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1. Introduction

In the last decade, considerable attention has been paid by graph theorists to the
study of spectra of graphs and their interaction with structure and characteristic
properties of graphs. After the 'classical' book by N. L. Biggs [12] on algebraic graph
theory in general, the first comprehensive monograph on this particular topic, by
D. M. Cvetkovic, M. Doob and H. Sachs [34], appeared in 1979. It dealt exclusively
with finite graphs. In a recent article by the first two authors [32], a survey of new
developments is given, including a short section on infinite graphs. On the other hand,
spectral theory of graphs, in particular infinite graphs, and related topics have been
dealt with to a considerable extent 'disguised' in the framework of the theory of non-
negative matrices, harmonic analysis on graphs and discrete groups (Cayley graphs),
analytic probability theory, Markov chains and other mathematical branches. In fact,
some results have been rediscovered several times under different viewpoints.

The purpose of this survey is to give an overview of results on spectra of infinite
graphs, emphasizing how contributions from different areas fit into this graph-
theoretical setting. For the moment, we point out the books by E. Seneta [113] and
by A. Figa-Talamanca and M. A. Picardello [45] as two examples. Among the variety
of books on the background in functional analysis and matrix theory, we emphasize
[1, 30, 41, 118, 129]. Our approach follows that of B. Mohar [89] and related
definitions of spectra, as they have been used in the mathematical fields mentioned
above. A different approach, due to A. Torgasev [119], will be only briefly discussed;
the reader is referred to the recent book [33].

Primarily, this survey is addressed to graph theorists; there also is some emphasis
on ' spectral' properties of random walks on graphs. The selection of those topics
which can (or should) in some way be regarded in connection with spectral theory of
graphs could most likely be extended towards infinity. Therefore, the present survey
is biased by the viewpoint of the authors and cannot be complete. We apologize to
all those who feel that their work is missing in the references or has not been
emphasized sufficiently in the text.
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2. Linear operators associated with a graph

Let G = (V,E) be an unoriented graph, finite or countably infinite, possibly
having loops and multiple edges, and let B(G) = B = (bu v)u veV be a (real or complex)
square matrix indexed by the vertices of G. If G is finite, the set of all eigenvalues of
B is called the B-spectrum of the graph. Various ways of associating matrices with
finite graphs and the corresponding spectra are treated in [34]. If G is infinite, the
spectrum of B(G), denoted by spec (B(G)), depends on the choice of a suitable space
on which B acts as a linear operator. Usually, one considers the Hilbert space l\V).
It can also be replaced by any of the spaces lp( V), consisting of all complex column
vectors

x = W » 6 ^ (2-1)
satisfying

NIP = (E WTp<oo, (2.2)
veV

where 1 ̂ p < oo; for p = oo, the norm reduces to HxH^ = max{|xj|ye V). The
action of B is matrix multiplication: the coordinates of y = Bx are

yv = Z K.vxv> UGV> (2-3)
veV

whenever these series converge. Linked with the problem of convergence is the choice
of the appropriate definition range of B; see §3. One may also consider the action of
B on the space of all complex (in particular, positive; see §6) vectors over V; this is
well defined in most cases. We now describe several ways to associate a matrix B(G)
with a graph G, further details will be discussed in the following sections.

The most natural choice is the adjacency matrix A = A(G); see [12, 34, 89]. For
u,veV, its entry au v is the number of edges between u and v; in particular, au u is the
number of loops at u. Here, one has to assume that G is locally finite: deg (w) < oo
for every vertex u, where deg(w) is the number of edges emanating from u. If
deg(G) = sup{deg(«)|«6 V) < oo, then A acts on l\V) as a self-adjoint operator
with norm at most deg (G). i

Another very common matrix associated with a locally finite graph G is the
transition matrix P = P(G!) = (pu v)u veV, where

Pu,v = ou.Jdeg(u). (2.4)

This is a stochastic matrix (all row sums equal one), and as such it gives rise to a
Markov chain with state space V, usually called simple random walk (SR W) on G [39,
55, 116]: the SRW is a sequence Xn,n = 0,1,2,. . . , of V-valued random variables
which have the Markov property

= puv for all u0,«15 ...,«„_! = u, vs V.
(2-5)

Thus, Xn is the random position at time n, and we move along the edges according
to probabilities pu v, u,veV. The transition matrix acts as a self-adjoint operator with
norm bounded by one on the Hilbert space l#(V) of all vectors x with

I 2 , #
= <x,x>|<oo, (2.6)
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where the inner product is given by

<x,y>#= Y, xvTvteg(v); (2.7)

see, for example, [75,102]. Note that G is assumed to be locally finite, but we do not
demand here that deg(G) < oo.

Associated with each of the preceding two matrices are the difference Laplacians

AA(G) = D(G)-A(G) (2.8)

AP(G) = I(G)-P(G), (2.9)

where D(G) is the diagonal matrix Diag (deg (v), v G V) and I(G) is the identity matrix
over V; compare, for example, with [35, 37].

If G is regular (homogeneous), that is, all vertices have the same degree, then results
for A(G) carry over to AA(G) and also to P(G) and AP(G), dividing by deg (G) (and vice
versa).

Finally, a completely different approach is due to A. Torgasev [119]. Consider
a graph G without multiple edges. Choose a constant a, 0 < a < 1, and a labelling
V = {u15 v2, i>3,...} of the vertex set, and define the matrix C = Ca = (ctj)tJeM by

cu = aVi,V}-^-\ (2.10)

Then C gives rise to a self-adjoint compact operator on l\V), which is
Hilbert-Schmidt and hence allows the use of a well-developed spectral theory. In
particular, there is no need to assume local finiteness of G. On the other hand, the
spectrum depends both on labelling and parameter a, and there seem to be no natural
choices available.

Many details and references concerning Torgasev's method can be found in [32,
33], so that we shall not go into further details of this part of the theory.

For the rest of this paper, we shall always assume that G is an infinite, locally finite
graph.

3. Basic results

The adjacency matrix A = A(G) of G acts on vectors in l\V) as described in (2.3).
Its action is well-defined on all vectors which have only finitely many nonzero entries,
and these form a dense subspace of l\V). The operator with this definition range is
symmetric and thus closeable. Its closure is called the adjacency operator of G, and
will be denoted by the same symbol A as the adjacency matrix. This operator has self-
adjoint extensions, but they are not unique in general. It is known [93] that there are
infinite graphs with deficiency index n for any n ^ 0 (see [41] for the definition). An
example of a graph with no unique self-adjoint extension was independently given in
[100]. The self-adjoint extension is unique only if the deficiency index equals zero. This
is the case when deg(G) < oo, as we have the following theorem (see [89]).

THEOREM 3.1. The adjacency operator is bounded (and thus everywhere defined and
self-adjoint on 12(V)) if and only if deg(G) < oo. In this case, ||A|| ^deg(G), and
spec(A)s[-deg(G),deg(G)].

In [89], also the following basic results are given.

8-2
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THEOREM 3.2. The adjacency operator is compact if and only ifG has only finitely
many edges.

THEOREM 3.3. If we add or delete finitely many edges in G, then continuous
spectrum and eigenvalues of infinite multiplicity remain unchanged.

THEOREM 3.4. Let GltG2,G3,... be the connected components of G. Then
spec(A(G)) is the closure of (J{spec(A(GJ)\i= 1,2,3,...}, and the point spectrum of
A(G) is the union of the point spectra of the A(G().

Several results concerning spectra of certain products of graphs can be generalized
from finite [34] to infinite graphs. As usual, a simple graph is assumed to have no
multiple edges or loops. Let Gv G2,..., Gn be a family of simple graphs, and let B be
a nonvoid subset of {0, l}n, not containing the «-tuple (0, . . . ,0). Then the non-
complete extendedp-sum (NEPS) with basis BofGv...,Gn is the graph Hwith vertex
set V(H) = ViGj)x ... x F(Gn), in which two vertices (uv...,un), (vlt...,un) are
adjacent if and only if there is an /?-tuple b = (blt ...,bn)inB with the property that
u( = vi if bt = 0 and ut is adjacent to vt in Gt if bt = 1.

In particular, the basis B = {(1,1,. . . , 1)} gives rise to the tensor product and the
basis consisting of all ^-dimensional unit vectors leads to the Cartesian product. For
these types of graph products, we have the following result.

THEOREM 3.5 [91]. Let Gl} G2, ...,Gnbe a family of at most countable graphs with
bounded vertex degrees with adjacency operators A15 A2,..., An, respectively, and let H
be their NEPS with basis B. Then spectrum and point spectrum of the adjacency
operator A of H are given by

spec (A) = { £ # • # • • • Xb
nn | Xt € spec (Af)}

beB
and

spec, (A) = { £ A{- • # • • • Xb
n» | Xt e spec, (A,)}.

We now turn our attention to the transition operator. For u in V, denote by ett the
unit vector in 12(V) whose w-entry is equal to one, all other entries are zero. Then
{eu\ue V) is a complete orthonormal system for 12(V), whereas {(deg(«))~8eu|UE V)
plays the same role for

REMARK 3.6. (a) The transition operator is defined and self-adjoint on ll{V) for
any locally finite graph, ||P|| < 1 and spec(P) c [_ 15 1].

(b) The analogues of Theorems 3.3 and 3.4 hold in the obvious way for P.

However, there is no immediate analogue of Theorem 3.2 for the transition
operator.

THEOREM 3.7. (a) The operator P is Hilbert-Schmidt on 1%(V) if and only if

y <
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(b) Each of the following two conditions is necessary for the compactness of P.
(i) For allj, k in N,

£ (a\ v | [w, y] e E, deg (w) = j , deg (y) = k) < oo.

(ii) For any e > 0 and for all but a finite number (depending on e) of u in V,

Y ^ <g

ur'udeg(w)deg(y)

Proof. Note that

<Peu, ew># = <AeM, ev> = au v. (3.1)
Thus, the sum in (a) is just the square of the Hilbert-Schmidt norm of P :

To prove (b), assume that P is compact on /#(K). The set {deg(w)~*eM| we V) is
bounded, and its image must be relatively compact. Assume that {«„} is a sequence
in V such that deg(wn)~*Peu -» x in /|(K). Then, for every ye V,

= h m ( / ^ / N P C « » / I / A C W = h m

\Vdeg(Wn) ^ « V d e g ( y ) ^ / # Vdeg(«n)deg(y)'

By local finiteness, xv = 0, and (ii) must hold.
Now assume that the sum in (i) is infinite for some pair of integers j,k. Thus there

is an infinite sequence {[wn,fn]} of edges with deg(wn) =j, deg(yn) = k, and

' Pe.
Vdeg(wn)

L
jk

in contradiction with (ii).

In particular, the analogue of Theorem 3.2 holds for the transition operator, when
deg(G) < oo. Adding or deleting finitely many edges changes the inner product, but
the underlying /#-space remains the same, and it is easy to see that Theorem 3.3
remains valid for P. On the other hand, we do not know a general result about P for
NEPS of non-regular graphs which parallels Theorem 3.5. The following is easy to
see; compare with [95].

THEOREM 3.8. If G is the tensor product of two locally finite graphs Gx and G2,
then

spec(P(G)) = spec (P(GJ)- spec (P(G2))
and

specp(P(G)) =

Finally, we make some observations concerning the Laplacians; compare with
[35, 37]. For each edge in E, choose and fix an arbitrary orientation. We write u(e) for
the origin and v(e) for the endpoint of edge e in this orientation. Now we consider the
Hilbert space l\E) of vectors <j> = (<pe\eeE) with the usual inner product

<+,¥>= I, hW. (3-2)
eeE
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(each oriented edge is counted once). We define the difference operators
d: l\ V) - l\E) and d#: /?( V) -> l\E) by

dxe = xvW-xuM = d#xes x in l\V) or /2(F), respectively. (3.3)

These operators are sometimes referred to as oriented incidence or oriented coboundary
operators; see, for example, [12]. Here, we assume that deg(G) < oo in the first case
and that G is locally finite in the second, as we have <dx,dx> ^ 2£t)el/deg(y)|.xl,|

2.
The same holds for d#. Hence

| |d | | 2^2deg(G) and ||d#||
2 ^ 2. (3.4)

We remark that ||dx|| (or ||d# x||) is usually called the Dirichlet norm of x; see [54,122].
One computes the adjoint operators from l\E) into l\V) or /#(K), respectively,

v{e)-u u(e)=u •

and obtains
AA = d*d, AP = d*d#. (3.6)

These formulas are useful for the description of properties related to the spectral radii
of A and P; compare with [13, 35, 37, 54, 91, 122]. In particular, the Laplacians are
positive operators, and we shall be interested in the question when the number zero
is contained in their spectrum; see §5.

4. Spectral radius, walk generating functions and spectral measures

In view of Theorems 3.1, 3.4, we assume for the rest of this paper that G is
connected and locally finite. Furthermore, when talking of the adjacency operator
A(G), we shall implicitly assume that it is bounded on l\V), that is, deg(G) < oo.
(The latter assumption will not be used for the transition operator.)

Let B = B(G) be an arbitrary matrix associated with G having the property

buv>Qif[u,v]eE and bu_v = 0 if [u,v]$E. (4.1)

A walk from u to v(u, v e V) is a sequence n = [u = u0, uv u2,..., un = v] of successively
adjacent vertices. The length of n is \n\ = n, and the weight of n with respect to the
matrix B is

VV(TT) = vv(7r|B) = bu^bUvUi...bUnvUn. (4.2)

For the walk [u] of length 0(we V), we set w([u]) = 1. If n is a set of walks, then

w(n) = £ w(n). (4.3)
nell

As G is locally finite, the matrix powers B" are well defined for n ^ 1, its entries are
denoted b(^v. We set B° = I = I(G). The following is well known.

THEOREM 4.1. b™v - w(Yln(u, v) \ B), where Un(u, v) is the set of all walks of length
n from u to v.

COROLLARY 4.2. For the adjacency matrix of a simple graph, a{£\ is the number of
walks of length n from u to v.

(To obtain the same result for graphs with multiple edges, one has to specify the edges
in the definition of a walk.)
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COROLLARY 4.3. p™v = w(Un(u,v)|P) = Pr[Xn+k = v\Xk = u] (independent ofk)
is the probability of reaching v from u in n steps.

Now consider for z e C and u, v e V the power series

K .(*) = K v(z IB) = t O*" + 1 = ; w(n(«, v) | - B\ (4.4)
71-0 Z \ Z /

where n(M, v) is the set of all finite walks from u to v. This series converges and defines
an analytic function for \z\ > r, where

r = r(B) = lim sup (b^vf
ln. (4-5)

n-»oo

As G is connected, r does not depend on the particular choice of u, vs V [124, 125],
[113, §6.1]. The number r(B) is called the convergence norm or (in the self-adjoint case)
the spectral radius of B. By Pringsheim's theorem, r is the largest positive singularity
of Ruv(z | B). Observe that

r(A)^deg(G) and r(P) ^ 1. (4.6)

Note that our r corresponds to the number \/R of [124, 113, 75] and others.
Furthermore, we have by [124], [113, §6.1]

either Ru v(r) < oo for all u,veV

or *„,„(/•) = oo for all u,veV. ( 4 7 )

In the first case, G is called r(B)-transient, in the second case r(B)-recurrent. With the
exception of Cayley graphs of finitely generated groups, it is an open problem to give
a condition of ' geometric' type for an infinite graph or even a tree to be r(A)- or
r(P)-recurrent. This would be of great interest; compare with [50, 55]. For a matrix-
theoretical criterion, see [125, Crit. Ill] and compare with Theorem 6.2 below.

One subdivides r(B)-recurrence into the r(B)-null and the r(B)-positive case [113,
124, 125, 126] according to whether b™vr~n converges to zero or not (this is
independent of the choice of u, v e V). As B = A(G) and B = P(G) define self-adjoint
operators, /-(B)-positivity holds in these cases exactly when r(B) is in the point
spectrum of B [126, Theorem 2.2; 113, Theorem 6.4]: in this case, the multiplicity of
the eigenvalue r(B) is one, and — r(B) is an eigenvalue (of multiplicity one) if and only
if G is bipartite.

We remark that a finite graph is always r(B)-recurrent for any B, and, in
particular, r(P) = 1. In general, if G is r(P)-recurrent and r(P) = 1 then one says that
G, or the SRW, is recurrent (in the usual sense); in any other case G is called transient.
(Thus at the same time, a graph may well be transient and r(P)-recurrent for
r(P) < 1.) Contrary to r(P)-recurrence, usual recurrence has a probabilistic inter-
pretation : G is recurrent if and only if for some (and hence all) u,veV,

Pr[Xn = u for infinitely many n\X0 = v] = 1. (4.8)

There is a variety of useful conditions for recurrence, for example, [36, 39, 50, 51, 82,
101, 122, 134].

If ||A|| and ||P||# denote the norms of A(G) and P(G), acting as self-adjoint
operators on l\V) and /#(K), respectively, then we have the following general
result.
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THEOREM 4.4 [41, 89, 102]. (a) ||A|| = r(A) and spec(A(G)) is a compact set
contained in the real interval [ —r(A), r(\)]; furthermore, r(A)espec(A(G)).

(b) ||P||# = r(P) and spec(P(G)) is a compact set contained in the real interval
[-r(P), r(P)]; furthermore, r(P) e spec (P(G)).

This justifies calling r the spectral radius of the corresponding matrix. Now denote
for B as above

R ( ) R ( | B ) ( / ? > | B ) ) e , . (4.9)

Then we have for \z\ > r(B)

R ( * l B ) = Z 4 T B n a n d (zI-B)R(z|B) = I, (4.10)
n-0 Z

where I = I(G). Hence we have the following.

THEOREM 4.5. Let B = A(G) or B = P(G), acting on l\V) or /*(K), respectively.
Then R(z|B) extends to an analytic matrix function for z in C\spec(B(G)) (that is, all
matrix components are analytic functions of z). The extension, still denoted R(z | B),
defines the resolvent operator (zl — B)"1. In particular, for z e C\spec (B(G)), the matrix
R(z | B) defines a bounded linear operator on the corresponding l2-space.

Denote by q(G) the parity of G:

q{G)J]> if C is bipartite,
yv ' \\, otherwise.

Furthermore, for u,veV let

TO, if q{G) = 1 or d(u, v) is even,

if 4 ( 0 = 2 and </(«,») is odd. ( 4 J 2 )

Here, as usual, d(u, v) is the distance between u and y, that is, the length of a shortest
walk from u to v. Remember that G is assumed to be connected, so that the distance
is finite.

THEOREM 4.6 [75, 77,113]. Let B = B(G) have property (4.1). 77ie« we have for all
u,ve V:

(a) l i m ( ^ ) 1 / m = r(B), w/*m? w = q(G)n + q(u,v) andn-^oo,
(b) 6<u% ̂ V(B)",
(c) / / B = A(G) or B = P(G) /Ae/i lim (b\™+2)/b\ln)

u) = r(B)2, w/?ere m = q(G)n
and n -> oo.

We also mention the following general result concerning the transition operator
of a connected, locally finite graph; see, for example [55].

T H E O R E M 4.7. l imn_0 0 /^n )
v = 0 / o r some (and hence all) u,veV if and only if G is

infinite.

The (u, y)-entry Wu v(z) of the matrix

W(z) = W(z | B) = i R f ̂  = (I - zB)"1 (4.13)
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is the walk generating function: if B = A(G) and G is simple it counts the walks from
u to v, and if B = P( ( J ) , its coefficients are the transition probabilities from u to v in
the SRW. By Theorem 4.5, in each of these two cases W(z) is well defined and
bounded as an operator on the corresponding /2-space, if z"1 £ spec (B).

Now denote by C(spec (B)) the space of all continuous real functions on spec (B),
where B = A((j) or B = P(G) defines a self-adjoint operator on the corresponding
/2-space. I f / e C(spec(B)) is a polynomial, then we can define the operator/(B) in the
obvious way. By approximation, this correspondence can be extended to define/(B)
for all fe C(spec (B)) (see [41, §X.2]), and there is an operator-valued set function
/j. = fiB, defined on the Borel sets of spec (B), such that

f(B)=\ AX)l*dk) (4.14)
Jspec(B)

for every such/. Usually, \x is called the resolution of the identity for B. In particular,
if z, or z"1 respectively, lies outside spec (B), then

R(z|B)=[ -^(<tt) and w^lB)=f r^mi (4-15)
J spec (B) Z A J spec (B) l ~ Z/i

We define the spectral measures

L f , e v } § , (4.16)

where u, ve V. Then in each of the two cases B = A or B = P, (4.15) says that fiu v is
a regular measure on spec(B) and

^ j (4.17)
spec (B) l ~ ZA

The nth. moment of fiu „ is just

\ (4.18)
spec(B)

If we set n = 0, we see that the total mass of /au v is zero if u # v and one if u = v. In
particular, nuu is a probability measure for ueV. The spectral measures can be
determined if the walk generating functions are known. By (4.15), RUtV(z) is the
Stieltjes transform of nu<v, and the Stieltjes inversion formula can be applied, see [41,
Theorem X.6.1]:

A*..w((-oo^)) = lim lim - L f ' (* M i , (« - fe ) -* . i B (a + fe))<fa. (4.19)
(5-0+ £-0+ A711 J-oo

If we are only interested in those values Xo where nu v is continuous, then (4.19) can
be simplified to

r (4.20)

(see for example [127]).
Identities (4.18) and (4.19) imply the following generalization of the pairing

theorem (see [34, Theorem 3.11] for the finite case) for adjacency or transition
operator of a connected graph; see also [57].
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THEOREM 4.8. IfG is bipartite then //M v(dX) is symmetric with respect to zero for
every pair of vertices u, v which are at even distance. Conversely, ifnuv(dX) is symmetric
with respect to zero for some pair u, v at even distance, then G is bipartite.

COROLLARY 4.9 [89]. If G is bipartite then the spectra of A(G) and of P(G) are
symmetric with respect to zero. For the point spectrum, this includes multiplicities.

We mention that for the Cartesian product of two graphs, the spectral measures
can be determined from those of the factors. The following theorem has no direct
analogue for the transition operator, unless the two factors of the Cartesian product
are regular.

THEOREM 4.10. Let G be the Cartesian product ofGl and G2, A = A(G) and A, =
\(Gt),i = 1 , 2 . Then fik is the convolution of /iA» with fiA*.

In other words, if u, v are vertices of G, u — (w15 w2) and v = (y15 v2) with ut, vt e V(G()
then

where * denotes convolution of real measures (with respect to addition).
Besides (4.19), another method which can be used to determine spectral measures

is by 'finite approximations'. The following is well known [41, §X.7; 118].

LEMMA 4.11. Let Bn be a sequence of operators converging to B pointwise in the norm
of the underlying l2-space. Let fiin) andfi denote the respective resolutions of the identity.
Then ^(n)((—oo,A)) converges to //(( — co,k))for every X where // has no jump.

We say that a sequence of subgraphs Gn converges to G, if each edge of G is
contained in all but finitely many of the Gn. Lemma 4.11 implies the following
result.

THEOREM 4.12. Let Gn be a sequence of subgraphs ofG converging to G. Then for
every pair u,v of vertices, the sequence of spectral measures /i™v ofA(Gn) converges to
the spectral measure fiu v of A(G) at all points of continuity of fiu v.

In order to calculate spectral measures of an infinite graph G, a possible
application of this theorem is to take for Gn an increasing sequence of finite induced
subgraphs of G. Note that for a finite graph, the spectral measure is easily determined.
For every eigenvalue of the adjacency matrix, it has a jump which can be calculated
from the corresponding normalized eigenvector(s). Conversely, the result of [83]
concerning the eigenvalue distribution of large graphs with few short cycles can be
viewed as an approximation of finite graphs to a regular tree (see [57]), and in fact,
the limiting distribution given in [83] is just the spectral measure nu u of a regular tree;
compare with [11, 18] and §7 below. A result for finite Cayley graphs similar to that
of [83] is proved by this method in [81]. More general applications of the method of
finite approximations can be found in [57].

In a similar way to Theorem 4.12, the spectral radius of an infinite graph can be
obtained by approximation; compare with [113, §7; 89].

THEOREM 4.13. Let An = \(Gn), where Gn is a sequence of subgraphs converging
to G, and let A = A(G). Then r(An) converges to r(A) from below.
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For the transition operators P(Gn) of a convergent sequence of subgraphs of G,
Theorems 4.12 and 4.13 are not true in the above form. Observe that for finite Gn,
r(P(GJ) = 1 always, whereas r(P) may be less than one. However, the following is
true.

THEOREM 4.14. Let Gn be a sequence of subgraphs converging to G, and let Pn be
the truncation ofV(G) with respect to Gn. Then r(Pn), defined by (4.5), converges to /-(P)
from below, and the spectral measures of Pn with respect to /# (V) converge to the
spectral measures of P at all points of continuity of the latter.

Observe that the (w,u)-entry of Pn is pu v (of P), so that Pn is not the transition
matrix of Gn. In probabilistic terms, the substochastic matrix Pn defines a truncated
random walk on Gn, and at each point of the boundary of Gn with respect to G, there
is a nonzero probability that the random walk 'vanishes' at some exterior point.

We mention a result which is also related to finite.approximations. If G has
unbounded or infinite vertex degrees then

sup {r(A(G')) IG' a finite induced subgraph of G} = oo.

On the other hand, if one takes the infimum of the bottoms of the spectra of finite
subgraphs, then one may obtain a finite number. Some results in this direction can be
found in [120].

For finite graphs, the closed walk generating function

C(z) = C{z | B) = trace (W(z)) (4.22)

is of great interest. For infinite graphs, it cannot be defined in the same way; compare
with [57] for possible extensions in some cases. Note that for a finite graph, C(z) is a
constant multiple of Wu u(z) provided that the graph is walk-regular for the associated
matrix B(G): this means that Wu u(z) does not depend on vertex u. If an infinite graph
is walk-regular, then it is justified to consider Wu u(z) as an equivalent of C(z). This
class includes all vertex transitive graphs, and in particular all Cayley graphs of
finitely generated groups. We remark that the corresponding spectral measure p.u u is
usually called Plancherel measure in the transitive case; see for example [45] and §7
below. Its importance is in representation theory of groups on one hand and in
multiplicity theory on the other, as it gives the approximate distribution of the spectra
of large finite subgraphs of G; compare with [57, 83].

Methods of calculation and explicit formulas of walk generating functions,
spectral radius and spectral measures will be given in §7 for a variety of cases.

5. Growth and isoperimetric number of a graph

If u is a vertex of G then the growth function of G around u is

v)*kn}\. (5.1)

It describes how fast G expands around u. The growth function is related to the
transition operator of G in the following way.

THEOREM 5.1 [55]. Suppose that d0 < deg(y) ^ deg(G) < oo for all v in V. Then,
for all v,
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From Theorem 4.6b we obtain:

COROLLARY 5.2. fiv(n) > (</0/deg (G)) r(P)"2n.

Thus, if r(P) < 1 then fiv(n) grows exponentially fast. IfPv(n) ^ cpn, where c> 0
and p > 1 then we say that G has exponential growth. On the other hand, G has
polynomial growth if fijji) is bounded above by a polynomial in «; if

for all n > 0, where cl5c2> 0, then G is said to have polynomial growth of (exact)
degree k. In general, the constants c, or cl and c2, respectively, may depend on u,
but—due to connectivity—p, or k, respectively, do not rely on the choice of v.
Furthermore, G has subexponential growth if limw_>oo^tt(w)1/n = 1.

If G is a regular graph then by Corollary 5.2 we have

&(«) Mdeg(G)MA))2", (5.2)

and if (7 is vertex-transitive then /?„(«) = /?(«) does not depend on ye V. Finally, if G
is the Cayley graph of a finitely generated group, then the property of having
polynomial growth with a fixed degree, subexponential or exponential growth
remains invariant under a change to another Cayley graph (with respect to a different
set of generators) of the same group. The growth function has originally been
introduced by Milnor [87] for groups as a tool to study curvature of Riemannian
manifolds. Subsequently, growth of groups has been studied by several authors. We
summarize the main results.

THEOREM 5.3. Let G be a Cayley graph of a finitely generated group Y.

(a) [10, 130] If F has a nilpotent subgroup of finite index then G has polynomial
growth of integer degree.

(b) [59] If fi(ri) is bounded above by a polynomial in n, then F has a nilpotent
subgroup of finite index.

(c) [88, 130] IfT is soluble then G has either polynomial or exponential growth.
(d) [58] There are many groups with subexponential, nonpolynomial growth.
(e) IfT has a free subgroup on more than one generator, then G has exponential

growth.

Furthermore, if for a vertex-transitive graph G, fi(ri) is bounded by a polynomial
in n, then G is 'almost' a Cayley graph of a nilpotent group: see [121] for the details;
in particular, G must have polynomial growth of integer degree. For further results
in a similar spirit to the following theorem, see §6.

THEOREM 5.4 [9]. If G is a Cayley graph with subexponential growth, then every
solution helx(V) of AAh = 0 (which holds if and only */Aph = 0) is constant.

The isoperimetric number of a graph is defined as

KG) = inf ! ^ ! , (5.3)

where U runs over all finite subsets of V and dU is the set of edges having one end
in U and the other in V\U. The number i(G) is a discrete analogue of the well known



A SURVEY ON SPECTRA OF INFINITE GRAPHS 221

(Cheeger) isoperimetric constant which is used in the theory of Riemannian
manifolds; see [22, 23]. Similarly, we define

iP(G) = inf \dU\/S(U), (5.4)
u

where (as above) the infimum refers to all finite subsets of V, and S(U) is the sum of
the degrees (in G) of the vertices in U. In [91], /P(G) is called the transition isoperimetric
number of G. Observe that

i(G) = 0<*/P(G) = 0, if deg(G) < oo. (5.5)

For finite graphs (where, in the definition corresponding to (5.3), the sets U in the
infimum must not cover more than half of V), isoperimetric numbers and their
relation with spectra have been studied by [3, 17, 92] and others. For infinite graphs,
isoperimetric numbers, or (strong) isoperimetric inequalities have been considered by
[13, 35, 37, 54, 91]; see also [51]. (In some of these references, dU is defined as the set
of vertices in U having a neighbour outside of U, which does not make much
difference when deg(G) < oo.) The relation with the spectral radii of A(G) and P(G)
is the following.

THEOREM 5.5 [91]. Let d0 and dx = deg (G) be the minimal and the maximal vertex
degree in G (the latter may be infinite). Then we have:

(b) ^ 4 - - r ( P )

The two upper bounds are discrete analogues of the so-called Cheeger inequality
[23], well known in the theory of Riemannian manifolds. Results preceding those of
Theorem 5.5 were proved in [13, 35, 37, 54]. In particular, one has:

COROLLARY 5.6. (a) [54] iP(G) = 0 if and only if r(P) = 1.
(b) [13, 51] If i(G) > 0 or iP(G) > 0 then G has exponential growth.

Note that (b) also follows from Corollary 5.2. Thus,

0espec(AP(G)) if and only if iP(G) = 0. (5.6)

Groups whose Cayley graph has i(G) = 0 are usually called amenable and have many
interesting properties of functional analytic type [108]. We also remark that there are
(Cayley) graphs with exponential growth, but /(G) = 0; they arise from soluble
groups which are not nilpotent by finite [111]. In [54], the equivalence of i(G) = 0 (or
ip(G) = 0) with several further properties of functional analytic and probabilistic type
is proved (under the assumption that deg(G) is finite). For more details concerning
the connection between isoperimetric numbers and the growth of graphs, see [91]. In
[35, 37, 90], infinite cubic planar graphs with minimal degree at least seven are
investigated, and lower bounds on their isoperimetric numbers are obtained; further
results in this direction can also be found in [90].
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To describe isoperimetric properties of graphs with i(G) = 0, one may consider the
k-dimensional isoperimetric number

i<«(G) = inf j J ^ T F , (5.7)

defined in the same way as in (5.3). This is exploited to a very large extent in [122,123]
in order to study probabilistic and functional analytic properties of Markov chains,
in particular random walks on Cayley graphs of finitely generated groups.

6. Positive eigenfunctions

As in the preceding sections, let G be locally finite and connected, and let B = B(G)
have property (4.1). Furthermore, assume that G is infinite and that 0 < r = r(B) < oo
(this is satisfied if B = A(G) and deg(G) < oo, or if B = P(G)). Then B can also be
considered as an operator on the cone !F+(V) of nonnegative functions (vectors)
f = (fv)veV: the action is defined as in (2.3); g = Bf has coordinates gu = £«6„£„.„/„.
Writing f ^ g for f,ge&r+{V) means that the inequality holds coordinatewise. Note
that we do not use any Hilbert space structure here. The following is a simple
consequence of connectedness of G.

LEMMA 6.1 [109]. If Bf ^ zi for fe3?+(V) and z > 0, and f is nonzero, then
fu>0forallueV.

Now, one has another characterization of r.

THEOREM 6.2 [109, 125]. Let r = r(B). Then

(a) for real z, the inequality Bf < zi has a nonzero solution f in tF+(V) if and only
ifz^r;

(b) ifz > r, or ifz = r and G is r-transient (see (4.7)), then there are infinitely many
linearly independent solutions;

(c) if z = r and G is r-recurrent, then there is a unique solution (up to constant
multiples), and this solution satisfies Bf = rf.

Now consider the cone of z-harmonic functions (with respect to B) in !

#e\ = {he^+(K)|Bh = zh}. (6.1)

The following result exhibits a contrast to finite graphs.

THEOREM 6.3 [109, 125]. The cone 3tf+ is nonvoid if and only ifz^r.

If B = P(G) and z = 1, then ^C\ consists of all positive functions h which have the
property that at each vertex u, hu is the average of the values at the neighbours,

AAh = APh = 0. (6.2)

Such functions (not only if they are positive) are usually called harmonic functions on
G, without specifying z.

At this point, one may ask for a description of the cone of positive harmonic
functions in the sense of (6.2), or more generally, of all positive z-harmonic functions
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with respect to B. We briefly describe an abstract approach to this question (compare,
for example, with [113, §5.5], where only stochastic matrices are considered, but the
results carry over to our case). If z = r and G is r(B)-recurrent, then there is a unique
solution up to constant multiples. Hence, for the rest of this section, we assume that
either z > r or that z — r and G is /--transient, in other words,

0 < Ru<v(z) < oo for all u,v in V. (6.3)

We select a vertex o, a 'root' , and define the Martin kernel

&, u,veV. (6.4)

Then there is a compactification Gz of V — V(G) which is characterized up to
homeomorphism by the following three properties.

(I) Gz is compact metrizable and contains V as a dense, discrete subset.
(II) The Martin kernel extends to VxGz continuously in the second variable (the

extension is also denoted by Ku (z)).
(Ill) If <xJeGz and Kua(z) = Ku / z ) for all ueV, then a = /?.

The set of new points Jtz = Gz\ V is called the Martin boundary of G with respect
to B and z. Its importance lies in the following result; see, for example, [99, 113].

THEOREM 6.4 (Poisson-Martin representation theorem). For every function h in
,W\~, there is a positive Borel measure vh on Mv such that for every vertex u,

h =

The measure vh is 'almost' unique, but we do not go into the details of these
questions; see, for example, [107]. Given the abstract construction, one is interested
in a ' visualization' of the Martin boundary Jiz in terms of the graph structure. This
is a difficult task. We remark that for 'tree-like' graphs and a reasonable choice of
B(G) (including adjacency and transition matrix), Jlz coincides with the space of ends
of G [106], whereas for integer lattices, Jiz is homeomorphic to the unit sphere in the
respective dimension for z > r, and consists of one point for z = r [38]. For an
overview of results on harmonic functions in a graph-theoretical setting, see [107].
There, only the cone 3^\ for stochastic B(G) is considered, but with some care, most
results carry over to the general case.

7. Graphs of groups, distance regular graphs and trees

In this section, we give an overview of results concerning particular classes of
graphs. Explicit computational results are known only when the graphs under
consideration satisfy some type of regularity property: examples are Cayley graphs of
finitely generated groups, vertex-transitive graphs, distance-regular graphs, regular,
biregular or radial trees, and so on. For Cayley graphs, results are also known when
instead of A(G) or P(G) one considers any matrix B(G) with property (4.1) whose
entries remain invariant under the group action, so that B is in fact a convolution
operator. In the sequel, we shall mainly concentrate on the adjacency matrix and give
results for /2-spectra, walk generating functions and spectral measures.
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A. The two way-infinite path

We identify the two way-infinite path with Z, the integers; the edges are
{[«,u+ l]|weZ}. The results in this case are 'folklore'; see, for example, [71, 97].
For G = Z,

spec (A) = [-2,2] and

w 2z ; V l - 4 z 2

The Plancherel measure nu u (independent of u) is absolutely continuous,

/V u(dX) = —L=Xl_2,2](A) dX, (7.2)

where y denotes an indicator function.

B. Square lattices

Many details concerning spectral properties of square lattices can be found in
[116]. The ^-dimensional square lattice (Figure 1) is d times the Cartesian product of
Z with itself. Hence (see Theorems 3.5 and 4.13), for G = Zd,

spec(A) = [-2</,2</], (7.3)

the Plancherel measure is the d-fo\d convolution power of the measure of (7.2), and
in particular, the closed walk generating function is

1 f" f* l
Wu «{?) = -* ••• T -^TT -d0Lx...d0LA\ (7.4)

n Jo Jo l -2z(cosa i+. . .+cosar f )
 l "'

compare, for example, with [70, 96, 103]. The analytic behaviour of Wu u(z) near the
'principal' singularity z = r(A) = 2dis as follows; see, for example, [70] for d = 3 and
[19, Lemma 4] in general:

W M = iSui^dzY^^ + h.iz), if d is odd, and
" " U J [g(t(z)(2d-zyt-^\og(2d-z) + h(i(z), ltd is even, K '

where gd and hd are analytic in a neighbourhood of z = 2d, with gd(2d) # 0. Further
spectral properties of Zd are studied in [6]. Note that Zd is the most typical example
of a Cayley graph with polynomial growth of degree d. Furthermore, i(Zd) = 0 and
i{k)(Zd) > 0 if and only if k < d: the 'isoperimetric dimension' of Zd is d. Finally, we
remark that on Zd, all positive harmonic functions^are constant; see, for example,
[116].

C. The hexagonal chain and other lattice-type graphs

In [57], the method of finite approximations (Theorem 4.11) is applied to obtain
the cumulative spectral measure (or its distribution function, respectively) for the
infinite hexagonal chain; see Figure 3. This is an appropriate mean of the spectral
measures fiu u, where u ranges in the vertex set. See [57] for details.

Other types of lattice-like graphs have also been studied, for example, infinite
tubes (Cayley graphs of Z x Z J [98] and body-centred cubic lattices [69].
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FIG. 1 FIG. 2

FIG. 3

D. Homogeneous trees

Many authors—often independently—have contributed to spectral theory,
functional analysis, walk generating functions, random walks, and so on, for the
homogeneous (regular) tree Tq of degree q (Figure 2). (Sometimes, the homogeneous
tree of degree q + 1 is indexed with q because of its connection with #-adic groups
[114].) If q is even, then Tq is the Cayley graph of a free group, and many papers deal
with TQ in this 'disguise'. The 'classical ancestor' is Kesten [76], who (among other
things) calculates the closed walk generating function of the transition operator. This
appears also in [48,61], for example. The study of harmonic analysis for the adjacency
(or, equivalently, the transition) operator of Tq goes back to [18] and has been
developed by many authors. The results are subsumed in the book [45]; we point out
the references [11, 24, 25, 27, 40, 44, 83, 110, 112]; further literature can be found in
[45]. Some harmonic analysis of TQ can also be found in [81]. For the adjacency
operator of TQ we have

1 —A/1 -4(q-\)r2\d(u,v)

2(q~\)z

2(q-\)
(q-2) + qV\-4(q-\)z2 and (7.6)

Considerable attention has also been paid to the /p-spectrum of A(7^) for arbitrary
p ^ 1; see [18, 45, 110]: if 1 ̂ p < oo and l/p+\/p' = 1, then

l)1^)} (7.7)

is an ellipse. Instead of assigning equal weights to each edge, one may also consider
arbitrary weights bu<v> 0,u ~ v, which remain invariant under the action of the free
group or of any group which acts faithfully on Tq. In this case, the walk generating
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function is determined implicitly by an algebraic equation [4, 42, 56, 117]. We
have

r(B) = min{2/+ £ (Vt* + bu,vbv,u-t)\ t > 0}

and " " (7.8)
||B = min{2f + £ (Vt2 + (buJ

2-t)\t ^ 0},

where we K(7̂ ) is arbitrary; see [2, 56,104,133]. A detailed study of the /''-spectra and
further harmonic analysis for this setting can be found in [117]; see also [4, 5, 7,
46].

E. Distance-regular graphs

A connected graph G is called distance-regular if there exists a function
/ : N\ -> No such that for all u, v e V(G)J,keN0,

\{we V(G)\d(u,w) =j,d(v,w) = k}\ =KjXd{u,v)). (7.9)

The infinite distance-regular graphs have been completely characterized [68]. They are
tree-like graphs which can be parametrized by two integer parameters m,s ^ 2. The
distance-regular graph Dm , (denoted T(m(s— \),s— I) in [57]) can be obtained from
the semiregular tree Tms (see subsection G below) in the following way: its vertex set
is the bipartite block of degree m, and two vertices constitute an edge if and only if
their distance in Tm s is two. Thus, each vertex of Dm s lies in the intersection of exactly
m copies of the finite complete graph Ks (see Figure 4), and Dm s is vertex-transitive.
In particular, Dmi= Tm. The spectral theory of Dms is similar to that of the
homogeneous tree and has been studied in [26, 28,43,63,64,65,78,94]; see also [57].
The walk generating function of its transition operator is calculated in [49]; see also
[13].

Writing

and
(7-10)

9m-A } 2n(m{s-\)-X)(m

we have for the adjacency operator of Dm s:

U{-m}5 ifm<5,

2(m-l)

(s-2)z + mV(\-(s-2)z)2-4(m-\)(s-\)z
and

where Slc denotes the unit mass at k.
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FIG. 4

F. Free products

Let G1 and G2 be connected, locally finite graphs which are vertex-transitive,
each one finite or infinite with at least two vertices. Then we can build up the free
product G = G1*G2 by connecting countably many copies of Gx and G2 in the
following tree-like way: G is connected, each vertex of G is the intersection of exactly
one copy of each of Gx and G2, and the only simple circles of G are those occurring
in one of the copies of the Gt. Thus, G is also vertex-transitive, and the construc-
tion is commutative and associative, so that we can also form the free products
G = Gt* ...* Gm, m ^ 2. In particular, Dm s is the free product of m copies of Ks. Free
products are well known in group theory; if the Gt are Cayley graphs of groups with
respect to generating sets At, then G is the Cayley graph of the (group-theoretical) free
product of these groups with respect to the disjoint union of the Av

Besides the cases considered above, the simplest case is that of the free product
G = Kr * Ks of two complete graphs with r > s ̂  2. The walk generating function of
these graphs can be calculated explicitly (by the use of an equitable partition;
compare with subsection H below). See [131] for this and further properties of the
transition operator, see also [62]. The harmonic analysis of Kr * Ks has been studied
in detail in [21]; we refer to these three references for the relevant formulas. The
spectral theory of the free product G = Cr * Cs of two cycles of length r and s (or of
even more cycles) is more complicated and has been studied in some detail in [8].

In the sequel, several authors have independently found a useful formula which
allows to calculate the resolvent of a free product of two (or more, even infinitely
many) vertex-transitive graphs in terms of an implicit equation arising from the
resolvents of the factors [21, 84, 115, 135]. The spectral radius can also be obtained
by this means [135]. In all these references, the results are stated in terms of groups
and transition operators. We give an outline for the adjacency operator on the free
product of two vertex-transitive graphs.

For an arbitrary vertex-transitive graph G, write W{z) = Wu Jz) for the generating
function of the closed walks at ue V with respect to the adjacency matrix. The radius
of convergence of this power series is \/r, where r = r(A). Let

0= W{\/r)/r (0<6Uoo).
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LEMMA 7.1 [21, 135]. There is a function 0 (0 , analytic in an open set containing
the real interval [0,0), such that

W{z) = <S>(zW(z))

for every complex z in an open set containing the interval [0,1/r). On [0,1/r), 0 ( 0 is
real, strictly increasing and strictly convex.

Now consider two vertex-transitive graphs GVG2 and their free product
G — Gx * G2, with corresponding functions and quantities

Wt{z), r( = r(A(G()), 0(, 0,(0 (i = 1,2) and W{z\ r = (A(G)), 0, 0 (0 ,

respectively. We have the following theorem.

THEOREM 7.2 [21, 84, 115, 135]. / / 0 = min{0i,02} then 0 ^ 0 , O(0 extends
analytically to an open set containing the interval [0,0), and in this region,

0 ( 0 = O^O + O ^ O - l .

Thus, if one knows Wt{z), then 0^(0, can be calculated for / = 1,2, and the implicit
equation of Lemma 7.1 which determines W(z) can be found. If 0 < 0, then Theorem
7.2 can be used to obtain the asymptotic behaviour of «*"J

H; see [135]:

flL"u ~ Crnn~* as n -> oo, (7.12)

where C > 0. (In case G is bipartite, one has to restrict to even n in (7.12).) This holds,
in particular, when G = G1 * G2, where we do not have Gl — G2 = K2, and the vertex-
transitive graphs Gv G2 are finite or have polynomial growth of degree at most 4 (by
combining results of [59, 121, 123, 135]).

G. Biregular, multiregular and other trees

The biregular tree Tk t{k, / ^ 2) is an infinite tree where the vertex degree is
constant on each of the two bipartite classes, with values k and /, respectively. If we
replace its edge set by new edges which connect every pair of vertices at distance two
in the tree, then we obtain two disjoint copies of DkJ and Dt k. Thus, the spectral
theory of Tk , can be deduced from that of the distance regular graphs (and vice versa),
see [57]. An additional reference is [62].

Similarly, we can define the multiregular tree Tk:l , (k, /,. ̂  2; see Figure 5): in
one of the two bipartite classes, denoted B1 here, the vertex degree has constant value
k. In the other class, the degrees are as follows: each vertex of Bx has exactly one
neighbour of degree lt,i= \,...,k; multiple occurrences of the same value of l( are
taken into account. Thus, Tkl=Tk.l , with /x = ... = lk = I. If we add new
edges on Bx by joining all vertices at distance two, then we obtain the free product
Kx *...*Kt : we could also say that Tk.j , is the 'barycentric subdivision' of the
latter graph. This fact is exploited in [105] to study the walk generating function of
the transition operator of 7 ^ , , or of the free product, respectively, and to
compute the spectral radius, which is given by a formula similar to (7.8). For some
other classes of trees, computational results are also available: for example, ' radial'
trees (see [51, 132] and subsection H below), and natural spanning trees of Zd [52]. In
general, it is rather easy to see [53] that an infinite tree T with deg(T) < oo has
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2. 3, 4

FIG. 5

isoperimetric number i(T) > 0 (recall that this is equivalent with r(P(T)) < 1) if and
only if there is an upper bound on the size of those induced subgraphs which are
paths.

H. The use of equitable partitions

Consider a matrix B(G) which satisfies (4.1) and a partition of V(G) into finite sets
Vt,iel, where the index set is f̂ l0 or Z (or some other countable set). It gives rise to
an equitable partition (or a front divisor) if the following condition is satisfied: for all
ijsl, the numbers

are independent of the choice of u in Vt.
We can then form the matrix D = (dti)iJel, and hope that it is easier to handle

than B(G): in [94], the relation between the spectra of A(G) and of D (with an
appropriate normalization) is studied and applied to distance regular graphs.
Equitable partitions have also been used in [49, 50, 131, 132]. The method is
particularly rewarding when D is compatible in the sense of (4.1) with the structure
of No or Z, the one or two way-infinite path with or without loops. Very often, one
can choose a reference vertex o and use the distance partition:

If it is equitable, then we have for the closed walk generating function at o that

W (z IB) = W (z I \y\ (1 \4)

and the latter may be computed as a continued fraction

m m r r t —-«. \. I I «A 1 » 1 (\

-dooz \\-dlAz
(7.15)

• I \ - d u z ••••

For analytic continued fractions, a well developed theory is available; see, for
example, [127]. In [50, 132] this is exploited to study walk generating functions
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of radial trees, that is, trees whose adjacency matrix is equitable for the distance
partition with respect to some reference vertex. Furthermore, the computation of the
spectral measure n0 0(dX) also becomes an easier task. Compare with [71]; see also [73,
74].

8. Some remarks on applications in chemistry and physics

Graphs and their spectra often appear in the applied physical sciences. Some
applications are described in [34, Chapter 8]. The adjacency operator appears, for
example, in Hiickel's theory [86] (discrete approximations of the Schrodinger
equation). We point out some early references: [14, 15, 16, 31, 79]. The difference
Laplacian is the matrix of a quadratic form expressing the energy of a discrete system.
It naturally describes the vibration of a membrane [29, 47], or thermodynamic
properties of crystalline lattices [85]. The graphs under consideration are not always
infinite, but often refining the discrete approximation means passing to an infinite
graph in the limit. This allows, for example, the use of Theorems 4.12 and 4.13.

On the other hand, there is an enormous amount of literature in various scientific
areas concerning random walks, in particular the transition operator on finite and
infinite graphs and its applications. Of course, the point of view does not always
concern spectral aspects. We mention the two surveys [60, 128] and the bibliography
[80], and we point out a few papers: [66, 67, 69, 70, 96, 97, 98] for infinite lattice-type
graphs and [61, 62, 72, 112] for trees and free products.
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NOTE ADDED IN PROOF. We give some further references which were brought to our attention after
submitting this survey [136-142].

In [137], the harmonic analysis of biregular trees is studied in detail, and in [136] some light is shed on
the phenomenon of the point spectrum in this case; compare with §7, subsection G and (7.10). In [138] it
is shown that for a vertex-transitive graph G, r{P) = 1 {or{A) = deg(G)) if and only if the automorphism
group is amenable and unimodular as a topological group. This is applied to show that r(P) < 1 and
i(G) > 0 for every vertex-transitive graph with infinitely many ends.
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