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Low-Density Parity-Check Codes

• note that the parity-check matrix H is so called because it performs m = 
n-k separate parity checks on a received word  

Example. With HT as given above, the n-k = 3 parity checks implied by  

are

Definition. A low-density parity-check (LDPC) code is a linear block code 
for which the parity-check matrix H has a low density of 1’s
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Low-Density Parity-Check Codes (cont’d)

Definition. A regular (n, k) LDPC code is a linear block code whose parity-
check matrix H contains exactly Wc 1's per column and exactly Wr = Wc(n/m) 
1’s per row, where Wc <<  m.

Remarks
• note multiplying both sides of  Wc << m by n/m implies  Wr << n.

•the code rate r = k/n can be computed from 

Wc = 3 is a necessity for good codes (Gallager) 

• if H is low density, but the number of 1’s per column or row is not constant, 
the code is an irregular LDPC code

LDPC codes were invented by Robert Gallager of MIT in his PhD dissertation (1960).  
They received virtually no attention from the coding community until the mid-1990’s.

r
c

r
cr

W
W

W
WW

r −=
−

= 1



Representation of Linear Block Codes via Tanner Graphs

• one of the very few researchers who studied LDPC codes prior to the 
recent resurgence is Michael Tanner of UC Santa Cruz

• Tanner considered LDPC codes (and a generalization) and showed how 
they may be represented effectively by a so-called bipartite graph, now call 
a Tanner graph

Definition. A bipartite graph is a graph (nodes or vertices connected by 
undirected edges) whose nodes may be separated into two classes, and 
where edges may only connect two nodes not residing in the same class



Tanner Graphs (cont’d)

• the two classes of nodes in a Tanner graph are the variable nodes (or bit
nodes) and the check nodes (or function nodes)

• the Tanner graph of a code is drawn according to the following rule:

check node j is connected to variable node i
whenever element hji in H is a 1

• one may deduce from this that there are m = n-k check nodes and n
variable nodes

• further, the m rows of H specify the m c-node connections, and the n
columns of H specify the n v-node connections



Tanner Graphs (cont’d)

Example. (10, 5) block code with Wc = 2 and Wr = Wc(n/m) =4.

• observe that nodes c0, c1, c2, and c3 are connected to node f0 in 
accordance with the fact that in the first row of H, h00 = h01 = h02 = h03 = 1 (all 
others equal zero)
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Tanner Graphs (cont’d)

• (for convenience, the first row and first col of H are assigned an index of 0)

• observe an analogous situation for  f1, f2, f 3, and f4.

• thus, as follows from the fact that                 ,  the bit values connected to 
the same check node must sum to zero

• note that the Tanner graph in this example is regular: each bit node is of 
degree 2 (has 2 edge connections and each check node is of degree 4)

• this is in accordance with the fact that Wc = 2 and Wr = 4

• we also see from this why Wr = Wc(n/m) for regular LDPC codes:

(# v-nodes) x (v-node degree) = nWc

must equal
(#c-nodes) x (c-node degree) = mWr

0=THc



Tanner Graphs (cont’d)

Definition. A cycle of length l in a Tanner graph is a path comprising l edges 
which closes back on itself

• the Tanner graph in the above example possesses a length-6 cycle as 
made evident by the 6 bold edges in the figure

Definition. The girth of a Tanner graph is the minimum cycle length of the 
graph

• the shortest possible cycle in a bipartite graph is clearly a length-4 cycle

• length-4 cycles manifest themselves in the H matrix as four 1’s that lie on 
the corners of a submatrix of H:
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• length-6 cycles are not quite as easily found in an H matrix:

• we are interested in cycles, particularly short cycles, because they 
degrade the iterative decoding algorithm for LDPC codes as will be made 
evident below

Tanner Graphs (cont’d)
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Construction of LDPC Codes

• clearly, the most obvious path to the construction of an LDPC code is via 
the construction of a low-density parity-check matrix with prescribed 
properties

• a number of design techniques exist in the literature, and we list a few:

• Gallager codes (semi-random construction)

• MacKay codes (semi-random construction) 

• irregular and constrained-irregular LDPC codes (Richardson and 
Urbanke, Jin and McEliece, Yang and Ryan, Jones and Wesel, ...)

• finite geometry-based LDPC codes (Kou, Lin, Fossorier)

• combinatorial LDPC codes (Vasic et al.)

• LDPC codes based on array codes (Fan)



Construction of LDPC Codes (cont’d)

Gallager Codes
Example.

captured from Gallager’s dissertation

j = Wc and k = Wr



Construction of LDPC Codes (cont’d)
Gallager Codes (cont’d)

• The H matrix for a Gallager code has the general form:

where H1 is p x p•Wr and has row weight Wr , and the submatrices Hi

are column-permuted versions of H1.

• Note H has column weight Wc and row weight Wr .

• The permutations must be chosen s. t. length-4 (and higher, if possible) 
cycles are avoided and the minimum distance of the code is large.

• Codes designs are often performed via computer search. Also see the  
2nd edition of Lin and Costello (Prentice-Hall, 2004).
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Construction of LDPC Codes (cont’d)
Tanner Codes

• each bit node is associated with a code bit; each “check node” is 
associated with a subcode whose length is equal to the degree of the 
node.

degree n1

subcode 1 (n1, k1)
checked by matrix

1H

Bit 
nodes:

Check 
nodes:

subcode 2 (n2, k2)
checked by matrix

subcode m (nm, km)
checked by matrix

2H mH

interleaver

degree n2 degree nm



Construction of LDPC Codes (cont’d)
Tanner Codes (cont’d)

Example
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Construction of LDPC Codes (cont’d)
MacKay Codes

following MacKay (1999), we list ways to semi-randomly generate sparse 
matrices H in order of increasing algorithm complexity (but not necessarily 
improved performance)

1. H generated by starting from an all-zero matrix and randomly inverting Wc not 
necessarily distinct bits in each column (the resulting LDPC code will be irregular)

2. H generated by randomly creating weight-Wc columns

3. H generated with weight-Wc columns and (as near as possible) uniform row 
weight

4. H generated with weight-Wc columns, weight-Wr rows, and no two columns 
having overlap greater than one

5. H generated as in (4), plus short cycles are avoided

6. H generated as in (5), plus H = [H1  H2] is constrained so that H2 is invertible (or 
at least H is full rank)

see http://www.inference.phy.cam.ac.uk/mackay/  for MacKay’s large library of codes



Construction of LDPC Codes (cont’d)
MacKay Codes (cont’d)

• frequently an H matrix is obtained that is not full rank

• this is generally not a problem which can be seen as follows:

• once H is constructed, we attempt to put it in the form H = [ PT I ]mxn

via Gauss-Jordan elimination (and possible column swapping) so that 
we may encode via G = [ I P ]

• if H is not full rank, Gauss-Jordan elimination will result in H of the 
form

where        is                     and      < m

• in this latter case, we instead use the matrix                 which is       
and corresponds to a higher code rate,                 , than the original design 
rate,                .

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

00

~ IPH
T

TP~ )(x mnm ′−′ m′

]~[~ IPH T M= nm x′
nmn /)( ′−

nmn /)( −



Construction of LDPC Codes (cont’d)

Repeat-Accumulate (RA) Codes
• the codes are “turbo-like” and are simple to design and understand 
(albeit, they are appropriate only for low rates)

• for q = 3, 

where                                   and both A and Π are 3k x 3k.

repeat block

q times
Π D⊕1

1k bits
qk bits

permuterepeat accumulate

qk bits

rate = 1/q
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Construction of LDPC Codes (cont’d)

RA Codes (cont’d)
• for q = 3, 

(others are possible)

• note since A ,  A-1 so that  
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Construction of LDPC Codes (cont’d)

RA Codes (cont’d)
• an alternative graph to the Tanner graph corresponding to H above is
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Construction of LDPC Codes (cont’d)

Irregular Repeat-Accumulate (IRA) Codes
• graphical representation:

k-bit data word p-bit parity wordΠ•
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Construction of LDPC Codes (cont’d)

IRA Codes (cont’d)
• non-systematic version: 

codeword is parity word and rate is k/p, p > k

• systematic version:
codeword is data word concatenated with parity word, rate is k/(k+p)

D⊕1
1u w

u

G Π

k x p
1 x p

IRA 
encoder



Construction of LDPC Codes (cont’d)

Extended Irregular Repeat Accumulate (eIRA) Codes
• H is matrix is given below, where the column weight of H1 is > 2
• note encoding may be performed directly from the H matrix by      

recursively solving for the parity bits

• This matrix holds for both eIRA codes and IRA codes. What is different 
is the size of H1

T.   eIRA: k x (n-k);  IRA: k x p, p > k since it is a G matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11
1

...1
11

11
1

1HH

A-T



Construction of LDPC Codes (cont’d)

eIRA Codes (cont’d)
• can easily show that G =  [ I H1

TA ], from which encoder below follows
• always systematic
• appropriate for high code rates

D⊕1

1u p

u

M Π

k x (n-k)
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M Π  =  H1
T



Accumulator-Based LDPC Codes – Tanner Graph 
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Construction of LDPC Codes (cont’d)
Array Codes

• The parity-check matrix structure for the class of array codes is

simplified

where I is the identity matrix and       is a p-by-p left- (or right-) cyclic shift 
of the identity matrix I by one position (p a prime integer), and        =I , and      

.

Example, p = 5:  
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Construction of LDPC Codes (cont’d)

Array Codes (cont’d)
• Add the  j x j “dual diagonal” submatrix Hp corresponding to the parity 
check bits
• Delete the first column of the above H matrix to remove length-4 cycles
• We obtain the new H matrix: 

• the code rate is  k/(j+k), the right j x k submatrix Hi corresponds to the 
information bits 
• note that we may now encode using the H matrix by solving for the parity  
bits recursively: efficient encoding (more on this below)
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Construction of LDPC Codes (cont’d)

Codes Based on Finite Geometries and Combinatorics
• The mathematics surrounding these codes is beyond the scope of this 
short course.

• Please see:
• Shu Lin and Daniel Costello, Error Control Coding, Prentice-Hall, 
2004.
• The papers by Shu Lin and his colleagues.
• The papers by Bane Vasic and his colleagues.
• The papers by Steve Weller and his colleagues.



Construction of LDPC Codes (cont’d)

Codes Designed Using Density Evolution and Related Techniques
• The mathematics surrounding these codes is beyond the scope of this 
short course.

• Please see:
• the papers by Richardson and Urbanke (IEEE Trans. Inf. Thy, Feb. 
2001)
• the papers by ten Brink
• the papers by Wesel



Encoding

• as discussed above, once H is generated, it may be put in the form                    

from which the systematic form of the generator matrix is obtained:

• encoding is performed via

although this is more complex than it appears for capacity-approaching 
LDPC codes (n large)

]~[~ IPH T M=

[ ]PIG M=

[ ] ,PuuGuc M==



Encoding (cont’d)

Example. Consider a (10000, 5000) linear block code. Then               is 
5000 x 10000 and P is 5000 x 5000.  We may assume that the density of 
ones in P is ~ 0.5.

there are ~ 0.5(5000)2 = 12.5 x 106 ones in P

~ 12.5 x 106 addition (XOR) operations are required to 
encode one codeword

[ ]PIG M=

⇒

⇒



Encoding (cont’d)

• Richard and Urbanke (2001) have proposed a lower complexity (linear in 
the code length) encoding technique based on the H matrix (not to be 
discussed here)

• an alternative approach to simplified encoding is to design the codes via 
algebraic, geometric, or combinatoric methods

• such “structured” codes are often cyclic or quasi-cyclic and lend 
themselves to simple encoders based on shift-register circuits

• since they are simultaneously LDPC codes, the same decoding 
algorithms apply

• often these structured codes lack freedom in the choice of code rate and 
length

• an alternative to structured LDPC codes are the constrained irregular 
codes of Jin and McEliece and Yang and Ryan (also called irregular 
repeat-accumulate (IRA) and extended IRA codes) -- more on this later 



Selected Results

• we present here selected performance curves from the literature to 
demonstrate the efficacy of LDPC codes

• the papers from which these plots were taken are listed in the reference 
section at the end of the note set

• we indicate the paper each plot is taken from to ensure proper credit is 
given (references are listed at the end of Part 2).



Selected Results (cont’d)

MacKay (March 1999, Trans IT)

• MacKay (and others) re-
invented LDPC codes in the late 
1990’s

• here are selected figures from 
his paper (see his paper for code 
construction details; his codes are 
regular or nearly regular)



Selected Results (cont’d)

MacKay (cont’d)



Selected Results (cont’d)

MacKay (cont’d)



Selected Results (cont’d)

Irregular LDPC Codes

• our discussions above favored regular LDPC codes for their simplicity, 
although we gave examples of irregular LDPC codes

• recall an LDPC code is irregular if the number of 1’s per column of H and/or 
the number of 1’s per row of H varies

• in terms of the Tanner graph, this means that the v-node degree and/or the 
c-node degree is allowed to vary (the degree of a node is the number of edges 
connected to it)

• a number of researchers have examined the optimal degree distribution 
among nodes:

- MacKay, Trans. Comm., October 1999
- Luby, et al., Trans. IT, February 2001
- Richardson, et al., Trans. IT, February 2001
- Chung, et al., Comm. Letters, February 2001

• the results have been spectacular, with performance surpassing the best 
turbo codes



Selected Results (cont’d)

Richardson et al. Irregular Codes
• the plots below are for a (3, 6) – regular LDPC code, an optimized irregular 
LDPC code, and a turbo code

• the code parameters are ½ (106, 106/2) in all cases



Selected Results (cont’d)

Richardson et al. Irregular Codes (cont’d)
• plot below: turbo codes (dashed) and irregular LDPC codes (solid); for block 
lengths of n=103, 104, 105, and 106; all rates are ½



Selected Results (cont’d)

Chung et al. Irregular LDPC Code

• the plot below is of two separate ½ (107, 107/2)  irregular LDPC codes



Selected Results (cont’d)
Kou et al. LDPC Codes (IEEE Trans. IT, Nov 2001)

• LDPC code based on Euclidean geometries (EG): (1023, 781)
• LDPC code based on Projective geometries (PG):
• Gallager code: (1057, 813)



Selected Results (cont’d)
Kou et al. (cont’d)



Selected Results (cont’d)
Kou et al. (cont’d)



Selected Results (cont’d)

Extended IRA Code Results (Yang, Ryan, and Li - 2004)

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Performance of LDPC Codes (Rate=0.82) on AWGN Channel 

E
b
/N

0
 (dB)

P
b (

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

)

P
b
  (Constrained Irregular)

P
b
  (Mackay)

P
b
  (Finite Geometry)

P
b
  (R&U Irregular)

Maximum 100 iterations



Selected Results (cont’d)

Extended IRA Code Results (cont’d)
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SeIRA Code - Example 3
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SeIRA Code - Example 4
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SeIRA Code - Example 4 (cont’d)
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Decoding Overview 
 
• in addition to presenting LDPC codes in his seminal work in 1960, Gallager 

also provided a decoding algorithm that is effectively optimal 

 

• since that time, other researchers have independently discovered that 

algorithm and related algorithms, albeit sometimes for different applications 

 

• the algorithm iteratively computes the distributions of variables in graph-based 

models and comes under different names, depending on the context: 

 

- sum-product algorithm 

- min-sum algorithm (approximation) 

- forward-backward algorithm, BCJR algorithm (trellis-based graphical 

models) 

 

- belief-propagation algorithm, message-passing algorithm (machine 

learning, AI, Bayesian networks) 
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• the iterative decoding algorithm for turbo codes has been shown by McEliece 

(1998) and others to be a specific instance of the sum-product/belief-

propagation algorithm 

 

 

• the “sum-product," "belief propagation," and "message passing" all seem to 

be commonly used for the algorithm applied to the decoding of LDPC codes 
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Example: Distributed Soldier Counting 
 

A. Soldiers in a line.   

• Counting rule: Each soldier receives a number from his right (left), adds one 

for himself, and passes the sum to his left (right).  

• Total number of soldiers = (incoming number) + (outgoing number) 
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 4
 

B. Soldiers in a Y Formation 

• Counting rule: The “message” that soldier X passes to soldier Y is the sum 

of all incoming messages, plus one for soldier X, minus soldier Y’s message 

ninformatio intrinsic  n  informatio extrinsic
\)(

)(

+=

+=

+−=

∑

∑

∈
→

∈
→→→

X
YXnZ

XZ

X
XnZ

XYXZYX

II

IIII

 

• Total number of soldiers = (message soldier X passes to soldier Y) + 

(message soldier Y passes to soldier X) 
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C. Formation Contains a Cycle 

• The situation is untenable: No viable counting strategy exists; there is also a 

positive feedback effect within the cycle and the count tends to infinity. 

• Conclusion: message-passing decoding cannot be optimal when the codes 

graph contains a cycle 
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The Turbo Principle 
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The Turbo Principle Applied to LDPC Decoding 
  

• the concept of extrinsic information is helpful in the understanding of the sum-

product/message-passing algorithm (the messages to be passed are extrinsic 

information) 

 

• we envision Tanner graph edges as information-flow pathways to be followed 

in the iterative computation of various probabilistic quantities 

 

 
 

• this is similar to (a generalization of) the use of trellis branches as paths in the 

Viterbi algorithm implementation of maximum-likelihood sequence 

detection/decoding 
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• Consider the subgraph  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The arrows indicate the situation for  20 fx →

 

• All of the information that x0 possesses is sent to node f2, except for the 

information that node f2 already possesses (extrinsic information) 
 

• In one half-iteration of the decoding algorithm, such computations, , 

are made for all v-node/c-node pairs.  

ji fx →

 
 

y0 (channel sample) 

f0 f1 f2

x0
 

the information passed concerns 

• Pr(x0 = +1 | y) or 

• Pr(x0 = +1 | y) / Pr(x0 = -1 | y) or 

• log[Pr(x0 = +1 | y) / Pr(x0 = -1 | y)] 
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• In the other half-iteration, messages are passed in the opposite direction: from 

c-nodes to v-nod s, . ij xf →

 

• Consider the sub raph corresponding to the other half-iteration  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The arrows indica
 
 

• node f0 passes a

nodes xi, excludin
 

• only information c
 

 

x x1 x x4

f0

the information passed concerns 

Pr(check equation f0 is satisfied) 
e

g

te the situation for f0 → x4 

ll (extrinsic) information it has available to it to each of the bit 

g the information the receiving node already possesses.  

onsistent  with c0 + c1 + c2 + c4 = 0 is sent 

0 2
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Probability-Domain Decoder 
 

• much like optimal (MAP) symbol-by-symbol decoding of trellis codes, we are 

interested in computing the a posteriori probability (APP) that a given bit in c  

equals one, given the received word y  and the fact that c  must satisfy some 

constraints 

 

• without loss of generality, let us focus on the decoding of bit ci ; thus we are 

interested in computing 

 

),1(Pr ii Syc =  

 

 where Si  is the event that the bits in c  satisfy the Wc parity-check equations 

involving ci  
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• later we will extend this to the more numerically stable computation of the log-

APP ratio, also call the log-likelihood ratio (LLR): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

),1(Pr
),0(Pr

log
ii

ii
Syc
Syc

 

 

Lemma 1 (Gallager) 

• consider a sequence of m independent binary digits ),,( 1 maaa K=  in which 

Pr(ak=1) = pk. 
 

• Then the probability that a  contains an even number of 1’s is 

)21(
2
1

2
1

1
k

m

k
p−∏+

=
  (*) 

• The probability that a  contains an odd number of 1’s is one minus this value: 

)21(
2
1

2
1

1
k

m

k
p−∏−

=
 

 

proof: Induction on m. 
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Notation 
 

• Vj = {v-nodes connected to c-node j} 

• Vj \ i  = {v-nodes connected to c-node j} \ {v-node i} 

 

• Ci = {c-nodes connected to v-node i} 

• Ci \ j  = {c-nodes connected to v-node i} \ {c-node j} 

 

 

• Pi  =  )/1Pr( ii yc =
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Notation (cont'd) 
 

•   = message (extrinsic information) to be passed from  )(bqij

  node xi to node fj regarding the probability that           

  }1,0{, εbbci =   

 

  = probability that  bci =  given extrinsic information from all check 

nodes, except node fj, and channel sample yi

 

 

 

 

 

 

 

 

yi

qij(b) 

fj 

xi

rji(b) 
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Notation (cont'd) 
 

• rji(b) = message to be passed from node fj to node xi 

 

  = the probability of the jth check equation being satisfied given bit ci = 

b and the other bits have separable distribution given by { } jjjiq
≠′′  

 

 

 

 

 

 

========= 

 

 

 

fj 

rji(b) 

xi qij(b) 
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● 

 

we now observe from Lemma 1 that 

 

∏ −+=
∈′

′
iVi

jiji
j

qr
\

))1(21(
2
1

2
1)0(  

 

∏ −−=
∈′

′
iVi

jiji
j

qr
\

))1(21(
2
1

2
1)1(  

 

• further, observe that, assuming independence of the { rji(b)}, 

 

∏−=
∈′

′
jCj

ijiij
i

rPq
\

)0()1()0(  

 

∏=
∈′

′
jCj

ijiij
i

rPq
\

)1()1(  

 
 

ryan
Text Box
Think of a repetition code.
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• as indicated above, the algorithm iterates back and forth between and 

; we already know how to pass the messages  and  around 

from the Decoding Overview Section. 

}{ ijq

}{ jir )(bqij )(brji

 

• before we give the iterative decoding algorithm, we will need the following 

result 

 

Lemma 2 Suppose iii nxy += , where  and  ),0(~ 2σηin

2
1)1Pr()1Pr( =−==+= ii xx . 

Then 2/21

1)Pr(
σyx

i
e

yxx
−+

==   (with { }1±∈x ) 

 

proof (Bayes' rule and some algebra) 
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Sum-Product Algorithm Summary - Probability Domain 

 

(perform looping below ji,∀  for which 1=ijh ) 

 

(0) initialize: 

 2/21

1)|1Pr(1)0(
σiy

iiiij
e

yxPq
−+

=+==−=  

 

 2/21

1)|1Pr()1(
σiy

iiiij
e

yxPq
+

=−===  

 

(1) ))1(21(
2
1

2
1)0(

\
∏ −+=
∈′

′
ijVi

jiji qr  

     )0(1)1( jiji rr −=

 

 
 

ci=0 

ci=1 

fj 

rji(b) 

xi 
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Sum-Product Algorithm Summary (cont'd) 
 

(2) )0()1()0(
\

∏−=
∈′

′
jiCj

ijiijij rPKq  

 

  )1()1(
\

∏=
∈′

′
jiCj

ijiijij rPKq

where the constants ijK  are chosen to ensure 1)1()0( =+ ijij qq  

 

(3) Compute i ∀

 

  ∏−=
∈ iCj

jiiii rPKQ )0()1()0(  

 

  ∏=
∈ iCj

jiiii rPKQ )1()1(  

 where the constants Ki are chosen to ensure 1)1()0( =+ ii QQ  

 

qij(b) 

yi

fj 

xi
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Sum-Product Algorithm Summary (cont'd) 
 

(4)  
⎩
⎨
⎧ >

=∀•
else0

5.0)1(if1
ˆ i
i

Q
ci

 

  •   if ( )0Hĉ T =  OR ( )ionsmax_iterat  iterations# =  OR (other stopping rule) 

   then STOP 

   else, go to (1) 

=======
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Remarks 
 

(a) if the graph corresponding to the H matrix contains no cycles (i.e., is a “tree”), 

then  and  will converge to the true a posteriori probabilities for c)0(iQ )1(iQ i 

as the number of iterations tends to ∞ 

 

(b) (for good LDPC codes) the algorithm is able to detect an “uncorrected” 

codeword with near-unity probability (step (4)), unlike turbo codes [MacKay] 

 

(c)  this algorithm is applicable to the binary symmetric channel where 

},1,0{,),Pr()( ∈== iiiij ybybcbq  still holds; we can also extend it to the 

binary erasure channel, fading channels, etc. 
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Log Domain Decoder 
 

• as with the probability-domain Viterbi and BCJR algorithms, the probability-

domain message-passing algorithm suffers because 

 

1) multiplications are involved (additions are less costly to implement) 

 

2) many multiplications of probabilities are involved which could become 

numerically unstable (imagine a very long code with 50-100 iterations) 

 

 

• thus, as with the Viterbi and BCJR algorithms, a log-domain version of the 

message-passing algorithm is to be preferred 
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• to do so, we first define the following LLR’s: 

              0=ic  

            
)1Pr(
)1Pr(

log)(
ii
ii

i yx
yx

cL
−=
+=

≡  

                                                 1=ic  

 

)1(
)0(

log)(

)1(
)0(

log
)(

)1(
)0(

log
)(

ij

ij
i

ij

ij

ij

ji

ji

ji

Q
Q

QL

q
q

qL

r
r

rL

≡

≡

≡
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• we will also need the following result (trivial to show): 

 

( )

1

1010

21

log
2
1tanh

p

pppp

−=

−=⎟
⎠
⎞

⎜
⎝
⎛

(∗ ) 

• the initialization step thus becomes 

2

1
/2

1
/2

/2

1

1
log)()(

2

2

σ

σ

σ

i

y

y

iij

y

e

e
cLqL

i

i

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

== −

−
−
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• for step (1), we first rearrange the  equation: )0(jir

( )∏ −+=
∈′

′
iVi

jiji
j

qr
\

)1(211)0(2  

( )∏ −=−⇒
∈′

′
iVi

jiji
j

qr
\

)1(21)1(21  

• from (*) on the previous page 

 

∏ ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

∈′
′

iVi
jiji

j
qLrL

\
)(

2
1tanh)(

2
1tanh

            (**) 

or 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏ ⎟

⎠
⎞

⎜
⎝
⎛=

∈′
′

−

iVi
jiji

j
qLrL

\

1 )(
2
1tanhtanh2)(  
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• the problem with these expressions is that we are still left with a product 

 

• we can remedy this as follows (Gallager): 

 

 rewrite  as  )( jiqL ′

ijijjiqL βα=′ )(  

 where 

  
( )

)(
)(

ijij

ijij
qL

qLsign
≡

≡

β
α

 

• then (**) on the previous page can be written as  

 

∏ ⎟
⎠
⎞

⎜
⎝
⎛

∏ ⋅=⎟
⎠
⎞

⎜
⎝
⎛

′
′

′ i
ji

i
ijijrL βα

2
1tanh)(

2
1tanh  
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• we then have 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∏=

∑
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

=

∏ ⎟
⎠
⎞

⎜
⎝
⎛⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∏=

∈′
′

′

′

′−−

′

′
′

−

′
−

ijRi
ji

i
ij

i

ji

i
ij

i
ji

i
ijjirL

/

log1log

)(

2
1tanhlog

logtanh2

2
1tanhtanh2)(

11

1

βφφα

β
α

βα
48476

 

 

where we have defined  

1

1log
2
1tanhlog)(

−

+
=⎟

⎠
⎞

⎜
⎝
⎛−≡ x

x

e

exxφ  
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and used the fact that )()(1 xx φφ =−  when x > 0: 

 

( ) x
e

ex
x

x
=

−

+
=

1

1log)(
)(

)(

φ

φ
φφ  

 

• the function )(xφ  is fairly well behaved, it looks like 

 

 

 

 

 

 

 

 and so may be implemented via look-up table 

 
 

6 
φ(x) 

6 
x 

45o line 
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• for step (2), we simply divide the  eqn by the  eqn and take the log 

of both sides to obtain 

)0(ijq )1(ijq

 

∑+=
∈′

′
jCj

ijiij
i

rLcLqL
/

)()()(  

 

 

• step (3) is similarly modified 
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Sum-Product Algorithm Summary - Log Domain 
 

(perform looping below ji,∀  for which 1=ijh ) 

 

(0) initialize:  
2/2)()( σiiij ycLqL ==  

(1)  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏=

∈′
′

∈′
′

ijij Vi
ji

Vi
jijirL

\\
)()( βφφα

 

 

 

 

 

 

 

x0 x1 x2 xi

fj

)(cm
)(

1
vm )(

3
vm)(

2
vm
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where 

( )

1

1log

)2/tanh(log)(
)(

)(

−

+
=

−≡
≡

≡

x

x

ijij

ijij

e

e
xx

qL
qLsign

φ
β
α

 

 

(2) ∑+=
∈′

′
jiCj

ijiij rLcLqL
\

)()()(  

 

 

 

 

 

 

 
 

f0 f1 fj

xi
 

)(vm)(
1

cm
)(

2
cm

mi
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(3) ∑+=
∈ iCj

jiii rLcLQL )()()(  

 

(0) •  ∀i, 

⎩
⎨
⎧ <

=
else0

0)(if1
ˆ i
i

QL
c  

 

 •   if ( )0Hĉ T =  OR ( )ionsmax_iterat  iterations# =  OR (other stopping rule)  

  then STOP 

  else, go to (1) 

 

========= 
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Improved Notation:   
Log-SPA Algorithm for LDPC Codes on the AWGN Channel 

 

1. initialize the channel messages for each v-node via  

                        (all other messages set to zero);  2
0 /2 σiym =

 

2. update the v-node messages via  

               ∑
−

=
+=

1

1

)(
0

)( vd

k

c
k

v mmm ; 

 

 
 

3. update the c-node messages via            

       ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= ∑∏

−

=

1

1

)()()( cd

k

v
k

k

v
k

cm βφφα ;  

where )()()(  of magnitude andsign   theare  and vv
k

v
k mβα  

 
 

f0 f1 f2

x0
 

)(vm

0m  

)(
1

cm
)(

2
cm  

x0 x1 x2 x4

f0

)(cm
)(

1
vm )(

3
vm)(

2
vm
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4. compute ∑
=

+=
vd

k

c
k

v mmM
1

)(
0

)(
   and ( ))(ˆ vMsignx =  for each code bit to obtain  

(hence );  

x̂

ĉ

 

5. if ( )0Hĉ T =  OR ( )ionsmax_iterat  iterations# =  OR (other stopping rule), STOP, 

else go to step 2. 
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Comments 
1. The order of the steps in the above algorithm summary is different than the 

summary given earlier in part to show that equivalent variations on the 

algorithm exist 

2. In fact, the following ordering of the steps saves some computations (with a 

modification to Step 2): 

 Step 1 

 Step 4 

 Step 5  

 Step 2'   This step is modified as: )()()( c
d

vv
v

mMm −=   

  (this is an extrinsic information calculation) 

 

 Step 3 (and then go up to Step 4) 
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● 

● 

Example 

consider an (8,4) product code (dmin=4) composed of a (3, 2) single parity 

check code (dmin=2) along rows and columns: 

 

 

 
 

thus, 

c2 = c0+c1

c5 = c3+c4

c6 = c0+c3

c7 = c1+c4

 from which 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10010010
01001001
00111000
00000111

H  

 

c0 c1 c2 

c3 c4 c5 

c6 c7 
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● 

● 

the graph corresponding to H is  

 

 

 

 

 

 

 

 

 

note that the code is neither low-density nor regular, but it will suffice to 

demonstrate the decoding algorithm 

 

 

 

 

x1 x4x0
 

x2 x3 x5 x6

f0 f1 f3f2

x7
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● 

 

the codeword we choose for this example is 

 

( )
11

111
111

)1(
11

110
101

−−
−−+
−+−

=→−=→= xxc ic
i  

 

• the received word y  is 

 

0 1 2

3 4 5

6 7

.2 .2 _.9

.6 .5 1.1

.4 1.2

y y y
y y y y

y y

+ +
= = + + −

− −
 

 

 so that there are sign errors in y0 and y4 
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● initialization (assume σ2=0.5):  

 
                                             

      ji,∀  for which 1=ijh : 

 

   set      

   
2/2)()( σiiij ycLqL ==
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we obtain [ ]))(,),(( 70 QLQLLQ K≡ : 
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Reduced Complexity Decoder: The Min-Sum Algorithm 
 

• consider the update equation for in the log-domain decoder: )( jirL

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∏=

′
′

′ i
ji

i
ijjirL )()( βφφα  

 

• notice now the shape of φ(x): 

 

 

 

 

 

• we may conclude that the term corresponding to the smallest jiβ  in the above 

summation dominates so that  

 

 
 

φ(x) 

x
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( )

ji
i

ji
i

i
ji

′
′

′
′

′
′

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

β

βφφ
βφφ

min

min~
 

• the second equality follows from ( ) xx =)(φφ  

• the min-sum algorithm is thus simply the log-domain algorithm with step (1) 

replaced by 

 

ji
RiRi

jiji
ijij

rL ′
′′

′ ⋅∏=′ βα
εε \\

min)()1(  

 

• the min-sum algorithm converges in 10 iterations rather than 7 in the above 

example (since it is an approximation) 
 

 

• to illustrate the simplicity of the min-sum algorithm, we change the received 

word in the example that follows. 
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Example 
 

2.14.
1.15.7.
9.8.5.1

−−
−=
−−

y  

 

• assuming again 5.02 =σ , 

 

{ }

( )8.4,6.1,4.4,2,8.2,6.3,2.3,6

2)( 7
02

7
0

−−−−−=
⎭
⎬
⎫

⎩
⎨
⎧

= == i
i

ii
ycL

σ  
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• the worked-out graph, first iteration: 

 

 
 

STOP0ˆ ⇒=THc  

======== 

 

 



 44

The Min-Sum-with-Correction-Term Algorithm 

• In a code's Tanner graph, edges leading from bit nodes to check nodes 

indicate that the sum of those bit must equal zero 

 

• In the Tanner-graph based decoder, we may consider the computation of 

extrinsic information departing a check node to be of the form 

( )
LL

LL

⊕⊕⊕⊕⊕≡

⊕⊕⊕⊕⊕=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑=

∈′
′

kjhg

kjhg

Vi
iji

LLLL

bbbbL

bLrL
ij \

)(

 

(the operators for the last line should be  ) 

 

 

• Now we imagine that we want to compute  in serial fashion, accounting 

for the bits 

)( jirL

( )LL ,,,,, kjhg bbbb  one at a time 
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• Thus, we would only need to perform pairwise computations of the form 

  
 

• It can be shown that  

 

 
    where 

 
• It can also be shown that s(x, y) can successfully approximated by 

 

 
see W. E. Ryan, "An Introduction to LDPC Codes," in CRC Handbook for Coding and Signal Processing for 
Recording Systems (B. Vasic, ed.) CRC Press, to be published in 2004. (http://www.ece.arizona.edu/~ryan/) 
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Wc = Wr = 64 

c = 0.5 
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Wc = 4 

Wr = 32  

c = 0.5 
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The Min-Sum-with-Attenuator Algorithm 

• By plotting the min-sum LLR values against the "exact" SPA values (same 

data and noise), we see that the min-sum LLR values are generally too 

optimistic (too large, where large implies better reliability).  

 

 

min-sum vs. SPA LLR's in 
the 1st iteration 
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• By attenuating the min-sum values, the resulting LLR values are sometimes 

optimistic and sometimes pessimistic (relative to the SPA), but a better 

balance is struck, hence the improvement over the min-sum algorithm. 

 

new step (1): 

ji
RiRi

jiji
ijij

ArL ′
′′

′ ⋅∏⋅=′′ βα
εε \\
min)()1(  

where 0 < A < 1 is the attenuation factor 
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• It appears from the plot above that there might be some advantage to turning 

off the attenuation factor after 5 iterations because the values become 

generally pessimistic on the 6th iteration. We have not simulated this 

modification to the MSa.x algorithm. 

 

• Also, an attenuation factor of 0.8 is better than the factor of 0.5 shown here, 

but clearly the factor of 0.5 is to be preferred for practical reasons. 

 

• Below we present some simulation results for the following algorithms: 

 

•  SPA = sum-product algorithm 

•  MS = min-sum algorithm 

•  MSc = min-sum with a correction term 

 

• MSa = min-sum with an attenuator 
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Pb and Pcw curves for MS, MSa.5(min-sum with attenuator 0.5), MSc.5 (min-sum 
with correction term 0.5), and SPA, all with 50 decoding iterations. 
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Repeat of the above, but with 10 iterations and without the min-sum curves. 
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Repeat of the above, but with 5 iterations and without the min-sum curves. 
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10

Code Review: Decoding Packet-LDPC on PEC
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Iterative Decoding on the Packet Erasure Channel 

An analogous algorithm of course applies for the binary erasure channel 
(BEC) or the burst erasure channel (BuEC). 
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