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Summary. We derive leverage measures in inequality-constrained linear regression models. When
the restricted and unrestricted least squares estimates agree, the usual leverage measure hii from
the unrestricted linear regression is also extended to the restricted case. However, under violation,
hii is decomposed into two new leverage measures which take account of the in¯uence of the
observations on their restricted ®tted values and on the change in the difference between the
restricted and unrestricted ®tted values. The last measure may be helpful to assess observations
which are discordant with the prior belief for the parameters. We discuss extensions to generalized
linear models, and two illustrative examples are given.
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1. Introduction

Firstly, consider the traditional linear regression model Yi � xT
i
â� ó Ei, i � 1, . . ., n, where

Y1, . . ., Yn are independent random variables, Ei has a standard normal distribution, â �
(â1, . . ., â p)T is a p 3 1 vector of regression coef®cients, ó . 0 and xi � (xi1, . . ., xip)

T is a p 3 1

vector of regression variable values. Further, suppose that we have the prior belief Câ > 0, where

C is a k 3 p known full row rank matrix. Let ~â and â̂ denote the inequality-constrained least

squares (ICLS) and the ordinary least squares (OLS) estimators respectively.

We may express the ICLS estimator (see, for instance, Paula (1993)) as

~â � â̂� (XTX)ÿ1CT

RË̂R, (1)

where

â̂ � (XTX)ÿ1XTY

is the OLS estimator of â,

Ë̂R � ÿfCR(XTX)ÿ1CT

Rgÿ1CRâ̂

is the estimated Lagrange multiplier vector, X is an n 3 p matrix with rows xT
i
, i � 1, . . ., n,

Y � (Y1, . . ., Yn)T and CR is a q 3 p matrix formed by q rows of C, q < k. From Theil and Van

de Panne (1960) the ICLS estimator (1) may be de®ned as the OLS estimator for the linear

regression problem subject to the linear equality constraints CRâ � 0. They proved that, if m rows

of Câ̂ violate the parameter constraints, at least one of these corresponding violated inequality
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constraints is satis®ed as an equality by the ICLS estimate. For example, if we have the violations

CT

j1
â̂, 0 and CT

j2
â̂, 0, where CT

j1
and CT

j2
denote two rows of C, we should have either CT

j1
â � 0,

or C j2
â � 0 or CT

j1
â � 0 and CT

j2
â � 0. Therefore, the matrix CR will be given by either

CR � CT

j1
, or CR � CT

j2
or CR � (C j1 , C j2 )T. We should take as CR the submatrix with rows of C

corresponding to violated inequality conditions that leads to the best linear equality least squares

solution. When there is no violation with the unrestricted estimate we have ~â � â̂.

In Section 2 two leverage matrices are obtained, under violation, for the linear inequality

regression model. Then, some leverage measures are derived and a sensitivity study under small

changes in the response values is performed for a particular example. Extensions to generalized

linear models are discussed in Section 3 and the last section gives some concluding remarks.

2. Leverage

Suppose that the observed vector y � (y1, . . ., yn)T is perturbed by adding b to the lth element

such that y l,b � y� bf l, where f l is the lth standard basis vector in Rn. The ICLS and OLS

estimators for the perturbed data are denoted respectively by ~â l(b) and â̂ l(b). Similarly, the

predicted response vectors for the perturbed data become ~y l,b � X ~â l(b) and ŷ l,b � X â̂ l(b).

Emerson et al. (1984) proposed a vector of generalized leverages due to perturbation of the lth

observation in unrestricted regression. St Laurent and Cook (1992) extended the methodology to

unrestricted non-linear regression. The derivation of a Jacobian leverage matrix and the use of its

principal diagonal elements as leverage measures have proved to be more informative than the

usual leverages in non-linear regression.

In inequality-constrained regression, however, the de®nition of leverage may be thought of in a

different way rather than that used in unrestricted regression. When there is no violation, ~â � â̂,

the usual leverage measures hii, i � 1, . . ., n, obtained from the principal diagonal of the hat

matrix

H � X(XTX)ÿ1XT,

may be used to assess the in¯uence of the observations on their own ®tted values. However, under

violation, hii does not correspond to a leverage measure for the restricted predicted values, which

suggests the calculation of a new leverage matrix. Then, following Emerson et al. (1984), we

propose the vector of leverages

F(b; l ) � 1

b
(~y l,b ÿ ~y),

where ~y and ~y l,b are the predicted values for the unperturbed and perturbed data respectively. Note

that CR is a matrix that depends on the violations and therefore on the values of Y. Then, if CR

does not change under small values for b we obtain (see the proof in Appendix A) the vector of

Jacobian leverages

J(l ) � lim
b!0
fF(b; l )g �Mf l, (2)

where M � HÿG is the new leverage matrix,

G � Z(ZTZ)ÿ1ZT

is the projection matrix onto C(Z), the subspace spanned by the columns of the n 3 q matrix

Z � X(XTX)ÿ1CT

R:

The matrix G projects y into C(Z), by setting Gy � ŷÿ ~y. Thus, C(Z) may be interpreted as the
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subspace of the differences between the solutions (unrestricted and restricted) for Y, and G may

be obtained in an alternative way (see Appendix A) by considering the vector of leverages

F�(b; l ) � 1

b
fŷ l,b ÿ ~y l,b ÿ (ŷÿ ~y)g,

for which we obtain

J�(l ) � lim
b!0
fF�(b; l )g � Gf l: (3)

Therefore, G is interpreted as the leverage matrix which takes account of the in¯uence of

perturbing the observations on the change in the difference between the unrestricted and restricted

predicted values. Note that varf(Ŷi ÿ ~Yi)jCRg � giió 2, where gii is the ith diagonal element of

the matrix G. Hence, under violation, the larger is gii, the larger tends to be the difference between

the predicted values. Observations with large value for the difference Ŷ ÿ ~Y may be discordant

with the prior belief for the parameters.

In addition, we have ~y �My � (HÿG)y. Consequently, we can study the in¯uence of the ith

observation on its own restricted ®tted value by the relationship

~yi � mii yi �
Pn

j�1, j6�i

mij yj, (4)

where mij � hij ÿ gij. Since M is an idempotent matrix it follows that 0 < mii < 1, which implies

hii ÿ gii > 0. Thus, from equations (4), observations with large values for mii (hii large and gii

small) are potentially in¯uential on their restricted ®tted values. Similarly to Hoaglin and Welsch

(1978), a criterion here would be to select for further analysis those observations with mii greater

than twice the mean leverage, given by

m �Pn

i�1

mii=n � tr(M)=n � ( pÿ q)=n:

Therefore, the results above suggest the following leverage measures:

(a) h-leverage, for assessing the in¯uence of the observations on their ®tted values, when

Câ̂ > 0,

(b) m-leverage, for assessing the in¯uence of the observations on their restricted ®tted values

and

(c) g-leverage, for assessing the in¯uence of the observations on the difference between the

restricted and unrestricted ®tted values, when â̂ is not in accordance with Câ > 0.

2.1. Simple linear regression
Suppose now that E(Yi) � â1 � â2xi with the constraint â2 > 0. If we have the violation â̂2 , 0,

then ~â1 � y and ~â2 � 0. We may show in this case that

mii � 1=n

and

gii � (xi ÿ x)2=
Pn

j�1

(xj ÿ x)2,

for i � 1, . . ., n. Therefore, under violation, no observation is in¯uential on its restricted ®tted

value. However, those observations that are remote in the subspace C(X) are in¯uential on the

change in the difference between the predicted values.
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2.2. Example
To present an illustration, consider the data set given in Table 1, which describes the level of

application of three different materials used in various concentrations in an attempt to increase the

chance of survival (percentage) of a certain type of animal semen (Walpole and Myers (1972),

p. 311). Armstrong and Frome (1976) suggested the use of a linear regression Yi � â0 �
â1x1i � â2x2i � â3x3i � ó Ei, where Ei � N (0, 1), i � 1, . . ., 13, with the constraints â j > 0, j � 1,

2, 3. They imposed these constraints to remove those variables which would decrease the semen's

chance of survival.

Table 2 presents the OLS and ICLS estimates and the corresponding standard deviations.

Because there is no closed form for var( ~â), we consider the standard deviation of ~â from

var(~âjCR) � ó 2(XTX)ÿ1fIÿ CT

R(ZTZ)ÿ1CR(XTX)ÿ1g,
with ó 2 being replaced by its restricted estimate

~ó 2 �Pn

i�1

(yi ÿ ~yi)
2=(nÿ p):

Note that we have two violations, namely â̂2 , 0 and â̂3 , 0. From Armstrong and Frome (1976) it

Table 1. Results for 13 experiments involving the con-
centration of three different materials x i used to increase
the survival of animal semen{

Observation y x1 x2 x3

1 25.5 1.74 5.30 10.80
2 31.2 6.32 5.42 9.40
3 25.9 6.22 8.41 7.20
4 38.4 10.52 4.63 8.50
5 18.4 1.19 11.60 9.40
6 26.7 1.22 5.85 9.90
7 26.4 4.10 6.62 8.00
8 25.9 6.32 8.72 9.10
9 32.0 4.08 4.42 8.70

10 25.2 4.15 7.60 9.20
11 39.7 10.15 4.83 9.40
12 35.7 1.72 3.12 7.60
13 26.5 1.70 5.30 8.20

{Source: Armstrong and Frome (1976).

Table 2. Unconstrained and constrained estimates for the
animal semen example

â0 â1 â2 â3 ó 2 R2

Unconstrained estimates
39.157 1.016 ÿ1.862 ÿ0.343 4.297{ 0.912
(5.887) (0.191) (0.267) (0.617)

Constrained estimates
23.380 1.234 0.000 0.000 27.869{ 0.427
(2.622) (0.476) (0.000) (0.000)

{9 degrees of freedom.
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follows that the ICLS estimates agree with the least squares estimates subject to the linear equality

constraints CRâ � 0, where

CR � 0 0 1 0

0 0 0 1

� �
,

and â � (â0, â1, â2, â3)T. Fig. 1 displays the index plot for gii and mii. We see from Fig. 1(a) four

outstanding values for observations 1, 3, 5 and 12, which may be in¯uential on the change in the

difference between the predicted values. Looking at the data set in Table 1, we notice some

disagreements between these observations and the prior assumption of non-negative coef®cients

â2 and â3. For instance, observation 1 has a small value for Y and a large value x3, observation 5

has a small value for Y and a large value x2 and observation 12 has a large value for Y and small

values x2 and x3. From Fig. 1(b) we notice observations 4 and 11 with high m-leverage. These

observations have a disproportionate in¯uence on their restricted ®tted values.

The local in¯uence of the four outstanding observations on the change in the difference be-

tween the predicted values (Fig. 1(a)) is con®rmed in Fig. 2, which plots the difference di �
ŷi,b ÿ ~yi,b ÿ ( ŷÿ ~y) against b changing in the interval [ÿ2, 2], for i � 1, . . ., 13. Clearly, the

variations corresponding to these four outstanding observations are much more accentuated than

the variations in the remaining observations.

3. Generalized linear models

Suppose now that Y1, . . ., Yn are independent random variables and belong to the exponential

family of distributions such that E(Yi) � ìi and var(Yi) � V ( ìi)öÿ1, where V ( ìi) is the variance

function of ìi and öÿ1 is the dispersion parameter. Further, assume that ìi � gÿ1(çi), where

çi � xT
i â, g(�) is the link function and the parameters are constrained to Câ > 0. To motivate the

construction of the leverage matrices for generalized linear models, consider the iterative process

Fig. 1. Index plots for (a) g ii and (b) mii
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for obtaining the unrestricted maximum likelihood estimate of â (see, for instance, McCullagh

and Nelder (1989), p. 43), which is given at convergence by

â̂ � (XTV̂X)ÿ1XTV̂ẑ, (5)

where z � Xâ� Vÿ1=2(yÿ ì), V � diag(V1, . . ., Vn), ì � ( ì1, . . ., ìn)T and Vi � V ( ìi). Equa-

tion (5) is the least squares solution for the linear regression model

Ẑ � Xâ� õ, õ � N n(0, V̂ÿ1), (6)

where Ẑ denotes a random variable with observed value ẑ. The leverage matrix for model (6) is

given by

Ĥ � V̂1=2X(XTV̂X)ÿ1XTV̂1=2,

which may be interpreted as the projection matrix onto the subspace spanned by the columns

of V̂1=2X. Indeed, Ĥ is the projection matrix onto the tangent plane to the surface S �
fì( â); â 2 R pg at ì(â̂). The principal diagonal elements of Ĥ have been suggested as local

leverage measures in unrestricted generalized linear models (see, for instance, Pregibon (1981)

and McCullagh and Nelder (1989), p. 397). However, because

ĥii � V̂ix
T
i
(XTV̂X)ÿ1xi,

observations remote in C(X), which have

bii � xT
i
(XTX)ÿ1xi

large, do not necessarily have a large value for ĥii.

Hosmer and Lemeshow (1989), p. 153, presented some numerical studies for ĥii in logistic

regression. They showed that the leverage increases as the estimated probability moves from 0.5

to 0.9 or from 0.5 to 0.1. However, ĥii decreases rapidly as the estimated probability approaches 0

Fig. 2. Variation in the difference between predicted values: : : : : : :, observation 1; - - - - -, observation 3; ± ± ±,
observation 5; Ð Ð, observation 12; ÐÐ, other observations
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or 1. Therefore, ĥii has an interpretation similar to that of hii for an estimated probability in the

interval [0:1, 0:9]. It may be useful to display the plot of ĥii against the restricted ®tted values.

Extensions of M and G to restricted generalized linear models may be performed in a similar

way to that given in Section 2, by assuming the constraints Câ > 0 in model (6). Then, we ®nd

the local leverage matrix M̂ � Ĥÿ Ĝ, where

Ĝ � Ẑ(ẐTẐ)ÿ1ẐT

and

Ẑ � V̂1=2X(XTV̂X)ÿ1CT

R:

The principal diagonal elements of M̂ and Ĝ may be used for revealing observations which are

in¯uential in the same sense as mii and gii.

3.1. Example
As an illustration, consider the data set described in Table 3 (McDonald and Diamond (1983),

Table 1) on the distribution of pregnancy and natural abortion according to the degree of con-

sanguinity between the parents in three districts of Shizuoka City, Japan. Let ðij denote the

probability of natural abortion for the ith degree of consanguinity (1, no relation; 2, second

cousins; 3, 1± 1

2
cousins; 4, ®rst cousins) and jth district (1, rural; 2, intermediate; 3, urban). They

argued that the probability of natural abortion should increase with the degree of consanguinity

and suggested ®tting the linear logistic model

log
ðij

1ÿ ðij

� �
� á� äi � ã j, i � 1, . . ., 4 and j � 1, 2, 3, (7)

to the data, where ä1 � ã1 � 0 with the parameters subject to the constraints 0 < ä2 < ä3 < ä4.

Table 4 presents the unrestricted and restricted maximum likelihood estimates and the

approximate standard deviations. Since we have the violation ä̂3 . ä̂4, the restricted maximum

likelihood estimates may be obtained by ®tting model (7) constrained to CRâ � 0 (see, for

instance, McDonald and Diamond (1983)), where â � (á, ä2, ä3, ä4, ã2, ã3)T and CR �
(0, 0, ÿ1, 1, 0, 0). Algorithms to ®t linear inequality generalized linear models may also be found

in McDonald and Diamond (1990) and Fahrmeir and Klinger (1994). An approximate standard

deviation for ~â may be obtained from Nyquist (1991):

Table 3. Outcomes of 6358 pregnancies in three districts of Shizuoka City, Japan, according to
the degree of consanguinity of the parents

Case Residence Consanguinity Pregnancies Abortions % abortions

1 No relation 958 27 2.82
2 Rural 2nd cousins 160 1 0.62
3 District 1± 1

2
cousins 65 3 4.61

4 1st cousins 293 12 4.09
5 No relation 2670 67 2.51
6 Intermediate 2nd cousins 338 11 3.25
7 District 1± 1

2
cousins 237 11 4.64

8 1st cousins 654 23 3.52
9 No relation 543 7 1.29

10 Urban 2nd cousins 70 4 5.71
11 District 1± 1

2
cousins 110 3 2.73

12 1st cousins 260 7 2.69

Leverage in Regression Models 535



var(~âjCR) � (XT ~VX)ÿ1[Iÿ CT

RfCR(XT ~VX)ÿ1CT

Rgÿ1CR(XT ~VX)ÿ1]:

Figs 3(a) and 3(b) display respectively the plots of ĝ ii and m̂ii against the restricted ®tted

values. We see in Fig. 3(a) outstanding in¯uence for case 7. Its observed proportion of natural

abortion is larger than the proportion for case 8, contradicting the prior assumption ä3 < ä4. In

Fig. 3(b), case 5 appears with a large value for m̂ii, greater than 2( pÿ q)=n. Owing to the large

number of pregnancies case 5 appears remote in the subspace spanned by the columns of V̂1=2X.

4. Concluding remarks

The identi®cation of observations which are discordant with the prior assumption for the

parameters in inequality-constrained linear regression models may be very useful for ®nding

informative points in the data set. The well-known H hat matrix from the linear regression model

may be not appropriate when the constraints are violated by the unrestricted estimates. In these

cases, H is decomposed into H �M�G, and the information about leverage should be obtained

Table 4. Unconstrained and constrained estimates for the pregnancy and natural
abortion example

á ä2 ä3 ä4 ã2 ã3 Deviance

Unconstrained estimates
ÿ3.647 0.152 0.598 0.402 ÿ0.010 ÿ0.387 9.041{
(0.169) (0.273) (0.269) (0.187) (0.182) (0.271)

Constrained estimates
ÿ3.651 0.153 0.454 0.454 ÿ0.004 ÿ0.378 9.473{
(0.169) (0.273) (0.168) (0.168) (0.182) (0.271)

{6 degrees of freedom.

Fig. 3. Plots of (a) ĝ ii and (b) m̂ ii against the ®tted values
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from the principal diagonal elements of M and G, which may reveal respectively observations

with high in¯uence on the restricted predicted values and violations. It is interesting that obser-

vations with high g-leverage should not have a great effect on their restricted ®tted values. High

m-leverage is associated with large values for hii and small values for gii. The extension of

the procedures to generalized linear models is straightforward but care should be taken in the

interpretation of the diagnostic graphs, since the measures m̂ii and ĝ ii depend on the ®tted values.
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Appendix A: Proofs of equations (2) and (3)

To prove equation (2) consider that

~y l,b ÿ ~y � Xâ̂ l(b)ÿ Xâ̂� X(XTX)ÿ1(CT

Rb
Ë̂Rb
ÿ CT

RË̂R),

where CRb
denotes the matrix CR under the perturbation on the lth observation,

â̂ l(b) � (XTX)ÿ1XT(y� bf l)

and

Ë̂Rb
� ÿfCRb

(XTX)ÿ1CT

Rb
gÿ1CRb

â̂ l(b):

Therefore,

lim
b!0

1

b
fX â̂ l(b)ÿ Xâ̂g

� �
� X(XTX)ÿ1XTf l,

and by assuming that CR is constant in a neighbourhood of y we have

lim
b!0

1

b
fX(XTX)ÿ1(CT

Rb
Ë̂Rb
ÿ CT

RË̂R)g
� �
� lim

b!0

1

b
X(XTX)ÿ1[CT

RfCR(XTX)ÿ1CT

Rgÿ1CR ÿ CT

Rb
fCRb

(XTX)ÿ1CT

Rb
gÿ1CRb

](XTX)ÿ1XTy

� �
ÿ lim

b!0
X(XTX)ÿ1CT

Rb
fCRb

(XTX)ÿ1CT

Rb
gÿ1CRb

(XTX)ÿ1XTf l

h i
� 0ÿ X(XTX)ÿ1CT

RfCR(XTX)ÿ1CT

Rgÿ1CR(XTX)ÿ1XTf l:

By making H � X(XTX)ÿ1XT and G � Z(ZTZ)ÿ1ZT, where Z � X(XTX)ÿ1CT

R, we ®nd that

lim
b!0

1

b
(~y l,b ÿ ~y)

� �
� (HÿG)f l: (8)

To prove equation (3) consider that

lim
b!0

1

b
(ŷ l,b ÿ ŷ)

� �
� X(XTX)ÿ1XTf l:

Then, using equation (8) we obtain

lim
b!0

1

b
fŷ l,b ÿ ŷÿ (~y l,b ÿ ~y)g

� �
� Hf l ÿ (HÿG)f l � Gf l:
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