The Curse of Dimensionality
Curse of Dimensionality

The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons:

- Adding more features can increase the noise, and hence the error.
- There aren’t enough observations to get good estimates.
- Most of the data is in the tails.
Curse of Dimensionality

Consider a two class problem, with each class distributed as a multivariate Normal with (known) identity covariance and means
\[\mu_1 = (1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots, \frac{1}{\sqrt{d}}) \] and \[\mu_2 = (-1, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{3}}, \ldots, -\frac{1}{\sqrt{d}}). \]

Note that the discriminant information gained by increasing the dimension goes to zero.

Trunk showed that:
1. If \(\mu = \mu_1 - \mu_2 \) is known, the probability of error goes to 0.
2. If \(\mu \) is unknown the probability of error goes to \(\frac{1}{2} \).
Silverman provides a table illustrating the difficulty of kernel estimation in high dimensions. To estimate the density at 0 with a given accuracy, he reports:

<table>
<thead>
<tr>
<th>Dimensionality</th>
<th>Required Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>786</td>
</tr>
<tr>
<td>7</td>
<td>10,700</td>
</tr>
<tr>
<td>10</td>
<td>842,000</td>
</tr>
</tbody>
</table>

Consider a sphere of radius \(r \) inscribed inside a hypercube of dimension \(d \) and sides of length \(2r \).

The volume of the hypercube is \((2r)^d \).

The volume of the sphere is \(\frac{2r^d \pi^{d/2}}{d \Gamma(d/2)} \).
Ball in Square

- Thus the proportion of the volume of the square that is inside the sphere is

\[\frac{\pi^{d/2}}{d^{2d-1} \Gamma(d/2)} \rightarrow 0 \]

as \(d \rightarrow \infty \).

- For large \(d \) all the mass is in the corners of the hypercube.

- Similar calculations show that all the mass in a ball is near the edge (like a soccer ball).
Dimensionality Reduction
Dimensionality Reduction

We want to reduce the number of dimensions because:

- Efficiency.
 - Measurement costs.
 - Storage costs.
 - Computation costs.
- Classification performance.
- Ease of interpretation/modeling.
Principal Components

- The idea is to project onto the subspace which accounts for most of the variance.
- This is accomplished by projecting onto the eigenvectors of the covariance matrix associated with the largest eigenvalues.
- This is generally not the projection best suited for classification.
- It can be a useful method for providing a first-cut reduction in dimension from a high dimensional space.
In the first case the PC is the optimal projection to 1D.

In the second case it is perpendicular to the optimal projection.
Fisher’s Linear Discriminant - Motivation

Another look at the effect of projection axis. Want to find the optimal projection for classification.
Fisher’s Linear Discriminant - Methodology

Let \(x_1, x_2, \ldots, x_n \) be a set of d-dimensional samples with \(n_1 \) of these in class 1 and \(n_2 \) of these in class 2.

Given a projection vector \(w \) define:

- \(|\tilde{m}_1 - \tilde{m}_2| = |w^t(m_1 - m_2)| \)
- \(\tilde{s}_i^2 = \sum_{y \in \text{class}_i} (y - \tilde{m}_i)^2 \)

FLD seeks to maximize:

- \(J(w) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2} \)
The optimization is easier than it looks. Let

\[S_i = \sum_{x \in \text{class}_i} (x - m_i)(x - m_i)^t \]

\[S_W = S_1 + S_2 \]

Then

\[w = S_W^{-1}(m_1 - m_2). \]
Local Fisher’s Linear Discriminant

- The FLD is optimal if the data are Normal, with equal covariances.
- One can extend this idea to local projections as follows.
 - For each training observation x_i, define a local region (say, the k nearest training observations from each class).
 - Construct the FLD for that local region.
 - For new data, use the FLD appropriate to the region in which the new data lies.
- This results in a local-linear classifier, which can approximate much more general decision regions.
Multi-class Fisher’s Linear Discriminant

- If there are \(c \) classes, one can compute the FLD in a manner similar to the 2 class case.
- The optimization is a little more complicated.
- The projection is \(c - 1 \) dimensional.
- Alternatively, one can perform pairwise 2 class FLDs:
 - Class \(i \) versus class \(j \).
 - Class \(i \) versus all other classes.
A search for and exploration of nonlinear structure in a multi-dimensional data set via a sequence of two-dimensional projections (Friedman and Tukey (1974)).

The hope is that two-dimensional projections will reveal structure that is resident in the original data.

Purposes of projection pursuit

- Exploratory data analysis
- Clustering
- Discriminant analysis
Formulate an index that measures the degree that a particular projection reveals the property of interest (departure from normality, cluster structure, class separation).

Formulate a method to solve for the projection that yields the largest projection pursuit index.

Proceed.
- X is a $n \times d$ matrix, where each row (X_i) corresponds to a d-dimensional observation and n is the sample size.
- Z is the sphered version of X.
- $\hat{\mu}$ is the $1 \times d$ sample mean: $\hat{\mu} = \frac{1}{n} \sum X_i$.
- $\hat{\Sigma}$ is the sample covariance matrix:
 \[\hat{\Sigma}_{ij} = \frac{1}{n-1} \sum (X_i - \hat{\mu})(X_j - \hat{\mu})^T. \]
- α, β are orthonormal ($\alpha^T \alpha = 1 = \beta^T \beta$ and $\alpha^T \beta = 0$), d-dimensional vectors that span the projection plane.
- $P(\alpha, \beta)$ is the projection plane spanned by α, β.

Projection Pursuit - EDA Notation - II

- z_i^α, z_i^β are the sphered observations projected onto the vectors α and β:

 $z_i^\alpha = z_i^T \alpha$
 $z_i^\beta = z_i^T \beta$.

- (α^*, β^*) denotes the plane where the index is maximum.

- $PI_{\chi^2}(\alpha, \beta)$ denotes the chi-squared projection index evaluated using the data projected onto the plane spanned by α and β.

- ϕ_2 is the standard bivariate Normal density.
\(c_k \) is the probability evaluated over the k-th region using the standard bivariate Normal density,
\[
c_k = \int \int_{B_k} \phi_2 d\sigma_1 d\sigma_2.\]

\(B_k \) is a box in the projection plane.

\(I_{B_k} \) is the indicator function for region \(B_k \).

\(\eta_j = \pi j / 36, j = 0, \cdots, 8 \) is the angle by which the data are rotated in \(\alpha(\eta_j) \) and \(\beta(\eta_j) \) are given by
\[
\begin{align*}
\alpha(\eta_j) &= \alpha \cos \eta_j - \beta \sin \eta_j \\
\beta(\eta_j) &= \alpha \sin \eta_j + \beta \cos \eta_j.
\end{align*}
\]
- c is a scalar that determines the size of the neighborhood around (α^*, β^*) that is visited in the search for planes that provide better values for the projection pursuit index.

- ν is a vector uniformly distributed on the unit d-dimensional sphere.

- $half$ specifies the number of steps without an increase in the projection index, at which time the value of the neighborhood is halved.

- m represents the number of searches or random starts to find the best plane.
B_k Regions for the χ^2 Projection Pursuit Index
The Empirical Projection Pursuit Index

For Computer Implementation

\[P_{I\chi^2}(\alpha, \beta) = \]

\[\frac{1}{9} \sum_{j=1}^{8} \sum_{k=1}^{48} c_k \left[\frac{1}{n} \sum_{i=1}^{n} I_{B_k}(z_{i}^{\alpha(\eta_j)}, z_{i}^{\beta(\eta_j)}) - c_k \right]^2 \]

- Robust to outliers.
- Sensitive to distributions with holes and to clusters.
Finding the Structure

- How do we optimize the projection index over all possible projections to R^2?
- Method of Posse

$$
a_1 = \frac{\alpha^* + c\nu}{\|\alpha^* + c\nu\|} \\
b_1 = \frac{\beta^* - (a_1^T \beta^*)a_1}{\|\beta^* - (a_1^T \beta^*)a_1\|} \\
a_2 = \frac{\alpha^* - c\nu}{\|\alpha^* - c\nu\|} \\
b_2 = \frac{\beta^* - (a_2^T \beta^*)a_2}{\|\beta^* - (a_2^T \beta^*)a_2\|}
$$
Algorithm - Projection Pursuit Exploratory Data Analysis-I

1. Sphere the data using

\[Z_i = \Lambda^{-1/2} Q^T (X_i - \hat{\mu}) \quad i = 1, \ldots, n \]

\(Q = \) eigenvectors of \(\hat{\Sigma} \); \(\Lambda = \) diagonal matrix of corresponding eigenvalues, \(X_i = i\)-th observation.

2. Generate a random starting plane, \((\alpha_0, \beta_0) \)

\((\alpha^*, \beta^*) = (\alpha_0, \beta_0) \).

3. Calculate the projection index for the starting plane \(PI_{\chi^2}(\alpha_0, \beta_0) \).

4. Generate two candidate planes \((a_1, b_1) \) and \((a_2, b_2) \).

5. Evaluate the value of the projection index for these planes,

\(PI_{\chi^2}(a_1, b_1) \) and \(PI_{\chi^2}(a_2, b_2) \).
6. If one of the candidate planes has a higher index then it becomes the new best plane \((\alpha^*, \beta^*)\).

7. Repeat steps 4 through 6 while there are improvements in the projection pursuit indices.

8. If the index does not improve for half times, then decrease the value of \(c\) by half.

9. Repeat steps 4 through 8 until \(c\) is some small number set by the user.
Typically an iterative process with structure removed at each step of the process.

Discriminant analysis needs might lead one to consider alternate projection pursuit indices.
Trees, Graphs and Combining Classifiers
Classification Trees

- One of the first, and most popular is CART (Classification and Regression Trees).
- The idea is to build a tree of simple decision rules.
- Each branch of the tree is taken based on a comparison of a single variable with a value or threshold.

CART implementation issues
- How many splits shall we allow at a node?
- What properties should be tested at a node?
- When should a node be declared a leaf or terminal node?
- How shall we prune trees?
- If a leaf is impure then how shall we assign the class label?
- What shall we do with missing data?
CART Iris Analysis

Diagram showing the classification of Iris flowers based on petal length and petal width.
At each node in the tree, the data is split according to a single variable.

The variable and split value are selected in order to best split the data.

The tree is grown until each leaf is pure (single class).

The tree is then pruned to reduce overfitting.

The variables can be continuous or categorical.
SALAD CART Analysis on Full 13 Bands

This tree uses bands 1,5,7,8,10,12,13.
CART Properties

- Benefits
 - CART is an appropriate technique when not much is known about the form of an optimal classifier.
 - CART is an appropriate technique when presented with non-metric data.
 - The classifier can often be easily understood as a sequence of rules, and is thus easily understood by a client.
 - Like nearest neighbor classifiers, it often produces a reasonable classifier for comparison with other techniques.
 - Missing values are easily incorporated in the classifier.
CART Properties

- Drawbacks
 - CART is highly sensitive to the training data set. Small changes in the training set can have a marked effect on the nature of the classifier.
 - Large trees are not really more “understandable” than other classifiers.
 - The decision region is not smooth (an intersection of rectangles).
The machine learning community has also developed decision trees.

ID3 was designed to work on nominal data.

It handles real-valued data via binning.

The algorithm continues until all of the terminal nodes are pure or there are no more variables to split upon.

C4.5, a follow-on to ID3, is similar to CART, except that different choices are made in the design of the tree.

For example, it allows:

- Variable numbers of branches from a node.
- “Soft” thresholds, to account for observations near the threshold.

Machine learning is also interested in generating rules, and there are methods for turning a tree into a set of rules, which can be evaluated by experts, or used in an expert system.
Dual Representation of the Linear Classifier

- The linear decision function may be rewritten as follows:
 \[f(x) = \langle w, x \rangle + b = \sum \alpha_i y_i \langle x_i, x \rangle + b \]
 \[w = \sum \alpha_i y_i x_i \]

- Support vector machines are linear classifiers represented in a dual fashion.

- Data appears within dot products in the decision and training functions.
Support Vector Machines (The Cartoon)

- We seek a mapping f where we may separate our points via a simple linear classifier
Kernels

- A function that returns the dot product between the images of the two arguments
 \[K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \]

- Given a function \(K \) it is possible to verify that it is a kernel.

- One can use linear classifiers in a feature space by simply rewriting it in dual representation and replacing dot products with kernels.
Kernel Examples

- $K(x, z) = \langle x, z \rangle^d$
- $K(x, z) = e^{-\frac{|x-z|^2}{2\sigma}}$
- Polynomial kernel:
 - Let $x = (x_1, x_2)$ and $z = (z_1, z_2)$.
 - We may write
 \[
 \langle x, z \rangle = (x_1 z_1 + x_2 z_2)^2 = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2
 \]
 \[
 = \langle (x_1^2, x_2^2, \sqrt{2}x_1 x_2), (z_1^2, z_2^2, \sqrt{2}z_1 z_2) \rangle
 \]
 \[
 = \langle \phi(x), \phi(z) \rangle.
 \]
We may form a discriminant function that is a linear combination of the components of x.

- $g(x) = w^t x + w_0$
- w is the weight vector and w_0 is the bias or threshold.

$g(x)$ measures the distance r from x to the discriminant hyperplane.

- $r = \frac{g(x)}{\|w\|}$.
Homogeneous Form of the Linear Discriminant Functions

\[g(x) = w^t x + w_0 \]

\[g(x) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i \]

\[
y = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \quad \quad a = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}
\]
We seek a hyperplane with maximum margin.

The training vectors that define the margins are the support vectors.
Let our training patterns be x_k where $k = 1, \cdots, n$.

Assume the patterns have been subjected to a transformation ϕ to produce $y_k = \phi(x_k) \forall k$.

Each y_k has an associated class $\omega_k = \pm 1$.

Our LD in the augmented space is given by $g(y) = a^t y$.

$z_k g(y_k) \geq 1, k = 1, \cdots, n$.
Recall the distance from our hyperplane to a transformation point \(y \) is given by
\[
\frac{|g(y)|}{\|a\|}.
\]
Assuming a positive margin exists we have
\[
\frac{z_k g(y_k)}{\|a\|}
\]
\(\|a\| = 1 \) to ensure uniqueness.

Minimize \(\|a\|^2 \).
Solving for the Support Vectors

- Choosing ϕ
 - Domain knowledge
 - Polynomials
 - Gaussians

$$L(a, \alpha) = \frac{1}{2} \|a\|^2 - \sum_{k=1}^{n} \alpha_k [z_k a^t y_k - 1]$$

$$L(\alpha) = \sum_{k=1}^{n} \alpha_i - \frac{1}{2} \sum_{k,j}^{n} \alpha_k \alpha_j z_k z_j y_j^t y_k.$$

Subject to $\sum_{k=1}^{n} z_k \alpha_k = 0$, $\alpha_k \geq 0$, $k = 1, \cdots, n$.
A Trivial Example SVM: X-OR

- $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^6$ where $\phi(x_1, x_2) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1 x_2, x_1^2, x_2^2)$
- We seek to maximize $\sum_{k=1}^{4} \alpha_k - \frac{1}{2} \sum_{k,j}^{n} \alpha_k \alpha_j z_k z_j y_j^t y_k$
- Subject to $\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 = 0$ where $0 \leq \alpha_k \ k = 1, 2, 3, 4$.
Two-Dimensional Projection of Six-Dimensional Space

- \(g(x_1, x_2) = x_1 x_2 = 0 \).
- \(b = \sqrt{2} \).
- Hyperplanes through the support vectors \(\sqrt{2} x_1 x_2 = \pm 1 \) in the mapped space correspond to hyperbolas \(x_1 x_2 = \pm 1 \) in the original space.
Many classifiers can be improved by taking aggregates of classifiers (ensemble classifiers).

The idea is to construct many classifiers, and combine their results into some overall classification.

The simplest of these ideas is Bagging (bootstrap aggregation):

- Draw a bootstrap sample of size $n' < n$ and construct a component classifier on the sample.
- The overall classifier is a vote of the component classifiers.
Boosting

The idea of boosting is to construct an ensemble of classifiers, each specialized to the points that previous classifiers had difficulty with.

- Construct a classifier and determine the observations that it makes errors on.
- Reweight the observations to give these difficult observations greater weight.
- Construct a new classifier on these reweighted observations, and repeat.
- The final classifier is a weighted average of the individual ones.
AdaBoost

Initialize k_{max}, $W = \left\{ \frac{1}{n}, \ldots, \frac{1}{n} \right\}$, $k = 0$

Do

 k=k+1

 Train classifier C_k using weights W_k.

 Variation: train on a bootstrap sample according to W.

 $E_k =$ weighted error of C_k.

 $\alpha_k = \ln \left(\frac{1-E_k}{E_k} \right)$.

 $W_i = W_i e^{I(C_k(x_i) = y_i) \alpha_k}$.

 Normalize W.

While $k < k_{max}$.

Return $C(x) = \text{sign} \sum_{k=1}^{k_{max}} \alpha_k C_k(x)$
Class Cover

- Assume (for now) that we have two classes whose supports do not intersect (so they are perfectly separable).
- Assume further that we have no model for the classes (or their separating surface).
- The class cover problem is to cover one class \((X)\) with balls such that none of the balls intersect the other class \((Y)\).
- One way to approximate this is to center balls at \(X\) observations with radii no larger than the distance from the observation to any \(Y\) observation.
We want to cover the support of one class, without covering that of the other.
Circles indicate regions “near” blue observations. They are defined to be the largest circle centered on a blue that does not cover a red.
Blue area shows the decision region for the blue class.
Note that we have one ball per observation, which is more than necessary. We want to reduce the complexity of the cover.

Define a directed graph (digraph) as follows:
- The vertices are the observations from X.
- There is an edge from x_1 to x_2 if the ball at x_1 covers x_2.

We cover the class by a digraph defined by the balls that catch (contain) the vertices.

We abbreviate this CCCD.
CCCD Example
A dominating set of a graph is a set of vertices S such that every vertex is either a member of S or has an edge to it from a vertex in S.

A minimum dominating set is one which has smallest cardinality.

Denote the cardinality of a minimum dominating set by γ.

Note that if we take a minimum dominating set of the CCCD, we still cover all the training observations, thus producing a reduced cover.
A Dominating Set

Note that in this case we obtain a large reduction in complexity and a “better” class cover.
Choosing the Dominating Set

- Selecting a minimum dominating set is hard.
- A greedy algorithm works well to select a (nearly) minimum dominating set.
- The algorithm is fast (given that the interpoint distance matrix has already been calculated).
- A fast algorithm has been developed which allows the selection of a small dominating set with large data sizes.
The Greedy Algorithm

- Select the ball that covers the most X points.
- While there are still points that are uncovered:
 - Select the ball that covers the most points not yet covered.
- Return the balls selected.

Notes
- We do not restrict our selection of balls to those whose centers are not already covered.
- Ties are broken arbitrarily (we can break them in favor of balls with a higher statistical depth (local density) if we choose).
The dominating set for the CCCD provides a set of centers and radii.

Compute these for each class.

Compute the minimum scaled distance between a new observation x and the centers $(d(x, x_i)/r_i)$.

The class of the minimum is the class assigned the new observation.

The CCCD is like a reduced nearest neighbor classifier with a variable metric.
CCC Extensions

- One can relax the constraint that the reduced set be a dominating set by allowing a small number of observations to not be covered. This can simply be done by stopping the greedy algorithm early.

- Similarly, one can relax the purity constraint, and allow a small number of other-class observations to be covered. Various algorithms are possible, such as only covering a Y observation if doing so covers “enough” new X observations.
Putting It All Together

- We now give an example of a tool that puts all the steps described together.
- The tool was designed to operate on images and allow the user to construct classifiers to find certain types of objects within images.
- This was a “low level” image processing application.
Advanced Distributed Region of Interest Tool (ADROIT)

- Feature Extraction
- Discriminant Region Construction
- Dimensionality Reduction
- Probability Density Estimation
Feature Extraction
- Wavelets, Sobel
- Coefficient of Variation
- Fractal Dimension, and Boundary Gated Fractal Dimension

Dimensionality Reduction
- Fisher Linear Discriminant
- Iterated Fisher Linear Discriminant
- Evolutionary Algorithm Methodology
ADROIT Algorithms - II

- Probability Density Estimation
 - Finite Mixture
 - Adaptive Mixtures
- Classifier Construction
 - Likelihood Ratio (Bayes Rule)
ADROIT Analysis

The ADROIT software interface is shown, featuring options to view and analyze images with overlays and classifications.
ADROIT Multiclass