such a normal form is unique up to a reordering of the letters inside factors. We shall denoteby `(w) = p the length (number of factors) of the normal form of w.With each Task Resource system is associated a dependence relation over the alphabet A; tasksare dependent when they share some resource:aD b, R(a)\ R(b) 6= ; : (9.3)Conversely, starting from an arbitrary trace monoid M (A; D), one can build an associated TaskResource system. For example, one can consider T = (A;R; R; h� 1) with R = ffa; bg j aD bgand R(a) = fr 2 R j a 2 rg. The problem of �nding a system T such that the cardinality of Ris minimal is considered in Appendix.1We recall the following usual notation. Given a �nite set (alphabet) A, we denote by An the set of words oflength n on A. We denote by A� the free monoid on A, that is, the set of �nite words equipped with concatenation.The unit (empty word) will be denoted e. We denote by A+ = A� n feg the free semigroup on A. The length ofthe word w will be denoted jwj. We shall write jwja for the number of occurrences of a given letter a in w.



9.2 Basic Task Resource Model 179Proposition 9.2.4. (i) When h � 1, y(w) = `(w): the makespan is equal to the length of theCartier-Foata normal form of w. (ii) For general execution times h,y(w) = max pXj=1 h(aij ) ; (9.4)where the max is taken over the subwords ai1 : : : aip of w = a1 : : : an, composed of consecutivedependent letters (i.e. aij Daij+1).The �rst assertion is classical [36]. It implies in particular that the makespan of Task-Resourcesystems with h � 1 can be represented in a more intrinsic way in terms of trace monoid. Thesecond one can easily be proved by elementary means, or deduced from the (max,+)-linearrepresentation given below. It provides an alternative formula for (9.1).Example 9.2.5.For the sequential dependence alphabet aD b, we have y(w) = h(a)jwja + h(b)jwjb. For thepurely parallel dependence alphabet a I b, we have y(w) = max(h(a)jwja; h(b)jwjb).Example 9.2.6. [Ring Network] Consider a ring shaped communication network with k sta-tions R = fr1; : : : ; rkg. Messages can be sent between neighbor stations. The possible messagesare A = fa1; : : : ; akg where ai corresponds to a communication between ri and ri+1 (with theconvention k+1 = 1). Therefore, we have R(ai) = fri; ri+1g. This system can also be viewed asa variant of the classical dining philosophers model [57] (replace stations by chopsticks, messagesby philosophers). E.g., for k = 5, y(a1a2a4a1a5) = max(2h(a1) + h(a2) + h(a5); h(a4) + h(a5))(direct application of 9.2.4,(ii) since the maximal dependent subwords taken from a1a2a4a1a5are a1a2a1a5 and a4a5).9.2.2 Linear representation over the (max,+) semiringDe�nition 9.2.7. The (max,+) semiring Rmax is the setR[f�1g, equipped with max, writtenadditively (i.e. a�b = max(a; b)) and the usual sum, written multiplicatively (i.e. a
b = a+b).We write " = �1 for the zero element, and e = 0 for the unit element.We shall use throughout the paper the matrix and vector operations induced by the semiringstructure2. The identity matrix (Iii = e; Iij = "; i 6= j) with entries indexed by X will be denotedby IX. The row vector with entries indexed by X and all equal to e will be denoted by eX . Wedenote by kMk =LijMij (resp. kvk =Li vi) the (max,+) norm of a matrix M (vector v).A (max,+) automaton3 of dimension k over the alphabet A is a triple (�;M; �), where � 2 R1�kmax,� 2 Rk�1max, and M is a morphism from A� to the multiplicative monoid of matrices Rk�kmax. Amap y : A� ! Rmax is recognizable if there is an automaton such that y(w) = �M(w)�.2I.e. for matrices A;B of appropriate sizes, (A�B)ij = Aij�Bij = max(Aij; Bij), (A
B)ij =Lk Aik
Bkj =maxk(Aik +Bkj), and for a scalar a, (a
A)ij = a
 Aij = a+Aij . We will abbreviate A
 B to AB as usual.3This is a specialization to the Rmax case of the notion of automaton with multiplicities over a semiring (orequivalently, of recognizable series over a semiring). See [60, 21].



9.2 Basic Task Resource Model 180In a spirit closer to discrete event systems theory, automata may be seen as (max,+) linearsystems whose dynamics is indexed by letters. Indeed, introducing the \state vector" x(w) def=�M(w) 2 R1�kmax, we getx(e) = �; x(wa) = x(w)M(a); y(w) = x(w)� ; or (9.5)y(a1 : : : an) = �M(a1) : : :M(an)� : (9.6)De�nition 9.2.8 (Task & Resource Daters). A dater over the alphabet A is a scalar mapA� ! R[ f�1g. With each task a 2 A is associated a task dater xa: xa(w) gives the time ofcompletion of the last task of type a in the schedule w. With each resource r 2 R is associateda resource dater xr: xr(w) gives the last instant of release of the resource r under the schedulew. We shall denote by xA and xR the vectors of task and resource daters.Note the important duality relationsxa(w) = Mr2R(a)xr(w); xr(w) = Ma2R�1(r)xa(w) : (9.7)We identify each subset R(a) with a boolean matrix of size jRj � jAj denoted I(a).8a 2 A; I(a)rb = � e if r 2 R(a) and b = a" otherwise :We de�ne the following matrices:8a 2 A; MR(a) = IR � h(a)I(a)I(a)T ; (9.8)MA(a) = IA � h(a) Mb I(b)T!I(a) ; (9.9)or more explicitly MR(a)rs = 8><>:e if r = s; s 62 R(a),h(a) if r 2 R(a); s 2 R(a)," otherwise. (9.10)MA(a)bc = 8><>:e if a 6= (b = c),h(a) if a = c; bDc," otherwise. (9.11)We extendMA (resp. MR) to a morphism A� ! RA�Amax (resp. A� ! RR�Rmax ).Theorem 9.2.9. The dater functions of task resource systems admit the following linear rep-resentations over the (max,+) semiring:xR(wa) = xR(w)MR(a); xR(e) = eR ; (9.12)xA(wa) = xA(w)MA(a); xA(e) = eA ; (9.13)y(w) = kxA(w)k = kxR(w)k = kMA(w)k = kMR(w)k : (9.14)



9.2 Basic Task Resource Model 181In other words, y is recognized both by the resource automaton (eR;MR; eTR) and by the taskautomaton (eA;MA; eTA).Proof. We have xa(wb) = (xa(w) if a 6= b,maxr2R(a) xr(w) + h(a) if a = b, (9.15)xr(e) = xa(e) = e : (9.16)These relations are a simple translation of the functioning of the system, as described afterDe�nition 9.2.1 (items 1,2,3). Eliminating xr in (9.15) using (9.7), we get the task equationxa(wb) = (xa(w) if a 6= bmaxcDa xc(w) + h(a) if a = b. (9.17)Dually, it is not di�cult to obtain the resource equationxr(wa) = (xr(w) if R(a) 63 rmaxs2R(a) xs(w) + h(a) if R(a) 3 r. (9.18)Rewriting (9.17) and (9.18) with the semiring notations, we get (9.12),(9.13). utRemark 9.2.10. Note that the duality is not perfect in a task resource model. In both Equa-tions (9.12) and (9.13), the dynamic of the system is driven by a word w which is a sequence oftasks. A sequence of resources would have no meaning.
Task AutomatonResource Automatonsah(a)R(a) = fr; sgR(b) = frgR(c) = fsg r ah(a)ab c b a cbh(b)ah(a)bh(b)� a � c ah(a)� b� cah(a)ch(c)bh(b)� ah(a)� cch(c)� ah(a)� b ch(c)� a� bFigure 9.1: Task and Resource Automata for b|a|c.Example 9.2.11. We consider a Task Resource model. Let b|a|c be its dependence al-phabet. In Fig. 9.1, we have represented4 the resource automaton (eR;MR; eTR) and the task4An automaton (�;M; �) of dimension k over an alphabet A is usually represented as a graph with nodes1; : : : ; k, and three kinds of labeled and weighted arcs. There is an internal arc i! j with label a 2 A and weight



9.2 Basic Task Resource Model 182automaton (eA;MA; eTA) associated with the dependence alphabet b|a|c. The matrices asso-ciated with the resource automaton are:MR(a) = � h(a) h(a)h(a) h(a) � ;MR(b) = � h(b) "" e � ; MR(c) = � e "" h(c) � :The makespan y(w) is equal to the maximal weight of a path labeled w between two arbitrarynodes of the graph. E.g., y(cba) = max(h(c) + h(a); h(b) + h(a)).Example 9.2.12. We consider a Task Resource model with A = fa1; a2; a3; a4; a5g and R =fr1; r2; r3; r4g. Let R(a1) = (r1; r2); R(a2) = (r2; r4); R(a3) = (r1; r2; r3; r4); R(a4) = (r3);R(a5)=(r3) and h(ai) = 1; i = f1; : : : ; 4g; h(a5) = 3.Let us give the matrices associated with letter a2. We have :MR(a2) = 0BB@ e " " "" 1 " 1" " e "" 1 " 1 1CCA ;MA(a2) = 0BBBB@ e " " " "" 1 " 1 "" " e " "" " " e "" " " " e 1CCCCA :For letter a5, we have MR(a5)33 = 3;MR(a5)ij = "; 8(i; j) 6= (3; 3) and MA(a5)5j = 3; j =f3; 4; 5g;MA(a5)ij = ", otherwise.9.2.3 Interpretation in terms of hypergraphsTask resource models can be introduced as hypergraphs. It is the approach used for exampleby Vincent [137] in a work concurrent to this one. An hypergraph is a direct generalization ofa non-oriented graph. It has a set of vertices and a set of edges which are subsets of vertices(instead of couples of vertices). Let us de�ne R(A) = fR(a); a 2 Ag. The couple (R; R(A))de�nes an hypergraph. The set of vertices is R and the set of edges is R(A). Let us de�ne thefunction A : R! P(A) by A(r) = fa 2 A j r 2 R(a)g and let us de�ne A(R) = fA(r); r 2 Rg.The couple (A; A(R)) is an hypergraph. These two hypergraphs are dual, see Berge [20].The dual (max,+) equations describing a task resource model, see Equations (9.12) and (9.13)correspond to this duality.9.2.4 Interpretation in terms of heaps of piecesThere is a useful geometrical interpretation of Task Resource Models in terms of heaps of pieces.This interpretation was �rst noticed by Viennot for trace monoids. The reader is referred to[134] for a more formal presentation. Imagine an horizontal axis with as many slots as resources.With each letter a is associated a piece, i.e. a solid \rectangle" occupying the slots r 2 R(a),with height h(a). The heap associated with the word w = a1 : : : an is built by piling up theM(a)ij whenever M(a)ij = t 6= ". We will write x at! y but we omit the unit valuations (when t = e). Whenthere are two arcs x! y with respective labels a; b and weights t, t0, we shall write x at�bt0! y as a shorthand forthe two arcs x at! y, x bt0! y. There is an input arc at node i with weight �i, whenever �i 6= ". Output arcs areobtained in a dual way from �.



9.3 Performance Evaluation 183pieces a1; : : : ; an, in this order. The makespan y(w) coincides with the height of the heap. Thevector xR(w) = eRMR(w) can be interpreted as the upper contour of the heap. Adding onepiece above the heap amounts to right multiplication by the corresponding matrix.Example 9.2.13. Consider the Task Resource model of Example 9.2.12. We have represented,in Figure 9.2, the heap associated with the word w = a1a1a5a2a3a1a2a4. Piece a2 is an exampleof a solid but not connected piece. Execution of the sequence of tasks
r2 r3 r4a5a3a2a2a1a1r1

a4 w = a1a5a2a3a1a2a4
Figure 9.2: Heap of pieces for a Task Resource model.9.3 Performance Evaluation9.3.1 Stochastic caseThe simplest5 stochastic extension of task resource systems arises when the sequence of tasksis given by a sequence of random variables a(n) 2 A: we get the random schedule wn =a(1) : : :a(n), and consider the asymptotics of y(wn); x(wn), that we shall shorten to y(n); x(n).For stochastic Task Resource models, we propose two types of asymptotic results.1. First order limits or mean execution times x(n)i=n.2. Second order limits or asymptotics of relative delays x(n)i � x(n)j (e.g. di�erences of lastoccupation times of the di�erent resources).Second order quantities are best de�ned in terms of (max,+) projective space. The (max,+)projective space PRkmax is the quotient of Rk by the parallelism relation x ' y , 9� 2 R,x = �y. We write � : Rkmax! PRkmax the canonical projection. The relative delays x(n)i�x(n)jcan be computed from �x(n). Geometrically, �x(n) corresponds to the upper shape of the heap5In order to simplify the presentation, we shall not consider more general cases with random initial conditions,random executions times and random arrival times, which can be dealt with along the same lines.



9.3 Performance Evaluation 184(the quotient by ' identi�es two heaps with the same upper contour but di�erent heights, seeFig. 9.3).We assume that the random variables a(n) are de�ned on a common probability space (
;F ; P ),equipped with a stationary and ergodic shift �. We consider a connected Task Resource system,i.e. such that the graph of the dependence relation is connected (if it is not the case, the theoremhas to be applied to each connected sub-system).Theorem 9.3.1. Let fa(n); n 2 Ng be a stationary and ergodic sequence (i.e. a(n + 1; !) =a(n; �(!))) of integrable random variables, such that 8b 2 A; P (a(1) = b) > 0.1. There exists a constant �E 2 R (stochastic Lyapunov exponent) such that, 8i 2 A [ R,limn x(n)in = limn E �x(n)in � = �E P � a:s: (9.19)2. Moreover, if the sequence fa(n); n 2 Ng is i.i.d. then the random variable �x(n) converges intotal variation to a unique stationary distribution.Proof. In order to prove point 1, the main tool is the subadditivity of the sequence fy(w) =kx(w)kg, more precisely: 8w1; w2 2 A�; y(w1w2) 6 y(w1) + y(w2) : (9.20)This property enables to apply Kingman's subadditive ergodic theorem, see [4]. More generally,this result is just a special case of a general theorem on homogeneous and monotone operators,see [136] or Theorem 10.3.5.We show point 2 for the resource dater xR(w) = eRMR(w) (the behavior of xA can be deducedeasily from that of xR by appealing to (9.7)). The following necessary and su�cient conditionof existence and uniqueness of a stationary distribution for �xR(w(n)) is stated in Chapter 6:There is a word w such that the matrix MR(w) is of rank one,with non-" entries.The matrix MR(w) constitutes a regeneration pattern for the model. Indeed, the rank onecondition is equivalent to a forgetting of the initial condition.8x0; x00; �(x0MR(w)) = �(x00MR(w)) : (9.21)This pattern enables us to use regeneration theory to obtain stability of the model. The existenceof the pattern is guaranteed by the following lemma.Lemma 9.3.2. Let w = a1 : : : an be a path in the graph of the dependence relation (aiDai+1),visiting all the nodes. Let ~w = an : : : a1 denote the mirror image of w. The matrix MR(w ~w) isof rank one with non-" entries.



9.3 Performance Evaluation 185Rather than proving formally the result (which can be done using representation (9.8), (9.12)and the fact that I(a) has rank one), we provide a geometrical justi�cation using heaps of pieces.Condition (9.21) is equivalent to the following: the upper shape of the heap is independent ofthe shape of the ground (which corresponds to the initial condition x0). The property aiDai+1of the word w ~w means that the heap is staircase shaped. It implies condition (9.21), see theexample below.Example 9.3.3. Consider the ring model of Example 9.2.6 with k = 4 and h � 1. We haverepresented in Fig. 9.3.(I), the heap associated with the word a1a2a3a4a4a3a2a1.
(III)a3a41 2 3 4�eR = �(e; e; e; e)a1 a2(I) ��4 = �("; "; "; e)

�(eRMR(ww)) �(�4MR(ww))
�x0 = �(�2;�2; e; e)(II) �(x0MR(ww))

Figure 9.3: Heaps of pieces for a ring model.The upper shape is independent of the shape of the ground as illustrated in the di�erentheaps (I),(II),(III) shown on Fig. 9.3 (corresponding to the respective initial conditions eR,(�2;�2; e; e) and ("; "; "; e)). utRemark 9.3.4. A result analog to Theorem 9.3.1, point 2. was proved by Saheb [126] fortrace monoids, using a Markovian argument. The advantage of the method presented here isthat it can be applied to the various extensions mentioned in footnote 5.When the sequence fa(n); n 2 Ng is only stationary and ergodic, the necessary and su�cientcondition of stability for �xR(w(n)) is (see Chapter 6) :There is a word w of length m such that the matrix MR(w) is of rank one with non-" entries,and Pfa(1) : : :a(m) = wg > 0.Under stationary and ergodic assumptions, Theorem 9.3.1, point 2. is not true. Indeed, themirror words w ~w de�ned in Lemma 9.3.2 might appear with probability 0. Here is an example.Example 9.3.5. Consider the ring model of Example 9.2.6 with k = 5 and h � 1. We considera probability space (
; P ) with 
 = f!1; : : : ; !6g and P = f16 ; : : : ; 16g. Let � be the stationary



9.3 Performance Evaluation 186and ergodic shift de�ned by : 8i; �(!i) = !i+1 [6]. We consider the sequence of random variables :fa(n; !1); n 2 Ng = (a2a4a4a1a1a3)(a2a4a4a1a1a3) � � �fa(n; !2); n 2 Ng = (a4a4a1a1a3a2)(a4a4a1a1a3a2) � � � ; : : :a1a1 a3 a4a4a2 �x0 = �(e; e; e; "; ")
�(eR 
MR(w)) �(x0 
MR(w))

�eR = �(e; : : : ; e)Figure 9.4: Heap of pieces associated with the word w = (a2a4a4a1a1a3)2.We have represented the heaps of pieces associated with the word w = (a2a4a4a1a1a3)2 for twodi�erent initial conditions (Figure 9.4). Their upper contour is not the same, hence matrixMR(w) is not of rank 1. It is easy to verify that it is the case for all the matrices which appearin this model.9.3.2 Optimal case and worst caseGiven a language L � A� describing the set of admissible schedules, a natural problem consistsin �nding an admissible schedule of length n with minimal or maximal makespan. The followingtheorem shows the existence of an asymptotic mean execution time, under optimal or worstcase schedules. It can be seen as a (weak) analogue for optimization problems of the �rst orderergodic theorem 9.3.1,1.Theorem 9.3.6. 1. For a language L such that L2 � L, the following limit (optimal Lyapunovexponent) exists �min(L) def= limn!1; An\L6=; minw2An\L y(w)n = infw2L y(w)jwj : (9.22)2. For a bi�x language L (such that uv 2 L ) u; v 2 L), the following limit (worst Lyapunovexponent) exists �max(L) def= limn!1 maxw2An\L y(w)n = infn>1 maxw2An\L y(w)n : (9.23)



9.3 Performance Evaluation 187Proof. Let mn = infw2An\L y(w). Since L2 � L, w 2 L \ An; z 2 L \ Ap ) wz 2 L \ An+p.Using the subadditivity property (9.20), we get mn+p 6 mn + mp, from which (9.22) readilyfollows. The argument for �max is similar. utThe assumption that L2 � L for the optimal case is practically reasonable. For instance, forusual scheduling problems, it is natural to impose a �xed proportion of the di�erent tasks, i.e.L = fw j jwja = rajwjg, for some �xed ra 2 R+;Pa ra = 1. Such a language satis�es L2 � L.The restriction to bi�x languages for the worst case behavior is an artefact due to the subadditiveargument.The following theorem shows that the worst case performance can be exactly computed for thesubclass of rational schedule languages. The reader is referred to [21] for the notation concerningseries.Theorem 9.3.7.Consider the generating series of the worst case behavior, z = Ln2Nznxn 2 Rmax[[x]], wherezn = supw2An\L y(w). If the admissible language L is rational, the series z is rational.Proof. Let charL 2 RmaxhhAii denote the characteristic series6 of the language L. Then, charLis rational. Introduce the morphism ' : RmaxhhAii ! Rmax[[x]] such that 8a; '(a) = x. Recallthat the Hadamard product of series is de�ned by (s � t)(w) = s(w)t(w). Since rational seriesare closed under alphabetical morphisms and Hadamard product, z = '(charL� y) 2 Rmax[[x]]is rational. utCorollary 9.3.8. Let �; �; � denote a trim linear representation of charL. Then,lim supn znn = �(A); A =Ma2A�(a)
tMR(a) ; (9.24)where � denotes the (max,+) maximal eigenvalue and 
t the tensor product of matrices.This is an immediate consequence of the (max,+) spectral theorem, together with the fact [60, 21]that charL�y is recognized by the tensor product of the representations (�; �; �), (eR;MR; eTR)(see [69, x3.2] for details).Remark 9.3.9. More generally, Theorem 9.3.7 holds for an algebraic (=context-free) languageL and not only for a rational one. Indeed, it is an easy extension7 of Parikh theorem [47] thatalgebraic series in several commuting indeterminates, with coe�cients in Rmax, are rational.Since algebraic series are closed by Hadamard product with recognizable series and alphabeticalmorphism, the above proof shows that, when L is algebraic, the series z = '(charL � y) isalgebraic, hence rational. This shows that the generating series z of the worst case behaviorof an algebraic language L is rational. In this case, the e�ective computation of z, along thelines of [47, Ch. XI] is less immediate, since it requires solving (max,+) commutative rationalequations.6The coe�cient of charL at w is equal to e if w 2 L, " otherwise.7By algebraic series, we mean constructive algebraic series as de�ned in [63]. The argument given in [47, Ch.XI] can be adapted to algebraic series in commuting indeterminates with coe�cients in commutative idempotentsemirings.



9.4 Extensions of Task Resource Models 188Example 9.3.10. Consider the dependence alphabet b|a|c, together with the set of admis-sible schedules L = (a� bc�b)�. Its characteristic series is recognized by� = [e; "]; � = [e; "]T ; �(a) = � e "" " � ; �(b) = � " ee " � ; �(c) = � " "" e � :We get from Ex. 9.2.11 and (9.24),A = 2664 h(a) h(a) h(b) "h(a) h(a) " eh(b) " e "" e " h(c) 3775 ; �(A) = h(a)� h(c)� h(b) ;where �(A) is obtained from its characterization as maximal mean weight of the circuits of A [8].Note that the di�erent terms in �(A) are attained asymptotically for the sequences of schedulesan; n 2 N, bcnb; n 2 N, b2n; n 2 N (whose periodic parts correspond to circuits of A).Remark 9.3.11. C�erin and Petit [36] study the absolute worst case behavior de�ned by�max def= supw2L jwj�1 � y(w). This can be obtained along the same lines:�max = �(A)� M16i6dimA cAib ; (9.25)where c = �
t eR; b = � 
t eTR. These quantities can be computed in O((dimA)3) steps (usingKarp algorithm [8] for �(A)). Observe that the dual quantity infw2L y(w)=jwj treated in [36]cannot be obtained by such simple arguments due to its \min-max" structure.9.4 Extensions of Task Resource Models9.4.1 Tetris gameTetris is a famous electronic game. It consists in pieces of di�erent forms (tetraminos in theoriginal version). They fall from above one after the other. They stop as soon as they meetanother piece. In fact, a game of Tetris looks exactly like Figure 9.2, except for the form of thepieces.De�nition 9.4.1. We de�ne a Tetris type model (or generalized Task Resource model) as a5-uple (A;R; R; BA; TA), where :� A is a �nite set of pieces (or tasks).� R is a �nite set of slots (or resources).� R : A �! P(R) gives the subset of slots covered by a piece.� Ba : R(a) �! R�+; a 2 A. The letter B stands for Bottom of the piece. By convention,the map Ba is chosen such that maxr2R(a)Ba(r) = 0.� Ta : R(a) �! R�+; a 2 A. The letter T stands for Top of the piece. The map Ta satis�esthe relation Ta > Ba.



9.4 Extensions of Task Resource Models 189Remark 9.4.2. The basic Task Resource model (De�nition 9.2.1) is a Tetris type model whereeach piece a veri�es 8r 2 R(a); Ba(r) = 0 and 8r 2 R(a); Ta(r) = h(a).We extend the de�nition of task and resource daters, Def. 9.2.8, to Tetris type models. Let usde�ne MR(a)rs = 8><>:e if r = s; s 62 R(a),Ta(s)� Ba(r) if r 2 R(a); s 2 R(a)," otherwise. (9.26)We extendMR to a morphism A� ! RR�Rmax . Theorem 9.2.9 still applies, i.e. we have :xR(wa) = xR(w)MR(a); xR(e) = eR : (9.27)It is also possible to de�ne a dual (max,+) representation for Tetris models. However the ex-pressions for the matricesMA(a) are not as simple as in Equation (9.26).Theorem 9.4.3.All the results of x9.3 can be extended to Tetris type models.Example 9.4.4. We consider, as an example, the tetramino of Figure 9.5.
r2 r3 r40 T (r3)T (r2) B(r3)r1Figure 9.5: Piece of a Tetris type model.This tetramino a is de�ned by R(a) = (r2; r3); Ba(r2) = 0; Ba(r3) = 1; Ta(r2) = 2; Ta(r3) = 3.The matrix associated with piece a is :MR(a) = 0BB@ e " " "" 2 3 "" 1 2 "" " " e 1CCA :



9.4 Extensions of Task Resource Models 190Railway 2Railway 3 Railway 1 r1 r3r2~r2 ~r1~r3Figure 9.6: A simpli�ed model of the Gagny's triangle.9.4.2 Gagny's triangleGagny is a town near Paris. The railway network in Gagny has a structure which is presentedin Figure 9.6.It consists of three tracks. A train using track i can leave the triangle if and only if track(i + 1) [3] is empty. Otherwise, it has to wait until the train on track (i + 1) [3] leaves. Aninter-blocking is possible if there is a train on each track at the same time. This event has tobe avoided. One easy way to avoid deadlocks is the following : as soon as a train enters tracki, a light switches to red at track (i + 1) [3] preventing any train to enter it (the red light hasno e�ect on a train already on track (i + 1)). When the train leaves track i, the light at track(i+ 1) switches back to green. With this control, there is a maximum of two trains at the sametime in the triangle.It might not be very intuitive but this network can be represented as a Tetris type model. Tracki is modelled as consisting of two portions, ri and ~ri. The set of resources is f~ri; ri; i = 1; 2; 3g.The set of tasks is fai; i = 1; 2; 3g, where ai corresponds to the passage of a train on track i. Weconsider a simple model where the passage of a train can be decomposed in two stages.1. The train enters track i. It requires the railway portions ri and ~ri during ti units of time.2. The train leaves track i. It requires the railway portions ri and ~ri+1 during �i units oftime.Once it enters the triangle, say at instant t, a train ai blocks three resources : tracks ri and ~ribut also track ~ri+1 (because of the red light). By blocking, we mean that the tracks can not beused by the next trains. However in a �rst time, only the tracks ri and ~ri are used by train ai.At instant t+ ti, the train is ready to leave track ~ri. There are two possible cases. First, if track~ri+1 is empty at instant t+ ti, the train enters it immediately and leaves the network at instantt+ ti + �i. Second, if track ~ri+1 is not empty, train ai waits on tracks ri and ~ri until it empties.With the help of Figure 9.7, one can convince oneself that the behaviour described above corre-



9.5 Appendix 191sponds to a Tetris model with matrices :MR(a1) = ~r1 r1 ~r2 r2 ~r3 r30BBBBBB@ t1 t1 + �1 t1 + �1 " " "t1 t1 + �1 t1 + �1 " " "e �1 �1 " " "" " " e " "" " " " e "" " " " " e 1CCCCCCA :Matrices MR(a2) and MR(a3) have the same form, up to the replacement of ~r1; r1; ~r2; t1; �1 by~ri; ri; ~ri+1; ti; �i.
r1~r1 ~r2 r2 ~r3 r3r1~r1 ~r2 r2 ~r3 r3a2a1 Sequence of trains arrivals :a3 w = a2a1a3

Figure 9.7: Heap of pieces associated with Gagny's triangle.We propose, in Figure 9.7, the heap of pieces associated with the trains : w = a2a1a3. Notethat in Figure 9.7 the train of railway 3 is a high speed train (TGV).9.5 AppendixLet M (A; D) be a trace monoid. We want to �nd an associated Task Resource model T =(A;R; R; h � 1) with a set R of minimal cardinality. This will be referred as problem P. Weshow that problem P is related to some classical problems in graph theory.We need to recall some de�nitions from graph theory. A graph (V;E); E � V � V is simpleif it contains no loops, i.e. no edge of the form (v; v); v 2 V . We have already introducedhypergraphs in x9.2.3. In the same way, we say that an hypergraph is simple if it contains noloops. Till the end of the chapter, a graph (resp. hypergraph) is always simple, even if it is notexplicitly stated. A graph is complete if E = (V �V )�f[(v; v)g. The complete graph of order8n is denoted by Kn. A clique of a graph is a complete subgraph. A bipartite graph is a graphwith two types of vertices and with edges only between vertices of di�erent types. The graph8The order of a graph (or hypergraph) is the number of its vertices.



9.5 Appendix 192Kp;q is the complete bipartite graph with p vertices of one type and q of the other. Let us de�nethe 2-section of an hypergraph.De�nition 9.5.1. Let H = (X;E) be an hypergraph. The set of vertices is X and the set ofedges is (E1; : : : ; Em); Ei 2 P(X). We de�ne its 2-section, denoted by [H ]2, as the graph with :� A set of vertices X.� An edge between xi and xj i� i 6= j; 9Ek 2 E s:t: xi; xj 2 Ek.We associate with the trace monoid M (A; D) a graph G with vertices A and edges D = f(a; b) ja 6= b; aDbg. The problem P can be reformulated as follows. Given the graph G = (A;D), �ndan hypergraph H with a minimal number of edges such that [H ]2 = G. The minimal number ofedges is denoted by 
(G). The interpretation is that each edge corresponds to a resource.It is immediate that [G]2 = G. It implies that 
(G) 6 jDj. The equality case is characterizedin Theorem 9.5.2. For a proof, see for example Harary [86], p.19 or Berge [20], p.36.Theorem 9.5.2. Let G = (V;E) be a connected graph. We have 
(G) = jEj if and only if Ghas no triangles (i.e 3-cliques).Next theorem is due to Erd�os, Goodman and P�osa [62].Theorem 9.5.3. Let G = (V;E) be a connected graph of order n. We have 
(G) 6 hn24 i.This bound is the best possible one. It is attained for the graphs Kp;p if n = 2p or Kp;p+1 ifn = 2p+ 1.Except for the cases described in Theorem 9.5.2, solving problem P is NP di�cult. Let us givesome hints on why it is so. For more details and related results, the reader is referred to Gondranand Minoux [78], ch.10.1. Let C = fcig be a set of cliques of G covering all the edges D. We consider the hypergraphH = (A; C). We verify that [H ]2 = G. Problem P is equivalent to the search of a minimalcovering of G into cliques.2. We denote by C = fcig the set of the maximal cliques of G. We consider the hypergraphH(G) = (A; C).We de�ne the matrix B of dimension jDj� jCj by : Bdc = 1 if d 2 c and Bdc = 0 otherwise.Problem P reduces to a problem of linear programming in integer numbers :8<: min Pqi=1 xiBx > 1x 2 f0; 1gq ;where q = jCj.3. We consider the associated linear program obtained by replacing xi = f0; 1g by 0 6 xi 6 1.There exists a polynomial algorithm to solve it. But, in general, the solutions will not beinteger ones. The main case where the algorithm provides integer solutions is when B



9.5 Appendix 193is totally unimodular9 , see Ho�man & Kruskal [89]. In general, incidence matrices ofhypergraphs are not totally unimodular, hence problem Pcan not be solved in polynomialtime.Remark 9.5.4. Incidence matrices of graphs are totally unimodular. However it is not aninteresting case. In fact, assume that H(G) is a graph. It implies that the maximal cliques ofG are of cardinal strictly less than 3. It means precisely that there are no triangles in G. Butwe know by Theorem 9.5.2 that problem P is trivial for such graphs.We propose in Figure 9.8 an example of a graph G where 
(G) is strictly less than the numberof maximal cliques of G.
Figure 9.8: Graph with 4 maximal cliques and 
(G) = 3.There are four maximal cliques, of order 3. However, the clique represented in doted lines isredundant and we have 
(G) = 3.

9A matrix is totally unimodular if the determinant of each extracted matrix is equal to -1, 0 or 1.
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Chapitre 10Ergodic Theory of StochasticOperators and Discrete EventNetworksTh�eorie Ergodique des Op�erateurs et des R�eseaux �a �Ev�enements Discrets Stochas-tiquesOn consid�ere une classe de syst�emes g�en�eralisant strictement les syst�emes (max,+) lin�eaires.Ces syst�emes peuvent être d�ecrits de fa�con tr�es impr�ecise comme des op�erateurs (min,max,+,�)lin�eaires. On montre comment les r�esultats de [4] ainsi que ceux du chapitre 6 peuvent être (par-tiellement) �etendus �a cette classe de syst�emes. On �etudie �egalement les r�eseaux �a �ev�enementsdiscrets. On montre que les th�eor�emes ergodiques d�emontr�es dans le cadre des r�eseaux �a �ev�ene-ments discrets peuvent être vus comme une g�en�eralisation de ceux obtenus pour les op�erateurs.Nous donnons pour conclure divers exemples de syst�emes analysables par ce type d'outils.Ce chapitre provient d'un article r�ealis�e en commun avec Fran�cois Baccelli, [15]. Les auteurstiennent �a souligner l'importance de l'atelier HP-BRIMS Idempotency pour la maturation dece travail. Cet atelier, organis�e par Jeremy Gunawardena, s'est d�eroul�e �a Hewlett-PackardLaboratories, Bristol, en octobre 94. Nous tenons �egalement �a remercier Serguei Foss et Jean-Marc Vincent pour de nombreuses et instructives discussions sur le sujet.



10.1 Introduction 196We present a survey of the main ergodic theory techniques which are used in the study of it-erates of monotone and homogeneous stochastic operators. It is shown that ergodic theoremson discrete event networks (queueing networks and/or Petri nets) are a generalization of thesestochastic operator theorems. Kingman's subadditive ergodic Theorem is the key tool for de-riving what we call �rst order ergodic results. We also show how to use backward constructions(also called Loynes schemes in network theory) in order to obtain second order ergodic results.We will propose a review of systems entering the framework insisting on two models, precedenceconstraints networks and Jackson type networks.10.1 IntroductionMany systems appearing in manufacturing, communication or computer science accept a descrip-tion in terms of discrete event systems. A usual characteristic of these systems is the existenceof some sources of randomness a�ecting their behaviour. Hence a natural framework to studythem is the one of stochastic discrete event systems.In this paper, we are concerned with two di�erent types of models. First, we consider the studyof the iterates Tn�Tn�1�� � ��T0, where Ti : Rk�
! Rk is a random monotone and homogeneousoperator. Second, we introduce and study stochastic discrete event networks entering the so-called monotone-separable framework. A subclass of interest is that of stochastic open discreteevent networks.It will appear that these models, although they have been studied quite independently in thepast years, have a lot of common points. They share the same kind of assumptions and prop-erties : monotonicity, homogeneity and non-expansiveness. In fact, we are going to show thatmonotone-separable discrete event networks are a generalization of monotone-homogeneous op-erators. However, when a system can be modelled as an operator, it provides a more precisedescription and stronger results.In both types of models, we are working with daters. Typically, we have to study a randomprocess X(n) 2 Rk, where X(n)i represents the n� th occurrence of some event in the system.We are going to propose two types of asymptotic results :1. First order results, concerning the asymptotic rates limnX(n)i=n.2. Second order results, concerning the asymptotic behaviour of di�erences such as X(n)i �X(n)j.The main references for the results proposed in the paper are the following ones. First orderresults for operators appear in Vincent [136]. Second order results for operators are new. Firstand second order results for open discrete event networks are proved in Baccelli and Foss [10].First order results for general discrete event networks are new. A more complete presentationwill be done in a forthcoming paper [?].The paper is organized as follows. In Part I, we treat �rst order results and in Part II, secondorder ones. In each part, we consider operators and discrete event networks separately. Ina last part, we propose a review of systems entering the frameworks insisting on two models,precedence constraints networks and Jackson type networks.We aim at emphasizing how theorems on stochastic systems are obtained as an interaction be-tween structural properties of deterministic systems and probabilistic tools. In order to do so,



10.2 Probabilistic Tools 197we introduce �rst the probabilistic tools (x10.2 and 10.6). Then we present some properties ondeterministic systems. At last, we prove the main theorem for stochastic systems.First Order Ergodic Results10.2 Probabilistic ToolsWe consider a probability space (
;F ; P ). We consider a bijective and bi-measurable shiftoperator � : 
! 
. We assume that � is stationary and ergodic with respect to the probabilityP .Lemma 10.2.1 (Ergodic lemma). If A 2 F is such that �(A) � A then PfAg = 0 or 1.Theorem 10.2.2 (Kingman's subadditive ergodic theorem [97]). Let Xl;n; l < n 2 Z;be a doubly-indexed sequence of integrable random variables such that� stationarity : Xn;n+p = X0;p � �n; 8n; p; p > 0.� boundedness : E[X0;n] > �Cn; 8n > 0, for some �nite constant C > 0.� subadditivity : Xl;n 6 Xl;m +Xm;n; 8l < m < n.Then there exists a constant  such that the following convergence holds both in expectation anda.s. limn!1 E[X0;n]n = ; limn!1 X0;nn =  P a:s: (10.1)Remark 10.2.3. The convergence in expectation is straightforward. In fact, we have by sub-additivity, E(X0;n) 6 E(X0;m) + E(Xm;n). By stationarity, it implies E(X0;n) 6 E(X0;m) +E(X0;n�m). The real valued sequence un = fE(X0;n)g is subadditive, hence un=n converges inR[ f�1g. Because of the boundedness assumption, we conclude that the limit is �nite.Remark 10.2.4. If we have additivity instead of subadditivity, then the previous theoremreduces to the following result:limn!1 �ni=0Xi;i+1n n!1�! E(X0;1) P a:s:When the sequence fXn;n+1; n 2 Ng is i.i.d., this is simply the Strong Law of Large Num-bers. More generally, when the sequence fXn;n+1; n 2 Ng is stationary ergodic (i.e. Xn;n+1 =X0;1 � �n), it is Birkho�'s ergodic theorem.



10.3 Application to Stochastic Operators 19810.3 Application to Stochastic Operators10.3.1 SubadditivityWe call (deterministic) operator a map T : Rk! Rk which is measurable with respect to B, theBorel �-�eld of Rk. Let fTn; n 2 Ng be a sequence of operators. We associate with it and aninitial condition x0 2 Rk, a sequence on Rk :� x(n+ 1) = Tn(x(n)) = Tn � � � � � T0(x(0))x(0) = x0 : (10.2)We will sometimes use the notation x(n; x0) to emphasize the value of the initial condition.We consider a probability space (
;F ; P; �) as de�ned above. We call random (or stochastic)operator a map T : Rk � 
 ! Rk which is measurable with respect to B � F . As usual, wewill often write T (x) for T (x; !); x 2 Rk; ! 2 
. A stationary and ergodic sequence of randomoperators is a sequence fTn; n 2 Ng verifying Tn(x; !) = T0(x; �n!). In the same way as inEquation (10.2), we associate with fTn; n 2 Ng and a (possibly random) initial condition x0, arandom process fx(n); n 2 Ng taking its values in Rk.In what follows, de�nitions apply to deterministic and random operators. For random operators,the properties have to be veri�ed with probability 1.De�nition 10.3.1.1. Homogeneity T is homogeneous if for all x 2 Rk and � in R, T (x+ �~1) = �~1 + T (x),where ~1 is the vector of Rk with all its coordinates equal to 1.2. Monotonicity T is monotone if x 6 y implies T (x) 6 T (y) coordinatewise.For a \physical" interpretation of these conditions, see Remark 10.3.11. The next theorem is akey tool in understanding the importance of homogeneity and monotonicity in what follows.Theorem 10.3.2 (Crandall-Tartar [48]). We consider an operator T : Rk ! Rk and thefollowing properties� H: T is homogeneous.� M: T is monotone.� NE: T is non-expansive with respect to the sup-norm, i.e 8x; y 2 Rk; jjT (x)� T (y)jj1 6jjx� yjj1.If H holds, then there is equivalence between M and NE. Such operators will be referred to asmonotone-homogeneous operators.Corollary 10.3.3. Let us consider a sequence Tn : Rk! Rk; n 2 N; of monotone-homogeneousoperators. If 9x 2 Rk; 9i 2 f1; : : : ; kg such that limn Tn � � � � � T0(x)i=n exists then :8y 2 Rk; limn Tn � � � � � T0(y)in = limn Tn � � � � � T0(x)in : (10.3)



10.3 Application to Stochastic Operators 199Proof. Straightforward from non-expansivenesslimn jjTn � � � � � T0(y)� Tn � � � � � T0(x)jj1n 6 limn jjx� yjj1n : utProposition 10.3.4. Let Tn : Rk ! Rk be a sequence of monotone-homogeneous operators.We de�ne e = (0; : : : ; 0)0 and for l < n; xl;n = Tn�1 � � � � � Tl(e). The maximal (resp. minimal)coordinate of xl;n forms a subadditive (resp. super-additive) process, i.e.8l < m < n 2 N; maxi(xl;n)i 6 maxi (xl;m)i + maxi (xm;n)imini(xl;n)i > mini (xl;m)i +mini (xm;n)i : (10.4)Proof. We have 8l < m < n 2 N,xl;n = Tn�1 � � � � � Tm � Tm�1 � � � � � Tl(e) = Tn�1 � � � � � Tm (xl;m)6 Tn�1 � � � � � Tm�e+ (maxi (xl;m)i)~1� (monotonicity)6 Tn�1 � � � � � Tm(e) + (maxi (xl;m)i)~1 (homogeneity):Therefore, maxi (xl;n)i 6 maxi (xl;m)i +maxi (xm;n)i:The proof of the super-additivity of the minimal coordinate is equivalent. utWe are now ready to prove the following theorem on stochastic operators.Theorem 10.3.5 (Vincent [136]). Let fTn; n 2 Ng be a stationary ergodic sequence of mo-notone-homogeneous random operators. We de�ne the process x(n; y); y 2 Rk; as in Equation(10.2). If, for all n, the random variable Tn � � � � � T1(0) is integrable and such that E(Tn � � � � �T1(0)) > �Cn, for some positive C, then 9;  2 R such that 8y 2 Rk,limn maxi x(n; y)in =  P a:s:; limn E(maxi x(n;y)i)n =  (10.5)limn mini x(n; y)in =  P a:s:; limn E(mini x(n;y)i)n =  (10.6)Proof. We de�ne as previously the doubly-indexed sequence xl;n = Tn�1�� � ��Tl(e)i; l < n. UsingProp. 10.3.4, the sequences maxi(xn;m)i and �mini(xn;m)i are subadditive. Hence they satisfythe conditions of Theorem 10.2.2. So Equation (10.5) holds for y = e = (0; : : : ; 0)0. For anyother initial condition y, we obtain limn x(n; y)=n = limn x(n; e)=n using the non-expansivenessas in Corollary 10.3.3. utThe convergence for the maximal and minimal rates does not imply that of the coordinates.Here is a counter-example borrowed from [136].



10.3 Application to Stochastic Operators 200Example 10.3.6. We consider a random operator T0 : R3! R3 verifying:x = (x1; x2; x3)0; T0(x) = (x1 + 1; x2 + 2; U0x1 + (1� U0)x2)0 ;where U0 is a [0; 1]-uniform random variable. We havelim inf(Tn : : :T0(x)3)=n = 1 and lim sup(Tn : : :T0(x)3)=n = 2 :Here is another example of the same kind:T0(x) = (�0(max(x1; x2) + 2) + (1� �0)(min(x1; x2) + 1); (1� �0)(max(x1; x2) + 2) + �0(min(x1; x2) + 1); U0x1 + (1� U0)x2)0 ;where U0 is a [0; 1]-uniform random variable and �0 is a (0,1) Bernouilli random variable. Therandom variables U0 and �0 are independent.10.3.2 Projective boundednessIn order to complete Proposition 10.3.4 or Theorem 10.3.5, the two main questions are :i: Does a limit exist for the vector (Tn � � � � � T0(y)1=n; : : :; Tn � � � � � T0(y)k=n) ?ii: Is this limit equal to a \constant" (; : : :; ) ?The general answers to these questions are not known (even for deterministic operators). Weare going to propose a su�cient condition to answer positively i: and ii: Let us introduce somede�nitions.De�nition 10.3.7 (PRk). We consider the parallelism relation :u; v 2 Rk u ' v () 9a 2 R such that 8i; ui = a+ vi :We de�ne the projective space PRk as the quotient of Rk by this parallelism relation. Let � bethe canonical projection of Rk into PRk.De�nition 10.3.8. Let T be an operator of Rk into Rk.1. T is projectively bounded if 9K a compact of PRk such that the image of T is included in K,i.e. �(Im(T )) � K.2. T has a generalized �xed point if 9 2 R; x0 2 Rk such that T (x0) = ~1 + x0. It is equivalentto say that T has a �xed point in the projective space (see Def. 10.3.7).Proposition 10.3.9. Let us consider T : Rk! Rk a monotone-homogeneous operator. Let usconsider the following assumptions.A. T is projectively bounded.B. T has a generalized �xed point.C. 8x; limn Tn(x)=n = (; : : :; )0.The following implications hold : A ) B ) C. The other implications are false, C 6) B 6) Aand C 6) A.



10.3 Application to Stochastic Operators 201Proof. 1. A ) B. Let K be a compact of PRk such that �(T (Rk)) � K. It implies that�(T ) : K ! K. Hence �(T ) is continuous on a compact and has a �xed point by applicationof Brouwer's Theorem.2. B ) C. Let x 2 Rk be a generalized �xed point of T , i.e T (x) = ~1 + x. It impliesTn(x) = n~1 + x and limn Tn(x)=n = (; : : : ; )0. From Corollary 10.3.3, we have 8y 2Rk; limn Tn(y)=n = (; : : :; )0.3. B 6) A and C 6) A. An easy counter-example is obtained by considering the identity operatorI : Rk! Rk; I(x) = x.4. C 6) B There exist counter-examples of dimension 2, [83]. utThis Proposition has an interesting application for stochastic operators.Theorem 10.3.10. Let fTn; n 2 Ng be a stationary and ergodic sequence of random operators.We assume that there exist l 2 N and K a compact of PRk such that :E = f�(Im(Tl�1 � � � � � T0)) � Kg ; P (E) > 0 : (10.7)Then 9 2 R, such that 8x 2 Rk; limn Tn � � � � � T0(x)n = (; : : :; )0 :Proof. We de�ne recursively the random variablesN1 = minfn 2 N j Tn+l�1 � � � � � Tn 2 Eg;Ni+1 = minfn 2 N j n > Ni + l; Tn+l�1 � � � � � Tn 2 Eg :First of all, let us prove that the random variables Ni are almost surely �nite. Let us considerthe event A1 = fN1 < +1g. It is easy to see that A1 is invariant by the shift �. In factN1(��1!) = N1(!) + 1 or 0. Hence fN1(!) < +1g ) fN1(��1!) < +1g, i.e. �(A) � A.By Lemma 10.2.1, it implies that A is of probability 0 or 1. But (fN1 = 0g = E) � A and byassumption P (E) > 0. We conclude that P (A) = 1. A similar argument can now be applied toN2. For A 2 F , we de�ne the indicator function 1A : 
! 
; 1A(!) = 1 i� ! 2 A. We haveP (N2 < +1) = E(1fN2<+1g) = E(Xk 1fN1=kg1fN2<+1g)= E(Xk 1fN1=kg1fN1��k+l<+1g) = E(Xk 1fN1=kg) = 1 :We conclude the proof by induction.Let  and  be the maximal and minimal rates as de�ned in Theorem 10.3.5. Let us assumethat  6= . It implies, 8x 2 Rk,lim infn (maxi x(n)i �mini x(n)i) = +1 : (10.8)



10.4 Application to Stochastic Discrete Event Networks 202But we also have that 8i 2 N; �(x(Ni+ l)) � K. It implies that (maxj x(Ni+ l)j �minj x(Ni+l)j) � K 0 where K 0 is a compact of R. Hence there exists a subsequence N�(i) such that(maxj x(N�(i)+ l)j �minj x(N�(i)+ l)j) converges to a �nite limit. This is in contradiction with(10.8). utRemark 10.3.11. In many applications, the operator will be applied on a vector of dates fora physical system. The vectors x(n) and x(n+1) = Tn(x(n)) will represent the dates of the n-thand (n+1)-th occurrences of some events in a system. In such a case, the homogeneity propertycan be interpreted as the fact that changing the absolute origin of times does not modify thedynamic of the system. Hence it becomes a very natural assumption. The monotonicity isinterpreted as the fact that delaying an event delays all following events.10.4 Application to Stochastic Discrete Event Networks10.4.1 Discrete event networksA discrete event network is characterized by1. A sequence N = N[�1;1] = f�(k);M(k); k 2Zg;where �(k) 2 R+ and fM(k)g is a sequence of F -valued variables, where F is somemeasurable space. With N and n 6 m 2Z, we associate the sequence N[n;m] de�ned by:N[n;m] def= f�[n;m](k);M(n+ k); k 2 Ng;where �[n;m](k) def= �(n+ k), for 0 6 k 6 m� n, and �[n;m](k) def= 1, for k > m� n.2. Measurable functions �(k; :) and 	(:): (R+� F )N! R[ f1g, k 2 N�, through which arede�ned X[n;m] = 	(N[n;m]); n 6 m; X�[n;m](k) = �(k;N[n;m]); k > 1:Remark These variables receive the following interpretations: X�[n;m](k) is the initiation dateof the k-th event on some reference node, for the driving sequence N[n;m].X+[n;m](k) def= X�[n;m](k) + �[n;m](k); n 6 m; k > 0is the completion date of this event. X+[n;m](k) and X�[n;m](k) are called internal daters. X[n;m]is the maximal dater, i.e. the date of the last event in the network, for the sequence N[n;m].



10.4 Application to Stochastic Discrete Event Networks 20310.4.2 The monotone{separable frameworkLet N and eN be two driving sequences such that �(k) 6 e�(k) <1 for all k, and with M(k) =fM(k) for all k. We denote X�[1;m](k); X+[1;m](k) and X[1;m] the daters associated with N[1;m] andeX�[1;m](k), etc. those associated with eN[1;m].A network is said to be monotone-separable if it satis�es the following properties for all m >1; k > 1 and for all N and eN as above:� causality X�[1;m](m+ 1) 6 X[1;m] <1.� monotonicity X�[1;m](k) 6 eX�[1;m](k) and X[1;m] 6 eX[1;m].� non-expansiveness 1 eX�[1;m](k)� X�[1;m](k) 6 x and eX[1;m] �X[1;m] 6 x, if e�(k) = �(k)for all k 6= l, and e�(l) = �(l) + x, x > 0.� separability For 1 6 l < m, if X[1;l] 6 X+[1;m](l+1) then X[1;m] 6 X�[1;m](l+1)+X[l+1;m].Proposition 10.4.1. Under the above assumptions, the sequence X[m;n] satis�es the sub-addi-tive inequality X[m;n] 6 X[m;l] +X[l+1;n]; 8m 6 l < n:Proof. It is enough to prove the property for m = 1, since the general relation will then beobtained by applying the relation for m = 1 to the variables associated with some adequatesequence. Let 1 6 l < n. There are two cases:Case 1: X[1;l] 6 X+[1;n](l + 1). Then, in view of separabilityX[1;n] 6 X�[1;n](l+ 1) +X[l+1;n]6 X[1;l]+X[l+1;n];where we used the fact that X[1;l] > X�[1;l](l + 1) > X�[1;n](l + 1); which follows from causalityand monotonicity (X�[1;l](l+ 1) = eX�[1;n](l+ 1) with e�(k) = �(k) for 1 6 k 6 l and e�(k) =1 fork > l).Case 2: X[1;l] > X+[1;n](l + 1).Consider the two sequences f�(k)g and fe�(k)g, which only di�er in their (l + 1)-st coordinate,for which we take e�(l + 1) = �(l + 1) + x, x > 0. In view of monotonicity, X[1;n] 6 eX[1;n]: In1If one sees (	(:);�(k; :); k > 1) as a function: (R+)N ! (R[ f1g)N { the sequence fM(k)g being �xed {this is indeed non-expansiveness when taking a L1 norm on (R+)N and a L1 norm on (R[ f1g)N .



10.4 Application to Stochastic Discrete Event Networks 204particular, if we take x = x� with x� = X[1;l]�X+[1;n](l+ 1) > 0, theneX+[1;n](l+ 1) = eX�[1;n](l+ 1) + �(l+ 1) + x�= eX�[1;n](l+ 1) + �(l+ 1) +X[1;l]�X+[1;n](l+ 1)= X[1;l]+ eX�[1;n](l+ 1)�X�[1;n](l+ 1): (10.9)But X[1;l] does not depend on �(l+ 1), and so X[1;l] = eX[1;l]. ThereforeeX+[1;n](l+ 1) = eX[1;l] + eX�[1;n](l+ 1)�X�[1;n](l+ 1)> eX[1;l] (monotonicity)We �nally obtain that, for x = x�eX[1;n] 6 eX�[1;n](l+ 1) + eX[l+1;n]; (separability)= eX+[1;n](l+ 1) +X�[1;n](l+ 1)�X[1;l] + eX[l+1;n]; (Equation (10:9))6 eX+[1;n](l+ 1) +X�[1;n](l+ 1)�X[1;l] + x� +X[l+1;n]; (non� exp:)= eX+[1;n](l+ 1) +X�[1;n](l+ 1)�X[1;l] +X[1;l]�X+[1;n](l+ 1) +X[l+1;n]= eX+[1;n](l+ 1)�X+[1;n](l+ 1) +X�[1;n](l + 1) +X[l+1;n]6 x� +X�[1;n](l+ 1) +X[l+1;n]; (non� exp:)= X�[1;n](l+ 1)�X+[1;n](l+ 1) +X[1;l] +X[l+1;n]6 X[1;l]+X[l+1;n]: utRemark 10.4.2. Under the additional assumption that X�[1;m](l+1) is a function of f�(k); 16k 6 l; andM(p); 1 6 p 6 mg only, non-expansiveness can be replaced by the following property:� sub-homogeneity eX[1;m] 6 X[1;m] + �, if e�(1) = �(1) + � and e�(k) = �(k) for all k > 1,� > 0 and m > 1.The proof is exactly the same for case 1. For case 2, taking x� as in the proof of Proposition10.4.1 gives eX+[1;n](l+ 1) = X[1;l] andeX[1;n] 6 eX�[1;n](l+ 1) + eX[l+1;n]; (separability)= X�[1;n](l+ 1) + eX[l+1;n]6 X�[1;n](l+ 1) +X[l+1;n] +X[1;l] �X+[1;n](l+ 1); (sub � homog:)6 X[1;l] +X[l+1;n]:



10.4 Application to Stochastic Discrete Event Networks 205Remark 10.4.3. Some generalizations of the framework, with internal daters, will be pro-posed in [?]. See also the Jackson network example of x10.9.2. The comments on the physicalinterpretation of homogeneity or monotonicity made in Remark 10.3.11 also apply to discreteevent networks.10.4.3 Open discrete event networksA discrete event network is said to be open if the following additional assumption holds for allm > 1: 81 6 k 6 m; X�[1;m](k + 1) = X�[1;1](k + 1) = X+[1;m](k); and X�[1;m](1) = 0:One can then de�ne a point process fAkgk>1 byAk = A1 +X�[1;1](k):The origin of this point process is arbitrary. It is then possible to interpret fAkg as an externalarrival process, the inter-arrival times being the sequence f�(k)g. To summarize, an opendiscrete network is described by a sequence N = N[�1;1] = fAk;M(k); k 2Zg.The conditions of the monotone separable framework take the following form for an open network(which corresponds to the conditions of [10]) : for all m > 1, the following properties hold:� causality Am 6 A1 +X[1;m] <1.� monotonicity eX[1;m] > X[1;m]; for eN and N with e�(k) > �(k) for all k.� homogeneity Let eN be the point process obtained by shifting the points of N Ak, k > 1,of � > 0 to the right. Then eX[1;n] = X[1;n].� separability A1+X[1;m] 6 Al+1+X[l+1;m] for all 1 6 l < m such that A1+X[1;l] 6 Al+1.For an open network, monotonicity can be interpreted as the fact that delaying an arrival delaysall forthcoming events in the network. For a possible interpretation of separability, see Remark10.7.1.10.4.4 Stochastic discrete event networksWe consider a probability space (
;F ; P; �) as in x10.2. The following stochastic assumptionsare made:� compatibility (�(k);M(k)) = (�(0);M(0)) � �k for all k 2Z.� integrability 9C > 0, �Cm 6 E[X[1;m]] <1 for all m > 0.Theorem 10.4.4. For all discrete event network which satis�es the monotone-separable as-sumptions and the above stochastic assumptions, we havelimn!1 X[1;n]n =  a:s: and limn!1 E[X[1;n]]n =  (10.10)for some �nite constant .



10.5 Relations Between Operators and Networks 206Proof. We have X[m;m+p] = X[0;p] � �m, for all m 2 Zand p > 0. For m 6 n, de�ne Y[m;n+1] =X[m;n]. From Proposition 10.4.1, for all m 6 l < n,Y[m;n+1] 6 Y[m;l+1] + Y[l+1;n+1]:So fY[m;n]g, m < n, satis�es all the assumptions of Theorem 10.2.2. ut10.5 Relations Between Operators and NetworksLet us investigate the relation between the operator framework considered in x10.3 and themonotone-separable framework considered above. Let fTng be a sequence of monotone andhomogeneous operators. Let �(n) � 0 and M(n) = Tn. Let x(n; 0) be the variables associatedwith the operator recurrence equation (10.2) with initial condition x0 = 0. With these variables,we associateX�[0;n](k) = X+[0;n](k) = maxi x(k � 1; 0)i; k > 1; and X[0;n] = maxi x(n; 0)i;Note that these variables are functions of fM(l)g. We have� X�[0;n](n+ 1) = X[0;n] <1, so that causality holds.� Monotonicity and non-expansiveness trivially hold as neither X�[0;n](k); k > 1, nor X[0;n]depend upon f�(l)g.� Separability holds because it is always true that X[0;l] = X�[0;m](l+ 1) andX[0;m] = maxi (Tm � : : : � Tl+1(x(l; 0)))i= maxi �Tm � : : : � Tl+1(x(l; 0)+ (X[0;l] �X[0;l])~1)�i= X[0;l] + maxi �Tm � : : : � Tl+1(x(l; 0)�X[0;l]~1)�i ; (homog:)6 X[0;l] + maxi (Tm � : : : � Tl+1(0))i ; (monotonicity)= X�[0;m](l + 1) +X[l+1;m]:Hence, monotone separable operators are a special case of monotone separable discrete eventnetworks. On the other hand, it should be remarked that an operator can not be representedas an open discrete event network. A representation in terms of operators is interesting as it ismore precise than the corresponding discrete event network one. In particular, we will see thatwe are able to obtain second order results for operators, x10.8, and not for non-open discreteevent networks, x10.7.2.Second Order Ergodic ResultsWe will introduce a construction which is known as the Loynes scheme. This type of constructionwill be used for both types of models, discrete event networks and operators, but in a ratherdi�erent way.



10.6 Basic Example and Probabilistic Tools 20710.6 Basic Example and Probabilistic ToolsThe basic construction was introduced by Loynes in [103] to study the stability of the G=G=1=1queue. A G=G arrival process is a stationary and ergodic marked point processN = f(�n; �n); n 2Zg ;where �(n) 2 R+ is the service time required by customer n and �n = An+1�An the inter-arrivaltime between customers n and n+1. The 1=1 part describes the queueing mechanism. There isa single server and an in�nite waiting room or bu�er. Upon arrival at instant An, customer n isserved immediately if the server is idle at A�n and is queued in the bu�er otherwise. The serveroperates at unit rate until all customers present in the bu�er have been served. Let X[l;n] bethe time of last activity in the system, i.e. the departure of the last customer, for the restrictionN[l;n]. Here are two equivalent ways to describe the system :� As a stochastic operator,� An+1X[l;n+1] � = � �n +Anmax(�n + �n+1 + An ; �n+1 +X[l;n]) � (10.11)= � �n "�n 
 �n+1 �n+1 � 
 � AnX[l;n] � (10.12)Equation (10.11) can be written X[l;n+1] = max(An+1; X[l;n]) + �n+1. The meaning is that theserver starts working on customer n + 1 as soon as this customer has arrived (An+1) and theserver has completed the services of the previous customers (X[l;n]). Equation (10.12) is just are-writing using the (max,+) notations, see also x10.9.1. It is easy to verify that this operatoris monotone and homogeneous.� As an open network, by means of the function 	 of x10.4.X[l;n] = 	(�i; �i; i 2 fl; : : : ; ng)= (An �Al) + �n + max(0; n�lmaxk=1 kXi=1(�n�i � �n�i)) : (10.13)The easiest way to understand Equation (10.13) is to look at Figure 10.1. Function 	 is mono-tone, homogeneous and separable.Let us consider the sequence of variables fZ[l;n]; l 6 n 2Zg de�ned by Z[l;n] = X[l;n]�(An�Al):The variables Z[l;n] verify Lindley's equation2 Z[l;n+1] = (Z[l;n] � �n)+ + �n+1.Theorem 10.6.1 (Loynes [103]). The sequence Z[�n;0] is increasing in n, i.e. Z[�n�1;0] >Z[�n;0]. The limit Z = limn Z[�n;0] veri�es PfZ < +1g = 0 or 1. Furthermore Z is a stationarysolution of Lindley's equation, i.e. Z(�!) = (Z(!) � �0)+ + �1. When PfZ < +1g = 1, thesequence fZ[0;n]; n 2 Ng couples in �nite time with the stationary sequence fZ � �ng.2It is more classical, but equivalent, to work with the workload variable Wn = X[0;n] � An � �(n), yieldingequation Wn+1 = (Wn + �n � �n)+.



10.7 Application to Stochastic Discrete Event Networks 208A�2 A�1 A0A�2 A�1 A0A�3 ��3 Z[�3;0]Z[�4;0]
��3 Z[�4;0] > Z[�3;0]A�3A�4Figure 10.1: Loynes scheme for the G=G=1=1 queue.Proof. The monotonicity of Z[�n;0] is easy to obtain from Equation (10.13). It is also illustratedin Figure 10.1. Hence the limit Z = limn Z[�n;0] exists. Let us denote A = fZ < +1g. FromZ[�n;1] = (Z[�n;0] � �0)+ + �1 and the fact that �1 is a.s. �nite, we obtainZ(!) < +1 , 9K 8n; Z[�n;0](!) < K ) 9K 0 8n; Z[�n;1](!) < K 0 :But we also have Z[�n;1](!) = Z[�n�1;0](�!) : (10.14)We conclude that Z(�!) < +1. We have proved that �(A) � A which implies, ErgodicLemma 10.2.1, that PfAg = 0 or 1. From Equation (10.14), letting n go to 1, we deduce thatZ(�!) = (Z(!)� �0)+ + �1. For a proof of the remaining point, see [103] or [6]. utThe limit Z is usually referred to as Loynes variable. We can obtain, using Equation (10.13),PfZ < +1g = 1 , E(�) < E(�). The condition E(�) < E(�) de�nes the stability region.This condition is usually written under the form � = E(�)=E(�)< 1. We will see a similar typeof stability condition in Theorem 10.7.3.10.7 Application to Stochastic Discrete Event Networks10.7.1 Open discrete event networksThe assumptions and notations are those of x10.4.3 but we replace the separability assumptionby � strong separability For 1 6 l < m, if A1 + X[1;l] 6 Al+1 then A1 + X[1;m] = Al+1 +X[l+1;m].



10.7 Application to Stochastic Discrete Event Networks 209Remark 10.7.1. Strong separability can be interpreted as follows. If the arrival of customerl + 1 takes place later than the last activity for the arrival process [1; l], then the evolution ofthe network after time Al+1 is the same as in the network which starts \empty" at this time.We de�ne � = E(An+1 �An)�1 interpreted as the arrival rate andZ[l;n] = X[l;n] � (An �Al); l 6 n : (10.15)Proposition 10.7.2 (Internal monotonicity). Under the above assumptions, we haveZ[l�1;n] > Z[l;n]; l 6 n:Proof. Consider the point process eN with e�(l � 1) = �(l � 1) + Z[l�1;l�1] and e�(k) = �(k)everywhere else. For eN[l�1;n], we have separability in l so thateX[l�1;n] = eX[l;n] + eAl � eAl�1= X[l;n] + eAl � eAl�1 (strong� separability)= X[l;n] +Al � Al�1 + Z[l�1;l�1] : (10.16)ThereforeZ[l�1;n] = X[l�1;n] � (An �Al�1)= X[l�1;n] � (An �Al)� (Al � Al�1)= X[l�1;n] � (An �Al) +X[l;n] � eX[l�1;n] + Z[l�1;l�1] (by (10:16))= Z[l;n] +X[l�1;n] � eX[l�1;n] + Z[l�1;l�1]> Z[l;n]; (non� expansiveness): utLet Z = limn Z[�n;0](N), which exists by internal monotonicity of Z[�n;0](N). We de�ne ac-scaling of the arrival point process N in the following way :0 6 c < +1; cN = fcAn;M(n); n 2Zg :FromEquation (10.15) and Prop. 10.4.1 , we obtain that Z[1;n] is subadditive. Applying Theorem10.4.4, we obtain the existence of the limitslimn Z[1;n](cN)n = limn Z[�n;0](cN)n = (c) :From Equation (10.15), we obtainlimn X[1;n](cN)n = limn X[�n;0](cN)n = (c) + c� :For c > ~c, we have cN > ~cN . We obtain by internal monotonicity and by monotonicityrespectively :



10.7 Application to Stochastic Discrete Event Networks 2101. Z[�n;0](cN) is decreasing in c =) (c) is decreasing in c.2. X[0;n](cN) is increasing in c =) (c) + c=� is increasing in c.We deduce the existence of a constant (0) de�ned by :limc!0& (c) + c� = (0) = limc!0% (c) : (10.17)The intuitive interpretation is that (0)�1 is the throughput of the network when we saturatethe input, i.e. when An = 0; 8n. It is the maximal possible throughput.Theorem 10.7.3. Let N = fAn;Mn; n 2 Zg be a stationary ergodic point process. We set� = �(0). If � > 1, then P (Z = +1) = 1. If � < 1, then P (Z < +1) = 1 and fZ[0;n]; n 2 Ngcouples in �nite time with the stationary sequence fZ � �ng.Proof. The �rst part of the theorem is immediate. In fact relation (10.17) implies (1)+ 1=� >(0). We have : �limn Z[�n;0]n = (1)� > �(0)� 1� = �� 1� � :Therefore � � 1 > 0 implies P (Z = +1) = 1. For a complete proof of the result, the reader isreferred to [10]. utRemark 10.7.4. For � < 1, Z is the smallest stationary regime for the response time of thesystem (which is de�ned as the time to the last activity under the restriction [�1; 0] of N).Intuitively it is the stationary regime corresponding to an \empty" initial condition as it isthe limit of the systems starting \empty" and fed up with the restrictions [�n; 0] of N . Inmany cases, there will be multiple stationary regimes depending on the initial condition. Asimple example of a monotone and separable open network having multiple stationary regimesis proposed in [6], p.83. It is a G=G=2=1 queue with a \shortest workload" allocation rule (seealso Theorem 10.8.6).10.7.2 General discrete event networksFor discrete event networks which are not open, there are no such second order results. Thereason is the absence of internal monotonicity of the variables Z[�n;0] = X[�n;0] � X�[�n;0]. Weillustrate the phenomenon on Figure 10.2 where we compare the case of a general network andthe case of an open network.For open and general networks, we consider successively the restrictions [�n; 0] and [�n� 1; 0].In the open case, the internal monotonicity has been illustrated in Figure 10.2. In the generalcase, the variables X� are internal variables, hence their value are modi�ed when we go fromthe restriction [�n; 0] to [�n � 1; 0]. As a consequence, there is no internal monotonicity. OnFigure 10.2, for the ease of comparison, we have assumed that X�[�n�1;0](�n) = X�[�n�1;0](�n)(these quantities are de�ned up to an additive constant).



10.8 Application to Stochastic Operators 211A�n A0A0A�n�1 A�n Z[�n�1;0]X�[�n�1;0] (0)X�[�n;0](0)X�[�n;0](�n) Z[�n;0]Z[�n;0]Z[�n�1;0]X�[�n�1;0] (�n)
Open network : Z[�n�1;0] > Z[�n;0]General networkX�[�n�1;0] (�n� 1)Figure 10.2: Loynes scheme for monotone-separable networks.10.8 Application to Stochastic OperatorsWe propose in Sections 10.8.1 and 10.8.2 two very di�erent approaches. They correspond totwo di�erent types of operators, see Remark 10.8.4. The �rst approach is directly based on theLoynes scheme. The second one uses �xed points results.10.8.1 MonotonicityDe�nition 10.8.1. We say that the operator T : Rk! Rk has a minimal value if there existsx0 2 Rk such that 8y > x0; T (y) > x0.Let us consider a sequence of monotone operators fTn; n 2 Zg. If all the operators have acommon minimal value x0, then we are able to construct a Loynes scheme, in the same way asin x10.6. In fact, we have T0(x0) > x0 and T0 � T�1(x0) > T0(x0) > x0 using monotonicity. Weobtain that 9Z 2 (R[ f+1g)k ; limn T0 � T�1 � � � � � T�n(x0) = Z : (10.18)The main question is whether the limit Z is �nite or not, the �nite case being the interesting one.In particular, if we consider a sequence of monotone-homogeneous operators, then the limits and  as de�ned in Proposition 10.3.4 exist. Because of the existence of the minimal value x0,we have  >  > 0. If  > 0 then there exists i such that Zi = +1 (the proof is immediate).For this reason, it is usually not interesting to construct a Loynes scheme directly on the sequenceof operators Tn. For example, in the case of the operator of the G/G/1 queue, see Equation(10.11), the Loynes scheme was not built on (An; X[l;n])0 but on the di�erences Z[l;n] = X[l;n]�An.In order to generalize the construction, the good approach is to consider the operators Tn in aprojective space.We have already de�ned the projective space PRk in De�nition 10.3.7. The space PRk is iso-morphic to Rk�1. Here are di�erent possible ways to map PRk onto Rk�1. Let i 2 f1; : : : ; kg,we de�ne :



10.8 Application to Stochastic Operators 212�i : Rk �! Rk�1; �i(x) = (x1 � xi; : : : ; xi�1 � xi; xi+1 � xi; : : : ; xk � xi)0�i : PRk! Rk�1; �i = �i � ��1 ;where � was de�ned in De�nition 10.3.7. It is easy to verify that �i is de�ned without ambiguityand is bijective.De�nition 10.8.2. Let x 2 Rk. We de�ne jxjP = maxi xi � mini xi. Let u 2 PRk (resp.u 2 Rk�1) and x be a representative of u, i.e. �(x) = u (resp. �i(x) = u) We de�ne jujP =maxi xi �mini xi.The function j:jP is a semi-norm on Rk as jxjP = 0) xi = �; 8i. On the other hand, it de�nesa norm on PRk or Rk�1. We call it the projective norm. We use the same notation for thesemi-norm on Rk and the norms on PRk and Rk�1 in order not to carry too many notations.Form now on, we are going to work on Rk�1 equipped with the projective norm. Without lossof generality, we will restrict our attention to �1; �1. Working on Rk�1 rather than on PRkenables us to have a natural partial order. The projective norm is indeed compatible with thecoordinatewise partial ordering on Rk�1, i.e. u; v 2 Rk�1; u > v ) jujP > jvjP.Let T : Rk! Rk be an homogeneous operator. We de�ne~T : Rk�1! Rk�1 ~T (u) = �1(T (x)); x 2 ��11 (u) :Because of homogeneity, ~T(u) is unambiguously de�ned. We can write, with abbreviated nota-tions, ~T = �1 � T � ��11 .Lemma 10.8.3. We consider an homogeneous operator T : Rk! Rk and the associated oper-ator ~T : Rk�1! Rk�1, satisfying the following assumptions:A. T is monotone.B. T (x)1 � x1 is independent of x 2 Rk.C. 9x0 such that T (x0)1 � (x0)1 = mini(T (x0)i � (x0)i).Under Assumption A, ~T is non-expansive. Under Assumptions A + B, ~T is monotone. UnderAssumptions A+B+C, ~T has minimal value ~x0 = �1(x0).Proof. We consider u; v 2 Rk�1 verifying u > v. Let x; y 2 Rk be such that �1(x) = u; �1(y) = vand x1 = y1.1. A) ~T is non-expansive. The representatives x and y are such that ju�vjP = jx�yjP = jjx�yjj1. By monotonicity of T , we have T (x) > T (y), hence jT (x)� T (y)jP 6 jjT (x)� T (y)jj1.By non-expansiveness of T (Theorem 10.3.2), we have jjT (x) � T (y)jj1 6 jjx � yjj1. Weconclude that : j ~T(u)� ~T (v)jP = jT (x)� T (y)jP 6 jjT (x)� T (y)jj16 jjx� yjj1 = ju� vjP :



10.8 Application to Stochastic Operators 2132. A+B ) ~T is monotone. Let the representatives x and y verify x1 = y1. Hence by AssumptionB, we have T (x)1 = T (y)1. We conclude that T (x) > T (y)) ~T (u) > ~T (v).3. A+ B + C ) ~T has minimal value ~x0 = �1(x0). We have~T0(~x0)i = T (x0)i � T (x0)1 = T (x0)i � (x0)i + (x0)i � T (x0)1> T (x0)1 � (x0)1 + (x0)i � T (x0)1 = (~x0)i :We conclude with the monotonicity of ~T that 8y 2 Rk�1; y > ~x0 ) ~T (y) > ~x0. utThe operator ~T is not homogeneous in general. Hence the conditions ensuring monotonicity andnon-expansiveness are not the same (to be compared with Theorem 10.3.2).Remark 10.8.4. Assumption B. can be easily weakened and replaced by :B0: 8x; y 2 Rk; x1 � y1 = mini xi � yi ) T (x)1 � T (y)1 = mini T (x)i � T (y)i :In Lemma 10.8.3, we have presented the assumptions which appear naturally in physical systems.In particular, Assumption B is veri�ed when the �rst coordinate of T is the dater of an exogenousarrival process. Assumption C is veri�ed if the other coordinates of T correspond to events whichare induced by the arrivals (hence occur later on). It was the case for the operator associatedwith the G=G=1=1 queue, see Equation (10.11). In that example, the minimal value wase = (0; : : : ; 0)0.These assumptions are of course restrictive. Roughly speaking, they will apply only to someoperators associated with `open systems'. For operators associated with `closed systems', theconditions and results of Section 10.8.2 are more appropriate.Theorem 10.8.5. Let fTn; n 2 Ng be a stationary and ergodic sequence of homogeneous ran-dom operators on Rk and f ~Tn; n 2 Ng the associated sequence on Rk�1. We assume that As-sumptions A,B and C of Lemma 10.8.3 are veri�ed with probability 1 by the operators fTng(in particular they have a constant minimal value x0). We set ~x0 = �1(x0). Then the limitZ = limn ~T0 � � � � � ~T�n(~x0) exists and veri�es PfZ < +1g = 0 or 1. Furthermore Z is a sta-tionary solution, i.e. Z(�!) = ~T1(Z(!)). When PfZ < +1g = 1, the sequence fTn�� � ��T1(x0)gcouples in �nite time with the stationary sequence fZ � �ng.Proof. It is exactly similar to the one of Loynes Theorem 10.6.1. utThe main di�culty is often to prove the �niteness of Z. Moreover, when �nite, Z is usually notthe unique stationary solution. Indeed, we have that 8� 2 R; ~x0+�~1 is a minimal value for theoperators ~Tn. Hence by Theorem 10.8.5, the limitsZ� = limn ~T0 � � � � � ~T�n(~x0 + �~1)exist and are stationary solutions. The variables Z� are increasing in � by monotonicity of ~Tn.Hence we can de�ne the limit Z1 = lim�!+1Z� : (10.19)



10.8 Application to Stochastic Operators 214Next theorem was originally proved by Brandt for a special operator associated with the queueG=G=k=1.Theorem 10.8.6 (Brandt [31]). We have PfZ1 < +1g = 0 or 1. If PfZ1 < +1g = 1,then Z1 is the maximal �nite stationary solution, i.e Z(�!) = ~T1(Z(!)) andY (�!) = ~T1(Y (!)); PfY < +1g = 1) PfZ1 > Y g = 1 :Proof. The essential ingredient is the non-expansiveness of ~Tn. For more details, the reader isreferred to [31] or [32], Theorem 1.3.2. utRemark 10.8.7. The results presented in this section x10.8.1 are just a specialization to op-erators of �nite dimension of more general results. Let (E; E) be a Polish space (completeseparable metric space) equipped with its Borel �-�eld. We consider f�n; n 2 Zg a stationaryand ergodic sequence of measurable random functions �n : E�
! E. The recursive equationsx(n+ 1) = �n(x(n)); x(0) = x0 de�ne a Stochastic Recursive Sequence, following the terminol-ogy of Borovkov [22]. If the functions �n are monotone and verify �n(x0) > x0 then the resultsof Theorem 10.8.5 hold (replace just Tn by �n). If we assume furthermore that the functions�n are non-expansive (with respect to the metric of E) then the results of Theorem 10.8.6 hold.For a detailed presentation of this framework, see [32] [25].10.8.2 Fixed pointIn this section, we will see a rather di�erent use of Loynes backward construction.Here is a result generalizing Proposition 10.3.9. The proof of A) B in Prop. 10.3.9 was usingonly the continuity of the operator T . In fact, using the non-expansiveness of T , we can getstronger results.Theorem 10.8.8 (Weller [138], Sine [130]). Let C be a compact of Rk. We consider anoperator T : C ! C, non-expansive with respect to the sup-norm jj:jj1. Then we have :8x 2 C; 9p 2 N; 9u 2 C : limn!1 Tnp(x) = u and T p(u) = u : (10.20)Corollary 10.8.9. Let T be de�ned as in Theorem 10.8.8. We assume that 8n > 1; Tn has aunique �xed point u. Then 8" > 0; 9N 2 N such that8n > N : supx2C jjTn(x)� ujj1 6 " : (10.21)In other words, there is uniform convergence of Tn to u.Proof. Let us prove �rst that Tn converges simply to u. Let x belong to C. As u is the unique�xed point of the powers of T , we obtain by application of Theorem 10.8.8 :8x 2 C; 9p 2 N; 8" > 0; 9M(x; ") 2 N; 8n >M(x; ") : jjTnp(x)� ujj1 6 " :By non-expansiveness, we have �jjT � Tnp(x)� T (u)jj1 = jjTnp+1(x)� ujj1� 6 jjTnp(x)� ujj1and by induction, 8q 2 N; jjTnp+q(x)� ujj1 6 jjTnp(x)� ujj1. It implies that8x 2 C; 8" > 0; 9N(x; ") 2 N; 8n > N(x; "); jjTn(x)� ujj1 6 " :



10.8 Application to Stochastic Operators 215We are now ready to prove that the convergence is uniform. Let us denote by B(x; ") theopen ball of center x and radius " for the sup-norm. Using non-expansiveness, we have that8y 2 B(x; "); 8n > N(x; "),jjTn(y)� ujj1 6 jjTn(y)� Tn(x)jj1 + jjTn(x)� ujj1 6 2" : (10.22)Using Borel-Lebesgue's characterization of compact sets, there exists a �nite number of pointsxi such that C � Si B(xi; "). Using Equation (10.22), we obtain :8" > 0; 8n > maxi N(xi; "); 8x 2 C : jjTn(x)� ujj1 6 2" :This completes the proof. utWe are now ready to prove the main theorem of this section which generalizes the results ofChapter 6.Theorem 10.8.10. Let fTn; n 2 Ng be a stationary ergodic sequence of monotone homoge-neous random operators on Rk and f ~Tng the associated sequence on Rk�1. We assume thatthere exists a deterministic monotone homogeneous operator S on Rk ( ~S on Rk�1) such thati. ~S is bounded, i.e. there exists a compact K of Rk�1 such that Im( ~S) � K.ii. 8n > 1; ~Sn has a unique �xed point, u.iii. There exists a deterministic constant l such that ~S belongs to the support of the randomoperator ~Tl�� � �� ~T1 and 8n > 0; ~Sn belongs to the support of ~Tnl�� � �� ~T1, with the followingprecise meaning : 8" > 0; Pf supx2Rk�1 j ~Tl : : : ~T1(x)� ~S(x)jP 6 "g > 0;Pf supx2Rk�1 j ~Tnl : : : ~T1(x)� ~Sn(x)jP 6 "g > 0 :Then 8x 2 Rk�1; ~x(n) = ~Tn�1 � � � � � ~T0(x) converges weakly to a unique stationary distribution.Proof. We �rst prove the theorem when replacing Assumptions iii: by the stronger assumption: iv: 9l s.t. Pf ~Tl � � � � � ~T1 = ~Sg > 0 and 8n > 0, Pf ~Tnl � � � � � ~T1 = ~Sng > 0.For x 2 Rk�1, we de�ne the variables :Z�n;0(x) = ~T0 � � � � � ~T�n(x) = ~x(n; x) � ��n : (10.23)We now prove that Z�n;0(x) admits P:a:s: a limit which is independent of x.



10.8 Application to Stochastic Operators 216The compact K of Assumption i: is stable by ~S and by Assumption ii:, there is a unique �xedpoint u 2 Rk�1 for the powers of ~S. From Lemma 10.8.3, ~S is non-expansive with respect tothe projective norm. Hence Corollary 10.8.9 can be applied to ~S on (Rk�1; j:jP). It implies8" > 0; 9N("); 8n > N("); 8x 2 Rk�1; j ~Sn(x)� ujP 6 " : (10.24)We de�ne the random variables8" > 0; M(") = minfn > N(")l j ~T�n � � � � � ~T�n�N(")l+1 = ~SN(")g ; (10.25)where N(") and l are de�ned in Equation (10.24) and in Assumption iv: respectively. Assump-tion iv: also implies that PfM(") < +1g > 0. We obtainPfM(") < +1g = 1 ; (10.26)in exactly the same way as we obtained PfN1 < +1g = 1 in the proof of Theorem 10.3.10.Let us �x " = 1. We de�ne the events An = fM(1; !) = ng which form a countable partition of
.Let us work for a moment on the event A = Am for a given integer m. Let us consider thevariables Z�n;�m(x) = ~T�m � : : : ~T�n(x); n > m. We have8n > m+N(1)l; Z�n;�m(x) = ~SN(1)( ~T�m�N(1)l � � � � � ~T�n(x)) : (10.27)Hence, on Am, the image of Z�n;�m is included in the closed ball of center u and radius 1(Equation (10.24)) that we denote by K(1),8n > m+N(1)l; Im(Z�n;�m) � K(1) : (10.28)We consider the sequence of random variables fM(1=i); i 2 Ng. By de�nition of the variablesM("), (10.25), the sequenceM(1=i) is increasing in i in particularM(1=i) >M(1). We have, forall n > M(1=i) +N(1=i)l (note that we consider the variables Z with respect to an unchangedending point �m).Z�n;�m(x) = ~T�m � � � � � ~T�n(x)= ~T�m � � � � � ~T�M(1=i)+1 � ~SN(1=i) � ~T�M(1=i)�N(1=i)l � � � � � ~T�n(x) :Using Equation (10.24), we have that ~SN(1=i) � ~T�M(1=i)�N(1=i)l � � � � � ~T�n(x) is included in theclosed ball of center u and radius 1=i. Using the non-expansiveness of the operators, we obtainthe existence of a compact set, denoted K(1=i) such that8n >M(1i ) +N(1i )l; Im(Z�n;�m) � K(1i ) : (10.29)We have built a decreasing sequence of compact setsK(1=i) whose radius goes to zero. By a clas-sical theorem on decreasing sequences of compact sets (Borel-Lebesgue Theorem), the intersec-tion of the setsK(1=i) is a single point. It means precisely that the limit of Z�n;�m(x); n! +1;exists and is independent of x. We de�ne the following notations



10.8 Application to Stochastic Operators 2178! 2 Am; 8x 2 Rk�1; limn!1Z�n;�m(x) = Z1;m; Z = ~T0 � � � � � ~T�m+1(Z1;m) :It is straightforward to prove that Z = limn!+1 Z�n;0(x). By applying the same constructionto all the events Am; m 2 N, we prove the a.s. existence of Z = limn Z�n;0(x), the limit beingindependent of x. By analogy with x10.6, we call Z the Loynes variable.We are now going to prove the existence of the Loynes variable Z under the weaker Assumptioniii:We de�ne the random variables N(") as previously, (10.24). On the other hand, the de�nitionof the variables M(") is modi�ed8"; M(") = minfn > N(")l j supx2Rk�1 j ~T�n+N(")l : : : ~T�n(x)� ~SN(")(x)jP 6 "g : (10.30)From Assumption iii: and the Ergodic Lemma 10.2.1, we obtain PfM(") < +1g = 1.We de�ne the variable M(1), then the partition An, the event A and the variables M(1=i) asbefore. We de�ne the variables :Ẑi�n;�m(x) = ~T�m : : : ~T�M(1=i)+1 � � ~SN(1=i)� � ~T�M(1=i)�1�N(1=i)l : : : ~T�n(x) (10.31)There exists a sequence of compacts K̂(1=i) of radius 1=i such that (see the �rst part of theproof) 8n >M(1=i) +N(1=i)l; Im(Ẑi�n;�m) � K̂(1=i) : (10.32)From the de�nition of M(1=i), Equation (10.30), we get8n >M(1=i) +N(1=i)l; 8x 2 Rk�1; jZ�n;�M(1=i)(x)� Ẑi�n;�M(1=i)(x)jP 6 1i :Using non-expansiveness, we obtain8n >M(1=i) +N(1=i)l; 8x 2 Rk�1; jZ�n;�m(x)� Ẑi�n;�m(x)jP 6 1i :We conclude that 8n >M(1=i) +N(1=i)l;8x; y 2 Rk�1jZ�n;�m(x)� Z�n;�m(y)jP 6 jZ�n;�m(x)� Ẑi�n;�m(x)jP +jẐi�n;�m(x)� Ẑi�n;�m(y)jP + jẐi�n;�m(y)� Z�n;�m(y)jP 6 3i :Hence there exists a sequence of compacts K(1=i) of radius 3=i such that 8n > M(1=i) +N(1=i)l; Im(Z�n;�m) � K(1=i). We conclude as in the �rst part of the proof.



10.8 Application to Stochastic Operators 218Our aim is now to prove that we have weak convergence of the process ~x(n) = ~Tn � � � �� ~T0(x(0))to the stationary distribution of Z. We consider a function f : Rk! R, continuous and bounded.We have, using the stationarity of f ~TngE ( f(x(n; x(0))) ) = E( f( ~Tn�1 � � � � ~T0(x(0)) )= E( f( ~T0 � � � � ~T�n+1(x(0)) ) n�! E f(Z) (10.33)The convergence in (10.33) is obtained from Lebesgue's dominated convergence theorem (f isbounded). It proves weak convergence. utRemark 10.8.11. It would be nice to replace Assumption iii: by the following weaker As-sumption v: 8" > 0; 8K compact ; Pfsupx2K j ~Tl : : : ~T1(x)� ~S(x)jP 6 "g > 0;Pfsupx2K j ~Tnl : : : ~T1(x)� ~Sn(x)jP 6 "g > 0 :Assumption v:means precisely that ~S is in the support of ~T0 for the topology of weak convergenceon the functional space C0(Rk�1;Rk�1) (continuous functions of Rk�1).However, Theorem 10.8.10 is not true under Assumption v: Here is a counter-example. Weconsider a; b 2 R+ and we de�ne the monotone homogeneous operators on R2 :TA(x) = � x1x2 + a � (10.34)8i 2 N+; TBi(x) = � x1max(x2 � ib; x1) � (10.35)We consider a sequence of i.i.d. random operators fTn; n 2 Ng with the following distribution :PfT0 = TAg = 12 ; PfT0 = TBig = 12i+1 ; i 2 N+ :We de�ne the monotone homogeneous operator S : R2! R2; S(x) = (x1; x1)0. It is clear that~S veri�es the Assumptions i: and ii: as ~S is constant. Let K be a compact set of R and n besuch that K � [�n; n]. We obtain immediately that 8x 2 K; ~TBi(x) = ~S(x) as soon as ib > n.Hence ~S veri�es also Assumption v:The description of the process ~x(n) = ~Tn�1 � � � � � ~T0(0) is very easy. It is a random walk on thereal line with an absorbing barrier at 0. The drift of the random walk is� = a2 � 1Xi=1 ib2i+1 = a2 � b :We conclude that the process ~x(n) is transient if a > 2b which provides the announced counter-example.Practically speaking, the main di�culty consists in �nding a deterministic operator S verifyingthe assumptions of Theorem 10.8.10. We discuss this point for some speci�c models in x10.9.1.



10.9 Models Entering the Framework 21910.9 Models Entering the Framework10.9.1 Stochastic operatorsLet A and B be two arbitrary sets. We de�ne applications (M k denotes the set of matrices ofdimension k � k) P : A� B ! M k (R); A : A� B ! M k (R[ f�1;+1g) ;where the matrices P (�; �) are \markovian", i.e. verify8i 2 f1; : : : ; kg; pij(�; �) > 0; kXj=1 pij(�; �) = 1 : (10.36)Let us consider the following \(min,max,+,�)" operatorx 2 Rk; i 2 f1; : : : ; kg; T (x)i = inf�2A sup�2B kXj=1 pij(�; �) (xj + aij(�; �)) : (10.37)Equation (10.37) arises in stochastic control of dynamic games, see for example [19]. If T (x)iis �nite (8x8i) then it de�nes a monotone-homogeneous operator. For example, let us provehomogeneity. We have for x 2 T k; � 2 R;T (x+ �~1)i = inf� sup� kXj=1 pij(�; �) (xj + �+ aij(�; �))= inf� sup� ( kXj=1 pij(�; �)�) + kXj=1 pij(�; �) (xj + aij(�; �)) = �+ T (x)i :The following representation theorem provides a precise idea of the degree of generality of theclass of monotone-homogeneous operators.Theorem 10.9.1 (Kolokoltsov [98]). Let T : Rk ! Rk be a monotone-homogeneous opera-tor. Then it can be represented in the form of Equation (10.37).The next lemma which is based on this representation, is proved in [98]. It can be coupled withTheorem 10.8.10 to obtain second order results for some stochastic operators.Lemma 10.9.2. Let T : Rk ! Rk be a monotone-homogeneous operator, written in the formof Equation (10.37). Let us assume that9� > 0 : 8i; j9l : 8�; �; pil(�; �) > �; pjl(�; �) > � :Then the operators Tn; n 2 N, have a unique generalized �xed point.From the point of view of applications, the interesting case is when the sets A and B are �nite.Here are some specializations of Equation (10.37).



10.9 Models Entering the Framework 220(+,�) linear systems The operator T is just a markovian matrix P , see Equation (10.36).We have T (x) = Px (matrix-vector multiplication in the usual algebra). Matrix P can beinterpreted as the matrix of transition probabilities of a Markov Chain (MC) having state spacef1; : : : ; kg. The most interesting operator for a MC is S(y) = yP where y is a row vector. It iswell known that the limit of Sn(y); y > 0;Pi yi = 1 is the stationary distribution of the MC. Butthe operator T (x) = Px is also interesting from the point of view of applications. It appearedin [54] to model the problem of reaching agreement on subjective opinions. More generally, ithas been studied as a special case of the general theory of products of non-negative matrices,see for example [127], Chapter 4.6.For any markovian matrix P , we have T (~1) = P~1 = ~1. Hence the vector ~1 is a generalized�xed point (Def. 10.3.8) of operator T . By application of the Perron-Frobenius Theorem, itis the only one. Hence, applying the ergodic results of this paper to a stochastic sequence ofmatrices Pn, is going to yield trivial results (the convergence of �(Pn : : :P0x) to �(~1) ). In factmuch stronger results are known for such models. The necessary and su�cient conditions ofconvergence of �(Pn : : :P0x) to �(~1), are known for a general sequence of matrices Pn, withoutany stochastic assumptions, see [127], Th. 4.18.(max,+) linear systems Such operators have the following formx 2 Rk; i 2 f1; : : : ; kg; T (x)i = maxj (xj + aij) ; (10.38)T (x) = A
 x : (10.39)Equation (10.38) can be interpreted as a matrix-vector product in the (max,+) algebra. Equation(10.39) is simply a rewriting of Equation (10.38) using (max,+) notations. The (min,+) linearcase boils down to the (max,+) case by switching to operator �T .Such systems appear in many domains of applications, under various forms. For example (with-out any kind of exhaustiveness)� Computer science : parallel algorithms, shared memory systems, PERT graphs, see [136]or [72].� Queueing theory : G=G=1=1 queue (see x10.6), queues in series, queues in series withblocking, fork-join networks [8].� Operations research and manufacturing : Job-shop models, event graphs (a subclass ofPetri nets), see [44], [85] and [8].� Economy or control theory : dynamic optimization, see [142].� Physics of crystal structures : Frenkel-Kontorova model, see [80].Among the very large and complete literature on the theoretical aspects of deterministic (max,+)systems, let us quote only [8] [107] and the references therein. As far as we know, the �rst refer-ences on stochastic (max,+) linear systems are [46] and [115]. Thanks to the rich deterministictheory, Theorems 10.3.5, 10.8.10 become very operational for (max,+) systems. The di�erent



10.9 Models Entering the Framework 221assumptions in these theorems can be interpreted as properties of the underlying graph structureof the model. For more details, see [105].(min,max,+) linear systems These systems can be represented in one of the following dualforms. We use the symbol 
 for the (max,+) matrix-vector product, see (10.39), and the symbol� for the (min,+) matrix-vector product.x 2 Rk; T (x) = min (A1 
 x;A2 
 x; : : : ; Al 
 x) ;T (x) = max (B1 � x;B2 � x; : : : ; Bp � x) :Here are some domains of application where such systems appear� Minimax control in dynamic game theory, see [19].� Study of timed digital circuits, see [82]. The (min,max) structure arises from the (and,or)operations of logical circuits.� Queueing theory. G/G/s/1 �le, resequencing �le, see for example [6]. Parallel processingsystems [17] : there are k processors. A customer requires to use concurrently p out of thek processors to be executed.� Motion of interfaces in particle systems [61]. As an illustration, let us describe a little bitmore precisely a special case known as the marching soldier model. There is a row of ksoldiers which advance in the same direction. In order to try to keep a common pace, theyadopt the following strategy. At regular instants of time, each soldier checks the positionof his right and left neighbours. He advances of 1 if they both are ahead of him and staysat the same position otherwise. Let x 2 Rk denote the position of the soldiers at instant0. Their position at instant 1, will be (with the convention x0 = xk+1 = +1)T (x)i = max (min(xi�1; xi; xi+1) + 1; xi) :The study of deterministic (min,max,+) systems (existence of generalized �xed points, projectiveboundedness,...) has been considered in several papers [114] [81]. However, it is far from beingcomplete. For this reason, the only references on stochastic (min,max,+) systems concern �rstorder results [61] [91].(max,+,�) linear systems These systems can be represented under the following formx 2 Rk; T (x)i = max�2A kXj=1 pij(�) (xj + ai(�)) : (10.40)Equation (10.40) appears in many domains of applications like operational research, managementscience and engineering. It is in fact one of the optimality equation of stochastic3 dynamic3The term stochastic refers here to the markovian interpretation of matrices P (�). According to our termi-nology, Equation (10.40) is that of a deterministic operator.



10.9 Models Entering the Framework 222programming in discrete time, on a �nite state space and with undiscounted rewards. Acontroller observes a system which evolves in a state space f1; : : : ; kg. The set of possibledecisions for the controller is A. Under decision � 2 A, the system evolves from a state i to astate j according to the transition probabilities pij(�). Also, under decision � 2 A, there is animmediate reward for being originally in state i which is ai(�). It is well known that the optimaldecision and the reward vector are obtained as limn Tn(x), see for example [140], Chapter 3.2.There is a very important literature on deterministic operators of type (10.40), see [124] or [140]and the references there. Next theorem is classical, for a proof see for example [140] Chapter4.3.Theorem 10.9.3. Let T be an operator verifying Equation (10.40). A su�cient condition forthe existence of a unique generalized �xed point for T is :8� 2 A, matrix P (�) is ergodic, i.e. the graph of the non-zero terms of P (�) is stronglyconnected and aperiodic.Remark 10.9.4. A (max,+) system can be viewed as a (max,+,�) system with A = f1; : : : ; kgand P (�) is de�ned by Pij(�) = 1 if j = � and Pij(�) = 0 otherwise. Such matrices do notverify the assumption of Theorem 10.9.3.The theorems presented in this paper, when coupled with results like Theorem 10.9.3 can be usedin an e�cient way for systems verifying (10.40) when the rewards a(�) and/or the transitionmatrices P (�) become random. The authors do not know of any reference on the subject.10.9.2 Discrete event networksWe are now going to review some classes of discrete event networks. We restrict our attentionto systems which can not be modeled as monotone-homogeneous operators. The references thatare quoted are only the ones using the monotone separable framework or similar approaches.� Precedence constraints models. Their study has been motivated by database systems.Di�erent variations are considered in [13] [18] [51].� Polling models. A wide class of polling models with general routing policies and stationaryergodic inputs enters the monotone separable framework, see [39].� Free choice Petri nets. Event graphs, which are represented as (max,+) linear operators,see x10.9.1, or Jackson networks, see below, are subclasses of Free choice Petri nets. Freechoice Petri nets enter the monotone separable framework, see [11] [9] [?].Let us detail two of these models. First we propose a simple example of precedence constraintsystem and second Jackson networks.Precedence constraints models There is a stream of customers j(n); n 2 N. Each customerj(n) has a service time requirement t(n) and precedence constraints under the form of a list L(n)of customers. More precisely, we have L(n) = fj(i1); j(i2); : : :j(iln)g with n > i1 > i2 > � � � >iln > 0. Job jn starts its execution as soon as all the customers of the list L(n) have completedtheir execution. The execution of customer j(n) takes t(n) units of time.Let us distinguish two cases.



10.9 Models Entering the Framework 2231. We assume that the length of the precedence list is uniformly bounded by k, i.e. 8n 2 N; ln 6 k.We de�ne the vector x(n) 2 Rk such that x(n)i is the instant of completion of customerj(n� i). From the dynamic described above, we have x(n+1) = Tn(x(n)), where the operatorTn : Rk! Rk is de�ned as follows� Tn(x)1 = maxfi j j(n�i)2L(n)g xi + t(n)Tn(x)i = xi�1; i = f2; : : : ; kgThis operator is monotone homogeneous. It is in fact a (max,+) linear system, see x10.9.1.2. Let us assume now that the length ln is not uniformly bounded. It is not possible to describethe system as an operator of �nite dimension. Let X[1;n] be the last instant of completion ofone of the customers j(i); i 2 f1; : : : ; ng. It is easy to verify that X[1;n] veri�es the propertiesof the monotone-separable framework for discrete event networks, see x10.4.In both cases, when ft(n); L(n); n 2 Ng forms a stationary ergodic sequence of random variables,we can apply the ergodic theorems presented in this paper.Jackson networks Jackson networks were introduced by Jackson in [90]. It is a queueingnetwork with I nodes, where each node is a single server FIFO queue, see Figure 10.3.:=G=1=1 FIFO :=G=1=1 FIFONode 1 Node 2:=G=1=1 FIFONode IFigure 10.3: A Jackson network.Customers move from node to node in order to receive some service there. The data are (2I)sequences f�i(n); n 2 Ng; f�i(n); n 2 Ng; i 2 f1; : : : ; Ig;where �i(n) 2 R+ and �i(n) 2 f1; : : : ; I; I + 1g.In the nominal network, the n-th, n > 1, customer to be served by node i after the origin oftime requires a service time �i(n); after completion of its service there, it moves to node �i(n),where I + 1 is the exit. We say that �i(n) is the n-th routing variable on node i.



10.9 Models Entering the Framework 224We are going to describe the closed (resp. open) Jackson network as a discrete event network(resp. open discrete event network), using the notations of x10.4.1.Closed case: the state at the origin of time is that with all customers in node 1, and service1 is just starting on node 1. There are no external arrivals and �i(n) 2 f1; : : : ; Ig, for all iand n. The total number of customers in the network is then a constant. We take�(n) def= �1(n):The internal daters X i�[1;1](n) and X i+[1;1](n), n > 1, i 2 f1; : : : ; Ig, are the initiation andcompletion instants of the n-th service on node i. We takeX�[1;1](n) def= X1�[1;1](n);so that X�[1;1](1) = 0.2.Open case: the state at the origin of time is that with all queues empty and a customeris just arriving in the network. There is an external arrival point process fAn; n > 1g, withA1 = 0, or equivalently an additional saturated node (numbered 0), which produces customerswith inter-arrival times �0(n) = An+1�An; n > 1, regardless of the state of the network. Then-th external arrival is routed to node �0(n) 2 f1; : : : ; Ig. We take�(n) def= �0(n):We can extend the de�nition of internal daters, which is the same as above, to i = 0 by takingX0�[1;1](n) = An and X0+[1;1](n) = An + �(n) = An+1. We takeX�[1;1](n) def= X0�[1;1](n) ;so that X�[1;1](1) = 0.In both cases, the restrictions [1; m] of the process are obtained by modifying the f�(n); n 2 Ngsequence in the following way�i[1;m](n) = 8><>:�i(n) for all n > 1 and i 6= 1 (resp: i 6= 0);�i(n) for all 1 6 n 6 m and i = 1 (resp: i = 0);1 for all n > m and i = 1 (resp: i = 0):The corresponding variables are denoted X�[1;m](n); X+[1;m](n). In both cases, the maximal dateris de�ned as X[1;m] = max supi;n nX i�[1;m](n) s: t: X i�[1;m](n) <1o ;supi;n nX i+[1;m](n) s: t: X i+[1;m](n) <1o! ;



10.9 Models Entering the Framework 225where the supremum bears on n > 1 and i 2 f1; : : : ; Ig (resp. i 2 f0; : : : ; Ig) in the closed(resp. open) case.The following lemma follows from results proved in [7].Lemma 10.9.5. For all i 2 f1; : : : ; Ig and l > 1, there exist �nite sets A(i; l)� N, B(i; l; p)�N where p 2 A(i; l) and C(i; l; p; q) � N � N where q 2 B(i; l; p), which depend on the routingsequences only (not on the service sequences). These sets are such that8m;n > 1; X i�[1;m](n) = infl2A(i;n) maxp2B(i;n;l) X(iq ;nq)2C(i;n;l;p)�iq[1;m](nq): (10.41)A pair (i; n) appears at most once in each set C(i; n; l; p).This lemma has to be interpreted as the fact that Jackson networks have a (min,max,+) struc-ture, although a very complicated one. Hence, it should come as no surprise that they enter themonotone separable framework. Let us prove it.Causality In both cases, the assumption is that X[1;m] is a.s. �nite for all m. Note that thisimplies causality as de�ned in x 10.4.Lemma 10.9.6. Causality is satis�ed whenever the routing sequences f�i(n)gn2N are i.i.d. andindependent of the service times, and the routing matrixP= (pij); pij = P (�i(1) = j); i; j 2 f1; : : : ; Igis without capture in the open case, and irreducible in the closed case.Proof. The proof is based on the following coupling idea: consider a Kelly network (i.e. a routeis attached to a customer, see [96]) where the routes are independent and sampled according tothe stopped Markov chain with transition matrix P. By this we mean that in the [1; m]-network,the route of the �rst customer to leave node 1 (resp. 0) isfN0 = 1; N1; : : : ; NU1g in the closed casefN0 = D;N1; : : : ; NUI+1g in the open case;where fNpg is a path of the Markov chain P, Ui is the return time to state i, and D is anindependent random variable on f1; : : : ; Ig, with distribution �(i) = P (�0(1) = i). The routesof the m �rst customers to be served at node 1 (resp. to arrive from node 0) are assumed to beindependent and identically distributed. In this Kelly network, the routes of these m customersare not a�ected by the service times (in contrast with what happens in the initial network).Thus, in the closed (resp. open) case, all m customers eventually return to node 1 (resp. leave)provided P is irreducible (resp. P is without capture). In addition, such a Kelly network isidentical in law to the [1; m] restriction of the original network. So P (X[1;m] <1) = 1. utIn what follows, we will adopt the assumptions of Lemma 10.9.6 and assume in addition thatthe service times are integrable.



10.9 Models Entering the Framework 226Monotonicity As an immediate corollary of Lemma 10.9.5, for all �xed routing sequences,for all m;n > 1 and i, the variable X i�[1;m](n) (and therefore X i+[1;m](n) as well) is a monotonenon-decreasing function of f�j(n); j 2 [2; : : : ; I ]; n> 1; �1(n); 1 6 n 6 mg (resp. f�j(n); j 2[1; : : : ; I ]; n > 1; �0(n); 1 6 n 6 mg). This monotonicity extends to the maximal dater as well.Non-expansiveness Let j 6 I and l > 1 be �xed. Consider �j(l) as a variable and all otherservice times as constants. Then, it follows from Lemma 10.9.5 that X i�[1;m](n) is a (min;max)function of �j(l). Thus non-expansiveness as de�ned in x 10.4 holds.Separability Let 'i[1;m] = supfn > 1 j X i+[1;m](n) < 1g; m > 1; (the total number of eventswhich ever complete on station i in the [1; m]-network). Of course '1[1;m] = m in the closed case,and '0[1;m] = m in the open case.The following two properties hold:1. For all i and m, 'i[1;m] does not depend on the (�nite) values of the variables f�j(n); j 2[2; : : : ; I ]; n > 1; �1(n); 1 6 n 6 mg (resp. f�j(n); j 2 [1; : : : ; I ]; n > 1; �0(n); 1 6 n 6mg) {this follows from Lemma 10.9.5.2. For all m > 1, the random variables f'i[1;m]; i 6 Ig form a stopping time of the sequencesf�i(n); i 6 I; n > 1g in the sense thatf'i[1;m] 6 ni; i 6 Ig 2 Ff�i(l); l 6 ni; i 6 Ig;where F(u) denotes the �-algebra generated by the random variable u.We are now in a position to complete the de�nition of N = f�(n);M(n); n 2 N�g (see x10.4)for this network, by takingM(n) def= f�i(l); �i(l); l = 'i[1;n�1] + 1; : : : ; 'i[1;n]; i 6 Ig; n > 1;with the convention 'i[1;0] = 0.With this de�nition, the [m;1]-network, 1 6 m, is a Jackson network as de�ned above, butwith the driving sequences �i[m;1](n) = �i(n+ 'i[1;m�1]); n > 1;�i[m;1](n) = �i(n+ 'i[1;m�1]); n > 1:From the i.i.d. assumptions on the sequences f�i(n); �i(n); n 2 Ng and the fact that the r. v.'i[1;m�1] are stopping times, we obtain that the [m;1]-network is equal in distribution to theoriginal [1;1]-network. Separability is now clear:



10.9 Models Entering the Framework 227� Open case: if Al+1 > A1 +X[1;l], then from monotonicity, for all i,Al+1 > A1 +X i+[1;l]('i[1;l]) > A1 +X i+[1;n]('i[1;l]);and so, the (l + 1)-st external arrival �nds an empty network (we know that if thereare l external arrivals and 'i[1;l] departures from node i, then the network is empty). Inaddition, the next customer to be served on node i is that with index 'i[1;l] + 1, i 6 I .Thus A1 +X[1;m] = Al+1 +X[l+1;m].� Closed case: if X+[1;m](l + 1) > X[1;l], thenX+[1;m](l+ 1) > X i+[1;l]('i[1;l]) > X i+[1;m]('i[1;l]);and so, by the same argument as above, when the (l + 1)-st service ends on node 1, allcustomers are present in node 1. Separability follows in a way which is similar to that ofthe previous case.First order ergodic theoremCompatibility is immediate from Property 2 of f'i[1;m]g. To prove integrability, it is enoughto prove that X[1;1] is integrable. This follows from the fact that the stopping times U1 (resp.UI+1) of P are integrable and from the assumption that service times are integrable.Therefore, Theorem 10.4.4 applies andlimm!1 X[1;m]m = ; a:s:for some positive and �nite constant, both in the open and closed cases. More generally, it canbe shown that the above limit implies that there exist �nite constants rates i such thatlim X i�[1;m]m = i; a:s:; i 6 I;both in the open and closed cases. For more details on the explicit computation of these ratessee [9] and [?].
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