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Preface

The title of this book reflects who we are: a computational biologist and an
algebraist who share a common interest in statistics. Our collaboration sprang
from the desire to find a mathematical language for discussing biological se-
quence analysis, with the initial impetus being provided by the Introductory
Workshop on Discrete and Computational Geometry at the Mathematical Sci-
ences Research Institute (MSRI) held at Berkeley in August 2003. At that
workshop we began exploring the similarities between tropical matrix multi-
plication and the Viterbi algorithm for hidden Markov models. Our discussions
ultimately led to two articles [Pachter and Sturmfels, 2004a,b] which are ex-
plained and further developed in various chapters of this book.

In the fall of 2003 we held a graduate seminar on The Mathematics of
Phylogenetic Trees. About half of the authors in the second part of this
book already participated in that seminar. It was based on topics from the
books [Felsenstein, 2003, Semple and Steel, 2003] but we also discussed other
projects, such as Michael Joswig’s polytope propagation on graphs (now Chap-
ter 6). That seminar got us up to speed on research topics in phylogenetics, and
led us to participate in the conference on Phylogenetic Combinatorics which
was held in July 2004 in Uppsala, Sweden. In Uppsala we were introduced to
David Bryant and his statistical models for split systems (now Chapter 17).

Another milestone was the workshop on Computational Algebraic Statistics
which was held at the American Institute for Mathematics (AIM) at Palo
Alto in December 2003. That workshop was built on the algebraic statistics
paradigm, which is that statistical models for discrete data can be represented
as solutions to systems of polynomial equations. Our current understanding of
algebraic statistical models, maximum likelihood estimation and expectation
maximization was shaped by the excellent lectures and discussions at AIM.

These developments led us to offer a mathematics graduate course titled Al-
gebraic Statistics for Computational Biology in the fall of 2004. The course was
attended mostly by mathematics students curious about computational biol-

vii



viii Preface

ogy, but also by computer scientists, statisticians, and bioengineering students
interested in understanding the mathematical foundations of bioinformatics.
Participants ranged from senior postdocs to first year graduate students and
even one undergraduate. The format consisted of lectures by us on basic
principles of algebraic statistics and computational biology, as well as student
participation in the form of group projects and presentations. The class was
divided into four sections, reflecting the four themes of algebra, statistics, com-
putation and biology. Each group was assigned a handful of projects to pursue,
with the goal of completing a written report by the end of the semester. In
some cases the groups worked on the problems we suggested, but, more often
than not, original ideas by group members led to independent research plans.

Half way through the semester, it became clear that the groups were making
fantastic progress, and that their written reports would contain many novel
ideas and results. At that point, we thought about preparing a book. The
first half of the book would be based on our own lectures, and the second half
would consist of chapters based on the final term papers. A tight schedule
was seen as essential for the success of such an undertaking, given that many
participants would be leaving Berkeley and the momentum would be lost. It
was decided that the book should be written by March 2005, or not at all.

We were fortunate to find a partner in Cambridge University Press, which
agreed to work with us on our concept. We are especially grateful to our editor,
David Tranah, for his strong encouragement, and his trust that our half-baked
ideas could actually turn into a readable book. After all, we were proposing
to write to a book with twenty-nine authors during a period of three months.

The project did become reality and the result is in your hands. It offers an
accurate snapshot of what happened during our seminars at UC Berkeley in
2003 and 2004. Nothing more and nothing less. The choice of topics is certainly
biased, and the presentation is undoubtedly very far from perfect. But we hope
that it may serve as an invitation to biology for mathematicians, and as an
invitation to algebra for biologists, statisticians and computer scientists.

We acknowledge the National Science Foundation and the National Insti-
tute of Health for their financial support, and many friends and colleagues for
providing helpful comments — there are far too many to list individually. Most
of all, we are grateful to our wonderful students and postdocs from whom we
learned so much. Their enthusiasm and hard work have been truly amazing.
You will enjoy meeting them in Part 2.

Lior Pachter and Bernd Sturmfels
Berkeley, California, March 2005



Part 1

Introduction to the four themes

Part I of this book is devoted to outlining the basic principles of algebraic
statistics, and their relationship to computational biology. Although some of
the ideas are complex, and their relationships intricate, the underlying phi-
losophy of our approach to biological sequence analysis is summarized in the
cartoon on the cover of the book. The fictional character is DiaNA, who
appears throughout the book, and who is the statistical surrogate for our bio-
logical intuition. In the cartoon, DiaNA is walking randomly on a graph and
she is throwing tetrahedral dice that can land on one of the characters A,C,G
or T. A key feature of the tosses is that the outcome depends on the direction
she is walking. We, the observers, record the characters that appear on the
successive throws, but are unable to see the path that DiaNA takes on her
graph. Our goal is to guess DiaNA’s path from the die roll outcomes. That is,
we wish to make an inference about missing data from certain observed data.

In this book, the observed data are DNA sequences, and in Chapter 4 we
explain the relevance of the example depicted on the cover to the biological
problem of sequence alignment. The tetrahedral shape of the die hint at poly-
topes, which we see in Chapter 2 are fundamental geometric objects that play
a key role in making guesses about DiaNA. Underlying the whole story is al-
gebra, featured in Chapter 3, and which is the universal language with which
to describe the underlying process at the heart of DiaNA’s randomness.

Chapter 1 offers a fairly self-contained introduction to algebraic statistics.
Many concepts of statistics have a natural analog in algebraic geometry, and
there is an emerging dictionary which bridges the gap between these disciplines:

independence = Segre variety
exponential family = toric variety
manifold

curved exponential family

mixture model secant variety

inference = tropicalization

This dictionary is far from complete and finished, but it already suggests that
algorithmic tools from algebraic geometry, most notably Grobner bases, may
be used for computations in statistics that may be beneficial for computational
biology applications. While we are well aware of the limitations of algebraic
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algorithms, with Grobner bases computations typically becoming intractable
beyond toy problems, we nevertheless believe that computational biologists
might benefit from adding the techniques described in Chapter 3 to their tool
box. In addition, we have found the algebraic point of view to be useful in
unifying and developing many computational biology algorithms. For example,
the results on parametric sequence alignment in Chapter 7 do not require
the language of algebra to be understood or utilized, but were motivated by
concepts such as the Newton polytope of a polynomial. Chapter 2 discusses
discrete algorithms which provide efficient solutions to various problems of
statistical inference. Chapter 4 is an introduction to the biology, where we
return to many of the examples in Chapter 1, illustrating how the statistical
models we have discussed play a prominent role in computational biology.
We emphasize that Part I serves mainly as an introduction and reference
for the chapters in Part II. We have therefore omitted many topics which are
rightfully considered to be an integral part of computational biology. For ex-
ample, we have restricted ourselves to the topic of biological sequence analysis,
and within that domain have focused on eukaryotic genome analysis. Read-
ers interested in a more complete introduction to computational biology are
referred to [Durbin et al., 1998], our favorite introduction to the area. Also
useful may be a text on molecular biology with an emphasis on genomics, such
as [Brown, 2002]. Our treatment of computational algebra in Chapter 3 is only
a sliver taken from a mature and developed subject. The excellent book by
[Cox et al., 1997] fills in many of the details missing in our discussions.
Because Part I covers many topics, a comprehensive list of prerequisites
would include a background in computer science, familiarity with molecular
biology, and the benefit of having taken introductory courses in statistics and
abstract algebra. Direct experience in computational biology would also be
desirable. Of course, we recognize that this is asking too much. Real-life
readers may be experts in one of these subjects but completely unfamiliar
with others, and we have taken this into account when writing the book.
Various chapters provide natural points of entry for readers with different
backgrounds. Those wishing to learn more about genomes can start with
Chapter 4, biologists interested in software tools can start with Section 2.5,
and statisticians who wish to brush up their algebra can start with Chapter 3.
In summary, the book is not meant to serve as the definitive text for algebraic
statistics or computational biology, but rather as a first invitation to biology
for mathematicians, and conversely as a mathematical primer for biologists.
In other words, it is written in the spirit of interdisciplinary collaboration that
is highlighted in the article Mathematics is Biology’s Next Microscope, Only
Better; Biology is Mathematics’ Next Physics, Only Better [Cohen, 2004].



1
Statistics

Lior Pachter
Bernd Sturmfels

Statistics is the science of data analysis. The data to be encountered in this
book are derived from genomes. Genomes consist of long chains of DNA which
are represented by sequences in the letters A,C,G or T. These abbreviate the
four nucleic acids Adenine, Cytosine, Guanine and Thymine, which serve as
fundamental building blocks in biology.

What do statisticians do with their data? They build models of the process
that generated the data and, in what is known as statistical inference, draw con-
clusions about this process. Genome sequences are particularly interesting data
to draw conclusions from: they are the blueprint for life, and yet their function,
structure, and evolution are poorly understood. Statistics is fundamental for
genomics, a point of view that was emphasized in [Durbin et al., 1998].

The inference tools we present in this chapter look different from those found
in [Durbin et al., 1998], or most other texts on computational biology or math-
ematical statistics: they are written in the language of abstract algebra. The
algebraic language for statistics clarifies many of the ideas central to analysis
of discrete data, and, within the context of biological sequence analysis, unifies
the main ingredients of many widely used algorithms.

Algebraic Statistics is a new field, less than a decade old, whose precise scope
is still emerging. The term itself was coined by Giovanni Pistone, Eva Ricco-
magno and Henry Wynn, with the title of their book [Pistone et al., 2001].
That book explains how polynomial algebra arises in problems from experi-
mental design and discrete probability, and it demonstrates how computational
algebra techniques can be applied to statistics.

This chapter takes some additional steps along the algebraic statistics path.
It offers a self-contained introduction to algebraic statistical models, with the
aim of developing inference tools necessary for studying genomes. Special
emphasis will be placed on (hidden) Markov models and graphical models.

3



4 L. Pachter and B. Sturmfels

1.1 Statistical models for discrete data

Imagine a fictional character named DiaNA who produces sequences of letters
over the four-letter alphabet {A,C,G, T}. An example of such a sequence is

CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC (1.1)

The sequences produced by DiaNA are called DNA sequences. DiaNA gen-
erates her sequences by some random process. When modeling this random
process we make assumptions about part of its structure. The resulting sta-
tistical model is a family of probability distributions, one of which we believe
governs the process by which DiaNA generates her sequences. In this book we
consider parametric statistical models, which are families of probability dis-
tributions that can be parameterized by a finite-dimensional parameter. One
important task is to estimate DiaNA’s parameters from the sequences she gen-
erates. Estimation is also called learning in the computer science literature.
DiaNA uses tetrahedral dice to generate DNA sequences. Each tetrahedral
die has the shape of a tetrahedron, and its four faces are labeled with the
letters A, C, G and T. If DiaNA rolls a fair die then each of the four letters will
appear with the same probability 1/4. If she uses a loaded tetrahedral die then
the four probabilities can be any four non-negative numbers that sum to one.

Example 1.1 Suppose that DiaNA uses three tetrahedral dice. Two of her
dice are loaded and one die is fair. The probabilities of rolling the four letters
are known to us. They are the numbers in the rows of the following table:

A C G T
first die  0.15 0.33 0.36 0.16
second die 0.27 0.24 0.23 0.26
third die  0.25 0.25 0.25 0.25

(1.2)

DiaNA generates each letter in her DNA sequence independently using the
following process. She first picks one of her three dice at random, where her
first die is picked with probability 61, her second die is picked with probability
05, and her third die is picked with probability 1 — 6; — 5. The probabilities
0, and 5 are unknown to us, but we do know that DiaNA makes one roll with
the selected die, and then she records the resulting letter, A, C, G or T.

In the setting of biology, the first die corresponds to DNA which is G + C
rich. the second die corresponds to DNA which is G + C poor, and the third
is a fair die. We got the specific numbers in the first two rows of (1.2) by
averaging the rows of the two tables in [Durbin et al., 1998, page 50] (for more
on this example and its connection to CpG island identification see Chapter 4).

Suppose we are given the DNA sequence of length N =49 shown in (1.1).
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One question that may be asked is whether the sequence was generated by
DiaNA using this process, and, if so, which parameters #; and 6s did she use?

Let pa, pc, pe¢ and pr denote the probabilities that DiaNA will generate
any of her four letters. The statistical model we have discussed is written in
algebraic notation as

pa = —0.10-6; + 0.02-6, + 0.25,
pc = 0.08-6; —0.01-62 + 0.25,
Pec = 0.11- 91 — 0.02 - 92 + 025,
pr = —0.09-6; + 0.01-6, + 0.25.

Note that py+pc+pe+pr = 1, and we get the three distributions in the rows
of (1.2) by specializing (61, 62) to (1,0), (0,1) and (0, 0) respectively.

To answer our questions, we consider the likelihood of observing the partic-
ular data (1.1). Since each of the 49 characters was generated independently,
that likelihood is the product of the probabilities of the individual letters:

L = pcprpapcpepe---pa = p}\O 'pé4 'p(l}s 'p%o-
This expression is the likelihood function of DiaNA’s model for the data (1.1).
To stress the fact that the parameters #; and 6, are unknowns we write
L(61,6;) = pa(61,02)"  pc(f1,02)™ - pe(61,02)" - pr(61,62)™.
This likelihood function is a real-valued function on the triangle
0 = {(91,92) €R? : 6, >0 and 6 >0 and 01 + 65 < 1}.

In the paradigm of maximum likelihood we estimate the parameter values that
DiaNA used by those values which make the likelihood of observing her data
as large as possible. Thus our task is to maximize L(61,62) over the triangle
O. It is equivalent but more convenient to maximize the log-likelihood function

0(61,62) = log(L(Hl, 02))
= 10 - log(pa(01,602)) + 14 - log(pc(61, 62))
+15 - log(pe(01, 62)) + 10 - log(pr (61, 02)).
The solution to this optimization problem can be computed in closed form, by
equating the two partial derivatives of the log-likelihood function to zero:

or 10 Opa 14 9Ipc 15 Opg 10 Opr

= _— e L D2 2 =0,
06, pa 001 pc 001  pg 001  pr 00y
or 10 Opa 14 9Ipc 15 Opg 10 Opr
= = =.z= ., 7.7, 7 s, L2 ),
00 pa 00y  pc 00y  pg 00y  pr 002

Each of the two expressions is a rational function in (6, 63). By clearing de-
nominators and by applying the algebraic technique of Grébner bases (Section
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3.1), we can transform the two equations above into the equivalent equations

13003050 - 01 + 2744 - 63 — 2116125 6, — 6290625 = 0,

1.3
134456 - 63 — 10852275 - 03 — 4304728125 65 + 935718750 = 0. (1.3)

The second equation has a unique solution 65 between 0 and 1. The corre-
sponding value of #; is obtained by solving the first equation. Approximately,
(61,6,) = (0.5191263945, 0.2172513326 ).

The log-likelihood function attains its maximum value at this point:
0(6,,6,) = —67.08253037.

The corresponding probability distribution

(P, Pos PorPr) = (0.202432, 0.289358, 0.302759, 0.205451)  (1.4)

is very close (in a statistical sense [Bickel, 1971]) to the empirical distribution
1

15(10.14,15,10) = (0.204082, 0.285714, 0.306122, 0.204082).  (1.5)

We conclude that the proposed model is a good fit for the data (1.1) and guess
that DiaNA used the probabilities 1 and 65 for choosing among her dice.

We now turn to our general discussion of statistical models for discrete data.
A statistical model is a family of probability distributions on some state space.
In this book we assume that the state space is finite, but possibly quite large.
We often identify the state space with the set of the first m positive integers,

[m] = {1,2,...,m}. (1.6)

A probability distribution on the set [m] is a point in the probability simplex

m
JAVSRERTIRE {(pl, ooy Dm) ER™ Zpi =1land p; >0 for allj}. (1.7)
i=1
The index m — 1 indicates the dimension of the simplex A,,_1. We write A
for the simplex A,,_1; when the underlying state space [m| is understood.

Example 1.2 The state space for DiaNA’s dice is the set {A,C,G, T} which
we identify with the set [4] = {1,2,3,4}. The simplex A is a tetrahedron.
The probability distribution associated with a fair die is the point (%, i, i, i),
which is the centroid of the tetrahedron A. Equivalently, we may think about
our model via the concept of a random wvariable, that is a function X taking
values in the state space {A, C, G, T} . Then the point corresponding to a fair die

gives the probability distribution of X as Prob(X = A) = 1, Prob(X =C) =
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%, Prob(X = G) = 1, Prob(X = T) = 1. All other points in the tetrahedron
A correspond to loaded dice.

A statistical model for discrete data is a family of probability distributions
on [m]. Equivalently, a statistical model is simply a subset of the simplex
A. The i-th coordinate p; represents the probability of observing the state i,
and in that capacity p; must be a non-negative real number. However, when
discussing algebraic computations (as in Chapter 3), we sometimes relax this
requirement and allow p; to be negative or even a complex number.

An algebraic statistical model arises as the image of a polynomial map

f: R R™, 0= (61,....00) — (f1(0), f2(0), ..., [im(0)). (1.8)

The unknowns 6y, ...,60; represent the model parameters. In most cases of
interest, d is much smaller than m. Each coordinate function f; is a polynomial
in the d unknowns, which means it has the form

[i0) = ) ca- 071657057, (1.9)
acNd

where all but finitely many of the coefficients ¢, € R are zero. We use N to
denote the non-negative integers, that is, N ={0,1,2,3,...}.

The parameter vector (6y,...,60;) ranges over a suitable non-empty open
subset © of R? which is called the parameter space of the model f. We assume
that the parameter space © satisfies the condition

fi(6) >0 forall i € [m] and 0 € © (1.10)
Under these hypotheses, the following two conditions are equivalent:
f(®) C A — f1(0) + f2(0) + -+ fin(0) = 1 (1.11)

This is an identity of polynomial functions, which means that all non-constant
terms of the polynomials f; cancel, and the constant terms add up to 1. If
(1.11) holds, then our model is simply the set f(O).

Example 1.3 DiaNA’s model in Example 1.1 is a mizture model which mixes
three distributions on {A, C, G, T}. Geometrically, the image of DiaNA’s map
f:R* = R, (61,62) — (pa. pc, pe, P1)
is the plane in R* which is cut out by the two linear equations
pa+pc+pe+pr =1 and  11py + 15pe = 17pc + 9pr.  (1.12)

This plane intersects the tetrahedron A in the quadrangle whose vertices are

35 15 17 9 11 17 11
(0,0,§,§), (0,3—2,3—2,0), (%,0,0,%) and (%,%,0,0) (113)
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Inside this quadrangle is the triangle f(©) whose vertices are the three rows of
the table in (1.2). The point (1.4) lies in that triangle and is near (1.5).

Some statistical models are naturally given by a polynomial map f for which
(1.11) does not hold. If this is the case then we scale each vector in f(©) by
the positive quantity > /", f;(6). Regardless of whether (1.11) holds or not,
our model is the family of all probability distributions on [m] of the form

1
= (f1(0), f2(0),..., fm(0 where 6 € O. 1.14
s g (0 £20) . £ (0) (114
We generally try to keep things simple and assume that (1.11) holds. However,
there are some cases, such as the general toric model in the next section, when
the formulation in (1.14) is more natural. It poses no great difficulty to extend

our theorems and algorithms from polynomials to rational functions.

Our data are typically given in the form of a sequence of observations
11,92,13,04, - -, IN- (1.15)

Each data point i; is an element from our state space [m]. The integer N, which
is the length of the sequence, is called the sample size. We summarize the data
(1.15) in the data vector u = (u1,us, ..., un) where uy is the number of indices
J € [N]such that i; = k. Hence u is a vector in N™ with w; +ug+- - -+upy = N.
The empirical distribution corresponding to the data (1.15) is the scaled vector
%u which is a point in the probability simplex A. The coordinates u;/N of
the vector %u are the observed frequencies of the various possible outcomes.

We consider the model f to be a “good fit” for the data w if there exists a
parameter vector # € O such that the probability distribution f(0) is very close,
in a statistically meaningful sense [Bickel, 1971], to the empirical distribution
%u. Suppose we independently draw N times at random from the set [m] with
respect to the probability distribution f(#). Then the probability of observing
the sequence (1.15) equals

LO) = [u(0)fi,(0)---fix(0) = fu(0)™ - fm(0)"" (1.16)

This expression depends on the parameter vector 6 as well as the data vector
u. However, we think of u as being fixed and then L is a function from © to the
positive real numbers. It is called the likelihood function to emphasize that it
is a function that depends on #, and to distinguish it from an expression for a
probability. Note that any reordering of the sequence (1.15) leads to the same
data vector u. Hence the probability of observing the data vector w is equal to

(ur +ug + -+ up)!
’LL1!’LL2! s um'

- L(6). (1.17)

The vector u plays the role of a sufficient statistic for the model f. This means
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that the likelihood function L(6) depends on the data (1.15) only through wu.
In practice one often replaces the likelihood function by its logarithm

0(0) = logL(0) = ui-log(f1(0))+uz-log(f2(6))+ - +um-log(fm(0)). (1.18)

This is the log-likelihood function. Note that £(6) is a function from the pa-
rameter space © C R? to the negative real numbers R.g.

The problem of mazimum likelihood estimation is to maximize the likelihood
function L(€) in (1.16), or, equivalently, the scaled likelihood function (1.17),
or, equivalently, the log-likelihood function ¢(#) in (1.18). Here # ranges over
the parameter space © C R%. Formally, we consider the optimization problem:

Maximize ¢(f) subject to 0 € O. (1.19)

A solution to this optimization problem is denoted 6 and is called a mazimum
likelihood estimate of @ with respect to the model f and the data u. Sometimes,
if the model satisfies certain properties, it may be that the maximum likelihood
estimate 6 is always unique. This happens for linear models and toric models,
due to the concavity of their log-likelihood function, as we shall see in Section
1.2. For most statistical models, however, the situation is not as simple. There
can be more than one global maximum, in fact, there can be infinitely many of
them. And it may be difficult to find any one of these global maxima. In that
case, one may content oneself with a local maximum of the likelihood function.
In Section 1.3 we shall discuss the EM algorithm which is a numerical method
for finding solutions to the maximum likelihood estimation problem (1.19).

1.2 Linear models and toric models

In this section we introduce two classes of models which have the property that
maximum likelihood estimation (1.19) is a convex optimization problem. As-
suming that the parameter domain © is bounded, it follows that the likelihood
function has exactly one local maximum 6 € ©, and it is easy to numerically
compute the mazimum likelihood estimate 6 using any of the hill-climbing
methods of convex optimization, such as the gradient ascent algorithm.

1.2.1 Linear models

An algebraic statistical model f : R* — R™ is called a linear model if each of
its coordinate polynomials f;(#) is a linear function. Being a linear function
means there exist real numbers a;1, ..., a14 and b; such that

d
fi0) = Zaiﬂj—l—bi. (1.20)
=1
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The m linear functions f1(6), ..., f;,(0) have the property that their sum is the
constant function 1. DiaNA’s model studied in Example 1.1 is a linear model.
For the data discussed in that example, the log-likelihood function ¢(#) had a
unique local maximum on the parameter triangle ©. The following proposition
states that this desirable property holds for every linear model.

Proposition 1.4 For any linear model £ and data v € N, the log-likelihood
function €(0) = > " u;log(fi(0)) is concave. If the linear map f is one-to-
one and all u; are positive then the log-likelihood function is strictly concave.

Proof Our assertion that the log-likelihood function #(f) is concave states
that the Hessian matriz (89?%) is negative semi-definite. In other words, we
need to show that every eigenvalue of this symmetric matrix is non-positive.

The partial derivative of the linear function f;(#) in (1.20) with respect to
the unknown 0; is the constant a;;. Hence the partial derivative of the log-
likelihood function £(6) equals

ol ulaw
— 1.21
" z (1.21)
Taking the derivative again, we get the following formula for the Hessian matrix
o > T ( Ul U2 Um >
- = —A' . dia , Yo <A 1.22
(6@ aek & f1(9)2 f2(9)2 fm(9)2 ( )

Here A is the m x d matrix whose entry in row ¢ and column j equals a;;.
This shows that the Hessian (1.22) is a symmetric d x d matrix each of whose
eigenvalues is non-positive.

The argument above shows that ¢(6) is a concave function. Moreover, if the
linear map f is one-to-one then the matrix A has rank d. In that case, provided
all u; are strictly positive, all eigenvalues of the Hessian are strictly negative,
and we conclude that £(0) is strictly concave for all § € ©. O

The critical points of the likelihood function £(6) of the linear model f are
the solutions to the following system of d equations in d unknowns which are
obtained by equating (1.21) to zero. What we get are the likelihood equations

Z ’LLZ(Ill Z uzaz2 o _ Z ulald = 0. (123)

The study of these equations involves the combinatorial theory of hyperplane

arrangements. Indeed, consider the m hyperplanes in d-space R¢ which are
defined by the equations f;(#) =0 fori =1,2,...,m. The complement of this
arrangement of hyperplanes in R is the following set of parameter values

C = {0eR": fi(0)f20)f3(0) - fm(6) # O}.



Statistics 11

This set is the disjoint union of finitely many open convex polyhedra defined by
inequalities f;(#) > 0 or f;(#) < 0. These polyhedra are called the regions of the
arrangement. Some of these regions are bounded, and others are unbounded.
Let p denote the number of bounded regions of the arrangement.

Theorem 1.5 (Varchenko’s Formula) If the u; are positive, then the like-
lihood equations (1.23) of the linear model £ have precisely p distinct real solu-
tions, one in each bounded region of the hyperplane arrangement {f; = 0}ic(m)-
All solutions have multiplicity one and there are mo other complex solutions.

This result first appeared in [Varchenko, 1995]. The connection to maximum
likelihood estimation was explored by [Catanese et al., 2004].

We already saw one instance of Varchenko’s Formula in Example 1.1. The
four lines defined by the vanishing of DiaNA’s probabilities p,, pc, pe or pr
partition the (61, 62)-plane into eleven regions. Three of these eleven regions
are bounded: one is the quadrangle (1.13) in A and two are triangles outside A.
Thus DiaNA’s linear model has g = 3 bounded regions. Each region contains
one of the three solutions of the transformed likelihood equations (1.3).

Example 1.6 Consider a one-dimensional (d = 1) linear model f : Rl — R™.
Here 6 is a scalar parameter, each f; = a;0 + b; is a linear function in one
unknown 0. We have a1+4as+---+a,,, =0 and by+bo+---+b,, = 1. Assuming
the m quantities —b;/a; are all distinct, they divide the real line into m — 1
bounded segments and two unbounded half-rays. One of the bounded segments
is © =f~1(A). The derivative of the log-likelihood function equals

dl i U; Qg
a0 Z a;0 +b;

i=1

For positive u;, this rational function has precisely m — 1 zeros, one in each
of the bounded segments. The maximum likelihood estimate 6 is the unique
zero of df/df in the statistically meaningful segment © = f=1(A).

Example 1.7 Many statistical models used in biology have the property that
the polynomials f;(f) are multilinear. The concavity result of Proposition 1.4
is a useful tool for varying the parameters one at a time. Here is such a model
with d = 3 and m = 5. Consider the trilinear map f: R? — R® given by

fl( ) = —24010503 4 90102 + 90103 + 90205 — 301 — 30 — 303 + 1
f2(6) = —48010505 + 660,02 + 60163 + 60205

fg(@) = 24610503 + 30105 — 90105 — 960503 + 3653

f4( ) = 246010505 — 90105 + 30105 — 90203 + 365

f5( ) = 246010505 — 96105 — 960103 + 360203 + 36,.
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This is a small instance of the Jukes-Cantor model of phylogenetics. Its deriva-
tion and its relevance for computational biology will be discussed in detail in
Chapter 18. Let us fix two of the parameters, say 6; and 65, and vary only
the third parameter 3. The result is a linear model as in Example 1.6, with
0 = 03. We compute the maximum likelihood estimate 53 for this linear model,
and then we replace 03 by 53. Next fix the two parameters #, and 03, and vary
the third parameter ;. Thereafter, fix (63, 60;) and vary 6, etc. Iterating this
procedure, we may compute a local maximum of the likelihood function.

1.2.2 Toric Models

Our second class of models with well-behaved likelihood functions are the toric
models, also known as exponential families. Let A = (a;;) be a non-negative
integer d x m matrix with the property that all column sums are equal:

d d d
Zail == Zaig = e = Zaim. (1.24)
i=1 i=1 i=1

The j-th column vector a; of the matrix A represents the monomial
d
0% = HG?” for j=1,2,...,n.
i=1

Our assumption (1.24) says that these monomials all have the same degree.
The toric model of A is the image of the orthant © = Rio under the map

1
2 e 0%
Note that we can scale the parameter vector without changing the image:
f(f) = f(A-6). Hence the dimension of the toric model f(R%;) is at most

d — 1. In fact, the dimension of f(RiO) is one less than the rank of A. The
denominator polynomial Z;nzl 0% is known as the partition function.

f: RS R™, 0 — (071, 0%, . 00m). (1.25)

Sometimes we are also given positive constants ¢y, ..., ¢, > 0 and the map
f is modified as follows:

bt (
> e €0

In a toric model, the logarithms of the probabilities are linear functions in the

f: RS R™, 6 +— 10, 002 .. .,cmeam). (1.26)

logarithms of the parameters ;. For that reason, statisticians refer to some
toric models as log-linear models . For simplicity we stick with the formulation
(1.25) but the discussion would be analogous for (1.26).

Maximum likelihood estimation for the toric model (1.25) means solving the
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following optimization problem
Maximize pi*---pm subject to (pi1,...,pm) € F(RZy). (1.27)

This optimization problem is equivalent to

m
Maximize 64 subject to 6 € R%, and ZG“J’ = 1. (1.28)
j=1
Here we are using multi-index notation for monomials in 6 = (61, ..., 64):
d m d d
v — HHQ?Z’J’“J’ _ Hegi1u1+ai2u2+---+aimum and 0% — Hegij'
i=1j=1 i=1 i=1

Writing b = Au for the sufficient statistic, our optimization problem (1.28) is

m
Maximize 6° subject to § € R%, and 29“1 = 1. (1.29)
j=1

2 10
0 1 2
sample size is NV = 51. Our problem is to maximize the likelihood function
039653 over all positive real vectors (61, 62) that satisfy 63 + 6102 + 63 = 1.
The unique solution (91, ég) to this problem has coordinates

Example 1.8 Let d =2, m=3, A = ( > and u = (11,17,23). The

p 1

0 = = \/1428 —51v277 = 0.4718898805 and
p 1

Oy = =1 \/2040 — 51 V277 = 0.6767378938.

The probability distribution corresponding to these parameter values is

p = (P12 ps) = (03,0:0,,03) = (0.2227,0.3193,0.4580).

Proposition 1.9 Fix a toric model A and data v € N™ with sample size

~

N =uy + - -+ uy, and sufficient statistic b = Au. Let p = £(0) be any local
maximum for the equivalent optimization problems (1.27),(1.28),(1.29). Then

1
P = —.b 1.
A-p N b (1.30)

Writing p as a column vector, we check that (1.30) holds in Example 1.8:

262 + 6,6, 1 /39 1
A-p = PN ~ = —_— = — . Au.
b (9192 + 295) 51 (63) N o
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Proof We introduce a Lagrange multiplier \. Every local optimum of (1.29)

is a critical point of the following function in d 4+ 1 unknowns 6y, ..., 04, A:
m
0 + A (1= 6%9).
j=1

We apply the scaled gradient operator
0 0 0

H-Vg - (916—01,926—92, ,eda—ed)

to the function above. The resulting critical equations for 9 and p state that

@b = XD a5 = XNAPp

m
J=1

This says that the vector A-p is a scalar multiple of the vector b = Au. Since

the matrix A has the vector (1,1, ..., 1) in its row space, and since Z;nzl pj =1,
it follows that the scalar factor which relates the sufficient statistic b = A - u
to A -p must be the sample size Z;nzl uj = N. O

Given the matrix A € N and any vector b € R%, we consider the set
1
Pab) = {peR™: A.p= N-b and p; >0 forall j }.

This is a relatively open polytope. (See Section 2.3 for an introduction to
polytopes). We shall prove that P4(b) is either empty or meets the toric model
in precisely one point. This result was discovered and re-discovered many times
by different people from various communities. In toric geometry, it goes under
the keyword “moment map”. In the statistical setting of exponential families,
it appears in the work of Birch in the 1960’s. See [Agresti, 1990, page 168].

Theorem 1.10 (Birch’s Theorem) Fiz a toric model A and let u € N7, be
a strictly positive data vector with sufficient statistic b = Au. The intersection
of the polytope P4(b) with the toric model f(RiO) consists of precisely one
point. That point is the mazimum likelihood estimate p for the data u.

Proof Consider the entropy function

m
H :RY — Reo, (pr,--,pm) = — Y pi-log(pi).
i=1

This function is well-defined for nonnegative vectors because p; - log(p;) is 0
for p; = 0. The entropy function H is strictly concave in RZj, i.e.,

HXA-p+(1=X)-q) > X-H(p)+ (1—X)-H(q) forp#qgand0<A<1,
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because the Hessian matrix (82H / apiapj) is a diagonal matrix, with diagonal
entries —1/p1, —=1/pa, ..., —1/pm. The restriction of the entropy function H to
the relatively open polytope PA(% - b) is strictly concave as well, so it attains
its maximum at a unique point p* = p*(b) in the polytope PA(% -b).

For any vector u € R which lies in the kernel of A, the directional derivative
of the entropy function H vanishes at the point p* = (pi,...,p},):

OH OH OH
L ) 4+ - Iy = o 1.31
Since the derivative of x - log(z) is log(x) + 1, and since (1,1,...,1) is in the
row span of the matrix A, the equation (1.31) implies

0 = Zuj -log(p;) + Zuj = Zuj -log(p;) for all u € kernel(A).
j=1 j=1 j=1

(1.32)
This implies that (log(p’{), log(p3), ..., log(p;kn)) lies in the row span of A. Pick
a vector n* = (nj,...,n;) such that Z?Zl nia;; = log(p;) for all j. If we set
0F = exp(n/) fori=1,...,d then

d

d
p; = Hexp(nfaij) = H(H;-k)“” = 0%a, for j=1,2,...,m.
i=1 i=1

This shows that p* = £(6*) for some 6* € Rio, so p* lies in the toric model.
Moreover, if A has rank d then 6* is uniquely determined (up to scaling) by p* =
f(6). We have shown that p* is a point in the intersection Pa(3b) N f(RZ).

It remains to be seen that there is no other point. Suppose that g lies in
Py (%b) Nf(RY;). Then (1.32) holds, so that g is a critical point of the entropy
function H. Since the Hessian matrix is negative definite at ¢, this point is a

maximum of the strictly concave function H, and therefore ¢ = p*.

Let 8 be a maximum likelihood estimate for the data u and let p = f (5) be
the corresponding probability distribution. Proposition 1.9 tells us that p lies
in P4(b). The uniqueness property in the previous paragraph implies p = p*
and, assuming A has rank d, we can further conclude o = 0" a

Example 1.11 (Example 1.8 continued) Let d = 2, m = 3 and A =

01 2
segment. The maximum likelihood point p is characterized by the equations

(2 ! 0>. If by and by are positive reals then the polytope P4 (b1, bo) is a line

DU 1 - - 1 DU DU
2p1+Dp2 = by and po+2p3 = —-ba and p1-p3 = D2 P2
N N
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The unique positive solution to these equations equals

o= & (Hbi+ b5 VbR +14b1bo + o),
Pr = (=501 Loy + 1 V/bi?+ 141 by + by?),
Pz = %'(ﬁbrl-%bz—ll—g\/512-1-145152-1-522)-

The most classical example of a toric model in statistics is the independence
model for two random variables. Let X; be a random variable on [m;] and X»
a random variable on [mg]. The two random variables are independent if

Prob(X; =i,Xo=j) = Prob(X; =1)-Prob(Xz = j).

Using the abbreviation p;; = Prob(X; =i, X9 = j), we rewrite this as
mo mi
Pij = (Z Piv) - (prj) for all i € [mu],j € [ma].
v=1 pn=1

The independence model is a toric model with m = mq-mg and d = mi+mao.
Let A be the (m — 1)-dimensional simplex (with coordinates p;;) consisting of
all joint probability distributions. A point p € A lies in the image of the map

1

f:RY - R™ = 2 \Viljtm,); j
- s (917 ,Qd) = Zij 9i9j+m1 (0 93"' 1)Z€[m1]73€[m2]

if and only if X; and X5 are independent if and only if the m; x mo matrix
(pij) has rank one. The map f can be represented by a d x m matrix A whose
entries are in {0, 1}, with precisely two ones per column. Here is an example.

Example 1.12 As an illustration consider the independence model for a bi-
nary random variable and a ternary random variable (m; = 2, my = 3). Here

pP11 P12 P13 P21 P22 P23

0, /1 1 1 0 0 0
O O 0 0 1 1 1
A = 631 1 0 0 1 0 0
041 O 1 0 0 1 0
05 \ 0 0 1 0 0 1

This matrix A encodes the rational map f : R> — R?*3 given by

1 0105 6164 9195>
01,0205, 04,0 ' '
(01,0230, 64,05) —~ G5 0y 5 05) (9293 0204 0205

Note that f(IR)) consists of all positive 2 x 3 matrices of rank 1 whose entries
sum to 1. The effective dimension of this model is three, which is one less
than the rank of A. We can represent this model with only three parameters
(61, 03,0,), ranging over © = (0,1)3, by setting 6o = 1—0; and 5 = 1 —05 —0,.
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Maximum likelihood estimation for the independence model is easy: the op-

timal parameters are the normalized row and column sums of the data matrix.

Proposition 1.13 Let u = (ui;) be an mi X mo matriz of positive integers.
Then the maximum likelihood parameters 0 for these data in the independence
model are given by the normalized row and column sums of the matriz:

~ 1 ~ 1
0, = N Z U and  Opypm, = N Z Uy for p € [mq], v € [ma].
veE[ma] pe[ma)

Proof We present the proof for the case m; = 2, my = 3 in Example 1.12. The
general case is completely analogous. Consider the reduced parameterization

- 0103 0104 01(1 — 05 — 6y)
fe) = ((1—91>93 (1—6,)6; (1—91><1—93—e4>>'

The log-likelihood function equals

00) = (uir +wuiz +wui3) -log(f1) + (u21 + uge + uoz) -log(l —61)
+(uri+ug1) - log(03) + (uiz+ug2) - log(0s) + (wiz+us2s3) - log(1—03—6y).

Taking the derivative of £(#) with respect to 61 gives

ol untuwiztuiy Ui+ ugo + usg
891 91 1— 91
Setting this expression to zero, we find that
~ w1l + u12 + u13 1
0 = = — (U171 + u12 +uys).
! u1 + u12 + w1z + u21 + uge + u23 N (w1 + vz + was)

Similarly, by setting 9¢/003 and 0¢/00, to zero, we get

~ 1 ~

1
03 = N (u11 + u21) and 0y = N (u12 + u22). U

1.3 Expectation maximization

In the last section we saw that linear models and toric models enjoy the prop-
erty that the likelihood function has at most one local maximum. Unfortu-
nately, this property fails for most other algebraic statistical models, including
the ones that are actually used in computational biology. A simple example of
a model whose likelihood function has multiple local maxima will be featured
in this section. For many models that are neither linear nor toric, statisti-
cians use a numerical optimization technique called Fxpectation-Mazximization

(or EM for short) for maximizing the likelihood function. This technique is
known to perform well on many problems of practical interest. However, it
must be emphasized that EM is not guaranteed to reach a global maximum.
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Under some conditions, it will converge to a local maximum of the likelihood
function, but sometimes even this fails, as we shall see in our little example.

We introduce Expectation-Maximization for the following class of algebraic
statistical models. Let F = (f;;(f)) be an m x n matrix of polynomials
(or rational functions, as in the toric case) in the unknown parameters 6 =
(01,...,04). We assume that the sum of all the f;;(#) equals the constant 1,
and there exists an open subset © C R? of admissible parameters such that
fij(0) > 0 for all # € ©. We identify the matrix F' with the polynomial map
F : RY — R™" whose coordinates are the f;;(6). Here R™*" denotes the
mn-dimensional real vector space consisting of all m x n matrices. We shall
refer to F' as the hidden model or the complete data model.

The key assumption we make about the hidden model F' is that it has
an easy and reliable algorithm for solving the maximum likelihood problem
(1.19). For instance, F' could be a linear model or a toric model, so that the
likelihood function has at most one local maximum in ©, and that this global
maximum can be found efficiently and reliably using the techniques of convex
optimization. For special toric models, such as the independence model and
certain Markov models, there are simple explicit formulas for the maximum
likelihood estimates. See Propositions 1.13, 1.17 and 1.18 for such formulas.

Consider the linear map which takes an mxmn matrix to its vector of row sums

n n n
p: R™™ - R™ G=(gij) — (§:9u7§:9%3~-,§:9mﬂ-
=1 =1 =1

The observed model is the composition f = poF' of the hidden model F' and the
marginalization map p. The observed model is the one we really care about:

f:oRYS R, 0= (D f1500),) 0 f250), ., fms(0)).  (1.33)
j=1 j=1 j=1

Hence f;(0) = >, fij(0). The model f is also known as partial data model.

Suppose we are given a vector u = (uy,ug, ..., U,) € N™ of data for the
observed model f. Our problem is to maximize the likelihood function for these
data with respect to the observed model:

maximize Lgps(0) = f1(0)" f2(0)"2 -+ fr(0)"™  subject to 0 € ©. (1.34)

This is a hard problem, for instance, because of multiple local solutions. Sup-
pose we have no idea how to solve (1.34). It would be much easier to solve the
corresponding problem for the hidden model F' instead:

maximize Lpig(0) = f11(0)"* -+ frn(6)“™™  subject to 6 € ©. (1.35)

The trouble is, however, that we do not know the hidden data, that is, we do
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not know the matrix U = (u;;) € N™*". All we know about the matrix U is
that its row sums are equal to the data we do know, in symbols, p(U) = u.
The idea of the EM algorithm is as follows. We start with some initial guess
what the parameter vector # might be. Then we make an estimate, given 0,
of what we expect the hidden data U should be. This latter step is called
the expectation step (or E-step for short). Note that the expected values for
the hidden data vector to not have to be integers. Next we solve the problem
(1.35) to optimality, using the easy and reliable subroutine which we assumed is
available for the hidden model F'. This step is called the maximization step (or
M-step for short). Let 6* be the optimal solution found in the M-step. We then
replace the old parameter guess # by the new and improved parameter guess
0*, and we iterate the process E 4 M - E—- M — E —- M — .- until we
are satisfied. Of course, what needs to be shown is that the likelihood function
increases during this process and that the sequence of parameter guesses 6
converges to a local maximum of Lyys(6). We present the formal statement of
EM algorithm in Algorithm 1.14. As before, it is more convenient to work with
log-likelihood functions instead of the likelihood functions, and we abbreviate

lops(0) = log(Lobs(H)) and lhia(0) = log(Lhid(H)).

Algorithm 1.14 (EM Algorithm)
Input: An m x n matrix of polynomials f;;(#) representing the hidden model
F and observed data u € N™.

Output: A proposed maximum B c©cRe of the log-likelihood function
Lops(0) for the observed model f.

Step 0:  Select a threshold ¢ > 0 and select starting parameters 6 € ©
satisfying f;;(0) > 0 for all 4, j.
E-Step: Define the expected hidden data matriz U = (u;;) € R™*" by

fi®)  wi
2 i fii (0) fi(9)

M-Step: Compute the solution 8* € © to the maximum likelihood problem
(1.35) for the hidden model F' = (f;;).

Step 3: If lops(0*) — Lops(0) > € then set 6 :=60* and go back to the E-Step.
Step 4: Output the parameter vector 9 = 0* and the corresponding proba-

~

bility distribution p = f(#) on the set [m].

uij = Uy -

fi5(0).

The justification for this algorithm is given by the following theorem.

Theorem 1.15 The value of the likelihood function increases during each it-
eration of the EM algorithm, namely, if 0 is chosen in the open set © prior to
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the E-step and 0* is computed by one E-step and one M-step then Lops(0) <

Lops(60%). Equality holds if 0 is a local mazimum of the likelihood function.

Proof We use the following fact about the logarithm of a positive number z:
log(z) < x—1 with equality if and only if = =1. (1.36)

Let w € N™ and 6 € © be given prior to the E-step, let U = (u;;) be the
matrix computed in the E-step, and let 6* € © be the vector computed in the
subsequent M-step. We consider the difference between the values at 0* and 6
of the log-likelihood function of the observed model:

Cops(0%) — Lops(0) = Z“ - [log(f£:(6%)) — log(f:(6))]

= ZZU@) IOg fzy ))_IOg(fZJ(e))]

=1 j=1

o (1oe(F0)y N~ ful07)
+ZZ <1g(fi(9)) Zui : (fm())>

j=1

The double-sum in the middle equals £p;q(6%) — £;q(6). This difference is non-
negative because the parameter vector 6* was chosen so as to maximize the
log-likelihood function for the hidden model with data (u;;). We next show
that the last sum is non-negative as well. The parenthesized expression equals

fz(e*) = %O fzy(e*) o fz 9* fzy flj(e)
(@) T L @) T e Z o8l 7))

We rewrite this expression as follows
n fi(0) fi(0%) fi; (0) fi; (0)
Zj:l ff(e) -log( f:(0) ) + Zg 1 ff(e IOg(fij](e*))
_ n fi;(0) fi(0%) . fii(6)
= Yie T los(55@ - Ty )-

This last expression is non-negative. This can be seen as follows. Consider the

(1.37)

non-negative quantities
( - (0*
T = 1is(0) and o; = T *)
fi(0) fi(6%)
We have m +---4+m, = 01 +---+1i, = 1, so the vectors m and o can be re-
garded as probability distributions on the set [n]. The expression (1.37) equals

for j=1,2,...,n.

the Kullback-Leibler distance between these two probability distributions:

n n

H(xllo) = Y (-= >log(é) > Y (-my)-(1-2) = 0. (1.38)

.
j=1 j=1 J
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The inequality follows from (1.36). Equality holds in (1.38) if and only if 7 = 0.

By applying a Taylor expansion argument to the difference £yp5(60*) —Cops (),
one sees that every local maximum of the log-likelihood function is a sta-
tionary point of the EM algorithm, and, moreover, every stationary point
of the EM algorithm must be a critical point of the log-likelihood function
[Wu and Jeff, 1983]. m

The remainder of this section is devoted to a simple example which will
illustrate the EM algorithm and the issue of multiple local maxima for ¢(6).

Example 1.16 Our data are two DNA sequences of length 40:

ATCACCAAACATTGGGATGCCTGTGCATTTGCAAGCGGCT

1.39
ATGAGTCTTAAACGCTGGCCATGTGCCATCTTAGACAGCG ( )

We wish to test the hypothesis that these two sequences were generated by
DiaNA using one biased coin and four tetrahedral dice, each with four faces
labeled by the letters A, C, G and T. T'wo of her dice are in her left pocket, and
the other two dice are in her right pocket. Our model states that DiaNA gen-
erated each column of this alignment independently by the following process.
She first tosses her coin. If the coin comes up heads, she rolls the two dice in
her left pocket, and if the coin comes up tails she rolls the two dice in her right
pocket. In either case DiaNA reads off the column of the alignment from the
two dice she rolled. All dice have a different color, so she knows which of the
dice correspond to the first and second sequences.

To represent this model algebraically, we introduce the vector of parameters

0 = (7, AL AGAG AT AL AS A& AT, Pis P8 P&s PTs Pis Pes P PT ) -

The parameter w represents the probability that DiaNA’s coin comes up heads.
The parameter /\3» represents the probability that the i-th dice in her left pocket
comes up with nucleotide j. The parameter p’ represents the probability that
the i-th dice in her right pocket comes up with nucleotide j. In total there are
d = 13 free parameters because

MANFNTN = phtpetoetpr = 1 for i =1,2.
More precisely, the parameter space in this example is a product of simplices
O = A; x Ag3x Az x AzxAs.

The model is given by the polynomial map
f: RY — RY™ 0 (f;) where f;; = 7T'/\Zl'/\?—|—(1—7r)-p}-p?. (1.40)

The image of f is an 11-dimensional algebraic variety in the 15-dimensional
probability simplex A, namely, f(©) consists of all non-negative 4 x 4 matrices



22 L. Pachter and B. Sturmfels

of rank at most two having coordinate sum 1. The difference in dimensions
(11 versus 13) means that this model is non-identifiable: the preimage f=1(v)
of a rank 2 matrix v € £f(0) is a surface in the parameters space ©.

Now consider the given alignment (1.39). Each pair of distinct nucleotides
occurs in precisely two columns. For instance, the pair CG occurs in the third
and fifth columns of (1.39). Each of the four identical pairs of nucleotides
(namely AA, CC, GG and TT) occurs in precisely four columns of the alignment.
We summarize our data in the following 4 x 4 matrix of counts:

A C G T
A 2 2 2
cl2 4 2 2
u = cla 2 4 9 (1.41)
T\2 2 2 4

Our goal is to find parameters § which maximize the log-likelihood function

lons(0) = 4-> log(fi(0)) + 2 log(fi;(0)),
i i+
Here the summation indices i, j range over {A,C,G,T}. Maximizing Zps(6)
means finding a 4 x 4 matrix f(6) of rank 2 that is close (in the statistical
sense of maximum likelihood) to the empirical distribution (1/40) - u.

We apply the EM algorithm to this problem. The hidden data is the de-
composition of the given alignment into two subalignments according to the
contributions made by dice from DiaNA’s left and right pocket respectively:

Uy = uéj + uj; forall 1,5 € {A,C,G,T}.
The hidden model equals

F - R13 _ R2X4X4, 9»—)( iljv er)

where Z-lj = 7 AN and f = (1—m)-p}-p}
The hidden model consists of two copies of the independence model for two
random variables on {A, C, G, T}, one copy for left and the other copy for right.
In light of Proposition 1.13, it is easy to maximize the hidden likelihood func-
tion Lp;q(0): we just need to divide the row and column sums of the hidden
data matrices by the grand total. This is the M-step in our algorithm.

The EM algorithm starts in Step 0 by selecting a vector of initial parameters

0 = (m, (A A& Mg M)y (A A&, A&, AD), (p1y pEs & P1)- (Phs P8y PG 7)) (1.42)

Then the current value of the log-likelihood function equals

lovs(0) = > wij-log(m- AL A2+ (L—m) pl - p?). (1.43)
]
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In the E-step we compute the expected hidden data by the following formulas:
AL /\5

LA+ (=) el ]

Ui = U for i,j € {A,C,G, T},

o e (L—m)pi - p}
Y 7T'/\Zl-/\§+(1—7r)-p}'p?

i for i,j € {A,C,G, T}.

In the subsequent M-step we now compute the maximum likelihood parameters
0 = (7T*, A .,p%*) for the hidden model F. This is done by taking
éj) and the matrix (uj;), and by
defining the next parameters m to be the relative total counts of these two
matrices. In symbols, in the M-step we perform the following computations:

row sums and column sums of the matrix (u

A= %Zjuij and pl* = %Zjuzj for i€ {AC,G,T},
DY

/\?* = &> ;ul. and p?* = Ul for j e {AC,G,T}.

ij
Here N = > uij = >, uéj +>_;j uj; is the sample size of the data.

After we are done with the M-step, the new value £y5(0*) of the likelihood
function is computed, using the formula (1.43). If £yp5(60*) — ops(0) is small
enough then we stop and output the vector 0 = 0* and the corresponding 4 x 4
matrix f (5) Otherwise we set § = * and return to the E-step.

Here are four numerical examples for the data (1.41) with sample size N =
40. In each of our experiments, the starting vector 6 is indexed as in (1.42).

Experiment 1: We pick uniform starting parameters

6 = (0.5, (0.25,0.25,0.25,0.25), (0.25,0.25,0.25,0.25),
(0.25,0.25,0.25,0.25), (0.25,0.25,0.25,0.25) ).

The parameter vector 0 is a stationary point of the EM algorithm, so after
one step we output 6 = . The resulting estimated probability distribution on
pairs of nucleotides is the uniform distribution

~ 1

f(0) = G lops(0) = —110.903548889592...

—_ = =

11
11
11
11

—_ = =

Here 0 is a critical point of the log-likelihood function EobsA(H) but it is not a

local maximum. The Hessian matrix of £,5(60) evaluated at 6 has both positive
and negative eigenvalues. The characteristic polynomial of the Hessian equals

2(z — 64)(z — 16)%(2 + 16)%(z + 64)(z + 80)*(z + 320)%
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Experiment 2: We decrease the starting parameter A} and we increase A\}:

6 = (05 (0.2,0.3,0.25,0.25), (0.25,0.25,0.25,0.25),
(0.25,0.25,0.25,0.25), (0.25,0.25,0.25,0.25) ).

Now the EM algorithm converges to a distribution which is a local maximum:

33 3
lops(0) = —110.152332481077...

-
—
s
S~—
I
W W w o
= s
e~
=~ s

The Hessian of £,5(6) at 0 has rank 11, and all eleven non-zero eigenvalues are
distinct and negative.

Experiment 3: We next increase the starting parameter p}\ and we decrease pé:

6 = (05, (0.2,0.3,0.25,0.25), (0.25,0.25,0.25,0.25),
(0.3,0.2,0.25,0.25), (0.25,0.25,0.25,0.25) ).

The EM algorithm converges to a distribution which is a saddle point of £ps:

4 2 3 3
~ 1 2 4 3 3 ~
= —. = —110.223952742410...
33 3 3

The Hessian of £y5(0) at 0 has rank 11, with nine eigenvalues negative.
Experiment 4: Let us now try the following starting parameters:

= (05  (0.2,0.3,0.25,0.25), (0.25,0.2,0.3,0.25),
(0.25,0.25,0.25,0.25), (0.25,0.25,0.25,0.25) ).

The EM algorithm converges to a probability distribution which is a local
maximum of the likelihood function, which is better than the local maximum
found previously in Experiment 2. The new winner is

3 3
lops() = —110.098128348563...

W W NN
LW W NN

3
2
2

W
(an)
NN W

All 11 nonzero eigenvalues of the Hessian of £,5(6) are distinct and negative.

We repeated this experiment many more times with random starting values,
and we never found a parameter vector that was better than the one found in
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Experiment 4. Based on this, we would like to conclude that the maximum
value of the observed likelihood function is attained by our best solution:

216 . 324

maX{Lobs(Q) : 0e @} = W = 6_110'0981283. (144)

Assuming that this conclusion is correct, let us discuss the set of all optimal
solutions. Since the data matrix u is invariant under the action of the symmet-
ric group on {A,C,G, T}, that group also acts on the set of optimal solutions.
There are three matrices like the one found in Experiment 4:

33 2 9 32 3 9 32 2 3

1 (33 2 2 1 (2 3 2 3 1 (2 3 3 2

w0l2 233 w3232 ™ w2332 149
2 2 3 3 2 3 2 3 32 2 3

The preimage of each of these matrices under the polynomial map f is a surface
in the space of parameters 6, namely, it consists of all representations of a rank
2 matrix as a convex combination of two rank 1 matrices. The topology of
such “spaces of explanations” were studied in [Mond et al., 2003]. The finding
(1.44) indicates that the set of optimal solutions to the maximum likelihood
problem is the disjoint union of three “surfaces of explanations”.

But how do we know that (1.44) is actually true? Does running the EM
algorithm 100, 000 times without converging to a parameter vector whose like-
lihood is larger constitute a mathematical proof? Can it be turned into a
mathematical proof? Algebraic techniques for addressing such questions will
be introduced in Section 3.3. For a numerical approach see Chapter 20.

1.4 Markov models

We now introduce Markov chains, hidden Markov models and Markov models
on trees, using the algebraic notation of the previous sections. While our
presentation is self-contained, readers may find it useful to compare with the
(more standard) description of these models in [Durbin et al., 1998] or other
text books. A natural point of departure is the following toric model.

1.4.1 Toric Markov chains

We fix an alphabet 3 with [ letters, and we fix a positive integer n. We shall
define a toric model whose state space is the set %™ of all words of length n.
The model is parameterized by the set © of non-negative [ x [ matrices. Thus
the number of parameters is d = [?> and the number of states is m = [™.
Every toric model with d parameters and m states is represented by a d x m
matrix A with integer entries as in Section 1.2. The d x m matrix which
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represents the toric Markov model will be denoted by A; ,,. Its rows are indexed
by 32 and its columns indexed by ¥". The entry of the matrix A in the
row indexed by the pair o109 € ¥? and the column indexed by the word
My T, € X" is the number of occurrences of the pair inside the word, i.e.,
the number of indices i € {1,...,n—1} such that o109 = m;m;11. We define the
toric Markov chain model to be the toric model specified by the matrix A ,,.

For a concrete example let us consider words of length n = 4 over the binary
alphabet ¥ = {0,1}, so that l =2, d = 4 and m = 16. The matrix Ay 4 which
was defined in the previous paragraph is the following 4 x 16 matrix:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
owr/3 2171710 0 0 2 1 0 0 1 0 0 O

orfo 1 1 1 1 2 1 1 0 1
0,0 0 1 0 1 1 1 0 1 1
11\0 o 0 1 o0 0 1 2 0 O

S N =

1 0 1 0 O
1 1 1 1 0
1 1 1 2 3

We write R?*? for the space of 2 x 2 matrices

0 - (900 901>
6o b1
The parameter space © C R?*? consists of all matrices # whose four entries
t;; are positive. The toric Markov chain model of length n = 4 for the binary
alphabet (I = 2) is the image of © = RZ? under the monomial map
1

. 2x2 16
fou : R - R”, 0 — — - (P0000s P00 - - -5 P1111);
Zijklpwkl

R 4
where Divigiziy = Giliz . 91213 . 9@'3@'4 for all 11121314 € {0, 1} .

The map fj,, is defined analogously for larger alphabets and longer sequences.

The toric Markov chain model f;4(©) is a three-dimensional object inside
the 15-dimensional simplex A which consists of all probability distributions on
the state space {0, 1}%. Algebraically, the simplex is specified by the equation

P0000 + Pooo1 + Poo1o + Poo11 + -+ pi11o +piinn = 1L (1.46)

where the p;;r; are unknowns which represent the probabilities of the 16 states.
To understand the geometry of the toric Markov chain model, we examine the
matrix As 4. The 16 columns of Aj 4 represent twelve distinct points in

22
{ (ugo, wo1, w10, u11) € R? ¢ wgo + o1 +uro+uiy = 3}~ R3.

The convex hull of these twelve points is the three-dimensional polytope de-
picted in Figure 1.1. We refer to Section 2.3 for a general introduction to
polytopes. Only eight of the twelve points are vertices of the polytope.
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Fig. 1.1. The polytope of the toric Markov chain model f3 4(©).

Polytopes like the one in Figure 1.1 are important for parametric inference
in computational biology. In particular, we shall see in Chapter 10 that Viterb:
sequences of Markov chains correspond to vertices of the polytope of f; ,(0©).

The adjective “toric” is used for the toric Markov chain model f;4(©) be-
cause f 4 is a monomial map, and so its image is a toric variety. (An in-
troduction to varieties is given in Section 3.1). Every variety is characterized
by a finite list of polynomials that vanish on that variety. In the context of
statistics, these polynomials are called model invariants. A model invariant is
an algebraic relation that holds for all probability distributions in the model.
For a toric model these invariants can be derived from the geometry of its
polytope. We explain this derivation for the toric Markov chain model f; 4(©).

The simplest model invariant is the equation (1.46). The other linear invari-
ants come from the fact that the matrix As 4 has some repeated columns:

Poiio = Pio1i1 = Pi11o1 and Pooio = Poioo = P1001- (1-47)

These relations state that A4 is a configuration of only 12 distinct points.
Next there are four relations which specify the location of the four non-vertices.
Each of them is the midpoint on the segment between two of the eight vertices:

2 2

Poo11 = Pooo1Po111 P1oo1 = P0001P1010, 1 48)
> _ 2 (1.

P1100 = P1000P1110 P1101 = Po1oiP1110-
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For instance, the first equation pgon = pooo1Po111 corresponds to the following
additive relation among the fourth, second and eighth column of Aj 4:

2(1717071) = (2717070) + (0717072)

The remaining eight columns of A4 are vertices of the polytope depicted
above. The corresponding probabilities satisfy the following relations:

P0111P1010 = P0101P1110  P0111P1000 = P0001P1110  P0101P1000 = P0001P1010;
2 _ 2 2 _ 2 2 _ .2
Po111P1110 = P1010P1111  Po111P1110 = Po101P1111 P0001P1oo0 — PooooP1010,
2 ) 2 3 _ .3 2 2 3 _ .3 2
PooooPo101 = Ppoo1P1000  PpooooP1110 — PioooP1111 PooooPo111 = Pooo1P1i11-

These nine equations together with (1.46), (1.47) and (1.48) characterize the set
of distributions p € A that lie in the toric Markov chain model f; 4(©). Tools
for computing such lists of model invariants will be presented in Chapter 3.

1.4.2 Markov Chains

The Markov chain model is a submodel of the toric Markov chain model. Let
©7 denote the subset of all matrices 6 € RI;OI whose rows sum to one. The
Markov chain model is the image of ©; under the map f;,,. By a Markov
chain we mean any point p in the model f;,,(0;). This definition agrees with
the familiar description of Markov chains in [Durbin et al., 1998, Chapter 3],
except that we require the initial distribution at the first state to be uniform.
For instance, if [ = 2 then the parameter space ©1 is a square. Namely, 04
is the set of all pairs (6, #1) € R? such that the following matrix is positive:

- b 1—6o
b = (1—91 91>

The Markov chain model is the image of the square under the map f,. A
Markov chain of length n = 4 is any probability distribution of the form

1 1 1
P0000 = 598, P0001 = 59(2](1—90), P0010 = P1001 = P0100 = 590(1—90)(1—91),
1 1 ) 1 )
Poo1l = 590(1 —00)01, poin = 5(1 —00)*(1—61), poin = 5(1 — 0)07,
1 1 )
Po110 = P1011 = P1101 = 5(1 —00)01(1—61), Pio10 = 5(1 —01)°(1 —6o),

1 1 1 1
P1000 = 5(1—91)9(2), P1100 = 591(1—91)90, Pi110 = 59%(1—91), piiil = 59‘?-

Thus the Markov chain model is the surface in the 15-dimensional simplex A
given by this parameterization. It satisfies all the model invariants of the toric
Markov chain (a threefold in A) plus some extra model invariants due to the
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fact that probabilities must sum to 1, and the initial distribution is uniform.
For example,

1
P0o0oo + Pooo1 + Pooto + Pooil + Poioo + Poiol + Poito + Poilr = 3

We next discuss maximum likelihood estimation for Markov chains. Fix a
data vector u € N representing N observed sequences in . The sufficient
statistic v = A, -u € NZ s regarded as an [ x [ matrix. The entry vy,
in row o7 and column i of the matrix v equals the number of occurrences of
o1i9 € X2 as a consecutive pair in any of the N observed sequences.

Proposition 1.17 The mazimum likelihood estimate of the data u € N in
the Markov chain model is the | X | matriz 6 = (Hij) i ©1 with coordinates

o~ ’UZ
0i; = ——d where v = A, - u.

ZSEE Vis
Proof The likelihood function for the toric Markov chain model equals

A u o v o Vij
L(e) = 6% = ¢ = ] 67
ijex?

The log-likelihood function can be written as follows:

5(9) = Z (’Uil -log(eil) “+ Vio 'log(eiz) + v 'log(eu_l) + v -log(eil)).
i€X

The log-likelihood function for the Markov chain model is obtained by restrict-

ing this function to the set ©1 of [ x [ matrices whose row sums are all equal

to one. Therefore, ¢() is the sum over all ¢ € ¥ of the expressions

-1
v -log(6i1) +vig - log(i2) +- - -+ vi1—1 -1log(0i1—1) +vir - log(1 — Z 0is). (1.49)
s=1
These expressions have disjoint sets of unknowns for different values of the
index ¢ € ¥. To maximize £(f) over ©y, it hence suffices to maximize the
concave function (1.49) over the (I — 1)-dimensional simplex consisting of all
non-negative vectors (6;1,8;2,...,0;;-1) of coordinate sum at most one. By
equating the partial derivatives of (1.49) to zero, we see that the unique critical
point has coordinates 60;; = v;;/(vi1 + vi2 + - - - +vy) as desired. O

We next introduce the fully observed Markov model that underlies the hidden
Markov model considered in Subsection 1.4.3. We fix the sequence length n
and we consider a first alphabet X with [ letters and a second alphabet ¥ with
I' letters. The observable states in this model are pairs (o, 7) € X" x (X/)" of
words of length n. A sequence of N observations in this model is summarized
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in a matrix u € N"*()" where U(g,7) is the number of times the pair (o, 7)
was observed. Hence, in this model, m = (1 -1')".

The fully observed Markov model is parameterized by a pair of matrices
(0,0") where 6 is an | x | matrix and 6 is an [ x I’ matrix. The matrix 6
encodes a Markov chain as before: the entry ¢;; represents the probability of
transitioning from state i € ¥ to j € 3. The matrix 6’ encodes the interplay
between the two alphabets: the entry 0§j represents the probability of out-
putting symbol j € ¥/ when the Markov chain is in state i € X. As before in
the Markov chain model, we restrict ourselves to non-negative matrices whose
rows sum to one. To be precise, ©1 now denotes the set of pairs of matrices
(6,0') € R x Rl;(]l/ whose row sums are equal to one. Hence d = [(I+1'+2).

The fully observed Markov model is the restriction to ©1 of the toric model

F Rd — Rm, (0, 9/) = p = (pcrﬂ')

1
where Por = jﬁglﬁﬁglgz9;272902039;37390304 by, only . (1.50)
The computation of maximum likelihood estimates for this model is an easy
extension of the method for Markov chains in Proposition 1.17. The role of

the matrix A;,, for Markov chains is now played by the following linear map
A N X g N

The image of the basis vector e, corresponding to a single observation (o, 7)
under A is the pair of matrices (w,w’), where w,s is the number of indices i
such that o;0,11 = rs, and w.., is the number of indices i such that o;7; = rt.

Let v € N"X()" be a matrix of data. The sufficient statistic is the pair
of matrices A-u = (v,v'). Here v € NI and v € N, The likelihood
function Ljp;q: ©1 — R of the fully observed Markov model is the monomial

Lna(0) = 6-(0)".

Proposition 1.18 The mazimum likelihood estimate for the data u € N ()"
in the fully observed Markov model is the matriz pair (0,0') € ©1 with

o

Vij ~ ij
0;; = = and 0., = =" (1.51)
N D sex Vis Y Dtesy v}y
Proof This is entirely analogous to the proof of Proposition 1.17, the point
being that the log-likelihood function £5;4(6) decouples as a sum of expressions

like (1.49), each of which is easy to maximize over the relevant simplex. a
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1.4.3 Hidden Markov Models

The hidden Markov model f is derived from the fully observed Markov model
F by summing out the first indices o € X". More precisely, consider the map

p . RlnX(l/)n . R(l/)n

obtained by taking the column sums of a matrix with " rows and (I')™ columns.
The hidden Markov model is the algebraic statistical model defined by com-
posing the fully observed Markov model F' with the marginalization map p:

f = poF : 0 cR — RO, (1.52)

Here, d = [(I+1' —2) and it is natural to write R? = RI-1) x RU'=1) gince
the parameters are pairs of matrices (6,6'). We summarize:

Remark 1.19 The hidden Markov model is a polynomial map f from the
parameter space R x RU=1) 6 the probability space R()". The degree
of f in the entries of 6 is n — 1, and the degree of f in the entries of ¢ is n.

The notation in the definition in (1.52) is consistent with our discussion of
the Expectation Maximization (EM) algorithm in Section 1.3. Thus we can
find maximum likelihood estimates for the hidden Markov model by applying
the EM algorithm to f = po F.

Remark 1.20 The Baum-Welch algorithm is the special case of the EM al-
gorithm obtained by applying EM to the hidden Markov model f = po F.

The Baum-Welch algorithm in general, and Remark 1.20 in particular, are
discussed in Section 11.6 of [Durbin et al., 1998].

Example 1.21 Consider the occasionally dishonest casino which is featured
as running example in [Durbin et al., 1998]. In that casino they use a fair
die most of the time, but occasionally they switch to a loaded die. Our two
alphabets are ¥ = {fair, loaded} and ¥’ = {1,2,3,4,5,6} for the six possible
outcomes of rolling a die. Suppose a particular game involves rolling the dice
n = 4 times. This hidden Markov model has d = 12 parameters, appearing in

fair  loaded

fair T 1—2x
v = loaded (1 —y Y > and
1 2 3 4 5 6

g _ R (A b s fi f 130 0
- loaded ll lg l3 l4 l5 1 _Z?:1 lj '
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Presumably, the fair die is really fair, so that fi = fo = f3 = f4 = f5 = 1/6,
but, to be on the safe side, let us here keep the f; as unknown parameters

This hidden Markov model (HMM) has m = 6% = 1, 296 possible outcomes,
namely, all the words 7 = 777374 in (X')%. The coordinates of the map
f:R2 — R129 in (1.52) are polynomials of degree 7 = 3 + 4:

1
Primymsa = 2 Z Z Z Z 9;1710010292’272902039;373903049;474'

O1EX 09E€EX 03EX 04EN

Thus our HMM is specified by a list of 1,296 polynomials p, in the twelve
unknowns. The sum of all polynomials is 1. Each polynomial has degree three
in the two unknowns z,y and degree four in the ten unknowns f1, fo,..., (5.

Suppose we observe the game N times. These observations are our data.
The sufficient statistic is the vector (u,;) € N 1296 where u, = Ur ryryr, COUNtS
the number of times the output sequence 7 = T 797374 was observed. Hence
ZTG(E’)4 u; = N. The goal of EM is to maximize the log-likelihood function

g(l'vyvflv e '7f57l17 . '7l5) = Z UriToT374 'log(p717'27'37'4)7
rexs
where (z,y) ranges over a square, (fi,..., fs) runs over a 5-simplex, and so
does (I1,...,l5). Our parameter space ©; C R'? is the product of the square

and the two 5-simplices. The Baum-Welch algorithm (i.e., the EM algorithm
for the HMM) aims to maximize ¢ over the 12-dimensional polytope ©O1.

1.4.4 Tree Models

Markov chains and hidden Markov models are special instances of tree models,
a class of models which we discuss next. We begin by defining the fully observed
tree model, from which we then derive the hidden tree model. These models
relate to each other in the same way that the hidden Markov model is the
composition of the fully observed Markov model with a marginalization map.

Let T be a rooted tree with n leaves. We write N (T') for the set of all nodes
of T'. This set includes the root, which is denoted r, and the leaves, which
are indexed by [n] = {1,2,...,n}. The set E(T') of edges of T" is a subset
of N(T') x N(T'). Every edge is directed away from the root r. We use the
abbreviation kl for edges (k,l) € E(T). Every node i € N(T) represents a
random variable which takes values in a finite alphabet ;. Our tree models
are parameterized by a collection of matrices 0¥, one for each edge kil € E(T).
The rows of the matrix #¥ are indexed by ¥, and the columns are indexed by
3. As before, we restrict ourselves to non-negative matrices whose rows sum to
one. Let ©; denote the collection of tuples (0“ ) MEE(T) of such matrices. The
dimension of the parameter space ©; is therefore d = ZMGE(T) I2k(1%] —1).
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The fully observed tree model is the restriction to ©1 of the monomial map

Fr:R'—R™, 0= (0"),p — = (95)

1
Po = N . (1.53)
2| kl
€E(T)

Here m = [[,c y(r) [Xi]- The state space of this model is the Cartesian product
of the sets ;. A state is a vector o = (ai)ieN(T) where g; € ¥;. The factor
1/|%X¢| means that we are assuming the root distribution to be uniform.

The fully observed tree model Fr is (the restriction to ©1 of) a toric model.
There is an easy formula for computing maximum likelihood parameters in this
model. The formula and its derivation is similar to that in Proposition 1.18.

The hidden tree model fr is obtained from the fully observed tree model
Fr by summing out the internal nodes of the tree. Hidden tree models are
therefore defined on a restricted state space corresponding only to leaves of
the tree. The state space of the hidden tree model is »1 x Yo X - -+ x X, the
product of the alphabets associated with the leaves of T'. The cardinality of the
state space is m’ = |Xq|-|2a| - - -|3X,|. There is a natural linear marginalization
map pr : R™ — R™ which takes real-valued functions on [Lien(r) Xi toreal-
valued functions on [[, 3;. We have fr = pro Fr.

Proposition 1.22 The hidden tree model fr : RY — R™ is a multilinear
polynomial map. Each of its coordinates has total degree |E(T)|, but is linear
when regarded as a function of the entries of each matriz 0" separately.

The model fr described here is also known as the general Markov model on
the tree T, relative to the given alphabets ;. The adjective “general” refers to
the fact that the matrices #* are distinct and their entries obey no constraints
beyond non-negativity and rows summing to one. In most applications of tree
models, the parameters (0);;c g(T) are specialized in some manner, either by
requiring that some matrices are identical or by specializing each individual
matrix 0¥ to have fewer than |Si| - (|X;] — 1) free parameters.

Example 1.23 The hidden Markov model is a (specialization of the) hidden
tree model, where the tree T' is the caterpillar tree depicted in Figure 1.2.

In the HMM there are only two distinct alphabets: 3; = X for i €
N(T)\[n] and ¥; = X' for i € [n]. The matrices 0% are all square and
identical along the non-terminal edges of the tree. A second matrix is used for
all terminal edges.

Maximum likelihood estimation for the hidden tree model can be done with
the EM algorithm, as described in Section 1.3. Indeed, the hidden tree model
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Fig. 1.2. Two views of the caterpillar tree.

is the composition fr = pro Fr of an easy toric model Fr and the marginal-
ization map pr, so Algorithm 1.14 is directly applicable to this situation.

Tree models used in phylogenetics have the same alphabet 3 on each edge,
but the transition matrices remain distinct and independent. The two alpha-
bets most commonly used are ¥ = {0,1} and X = {A,C,G, T}. We present one
example for each alphabet. In both cases, the tree T is the claw tree, which
has no internal nodes other than the root: N(7') ={1,2,...,n,r}.

Example 1.24 Let ¥ = {0,1} and T the claw tree with n = 6 leaves. The
hidden tree model fr has d = 12 parameters. It has m = 64 states which
are indexed by binary strings i1igizisisis € X°. The model f7(©1) is the
12-dimensional variety in the 63-simplex given by the parameterization

Piyigigigisic = 9011 90@2 90@3 901490“ 9016 9111 91@2 91@39114 91@r 9116
If the root distribution is unspecified then d = 13 and the parameterization is
Piyisigisisic — /\001190@290@390@4901r 9016 (1 /\)9111911291139114911r 91@6 (154)
The algebraic geometry of Examples 1.24 and 1.25 is discussed in Section 3.2.
Example 1.25 Let ¥ = {A,C,G,T} and let T be the claw tree with n = 3

leaves. The hidden tree model f;r has m = 64 states which are the triples
ijk € ¥3. Writing A = (Aa, Ac, Ag, Ar) for the root distribution, we have

Dijk = AOSLOS205) + AOELOS205 + AGOELO205) + ArOELOR208). (1.55)

If X is unspecified then this model has d = 12+ 12 + 12 + 3 = 39 parameters.

If the root distribution is uniform, i.e., A = (i, i, i, i), then d =36 = 12 +

12 4+ 12. We note that the small Jukes-Cantor model in Example 1.7 is the
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three-dimensional submodel of this 36-dimensional model obtained by setting

A C G T
A/1-30, 0, 0, O
rv o C 91/ 1 _391/ 9,, 9,,
6 = & 0, 0, 1306, 0, for v € {1,2,3}.
T 911 91/ 01/ 1 _3911

The number of states drops from m = 64 in Example 1.25 to m = 5 in Example
1.7 since many of the probabilities p;;;. become equal under this specialization.

A key statistical problem associated with hidden tree models is model selec-
tion. The general model selection problem is as follows: suppose we have a data
vector u = (uy, . .., Un), a collection of models f*, ..., f¥ where fi : R% — R™,
and we would like to select a “good” model for the data. In the case where
di = --- = d,,, we may select the model f! whose likelihood function attains
the largest value of all. This problem arises for hidden tree models where there
the leaf set [n] and data are fixed, but we would like to select from among all
phylogenetic trees on [n] that tree which maximizes the likelihood of the data.
Since the number of trees grows exponentially when n increases, this approach
leads to combinatorial explosion. In applications to biology, this explosion is
commonly dealt with by using the distance-based techniques in Section 2.4.
Hidden tree models are studied in detail in Chapters 15 through 20.

1.5 Graphical models

Almost all the statistical models we have discussed in the previous four sections
are instances of graphical models. Discrete graphical models are certain alge-
braic statistical models for joint probability distributions of n random variables
X1, Xo, ..., X, which can be specified in two possible ways:

e by a parameterization f : R — R™ (with polynomial coordinates as before),

e by a collection of conditional independence statements.

Our focus in this section is the latter representation, and its connection to the
former via a result of statistics known as the Hammersley-Clifford Theorem,
which concerns conditional independence statements derived from graphs. The
graphs that underlie graphical models are key to developing efficient inference
algorithms, an important notion which is the final topic of this section and is
the basis for applications of graphical models to problems in biology.

We assume that each random variable X; takes its values in a finite alphabet
Y;. The common state space of all models to be discussed in this section is
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therefore the Cartesian product of the alphabets:
n
[z = SixSex-x3, (1.56)
i=1

and the number of states is m = [[;; |%;|. This number is fixed throughout
this section. A probability distribution on the state space (1.56) corresponds to
an n-dimensional table (pi,i,..i, ). We think of p; ;,..;, as an unknown which
represents the probability of the event X7 =11, Xo = io,..., X, = iy.

A conditional independence statement about X1, Xo, ..., X, has the form

A is independent of B given C' (in symbols: A 1L B|C), (1.57)

where A, B, C' are pairwise disjoint subsets of {X1, Xo,..., X, }. If C is the
empty set then (1.57) reads “A is independent of B” and is denoted by A 1L B.

Remark 1.26 The independence statement (1.57) translates into a set of
quadratic equations in the unknowns p;,..;,. The equations are indexed by

(HXZSA Ei> y <HX]§B Ej) < I = (1.58)

Xrpel

An element of the set (1.58) is a triple consisting of two distinct elements
a and o’ in [[y 4%, two distinct elements b and b in [y 3, and an
element ¢ in [y, .- Xk The independence condition A UL B|C' is equivalent
to the statement that, for all triples {a, a’}, {b, b’} and {c},

Prob(A=a,B=0,C =c)-Prob(A=d,B=V,C=¢)
—Prob(A=d',B=0b,C=¢) -Prob(A=a,B=V,C=¢) = 0.

To get our quadrics indexed by (1.58), we translate each of the probabilities
above into a linear form in the unknowns pj,;,....,. Namely, Prob(A =a, B =
b,C = c) is replaced by a marginalization which is the sum of all p; ,...i,
which satisfy

e for all X, € A, the X -coordinate of a equals i,,
e for all Xg € B, the Xg-coordinate of b equals ig, and
e for all X, € C, the X, -coordinate of ¢ equals .

We define Q411 5| ¢ to be the set of quadratic forms in the unknowns p;,iy...i,
which result from this substitution. Thus Q4 p|¢ is indexed by (1.58).
We illustrate the definition of the set of quadrics Q41 p|¢ with an example:

Example 1.27 Let n = 3 and 7 = is = i3 = {0, 1}, so that (pi1i2i3) is a
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2 x 2 x 2 table whose eight entries are unknowns. The independence statement

{X3} is independent of { X3} given {X;} describes the pair of quadrics
Qx,1ixs|x, = {P000Po11 — P001P010, P100P11L — P101P110 }- (1.59)

The statement {Xs} is independent of { X3} corresponds to a single quadric

Ox,ux; = { (pooo+pi00)(Por1+p111) — (Poor +pio1) (Poro+pi10) }- (1.60)

The set Qx, 1 {x,,x,} representing the statement {X;} is independent of
{ X2, X3} consists of the six 2 x 2 subdeterminants of the 2 x 4 matrix

(pooo Poo1  Po1o p011>' (1.61)
pPioo Pio1 Pi1io P11l

Each of these three statements specifies a model, which is a subset of the 7-
simplex A with coordinates pj,i,i;- The model (1.59) has dimension five, the
model (1.60) has dimension six, and the model (1.61) has dimension four.

In general, we write VA(A 1L B|C) for the family of all joint probability
distributions that satisfy the quadratic equations in Q41 p|c. The model
VA(A 1L B|C) is a subset of the (m — 1)-dimensional probability simplex A.

Consider any finite collection of conditional independence statements (1.57):

M = {A(l)JJ_B(l) |, A® 1 B@ @ . A 1 B0 |C(m)}'
We write Q¢ for the set of quadratic forms representing these statements:
Om = 2u0um|cm YU Luoup@ c@ U - U Qumupm |com-
The common zero set of these quadratic forms in the simplex A equals
VaM) = Va(AD L BW|cM)y n .o n VAl 1B | otm)y,

We call VA(M) the conditional independence model of M. This model is the
family of joint probability distributions which satisfy all the statements in M.

Example 1.28 Let n =3 and iy = i3 = i3 = {0, 1}. Consider the model
M = {Xi 1 Xo| X3, X1 1L X3| X5}
These two independence statements translate into four quadratic forms:
Om = {pooopno — P010P100 s P001P111 — P011P101 »

PoooP101 — P0o01P100 5, P010P111 — P011P110 }
The model VA(M) consists of three components. Two of them are tetrahedra
which are faces of the 7-dimensional simplex A. These two tetrahedra are
Xo=X3: {peA : poo1=poo=pior =p110=0}
Xo#X3:  {peA : pooo=por1 =pioo=pi1 =0}
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Only the third component meets the interior of the simplex. That component
is the four-dimensional variety Va (X7 L {X2, X3}) which consists of all dis-
tributions p € A for which the 2 x 4 matrix in (1.61) has rank one. This
analysis shows that for strictly positive probability distributions we have

X1 iR X2 | X3 and X1 iR X3 | X2 implies X1 iR {Xg,Xg}, (162)

but there exist distributions under which some probabilities are zero such that
(1.62) is wrong.

We are now prepared to define graphical models, starting with the undirected
case. Let G be an undirected graph with vertices X7, Xo, ..., X,,. Let Mg
denote the set of all conditional independence statements

X AL X5 [{X0, . X\ X X (1.63)

where (X;, X;) runs over all pairs of nodes that are not connected by an
edge in G. In what follows we let AY denote the open probability simplex of
dimension m — 1. The Markov random field (or undirected graphical model or
Markov network) defined by the graph G is the model Vao(M). This is the
set of all strictly positive distributions which satisfy the statements in Mg.

In the literature on graphical models, the set M is known as the pairwise
Markov property on the graph G. There are also two larger sets of conditional
independence statements that can be derived from the graph, called the lo-
cal Markov property and the global Markov property [Lauritzen, 1996], which
specify the same variety Vao(Mg) in the open simplex A°. For simplicity, we
restrict our presentation to the pairwise Markov property (1.63).

Example 1.29 Let n = 4 and G the 4-chain graph (Figure 1.3). The graph
G is drawn with the random variables labeling the nodes, and shaded nodes
indicating that all random variables are observed.

O—O—O0—0O

Fig. 1.3. Graph of the 4-chain Markov random field.

There are 3 pairs of nodes not connected by an edge, so that

Me = {X1 X3 [{X2, Xa}, X1 AL Xy | {Xo, X3}, Xo 1L X4 | {X1, X3} }.
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For binary alphabets ¥; the set Qa4 consists of the twelve quadratic forms

P0010P1000 — P0000P1010 5 P0001P1000 — P0000P1001 » P0001P0100 — P0000P0101 5
Poo11P1001 — P0o001P1011 5 P0011P1010 — P0010P1011, P0011P0110 — P0010PO111 »
Po110P1100 — P0100P1110 5 P0101P1100 — P0100P1101 , P1001P1100 — P1000P1101 5

Po111P1101 — Po1o1P1111 5 Po111P1110 — Po110oP1111, P1011P1110 — P1o10P1111-

Every Markov random field Vao(Mg) is, in fact, a toric model specified
parametrically by a matrix Ag with entries in {0,1}. The columns of the
matrix A¢g are indexed by []; ;. The rows are indexed by all the possible
assignments to the maximal cliques in G. A clique in G is a collection of nodes
any of two of which are connected by an edge. If the graph G contains no
triangles (as in Example 1.29 then the maximal cliques are just the edges.

An entry in the matrix Ag is 1 if the states corresponding to the column
agree with the assignments specified by the row and is 0 otherwise. Returning
to Example 1.29, the matrix Ag has 16 columns, and 12 rows. The rows are
indexed by tuples (4, j, 0;, 0j) where {X;, X;} is an edge of the graph G and
o; € ¥; and o; € ;. The nonzero entries of Ag are therefore given by rows
(1,4,04,05) and columns w7y - - -7, where o; = m; and 0; = 7;:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

o--y1 1 1 1 0 O O O O O O O O O 0 0
t-f0 0 0 o0 1 1 1 1 O O O O O O 0 O
-y 0 0 0 0o 0 0o o0 O0 1 1 1T 1 0 0 0 O
it--y 0 0 0 0 0 0O O O O O O O 1 1 1 1
-00.) 1710 0 0O 0O O O 1 1 0 0 0 0 0 O
-0ty 0 o 1 1 0O O O O O O 1T 1 0 0 0 O
-10-.y 0 0 0 o 1 1 0 O O O O O 1 1 0 O
-11-)0 0 o0 o0 o0 o0 1 1 o0 o0 0 O 0 0 1 1
--00017. 0 0 01 0o 0O O 1 0 O O 1 0 0 O
--01y o0 1.0 o 0o 1 0 0O O 1 0 O O 1 0 O
.10y 0 0 1.0 0 O 1 O O o 1 O 0 0 1 O
--11\0 0 O 1 o0 o0 o 1 o o0 o0 1 0 0 0 1

Each of the 12 rows corresponds to pairs in i1 X i9 or 49 X i3 Or i3 X i4. For
instance, the label -12- of the sixth row represents (4, j, 0;,05) = (2,3,1,2).
We note that each of the twelve quadrics in Example 1.29 corresponds to a
vector in the kernel of the matrix Ag. For instance, the quadric pggi10p1000 —
Poooop1010 corresponds to the following vector in the kernel of Aq:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
(-1 0 1.0 0 0 0 01 0 10 0 0 0 0)



40 L. Pachter and B. Sturmfels

The relationship between M and the matrix Ag generalizes as follows:

Theorem 1.30 (Undirected Hammersley-Clifford) The Markov random
field Vao(Mg) coincides with the toric model specified by the matriz Ag.

Proof See [Lauritzen, 1996] and [Geiger et al., 2005]. O

Markov random fields are toric because their defining conditional indepen-
dence statements A 1l B|C have the property that

AUBUC ={X1,Xy,...,X,,}. (1.64)

This property ensures that all the quadrics in Q4 p|¢ are differences of two
monomials of the form p..p.. — p..p... If the property (1.64) does not hold,
then the quadrics have more terms and the models are generally not toric.

Remark 1.31 It isimportant to note that the conditional independence state-
ments for a Markov random field are based on pairs of random variables not
joined by an edge in the graph. This should be contrasted with the parameters
in the toric model, where there are sets of parameters for each maximal clique
in the graph. The toric model parameters do not, in general, have an interpre-
tation as conditional probabilities. They are sometimes called potentials.

We now define directed graphical models which are generally not toric. We
also return to the closed simplex A. Let D be an acyclic directed graph with
nodes X1, Xo, ..., X,. For any nodes X;, let pa(X;) denote the set of parents
of X; in D and let nd(X;) denote the set of non-descendants of X; in D which
are not parents of X;. The directed graphical model of D is described by the
following set of independence statements:

Mp = {X; Lnd(Xy)|pa(X;) : i=1,2,...,n}.

The directed graphical model Va(Mp) admits a polynomial parameterization,
which amounts to a directed version of the Hammersley-Clifford theorem. Be-
fore stating this parameterization in general, we first discuss a small example.

Example 1.32 Let D be the directed graph with nodes 1, 2, 3, 4 and four edges
(17 2)7 (173)7 (274)7 (374) Then MD = { Xo —|-|—X3 | Xla Xy Xy | {X27X3} }
The quadrics associated with this directed graphical model are

Omp = { (poooo + Pooor) (o110 + Por11) — (Poo1o + Poo11) (Poroo + Poo1),
(P1000 + P1001) (1110 + P1111) — (P1o10 + P1o11)(P1100 + P1101),

PooooP1001 — P0001P1000 5 P0010P1011 — P0011P1010,
Po100P1101 — P0101P1100 s P0110P1111 — p0111p111o}-
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Fig. 1.4. The directed graphical model in Example 1.32

The model Va(Mp) is nine-dimensional inside the 15-dimensional simplex A.
We present this model as the image of a polynomial map Fp : R? — R!6,
The vector of 9 = 20 + 2 4+ 21 + 22 parameters for this model is written

0 = (a,bi, by, c1,co, di1, dig, do1, dao).

The letters a, b, ¢, d correspond to the random variables X1, Xo, X3, X4 in this
order. The parameters represent the probabilities of each node given its par-
ents. For instance, the parameter ds; is the probability of the event “ X, =1
given X9 = 2 and X3 = 1”. The coordinates of the map f : 0+ p are

poooo = a-by-cy-dn

P0001 a-by-cy-(1—diy)

pooto = a-by-(1—c1)-di2

P0011 a-by-(1—cp)-(1—dp2)

potoo = a-(1—"b1)-c1-do

Po101 a-(1—="0b1)-c1-(1—da)
porto = a-(1—b1)-(1—c1)-dao
Po111 a-(1—="0b1)-(1—ct)-(1—d)
pooo = (1—a)-ba-ca-dn

poor = (I1—a)-bz-ca-(1—dn)

proto = (1—a)-ba-(1—ca) di2

po1n = (I—a)-ba-(1—c2)-(1—di2)
prioo = (1—a) - (1—b2) co-dn

pior = (I—a)-(1—bz)-co-(1—dan)
prio = (1—a)- (1 —bg)-(1—c2) da
priin = (I1—a) - (1—0bg) - (1—c3)-(1—da).
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Note that the six quadrics in Qaq,, are zero for these expressions, and also

2 2 2 2

ZZ Zpijkl = L

i=1 j=1 k=1 I=1

Let us return to our general discussion, where D is an acyclic directed graph
on n nodes, each associated with a finite alphabet ;. It is known that the
dimension of the directed graphical model VA(Mp) equals

n
d = Y (== JI =l (1.65)
i=1 jepa(X;)
We introduce a parameter ¢, .y for each element (v,0) € X; x Hjepa(i) ¥;,
where ¢ ranges over all nodes. Thus the total number of parameters is d. These
parameters are supposed to satisfy the linear equations

Z Oy = 1 forall o€ H %5 (1.66)
vey; Jjepa(X;)
Thus the number of free parameters is equal to the right hand side of (1.65).
With the directed acyclic graph D we associate the following monomial map:
Fp :R* - R™, §— p
where po = [ 01, 00,0, forall o€l
Here o|,q(x;) denotes the restriction of the vector o to [];cpax;) ;- Let ©1

be the set of non-negative parameter vectors § € R? which satisfy (1.66). The
following theorem generalizes the result derived for the graph in Example 1.32.

Theorem 1.33 (Directed Hammersley-Clifford) The directed graphical
model VA(Mp) equals the image of the parameter space ©1 under the map Fp.

Proof See Theorem 3.27 in [Lauritzen, 1996] and Theorem 3 in [Garcia et al., 2004].
U

Remark 1.34 Suppose that D = T is a rooted tree with all edges directed
away from the root r. The directed graphical model VaA(Mp) is precisely
the fully observed tree model, and the parameterization Fp specializes to the
parameterization given in (1.53). It is known that the model VA(Mry) does
not depend on the location of the root r, and, in fact, the model coincides with
the Markov random field Va(M), where G denotes the undirected tree.

The inference problem for graphical models is to compute

> po, (1.67)

oes
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where S ranges over certain subsets of [[/; ;.

The evaluation of the sum in (1.67) may be performed using ordinary arith-
metic, or with the tropical semiring, using min instead of +, and + instead
of x, and replacing p, with the negative of its logarithm (see Section 2.1).
In the case where S = [ %;, (1.67) is equivalent to computing the parti-
tion function. If S is not equal to the entire product of the alphabets, then
it often fixes some of the coordinates. Here the inference problem involves a
marginalization, which we think of as evaluating one coordinate polynomial of
the model. Both of these problems are important statistically and very rele-
vant for biological applications. For example, if some of the variables X; of
a Markov random field or directed graphical model D are hidden, then this
gives rise to a marginalization map pp and to a hidden model fp = ppo Fp.
Evaluating one coordinate of the polynomial map fp, also known as mazimum
a posteriori (MAP) inference , is therefore exactly the evaluation of a subsum
of the partition function. The case of trees (discussed in Remark 1.34) is of
particular interest in computational biology. More examples are discussed in
Chapter 2, and connections to biology are developed in Chapter 4.

Remark 1.35 If inference with a graphical model involves computing the par-
tition function tropically, then the model is referred to as discriminative. In
the case where a specific coordinate(s) are selected before summing (1.67), then
the model is generative. These terms are used in statistical learning theory.

Inference can be computationally nontrivial for two reasons. In order to
compute the partition function, the number of terms in the sum is equal to m
which can be very large since many applications of graphical models require
that the models have large numbers of random variables. One may easily
encounter n = 200 binary random variables, in which case

m = 1606938044258990275541962092341162602522202993782792835301376.

The success of graphical models has been due to the possibility of efficient
inference for many models of interest. The organizing principle is the general-
ized distributive law which gives a recursive decomposition of (1.67) according
to the graph underlying the model.

Rather than explaining the details of the generalized distributive law in
general, we illustrate its origins and application with the hidden Markov model:

Example 1.36 Recall that the hidden Markov model is a polynomial map
f from the parameter space RI(—1 x RU'~1) to the probability space R()™.
Consider the case n = 4. If we treat the hidden Markov model as a special case

of the tree model (compare Figure 1.5 with Figure 1.2), allowing for different
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parameters on each edge, then a coordinate polynomial is
S E E E E X1Y1 g X1 X2 gXoY2 g X2 X3 9 X3Y3 9. X3 X4 9 X4 Yy
p]1]2]3]4 - 91131 1112 91232 91213 90;3; 90;@4 9@434 :
11EX 19EX 13EN 14E€D

This sum pj, j,j,5, can be rewritten as follows:

Z gX1Yi Z g1 X2 pXo Yo Z X2 X3 X5 Z X3 X1 pXaYi

21J1 1122 2272 1213 2373 134 144
i1EX i9€EX i3€EXN A

The graph for the hidden Markov model is shown in Figure 1.5. Note that
the unshaded nodes correspond to random variables which are summed in the
marginalization map, thus resulting in one sum for each unshaded node.

OO O—O

® ® ®

Fig. 1.5. Graph of the hidden Markov model.

This connection between graphs and recursive decompositions is exactly
what is made precise by the junction tree algorithm (or sum-product algorithm
or generalized distributive law [Aji and McEliece, 2000]). Note that in terms
of algorithmic complexity, the latter formulation, while equivalent to the first,
requires only O(n) additions and multiplications for an HMM of length n in
order to compute pj, j,...j,. The naive formulation requires O(I") additions.

The inference problem for graphical models can be formulated as an in-
stance of a more general marginalization of a product function (MPF) prob-
lem. Formally, suppose that we have n indeterminates x1, ..., x, taking on
values in finite sets Aq,...,A,. Let R be a commutative semiring and «; :
Ay x Ay---x A, — R (i=1,...,m) be functions with values in R. The MPF
problem is to evaluate, for a set S = {ji,...,J,} C [n],

M
ﬁ(s) = @ @Oéi(l'l,...,xn).

Tjy €A1’1 ,...,(EjTGAjT i=1

Two important semirings R which make their appearance in the next chapter

are the tropical semiring (or min-plus algebra, in Section 2.1) and the polytope
algebra (in Section 2.3).
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Many of the algorithms used for biological sequence analysis are discrete al-
gorithms, i.e., the key feature of the problems being solved is that some opti-
mization needs to be performed on a finite set. Discrete algorithms are comple-
mentary to numerical algorithms, such as Expectation Maximization, Singular
Value Decomposition and Interval Arithmetic, which make their appearance
in later chapters. They are also distinct from algebraic algorithms, such as the
Buchberger Algorithm, which is discussed in Section 3.1. In what follows we
introduce discrete algorithms and mathematical concepts which are relevant
for biological sequence analysis. The final section of this chapter offers an anno-
tated list of the computer programs which are used throughout the book. The
list ranges over all three themes (discrete, algebraic, numerical) and includes
software tools which are useful for research in computational biology.

Some discrete algorithms arise naturally from algebraic statistical models,
which are characterized by finitely many polynomials, each with finitely many
terms. Inference methods for drawing conclusions about missing or hidden
data depend on the combinatorial structure of the polynomials in the algebraic
representation of the models. In fact, many widely used dynamic programming
methods, such as the Needleman-Wunsch algorithm for sequence alignment,
can be interpreted as evaluating polynomials, albeit with tropical arithmetic.

The combinatorial structure of a polynomial, or polynomial map, is encoded
in its Newton polytope. Thus every algebraic statistical model has a Newton
polytope, and it is the structure of this polytope which governs dynamic pro-
gramming related to that model. Computing the entire polytope is what we
call parametric inference. This computation can be done efficiently in the poly-
tope algebra which is a natural generalization of tropical arithmetic. In Section
2.4 we study the combinatorics of one of the central objects in genome analysis,
phylogenetic trees, with an emphasis on the neighbor joining algorithm.

45
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2.1 Tropical arithmetic and dynamic programming

Dynamic programming was introduced by Bellman in the 1950s to solve se-
quential decision problems with a compositional cost structure. Dynamic pro-
gramming offers efficient methods for progressively building a set of scores or
probabilities in order to solve a problem, and many discrete algorithms for bio-
logical sequence analysis are based on the principles of dynamic programming.
A convenient algebraic structure for stating various dynamic programming
algorithms is the tropical semiring (R U {oc},®,®). The tropical semiring
consists of the real numbers R, together with an extra element oo, and with
the arithmetic operations of addition and multiplication redefined as follows:

x @y := min(z,y) and Ty = x+uy.

In other words, the tropical sum of two real numbers is their minimum, and
the tropical product of two numbers is their sum. Here are some examples of
how to do arithmetic in this strange number system. The tropical sum of 3
and 7 is 3. The tropical product of 3 and 7 equals 10. We write this as follows:

37 = 3 and 367 = 10.

Many of the familiar axioms of arithmetic remain valid in the tropical semir-
ing. For instance, both addition and multiplication are commutative:

TPy = yPbx and rTOy = yOx.
The distributive law holds for tropical addition and tropical multiplication:
rOydz) = 20y & 0O 2.

Both arithmetic operations have a neutral element. Infinity is the neutral
element for addition and zero is the neutral element for multiplication:

T D oo = x and z ® 0 = x.

The tropical addition table and the tropical multiplication table look like this:

@ 1 2 3 45 6 7 ® 12 3 4 5 6 7
11111111 1 23 4 5 6 7 8
212 2 2 2 2 2 2 34 5 6 7 8 9
3 1 2 3 3 3 3 3 3 45 6 7 8 9 10
4 1 2 3 4 4 4 4 4 5 6 7 8 9 10 11
5 1 2 3 4 5 5 5 5 6 7 8 9 10 11 12
6 1 2 3 4 5 6 6 6 7 8 9 10 11 12 13
7 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14

Although tropical addition and multiplication are straightforward, subtraction
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is tricky. There is no tropical “10 minus 3” because the equation 3@z = 10
has no solution x. In this book we use addition & and multiplication ® only.

Example 2.1 It is important to keep in mind that 0 is the multiplicatively
neutral element. For instance, the tropical binomial coefficients are all 0, as in

(zdy)? = (z®y) ©(zdy) O (zdyY)
= 002 ® 0022y ® 00zy? @ 00 ¢5.

The zero coefficients can be dropped in this identity, and we conclude
(zoy)? = Poye oy = 25 o

This identity is known as Freshman’s dream and is verified by noting that
3-min{z,y} = min{3x,2x+y, x+2y,3y} = min{3x, 3y}

holds for all real numbers = and y.

The familiar linear algebra operations of adding and multiplying vectors
and matrices make perfect sense over the tropical semiring. For instance, the
tropical scalar product in R? of a row vector with a column vector is the scalar

(u1,u2,u3)©(v1,vz,vs)T = U1 ©OUvy D u2®v2 @ uz©® vs

= min{m + vy, ug + V2, uz + 1)3}-
Here is the product of a column vector and a row vector of length three:

(’LLl, U2, u3)T © (Ula V2, U3)

Uy vy ur ©v2 up ©us ur +v1 up+v2 up+vs
= Uy OV U O V2 U2 O U3 = Uy +v1 U+ v2 u2 + vs
uz ©vy uz ©v uz©us u3 + v uz+vy uz+vs3

This 3 x 3 matrix is said to have tropical rank one.

To see why tropical arithmetic is relevant for discrete algorithms we consider
the problem of finding shortest paths in a weighted directed graph. This is a
standard problem of dynamic programming. Let G be a directed graph with n
nodes which are labeled by 1,2,...,n. Every directed edge (7, j) in G has an
associated length d;; which is a non-negative real number. If (i, j) is not an
edge of G then we set d;; = +oo. We represent the weighted directed graph
G by its n x n adjacency matrix Dg = (dij) whose off-diagonal entries are
the edge lengths d;;. The diagonal entries of D¢ are zero, i.e., d;; = 0 for all 4.

If G is an undirected graph with edge lengths, then we can represent G as a
directed graph with two directed edges (i, j) and (j, ) for each undirected edge
{i,7}. In that special case, D¢ is a symmetric matrix, and we can think of
d;; = dj; as the distance between node ¢ and node j. For a general directed



48 L. Pachter and B. Sturmfels

graph G, the adjacency matrix D¢ will not be symmetric. Consider the result
of tropically multiplying the n x n matrix Dg with itself n — 1 times:

D"t = Dg®Dg®---® De. (2.1)

This is an n X n matrix with entries in R>¢ U {+o00}.

Proposition 2.2 Let G be a weighted directed graph on n mnodes with n X n
adjacency matrix Dg. Then the entry of the matrix Dg”‘l m row i and column
j equals the length of a shortest path from node i to node j in G.

Proof Let dz(-;) denote the minimum length of any path from node ¢ to node j

which uses at most r edges in G. Thus dl(-;) = d;j for any two nodes ¢ and j.
Since the edge weights d;; were assumed to be non-negative, a shortest path
from node ¢ to node j visits each node of G' at most once. In particular, any
such shortest path in the directed graph GG uses at most n — 1 directed edges.
Hence the length of a shortest path from ¢ to j equals dz(-;L_l).

For r > 2 we have the following recursive formula for these shortest paths:
d? = min{d} "V +dy:k=12..n} (2.2)
Using tropical arithmetic, this formula can be rewritten as follows
&) = diVod; @ dyVody @ e dl Y ody.
= @l LAy @ (dij, dag, - dog) T

S n
)

From this it follows, by induction on r, that dg; coincides with the entry in
row 4 and column j of the n X n matrix Dgr. Indeed, the right hand side of

the recursive formula is the tropical product of row ¢ of Dgr_l and column j

)

of D¢, which is the (i, 7) entry of Dgr. In particular, dl(-;L_l coincides with

the entry in row ¢ and column j of Dgn_l. This proves the claim. O

The iterative evaluation of the formula (2.2) is known as the Floyd- Warshall
Algorithm [Floyd, 1962, Warshall, 1962] for finding shortest paths in a weighted
digraph. Floyd-Warshall simply means performing the matrix multiplication

Dg o = DgT_IQDG forr=2,...,n—1.

Example 2.3 Let G be the complete bi-directed graph on n = 4 nodes with

013 7
20 1 3
Do = 1450 1
6 3 1 0
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The first and second tropical power of this matrix are found to be

01 2 4 01 2 3
20 1 2 20 1 2

pe2 pe3

G 44 0 1 and G 44 0 1
5310 531 0

The entries in Dg?’ are the lengths of the shortest paths in the graph G.

The tropical computation above can be related to the following matrix com-
putation in ordinary arithmetic. Let € denote an indeterminate, and let Ag(e)
be the n x n matrix whose entries are the monomials e%s. In our example,

1 1 3 7

e € €
e 1 € €
Agle) = P
e 3 o1

Now compute the third power of this matrix in ordinary arithmetic

1+33+-+ Bet+el+-0 3433+ S+6et+ -
Ac(ef = 324404+ 14334+ e+ +--- 324383+ -
3¢t +28 + -0 3et46 4+ 1432+ et S+
6 +30+-- 3+ +- e+ 4+ 1432+

The entry of Ag(e)® inrow i and column j is a polynomial in € which represents
the lengths of all paths from node 7 to node j using at most three edges. The
lowest exponent appearing in this polynomial is the (i, j)-entry in the matrix
Dg?’. This is a general phenomenon, summarized informally as follows:

tropical = limc_q log(classical(e)) (2.3)

This process of passing from classical arithmetic to tropical arithmetic is re-
ferred to as tropicalization. In the later sections of Chapter 3, we shall discuss
the tropicalization of algebraic-geometric objects such as curves and surfaces.

We shall give two more examples on how tropical arithmetic ties in natu-
rally with familiar algorithms in discrete mathematics. The first concerns the
dynamic programming approach to integer linear programming. The general
integer linear programming problem can be stated as follows. Let A = (a )
be a d x n matrix of non-negative integers, let w = (wy,...,w,) be a row
vector with real entries, and let b = (by,...,bq)T be a column vector with
non-negative integer entries. Our task is to find a non-negative integer column
vector u = (uq, ..., u,) which solves the following optimization problem:

Maximize w - u subject to v € N" and A-u = b. (2.4)

Let us further assume that all columns of the matrix A sum to the same number
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« and that by + -+ 4+ by = m - a. This assumption is convenient because it

ensures that all feasible solutions u € N of (2.4) satisfy uj + -« -+ u, = m.
We can solve the integer programming problem (2.4) using tropical arith-

metic as follows. Let ¢1, ..., gq be indeterminates and consider the expression

Proposition 2.4 The optimal value of (2.4) is the coefficient of the monomial
by by

71" 9 "'qZ” in the m-th power, evaluated tropically, of the expression (2.5).
The proof of this proposition is not difficult and is similar to that of Propo-
sition 2.2. The process of taking the m-th power of the tropical polynomial
(2.5) can be regarded as solving the shortest path problem in a certain graph.
This is precisely the dynamic programming approach to integer linear program-
ming, as described in [Schrijver, 1986]. Prior to the result by [Lenstra, 1983]
that integer linear programming can be solved in polynomial time for fixed
dimensions, the dynamic programming method provided a polynomial-time
algorithm under the assumption that the integers in A are bounded.

Example 2.5 Let d =2, n =5 and consider the instance of (2.4) given by

4 3 2 1 0 )
A = (0 1 2 3 4>, b—<7> and w = (2,5,11,7,3).

Here we have @ = 4 and m = 3. The matrix A and the cost vector w are
encoded by a tropical polynomial as in (2.5):
fo= 2¢i +5¢3q +11¢763 + Tq143 + 345
The third power of this polynomial, evaluated tropically, is equal to
FOref = 64®+9i e +12¢{% + 114763 + 7qi¢5 + 10¢]q5 + 134748
+12¢7% + 8¢t a5 + 11¢3¢3 + 17¢3¢3° + 13q1g3t + 9432,
The coefficient 12 of ¢)q4 in this tropical polynomial is the optimal value. An

optimal solution to this integer programming problem is v = (1, 1,0,0,1)7.

Our final example concerns the notion of the determinant of an n x n matrix
Q = (gij)- Since there is no negation in tropical arithmetic, the tropical deter-
minant is the same as the tropical permanent, namely, it is the sum over the
diagonal products obtained by taking all n! permutations 7 of {1,2,...,n}:

tropdet(Q) == D dir(1) © Gr2) O+ O Gun(n)- (2.6)
TESh
Here S,, denotes the symmetric group of permutations of {1,2,...,n}. The

evaluation of the tropical determinant is the classical assignment problem of
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combinatorial optimization. Consider a company which has n jobs and n
workers, and each job needs to be assigned to exactly one of the workers. Let
q¢i; be the cost of assigning job ¢ to worker j. The company wishes to find the
cheapest assignment 7w € S,,. The optimal total cost is the following minimum:

min{gir(1) + Gan(2) -+ Gun(n) : T E Sn ).

This number is precisely the tropical determinant of the matrix Q = (g;5).

Remark 2.6 The tropical determinant solves the assignment problem.

In the assignment problem we need to find the minimum over n! quantities,
which appears to require exponentially many operations. However, there is a
well-known polynomial-time algorithm for solving this problem. The method
was introduced in [Kuhn, 1955] and is known as the Hungarian Assignment
Method. Tt maintains a price for each job and an (incomplete) assignment of
workers and jobs. At each iteration, the method chooses an unassigned worker
and computes a shortest augmenting path from this person to the set of jobs.
The total number of arithmetic operations is O(n?).

In classical arithmetic, the evaluation of determinants and the evaluation of
permanents are in different complexity classes. The determinant of an n x n
matrix can be computed in O(n?) steps, namely by Gaussian elimination,
while computing the permanent of an n X n matrix is a fundamentally harder
problem (it is # P-complete [Valiant, 1979]). It would be interesting to explore
whether the Hungarian Method can be derived from some version of Gaussian
Elimination by the principle of tropicalization (2.3).

To see what we mean, consider a 3 x 3 matrix A(e) whose entries are poly-
nomials in the indeterminate €. For each entry we list the term of lowest order:

alleqll _|_ e a12€q12 _|_ e a13€QI3 _|_ e
A(e) = a91€%L + oo agoe®22 4 ... go3ed2 4 ...
a316q31 “+ .. a32€q32 “+ .. a336q33 “+ ..

Suppose that the a;; are sufficiently general non-zero real numbers, so that no
cancellation occurs in the lowest-order coefficient when we expand the deter-
minant of A(e). Writing @ for the 3 x 3 matrix with entries ¢;;, we have

det(A(e)) = - ToPdeUQ) 4 . for some a € R\{0}.

Thus the tropical determinant of () can be extracted from this expression by
taking the logarithm and letting € tend to zero, as suggested by (2.3).

The reader may have wondered where the adjective “tropical” comes from.
The algebraic structure (RU{oo}, ®, ®), which is also known as the min-plus
algebra, has been invented (or re-invented) many times by many people. One
of its early developers, in the 1960s, was the Brazilian mathematician Imre
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Simon. Simon’s work was followed up on by French scholars [Pin, 1998], who
coined the term “tropical semiring” for the min-plus algebra, in the honor
of their Brazilian colleague. Hence “tropical” stands for the French view of
Brazil. Currently, many mathematicians are working on tropical mathematics
and they are exploring a wide range of applications [Litvinov, 2005].

2.2 Sequence alignment

A fundamental task in computational biology is the alignment of DNA or pro-
tein sequences. Since biological sequences arising in practice are usually fairly
long, researchers have developed highly efficient algorithms for finding optimal
alignments. Although in some cases heuristics are used to reduce the combi-
natorial complexity, most of the algorithms are based on, or incorporate the
dynamic programming principle. An excellent introduction to the computer
science aspects of this subject is [Gusfield, 1997]. What we hope to accomplish
in this section is to explain what algebraic statistics and tropical arithmetic
have to do with discrete algorithms used for sequence alignment.

First, we give a self-contained explanation of the Needleman-Wunsch algo-
rithm for aligning biological sequences. Second, we explain a algebraic statis-
tical model for pairs of sequences, namely the pair hidden Markov model, and
we use Needleman-Wunsch to illustrate how dynamic programming algorithms
arise naturally from the tropicalization of this model.

We begin by specifying the sequence alignment problem in precise terms.
Fix a finite alphabet ¥ with [ letters, for instance, ¥ = {0,1,...,1 — 1}. If
[ = 4 then the alphabet of choice is ¥ = {A,C,G,T}. Suppose we are given
two sequences o' = oloi---0} and o? = 0%03-..02, over the alphabet ¥.
The sequence lengths n and m may be different. Our aim is to measure the
complexity of transforming the sequence ¢! into the sequence o2 by changes
to individual characters, insertion of new characters, or deletion of existing
characters. Such changes are called edits. The sequence alignment problem is
to find the shortest sequence of edits that relates the two sequences o' and o2.

Such sequences of edits are called alignments. The shortest sequence of edits
between o1 and o9 consists of at most n 4+ m edits, and therefore it is a finite
problem to identify the best alignment: one can exhaustively enumerate all edit
sequences and then pick the shortest one. However, the exhaustive solution
can be improved on considerably. We shall present a dynamic programming
algorithm for solving the alignment problem which requires only O(nm) steps.

Each alignment of the pair (o', 0?) is represented by a string h over the edit
alphabet {H, I, D}. These letters stand for homology, insertion and deletion;
this terminology is explained in more detail in Chapter 4. We call the string h
the edit string of the alignment. An [ in the edit string represents an insertion
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in the first sequence o', a D in the edit string is a deletion in the first sequence
o', and an H is either a character change, or lack thereof. Writing #H, #1I and
#D for the number of characters H, I and D in an edit string for an alignment
of the pair (o', 0?), we find that

#H+#D=n and #H +#I[=m. (2.7)

Example 2.7 Let n = 7and m = 9 and consider the sequences o' = ACGTAGC
and o2 = ACCGAGACC. Then the following table shows an alignment of ¢! and
o? with #H = 6, #I = 3 and #D = 1. The first row is the edit string:

H H I H I HH I D H
A C - G - T A — G C (2.8)
A C C G A G A C — C

Although the alignment has length ten, it represents the transformation of o'
into o2 by five edit steps which are performed from the left to the right. This
transformation is uniquely encoded by the edit string HHIHIHHIDH.

Proposition 2.8 A string over the edit alphabet { H, I, D} represents an align-
ment of an n-letter sequence o' and an m-letter sequence o® if and only if (2.7)
holds.

Proof As we perform the edits from the left to the right, every letter in o'
either corresponds to a letter in o2, in which case we record an H in the edit
string, or it gets deleted, in which case we record a . This shows the first
identity in (2.7). The second identity holds because every letter o2 either
corresponds to a letter in ¢!, in which case there is an H in the edit string,
or it has been inserted, in which case we record an [ in the edit string. Any
string over {H, I, D} with (2.7), when read from left to right, produces a valid
sequence of edits that transforms o' into o2. O

We write Ay, ,,, for the set of all strings over {H, I, D} which satisfy (2.7).
We call A, ,,, as the set of all alignments of the sequences ol and o2, in spite
of the fact that it only depends on n and m rather than the specific sequences
o' and o2. Each element A in A;,.m corresponds to a pair of sequences (ut, pu?)
over the alphabet ¥ U {—} such that p' consists of a copy of o' together
with inserted “—” characters, and similarly p? is a copy of o2 with inserted
“—7 characters. The cardinalities of the sets A, ,, are the Delannoy numbers
[Stanley, 1999, §6.3]. They can be computed by a generating function.

Proposition 2.9 The cardinality of the set A, ., of all alignments can be
computed as the coefficient of ™y™ in the generating function 1/(1—x—y—xy).
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Proof Consider the expansion of the given generating function

1 (o] (o]
Tryay © 2 2t

m=0n=0

The coefficients are characterized by the linear recurrence
Umpn = Gm—1nt0mnp—1+0m—1n-1 with ap,0 = 1, am,—1 = G-1n = 0. (29)

The same recurrence is valid for the cardinality of A,, ,,. Indeed, for m+n > 1,
every string in A,, ,, is either a string in A,,_1 ,,,—1 followed by an H, or a string
in Ay,—1,m, followed by an I, or it is a string in A, ,,—1 followed by a D. Also,
Ap o has only one element, namely the empty string, and A, , is the empty
set if m < 0 or n < 0. Hence the numbers a,, ,, and #A, ,, satisfy the same
initial conditions and the same recurrence (2.9), so they must be equal. O

In light of the recurrence (2.9), it is natural to introduce the following graph.

Definition 2.10 The alignment graph G, ,, is the directed graph on the set
of nodes {0,1,...,n} x {0,1,...,m} and three classes of directed edges as
follows: there are edges labeled by I between pairs of nodes (i,7) — (i,7+ 1),
there are edges labeled by D between pairs of nodes (i,j) — (i + 1,7), and
there are edges labeled by H between pairs of nodes (i,7) — (i + 1,7+ 1).

Fig. 2.1. The alignment (2.8) shown as a path in the alignment graph Gz o.

Remark 2.11 The set A, ,, of all alignments is in bijection with the set of
paths from the node (0,0) to the node (n,m) in the alignment graph G,, .
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We have introduced three equivalent combinatorial objects: strings over
{H, I, D} satisfying (2.7), sequence pairs (!, %) that are equivalent to o', o2
with the possible insertion of “—” characters, and paths in the alignment graph
Gn,m- All three represent alignments, and they are useful in designing algo-
rithms for finding good alignments. In order to formalize what “good” means,

we need to give scores to alignments. A scoring scheme is a pair of maps

w: YU{-} x Tu{-} — R,
w' i {H,1,D} x {H,I,D} — R.

Scoring schemes induce weights on alignments of sequences as follows. Fix
the two given sequences o' and o2 over the alphabet ¥ = {A,C,G,T}. Each
alignment is given by an edit string h over {H, I, D}. We write |h| for the
length of h. The edit string h determines the two sequences p' and p? of
length |h| over ¥ U {—}. The weight of the alignment A is defined to be

Al |h|
W(h) = > w(pf,pd) + > w(hioy, hi). (2.10)
i=1 i=2
We represent a scoring scheme (w,w’) by a pair of matrices. The first one is

Wpa Wpc Wae WaT Wp -
Wepn We,ce Wee Wer We—
w == Wg,a Wg,c Wge WerT We,— . (211)
Wty Wrce Wre WrT WT -
W_p W—_c W-—g W

)

Here the lower right entry w_ _ is left blank because it is never used in com-
puting the weight of an alignment. The second matrix is a 3 X 3 matrix:

w/H,H le,I le,D
wo= | wig Wi wip (2.12)
wlD,H wlD,I w/D,D
Thus the total number of parameters in the alignment problem is 24 49 = 33.
We identify the space of parameters with R33. Each alignment h € Ay of a
pair of sequences (o', 02) gives rise to a linear functional W (h) on R33,

For instance, the weight of the alignment h = HHIHIHHIDH of our
sequences o' = ACGTAGC and o2 = ACCGAGACC is the linear functional

W(h) = 2-wpp+2-wee+ wee+ wre+2-w_c+w_p+ wg,—
+2-wy g + 3wy + 2wy g+ Wy p+ wp g

Suppose we are given two input sequences o' and o2 of lengths n and m
over the alphabet . Suppose further that we are given a fixed scoring scheme
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(w,w’). The global alignment problem is to compute an alignment h € Ay,
whose weight W (h) is minimal among all alignments in A, ,,. In the com-
putational biology literature, it is more common to use “maximal” instead of
“minimal”, but, of course, that is equivalent if we replace (w, w’) by (—w, —w').
In the following discussion let us simplify the problem and assume that
w’ = 0, so the weight of an alignment is the linear functional W (h) =
Zyjl w(pt, u?) on R?**. The problem instance (o', 02 w) induces weights
on the edges of the alignment graph G, ,, as follows. The weight of the edge
(i,j) — (i+1,j) is w(o},;, —), the weight of the edge (i,7) — (i,j + 1) is
w(—, 032»4_1), and the weight of the edge (i,7) — (i + 1,5+ 1) is w(0i1+1, 032»4_1).
This gives a graph-theoretic reformulation of the global alignment problem.

Remark 2.12 The global alignment problem is equivalent to finding the min-
imum weight path from (0, 0) to (n,m) in the alignment graph G, .

Thus the global alignment problem is equivalent to finding shortest paths in a
weighted graph. Proposition 2.2 gave general dynamic programming algorithm
for the shortest path problem, the Floyd-Warshall algorithm, which amounts to
multiplying matrices in tropical arithmetic. For the specific graph and weights
arising in the global alignment problem, this translates into an O(nm) dynamic
programming algorithm, called the Needleman-Wunsch algorithm.

Algorithm 2.13 (Needleman-Wunsch)
Input: Two sequences o' € ¥, g2 € ¥™ and a scoring scheme w € R4,
Output: An alignment h € A,, ,,, whose weight W (h) is minimal.

Initialization: Create an (n+ 1) x (m + 1) matrix M whose rows are indexed
by {0,1,...,n} and whose columns indexed by {0,1,...,m}. Set M]0,0] = 0.

Set  M[i,0] := M[i—1,0]+w(ol,—) for i=1,...,n

and  M]J0,j] := M[O,j—l]—l—w(—,a?) for j=1,...,m.
Loop: For i=1,...,n and j=1,...,m set

Mli—1,5 = 1]+ w(a}, %)

Mli,j = 1] +w(o}, -)
Color one or more of the three edges which are adjacent to and directed towards
(i,7), and which attain the minimum.

Backtrack: Trace an optimal path from in backwards direction from (n, m) to
(0,0). This is done by following an arbitrary sequence of colored edges.

Output: The edge labels in {H, I, D} of an optimal path in forward direction.
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The more general case when the 3 x 3 matrix w’ is not zero can be modeled
by replacing each interior node in G, , by a complete bipartite graph K33
whose edge weights are Wy, Wy , ..., wpp. These 9(m —1)(n—1) new edges
represent transitions between the different states in {H, I, D}. The resulting

/

graph is denoted G, ,, and called the extended alignment graph. Figure 2.2
illustrates what happens to a node of G, ,, when passing to G}, ,,,.

A C G
I\WA'_ l\wc" I\WG.— |
A v_a Ya,A V_,a ve,n Y_,A YG,a L

o
Va, - e, - G, - -= Y'I,p
W'g,p '
C v-,c va,C v_.c Ve, ¢ Y_.c Y&, C Y_.c - W,
c T Gim
¥ H,I
/
wa, - e, - —t y WG, -
V'p,I
C “.c Ya,C ¥_.c Eche] R VG, c EoNE

Ye,c

=
]

Fig. 2.2. Creating the extended alignment graph by inserting K 3’s

The minimum weight path in G}, ,, is found by a variant of the Needleman-
Wunsch algorithm. In the following example we stick to the case w’ = 0.

Example 2.14 Consider the sequences o' = ACGTAGC and o? = ACCGAGACC
from Example 2.7. According to Proposition 2.9, the number of alignments is
#Arg = 224,143,

We assume w’ = 0. The alignment graph Gr 9 is depicted in Figure 2.1.
For any particular choice of a scoring scheme w € R?!, the Needleman-
Wunsch algorithm easily finds an optimal alignment. Consider the example

—91 114 31 123 =z
114 —100 125 31 =z

w = 31 125 —100 114 =z |,
123 31 114 -91 =z
X X X X

where the gap penalty x is an unknown number between 150 and 200. The 16
specified parameter values in the matrix w are the ones used in the blastz
alignment program scoring matrix [Schwartz et al., 2003]. For z > 169.5 an
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optimal alignment is

h H D H H D H H H H
pt] = 1A — ¢ G — T A G C| with W(h)=2x—243.
12 AC C G A G A C C

If the gap penalty = is below 169.5 then an optimal alignment is

h H D H H I HH D D H
ptl =14 — ¢ ¢ T A ¢ — — C| withW(h)=4z— 582,
12 AC C G —-— A G A C C

After verifying this computation, the reader may now wish to vary all 24 pa-
rameters in the matrix w and run the Needleman-Wunsch algorithm many
times. How does the resulting optimal alignment change? How many of the
224,143 alignments occur for some choice of scoring scheme w? Is there a scor-
ing scheme w € R?* which makes the alignment (2.8) optimal? Such questions
form the subject of parametric alignment [Gusfield et al., 1994, Gusfield, 1997]
which is the topic of Chapter 7.

We now shift gears and present the pair hidden Markov model for alignments.
This is an algebraic statistical model which depends on two integers n and m:

f:R¥ - RV (2.13)
The 4"*™ states are the pairs (0!, 02) of sequences of length n and m. The

33 = 24 + 9 parameters are written as a pair of matrices (6, 0') where

Oan Oac Onc Oar On-—

/ / /
90,A 90,0 90,(: 90,T 90,— H,H YH,I YHD
/ / / /
0 = HG,A 9(;,0 HG,G HG,T 9(;,— , 0 = 9171{ 91,1 HI,D (2'14)
/ / /
9T,A 9T,c 9T,G HT,T HT,— D,H YD, YD,D

0.4 0. 6.g 6 1

In order to be statistically meaningful these parameters have to be non-negative
and satisfy six independent linear equations. Namely, they must lie in

O = A3xA3xAz3xAyxAgxAy C R33.

The parameter space O is the product of six simplices of dimensions 15, 3, 3, 2, 2
and 2. The big simplex A5 consists of all non-negative 4 x4 matrices (6;;); jex
whose entries sum to 1. The two tetrahedra As come from requiring that

9_71_\ + 0_7(; + 9_7(; + 9_7'[ = 01_\7_ + 907_ + 0(;7_ + 9'[7_ = 1.
The three triangles Ay come from requiring that

T Oy +0yp = O p+0,+0p = 0py+0p;+0pp = 1.
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The coordinate f,1 ,2 of the pair hidden Markov model f represents the
probability of observing the pair of sequences (o', o2). This is the polynomial

|hl |hl

Jo1 o2 = Z HGHW? . He;h'—hhi' (2.15)
=2

heAn,m =1

Here (p!', 4?) is the pair of sequences over ¥ U {—} which corresponds to h.
The following observation is crucial for understanding parametric alignment.

Proposition 2.15 The objective function of the sequence alignment problem
is the tropicalization of a coordinate polynomial fo1 2 of the pair HMM.

Proof The tropicalization of the polynomial (2.15) is gotten by replacing the
outer sum by a tropical sum ¢ and the inner products by tropical products
®. We replace each unknown 6. by the corresponding unknown w._, which we
think of as the negated logarithm of 6 . The result is the tropical polynomial

|h] |h]

trop(f01702) = @ @wH}M? . @w;lifhhi' (2.16)
=2

heAn,m =1

The tropical product inside the tropical sum is precisely the weight W (h) of
the alignment h or (u', 4?) as defined in (2.10). Hence (2.16) is equivalent to

trop(fcrl,crz) = minhGAn,mW(h)'

Evaluating the right hand side of this expression is therefore equivalent to
finding an optimal alignment of the two sequences o! and 2. a

Remark 2.16 Since the logarithm of a probability is always negative, the
correspondence in Proposition 2.15 only accounts for scoring schemes in which
the weights have the same sign. Scoring schemes in which the weights have
mixed signs, as in Example 2.14, result from associating w,__ with the log-odds
ratio log(6../ 9~) where the 8 are additional new parameters.

It is an instructive exercise to show that the sum of the polynomials f,1 ;2
over all 4"*™ pairs of sequences (o', 0?) simplifies to 1 when (6,6’) lies in ©.
The key idea is to derive a recursive decomposition of the polynomial f,1 ;2 by
grouping together all summands with fixed last factor pair H;L‘h‘ih By 9“‘1]1‘ 2
This recursive decomposition is equivalent to performing dynamic program-
ming along the extended alignment graph g;%m. The variant of the Needleman-
Wunsch algorithm on the graph g;%m is precisely the efficient evaluation of the

tropical polynomial trop(f, ,2) using the same recursive decomposition.
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We explain this circle of ideas for the simpler case of Algorithm 2.13 where
000
0 00
000
To be precise, we shall implement dynamic programming on the alignment
graph G, , as the efficient computation of a (tropical) polynomial. In term of

the pair HMM, this means that we are fixing all entries of the 3 x 3 matrix ¢’
to be identical. Let us consider the following two possible specializations:

1/3 1/3 1/3 111
9 =11/3 1/3 1/3 and =11 11
1/3 1/3 1/3 111

The first specialization is the statistically meaningful one, but it leads to more
complicated formulas in the coefficients. For that reason we use the second
specialization in our implementation. We write g,1 ,2 for the polynomial in
the 24 unknowns 6... gotten from f,1 ;2 by setting each of the 9 unknowns 6...
to 1. The following short Maple code computes the polynomial gs1¢o for

sl := [A,C,G]: s2 := [A,C,C]:

T := array([ [ tAA, tAC, tAG, tAT, t_A ],
[ tCA, tCC, tCG, tCT, t_C 1,
[ tGA, tGC, tGG, tGT, t_G 1,
[ tTA, tTC, tTG, tTT, t_T 1,
[ tA_, tC_, tG_, tT_, 0 11):

This represents the matrix € with tAA = 0y, tAC = )¢, ... etc. We initialize

n := nops(sl): m := nops(s2):

ul := subs({A=1,C=2,G=3,T=4},s1):

u2 := subs({A=1,C=2,G=3,T=4},s2):

M := array([],0..n,0..m): M[0,0] := 1:
for i from 1 to n do

M[i,0] := M[i-1,0] * T[u1l[il,5]:

od:

for j from 1 to m do

M[0,3] := M[0,j-1]1 * T[5,u2[j11:

od:

We then perform a loop precisely as in Algorithm 2.13, with tropical arithmetic
on real numbers replaced by ordinary arithmetic on polynomials.

for i from 1 to n do
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for j from 1 to m do
M[i,j] := M[i-1,j-1] * T[ul[i],u2[j]1] + M[i-1, j ] *
Tlutlil, 51 + M[ i ,j-1] = T[ 5 ,u2[jl]:
od:
od:
lprint(M[n,m]);

Our Maple code produces a recursive decomposition of the polynomial gace acc:

((tAA+2xtA_xt_A)*tCC+(tA_xtAC+tA_*tC_*t_A+(tAA+2xtA_xt_A)*tC_)
*t_C+ (t_A*tCA+ (tAA+2%tA_*t_A)*t_C+t_Axt_CxtA_)*tC_) *tGC+((tA_x*
tAC+tA_*tC_*xt_A+(tAA+2*%tA_*t_A) *tC_) *tCC+ (tA_»tC_»tAC+tA_*tC_"2
*t_A+ (tA_*tAC+tA_*tC_*xt_A+(tAA+2xtA_xt_A)*tC_)*tC_) *t_C+((tAA+
2%tA_*t_A) *tCC+ (tA_*tAC+tA_*tC_xt_A+(tAA+2xtA_*xt_A)*tC_)*t_C+
(t_AxtCA+(tAA+2xtA_xt_A)*t_C+t_Axt_CxtA_)*tC_)*tC_)*t_G+((t_Ax*
tCA+(tAA+2%tA_*t_A)*t_C+t_Axt_CxtA_)*tGC+ ((tAA+2xtA_*t_A)*tCC+
(tA_*tAC+tA_»tC_xt_A+(tAA+2xtA_*xt_A) *tC_) *t_C+ (t_AxtCA+(tAA+2x*
tA_*t_A)*t_C+t_Axt_CxtA_)*tC_)*t_G+(t_A*t_CxtGA+(t_A*xtCA+(tAA+
2%tA_*t_A)*t_C+t_Axt_CxtA_)*t_G+t_Axt_Cxt_GkxtA_)*tC_)*tC_

The expansion of this polynomial has 14 monomials. The sum of its coefficients
is # A3 3 = 63. Next we run same code for the sequences of Example 2.7:

sl := [A,C,G,T,A,G,C]: s2 := [A,C,C,G,A,G,A,C,C]:

The expansion of the resulting polynomial gsis2 has 1,615 monomials, and
the sum of its coefficients equals #.A479 = 224,143. Each monomial in gs1 s>
represents a family of alignments h all of which have the same W (h). We have
chosen a simple example to illustrate the main points, but the method shown
can be used for computing the polynomials associated to much longer sequence
pairs. We summarize our discussion of sequence alignment as follows:

Remark 2.17 The Needleman-Wunsch algorithm is the tropicalization of the
pair hidden Markov model for sequence alignment.

In order to answer parametric questions, such as the ones raised at the end
of Example 2.14, we need to better understand the combinatorial structure
encoded in the polynomials f;1 ;2 and g,1 ;2. The key to unraveling this com-
binatorial structure lies in the study of polytopes, which is the our next topic.

2.3 Polytopes
In this section we review basic facts about convex polytopes and algorithms for
computing them, and we explain how they relate to algebraic statistical mod-
els. Every polynomial and every polynomial map has an associated polytope,
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called its Newton polytope. This allows us to replace tropical arithmetic by the

polytope algebra, which is useful for solving parametric inference problems.
As a motivation for the mathematics in this section, let us give a sneak pre-

view of Newton polytopes arising from the pair HMM for sequence alignment.

Example 2.18 Consider the following 14 points v; in 11-dimensional space:

=(0,0,1,0,0,2,0,0,1,1,1) 200, 0_,0% 0 _c0_¢

=(1,0,0,0,0,2,0,0,0,1,1) N
’U3—(0 0 1 0,1,1,0 0,1,0 1) 70A—9—AQCCHC— 9_(;
Vg4 = (0 0 1 0 0,1,0,1,1,1,0) 901_\_ 9_1_\90_ 9_0 9(;(;

=(0,1,1,0,0,1,0,0,0,1,1) 40y OpcOc_0_c0_g
v = (0,0,0,0,0,2,1,0,1,1,0) 0 102 6 _cOan
v7 = (0,0,0,1,0,2,0,0,1,0,1) 30 402 0ca0_g
’L)g—(1000,1,1,00001) 391_\1_\90000_9_(;
’Ug—(l 0 0 0 0,1,0,1,0,1,0) 39AA90— 0_(; HGC
’Ul(]—( 0 1 0,1,0 0,1,1,0 0) 291_\_0_1_\0000(;0
’U11—(0110,1,000001) HA_HcceAce_G
’U12—(0 1 1 0 0 00,1,0 1,0) HA_HAce_CHGC
V13 = (0 0 0,1,0,1,0,1,1,0 0) 29_1_\00_ HCAHGC

V14 = (1,0,0,0,1,0,0,1,0,0,0) HAAHCC HGC

To the right of each point v; is the corresponding monomial in the unknowns
(HAAa eAc, HA_, QCAa ecc, 90_, 9GA7 9(;0, 9_1_\, 9_0, 9_(;). The j-th coordinate in Vi equals
the exponent of the j-th unknown. The sum of these 14 monomials is the poly-
nomial gacgacc computed by the Maple code at the end of Section 2.2.

The 14 points v; span a six-dimensional linear space in R, and it is their
location inside that space which determines which alignment is optimal. For
instance, the gapless alignment (H, H, H) which is corresponds to the last
monomial 0y, Occ Ogc is optimal if and only if the scoring scheme w satisfies

We— +W_g > Wee, Wa— + Wac + W_g > War + Wee ,
We— +W_¢ > Wee, Wa— + Wae + W_¢ > War + Wee ,
Wp— +W_p > Wpp, W_p+ We_ + Wea = Wap + Wee

and w_p + 2we— +w_¢ + wep > War + Wee + Wac-

The aim of this section is to introduce the geometry behind such derivations.

Given any points v1, ..., v, in R%, their convez hull is the set
n n
P o= {> v eR A A >0and Y A=1} (2.17)
j i=1

Any subset of R? of this form is called a convex polytope or just a polytope,
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for short. The dimension of the polytope P is the dimension of its affine span
{Z?Zl \iv; € R® . Yo A =1} We can also represent a polytope as a
finite intersection of closed half-spaces. Let A be a real d x m matrix and let
b € R™. Each row of A and corresponding entry of b defines a half-space in R?.
Their intersection is the following set which may be bounded or unbounded:

P = {zeR': A-z>b} (2.18)

Any subset of R? of this form is called a convez polyhedron.
Theorem 2.19 Convex polytopes are precisely the bounded convex polyhedra.

Proof A proof (and lots of information on polytopes) can be found in the
books [Griinbaum, 2003] and [Ziegler, 1995]. This theorem is known as the
Weyl-Minkowski Theorem. O

Thus every polytope can be represented either in the form (2.17) or in the
form (2.18). These representations are known as V-polytopes and H-polytopes.
Transforming one into the other is a fundamental algorithmic task in geometry.

Example 2.20 Let P be the standard cube of dimension d = 3. As an H-
polytope the cube is the solution to m = 6 linear inequalities

P = {(z,y4,2)eR®: 0<2<1,0<y<1,0<z<1},
and as a V-polytope the cube is the convex hull of n = 8 points
P = conv{(0,0,0),(0,0,1),(0,1,0),(0,1,1), (1,0,0),(1,0,1),(1,1,0), (1,1,1)}.

Closely related computational tasks are to make the V-representation (2.17)
irredundant by removing points v;, and to make the H-representation (2.18)
irredundant by removing halfspaces, each while leaving the set P unchanged.
To understand the underlying geometry, we need to define faces of polytopes.
Given a polytope P C R? and a vector w € R%, consider the set of all points in
P at which the linear functional x +— z-w attains its minimum. It is denoted

face,(P) = {z€P : 2z - w<y wforalyeP}. (2.19)
Let w* = min{z-w : x € P}. Then we can write (2.19) equivalently as
face,(P) = {zeP :z - w<w'}.

This shows that face, (P) is a bounded polyhedron, and hence it is a polytope
by Theorem 2.19. Every polytope of this form is called a face of P. In particular
P is a face of itself, gotten by taking w = 0. A face of dimension zero consists
of a single point and is called a vertex of P. A face of dimension one is called an
edge, a face of dimension dim(P) — 1 is called a facet, and a face of dimension
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dim(P) — 2 is called a ridge. The cube in Example 2.20 has 27 faces. Of these,
there are 8 vertices, 12 edges (= ridges), 6 facets, and the cube itself.

We write f;(P) for the number of i-dimensional faces of a polytope P. The
vector f(P) = (fo(P), fi(P), fa(P),..., fa—1(P)) is called the f-vector of P.
So, the three-dimensional cube P has the f-vector f(P) = (8,12,6). Its dual
polytope P*, which is the octahedron, has the f-vector f(P*) = (6,12,8).

Let P be a polytope and F' a face of P. The normal cone of P at F' is

Np(F) = {we R? : face, (P) = F}.
This is a relatively open convex polyhedral cone in R%. Tts dimension satisfies
dim Np(F) = d—dim(F).

In particular, if F' = {v} is a vertex of P then its normal cone Np(v) is d-
dimensional and consists of all linear functionals w that are minimized at v.

Example 2.21 Let P be the convex hull of the points v1, ..., v14 in Example
2.18. The normal cone Np(v14) consists of all weights for which the gapless
alignment (H, H, H) is optimal. It is characterized by the seven inequalities.

The collection of all cones Np(F') as F' runs over all faces of P is denoted
N(P) and is called the normal fan of P. Thus the normal fan N(P) is a
partition of R? into cones. The cones in N'(P) are in bijection with the faces
of P. For instance, if P is the 3-cube then N(P) is the partition of R? into
cones with constant sign vectors. Hence N(P) is combinatorially isomorphic
to the octahedron P*. Figure 2.3 shows a two-dimensional example.

Fig. 2.3. The (negated) normal fan of a quadrangle in the plane.

Our next result ties in the faces of a polytope P with its irredundant repre-
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sentations. Let a; be one of the row vectors of the matrix A in (2.18) and let
b; be the corresponding entry in the vector b. This defines the face

faceq,(P) = {xz€P :a;-xz = b}

Proposition 2.22 The V-representation (2.17) of the polytope P is irredun-
dant if and only if v; is a vertex of P for i = 1,...,n. The H-representation
(2.18) is irredundant if and only if face,,(P) is a facet of P for i=1,...,m.

A comprehensive software system for computing with polytopes is the pro-
gram POLYMAKE. We show the use of POLYMAKE by computing the polytope of
the toric Markov chain model f54(©). This model has m = 16 states and
d = 4 parameters. We create an input file named foo which looks like this:

POINTS
30

e i i et el e e e e e S e e e =
O OO P, OO L NO OO~ K~ N
OO PrLP O FRr P, P OF, P NRFL, P RFP, -

Orr P FPr P NRP,PFPLPORFRLEFPLPEPL O OO
WNNEFR, PP OOONEFKEFOORFR O OO

These 16 points are the columns of the 4 x 16-matrix in Subsection 1.4.1. The
extra character 1 is prepended for technical reasons. We run the command

polymake foo VERTICES
Then the system responds by listing the eight vertices of this polytope

VERTICES

13000
2100
0210
0102

1
1
1
12010
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10120
10012
10003

Furthermore, on the file foo itself we find the irredundant H-representation

FACETS
0-110
000
1-10
100
010
-1-1-10

W O O = O =
O O O

AFFINE_HULL
-31111

This output tells us that our polytope is defined by the one linear equation
T1 + x9 + x3 + x4 = 3 and the six linear inequalities

xo—x3 <1, 2120, z3—22 <1, 220 >0, 23 >0, x1 + 22 +2x3 < 3.
Indeed, the command DIM confirms that the polytope is three-dimensional:

polymake foo DIM
DIM
3

The f-vector of our polytope coincides with that of the three-dimensional cube

polymake foo F_VECTOR
F_VECTOR
8 12 6

But our polytope is not a cube at all. Inspecting the updated file foo reveals
that its facets are two triangles, two quadrangles and two pentagons:

VERTICES_IN_FACETS
{1 2 3}

{2356 7}
{4 5 6}
{0 4 6 7}
{0137}
{01245}

This is the polytope depicted in Figure 1.1. We return to our general discussion.
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Let Py denote the set of all polytopes in R?. There are two natural oper-
ations, namely addition & and multiplication ®, defined on the set P;. The
resulting structure is the polytope algebra (Pd, D, @). Namely, if P,Q € Py are
polytopes then their sum P @ @ is the convex hull of the union of P and Q:

PeQ = conv(P U Q)
= {MWw+(1-Nge R? - pEP, geQ,0< A< 1},
The product in the polytope algebra is defined to be the Minkowski sum:
PoOQ = P+ Q
= {p—l—q e RY : pEP,qEQ}.

It follows from the Weyl-Minkowski Theorem that both P®Q and P®(Q are
polytopes in R, The polytope algebra (Pd, P, @) satisfies many of the familiar
axioms of arithmetic. Clearly, addition and multiplication are commutative.
But it is also the case that the distributive law holds for polytopes:

Proposition 2.23 If P, Q, R are polytopes in R then
(PpQQ)®R = (POR) ®(QOoR). (2.20)

Proof Consider points p € P, ¢ € Q and r € R. For 0 < A <1 note that
A+ (1A=XNg +r = Ap+r)+ 1=N(g+r)

The left hand side represents an arbitrary point in the left hand side of (2.20),
and the right hand side represents a point in the right hand side of (2.20). O

Example 2.24 (The tropical semiring revisited) Let us consider the algebra
(P1,®,®) of all polytopes on the real line (d = 1). Each element of P; is a
segment [a, b] where a < b are real numbers. The arithmetic operations are

[a,b] & [c,d] = [min(a,c), max(b,d)],
[a,b] © [e,d] = [a+c b+d]
Thus the one-dimensional polytope algebra is essentially the same as the tropi-

cal semiring (R, ®, ®). Or, stated differently, the polytope algebra (Py, ®,®)
is a natural higher-dimensional generalization of the tropical semiring.

One of the main connections between polytopes and algebraic statistics is
via the Newton polytopes of the polynomials which parameterize a model.
Consider the polynomial

n
fo= D e 671057054, (2.21)
i=1
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where ¢; is a non-zero real number and v; = (vi1, V2, . .., vq) € N¢ for i =
1,2,...,n. We define the Newton polytope of the polynomial f as the convex
hull of all exponent vectors that appear in the expansion (2.21) of f:

NP(f) = conv{vi,vg,...,v,} C R (2.22)

Hence the Newton polytope NP(f) is precisely the V-polytope in (2.17). The
operation of taking Newton polytopes respects the arithmetic operations:

Theorem 2.25 Let f and g be polynomials in R[6,...,04]. Then
NP(f-g) = NP(f) ® NP(g9) and NP(f+g) € NP(f) & NP(g).

If all coefficients of f and g are positive then NP(f +g) = NP(f) @ NP(g).

Proof Let f=>",¢-0" beasin (2.21) and let g = Z;L;l c- 0% . For any
w € R? let iny, (f) denote the initial form of f. This is the subsum of all terms

¢;0%" such that v; - w is minimal. Then the following identity holds:
NP(iny(f)) = face,(NP(f)). (2.23)

The initial form of a product is the product of the initial forms:

in,(f-g) = iny(f)-inu(g). (2.24)

For generic w € R? the initial form (2.24) is a monomial Ui and its
coefficient in f - g is the product of the corresponding coefficients in f and g.

Finally, the face operator face,(-) is a linear map on the polytope algebra:
face, (NP(f) ® NP(g)) = face,(NP(f)) © face, (NP(g)). (2.25)

Combining the three identities (2.23), (2.24) and (2.25), for w generic, shows
that the polytopes NP(f-g) and NP(f) ® NP(g) have the same set of vertices.

For the second identity, note that NP(f) & NP(g) is the convex hull of
{vi,...,vn, 0], ... 0], }. Every term of f + g has its exponent in this set, so
this convex hull contains NP(f+g). If all coefficients are positive then equality
holds because there is no cancellation when forming the sum f + g. |

Example 2.26 Consider the polynomials f = (z+1)(y+1)(2+1) and g = (z+
y + z)2. Then NP(f) is a cube and NP(g) is a triangle. The Newton polytope
NP(f+g) of their sum is the bipyramid with vertices (0,0,0), (2,0,0), (0,2,0),
(0,0,2),(1,1,1). The Newton polytope NP(f - g) of their product is the
Minkowski sum of the cube with the triangle. It has 15 vertices.
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Newton polytopes allow us to transfer constructions from the algebraic set-
ting of polynomials to the geometric setting of polytopes. To illustrate consider
the following example. Suppose we are given a 4 x 4 matrix of polynomials,

an(z,y,2) awe(z,y,2) az(z,y,2) au(z,y,2)
Alz,y,2) = a21(z,y,2) axn(z,y,2) as(z,y,z) au(z,y,z) ’

az1(z,y,z) aze(v,y,2) asz(z,y,2) asa(z,y,2)

ag(2,y,2) ase(z,y,2) as3(z,y,2) awu(z,y,2)

and suppose we are interested in the Newton polytope of its determinant
det (A(:E,y,z)). One possible way to compute this Newton polytope is to
evaluate the determinant, list all terms that occur in that polynomial, and
then compute the convex hull. However, assuming that the coefficients of the
a;j(x,y, z) are such that no cancellations occur, it is more efficient to do the
arithmetic directly at the level of Newton polytopes. Namely, we replace each
matrix entry by its Newton polytope P;; = NP(a;;), consider the 4 x 4 matrix
of polytopes (P;;), and compute its determinant in the polytope algebra. Just
like in the tropical semiring (2.6), here the determinant equals the permanent:

Pi1 P P13 Py
Py1 Py Pz Py

det = Py © Poyioy © Pygiay ® Pygay.
P31 P3y P33 Py @ lo(1) 20(2) 30(3) 4o (4)

gESy
Py Py Pz Pu

This determinant of polytopes represents a parameterized family of assignment
problems. Indeed, suppose the cost g;; of assigning job ¢ to worker j depends
piecewise-linearly on a vector of three parameters w = (w,, wy, w.), namely

Gi; = min{w “p i pcE PZJ}

Thus the cost g;; is determined by solving the linear programming problem
with polytope P;;. The parametric assignment problem would be to solve the
assignment problem simultaneously for all vectors w € R?. In other words, we
wish to preprocess the problem specification so that the cost of an optimal as-
signment can be computed rapidly. This preprocessing amounts to computing
the irredundant V-representation of the polytope gotten from the determinant.
Then the cost of an optimal assignment can be computed as follows:

min{w -p : p € det((Pij)1<ij<4)}.

Our discussion furnishes a higher-dimensional generalization of Remark 2.6:

Remark 2.27 The parametric assignment problem is solved by computing
the determinant of the matrix of polytopes (F;;) in the polytope algebra.
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We can similarly define the parametric shortest path problem on a directed
graph. The weight of each edge is now a polytope F;; in R?, and for a specific
parameter vector w € R% we recover the scalar edge weights by linear pro-
gramming on that polytope: d;; = min{w -p : p € P;;}. Then the shortest
path from i to j is given by dl(-;L_l) =min{fw-p : p € PZ.(;L_I)}, where Pi(jn_l)
is the (4, j)-entry in the (n — 1)-st power of the matrix (F;;). Here matrix
multiplication is carried out in the polytope algebra (Pd, P, @).

The Hungarian algorithm for assignments and the Floyd-Warshall algorithm
for shortest paths can be extended to the parametric setting. Provided the
number d of parameters is fixed, these algorithms still run in polynomial time.
The efficient computation of such polytopes by dynamical programming using
polytope algebra arithmetic along a graph is referred to as polytope propagation
(see Chapters 5-8). We close this section by revisiting the case of alignments.

Remark 2.28 The problem of parametric alignment of two DNA sequences
ol and o2 is to compute the Newton polytopes NP( fo1 02) of the corresponding
coordinate polynomial f,1 ;2 of the pair hidden Markov model (2.13).

If some of the scores have been specialized then we compute Newton poly-
topes of polynomials in fewer unknowns. For instance, if w’ = 0 then our
task is to compute the Newton polytope NP(g,1 ,2) of the specialized poly-
nomial g,1 52. This can be done efficiently by running the Needleman-Wunsch
Algorithm 2.13 in the polytope algebra and is the topic of Chapters 5-7.

Example 2.29 Returning to Example 2.18, we observe that the 14 points
v1,...,v14 are the vertices of the Newton polytope P = NP(gacgacc). It is
important to note that all of the 14 points corresponding to monomials in
gace,acc are in fact vertices of P, which means that every possible alignment of
ACG and ACC is an optimal alignment for some choice of parameters.

The polytope P is easily computed in POLYMAKE, which confirms that the
polytope is six-dimensional. The f-vector is f(P) = (14,51, 86,78,39,10).
These numbers have an interpretation in terms of alignments. For example,
there is an edge between two vertices in the polytope if for two different optimal
alignments (containing different numbers of matches, mismatches, and gaps)
the parameter regions which yield the optimal alignments share a boundary.
In other words, the fact that the polytope has 51 edges tells us that there
are precisely b1 “parameter boundaries”, where an infinitesimal change in pa-
rameters can result in a different optimal alignment. The normal cones and
their defining inequalities (like the seven in Example 2.18) characterize these
boundaries, thus offering a solution to the parametric alignment problem.
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2.4 Trees and metrics

One of the important mathematical structures that arises in biology is the
phylogenetic tree [Darwin, 1859, Felsenstein, 2003, Semple and Steel, 2003]. A
phylogenetic tree is a tree T together with a labeling of its leaves. The number
of combinatorial types of phylogenetic trees with the same leaves grows expo-
nentially (Lemma 2.32). In phylogenetics a typical problem is to select a tree,
based on data, from the large number of possible choices.

This section introduces some basic concepts in combinatorics of trees that
are important for phylogeny. The notion of tree space is related to the tropi-
calization principle introduced in Section 2.1 and will be revisited in Section
3.5. A widely used algorithm in phylogenetics, the neighbor joining algorithm,
is a method for projecting a metric onto tree space. This algorithm draws on a
number of ideas in phylogenetics and serves as the focus of our presentation in
this section. We begin by discussing a number of different, yet combinatorially
equivalent, characterizations of trees.

A dissimilarity map on [n] = {1,2,...,n} is a function d : [n] x [n] — R
such that d(i,7) = 0 and d(7, j) = d(j,i) > 0. The set of all dissimilarity maps
on [n] is a real vector space of dimension (4), which we identify with R(E). A
dissimilarity map d is called a metric on [n] if the triangle inequality holds:

d(i,j) < d(i, k) +d(k,j) for i, j, k € [n]. (2.26)
A dissimilarity map d can be written as a non-negative symmetric n X n matrix

D = (di;) where d;j = d(4,j) and dj; = 0. The triangle inequality (2.26) can
be expressed by matrix multiplication where the arithmetic is tropical.

Remark 2.30 The matrix D represents a metric if and only if D ® D = D.

Proof The entry of the matrix D ® D in row ¢ and column j equals
dip ©dy; & -+ @ din©Odn; = min{dy+di; : 1<k<n}. (227)

This quantity is less than or equal to d;; = d;; ©d;j = di; ©dj;, and it equals
d;; if and only if the triangle inequality d;; < dj;, + di; holds for all k. O

The set of all metrics on [n] is a full-dimensional convex polyhedral cone
in R(Z), called the metric cone. The metric cone has a distinguished subcone,
known as the cut cone, which is the R>¢-linear span of all metrics dy 4 py arising

as follows from all splits { A, B} of [n] into two non-empty subsets A and B:
diapy(i) = 1 e o bjeB 29
diapy(i,j) = 0 if iecA,jeBorieB,jeA.

The cut cone is strictly contained in the metric cone if n > 6. This and many
other results on metrics can be found in [Deza and Laurent, 1997].
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A metric d is a tree metric if there exists a tree T" with n leaves, labeled by
[n] ={1,2,...,n}, and a non-negative length for each edge of T', such that the
length of the unique path from leaf x to leaf y equals d(x,y) for all z,y € [n].
We sometimes write dp for the tree metric d which is derived from the tree T'.

Example 2.31 Let n = 4 and consider the metric d given by the matrix

0 1.1 1.0 14
1.1 0 03 1.3
1.0 0.3 0 1.2
14 1.3 1.2 0

The metric d is a tree metric, as can be verified by examining the tree

0.4 0.4
4 0.3
0.6
Fﬁﬂ&1
3
2
1

Fig. 2.4. The metric in Example 2.31 is a tree metric.

The space of trees is the following subset of the metric cone:
1, = { dr : dris a tree metric} C R(G). (2.29)

The structure of 7,, is best understood by separating the combinatorial types
of trees from the lengths of the edges. A tree T is trivalent if every interior
node is adjacent to three edges. A trivalent tree 7" has n — 2 interior nodes
and 2n — 3 edges. We can create any tree on n+ 1 leaves by attaching the new
leaf to any of the 2n — 3 edges of T'. By induction on n, we derive:

Lemma 2.32 The number of combinatorial types of unrooted trivalent trees
on a fized set of n leaves is the Schroder number

2n -5 = 1.3:5- - -(2n—7)-(2n—5). (2.30)

Each edge of a tree T' corresponds to a split {A, B} of the leaf set [n] into
two disjoint subsets A and B. Two splits { A1, By} and {As, B} are compatible
if at least one of the four intersections A1 N Ay, A1 N By, B1 N Ay, and B1 N By
is empty. We have the following easy combinatorial lemma:
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Lemma 2.33 If {A1, B1} and {Ay, Ba} are splits corresponding to two edges
on a tree T with leaf set [n] then { A1, B1} and {As, Bo} are compatible.

Let {Ay, B1} and {As, Ba} be two distinct compatible splits. We say that
A is mized with respect to { Ag, Ba} if AN Ay and A1 N By are both nonempty.
Otherwise A; is pure with respect to { Ag, Bo}. Of the two components A; and
By exactly one is pure and the other is mixed with respect to the other split
{Aa, Ba}. Let Splits(T") denote the collection of all 2n — 3 splits (A, B) arising
from T'. For instance, if n = 4 and T is the tree in Figure 2.4 then

Splits(T) = {{1,234},{14,23},{123,4},{134,2},{124,3} }. (2.31)

Theorem 2.34 (Splits Equivalence Theorem) A collection S of splits is
pairwise compatible if and only if there exists a tree T' such that S = Splits(T).
Moreover, if such a tree T exists then it is unique.

Proof If there are no splits then the tree is a single node. Otherwise, we proceed
by induction. Consider the set of splits S’ = S\{{A, B}} where {4, B} is a
split in S. There is a unique tree T” corresponding to the set of splits S’. Any
split in S’ has one pure and one mixed component with respect to {A, B}.
We orient the corresponding edge e of T” so that it is directed from the pure
component to the mixed component. We claim that no node in 7" can have
out-degree > 2. If this was the case there would be a split with a component
that is both pure and mixed with respect to (A, B). Thus every node of 7"
has out-degree either 0 or 1. Since the number of nodes is one more than the
number of edges, we conclude that the directed tree T has a unique sink v'.
Replace v with two new nodes v4 and vg and add a new edge between them
as indicated in Figure 2.5. The result is the unique tree 7" with S = Splits(T").

O

We next establish the classical four point condition which characterizes mem-
bership in tree space 7,. The proof is based on the notion of a quartet, which
for any phylogenetic tree T is a subtree spanned by four taxa 1,7, k,[. If
{{Z’,j}, {k, l}} is a split of that subtree then we denote the quartet by (ij; kl).

Theorem 2.35 (The four point condition) A metric d is a tree metric if

and only if, for any four leaves u,v,x,y, the mazrimum of the three numbers

d(u,v)+d(z,y), d(u,z)+d(v,y) and d(u,y) +d(v, x) is attained at least twice.

Proof If d = dp for some tree then for any quartet (uv; xy) of T' it is clear that
d(u,v) +d(z,y) < d(u,z)+d(v,y) = d(u,y)+d(v, ).

Hence the “only if” direction holds.
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T

pure — mixed
Fig. 2.5. Proof of the Splits Equivalence Theorem

For the converse, let d be any metric which satisfies the four point condition.
Let S denote the set whose elements are all splits { A, B} with the property

d(i,7)+d(k,l) < d(i, k) +d(j,1) = d(i,1) + d(j, k) for alli,j € Aandk,l € B.

We claim that S is pairwise compatible. If not then there exist two splits
{A1, B1} and {As, B2} in S and elements i, j, k,l with i € A;NAs, j € A1NDBs,
k€ BN As, and [ € By N Bs. Then i,j € Ay and k,I € By implies
d(i,j)+d(k,1) < d(i,k)+d(j,1) while i,k € Ay and j,l € By implies d(i, )+
d(k,1) > d(i, k) + d(j,1), a contradiction.

By Theorem 2.34, there exists a unique tree T" such that S = splits(7). It
remains to assign lengths I(e) to the edges e of T' so that the resulting tree
metric dr is equal to d. We show that this can be done by induction. Let
i, j be two leaves adjacent to the same vertex x in 7". Such a pair is called a
cherry and at least one can be found in every tree. Let T be the tree with 7, j
pruned and replaced by x. Consider the metric d’ defined on the leaves of T”
where d'(z, k) = 1(d(i, k) + d(j, k) — d(4, 5)). By induction, there exists a tree
metric d}, = d’. We extend d/. to a tree metric dp defined on 7. If e is the
edge adjacent to the leaf 4, then we set [(e) = 2(d(4, j) +d(i, k) — d(j, k)). This
assignment is well defined because, for any quartet (ij; kl), we have

Similarly, if f is the edge adjacent to the leaf j, we set I(f) = %(d(i,j) +
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d(j, k) —d(i,k)). Since dp(i,j) = l(e) + I(f) it follows that dp(i,j) = d(i,J).
Similarly, for any k # i, j, dp(i, k) = d(i, k) and dp(j, k) = d(j, k). a

The previous argument shows that the set of split metrics

{diany : (A B) e Splits(T) } (2.32)

is linearly independent in R(3). We wrote the tree metric dr uniquely as a
linear combination of this set of split metrics. Let Cpr denote the non-negative
span of the set (2.32). The cone Cr is isomorphic to the orthant R},

Proposition 2.36 The space of trees Ty, is the union of the (2n—>5)!! orthants

Cr. More precisely, T,, is a simplicial fan of pure dimension 2n — 3 in R().

We return to tree space (and its relatives) in Section 3.5, where we show
that 7, can be interpreted as a Grassmannian in tropical algebraic geometry.

The relevance of tree space to efficient statistical computation is this: sup-
pose that our data consists of measuring the frequency of occurrence of the
different words in {A,C,G,C}"™ as columns of an alignment on n DNA se-
quences. As discussed in Section 1.4, we would like to select a tree model. In
principle, we could compute the MLE for each of the (2n — 5)!! trees, how-
ever, this approach has a number of difficulties. First, even for a single tree
the MLE computation is very difficult, even if we are satisfied with a reason-
able local maximum of the likelihood function. Even if the MLE computa-
tion were feasible, a naive approach to model selection requires examining all
exponentially many (in n) trees. One popular way to avoid these problems
is the “distance based approach” which is to collapse the data to a dissim-
ilarity map and then to obtain a tree via a projection onto tree space (see
4.21). The projection of choice for most biologists is the neighbor joining al-
gorithm which provides an easy-to-compute map from the metric cone onto
7,. The algorithm is based on Theorem 2.35 and the Cherry Picking Theorem
[Saitou and Nei, 1987, Studier and Keppler, 1988].

Fix a dissimilarity map d on the set [n|. For any a1, ag, b1, by € [n] we set

w(alag; blbg) =
i[d(al, bl) + d(al, bz) + d(ag, bl) + d(ag, bg) — Q[d(al, ag) + d(bl, bg)]].

The function w provides a natural “weight” for quartets when d is a tree metric.
The following result on quartets is proved by inspecting a tree with four leaves.

Lemma 2.37 Ifd is a tree metric with (ayag; b1b2) a quartet in the tree, then
w(ajag; bibe) = —2 - w(a1by; agbs), and this number is the length of the path
which connects the path between a1 and as with the path between by and b.
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A cherry of a tree is a pair of leaves which are both adjacent to the same

node. The following theorem gives a criterion for identifying cherries.

Theorem 2.38 (Cherry picking theorem) If d is a tree metric on [n] and
Za(ij) = ), wlijshl) (2.33)
k,l€[n]\{i,j}
then any pair of leaves that mazimizes Zq(i,j) is a cherry in the tree.
Proof Suppose that i, j is not a cherry in the tree. Without loss of generality,

we may assume that either there is a leaf k£ forming a cherry with ¢, or neither
i nor j form a cherry with any leaf. In the first case, observe that

Za(i,k) = Za(i, ) = Y (w(ik;zy) — w(ij; zy))
7y¢i7j7
—I-Z (ik;xj) —w(ij;xk)) > 0.
m#l7-77

Here we are using Lemma 2.37. In the latter case, there must be cherries (k, 1)
and (p, q) arranged as in Figure 2.6. Without loss of generality, we assume
that the cherry (k,[) has the property that the number of leaves in 7'\ e in the
same component as k is less than or equal to the number of leaves in T'\ €’ in
the same component as p. We now compare Zg(k,1) to Z4(i,7):

Za(k, 1) = Za(i,5) = Y (w(kl;zy) — w(ij; zy))
T,y7Fi,5,k,
+ Z w(kl; xj) + w(klyiz) — w(ij; zl) — w(ig; kx)).
r#i,5,k,l

The two sums are each greater than 0. In the first sum, we need to evaluate
all possible positions for  and y within the tree. If, for example, = and y
lie in the component of T\{x,y} that contains ¢ and j then it is clear that
w(kl; zy) —w(ij; xy) > 0. If  and y lie in the same component of 7'\ e as leaf
k, then it may be that w(kl; zy) — w(ij; xy) < 0, however for each such pair
x,y there will be another pair that lies in the same component of T\ €’ as leaf
p. The deficit for the former pair will be less than the surplus provided by the
second. The remaining cases follow directly from Lemma 2.37. a

Theorem 2.38 is conceptually simple and useful, and we will see that it is
useful for understanding the neighbor joining algorithm. It is however not
computationally efficient because O(n?) additions are necessary just to find
one cherry. An equivalent, but computationally superior, formulation is:
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Fig. 2.6. Cases in the proof of the Cherry Picking Theorem.

Corollary 2.39 Let d be a tree metric on [n]|. For every pair i,j € [n] set

Qa(i,j) = (n—2)-d(i,j) — > d(i,k) =Y _d(jk). (2.34)
k#i k#j

Then the pair x,y € [n] that minimizes Qq(x,y) is a cherry in the tree.

Proof Let 7 = Zm,ye[n] d(z,y). A direct calculation reveals the identity

. 1 n—2 .
Zd(Zvj) = _5'7_ - 2 'Qd(zvj)'
Thus maximizing Z;(x,y) is equivalent to minimizing Qq(x,y). O

The neighbor joining algorithm makes use of the cherry picking theorem by
peeling off cherries to recursively build a tree:

Algorithm 2.40 (Neighbor joining algorithm)

Input: A dissimilarity map d on the set [n].

Output: A phylogenetic tree T' whose tree metric dp is “close” to d.

Step 1:  Construct the n x n matrix @4 whose (i, j)-entry is given by the

formula (2.34), and identify the minimum off-diagonal entry Qg(z,y).
Step 2: Remove z,y from the tree and replace them with a new leaf z. For
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each leaf k among the the remaining n — 2 leaves, set
1
d(z, k) = 3 (d(:n, k) +d(y, k) —d(x, y)) (2.35)

This replaces the n x n matrix Q4 by an (n — 1) x (n — 1) matrix. Return to
Step 1 until there are no more leaves to collapse.

Step 3: Output the tree T'. The edge lengths of T" are determined recursively: If
(z,y) is a cherry connected to node z as in Step 2, then the edge from x to z has
length d(x, k)—dr(z, k) and the edge from y to z has length d(y, k) —dp(z, k).

This neighbor joining algorithm recursively constructs a tree 7' whose metric
dr is hopefully close to the given metric d. If d is a tree metric to begin with
then the method is guaranteed to reconstruct the correct tree. More generally,
instead of estimating pairwise distances, one can attempt to (more accurately)
estimate the sum of the branch lengths of subtrees of size m > 3.

For any positive integer d > 2, we define a d-dissimilarity map on [n] to be
a function D : [’I’L]d — R such that D(’il, ig, ceey ’Ld) = D(’L'ﬂ.(l), Z'7r(2)7 ceey Zw(d))
for all permutations 7 on {1,...,d} and D(iy,id2,...,iq) = 0 if the taxa
i1,19,...,1q are not distinct. The set of all d-dissimilarity maps on [n] is a real
vector space of dimension (Z) which we identify with R(). Every tree T gives
rise to an d-dissimilarity map Dy as follows. We define Dyp(iq,...,iq) to be
the sum of all branch lengths in the subtree of 7" spanned by i1, ...,iq € [n].

The following theorem is a generalization of Corollary 2.39. It leads to a
generalized neighbor joining algorithm which provides a better approximation
of the maximum likelihood tree and parameters. A proof is given in Chapter
18 together with an explanation of the relevance of algebraic techniques for
maximum likelihood estimation.

Theorem 2.41 Let T be a tree on [n] and d < n. For anyi,j € [n] set

Qr(i,j) = (Z:f) > Dr(i,5,Y) = > Dr(i,Y) = Y Dr(jY),
Ye

() ve(len) el
Then the pair x,y € [n] that minimizes Qr(x,y) is a cherry in the tree T.

The subset of R(2) consisting of all d-dissimilarity maps D7 arising from
trees T' is a polyhedral space which is the image of the tree space 7, under a
linear map R(:) — R(Z). This polyhedral space is related to the tropicalization
of the Grassmannian G4, which is discussed in Section 3.5, but the details of
this relationship are still not fully understood and deserve further study.
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2.5 Software

In this section we introduce the software packages which were used by the
authors of this book. These programs were discussed in our seminar in the
Fall of 2004 and they played a key role for the studies which are presented
in part 2 of this book. The subsection on Mathematical Software describes
packages traditionally used by mathematicians but which may actually be very
useful for statisticians and biologists. The section on Computational Biology
Software summarizes programs more traditionally used for biological sequence
analysis. In each subsection the software packages are listed in alphabetic order
by name. Short examples or pointers to such examples are included for each
package. These illustrate how the software was used in our computations.

2.5.1 Mathematical Software

We describe ten packages for mathematical calculations relevant for this book.

JTI2

Summary: A package for linear algebra over the non-negative integers (e.g. in-
teger programming). Very useful for studying toric models (Section 2.2).
Example: To solve the linear equation 2z + 5y = 3u + 4v for non-negative
integers x, y, u, v we create a file named foo with the following two lines

1425 -3 -4
Running the command hilbert foo creates a 10 X 4 matrix on a file foo.hil:

10 4

O OO, O, NP, WN
W W NN, OO
O O~ B N O WKL N O
g O WO WO+~ O =

Every solution to the equation is an N-linear combination of these ten rows.
Availability: Executable only.
Website: www.4ti2.de/
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LINPACK

Summary: A Fortran library for linear algebra, originally from the 1970s but
still widely used for scientific computation. It contains fast implementations
of certain linear algebra algorithms, such as singular value decomposition.
Example: The singular value decomposition subroutine in LINPACK is used in
Chapter 19 to construct phylogenetic trees from alignments of DNA sequences.
Availability: Open source.

Website: www.netlib.org/linpack/

MACAULAY?2

Summary: A software system supporting research in algebraic geometry and
commutative algebra [Grayson and Stillman, 2002].

Example: We illustrate the computation of toric models in MACAULAY2. Con-
sider the toric Markov chain of length n = 4 with alphabet ¥ = {0,1} that
appears in Subsection 1.4.2. The model is specified with the commands:

i1 : R = QQ[p0000,p0001,p0010,p0011, p0100,p0101,p0110,p0111,
p1000,p1001,p1010,p1011, p1100,p1101,p1110,p1111];

i2 : S = QQ[a00,a01,a10,al11];

i3 : f = map(S,R,{ a00%a00%a00, a00*a00*a0l, a00*a0l*all,

a00*al01xall, a01*xal0*a00, al01*al0xa0l1l, aOlxallx*all,
al0l*xallxall, al1l0*xa00*a00, al0*aO0*xa0l1l, alOxal01x*all,
alO*al01xall, allxal0*a00, all*alOxa0l1l, allxallx*all,
allxallx*xalll});
o3 : RingMap S <-——- R
We have used the indeterminates a00,a01,a10,a11 for the parameters
b - (900 901>
tho 011
The labels i1,i2,1i3 indicate input to the program, o3 is output generated by
MACAULAY2. We compute a Grobner basis for the ideal Iy (see Section 3.2):

i4 : time If = kernel(f); -- Used 0.88 seconds
04 : Ideal of R
i5 : gb If

05 = | p1011-p1101 p0110-p1101 p0100-p1001 p0010-p1001
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p1101p1110-p1010p1111 p0111p1110-p1101p1111
p0011p1110-p1001p1111 p1101°2-p0101p1110
p1100p1101-p1001p1110 p0111p1101-p0101p1111
p1100°2-p1000p1110 p1001p1100-p1000p1101
p0111p1100-p1001p1111 p0101p1100-p1001p1101
p0011p1100-p0001p1110 p0001p1100-p0000P1101
p0111p1010-p0101p1110 p0011p1010-p1001p1101
p1001°2-p0001p1010 p1000p1001-p0000P1010
p0111p1001-p0011p1101 p0011p1001-p0001p1101
p0111p1000-p0001p1110 p0101p1000-p0001p1010
p0011p1000-p0000p1101 pO001p1000-p0000P1001
p0000p0101-p0001p1001 p0011°2-p0001p0111
p0101p1110°2-p1010p1101p1111 p1001p1110~2-p1010p1100p1111
p0001p1110~2-p1000p1101p1111 p0000P1010p1100-p1000~2p1101
p0000p0011p1101-p0001~2p1110 p0000P1110~2-p1000p1100p1111
p0000p1100p1110-p1000~2p1111 p0000P0111~2-p0001p0011p1111
p0000p0011p0111-p0001~2p1111

These are the constraints on probabilities listed at the end of Subsection 1.4.1.
Availability: Open source.
Website: www.math.uiuc.edu/Macaulay2/

MAGMA

Summary: A software package for computation with algebraic, geometric and
combinatorial structures such as graphs, groups, rings and fields. Includes a
new fast implementation of the Faugere F4 algorithm for computing Grébner
bases [Bosma et al., 1997].

Example: We compute a Grébner basis for the example in Section 3.1.

Q := RatiomnalField();

P<p1,p2,p3> := PolynomialRing(Q, 3);

I := ideal<P | pl174+p2~4-p374,pl1~4+p2~4+p3~4-2xpl*p2*p3,pl+p2+p3-1>;
GroebnerBasis(I);

G
G;
[ pl +p2+p3-1,

p274 - 2%p273 + 3*p272 - 2¥p2*p374 + p2*p3~3 - p2*p3~2 + 2%xp2*p3
- 2xp2 - p375 + 4*p374 - 2%p3~3 + 3*p372 - 2xp3 + 1/2,

p272%p3 + p2*p372 - p2*p3 + p374,

p3°7 - 2%p376 + 4xp37°5 - 4*p3~4 + 3xp37°3 - 2*p3°2 + 1/2%p3 ]

Availability: Commercial software.
Website: magma.maths.usyd.edu.au/magma/
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MAPLE

Summary:General purpose platform for symbolic and numerical computation
Example: MAPLE is an extremely versatile and powerful system, which includes
many toolboxes and routines for standard symbolic and numerical computa-
tions. It is also an intuitive high-level interpreted language, which is convenient
for quick computations. In Section 2.2, a specific example is provided showing
how to compute sequence alignment polynomials using MAPLE.

Availability: Commercial software.

Website: www.maplesoft.com/

MATHEMATICA

Summary:General purpose platform for symbolic and numerical computation
Example: In Chapter 12 MATHEMATICA is used to plot the likelihood surface
for various hidden Markov models.

Availability: Commercial software.

Website: www.wolfram.com/products/mathematica/index.html

MATLAB

Summary: A general purpose high level mathematics package, particularly
suited towards numerical linear algebra computations. MATLAB is supported
by numerous specialized toolboxes: the statistics toolbox and bioinformatics
toolbox are useful for computational biology.

Example: The following example illustrates the use of the statistics toolbox
for experimenting with hidden Markov models. The example shows how to set
up a simple model with [ = 2 and I’ = 4, generate data from the model, and
how to run basic inference routines.

S=[0.8 0.2; 0.1 0.9]

S =0.80.2
0.1 0.9

T=[0.25 0.25 0.25 0.25; 0.125 0.375 0.375 0.125]
T =

0.250 0.250 0.250 0.250
0.125 0.375 0.375 0.125

These commands set up the matrices # and ¢'. In other words, we have fixed
a point on the model. The command hmmgenerate generates data from the
model, and also specifies the alphabets 3 and ¥’ to be used:
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DNAseq=hmmgenerate(100,S,T, ’Statenames’,{’exon’,’intron’},
’Symbols’,{’A’,’C’,’G’,’T’})
DNAseq =

Columns 1 through 14

)G) )C) )C) )C) )G) )A) )C) )G) )T) )C) )T) )A) )C) )C)

The probability of DNAseq given the model, i.e. the evaluation of the DNAseq
coordinate polynomial, is done with

,10 se =nmmaecode seqg,o, 1, mools”,
[PSTATES, logpseq] =hmmdecode [DNAseq,S, T, ’Symbols’
{)A),)C),)G),)T)}]

The matrix PSTATES returns the forward variables (see Chapter 12) . The
logarithm of the probability of the sequence is also returned:

logpseq =
-1.341061974974420e+02

The tropicalization of the coordinate polynomial is evaluated as follows:

STATES=hmmviterbi (DNAseq,S,T, ’Statenames’,{’exon’,’intron’},
’Symbols’,{’A’,’C’,’G’,’T’}}

STATES =
Columns 1 through 7

’intron’ ’intron’ ’intron’ ’intron’ ’intron’ ’intron’ ’intron’

Columns 99 through 100

’exon’ ’exon’

The MATLAB statistics toolbox also has an implementation of the EM algorithm
for hidden Markov models, using the command hmmtrain.

Availability: Commercial software.

Website: www.mathworks.com/
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POLYMAKE

Summary: A collection of programs for building, manipulating, analyzing
and otherwise computing with polytopes and related polyhedral objects
[Gawrilow and Joswig, 2000, Gawrilow and Joswig, 2001].

Example: Several computations with polytopes are shown in Section 2.3.
Availability: Open source.

Website: www.math.tu-berlin.de/polymake/

SINGULAR

Summary: A system for polynomial computations, commutative algebra, and
computational algebraic geometry. Very useful for algebraic statistics.
Example: See Sections 2.1, 2.2 and 2.3 for various examples. For a reference
on SINGULAR with many worked out examples see [Greuel and Pfister, 2002].
Availability: Free under the GNU (GNU’s Not Unix) Public License.
Website: www.singular.uni-k1.de/

R

Summary: A statistical computing language and environment, similar in
syntax and focus to the S language [lhaka and Gentleman, 1996]. Mathe-
maticians find R comparable to MATLAB. The BIOCONDUCTOR package for R
[Gentleman et al., 2004] provides support for bioinformatics. related problems.
Example: The following R code was used to produce Figure 3.1:

# Hardy-Weinberg curve

p <- c(seq(0, 1, 0.001), seq(1l, 100, 0.01))
z0 <- p~2/(1+p)~2

z1 <= 2*xp/(1+p)~2

z2 <= 1/(1+p)~2

x.rec <- cbind((2%z0+z1)/sqrt(3), z1)

## plot the Hardy-Weinberg curve
plot(x.rec[,1], x.rec[,2], type=’1’, xlim=c(0, 2/sqrt(3)), ylim=c(0, 1), xlab=’’, ylab

# plot simplex

lines(x=c(0, 2/sqrt(3)), y=c(0, 0))
lines(x=c(0, 1/sqrt(3)), y=c(0, 1))
lines(x=c(1/sqrt(3), 2/sqrt(3)), y=c(1, 0))

Availability: Open source.
Website: www.r-project.org/
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2.5.2 Computational Biology Software

The five software programs highlighted here were all used during the prepara-
tion of the book, and are mostly accessible through web servers.

BLAST

Summary: A tool for searching through large biological sequence databases
for matches to a query [Altschul et al., 1990].

Example: There are many different “flavors” of BLAST, which allow for query-
ing databases of DNA or protein, automatic translation of the input sequence,
and other similar modifications. In what follows we illustrate the use of the
BLASTN tool. We begin by submitting the sequence

ATGGCGGAGTCTGTGGAGCGCCTGCAGCAGCGGGTCCAGGAGCTGGAGCGGGAACTT

taken from an example in Section 7.4, to the BLASTN website. There are a
number of important variables that can be set for the search, for example: the
low complexity filter removes repeated subsequences, such as TTTT. . .TTT from
the search. The word size is the minimum size of an exact match necessary for
BLAST to return a “hit”. The Expect parameter sets the threshold at which
to report “significant” hits. It is based on the Karlin-Altschul model used
to calculate statistical significance [Karlin and Altschul, 1990]. The remaining
choices during submission are which database to search against (the default
is nr which consists of all non-redundant nucleotide sequences in GENBANK),
and various options for formatting the output. We selected the default for all
settings, with the exception of Alignments which was set to 100, i.e. we opted
to receive up to 100 reported alignments rather than the default 50.

Upon submitting the query, BLAST takes a few seconds (or minutes), and
returns a page with a graphic showing which parts of the submitted sequence
matched sequences in the database, and a text part containing links to the
database hits, as well as the alignments. In our example, the text output is

Score E
Sequences producing significant alignments: (bits) Value

Homo sapiens ubiquitin-activat... 113 3e-23
Homo sapiens ubiquitin-activat... 113 3e-23
Homo sapiens ThiFP1 mRNA,comple.. 113 3e-23
Homo sapiens cDNA FLJ31676 fis,.. 113 3e-23
Homo sapiens cDNA: FLJ23251 fis.. 113 3e-23
Homo sapiens ubiquitin-activatin. 113 3e-23
Homo sapiens 3 BAC RP11-333HO(... 113 3e-23

full-length cDNA clone CSODIO66. .. 113 3e-23
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Homosapiens Ubab5 mRNA for Ubigqg... 113 3e-23
Homo sapiens mRNA;cDN... 113 3e-23
PREDICTED: Pan troglodytes sim... 105 8e-21
Pongo pygmaeus mRNA; cDNA DKFZp... 98 2e-18
Sus scrofa cloneClu_21888.scr.m... 72 le-10

The entries are preceded with a GENBANK identifier (and a link to the original
sequence in the database). Below this are the actual alignments, for example:

gi133942036|emb|AL928824.13|  Zebrafish DNA sequence from clone
CH211-105D18 in linkage group 6,
complete sequence
Length = 189742

Score = 38.2 bits (19), Expect = 1.6
Identities = 19/19 (100%)
Strand = Plus / Minus

Query: 37 caggagctggagcgggaac 55
RN RRRRR R
Sbjct: 155640 caggagctggagcgggaac 155622

A handy reference on how to use BLAST is [Korf et al., 2003]. There are many
variants of BLAST that have been designed for specialized tasks, including
BLASTZ [Schwartz et al., 2003] for rapid local alignment or large genomic re-
gions and BLAT [Kent, 2002] for fast mRNA/DNA alignments.

Availability: Open source.

Website: www.ncbi.nlm.nih.gov/blast/

MAVID

Summary: A multiple alignment program designed for large genomic se-
quences [Bray and Pachter, 2004].

Example: Sequences can be submitted in multi-fasta format through the
website or the program can be downloaded for standalone use. A sequence
in FASTA format begins with a single-line description, followed by lines of
sequence data. The description line is distinguished from the sequence data
by a greater-than (”>") symbol in the first column. Sequences are expected
to be represented in the standard ITUB/TUPAC nucleic acid code, with these
exceptions: lower-case letters are accepted and are mapped into upper-case;
any characters other than A ,C,G,T are converted into "N’ (unknown). The
nucleic acid codes supported are:
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A --> Adenine
C --> Cytosine
G --> Guanine
T --> Thymine
N -->AGCT (any)

Multi-Fasta format consists of alternating description lines followed by se-
quence data. It is important that each ”>” symbol appear on a new line.
For example:

human
AGTGAGACACGACGAGCCTACTATCAGGACGAGAGCAGGAGAGTGATGATGAGTAGCG
CACAGCGACGATCATCACGAGAGAGTAAGAAGCAGTGATGATGTAGAGCGACGAGAGC
ACAGCGGCGACTACTACTAGG

mouse
AGTGTGTCTCGTCGTGCCTACTTTCAGGACGAGAGCAGGTGAGTGTTGATGAGTTGCG
CTCTGCGACGTTCATCTCGAGTGAGTTAGAAAGTGAAGGTATAACACAAGGTGTGAAG
GCAGTGATGATGTAGAGCGACGAGAGCACAGCGGCGGGATGATATATCTAGGAGGATG
CCCAATTTTTTTTT

platypus
CTCTGCGGCGTTCGTCTCGGGTGGGTTGGGGGGTGGGGGTGTGGCGCAAGGTGTGAAG
CACGACGACGATCTACGACGAGCGAGTGATGAGAGTGATGAGCGACGACGAGCACTAG
AAGCGACGACTACTATCGACGAGCAGCCGAGATGATGATGAAAGAGAGAGA

The MAVID program can align sequences much longer than the ones above
(including alignments of sequences up to megabases long). Once the multi-
FASTA file has been prepared it is uploaded to the website. Consider for
example, 13 sequences from the Cystic Fibrosis gene region (CFTR): human
chimp, baboon, cow, pig, cat, dog, mouse, rat, chicken, zebra fish, fugu fish
and tetraodon fish. This region is one of the ENCODE regions (see Chapter
21). The result of the MAVID run, including the original sequences is too large
to include here, but is stored on a website, in this case:
baboon.math.berkeley.edu/mavid/examples/zoo.targetl/.

The website contains the alignment in multifasta format (MAVID.mfa), as
well as in PHYLIP format (MAVID.phy). A phylogenetic tree inferred from the
alignment using neighbor joining is also included:

The trees agrees well with the known phylogeny of the species, with the
exception of the rodent placement, this issue is discussed in Section 21.4
Availability: Open source.

Website: baboon.math.berkeley.edu/mavid/
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E Chimp
Human
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* Dog
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* Pig
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Fig. 2.7. Neighbor joining tree from MAVID alignment of the CFTR region (branch
lengths omitted).

PAML

Summary: Software for Phylogenetic Analysis by Maximum Likelihood.
Consists of a collection of programs for estimating rate matrices and branch
lengths for different tree models.

Example: Chapter 21 contains examples showing how to use PAML with dif-
ferent model assumptions (e.g. Jukes-Cantor, HKY).

Availability: Open source.

Website: abacus.gene.ucl.ac.uk/software/paml.html

PHYLIP

Summary: A collection of programs for inferring phylogenies. This software
has been continuously developed since 1981, and includes many routines utili-
ties for manipulating and working with trees [Felsenstein, 2004].
Availability: Open source.

Example: PHYLIP reads alignments in a format which looks like this:

5 10
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human AAGTGA
mouse CAA--A
rat AGCA-G
dog G-AGCT
chicken T-ACCA

The first number in the first row is the number of sequences, and the second
number if the number of columns in the alignment. Any of a number of routines
can then be called, for example dnaml which constructs a tree.

Website: evolution.genetics.washington.edu/phylip.html

SPLITSTREE

Summary: Implementation of the neighbor-net algorithm, as well as split de-
composition, neighbor joining and other related methods. Includes a versatile
visualization tool for splits graphs.

Availability: Open source.

Example: See Chapter 17.

Website: www-ab.informatik.uni-tuebingen.de/software/jsplits/
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The philosophy of algebraic statistics is that statistical models are algebraic
varieties. We encountered many such models in Chapter 1. The purpose of
this chapter is to give an elementary introduction to the relevant algebraic
concepts, with examples drawn from statistics and computational biology.
Algebraic varieties are zero sets of systems of polynomial equations in several
unknowns. These geometric objects appear in many contexts. For example, in
genetics, the familiar Hardy- Weinberg curve is an algebraic variety (see Figure
3.1). In statistics, the distributions corresponding to independent random
variables form algebraic varieties, called Segre varieties, that are well known
to mathematicians. There are many questions one can ask about a system of
polynomial equations, for example whether the solution set is empty, nonempty
but finite, or infinite. Grobner bases are used to answer these questions.
Algebraic varieties can be described in two different ways, either by equations
or parametrically. Each of these representations is useful. We encountered this
dichotomy in the Hammersley-Clifford Theorem which says that a graphical
model can be described by conditional independence statements or by a polyno-
mial parameterization. Clearly, efficient methods for switching between these
two representations are desirable. We discuss such methods in Section 3.2.
The study of systems of polynomial equations is the main focus of a central
area in mathematics called algebraic geometry. This is a rich, beautiful, and
well-developed subject, at whose heart lies a deep connection between algebra
and geometry. In algebraic geometry, it is customary to study varieties over the
field C of complex numbers even if the given polynomials have their coefficients
in a subfield of C such as the real numbers R or the rational numbers Q. This
perspective leads to an algebraic approach to maximum likelihood estimation
which may be unfamiliar to statisticians and is explained in Section 3.3.
Algebraic geometry makes sense also over the tropical semiring (R, ®, ®).
In that setting, algebraic varieties are piecewise-linear spaces. An important
example for biology is the space of trees which will be discussed in Section 3.5.

90



Algebra 91

3.1 Varieties and Grobner bases

We write Q[p] = Q[p1,p2, - .., pm] for the set of all polynomials in m unknowns
P1,D2 - - -, Pm With coefficients in the field Q of rational numbers. The set Q|p]
has the structure of a Q-vector space and also that of a ring. We call Q[p] the
polynomial ring. A distinguished Q-linear basis of Q[p] is the set of monomials

{ PPl plm ¢ digyig,...im e N (3.1)
To write down polynomials in a systematic way, we need to order the mono-
mials. A monomial order is a total order < on the set (3.1) which satisfies:
e the monomial 1 = p(l]pg ---pY is smaller than all other monomials, and
o if pi' - oply < pll oo pht then pi TR pimthn < plitRL phathn
For polynomials in one unknown (m = 1) there is only one monomial order,

L<pr<pi<pi<pi=<--,

but in several unknowns (m > 2) there are infinitely many monomial orders.
One example is the lexicographic monomial order <. which is defined as
follows: plf Y p{l e pﬁ# if the leftmost non-zero entry in the vector
(j1 — 41,J2 — 92, ..., Jm — im) 1is positive. In this section, all polynomials are
written with their monomials in decreasing <jex order. The first monomial, or
initial monomial , is often underlined: it is the <o largest monomial appearing
with non-zero coefficients in that polynomial. Here are three examples of
polynomials in Q[p1, pe, ps], each with its terms sorted in lexicographic order:

fi = pips — 4p3
fo = P —2p1 +p3 — 4p2 — p3 + 6p3 — 8
f3 = pips+pip3+p1+ps+pi+pops+pa+p3+1

What we are interested in is the geometry of these polynomials. The zero
set of each of them is a surface in three-dimensional space R3. For instance,
{f2 = 0} is the sphere of radius 4 around the point with coordinates (1,2, 3),
and {f3 = 0} is the union of a plane with a parabolic surface. The surface
{f1 = 0} is a quadratic cone: its intersection with the probability triangle is
known as the Hardy- Weinberg curve in statistical genetics (Figure 3.1).

In our applications, the unknown p; represents the probability of the i-th
event among m possible ones. But for now think of p; just as a formal symbol.

Every polynomial f € Q[p1,...,pmn] in m unknowns defines a hypersurface

V(f) = {(zl,...,zm)e(cm:f(zl,...,zm):0}.

Note that V(f) is defined over the complex numbers C. If S is any subset of
C™ then we write Vs(f) := V(f) N S for the part of the hypersurface that
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Fig. 3.1. The Hardy Weinberg curve

lies in S. For instance, Vgm(f) is the set of solutions to f = 0 over the real
numbers, and VA (f) is the set of solutions to f = 0 in the probability simplex

m
A = {(zl,...,zm) eR™ : Zzi =1and z1,20,...,2m 20}.
i=1
A polynomial is homogeneous if all of its monomials plf p? -+ pim have the same
total degree i1 +i9 + - - -+ iy,. The following three polynomials in Q[p1, p2, p3]
have total degree four. The first two are homogeneous but the third is not:

g = pi+ps—pi
o pi+ps+pi
g3 = Pl + p3 + pt — 2p1paps

All three of V(g1),V(g2) and V(g3) are complex surfaces in C3, and Vgs(g1)
and Vgs(g3) are real surfaces in R3, but Vgs(go) is just the point (0,0,0).
(Note that Vs(g1) = {(0,0,0)} by Fermat’s Last Theorem). Restricting to
the probability triangle A, we see that Va(g2) = 0, while Va(g1) and Va(g3)
are curves in the triangle A.

To understand why algebraic geometers prefer to work over the complex
numbers C rather than over the real numbers R, let us consider polynomials
in one unknown p. For ag,a1,...,as € Q with ags # 0 consider

s—1

flp) = as-p'Haec -p 4+ Fas-p*+ar-p+ ap.

Recall that the following basic result holds over the complex numbers:

Theorem 3.1 (Fundamental Theorem of Algebra) If f is a polynomial
of degree s then V(f) consists of s complex numbers, counting multiplicities.

By contrast, the number of real roots of f(p), i.e. the cardinality of Vk(f),
does depend on the particular coefficients a;. It can range anywhere between
0 and s, and the dependence is very complicated. So, the reason we use C is
quite simple: It is easier to do algebraic geometry over the complex numbers C
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than over the real numbers R. In algebraic statistics, we postpone issues of real
numbers and inequalities as long as we can get away with it. But of course,
at the end of the day, we are dealing with parameters and probabilities, and
those are real numbers which are constrained by inequalities.

Let F be an arbitrary subset of the polynomial ring Q[p1, . . ., pm)|. We define
its variety V(F) as the intersection of the hypersurfaces V(f) where f ranges
over F. Similarly, Vs(F) = NrerVs(f) for any subset S C C™. Using the
example above, the variety V' ({g1,g3}) is a curve in three-dimensional space
C3. That curve meets the probability triangle A in precisely two points:

Va({g1,gs}) = {(0.41167,0.17346,0.41487), (0.17346,0.41167,0.41487)}  (3.2)

These two points are found by first computing the variety V({ g1, 93, P1+p2+
p3—1 }) We did this by running the following sequence of six commands in the
computer algebra package Singular. See Section 2.5 for software references.

ring R = 0, (pl,p2,p3), lp;
ideal I = (pl174+p2~4-p374,pl~4+p27~4+p3~4-2*pl*p2*p3,pl+p2+p3-1);
ideal G = groebner(I); G; LIB ‘‘solve.lib’’; solve(G,10);

For an explanation of these commands, and a discussion of how to solve poly-
nomial systems in general, see Section 2.5 of [Sturmfels, 2002]. Running this
Singular code shows that V({ g1, 93, p1+p2+p3—1 }) consists of 16 distinct
points (which is consistent with Bézout’s Theorem [Cox et al., 1997]). Only
two of the 16 points have all their coordinates real. They lie in the triangle A.
Algebraists feel notoriously uneasy about floating point numbers. For a
specific numerical example consider the common third coordinate of the two
points in VA({g1,93}). When an algebraist sees the floating point number

Ps = 0.4148730882..., (3.3)

(s)he will want to know whether p3 can be expressed in terms of radicals.
Indeed, the floating point coordinates produced by the algorithms in this
book are usually algebraic numbers. An algebraic number has a degree which
is the degree of its minimal polynomial over QQ. For instance, our floating point
number p3 is an algebraic number of degree six. Its minimal polynomial equals

flps) = 2-p5—4-p5 +8-pj —8-p3 +6-p3 —4-p3 + L.

This polynomial appears in the output of the command line G; in our
Singular program. Most algebraists would probably prefer the following de-
scription (3.4) of our number over the description given earlier in (3.3):

ps = the smaller of the two real roots of the polynomial f(ps). (3.4)
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The other real root is 0.7845389895 but this does not appear in Va({g1, g3}).
Our number p3 cannot be written in terms of radicals over Q. This is because
the Galois group of the polynomial f(p3) is the symmetric group on six letters,
which is not a solvable group. To see this, run the following in Maple:

galois( 2%p3~6-4+p3~5+8%p3~4-8+p3~3+64p3~2-4*p3+1, p3);

In summary, algorithms used in algebraic statistics produce floating numbers,
and these numbers are often algebraic numbers, which means they have a well-
defined algebraic degree over Q. In algebraic statistics, we are sensitive to this
intrinsic measure of complexity of the real numbers we are dealing with.

The command ideal G = groebner(I); in our Singular code computes
the lexicographic Grébner basis for the ideal generated by the three given
polynomials. In what follows, we give a very brief introduction to these notions.
For further details, the reader is referred to any of the numerous textbooks on
computational algebraic geometry which have appeared in the last decade.

Let F C Q[p| = Q[p1, ..., pm]- The ideal generated by F is the set (F) con-
sisting of all polynomial linear combinations of the elements in F. In symbols,

<~7:> = {h1f1+"'+hrfr:fla---afrG}—andhla---ahreQ[p]}'

An ideal I in Q[p] is any set of the form [ = (F). It is quite possible for two
different subsets F and F’ of Q[p] to generate the same ideal I, i.e.,

(F) = (F)

This equation means that every polynomial in F is a Q[p]-linear combination
of elements in F’, and vice versa. If this holds then the two varieties coincide:

V(F) = V(F).

Hilbert’s basis theorem implies that every variety is the intersection of finitely
many hypersurfaces:

Theorem 3.2 (Hilbert’s basis theorem) FEvery infinite set F of polyno-
mials in Q[p] has a finite subset F' C F such that (F) = (F').

The theorem is often stated in the following form:
Every ideal in a polynomial ring is finitely generated.

Let us now fix a term order <. Every polynomial f € Q[p] has a unique
initial monomial denoted in(f). The initial monomial of f is the <-largest
monomial p® = pi'ps? - - - p%m which appears with non-zero coefficient in the
expansion of f. Let I be an ideal in Q[p]. Then its initial ideal in(I) is the
ideal generated by the initial monomials of all the polynomials in I:

(1) = (ins(f) : Fel).
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A finite subset G of an ideal I is a Grébner basis with respect to the monomial
order < if the initial monomials of elements in G generate the initial ideal:

ing(f) = (inz(g) : g€G). (3.5)

As we have defined it in (3.5), there is no minimality requirement for being
a Grobner basis. If G is a Grobner basis for I then we can augment G by any
additional elements from I and the resulting set is still a Grobner basis. To
remedy this non-minimality, we make one more definition. We say that G is a
reduced Grobner basis if the following three additional conditions hold:

(i) For each g € G, the coefficient of in4(g) in g is 1.
(ii) The set {in<(g) : g € G } minimally generates in([).
(iii) No trailing term of any g € G lies in in (/).

For a fixed term order <, every ideal I in Q[py, ..., py] has a unique reduced
Grobner basis G. This reduced Grobner basis is finite, and it can be computed
from an arbitrary generating set F of I by the so-called Buchberger algorithm.
Any Grobner basis generates the ideal for which it is a Grobner basis, so in
particular, the reduced Grobner basis satisfies (G) = (F) = 1.

We will discuss the Buchberger algorithm towards the end of this section.
First, we concentrate on some applications to the study of algebraic varieties.
Recall that varieties are the solution sets of polynomial equations in several
unknowns. Here we take polynomials with rational coefficients, and we consider
a finite set of them F C Q[p1, .. ., pm)|. The variety of F is the set of all common
zeros of F over the field of complex numbers. As above it is denoted

V(F) = {(z1,.--s2m) €C™ : fz1,...,2,) =0 forall feF}.

The variety does not change if we replace F by another set of polynomials that
generates the same ideal in Q[p1, ..., pn]|. In particular, the reduced Grébner
basis G for the ideal (F) specifies the same variety:

V(F) = VUF) = VG) = V(©G).

The advantage of G is that it reveals geometric properties of the variety which
are not visible from the given polynomials 7. A most basic question which
one might ask about the variety V(F) is whether it is non-empty: does the
given system of equations F have any solution over the complex numbers?

Theorem 3.3 (Hilbert’s Nullstellensatz) The variety V(F) is empty if
and only if the reduced Grébner basis G of the ideal (F) equals {1}.

Example 3.4 Consider a set of three polynomials in two unknowns:

F = {602+6,0,—10, 603 +6,62—25 0" +6,605—70}.
1 1 2 1 2
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Running the Buchberger algorithm on the input F, we find that G = {1},
so the three given polynomials have no common zero (61, 6;) in C2. We now
change the constant term of the middle polynomial as follows:

F = {6?+6010,—10, 03 + 6,62 —26, 0] + 6,05 —70}.

The reduced Grobner basis of (F) is G = {01 —2, #—3 }. This shows that the
variety of F consists of a single point in C2, namely, V(F) = V(G) = {(2,3) }.

Our next question is how many zeros does a given system of equations
have ? To answer this we need one more definition. Given a fixed ideal [
in Q[p1,...,pm) and a fixed term order <, a monomial p* = p{*---pm is
called standard if it is not in the initial ideal in. (7). The number of standard
monomials is finite if and only if every unknown p; appears to some power
among the generators of the initial ideal. For example, if in<(I) = {p3, p3, p3)
then there are 60 standard monomials, but if in<(I) = (p$, p3, p1pi) then the
set of standard monomials is infinite (because every power of ps is standard).

Theorem 3.5 The variety V(I) is finite if and only if the set of standard
monomials is finite. In this case, the number of standard monomials equals
the cardinality of V(I), when zeros are counted with multiplicity.

In the case of one unknown p, this result is the Fundamental Theorem of
Algebra (Theorem 3.1), which states that the variety V(f) of a polynomial
f € Q[p] of degree s consists of s complex numbers. Indeed, in this case {f}

is a Grobmer basis for its ideal I = (f), we have in(I) = (p°), and there

are precisely s standard monomials: 1,p,p?% ...,p* ', Thus we can regard

Theorem 3.5 as the Multidimensional Fundamental Theorem of Algebra.

Example 3.6 Consider the system of three polynomials in three unknowns
F o= {pi+py—p5, pi+ps+p5—2pipeps, pr+patps—1})
Its Grobner basis for the purely lexicographic order p; > ps > p3 equals
G = {pL+p2+ps—1, p3ps + pap3 — paps +p3, 2p5 — 4p§ +8p5 + - -,
2p3 + 4pips — 4p3 + 6p3p3 — 10p3ps + 6p3 + 4papi — 10pap3+ - - - |
The underlined initial monomials show that there are 16 standard monomials:
L, p2, D3, P, D3, 5, P3, D3, D3, DS, P2bs, P2p3, D2P3, P25, P2p3, P2ps-
Theorem 3.5 says V (F) consists of 16 points. Two of them appear in (3.2).

Our criterion in Theorem 3.5 for deciding whether a variety is finite general-
izes to the following formula for the dimension of a variety. A subset S of the
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set of unknowns {p1, p2, ..., pm} is a standard set if every monomial H;nje s p;”f
in those unknowns is standard. Equivalently, in,(I) N C[p; : j € S] = {0}.

Theorem 3.7 (Dimension Formula) The dimension of an algebraic vari-
ety V(I) C C™ is the mazximal cardinality of any standard set for the ideal I.

For a proof of this combinatorial dimension formula, and many other basic
results on Grobner basis, we refer to [Cox et al., 1997].

Example 3.8 Let I C Q[p1,p2,ps] be the ideal generated by the Hardy-
Weinberg polynomial f; = p;p3 — 4p3. The maximal standard sets for I in the
lexicographic monomial order are {p1, p2} and {p2, p3}. Both have cardinality
two. Hence the variety V(f1) has dimension two: it is a surface in C3.

Another basic result states that the set of standard monomials is a Q-vector
space basis for the residue ring Q[p1, ..., pm]/I. The image of any polynomial
h in this residue ring can be expressed uniquely as a Q-linear combination
of standard monomials. This expression is the normal form of h modulo the
Grobner basis G. The process of computing the normal form is the division
algorithm. In the case of one unknown p, where I = (f) and f has degree s, the
division algorithm writes any polynomial h € Q[p]| as a unique Q-linear com-
bination of the standard monomials 1,p,p?,...,p*"'. The division algorithm
works relative to a Grobner basis in any number m of unknowns.

Example 3.9 Let Q[p] be the polynomial ring in 16 unknowns, denoted

Pan Pac Pac  PAT
Pca Pcc Pce  Pct
Pca Pcc Pee  Per
Pra Prc Pte PrT

DiaNA’s model in Example 1.16 for generating two DNA sequences is
pij = TN /\? + (1—7)-p;- p? where 4,5 € {A,C,G, T}. (3.6)

Since “statistical models are algebraic varieties”, this model can be represented
as a variety V(I) in C***. The homogeneous ideal I C Q[p] corresponding to
the model (3.6) is generated by the sixteen 3 x 3-minors of the 4 x 4-matrix p.
These sixteen determinants form a reduced Grobner basis for I:

g= {pAApCCpGG — PaaPcePac — PacPcAPee T PacPocPea + PAGPcAPGe — PaGPCCPGA;
DPaaPccPer — PaaPctPec — PacPeAPeT + PacPerPea + PatPcaPec — PatPecPen,

PccPacPTT — PccPeTPTG — PecPecPTT + PeePetPre + PerPecPTe — pCTpGGpTC}-
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Indeed, it is known [Sturmfels, 1990] that, for any a, b, c € N, the a x a-minors
of a b X c-matrix of unknowns form a reduced Grobner basis with respect to
a term order that makes the main diagonal terms of any determinant highest.
We are looking at the case a = 3,b = ¢ = 4. The variety V(G) = V(I) consists
of all complex 4 x 4-matrices of rank < 2. We can compute the dimension of
this variety using Theorem 3.7. There are twenty maximal standard sets for
I. They all have cardinality 12. One such standard set is

S = { Pan, Pac, Pag, Pat, Pcas Pees Pees Pets Peas Pees PTas P1c }

Indeed, none of the monomials in these twelve unknowns lie in the initial ideal

inc(I) = <pAApCCpGG y» PAAPcCPGT 5 PAAPCGPGT 5 - - -5 PCCPGGPTT >

Theorem 3.7 implies that the variety V(I) has dimension |S| = 12, and its
intersection with the probability simplex, Va(I), has dimension 11.
To illustrate the division algorithm, we consider the non-standard monomial

h = paa-Dcc - Pec - Prr

The normal form of ~ modulo G is the following sum of 12 standard monomials:

ng (h) = PaaPctPecPTC + PAcPcAPGTPTG — PAcPCTPGePTA + PAGPCcPGAPTT
—PAcPccPeTPTA — PacPcTPcAPTC + PacPcTPGcPTA — PATPCADGGPTC
—PaTPccPcAPTG + PATPCGPeAPTC — PATPCePGePTA + 2 * PATPCccPecPTA

We have h = nfg(h) for all probability distributions as in (3.6).

Our assertion in Example 3.9 that the 3 x 3-minors form a Grobner basis
raises the following question. Given a fixed term order <, how can one test
whether a given set of polynomials G is a Grobner basis or not? The answer is
given by the following criterion [Buchberger, 1965]. Consider any two polyno-
mials g and ¢’ in G and form their S-polynomial m’g —mg’. Here m and m' are
monomials of smallest possible degree such that m'-in<(g) = m-ins(¢’). The
S-polynomial m/g —mg’ lies in the ideal (G). We apply the division algorithm
modulo the tentative Grébner basis G to the input m’g — mg’. The resulting
normal form nfg(m’g —mg’) is a Q-linear combination of monomials none of
which is divisible by an initial monomial from G. A necessary condition for G
to be a Grobner basis is that this result be zero:

nfg(m'g —mg’) = 0 for all g, ¢’ € G. (3.7)
Theorem 3.10 (Buchberger’s Criterion) A finite set of polynomials G C

Q[p1,---,pm] is a Grobner basis for its ideal (G) if and only if (3.7) holds,
that is, if and only if all S-polynomials have normal form zero.
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So, to check that the set G of the sixteen 3 x 3-determinants in Example 3.9
is indeed a Grobner basis, it suffices to compute the normal forms of all (126)
pairwise S-polynomials, such as

Prc - (pAApccpcc — PaapcePee — - - ) — Paag - (pAApccpTG — PaaPcePrc — - - )

—PaaPccPccPTc + PanPccPecPTc + PacPcePeaPTe — PAcPcePcePTA
+DacPcaPecPT6 — PAcPcAPcePTc — PacPccPeaPte + PacPccPecPTA

The normal form of this expression modulo G is zero, as promised.
We are now prepared to state the algorithm for computing Grébner bases.

Algorithm 3.11 (Buchberger’s Algorithm)

Input: A finite set F of polynomials in Q[p1, p2, ..., pmn] and a term order <.
Output: The reduced Grébner basis G of the ideal (F) with respect to <.
Step 1: Apply Buchberger’s Criterion to see whether F is already a Grobner
basis. If yes go to Step 3.

Step 2: If no, we found a non-zero polynomial nfg(m’g — mg’). Enlarge the
set F by adding this non-zero polynomial and go back to Step 1.

Step 3: Transform the Grobner basis F to a reduced Grobner basis G.

This loop between Steps 1 and 2 will terminate after finitely many iterations
because at each stage the ideal generated by the current initial monomials get
strictly bigger. However, in light of Hilbert’s Basis Theorem, every strictly
increasing sequence of ideals Q[p1, . . ., p] must stabilize eventually.

The Grobner basis F produced in Steps 1 & 2 is usually not reduced, so in
Step 3 we perform auto-reduction to make F reduced. To achieve the three
conditions in the definition of reduced Grobner basis, here is what Step 3 does.
First, each polynomial in F is divided by its leading coefficient to achieve
condition 1. Next, one removes redundant polynomials to achieve condition 2.
Finally, each polynomial is replaced by its normal form with respect to F to
achieve condition 3. The resulting set G satisfies all three conditions.

We illustrate Buchberger’s algorithm for a very simple example with m = 1:

F={p*+3p—4,p°—5p+4}.
This set is not a Grobner basis because the S-polynomial
p-(PP+3p—4)—1-(p°—5p+4) = 3p°+p—4
has the non-zero normal form
3p°+p—4 —3-(pP+3p—4) = —8p+8.

The new set F U {—8p + 8} now passes the test imposed by Buchberger’s
Criterion: it is a Grobner basis. The resulting reduced Grébner basis equals
G = {p—1}. In particular, we conclude V(F)= {1} Cc C.
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Remark 3.12 If 7 C Q[p] is a set of polynomials in one unknown p then the
reduced Grobner basis G of the ideal (F) consists of only one polynomial g.
The polynomial g is the greatest common divisor of F.

Buchberger’s algorithm is therefore a generalization of the Euclidean algo-
rithm for polynomials in one unknown. Likewise, the Buchberger Algorithm
simulates Gaussian elimination if we apply it to a set F of linear polynomials.
We can thus think of Grobner bases as a Euclidean algorithm for multivariate
polynomials or a Gaussian elimination for non-linear equations.

In summary, Grobner bases and the Buchberger Algorithm for finding them
are fundamental notions in computational algebra. They also furnish the en-
gine for more advanced algorithms for algebraic varieties. Polynomial models
are ubiquitous across the sciences, and play a role in numerous biological con-
texts, including settings quite different from those described in this book. For
example, they are used in computational systems biology [Laubenbacher, 2003]
and for finding equilibria in reaction networks [Craciun and Feinberg, 2004,
Gatermann and Wolfrum, 2005]. Computer programs for algebraic geometry
include CoCoA, Macaulay 2 and Singular. All three are free and easy to use.
Within minutes you will be able to test whether a variety V(F) is empty, and,
if not, compute its dimension.

3.2 Implicitization

Consider the polynomial map which represents an algebraic statistical model:
f:Cc?—Ccm (3.8)

Here the ambient spaces are taken over the complex numbers, but the coordi-
nates f1,..., fin of the map f are polynomials with rational coefficients, i.e.,
fisoooy fm € Qlfy,...,04]. These assumptions are consistent with our discus-
sion in the previous section. We start out by investigating the following basic
question: is the image of a polynomial map f really an algebraic variety?

Example 3.13 Consider the following map from the plane into three-space:
f:C*—C, (61,02) — (67,01 02,01 02)
The image of f is a dense subset of a plane in three-space, namely, it is

f(C?) = {(p1,p2.p3) €C® : po=p3and (p; =0 implies p, =0) }
= (V(p2 —p3) \ V(p1,p2—p3)) U V(p1,p2,ps3).

Thus the image of f is not an algebraic variety, but its closure is: f(C2) =
V(p2 — p3). The set f(C?) is a Boolean combination of algebraic varieties.
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The following general theorem holds in algebraic geometry. It can be derived
from the Closure Theorem in Section 3.2 of [Cox et al., 1997].

Theorem 3.14 The image of a polynomial map £ : C* — C™ is a Boolean

combination of algebraic varieties in C™. The topological closure £(C%) of the
image f(C%) in C™ is an algebraic variety.

The statements in this theorem are not true if we replace the complex num-
bers C by the real numbers R. This can already be seen for the map f in
Example 3.13. The image of this map over the reals equals

f(R?) = { (p1,p2: p3) €R® ¢ py=p3 and (p1 >0 or py =py=p3=0)}.

The closure of the image is a half-plane in R?, which is not an algebraic variety:

f(R?) = {(p1,p2,p3) €ER® : pp=p3gandp; >0 }.

It is instructive to carry this example a little further and compute the images
of various subsets © of R% For instance, what is the image f(©) of the
square © = {0 < 61,60, < 1}7 For answering such questions in general, we
need algorithms for solving polynomial inequalities over the real numbers. Such
algorithms exists in real algebraic geometry, which is an active area of research.
However, real algebraic geometry lies beyond what we are hoping to explain
in this book. In this chapter, we restrict ourselves to the much simpler setting
of polynomial equations over the compler numbers. For an introduction to
algorithms in real algebraic geometry see [Basu et al., 2003].

We shall adopt the following convention: By the image of the polynomial map
f in (3.8) we shall mean the algebraic variety f(C?) in C™. Thus we disregard
potential points p in £(C4)\f(C?). This is not to say they are not important.

In fact, in a statistical model for a biological problem, such boundary points p
might represent probability distributions we really care about. If so, we need
to refine our techniques. For the discussion in this chapter, however, we keep

the algebra as simple as possible and refer to f(C9) as the image of f.
Let I denote the set of all polynomialsin Q[p1, . . ., py,] that vanish on the set

£(C%). Thus If is the ideal which represents the variety £(C9). A polynomial
h € Q[p1,--.,pm| lies in the ideal If if and only if

h(fi(t), f2(8), . fm(t)) = 0  forall t = (t1,ta,...,tq) €RL  (3.9)

The ideal If is a prime ideal. This means that if a factorizable polynomial
h =h'-h" satisfies (3.9) then one of its factors h’ or h” will also satisfy (3.9).
In the condition (3.9) we can replace R? by any open subset © C R¢ and we get
an equivalent condition. Thus Ir equals the set of all polynomials that vanish
on the points f(¢) where ¢ runs over the parameter space ©. The polynomials
in the prime ideal If are known as model invariants in algebraic statistics. For
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instance, for DiaNA’s model in Example 3.9, the model invariants include the
3 x 3-minors of the 4 x 4-matrix of probabilities.

The computational task resulting from our discussion is called implicitiza-
tion: Given m polynomials f1,..., fi, in Q[61, ..., 04 which represent a poly-
nomial map f : C¢ — C™, implicitization seeks to compute a finite set F of
polynomials in Q[py, po, ..., pm] such that (F) = If. Actually, it would be
preferable to have a Grobner basis G of the ideal Ir. Our point of view is this:

“compute the image of a polynomial map f

means “compute generators of the prime ideal I¢”

Example 3.15 We compute the images of five different maps f : C? — C3:

(a) If £ = (6%, 0105, 6105) then Iy = {py — p3). This is Example 3.13.

b) If f = (62, 20,05, 02) then Iy = (pip3 — 4p2) = Hardy-Weinberg.
1 2 2

(c) If £ = (63,6162, 65) then Iy = (pip3 —p3”).

) If £ = (60746102, 07+63, 0102+65) then we get the same ideal in new
coordinates: Ir = (2" (p1+p2 —p3)*(p2+p3 —p1)° — (p1 +p3 —p2)*°).
(e) If £ = (67 +063, 03+ 63, 0 +63) then we actually have to do a com-

putation to find I = (p§ — 4p3p3 — 4p3 + 12p1p3ps — 3pip3 — 2p3 ).

The last ideal If was computed in Singular using the following six commands:

ring s=0, (pl,p2,p3),1lp;

ring r=0, (t1,t2), lp;

map £ = s, t172+t272, t17°3+t273, t174+t274;
ideal i0 = 0;

setring s;

preimage(r,f,i0);

It should be tried and then redone with the third line replaced as follows:
map £ = s, t175+t1%t2, t1756+t274, t1*xt2+t274;

This produces the surface of degree 20 in Example 3.15 (d). The output is
very large, and underlines the importance of identifying a coordinate change
that will simplify a computation. This will be crucial for the applications to
phylogenetics discussed in Chapter 15 and 16.

In order to understand the way Grobner basis software (such as Singular)
computes images of polynomial maps, we need to think about the ideal Iy in
the following algebraic manner. Our polynomial map f : C¢ — C™ induces
the map between polynomial rings in the opposite direction:

£ Q[p17p27"'7pm] - Q[elv"'aed]
h(p17p27"'7pm) = h(fl(e)va(e)vvfm(e))
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The map f* is a ring homomorphism, which means that £*(h'+h") = £*(h/) +
£*(h") and £*(h'-1"") = £*(W')-£*(1"). Thus the ring homomorphism is uniquely
specified by saying that £*(p;) = fi(0) for all i. The kernel of £* is the set
(f*)71(0) of all polynomials h € Q[py,...,pm] that get mapped to zero by f*.

Proposition 3.16 The kernel of £* equals the prime ideal Iy C Q[p1, ..., Pm]-

Proof A polynomial h satisfies f*(h) = 0 if and only if the condition (3.9)
holds. Thus & lies in kernel(f*) = (£*)~1(0) if and only if h lies in If. O

If I is any ideal in Q[f1, ..., 0, then its preimage (£*)71(I) is an ideal in
Q[p1,---,pm]. The next theorem characterizes the variety in C" of this ideal.

Theorem 3.17 The variety of (£*)71(I) is the closure in C™ of the image of
the variety V (I) € C* under the map f; in symbols,

V(EHTia)) = f(v)) < cm (3.10)

Proof We identify the ideal I with its image in the enlarged polynomial ring
Q[O1,...04,p1,p2, - - -, Pm). Inside this big polynomial ring we consider the ideal

J = I+ <p1_f1(9)7p2_f2(9)7 7pm_fm(9)> (3'11)

The ideal J represents the graph of the restricted map f : V(I) — C™. Indeed,
that graph is precisely the variety V(.J) € C%™. The desired image f£(V (1))
is obtained by projecting the graph V(J) onto the space C™ with coordinates

D1, - - -, Pm- Algebraically, this corresponds to computing the elimination ideal
Y1) = J N Qpi,--.sPml- (3.12)
Now use the Closure Theorem in [Cox et al., 1997, Sect. 3.2]. O

The Singular code displayed earlier is designed for the setup in (3.10). The
map command specifies a homomorphism f from the second polynomial ring
s to the first polynomial ring r, and the preimage command computes the
preimage of an ideal i0 in r under the homomorphism f. The computation
inside Singular is done by cleverly executing the two steps (3.11) and (3.12).

Example 3.18 We compute the image of the hyperbola V(6162 — 1) under
the map f in Example 3.15 (e) by replacing the line ideal i0 = 0 ; by the
new line ideal i0 = t1*t2-1 ; in our code. The image of the hyperbola
in three-space is a curve which is the intersection of two quadratic surfaces:

()71 ((010o—1)) = (pips—p1—p3+2, pi—p3—2)  C  Q[p1,p2 ps
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Example 3.19 Consider the hidden Markov model of Subsection 1.4.3 where
n = 3 and both the hidden and observed states are binary (I = I’ = 2). The
parameterization (1.52) is a map f : R* — R® which we enter into Singular:

ring s = 0, (p000, p001, p010, pO11l, p100, pi101, p110, pli1l),lp;
ring r = 0, ( x,y, u,v ), lp;
map f = s, x"2*%u”3 + x*x(l-x)*u"2%(1-v) +
(1-x)*(1-y)*u” 2% (1-v) + (1-x)*y*u*x(1-v)~2 + (L-y)*xx(1-v)*u~2 +
(1-y)* (1-x)*(1-v) "2%u + y*(1-y)*(1-v) "2%u + y 2x(1-v)"3,
x"2xu" 2% (1-u) + x*x(1-x)*u"2*v + (1-x)*(1-y)*ux(1-v)*(1-u) +
(1-x)*y*ux (1-v) *v + (1-y)*x*x(1-v)*uwk(1l-u) +
(1-y)* (1-x)* (1-v)*u*xv + y*x(1-y)*(1-v) "2*x(1-u) + y 2% (1-v) "2%v,
x"2xu" 2% (1-u) + x*x(L-x)*ux(1-w)*(1-v) + (1-x)*(1-y)*u~2xv +
(1-x)*y*ux (1-v) *v + (1-y)*x*(1-v)*ux(1-u) +
(1-y)*(1-x)*(1-v) "2x (1-u) + y*(1-y)*(1-v)*xv*u +y 2% (1-v) "2*v,
x"2xux (1-u) "2 + xx(L-x)*ux(1-w)*v + (1-x)*(1-y)*urvx(l-u) +
(1-x)*y*uxv™2 + (1-y)*x*x(1-v)*(1-u) "2 + y 2% (1-v)*v"2 +
(1-y)*(1-x)*(1-v)*(1-u)*v + y*(1-y)*(1-v)*v*(1-u),
x"2¥%u”"2x (1-u) + xx(L-x)*ux(1-uw)*(1-v) +
(1-x)* (L-y) *ux (1-v) *(1-u) + (1-x)*xy*(1-w)*(1-v)"2 +
(1-y)*x*xvku~2 + (1-y)*(1-x)*(1-v)*uxv + y*(1-y)*(1-v)*v*u +
v 2x (1-v) "2*xv, x"2*%u*x(1-u) "2 + x*x(1-x)*ux(l-u)*v +
(1-x)*(1-y)*(1-u) "2* (1-v) + (1-x)*y*(1-w)*(1-v)*v +
(1-y)*x*xvru*x (1-u) + (1-y)*(1-x)*v~2*%u + y*(1-y)*(1-v)*v*(1-u) +
yo2x (1-v)*v~2, x"2*%u*x(1-u) "2 + x*x(1-x)*(1-u) "2*x(1-v) +
(1-x)* (L-y) *uxv* (1-u) + (1-x)*y*(1-w)*(1-v)*v +
(1-y)*x*xvku*x (1-u) + (1-y)*(1-x)*(1-v)*(1-w)*v + y*(1-y)*v " 2%u +
y 2% (1-v)*v"2, x"2%(1-u) "3 + x*x(1-x)*(1-u) "2%v +
(1-x)*(1-y)*(1-u) "2*v + (1-x)*y*(1-u)*v"2 + (1-y)*xxv*(l-u)~2 +
(L-y)*(1-x)*v" 2% (1-u) + y*(1-y)*v 2% (1-u) + y " 2%v~3;

Here the eight probabilities have been scaled by a factor of two (the initial
distribution is uniform), and the model parameters are abbreviated

oo =x, Opp=1—-x, Op=1-y, 61 =y

The model invariants of the hidden Markov model can now be computed using
ideal i0 = 0; setring s; preimage(r,f,i0);

This computation will be discussed in Chapter 11. Suppose we are interested
(for some strange reason) in the submodel obtained by equating the transition
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matrix 6 with the inverse of the output matrix €. The invariants of this
two-dimensional submodel are found by the method of Theorem 3.17, using

ideal 1 = x*u + x*v - X - vV, y¥u + y*v — y - u ; setring s;
preimage(r,f,1);

The extension of these computations to longer chains (n > 4) becomes pro-
hibitive. Off-the-shelf implementations in any Grobner basis package will al-
ways run out of steam quickly when the instances get bigger. More specialized
linear algebra techniques need to be employed in order to compute invariants
of larger statistical model. Chapter 11 is devoted to these important issues.

We next discuss an implicitization problem which concerns an algebraic vari-
ety known as the Grassmannian. In our discussion of the space of phylogenetic
trees in Section 3.5, we shall argue that the Grassmannian is a valuable geo-
metric tool for understanding and designing algorithms for biology. Let Q[6]
be the polynomial ring in the unknown entries of the 2 x n matrix

0 - (911 012 O3 ... 91n>
01 baa b3 ... O2,)

Let Q[p] = [pij : 1 <i<j<n] be the polynomial ring in the unknowns

{ P12, P13, P23, P14, P21, P34, P15,y -5 P }- (3.13)

Consider the ring homomorphism f* : Q[p] — Q[0], pi; — 61:62; — 01;602;.
The corresponding polynomial map f : C?*" — C(%) takes a 2 x n-matrix to
the vector of 2 x 2-subdeterminants of §. The image of this map is the Grass-
mannian, denoted Go, = f (C?"). The Grassmannian is an algebraic variety,

i.e., it is closed: f(C?*') = f(C2"). The prime ideal of the Grassmannian is
denoted Iy, = kernel(f*). This ideal has a nice Grébner basis:

Theorem 3.20 The ideal I>,, is generated by the quadratic polynomials
PikPjl — PijPkl — PilPjk (1<i<j<k<l<n). (3.14)

These form the reduced Grobner basis when the underlined terms are leading.

Proof See Theorem 3.1.7 and Proposition 3.7.4 in [Sturmfels, 1993]. O

The dimension of the Grassmannian G5, is computed using Theorem 3.7.
The initial ideal ins(I2,) = (pix-py : 1 <i<j<k<l<n) can be
visualized as follows. Draw a convex n-gon with vertices labeled 1,2,3,...,n.
We identify the unknown p;; with the line segment connecting the vertex ¢
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and the vertex j. The generators of in(I2,) are the pairs of line segments
that cross each other. Consider an arbitrary monomial in Q[p]:

m = H p?;j (where a;; > 0 for all (4, j) € S5).
(i,5)€S

This monomial m is standard if and only if m does not lie in in-(I2,) if and
only if the set S contains no crossing diagonals if and only if the line segments
in S form a subdivision of the n-gon. Hence a subset S of (3.13) is a maximal
standard set if and only if the edges in .S form a triangulation of the n-gon.

1

The number of triangulations S of the n-gon is the Catalan number 5 (27? )

The number of edges in each triangulation S equals |S| = 2n — 3.

Corollary 3.21 The Grassmannian G, =V (I2,) has dimension 2n — 3.

The ideal I5 ,, is known as the Pliicker ideal, and the quadratic polynomials
in (3.14) are known as the Plicker relations. The Pliicker ideal I3, has two
natural generalizations. First, we can replace 6 by a d x n-matrix of unknowns
(for any d < n) and we can define the Pliicker ideal I, by taking the algebraic
relations among the d x d-minors of 6. Thus Iz, is a prime ideal in the
polynomial ring in (Z) unknowns Q[p]| = Q[piliz---id 1< <ig < <
iqg < n] The corresponding variety in C(@) is the Grassmannian Gan =
V(Ign). Regarding Gy, as projective variety, the points in Gg, are in a
natural bijection with the d-dimensional linear subspaces of the n-dimensional
vector space C". Here p = f(0) € (C(Z) corresponds to the row space of
the matrix §. Theorem 3.20 generalizes to this situation: the ideal Iy, is
generated by quadratic polynomials known as the Pliicker relations. Among
these are the three-term Pliicker relations which are derived from (3.14):

DPuyvg_gik " Pui-wg_ojl = Pvi-vg_oij "Purivg okl = Pui-wg_oil " Puy-vg_ojk- (3.15)
The three-term Pliicker relations are not quite enough to not generate Ig .
The second natural generalization of the ideal I3 ,, is based on the identity
0 Pij Pk Dil
—pij 0 Pjk  Pjt | (3.16)
—pit —DPjk 0 pw
—pi —pjt —pr O

2
(pirpjt — pijpw — pupjk)” = det

This is a skew-symmetric 4 x 4-matrix with unknown entries p;;. The square
root of the determinant of a skew-symmetric 2k x 2k-matrix is a polynomial of
degree k known as its pfaffian. Hence the Pliicker relation (3.14) is the pfaffian
of the matrix in (3.16). Skew-symmetric matrices of odd size are singular, so
the determinant of a skew-symmetric (2k + 1) x (2k + 1)-matrix is zero.
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Remark 3.22 By Theorem 3.20 and (3.16), the Pliicker ideal I5 ,, is generated
by the 4 x4-subpfaffians of an indeterminate skew-symmetric n x n-matrix (p;;).

Let I3, be the ideal generated by the 2k x 2k-subpfaffians of a skew-
symmetric n X n-matrix p;;. Thus Iz, 2 = I ,, and I>¢3 is generated by

D14P25P36 — P15P24P36P14P26P35 + P15P26P34 — +P16P24P35
P16P25D34 + P13D26P45 — P12P36P45P16P23P45P13P25P46
— + P12P35P46 + P15P23P46 + P13P24DP56 — P12D34DP56P14D23P56

0 P12 P13 P4 P15 P16 (317)
-pi2 0 P23 P2a P25 P26
_ qotl/2 | P P23 0 psa pss s
—p14a —paa —p3a O D45 D46
—p15 —P25 —DP35 —pas 0 Dpse
—p16 —P26 —DP36 —Pi6 —Ps6 O

It turns out that I, j is always a prime ideal. We introduce k — 1 matrices

10— (9;; 9?% 9% 9?;) (s=1,2,....,k—1).
021 022 023 02

n

The 2(k — 1)n entries of these k — 1 matrices are the parameters for the map

g o (CPmk=1 ) (g g%y s £(0M) 4 - 4 £(0%D). (3.18)

Theorem 3.23 The image of the map g is the variety defined by the 2k x 2k-
subpfaffians. We have Ig = I, and image(g) = V(Iank)-

The variety V(I k) consists of all skew-symmetric n x n-matrices of rank
less than 2k. Geometrically, V(I2,.) is the (k — 1)st secant variety of the
Grassmannian. Indeed, the passage from the polynomial map f to the polyno-
mial map g in (3.18) corresponds to the geometric construction of passing from
a projective variety to its (k — 1)st secant variety. For a proof of Theorem 3.23
see [De Concini et al., 1982]. The Grobner basis in Theorem 3.20 generalizes
from Iy, to I, k, and so does its convex n-gon interpretation. The initial
ideal in. (I, k) for a suitable term order < is generated by the k-element
sets of pairwise crossing diagonals (see [Dress et al., 2002]). As an example
consider the 15 monomials in the cubic pfaffian given above (this is the case
k = 3,n = 6). The underline initial monomial is the only one that represents
three pairwise crossing diagonals.

There are many biologically important models for which a complete descrip-
tion of the prime ideal has not yet been established. For instance, consider
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the two hidden tree models in Examples 1.24 and 1.25. When taken with
unspecified root distributions, these models are specified by polynomial maps

f.CclB - b and .0 