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Abstract

This paper investigates the effect of HMM structure on the performance of HMM-based classifiers. The investi-

gation is based on the framework of graphical models, the diffusion of credits of HMMs and empirical experiments.

Although some researchers have focused on determining the number of states, this study shows that the topology has a

stronger influence on increasing the performance of HMM-based classifiers than the number of states.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) (Baum and

Petrie, 1966) are a class of stochastic processes that

is capable of modeling time-series data. They be-
long to a larger class of models known as gener-

ative models. Though generative models are tools

for data modeling, in the literature, HMMs were

used in many classification problems such as

speech recognition (Rabiner, 1989; Baker, 1975),

handwritten word recognition (El-Yacoubi et al.,

1999), object recognition (Cai and Liu, 2001),

gesture recognition (Kim and Chien, 2001), bio-
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informatics (Bladi and Brunak, 1998) and model-

ing of biological sequences (Karplus et al., 1997).

Designing an HMM for data modeling to be a

part of an HMM-based classifier means deter-

mining the structure (the number of states, and the
topology) of the model. The topology in this

context is meant to be the connections (transitions)

between the states. The structure affects the model-

ing capability considerably and consequently the

performance of the classifier. An estimation of the

weight of each factor on the performance can

point out to the main factor affecting the perfor-

mance and consequently can lead to an improve-
ment in the selection of values of this factor.

Although some researchers focused on the prob-

lem of number of states and the topology, the

goal of this paper is to investigate the effect of

the number of states and the topology, each

separately, on the performance of HMM-based
ed.
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classifiers. Our research shows that the topology

can improve the modeling capability greatly.

The investigation is based on (1) linking the

theoretical results from model selection for

graphical models with the diffusion of credits in

Markovian models and, (2) supporting the results
with empirical experiments for the recognition of

unconstrained handwritten digits. The experiments

compared the performance obtained from classi-

fiers with different structures.

It is worth calling the readers’ attention to two

issues regarding this work. First, though HMMs

are usually trained with time-series data with a

long signal duration, such as the applications
mentioned above, the experiments used isolated

handwritten digits that have a short signal dura-

tion. The reason for that is to treat the HMM-

based classifier like other classifiers such as multi

layer perceptrons (MLPs) and support vector

machines (SVMs) without any constraints on the

data. Second, the goal of the paper is not to

introduce a new state-of-the-art recognition result
on the MNIST database using HMMs, but rather,

to compare the performance of HMM-based

classifiers under different structure conditions. It is

well known from the literature that classifiers such

as SVMs and MLPs can achieve very high recog-

nition results (Dong, 2003; Simard et al., 2003; Liu

et al., 2003) on this database.

For complete references on HMMs, the reader
is required to read (Rabiner, 1989; Bengio, 1999).

The paper uses the basic compact notation of

HMMs defined as k ¼ ðA;B; pÞ where k is the

hidden Markov model, A is the transition pro-

bability matrix, B is the observation probability

matrix and p is the initial state probability.

The rest of the paper is organized as follows:

Sections 2 reviews related work in the literature
and HMMs. Section 3 discusses the effect of the

structure on the modeling capability of HMMs.

Section 4 describes the experiments and results,

and finally Section 5 concludes the paper.
2. Related work

A work directly related to this investigation is

the problem of optimizing HMM structure in two
forms; (1) application dependent methods, and (2)

application independent methods. Application

dependent methods use a priori knowledge from

the application domain such as (El-Yacoubi et al.,

1999), where they used information extracted from

a character segmentation process to build a special
HMM structure (number of states and the topol-

ogy), (De Britto et al., 2001) modified the left-to-

right model to enhance the performance of his

proposed framework for numeral strings and (Lee

et al., 2001) fixed the topology to be a left-to-right

one and determined the number of states by

reflecting the structure of a target pattern. The

major drawback of these methods is that they are
designed for specific applications and cannot be

generalized to others.

On the other hand, application independent

methods, although are more promising, yet they

are not popularized. These methods include the

work of (Stolcke and Omuhundro, 1992) and

(Brants, 1996) where they proposed an incremental

learning for the structure based on state merging
and splitting, i.e., the structure is changed as new

evidence is added to the model; (Lien, 1998) pro-

posed a general method to determine the number

of states and the connections between states in

discrete left-to-right HMMs. Recently, Bicego

et al. focused only on determining the number of

states using probabilistic bisimulation (Bicego

et al., 2001) and sequential pruning using Bayesian
information criterion (BIC) (Bicego et al., 2003).

Model selection approaches were also investigated

for this purpose and recently (Biem, 2003) pro-

posed a discriminative information criterion (DIC)

framework and used it to optimize the HMM

structure.

Different approaches for structure optimization

can also be found. (Lyngso et al., 1999) focused on
comparing HMMs in terms of state emission

probabilities, (Bahlman et al., 2001) used Bayesian

estimates of HMM states as a criterion for select-

ing HMMs and (Balasubramanian, 1993) selected

HMMs based on equal probabilities of observa-

tion sequences only. By examining the above lit-

erature, and except for the work Stolcke and

Brants, most of these methods use the left-to-right
topology and the optimization targets only the

number of states and the number of mixtures in
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cases of continuous HMMs. However, according

to this investigation, the number of states may not

affect the performance after a certain limit, but it

can reduce the computational time for training

and testing, while the topology can considerably

affect the performance of HMMs.
3. HMM structure

In many applications that use HMMs, the

number of states is manually predetermined prior

to training. The connections between states,

(topology) is determined by setting non-zero
probabilities in the A matrix prior training. During

training, the EM (Baum–Welch) algorithm im-

proves the estimates of these probabilities from the

data. Note that the EM algorithm cannot set 0 or 1

(can approach 0 or 1) probabilities in the A matrix,

therefore it cannot be seen as an algorithm that

learns the topology. In the following, we investi-

gate the effect of the topology on the performance
of HMM-based classifiers through two different

perspectives: (1) using the graphical models

framework and, (2) using the diffusion of credits

while learning Markovian models.

3.1. Bayesian formulation for model selection

Determining the number of states and the
topology of HMMs can be viewed as a model

selection problem. The problem can be formulated

as follows. Given the training set of examples W
and a criterion function � for the quality of the

model on the data set W, choose a model from a

certain set of models, in such a way to maximize

the expected value of this criterion function on

new data (assumed to be sampled from the same
unknown distribution from which the training

data was sampled) (Bengio, 1999).

HMMs can be viewed as a special case of

graphical models (Heckerman, 1996; Murphy,

2001). Model selection is one of the main problems

in graphical models and much work has been

introduced regarding this problem. The Bayesian

approach, one of the main approaches for model
selection, is a fundamental approach for model

selection in graphical models. Following this ap-
proach means encoding the uncertainty about the

structure of the HMM by using a discrete variable

whose states correspond to the possible HMM

structure hypotheses Sh and assessing it the a pri-

ori density PðShÞ. Given the training example set W
for the model k and augmenting the model
parameters A, B, p in a single parameter vector h,
the problem would be computing the posterior

distribution for the HMM structures. This can be

formulated as follows using Bayes theorem:

PðShjWÞ ¼ P ðWjShÞP ðShÞ
P ðWÞ ð1Þ

where P ðWÞ is a constant that does not depend on

the network structure.

The maximum likelihood structure would be

the complete graph (Murphy, 2001), i.e., the full

ergodic model, since this has the greatest number

of parameters, and hence can achieve the highest

likelihood. On the other hand this increases the

model’s complexity and will let the model overfit
the training data resulting in a poor generalization.

In fact, the marginal likelihood in 1 plays an

important role to prevent this overfit. From the

definition of the marginal likelihood:

PðWjShÞ ¼
Z

P ðWjSh; hÞP ðhjShÞdh ð2Þ

it automatically penalizes more complex structures
since they have more parameters and hence cannot

give as much probability mass to the region of

space where the data actually lies. In other words,

a complex model is less believable and hence less

likely to be selected. This phenomenon is known as

Ocham’s razor (Murphy, 2001) which favors sim-

ple models over complex ones. It can be seen that

though the number of states may be fixed, the
topology can affect the modeling capability in a

serious way.

3.2. Diffusion of credits in Markovian models

The work in (Bengio and Frasconi, 1995)

investigated the problem of diffusion in homoge-

neous and non-homogeneous HMMs and its effect

on learning long term dependencies. Training

HMMs requires propagating forward and back-

ward probabilities and taking products of the
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transition matrix. Therefore, two types of diffusion

exist, diffusion of influence in the forward path and

diffusion of credit in the backward phase of

training. The paper (Bengio and Frasconi, 1995)

studied under which conditions these products of

matrices will converge to a lower rank, thus
harming learning long term dependencies. The

difficulty of learning was measured by using the

Dobrushin’s ergodicity coefficient (Senta, 1986)

defined as follows:

sðAÞ ¼ 1

2
sup
i;j

X
k

jaik � ajkj ð3Þ

where A ¼ faijg is the transition probability ma-

trix. It was shown that in all cases, while training

HMMs, the ergodicity coefficient will converge to

0 indicating a greater difficulty in learning, but the

rate of convergence depends on the topology. Fig.

1 (Bengio and Frasconi, 1995) shows the conver-
gence of four HMMs with the same number of

states but with different topologies. It can be seen

that the full ergodic model has the fastest con-

vergence rate and that simpler models are slower.

The final conclusion is that in order to avoid any

kind of diffusion, most transition probabilities

should be deterministic (0 or 1 probability). The

result coincides with the Ocham’s razor result
obtained from the previous section and both prefer

simple topologies over complicated ones.
Fig. 1. Convergence of Dobrushin’s coefficient for four dif-

ferent topologies.
4. Experiments

We were interested in investigating experimen-

tally how the number of states and the topology

can affect the performance of an HMM-based
classifier. Two types of experiments were carried

out, one to study the effect of number of states on

the performance, and the other to study the effect

of the topology on the performance.

4.1. The dataset and feature extraction

The dataset used in the experiments consists of
images of unconstrained handwritten digits from

the MNIST database (LeCun, 1998) which has a

training set of 60,000 samples and a test set of

10,000 samples from approximately 250 writers.

The digits are cropped and scaled to be contained

in a 20 · 20 pixels images. The gray level values of

the images were normalized to be from 0 to 1. The

time series data were extracted from the digits
using the sliding window technique (Cornell, 1996)

with a width of 3 pixels, height equals the image

height and an overlap of 2 pixels. A feature vector

is extracted from each window by computing the

average gray level value in each row of the win-

dow, i.e., the sum of gray level pixels in each row

divided by the window width. This resulted in an

observation sequence length of 18 vectors from
each image.

4.2. HMM density type, initialization and codebook

size

The experiments were conducted using discrete

HMM (DHMM)-based classifiers where each

consisted of 10 DHMMs. The number of states for
each model was determined according to the goal

of the experiment. Two topologies were used in the

experiments, the left-to-right with self-state tran-

sitions (no jumps), and the ergodic topology. For

the code book, the vector quantization (Gray,

1984) algorithm was used to construct seven dif-

ferent code books (16; 32; . . . ; 1024). The initial

parameters for B in all experiments were set using
a uniform distribution. In our original investiga-

tion, all the experiments were conducted using the

seven code books and with several initializations
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for the A matrix as will be shown later. However,

due to the following reasons: (1) space limitation,

(2) avoid redundancy, and (3) similarity of results

and conclusions, we selected the clearest of these

experiments for illustration.

4.3. Studying the effect of number of states

In studying the effect of number of states, two

experiments were conducted. The first experiment

used HMMs with a left-to-right topology and all

models had an equal number of states. The

experiment studied the relation between the per-

formance and the increase in the number of states
in the classifier. The second experiment studied the

performance of classifiers with a varying number

of states in each model. It compared the perfor-

mance between models with an equal number of

states and models with a varying number of states.

4.3.1. Experiment 1

This experiment was conducted using the seven
code books, and for each experiment, the A matrix

was initialized using three different initializations;

(0.5 & 0.5, 0.7 & 0.3 and 0.9 & 0.1) for the ij and ii
transitions, respectively. Fig. 2 illustrates the re-

sults for Experiment 1 using three code books and

the first initialization for the A matrix. It can be

seen that increasing the number of states can in-
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Fig. 2. The relation between performance and the number of

states with different code book sizes.
crease the performance up to a certain limit, after

that a saturation is reached whenever more

unnecessary states are added. However, the satu-

ration may be accompanied by a slight drop in the

performance.

The saturation may be explained as follows.
The number of states N , is the number of values

that the hidden variable can take and accordingly

the emission of symbols change. Let the true (un-

known) number of values of the hidden variable be

N0. If N � N0 poor modeling will result and hence

a classifier with poor performance. If N 	 N0,

additional states will introduce redundancy with

no effect on the modeling capability and hence the
performance is saturated. Adding more unneces-

sary states increases the complexity (time and

computation) with no effect on the performance.

4.3.2. Experiment 2

The goal of the experiment was to measure the

performance of classifiers with a different number

of states in each model to see how comparable they
are with classifiers having all models with an equal

number of states. Two HMM classifiers were used.

According to the previous experiments, the first

classifier had 10 states per model, the second

classifier had a different number of states in each

model. Determining the number of states in each

model will be described in the next subsection. As

Experiment 1, this experiment was also conducted
using the seven code books and the three different

initializations. Fig. 3 illustrates the results of this

experiment for three code book sizes and the first

initialization. Models with an equal number of

states are referred as (EQU) and models with a

varying number of states are referred as (VAR).

Fig. 3 shows clearly how models with a varying

number of states can achieve almost the same
performance of models with an equal number of

states with the advantage of a smaller number of

states but paying the price of more epochs. The

total number of states in the EQU models is 100,

and the total for VAR models is 70 states.

Achieving the same performance with a smaller

number of states means a considerable reduction

in complexity when it comes to large classification
problems. However, as followed in the literature

(El-Yacoubi et al., 1999; Augusting et al., 1998), a
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guaranteed performance with an easy design

would be an HMM classifier with an equal number

of states for all models. In Fig. 3, it is worth

mentioning that the drop seen in the first graph is

experienced in the other graphs for the EQU and
VAR models but in late epochs not shown in the

graphs. The reason for the drop is due to the

overfit of models on the data and due to the dif-

fusion of credits while learning.

4.3.3. Determining the number of states

As mentioned earlier, the number of states is

usually fixed (manually predetermined). Excep-
tions are models that use automatic clustering

algorithms that determine the number of states

and their outputs, but this still leaves out the

topology (Brants, 1996; Theodoridis and Kou-
Table 1

The number of states of each model

Model 0 1 2 3

No. of states (3–5) 5 5 5 5

No. of states (3–9) 6 5 8 8
troumbas, 1999). Clustering sequential data while

neglecting the variations of the time factor, tends

to discover the underlying structure of the data

given that the number of clusters is known. To

determine the number of states using clustering, we
proposed the use a cluster validity index (Bezdek

and Pal, 1998) to measure the goodness of different

clustering configurations and then select the best

number of clusters according to this cluster valid-

ity index.

In the experiments, the K-Means algorithm

(Duda et al., 2001) was used to cluster the

sequential data of each model. The algorithm was
allowed to cluster the sequential data up to two

different maximum number of clusters; (1) from

three up to five clusters (first row in Table 1), and

(2) from three up to nine clusters (second row in
4 5 6 7 8 9

4 4 4 5 3 4

9 6 8 8 3 9
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Table 1). In order to overcome the problem of

initialization of the K-means, the algorithm was

run using 10 different initializations. For each

clustering configuration, the DB-index (Bezdek

and Pal, 1998) was used to measure the goodness

of clustering. According to the DB-index measure,
the number of states (clusters) in each model was

determined according to the clustering configura-

tion corresponding to the lowest value of the DB-

index. Table 1 shows the number of states for each

model for each clustering configuration.

4.4. Studying the effect of model topology

To study the effect of the model topology on the

performance, two HMM-based classifiers were

considered. Both classifiers had the same number

of models and the same number of states in each

model but the model topology was different in

both classifiers. The first classifier had full ergodic

(fully connected) models while the second had

left-to-right topology as described earlier. The
experiment was conducted using ten code books

(previous 7 plus 3 more with size 1500, 1800,

2000), five different initializations for the A matrix;

(0.5 & 0.5, 0.6 & 0.4, 0.7 & 0.3, 0.8 & 0.2 and 0.9 &

0.1) for the ij and ii transitions, respectively of the

left-to-right model, and five different random ini-

tializations for the ergodic model. Fig. 4 illustrates
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the results obtained from this experiment on the

ten code books and the first initialization of each

model.

As expected, the results show that the simpler

model; which is the left-to-right in that case, al-

ways outperforms the full ergodic model. The full
ergodic model represents a fully connected graph

and hence has the largest number of parameters.

According to the Bayesian approach, the model

has the highest likelihood of the data which led the

model to overfit the training set and hence the

poor performance on the test set. As for the dif-

fusion of credits factor, the A matrix for the full

ergodic model does not have deterministic (0 or 1
probabilities) transitions which made it difficult for

the model to learn long range dependencies.

The degradation of performance in Fig. 4 is due

to an accumulated effect from the vector quanti-

zation and the training of HMMs and it may be

explained as follows. The vector quantization

process was performed on the training set of the

database and increasing the code book size led the
algorithm to form smaller and finer (might be

noise) clusters from the training set. Hence, the

result is a well fitted code book for the training set

and very sensitive to slight variations, i.e., over

fitting. Next, the discrete HMMs used this sensi-

tive but large code book for training, which im-

plies that the HMMs were trained on very special

sequences of symbols that may not occur in the
test set. Consequently, the HMMs had over-fit the

training set and will have a poor generalization on

the test set. Hence, the fall in the two curves is due

to the accumulated over-fit effect that started from

the vector quantization and propagated to the

HMM training.
5. Conclusion

We studied the effect of number of states and

the topology on the performance of HMM-based

classifiers. The Bayesian approach for model

selection with the Ocham’s razor showed that

simpler models will have better generalization than

full ergodic (fully connected) models. On the other
hand, to avoid any diffusion of credits while

learning HMMs, transition probabilities should be
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deterministic (0 or 1 probabilities). Both of these

results supported with the empirical experiments

show that the topology has a stronger influence

than the number of states in improving the model-

ing capability of HMMs and hence increasing the

performance of HMM-based classifiers. It can be
seen from Figs. 2 and 4 that increasing the number

of states from 3 to 6 increased the performance by

almost 2% and changing the topology increased

the performance by (4–5%). The result encourages

us to design algorithms for HMMs, different than

model selection techniques, that can learn the

topology from the training data, i.e., set 0 or 1

transitions in the A matrix, especially in the ab-
sence of the a priori knowledge.
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