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Abstract

We derive a tight perturbation bound for hidden Markov models. Using this bound, we
show that, in many cases, the distribution of a hidden Markov model is considerably
more sensitive to perturbations in the emission probabilities than to perturbations in the
transition probability matrix and the initial distribution of the underlying Markov chain.
Our approach can also be used to assess the sensitivity of other stochastic models, such
as mixture processes and semi-Markov processes.
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1. Introduction

Hidden Markov models (HMMs) and generalizations thereof are widely used in many fields
of science and engineering (see, e.g. [15], [24], [28]–[29]). One of the most important problems
in HMM theory is that of parameter estimation. The relatively long history of this problem
started with the articles [3] and [25], which demonstrated the consistency and asymptotic
normality of the maximum likelihood (ML) estimator for some classes of finite HMM. Later,
these results were extended to other classes of HMM (see [7], [12], [16]). Another direction of
research in the area of parameter estimation for HMMs is the development of computationally
efficient methods of maximizing the likelihood function. One of the most popular methods is the
Baum–Welch algorithm, which in fact is the expectation–maximization algorithm for HMMs
(see [1], [4], [28]). Non-ML estimation procedures for HMMs have also been considered
(e.g. the Bayesian maximum a-posteriori estimation described in [15]).

The accuracy of the estimates generated by the above-listed or other methods is sometimes
known and, to some extent, can be controlled (e.g. by setting the appropriate tolerance for
the iterative Baum–Welch procedure). To decide what accuracy is sufficient, it is desirable
to know the effects of small perturbations in the parameter values on the distribution of the
HMM under study. Here we develop an inequality-based approach to sensitivity analysis for
HMMs. Numerous results have been obtained in the inequality-based perturbation theory for
Markov chains, both in discrete and continuous time (see [8], [11], [14], [19]–[23], [33], and
references therein). We show that these results play an important role in the perturbation theory
for HMMs.
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The current study was motivated by the problem of parameter estimation for hidden Markov
models in bioinformatics. While such models have proved very useful in the area of gene finding,
the complexity of genomes and the finiteness of available training data make parametrization
of such models a nontrivial task (see [5], [6], [17]). This problem becomes especially hard
when (almost) no prior information is available about the genes in a genome, and unsupervised
training methods for HMMs should be employed (see [5] and [6]). One of the important
questions is, what parameters have more influence on the HMM’s behavior, and thus should be
treated with additional care?

In the context of speech recognition, it has been noticed that the behavior of finite HMMs
is usually much more sensitive to changes in the emission probabilities than to changes in the
transition probability matrix and the initial distribution of the underlying Markov chain [13]. Not
long ago, the same observation was reported by researchers in bioinformatics [24]. To the best
of the authors’ knowledge, no theoretical explanation for this phenomenon has been obtained;
the perturbation bound that we derive allows to prove and quantify it (see Sections 3 and 4).

The nature of our results is quite general, and our approach can be used outside the HMM
setting. In particular, it is well suited for investigating the sensitivity of state space models,
mixture processes, and semi-Markov processes (see Section 5).

2. Preliminaries

In this section, we define a hidden Markov model and introduce the necessary notation.
For a background to HMMs, see the monograph [18] and the survey paper [10]. Define
S = {1, . . . , N}, N ≥ 2, and let {Xn}, n ∈ Z+ := {0, 1, 2, . . .}, be a discrete-time, homoge-
neous Markov chain with state space S. Let {Yn}, n ∈ Z+, be a sequence of random variables
which take values in some measurable space (A, A) and satisfy the following conditions:

(a) the variables Yn are conditionally independent given the sequence {Xn};
(b) for each l ∈ Z+, Yl depends on {Xn} only through Xl .

The pair {(Xn, Yn)} is called a hidden Markov model. This term comes from the fact that, in
applied settings, the variables Xn are usually unobserved, while the Yn are observable. The
sequence {Xn} is sometimes called the regime.

Let P be the transition probability matrix of {Xn}. Let {f (i)}, i ∈ S, be a family of
probability measures on A such that f (i) is the distribution of Yn under the condition Xn = i.
It is clear that P , {f (i)}, and the initial distribution of {Xn} completely define the HMM
{(Xn, Yn)}. Let pn and dn be the distributions of Xn and Yn, respectively. We regard {(Xn, Yn)}
as the unperturbed HMM and consider some perturbed HMM {(X̃n, Ỹn)} with corresponding
characteristics denoted by P̃ , {f̃ (i)}, d̃n, and p̃n (where X̃n takes values in S and Ỹn takes
values in A). Our major goal is to obtain a perturbation bound for dn in terms of the size of the
perturbation in pn and {f (i)}.

To measure the closeness between probability distributions, we use the variation distance.
For a measurable space (X, X), let M(X) be the class of finite signed measures on X. In our
case, (X, X) is either (A, A) or (S, S), where S is the class of all subsets of S. For q ∈ M(X),
we define the total variation norm by

‖q‖ = |q|(X),

that is, ‖q‖ is the total variation of q on X. Note that |q| = q+ + q−, where q+ and q− are the
positive and negative parts of q, respectively. For a probability measure p, ‖p‖ = 1; if p̃ is a
probability measure, then ‖p̃ − p‖ ≤ 2.
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We shall also use ‖ · ‖ to denote the �1-norm (absolute entry sum) for vectors and the
corresponding induced norm (maximum absolute row sum, since we regard vectors as row
vectors) for matrices; this will cause no confusion. Thus,

‖p̃n − pn‖ = ‖p̃n − pn‖, (1)

where p̃n and pn are the distribution vectors of X̃n and Xn, respectively. Using the vector
�1-norm, we define the ergodicity coefficient, τ(R), of a real matrix R = (r(ij)) (see [31]) as
follows:

τ(R) := sup
‖v‖=1
ve�=0

‖vR‖ = 1
2 max

i,j

∑
k

|r(ik) − r(jk)|,

where the supremum is taken over real vectors v, e is the row vector of all ones, and ‘�’ denotes
transpose. Notice that if the rows of R are probability vectors, then τ(R) ≤ 1.

To prove our perturbation bound for HMMs (see Theorem 1), we need the following
definition.

Definition 1. A mapping T : S × A → R, such that B �→ T (i, B) is a measure belonging to
M(A) for any fixed i ∈ S, is called a transition signed measure from (S, S) to (A, A).

(The general definition of a transition signed measure also requires that i �→ T (i, B) be
S-measurable for any fixed B ∈ A (see [9, Part 2]); this is satisfied automatically.) We
denote by TSA the family of all transition signed measures from (S, S) to (A, A). For any
T (i, B) ∈ TSA, i ∈ S, B ∈ A, we introduce the operator T : M(S) → M(A) acting as
follows:

(qT )(B) :=
∫

S
q(dx)T (x, B) =

∑
i∈S

q({i})T (i, B),

where q ∈ M(S) and B ∈ A. For such operators, we define the norm by

‖T ‖ = sup
‖q‖=1

‖qT ‖.

We are now ready to state and prove our results.

3. The perturbation bound for HMMs: derivation

The following theorem provides a sensitivity bound for HMMs.

Theorem 1. For zn := d̃n − dn, the following inequality holds:

‖zn‖ ≤ d(f̃ , f ) + κf ‖p̃n − pn‖, n ∈ Z+. (2)

Here
d(f̃ , f ) = max

i∈S
‖f̃ (i) − f (i)‖ and κf = 1

2 max
i,j∈S

‖f (i) − f (j)‖.
Proof. Define a transition signed measure F(i, B) by

F(i, B) = f (i)(B), i ∈ S, B ∈ A.

The total probability formula gives

dn = pnF, d̃n = p̃nF̃ , (3)
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for all n ∈ Z+, where the operator F̃ is defined for {(X̃n, Ỹn)} in a similar way to F . Thus, we
have

‖zn‖ = ‖p̃n(F̃ − F) − (pn − p̃n)F‖ ≤ ‖p̃n‖‖F̃ − F‖ + ‖(p − p̃)F‖. (4)

Since ‖p̃n‖ ≡ 1, the first term on the right-hand side of (4) is just ‖F̃ − F‖. For the second
term, we have

‖(p − p̃)F‖ = ‖p̃ − p‖
∥∥∥∥ p̃ − p

‖p̃ − p‖F

∥∥∥∥ ≤ ‖p̃ − p‖ sup
q∈M0

‖qF‖, (5)

where M0 = {q ∈ M(S) : ‖q‖ = 1, q(S) = 0}. It follows from Corollary 2.2 of [9, Part 2,
Chapter 2] that

‖F̃ − F‖ = max
i∈S

|f̃ (i) − f (i)|(A) = d(f̃ , f ),

sup
q∈M0

‖qF‖ = κf .

This, together with (1), (4), and (5), proves the theorem.

Corollary 1. Suppose that {Xn} is ergodic, which means that there exist a probability vector π

and positive numbers C < ∞ and ρ < 1 such that, for all p0,

‖pn − π‖ ≤ Cρn, n ∈ Z+.

In this case, there exists a measure δ ∈ M(A) such that, for all p0,

‖dn − δ‖ ≤ Cκf ρn, n ∈ Z+.

The quantity κf in (2) never exceeds 1, and it can be arbitrarily small depending on how
similar the distributions f (i) are to each other. The next two theorems give a necessary and a
sufficient condition for the inequality κf < 1 to hold.

Theorem 2. The inequality κf < 1 holds only if, for every pair (i, j) ∈ S × S, i �= j , there
exists a set C ∈ A such that

|(f (i) − f (j))(C)| < f (i)(C) + f (j)(C). (6)

Proof. Suppose that, for some pair (i0, j0) ∈ S × S, i0 �= j0, there is no set C ∈ A such
that (6) holds. Let

⋃
l Al be a finite partition of A into measurable subsets. We then have

∑
l

|(f (i0) − f (j0))(Al )| =
∑

l

f (i0)(Al ) +
∑

l

f (j0)(Al ) = 2.

Taking the supremum over all partitions
⋃

l Al , we find that ‖f (i0) −f (j0)‖ = 2. This, together
with the definition of κf , gives κf = 1.
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Theorem 3. The inequality κf < 1 holds if, for every pair (i, j) ∈ S × S, i �= j , there exists
a set C ∈ A such that at least one of the following conditions is satisfied:

(a) (f (i) − f (j))−(C) = 0 and f (j)(C) > 0;

(b) (f (j) − f (i))−(C) = 0 and f (i)(C) > 0.

Proof. Consider an arbitrary pair (i, j) ∈ S × S, i �= j . Without loss of generality, assume
that, for this pair, condition (b) is satisfied. We then have

‖f (i) − f (j)‖ = |f (j) − f (i)|(C) + |f (j) − f (i)|(X \ C). (7)

Since |q| = q+ + q− and q = q+ − q− for every measure q ∈ M(A),

|f (j) − f (i)|(C) = (f (j) − f (i))+(C) = (f (j) − f (i))(C) < (f (j) + f (i))(C).

This, together with (7), gives

‖f (i) − f (j)‖ < (f (j) + f (i))(C) + (f (j) + f (i))(X \ C) = (f (j) + f (i))(X) = 2.

Since our pair (i, j) is arbitrary, κf < 1.

Example 1. (Finite observation space.) Let A = {1, . . . , M}, M ≥ 2, and let A be the class
of all subsets of A. We have ‖zn‖ = ‖zn‖, zn := d̃n −dn, where d̃n and dn are the distribution
vectors of Ỹn and Yn, respectively. The measures f (i) are defined by the emission probabilities
f (ij) := P[Yn = j | Xn = i], i ∈ S, j ∈ A. The emission probabilities f̃ (ij) for {(X̃n, Ỹn)}
are defined in a similar manner. Writing F = (f (ij)) and F̃ = (f̃ (ij)), we have

d(f̃ , f ) = ‖F̃ − F‖, κf = τ(F ).

The inequality κf < 1 holds if and only if, for every pair (i, j) ∈ S × S, i �= j , there exists
a state k ∈ S such that f (ik) > 0 and f (jk) > 0. This can be proved directly, but can also be
obtained as a corollary to Theorems 2 and 3.

Example 2. (Continuous observation space.) Let A = R, and let A be the Borel σ -algebra
on R. Suppose that the distributions f (i) and f̃ (i) have continuous densities φ(i)(t) and φ̃(i)(t),
respectively, for t ∈ R. In this case,

d(f̃ , f ) = max
i∈S

∫
R

|φ̃(i)(t) − φ(i)(t)| dt, κf = 1
2 max

i,j∈S

∫
R

|φ(i)(t) − φ(j)(t)| dt.

We have κf < 1 if, for every pair (i, j) ∈ S × S, i �= j , there exists an interval [a, b], a < b,
such that φ(i)(t) > 0 and φ(j)(t) > 0 for all t ∈ [a, b]. This can be proved directly, but can
also be obtained as a corollary to Theorem 3.

Theorem 1 shows that the distributions dn may be strongly influenced by the perturbations in
f (i), while the influence of perturbations in pn is weak if the f (i) do not differ much. However,
this theorem says nothing about the tightness of the inequality (2). Also, (2) does not explicitly
show the effect of perturbations in P or p0 on dn for n > 0. These questions will be addressed
in Section 4.
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4. The perturbation bound for HMMs: implications

The perturbation bound provided by Theorem 1 suggests a strong dependence of dn on the
distributions f (i). However, (2) is just an upper bound, so we may think that a tighter bound
can be obtained which will not have this feature. Below we prove that (2) is tight, that is, there
are examples when this inequality turns into an equality.

Theorem 4. If the HMM {(Xn, Yn)} is as in Example 1 and the matrix F has at least two
positive columns, then there exists a perturbed HMM, {(X̃n, Ỹn)}, such that

(a) d(f̃ , f ) �= 0 and p̃n = pn, for all n ∈ Z+,

(b) the inequality (2) becomes an equality for all n ∈ Z+.

Proof. Let k and l be the numbers of two positive columns of P , and let pmin be the smallest
entry in the kth and lth columns. Choose a number r ∈ (0, pmin). Define r to be a vector of
dimension M whose kth entry is r and whose lth entry is −r , all other entries being zero. Let
D be a matrix of dimension N × M whose rows are all equal to r . It is clear that F + D is a
row-stochastic matrix. Define the perturbed HMM {(X̃n, Ỹn)} by P̃ = P , F̃ = F + D, and
p̃0 = p0. Thus, we have p̃n = pn for all n ∈ Z+. Therefore,

‖zn‖ = ‖p̃n(F̃ − F )‖ = ‖p̃nD‖ = ‖r‖, n ∈ Z+.

Since the right-hand side of (2) equals ‖F̃ − F‖ = ‖r‖, the theorem follows.

Corollary 2. Suppose that, for all finite HMMs {(Xn, Yn)} with F as in Theorem 4, we have a
bound of the form

‖zn‖ ≤ C1‖F̃ − F‖ + C2‖p̃n − pn‖, n ∈ Z+,

where C1 and C2 depend only on P and F . Then we must have C1(P , F ) ≥ 1 for all such
HMMs.

Theorem 5. If the HMM {(Xn, Yn)} is as in Example 2 and φ(i)(t) > 0 for all t ∈ R and i ∈ S,
then there exists a perturbed HMM {(X̃n, Ỹn)} which possesses the properties (a) and (b) as
stated in Theorem 4.

Proof. Consider the interval [−a, a], a > 0. Let ε > 0 be such that φ(i)(t) > ε for all
i ∈ S and t ∈ [−a, a]. Define the function s(t) by

s(t) =
⎧⎨
⎩

ε sin

(
tπ

a

)
, t ∈ [−a, a],

0, t ∈ R \ [−a, a],

and define the perturbed chain {(X̃n, Ỹn)} by P̃ = P , p̃0 = p0, and φ̃(i)(t) = φ(i)(t) + s(t),
for all i ∈ S and t ∈ R (it is clear that φ̃(i)(t) are valid probability density functions). Thus, all
f̃ (i) − f (i) are identical, and we have

‖zn‖ = ‖p̃n(F̃ − F)‖ = ‖f̃ (1) − f (1)‖.
Since the right-hand side of (2) equals ‖F̃ − F‖ = ‖f̃ (1) − f (1)‖, the theorem follows.
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Remark 1. An analogue of Corollary 2 holds for an HMM defined as in Theorem 5.

Remark 2. For the HMMs {(Xn, Yn)} considered in Theorems 4 and 5, κf < 1.

The tightness of (2) implies that this bound cannot be improved by a constant factor.
Theorems 4 and 5, Corollary 2, and Remark 1 show that it is also impossible to improve
the first term on the right-hand side of (2) by a constant factor; for important special cases
of HMM, we cannot in fact improve it by any factor. This makes us believe that a strong
dependence of dn on the functions f (i) is a real property of HMMs, and that (2) quantifies it
adequately. However, improvements in the second term of the bound (2) may be possible, and
the actual influence of perturbations in pn may be even weaker than is suggested by (2).

We now pass to the discussion of the influence of the perturbations in P and p0 on the
distributions of Yn. To study this influence, we can use Theorem 1 and apply perturbation bounds
for Markov chains to bound ‖p̃n − pn‖ (for different bounds, see [8], [14], [23]). We should
mention that perturbation bounds for the stationary distribution require that {Xn} have a unique
stationary distribution, and perturbation bounds which are uniform over n ∈ N := {1, 2, . . .}
require that {Xn} be ergodic. The uniform perturbation bounds have the form

sup
n∈N

‖xn‖ ≤ κ1‖x0‖ + κ2‖E‖,

where xn = p̃n − pn, E = P̃ − P , and κ1 and κ2 are numbers depending on the parameters
of the unperturbed Markov chain. From this expression and the inequality (2), it is clear that if
κf κ1 < 1 and κf κ2 < 1, then the distributions of Yn are less sensitive to perturbations in P and
p0 than to perturbations in {f (i)}. Below we consider situations in which simple approximate
bounds can be obtained.

If {Xn} is ergodic then there exists an integer m such that τ(P m) < 1. The inequality (3.17)
of [23] gives

sup
n∈N

‖xn‖ ≤ sup
n∈N

(τ (P m))�n/m‖x0‖ + m‖E‖
1 − τ(P m)

, (8)

where �x is the largest integer less than or equal to x. An important special case is when
τ(P ) < 1. Such matrices P are sometimes called scrambling matrices [30]. Note that positive
stochastic matrices are scrambling; the HMMs whose sensitivity was investigated in [13] and
[24] had positive transition matrices. If P is scrambling then, by setting m = 1 in (8) and
combining it with (2), we arrive at

sup
n∈N

‖zn‖ ≤ d(f̃ , f ) + κf τ(P )‖x0‖ + κf ‖E‖
1 − τ(P )

= d(f̃ , f ) + κf τ(P )‖x0‖ + κf ‖E‖(1 + τ(P ) + τ 2(P ) + · · · )
= d(f̃ , f ) + κf ‖E‖ + O(κf τ(P ))

(since supn∈N(τ (P ))n = τ(P )). If both κf and τ(P ) are small enough, then the term
O(κf τ(P )) can be neglected, and we obtain an approximate bound which is equivalent to (2)
with ‖p̃n −pn‖ substituted with E. Thus, at this level of approximation, the initial distribution
of {Xn} has no effect on dn – its influence is a ‘second-order effect’.
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If m > 1 then supn∈N(τ (P m))�n/m = 1, and (2) and (8) give

sup
n∈N

‖zn‖ ≤ d(f̃ , f ) + κf ‖x0‖ + mκf ‖E‖
1 − τ(P m)

= d(f̃ , f ) + κf (‖x0‖ + m‖E‖) + O(κf τ(P m)).

In this case, the influence of perturbations in P and the influence of perturbations in p0 are of the
same order for small m. However, even for large m, if the distributions f (i) are similar enough
to each other, then dn is much less sensitive to perturbations in p0 and P than to perturbations
in f (i). For large m, as in the case m = 1, the perturbations in p0 are likely to have the smallest
effect on dn.

5. Generalizations and applications

We have presented a new approach to sensitivity analysis for HMMs. We proved that,
in many important cases, the distributions of an HMM show a weaker dependence on the
transition probabilities than on the emission probabilities. This property has an important
statistical implication: the transition probabilities may typically be more difficult to estimate.

It should be noted that our results admit broad generalizations. The reason for this possibility
lies in the nature of the problem, as well as in our operator-theoretic treatment (see Theorem 1),
which works in a variety of situations. As a matter of fact, Theorem 1 provides a sensitivity
bound for mixtures of distributions and, thus, can be extended to any situation where the
distribution of interest can be represented as a mixture.

One direction for generalization is related to the features of the underlying Markov chain
{Xn}. Clearly, we may consider cases of inhomogeneous chains and chains on an infinite state
space. (HMMs whose underlying Markov chain has a general state space are frequently called
state space models (see, e.g. [12]).) Theorem 1 can be generalized to all of these cases, and
can be used in conjunction with the corresponding perturbation bounds (see Section 1). We
can also combine Corollary 1 with convergence bounds for Markov chains (see [11], [14], [19],
[23], and [32]) to bound the speed of convergence of an HMM to stationarity.

Yet another direction for extension is as follows. Instead of considering the Markov chain
{Xn}, we may consider regime processes which are not necessarily Markov. All we need is
to have perturbation bounds for the distributions of such processes. We finish this section by
giving four examples.

Example 3. (A mixture process.) In our definition of an HMM, the random variables Xn are
dependent. If we define {Xn} to be a sequence of independent and identically distributed random
variables taking values in S with probabilities pi, i ∈ S, then we obtain a mixture process, in
which the distribution of all Yn is the mixture

∑
i∈S pif

(i) (see [10] and references therein).
This case is especially simple because we do not need to derive perturbation bounds for the
regime process; we just substitute the size of the perturbation in pi directly into the analogue
of (2). Obviously, Theorems 2 and 3 are applicable, and analogues of Theorems 4 and 5 can
be obtained, showing the same qualitative stability features as for HMMs.

Example 4. (HMMs and continuous-time Markov chains.) HMMs whose regimes are derived
from a continuous-time Markov chain arise in ion channel modeling (see, e.g. [27]). A channel
is modeled by a finite, homogeneous, continuous-time Markov chain with generator Q. The
matrix Q is usually assumed to be reversible. At discrete time moments n
, n ∈ N, 
 > 0,
we sample the chain, but the recordings are corrupted by noise. The resulting stochastic process
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is an HMM with continuous observation space, whose underlying Markov chain has transition
probability matrix exp(
Q). The sensitivity of this chain with respect to perturbations in Q can
be analyzed by using Theorem 1 in conjunction with perturbation bounds for the distribution
of a (reversible) continuous-time Markov chain.

Example 5. (Multidimensional distributions of HMMs.) The theory developed so far concerns
the one-dimensional distributions of HMMs. Let us take a look at multidimensional distribu-
tions, which are frequently of interest in applications of HMMs. Suppose that we would like to
obtain sensitivity bounds for the joint distribution of the random variables Yn, Yn+1, . . . , Yn+m

for a discrete HMM (see Example 1). By the definition of an HMM, we can write

P[Yn = i0, Yn+1 = i1, . . . , Yn+m = im]

=
∑

j0,j1,...,jm

P[Xn = j0, Xn+1 = j1, . . . , Xn+m = jm]
m∏

k=0

f (jkik).

We see that this formula defines a mixture distribution. Therefore, we can use an argument
similar to the proof of Theorem 1 to obtain a perturbation bound for the vectors formed by
the probabilities P[Yn = i0, Yn+1 = i1, . . . , Yn+m = im] (such a vector will have Mm+1

components, each corresponding to a possible choice of i0, i1, . . . , im). This bound, together
with the analogues of the theorems in Section 4, shows that the multidimensional distributions
are more sensitive to changes in the emission probabilities than to changes in the finite-
dimensional distributions of the Markov chain {Xn}. Obtaining perturbation bounds for the
latter distributions in terms of the perturbations in the transition probabilities seems to be a
difficult task.

Example 6. (A semi-Markov process.) Let {g(i)}, i ∈ S, be a family of probability distributions
on R+, and let S = (s(ij)) be a stochastic matrix of dimension N × N . Suppose that the
distributions g(i) have continuous densities γ (i)(t), t ≥ 0, and set Qij (t) = g(i)(t)s(ij). Let
V be a semi-Markov process on S determined by the kernel Qij (t) and the initial distribution
vector s0 (for the definition and basic properties of semi-Markov processes, see the classic work
[26]). The Markov chain governing the jumps of V has transition matrix S and distribution
vector sn = (s

(i)
n ), i ∈ S, n ∈ Z+. We also define (in a similar way) a perturbed semi-Markov

process, Ṽ , with corresponding characteristics g̃(i), γ̃ (i)(t), and s̃n. Note that V , as well as Ṽ ,
is a special type of semi-Markov process, in which sojourn times depend only on the current
state. Such processes arise in applications, e.g. in ion channel modeling [2].

The duration of the nth sojourn of the process V has distribution denoted by hn, which is
given by

hn(B) =
∑
i,j∈S

s
(i)
n−1g

(i)(B)s(ij) =
∑
i∈S

s
(i)
n−1g

(i)(B), n ∈ N. (9)

Here, B belongs to the Borel σ -algebra on R+. A similar formula holds for the corresponding
distributions h̃n defined for Ṽ . The equality (9) is analogous to the expressions (3) for the
distributions of HMMs. Therefore, we can use the argument in the proof of Theorem 1 to
obtain the following perturbation bound for the distributions of the sojourn times of V :

d(h̃n, hn) ≤ d(g̃, g) + κg‖s̃n−1 − sn−1‖, n ∈ N,
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where

d(h̃n, hn) =
∫

R+
|χ̃n(t) − χn(t)| dt,

d(g̃, g) = max
i∈S

∫
R+

|γ̃ (i)(t) − γ (i)(t)| dt,

κg = 1
2 max

i,j∈S

∫
R+

|γ (i)(t) − γ (j)(t)| dt;

χ̃n(t) and χn(t) are probability density functions corresponding to h̃n and hn, respectively. As
in the case of HMMs, this bound should be used in conjunction with perturbation bounds for
Markov chains. Note that if γ (i)(t) > 0 for all i ∈ S and t > 0, then κg < 1.

6. Conclusion

We have shown that, in general, the behavior of HMMs tends to be more sensitive to the
choice of the emission probabilities than to the choice of the transition probabilities. This
conclusion supports the approach taken by the developers of gene-finding algorithms of the
GENEMARKTM family (see [5], [6], [17]). The heuristically derived values are used as
initial estimates for the emission probabilities in the self-training version of the HMM-based
algorithm (see [6]). These estimates reflect the actual compositional properties of the genomic
DNA sequence, and seem to be crucial to the convergence of the iterative training procedure
to biologically relevant values. The initial choice of the transition probabilities is far more
arbitrary; our experience shows that altering these probabilities produces small relative changes
in the final values of the HMM parameters as well as in final gene predictions. The results of this
paper provide grounds to suggest that the approach to HMM parameter estimation described in
[5], [6], and [17] may serve as a guideline for the developers of self-training versions of other
HMM-based bioinformatic algorithms.
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