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Abstract. We develop a computational approach to non-parametric
Fisher information geometry and algorithms to calculate geodesic paths
in this geometry. Geodesics are used to quantify divergence of probabil-
ity density functions and to develop tools of data analysis in information
manifolds. The methodology developed is applied to several image anal-
ysis problems using a representation of textures based on the statistics of
multiple spectral components. Histograms of filter responses are viewed
as elements of a non-parametric statistical manifold, and local texture
patterns are compared using information geometry. Appearance-based
object recognition experiments, as well as region-based image segmen-
tation experiments are carried out to test both the representation and
metric. The proposed representation of textures is also applied to the
development of a spectral cartoon model of images.

1 Introduction

Large ensembles of data are often modeled as random samples of probability
distributions. As such, the algorithmic analysis of complex data sets naturally
leads to the investigation of families of probability density functions (PDFs). Of
particular interest is the development of metrics to quantify divergence of PDFs
and to model similarities and variations observed within a family of PDFs.

Information geometry studies differential geometric structures on manifolds
of probability distributions and provides important tools for the statistical anal-
ysis of families of probability density functions. While this area has experienced
a vigorous growth on the theoretical front in recent decades (see e.g. [1, 2, 18]),
the development of corresponding computational tools for data analysis is still
somewhat incipient. In this paper, we develop novel computational methods and



strategies for the algorithmic study of non-parametric Fisher information geom-
etry and investigate applications to problems in image analysis.

As geodesics are natural interpolators in Riemannian manifolds, a key ele-
ment developed in this paper is an algorithm to calculate geodesics and geodesic
distances in the geometry associated with Fisher information. This basic tool will
allow us to devise computational approaches to problems such as: (i) quantifying
similarity and divergence of PDFs; (ii) interpolating and extrapolating PDFs;
(iii) clustering probability density functions; (iv) dimensionality reduction in the
representation of families of PDFs; (v) development of statistical models that
account for variability observed within a class of density functions. For simplicty,
we shall focus our investigation on PDFs defined on a finite interval, which will
be normalized to be I = [0, 1], with respect to the Lebesgue measure. However,
the techniques apply to more general settings.

Since the introduction of the discrete cartoon model of images by Geman and
Geman [8] and Blake and Zisserman [3], and its continuous analogue by Mumford
and Shah [17], many variants followed and have been applied to a wide range
of image processing tasks [4]. In these models, an image is typically viewed as
composed of two basic elements: (i) a cartoon formed by regions bounded by
sharp edges, within which the variation of pixel values is fairly smooth; (ii) a
texture pattern within each region, which is frequently modeled as white noise. A
drawback in such approaches is the texture model adopted; the view that texture
is not noise, but some form of structured appearance is becoming prevalent. To
address this problem, models such as the spectrogram model [15, 24] have been
proposed (see also [9]). A common strategy in texture analysis has been to de-
compose images into their spectral components using bandpass filters and utilize
histograms of filter responses to represent textures. Zhu et al. [23] have shown
that marginal distributions of spectral components are sufficient to characterize
homogeneous textures; other studies of the statistics of spectral components in-
clude [19, 6, 22]. Experiments reported in [14] offer empirical evidence that the
same applies to non-homogeneous textures if adequate boundary conditions are
available; that is, enough pixel values near the boundary of the image domain
are known.

In this paper, we model local and global texture patterns using histograms of
spectral components viewed as elements of a non-parametric information mani-
fold. Geodesic distances in this manifold are used to quantify texture similarity
and divergence. Multi-scale texture representation and analysis can be carried
out within this framework by restricting spectral components to sub-windows of
the image domain of varying sizes. Several experiments involving appearance-
based object classification and recognition, as well as region-based image seg-
mentation are carried out to test the proposed representation and methodology.
We also introduce a multi-scale spectral cartoon model of images based on this
information theoretical representation of textures.

The paper is organized as follows. In Sec. 2, we briefly review basic facts
about Fisher information geometry for parametric families of PDFs. Secs. 3 and
4 are devoted to a computational treatment of non-parametric Fisher informa-



tion and to the development of an algorithm to calculate geodesics in information
manifolds. Secs. 5.1, 5.2 address the calculation of basic statistics of collections
of PDFs such as means and tangent-space covariance; this is followed by a dis-
cussion of clustering techniques in Sec. 5.3. In the remaining sections, the tech-
niques developed are applied to various problems in image analysis including
appearance-based recognition and segmentation of images. In the last section,
we propose a new spectral cartoon model of images, which is a modified version
of the well-known Mumford-Shah model that includes a novel representation
of textures using histograms of spectral components viewed as elements of a
non-parametric information manifold.

2 Fisher Information

Let I = [0, 1] and p : I × Rk → R+, (x, θ) 7→ p(x; θ), a k-dimensional family
of positive probability density functions parameterized by θ ∈ Rk. In classical
information geometry, the Riemannian structure on the parameter space Rk
defined by the Fisher information matrix g, whose (i, j)-entry is

gij(θ) =
∫ 1

0

(
∂

∂θi
log p(x; θ)

) (
∂

∂θj
log p(x; θ)

)
p(x; θ) dx ,

is regarded as the most natural Riemannian structure on the family from the
viewpoint of information theory (see e.g. [2]). Recall that if p1, p2 : I → R are
positive PDFs, the Kullback-Leibler (KL) divergence is defined by

KL(p1, p2) =
∫ 1

0

log
(
p1(x)
p2(x)

)
p1(x) dx.

If restricted to the family p(x; θ), the KL divergence may be viewed as a function
of parameters, with domain Rk ×Rk. If θ, ξ ∈ Rk, we use the notation KL(θ, ξ)
for KL(p(·, θ), p(·, ξ)). Infinitesimally, the double of the KL divergence is known
to coincide with the quadratic form

ds2 =
k∑

i,j=1

gij(θ) dθidθj

associated with the Fisher information matrix g. That is, if Eθ : Rk → R is the
energy functional Eθ(ξ) = KL(θ, ξ), the Hessian of Eθ at the point ξ = θ is given
by g(θ). This fact is often expressed as

KL(θ, θ + dθ) =
1
2
ds2.

In [5], Dawid suggested the investigation of non-parametric analogues of this
geometry and such model was developed by Pistone and Sempi in [18]. This
extension to non-parametric families of a.e. positive density functions involves the



study of infinite-dimensional manifolds. For technical reasons, the geometry that
generalizes Fisher information falls in the realm of infinite-dimensional Banach
manifolds, spaces whose geometries are more difficult to analyze. One of our
main goals is to develop computational approaches to discrete versions of non-
parametric Fisher information obtained by sampling density functions p : I → R
at a finite set of points.

3 Non-Parametric Information Manifolds

We investigate a non-parametric statistical manifold P whose elements represent
the log-likelihood of positive probability density functions p : I → R+. The mani-
fold P will be endowed with an information-theoretic geometric structure which,
among other things, will allow us to quantify variations and dissimilarities of
PDFs.

Each tangent space TϕP will be equipped with a natural inner product 〈 , 〉ϕ.
Although a Hilbert-Riemannian structure might seem to be the natural geomet-
ric structure on P to expect, one is led to a manifold locally modeled on Banach
spaces [18]. Since, in this paper, we are primarily interested in computational
aspects of information geometry, we construct finite-dimensional analogues of
P by sampling probability density functions uniformly at a finite set of points
under the assumption that they are continuous. Then, arguing heuristically, we
derive an expression for the inner product on the tangent space TϕP, which in-
duces a Riemannian structure on finite-dimensional, non-parametric analogues
of P. From the viewpoint of information theory, the geodesic distance between
two PDFs can be interpreted as a measurement of the uncertainty or unpre-
dictability in a density function relative to the other. Throughout the paper, we
abuse notation and refer to both continuous and discrete models with the same
symbols; however, the difference should be clear from the context.

Positive PDFs will be represented via their log-likelihood ϕ(x) = log p(x).
Thus, a function ϕ : I → R represents an element of P if and only if it satisfies∫

I

eϕ(x) dx = 1 . (1)

Remark. In the discrete formulation, ϕ denotes the vector (ϕ(x1), . . . , ϕ(xn)),
where 0 = x1 < x2 < . . . < xn = 1 are n uniformly spaced points on the unit
interval I.

Tangent vectors f to the manifold P at ϕ represent infinitesimal (first-order)
deformations of ϕ. Using a “time” parameter t, write such variation as ϕ(x, t),
x ∈ I and t ∈ (−ε, ε), where

ϕ(x, 0) = ϕ(x) and f(x) =
d

dt
ϕ(x, 0).

Differentiating constraint (1) with respect to t at t = 0, it follows that f : I → R
represents a tangent vector at ϕ if and only if∫

I

f(x)eϕ(x) dx = 0. (2)



This simply means that f(x) has null expectation with respect to eϕ(x) dx. Thus,
the tangent space TϕP to the manifold P at ϕ can be described as

TϕP = {f : I → R |
∫ 1

0

f(x)eϕ(x) dx = 0}.

What is the natural inner product on TϕP that generalizes Fisher informa-
tion? In Sec. 2, we remarked that the Fisher information matrix can be viewed
as the Hessian of an energy functional associated with the KL divergence. In the
non-parametric setting, for ϕ ∈ P, the corresponding energy is given by

Eϕ(ψ) = KL(eϕ, eψ) =
∫ 1

0

(ϕ(x)− ψ(x)) eϕ(x) dx.

Calculating the Hessian of Eϕ at ψ = ϕ, it follows that the inner product induced
on TϕP is given by

〈v, w〉ϕ =
∫
I

v(x)w(x)eϕ(x) dx, (3)

which agrees with Fisher information on parametric submanifolds. A similar
calculation with the Jensen-Shannon (JS) entropy divergence, which is a sym-
metrization of KL, leads to the same inner product, up to a multiplicative factor
independent of ϕ. This means that both KL and JS essentially yield the same
infinitesimal measure of relative uncertainty or lack of information.

Continuing with this informal argument, Eq. 2 can be rewritten as 〈f, 1〉ϕ = 0,
where 1 denotes the constant function 1. Thus, f is tangent to P if and only if
it is orthogonal to 1.

To discretize this model, let 0 = x1 < x2 < . . . < xn−1 < xn = 1 be n
uniformly spaced points on the interval I. Heretoforth, all functions ψ : I → R
will be viewed as n-vectors obtained by sampling the function at these points;
that is, ψ = (ψ1, . . . , ψn) ∈ Rn, with ψi = ψ(xi). Eqn. 3 suggests that, at each
ϕ ∈ Rn, we consider the inner product

〈f, g〉ϕ =
n∑
i=1

figi e
ϕi , (4)

where f, g ∈ Rn. From (1), it follows that ϕ ∈ Rn represents a (discretized) PDF
if and only if

∑n
i=1 e

ϕi = 1. More formally, consider the function F : Rn → R
given by

F (ϕ) =
n∑
i=1

eϕi . (5)

The differential of F at ϕ evaluated at a vector f ∈ Rn is

dFϕ(f) =
n∑
i=1

fie
ϕi = 〈f, 1〉ϕ ,



which shows that the gradient of F at ϕ with respect to the inner product
〈 , 〉ϕ is ∇F (ϕ) = (1, . . . , 1), for any ϕ. This implies that the level sets of F are
(n− 1)-dimensional submanifolds of Rn. Of particular interest, is the manifold

Pn = F−1(1),

which is our finite-dimensional analogue of P. As in (2), the tangent space TϕPn
consists of all vectors f ∈ Rn satisfying 〈f, 1〉ϕ = 0 ; that is, vectors f ∈ Rn
orthogonal to (1, . . . , 1) with respect to the inner product 〈 , 〉ϕ. The geodesic
distance between ϕ,ψ ∈ Pn will be denoted d(ϕ,ψ).

4 Geodesics in Pn

We are interested in developing an algorithm to calculate geodesics in Pn (with
respect to the Levi-Civita connection) with prescribed boundary conditions; that
is, with given initial and terminal points ϕ and ψ, respectively. Following a
strategy similar to that adopted in [13] for planar shapes, we propose to construct
geodesics in two stages. First, we describe a numerical strategy to calculate
geodesics in Pn with prescribed initial position ϕ0 and initial velocity f0.

4.1 Geodesics with Prescribed Initial Conditions

Recall that Pn is a submanifold of the Riemannian manifold (Rn, 〈 , 〉ϕ). From
(4), Rn with this metric can be expressed as the n-fold Cartesian product of the
real line R equipped with the Riemannian metric

〈u, v〉x = uvex,

x ∈ R. This allows us to easily calculate the differential equation that governs
geodesics in Rn with this non-standard (flat) metric and derive explicit expres-
sions for geodesics with initial conditions prescribed to first order. To solve the
corresponding initial value problem in Pn, we adopt the following strategy:

(i) Infinitesimally, follow the geodesic path α0 in Rn satisfying the given initial
conditions.

(ii) The end point ϕ̄1 of this small geodesic arc in (Rn, 〈 , 〉ϕ) will typically fall
slightly off of Pn; to place it back on the level set Pn = F−1(1) (i.e., to
have equation F (ϕ̃1) − 1 = 0 satisfied), we use Newton’s method. Since
the gradient of F is 1 = (1, . . . , 1) at any point, this projection can be
accomplished in a single step since it is equivalent to simply adding a constant
to ϕ̃1 so that

∫ 1

0
eϕ̃1(x) dx = 1. This gives ϕ1 ∈ Pn.

(iii) To iterate the construction, we need to parallel transport the velocity vector
f0 to the new point ϕ1 along the estimated geodesic arc. As an approximation
to the parallel transport, from the velocity vector of α0 at the end point ϕ̃1,
subtract the component normal to Pn at ϕ1 and rescale it to have the same
magnitude as f0 to obtain the velocity vector f1 at ϕ1. This is done because



geodesics have constant speed. One can show that this approximation of
the parallel transport is a mild variant of Euler’s method applied to the
differential equation of geodesics in Pn.

(iv) Iterate the construction.

We denote this geodesic by Ψ(t;ϕ0, f0), where t is the time parameter. The
position Ψ(1;ϕ0, f0) of the geodesic at time t = 1 is known as the exponential
of f0 and denoted

expϕ0
(f0) = Ψ(1;ϕ0, f0).

One often refers to f0 as a logarithm of ϕ1 = Ψ(1;ϕ0, f0), denoted f0 = logϕ0
ϕ1.

The procedure just described can be interpreted as a first-order numerical in-
tegration of the differential equation that governs geodesics in Pn. Higher-order
methods can be adapted similarly.

4.2 Geodesics with Boundary Conditions

Given two points ϕ,ψ ∈ Pn, how to find a geodesic in Pn connecting them?
Similar to the strategy for computing geodesics in shape manifolds developed in
[13], we propose to use a shooting method. If we solve the equation

Ψ(1;ϕ, f) = ψ (6)

for f ∈ TϕPn (i.e., if we find the correct direction f0 to shoot a geodesic to reach
ψ in unit time), then Ψ(t;ϕ, f0), 0 ≤ t ≤ 1, gives the desired geodesic. Solving
Eqn. 6 is equivalent to finding the zeros of the miss function

E(f) = ‖Ψ(1;ϕ, f)− ψ‖2

on the tangent space TϕPn, where ‖.‖ denotes the standard Euclidean norm.
This problem can be approached numerically via Newton’s method.

Fig. 1 shows some examples of geodesics in Pn computed with the algorithmic
procedure described above. The examples involve probability density functions
obtained by truncating Gaussians, generalized Laplacians and mixtures of Gaus-
sians.

5 Data Analysis

Probability density functions are often used to model large ensembles of data
viewed as random samples of the model. To compare different ensembles, it is
desirable to adapt existing data analysis tools to the framework of Fisher in-
formation. In this section, we consider the problem of defining and computing
means and covariance of families of PDFs, as well as extending clustering tech-
niques to the manifold Pn. Note that each PDF will be treated as a point on an
information manifold.
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Fig. 1. Examples of geodesics in Pn.

5.1 Fréchet Means

We begin with the problem of defining and finding the mean of a family of PDFs
on the interval I = [0, 1].

Let S = {ϕ1, . . . , ϕ`} ⊂ Pn be a collection of ` probability distributions over
I represented by their discretized log-likelihood functions. We are interested in
defining and computing sample statistics such as mean and covariance of S. We
propose to use the intrinsic notion of Fréchet mean [12], which is defined as a
(local) minimum of the total variance function

V (ϕ) =
1
2

∑̀
i=1

d2 (ϕ,ϕi) ,

where d denotes geodesic distance in Pn. It can be shown [12] that if fi is the
initial velocity of the geodesic that connects ϕ to ϕi in unit time, then

∇V (ϕ) = −
∑̀
i=1

fi .

Thus, if we compute the velocity vectors fi, 1 ≤ i ≤ `, using the algorithmic
procedure described in Sec. 4, the calculation of Fréchet means can be approached
with gradient methods. Fig. 2 shows examples of Fréchet means computed with
the techniques just described.
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Fig. 2. Examples of Fréchet means of PDFs.

5.2 Covariance, Dimension Reduction and Learning

Given S = {ϕ1, . . . , ϕ`} ⊂ Pn, let ϕ̂ ∈ Pn be a Fréchet mean of the collection S,
and let fi = logϕ̂ ϕi be the initial velocity of the geodesic that connects ϕ̂ to ϕi
in unit time, which can be calculated with the techniques of Sec. 4.

The vectors fi, 1 ≤ i ≤ `, yield an alternative tangent-space representation
of the elements of S as vectors in Tϕ̂Pn. This type of representation of data on
Riemannian manifolds via the inverse exponential map was introduced in the
context of shape analysis using landmark representations of shapes (see e.g. [7]).
Note that the original data point ϕi can be recovered from fi via the exponential
map. The advantage of this representation is that each fi lies in the inner-product
space (Tϕ̂Pn, 〈 , 〉ϕ̂), where classical data analysis techniques such as Component
Analysis can be used. This tangent-space representation may, in principle, distort
the geometry of the data somewhat. However, the distortion is small if the data
does not exhibit very large spread. This is often the case, in practice, if we
assume that the data has been pre-clustered and we are analyzing individual
clusters separately.

Once the data has been lifted to (Tϕ̂Pn, 〈 , 〉ϕ̂), covariance can be defined as
usual. One can learn probability models for the family {fi, 1 ≤ i ≤ `} using
standard techniques (see e.g. [7, 21]). For example, Principal Component Analy-
sis (PCA) can be applied to the tangent-space representation of S to derive a
Gaussian model. Fig. 2(b) shows a set of six PDFs and their mean. Figs. 3 (a) and
(b) show tangent-space PCA reconstructions of the data using projections over
one and three principal directions, respectively. Other well-known data analysis
methods such as Independent Component Analysis and Kernel PCA (see e.g. [11,
20, 10]) can be applied to tangent-space representations, as well.
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Fig. 3. Reconstructing the data shown in Fig. 2(b) with tangent-space Principal Com-
ponent Analysis using (a) one and (b) three principal components, respectively.

5.3 Clustering

Classical clustering algorithms can be adapted to the present setting to group
large collections of PDFs into smaller subclasses. For example, starting with
single-element clusters formed by each element in a dataset, one can use hierar-
chical clustering techniques to successively combine clusters using the geodesic
distance between clusters in Pn as a merging criterion. Fig. 4 shows the cluster-
ing dendrogram obtained for a family twelve PDFs using the nearest-neighbor
merging criterion. The techniques for calculating Fréchet means described in
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Fig. 4. Twelve PDFs and a “nearest-neighbor” hierarchical clustering dendrogram.

Sec. 5.1 allow us to adapt the classical k-Means Clustering Algorithm to families
of PDFs using the geodesic distance, as well.



6 Spectral Representation and Clustering of Texture

In this section, we employ histograms of spectral components to represent tex-
ture patterns in images at different scales. We carry out appearance-based object
recognition experiments to test the representation, geodesic metric, and geodesic
interpolation. We also use the geodesic metric and a variant of the clustering
techniques discussed in Sec. 5.3 to identify regions of similar appearance in im-
ages.

6.1 Texture Representation

Given a bank of filters F = {F j , 1 ≤ j ≤ K} and an image I, let Ij be the
associated spectral components obtained by applying filter F j to the image.
Assume that the histogram of the jth spectral component is modeled on a PDF
with log-likelihood ϕj ∈ P. The (texture of) image I will be represented by the
K-tuple Φ =

(
ϕ1, . . . , ϕK

)
∈ P×. . .×P = PK . We should point out that this is a

global representation of the image I, but the same construction applied to local
windows leads to multi-scale representations of texture patterns. If ΦA, ΦB ∈ PK

represent images IA and IB , respectively, let dT be the root-mean-square geodesic
distance

dT (ΦA, ΦB) =

 1
K

K∑
j=1

d2(ϕjA, ϕ
j
B)

1/2

, (7)

which defines a metric on the space PK of texture representations.

Remark. In specific applications, one may wish to attribute different weights to
the various summands of dT (ΦA, ΦB) in order to emphasize particular filters.

6.2 Region-Based Segmentation

In this section, we present results obtained in image segmentation experiments
with the ideas discussed above. To illustrate the ability of the metric dT to dis-
cern and classify local texture patterns, we grouped the pixels of some images
into two clusters. We used local histograms associated with five distinct spec-
tral components and the metric dT as measure of dissimilarity; a hierarchical
“centroid” clustering was adopted.

On each row of Fig. 5, the leftmost panel shows the original images. The
other two panels display the two clusters obtained highlighted in different ways;
observe that clusters may be disconnected as in the image with a butterfly. Since
clustering was performed at a low resolution, the boundaries of the regions are
somewhat irregular. Note that because of the resolution and the local window
size utilized in the spectral analysis, the relatively thin white stripes on the fish
are clustered with the rest of the fish, not with the background. Fig. 6 shows
the results of a similar experiment, where the image was decomposed into three
regions.



Fig. 5. In each row, the leftmost panel displays a test image. On the other panels, the
regions obtained by clustering the pixels into two clusters using histograms of local
responses to 5 filters are highlighted in two different ways.

Fig. 6. A low-resolution segmentation of an image into three regions by clustering pixels
using 5 spectral components and the geodesic metric derived from Fisher information.



6.3 Appearance-Based Recognition

As an illustration of possible uses of the proposed spectral representation of
textures using information manifolds, we carried out a small object recognition
experiment using 10 objects from the COIL-100 database. Each object in the
database is represented by 72 images taken at successive views that differ by
5-degree angles. We used histograms of 39 spectral components, as well as the
histograms of the original images, so that each image is represented as an element
of P40.

In the first recognition experiment, the training set consisted of 4 images cor-
responding to 90-degree rotations of the objects, with the 68 remaining images
used as test images. Table 1 compares the recognition rates achieved with 4 train-
ing images for each object to those obtained by estimating four additional views
using geodesic interpolations. Similar results are shown for a training set of 8
images. Examples of histograms of intermediate views estimated using geodesic

Table 1. Recognition rates in an experiment with 10 objects from the COIL-100
database.

# of Training # of Test Performance with Performance with

Images Images no Interpolations Interpolations

4 68 93% 95%

8 64 97% 100%

interpolations are shown in Fig. 7. On the first row, we display histograms of
images of an object from angles differing by 90◦ and the corresponding interpo-
lation. A similar illustration for a spectral component of the image is shown on
the second row.

7 The Spectral Cartoon Model

To model texture patterns using multi-resolution spectral components of images,
we localize the notion of appearance, as follows. Given a bank of filters F =
{F1, . . . , FK} and an image I, let Ij , 1 ≤ j ≤ K be the associated spectral
components. For a pixel p, consider a window of fixed size (this determines the
scale) centered at p and let hjp be the histogram of Ij restricted to this window.
The histograms hjp yield an s-tuple Φp =

(
ϕ1
p, . . . , ϕ

K
p

)
∈ PK , which encodes the

local texture pattern near the pixel p. If p, q are two pixels, we use the distance
dT (Φp, Φq) defined in (7) to quantify texture divergence.

To simplify the discussion, we consider a binary model and assume that the
image consists of two main regions: a background and a single foreground ele-
ment, which are separated by a closed contour C. The proposed model can be
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Fig. 7. First row: the left panel shows histograms of images of an object taken from
different views and the right panel displays histograms of intermediate views estimated
using geodesic interpolations. Second row: similar illustration for a spectral component.

modified to allow more complex configurations as in [17]. A key difference to
be noted is that unlike the classical Ising image model, where a binary cartoon
is adopted (see e.g. [15]), we make a similar assumption at the level of spectral
representations, so that even cartoons can be non-trivially textured. Thus, vari-
ations of pixel values, often treated as white noise, will be modeled on random
fluctuations of more richly structured texture patterns.

Let I : D → R be an image, where D is the image domain, typically a rect-
angle in R2. Consider triples (Φin, Φout, C), where C is a closed contour in D,
and Φin, Φout ∈ PK represent cartoon models for the local texture patterns in
the regions inside and outside C, respectively. We adopt a Bayesian model, with
a prior that assumes that C is not “unnecessarily” long, so that the prior energy
will be a multiple of the length `(C). This can be easily modified to accom-
modate other commonly used priors such as the elastic energy; a probabilistic
interpretation of the elastic energy is given in [16]. The proposed data likelihood
energy is of the form

Ed(I|Φin, Φout, C) = α

∫
Din

d2
T (Φp, Φin) dp

+ β

∫
Dout

d2
T (Φp, Φout) dp ,

(8)



where α, β > 0, and Din, Dout are the regions inside and outside C, respectively.
The idea is that Ed will measure the compatibility of local texture patterns in
an image I with the texture of a proposed cartoon. The spectral cartoon of I is
represented by the triple (Φin, Φout, C) that minimizes the posterior energy

E(Φin, Φout, C|I) = α

∫
Din

d2
T (Φp, Φin) dp

+ β

∫
Dout

d2
T (Φp, Φout) dp+ γ `(C) ,

(9)

γ > 0.
Since the estimation of the triple (Φin, Φout, C) may be a costly task, one

may modify the model, as follows. For a given curve C, the optimal Φin can
be interpreted as the average value of Φp in the region Din, and the integral∫
Din

d2
T (Φp, Φin) dp as the total variance of Φp in the region. We propose to

replace d2(Φp, Φin), the distance square to the mean, with the average distance
square from Φp to Φq, for q ∈ Din, q 6= p, which is given by

1
Pin − 1

∑
q∈Din
q 6=p

d2(Φp, Φq) .

Here, Pin is the number of pixels in Din. Proceeding similarly for the region
outside, the task is reduced to the simpler maximum-a-posteriori estimation of
the curve C; that is, the curve that minimizes the energy functional

E(C|I) =
α

Pin − 1

∑
p, q∈Din
q 6=p

d2(Φp, Φq)

+
β

Pout − 1

∑
p, q∈Dout

q 6=p

d2(Φp, Φq) + γ `(C) .

Summary and Comments

We introduced new computational methods and strategies in non-parametric
Fisher information geometry. A basic tool developed is an algorithm to calcu-
late geodesics in information manifolds that allows us to address computational
problems arising in the analysis of families of probability density functions such
as clustering PDFs and the calculation of means and covariance of families of
PDFs. To demonstrate its usefulness, the methodology developed was applied to
various image analysis problems such as appearance-based recognition of imaged
objects and image segmentation based on local texture patterns. A spectral car-
toon model of images was proposed using a new representation of local texture
patterns. More extensive testing of the methodos introduced in the context of
image analysis will be carried out in future work.
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