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Chapter 1

Introduction

Imagine a river, continuously flowing on, in a constant way running its course; the
water in the river always tends to flow in the direction with the minimal resistance
possible. Suppose during heavy rain the water in the river becomes higher and higher.
Then, suddenly, the water becomes so high that the river overflows its banks, allowing
the water to flow in the nearby meadows. Then it takes some time before the river is
adjusted to this new situation.

Statistical physics is an attempt for modelling natural processes. It tries to connect
the microscopic properties with the macroscopic properties. For the river the movement
of the water molecules is connected to the overall flow. The global properties of the river
are given by some universal laws for some characteristics, notwithstanding the huge
number of involved water molecules. Because of this huge number we have to apply
probabilistic methods (stochastics) on the underlying microscopic differential equations
defining the movement of all of the water molecules. Then if we look at the macroscopic
properties, we know almost for certain its global behavior. This global behavior can
be described by equations only depending on macroscopic properties. The underlying
microscopic part is removed by the performed stochastics.

Let us take a die to demonstrate some of the involved stochastic principles. As we
know, we have the same probability to throw a 1 or a 6. However, experience tells us that
after a small number of throws, the resultingrelative frequenciesof individual numbers
can significantly differ from each other. Only when we throw a die a large number of
times, the resulting relative frequencies of the numbers become more and more equal.
The same result can be arranged when we throw not one die many times, but rather
when we throw a lot of dice at once and then look at the relative number frequencies.
Obviously throwing one die 1000 times is equivalent to throwing 1000 dice one time.
Eventually all of the relative frequencies approach1

6 : on average every number appears
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once if we throw a die six times. This relative frequency of a number is sometimes
identified as theprobability of the number to appear. To shorten notation it is denoted
by P (i). For every numberi on our die,P (i) = 1

6 . The function which assigns to
each numberi the corresponding probability, we call the probabilitydistributionof the
property.

Suppose we have two dice. Then the combined probability equalsP (n1, n2), where
ni represents the numbers on the two dice. For instanceP (1, 1), the probability of
throwing with both dice a 1 equals16 ·

1
6 = 1

36 . Note that the throw of one die does not
depend on the outcome of the throw of the other die. We say that the outcome of die
1 is independentof the outcome of die 2. When two properties aredependenton each
other the expression for the combined probability is in general more complicated.

All matter around us is made out of atoms. Every gram of matter contains around
1023 atoms. Often one considers a collection of some global (bulk) properties in addi-
tion to the atomic properties. In the description of matter, all the atoms together with
the mentioned global properties define thesystem. Any particular realization of the
corresponding atomic values is called aconfigurationof the system. Determining the
configuration resembles the throwing of1023 dice at once.

Suppose one wants to measure a macroscopic property, for instance the average
density. Because of the large number of atoms, in the probability distribution of the
atomic values there is no need of the possibility of tracking the locations of the single
atoms. In case of the river: during the heavy rainfall, the river has a way of flowing
which does change in time. After some adjustments are made, the changes do stop;
the river flow becomes stationary. The time scale of the adjustments is extremely large
compared to the scale of the local movements of the water molecules. The way in which
the system properties are evolving we call thedynamicsof the system. In the global flow
of the river the microscopic movements of the water molecules have been averaged out.

In the next chapter we give a general overview of the part of statistical physics
which is important for the two particular kind of models we study in this thesis: neural
networks and Ising models.

Neural networks

The first subject of the thesis is about a model originating in the theory of neural net-
works. In particular we like to understand the concept of memory. Our brain is built up
out of billions of neurons connected in a highly non-trivial way. This structure we call
a neural network. It is difficult to study it directly, because of the huge number of neu-
rons involved in a relatively small area. In order to understand how the memory works,
a common approach is to build a simpler model which captures its main features. Just
as the neural network of the brain, the model should be sufficiently robust: in transmit-
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Figure 1.1: Components of a neuron(taken from [19])

ting signals between neurons there are always some small errors involved. Given this
slightly deformed signal, the brain is able to remove the noise and to reconstruct the
pure signal. For a good general overview of neural networks see [19].

A neuron is build up of three parts: the cell body, the dendrites and the axon, see
Figure 1.1. The dendrites have a tree-like branched structure and are connected to the
cell body. The axon is the only outgoing connection from the neuron. At the end of the
axon it branches and it is connected to the dendrites of other neurons via synapses. The
end of any branch of the axon is separated from a dendrite by a space called the synaptic
gap.

Neurons communicate with other neurons via electric signals. The electric signal of
a neuroni transfers to a neuronj in the following way, see Figure 1.2. First it travels
from the cell body of neuroni into the axon which is connected to neuronj. This is the
outputsignal of neuroni. When the signal of the neuron arrives at the end of the axon
it transmits neurotransmitters into the synaptic gap. Then by receptors on the dendrite
of neuronj the neurotransmitters are transformed back to an electric signal. There are
several types of neurotransmitters. Some of transmitters amplify the incoming signal
before transmitting it to the dendrites of other neurons, whereas others weaken it.

This resulting signal originating from the receptors of neuronj we call theinput
signal from neuroni to neuronj. Finally the signal arrives at the cell body of neuronj.

In the cell body of neuronj all the inputs come together. The cell processes the
inputs (as we will model mathematically by performing aweighted sum), what we call
thetotal inputhj of neuronj. Then, depending on the outcome, the cell produces a new
signal which is transported to the axon of the neuronj in order to be transferred to other
neurons. This is called the output or theconditionof neuronj.

For making a useful model based on these neural processes we need to make some
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Figure 1.2: The synapse(taken from [19])

simplifications. As a first simplification we assume that every neuron interacts with
every other neuron. We say that the neural network isfully connected. Further we
assume that each neuron can have only two possible outputs, i.e. it can only be in two
conditions. For reference we denote byσi the condition of neuroni: σi = +1 if it is
excitedandσi = −1, when it is atrest.

We also assume that no alteration of the signal takes place when it travels across a
synaptic gap. As result the input to neuronj which comes from neuroni is equal to the
outputσi from neuroni which is send to neuronj.

For modelling the dynamics of our model we introduce the timet. At every time step
∆t (with ∆ very small) every neuron output is changed simultaneously. The processing
of the cell body of every neuronj we model by two steps:

1. At time t we multiply every inputσi(t) coming from the other neurons with a
weight. To obtain the total inputhj(t) at timet we sum the result over all of the
neurons (except neuronj).

2. For the outputσj(t + ∆t) of neuronj at timet + ∆t we take the outcome of a
probability distribution over the two possible neuron conditions. This distribution
is formed by a stochastic rule onhj(t).

We assume that the connections are treated by the neuron cell bodies in a symmet-
rical way: the weight given in neuronj to the input of neuroni is equal to the weight
given in neuroni to the input of neuronj. In realistic neural networks in general this
interaction symmetry does not hold.

The dynamics of our model is summarized by Figure 1.3. The stable configurations
under this dynamics form thememoryof the system. Stability means that starting from
a stable configuration the system only reaches configurations which are very much alike
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output of all of the
neurons at timet

→
total inputhj(t):
weightedsum of
all of the outputs

→ output of neuronj at timet+ ∆t:
the outcome of stochastic rule onhj(t)

Figure 1.3: Dynamics of the neural network model

(in the sense of neuron configurations). By choosing appropriate weights we can tune
the dynamics such that the memory is formed by a finite numberm of preselected
neuron configurationsξ(m), also calledpatterns.

The stochastic rule depends on a parameterβ. The inverseT = 1/β of parameter
β is calledtemperature. If parameterβ is large, the neuron has a strong tendency (high
probability) to become equal to the sign of its total input. Asβ approaches infinity the
stochastic rule turns into a deterministic one. Then, if we put in a configuration which
is close enough to e.g.ξ(1), the system evolves to configurations equal to the pattern
ξ(1). In other words the neural networkremembersthe configurationξ(1) of its memory.
This means that the neuron configuration becomes equal toξ(1) and, afterwards, the
system stays in this configuration. This is the so-called zero-temperature dynamics of
the Hopfield model, see Section 2.3.2. It is e.g. very useful for information transmission.
The dynamics defines algorithms to remove noise from the received signals. Often it is
advisable to allow the parameterβ to be finite. Then, when we perform the dynamics of
Figure 1.3, we have excluded the probability of getting trapped in undesired so-called
metastable configurations.

In order to increase the capacity of the memory, obviously one can make the gener-
alization of increasing the number of possible conditions to a finite larger numberq. In
information transmission if one takesq = 26, every neuron state corresponds to a letter.
Of course, forq < 26 one can also deal with words by a more carefully encoding, but
then the encoding becomes less clear. If we make in the above model this generalization
to have more possible neuron conditions than two, the resulting model is also known as
the Potts-Hopfield model.

In Chapter 3 we choose the weights in the total inputs in a different way. For this we
need to define first for each neuron a set ofp continuous variablesξ(p)i which we refer
to as patterns. We take at random a realization of these variables. They have a Gaussian
distribution. This special distribution is often used in statistics. Then with the values
of the introduced patternsξ(j)i we determine the weights for the total input. What will
be the memory of the resulting model? Are there any stable neuron configurations? We
will also look what happens when we increase the total number of neurons. What will
be the effect on the memory?

We form the weights of the total input by two Gaussian patterns. The possible num-
ber of conditions of a neuron we set to three. When we increase the number of neurons,

13



for large numbers the following will happen. For a fixed number of neurons, the mem-
ory is concentrated around six neuron configurations. These configurations are related
to each other by a discrete symmetry. Every neuron configuration is associated to a
point in macroscopic space formed by some macroscopic variables. We can differenti-
ate the six stable neuron configurations into pairs of diametrical opposite points. When
one increases the number of neurons the discrete symmetry always occurs, however the
six configurations tend to rotate on three circles. This we will see in Chapter 3. If we
look at the sequence of increasing number of neurons, then in the macroscopic space of
above, the appearing stable neuron configurations do fill up the three circles in a regular
uniform way.

Ferromagnets

In Chapter 4 we consider a famous model for magnetic materials: the Ising model. In
general there are several kinds of magnetism. For the so-calledparamagnetsonly when
we are applying an external field to it, the metal is magnetized. Otherwise there is no
magnetization. Another important type of metal are theferromagnets. These metals
retain their magnetization, once they have been exposed to an external field. Initially
the ferromagnetic metals have no magnetization. This is comparable with what happens
when we magnetize pieces of iron with the help of a magnet. When we heat the material,
then eventually this effect disappears: the metal behaves like a paramagnet. For more
general information about magnetism we refer to e.g. [46]. We will use the Ising model
as a model for ferromagnetism.

Ising models

For justification of the Ising model as a model for a ferromagnet, we need to make
some assumptions. We assume that the unpaired electrons of the outermost shell of the
atoms arelocalized: i.e. closely bound to the corresponding atoms. Only these unpaired
electrons are responsible for the magnetization. For the Ising model we assume that for
every atom only one unpaired electron is in the outermost shell.

Every electron has an intrinsic angular momentum which we callspin. This spin
generates a magnetic moment. Due to quantum mechanics the spin of the electron can
have only two orientations with respect to this magnetic moment, which we callup
anddown[5]. With a bit abuse of notation we mostly refer to these orientations as the
valuesof the spin. Because we have assumed every atom only has one unpaired electron
in the outermost shell, we also have only two orientations for the total spin per atom.
Most of the metals do consist of atoms with more than one unpaired electrons in the
outermost shell. For these metals there can be more than two orientations of the total
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spin per atom. Most solid materials are crystalline. The atoms, or ions or molecules do
lay in a regular repeated 3 dimensional pattern. This makes some finite number of spin
orientations energetically favorable.

In magnetizable metals the metal is divided into domains which have net magnetic
moments. The boundaries between these domains are calleddomain walls[46]. The
Ising model only allows for configurations in which the spins of two neighboring elec-
trons are parallel or anti-parallel with respect to each other. If there is a domain wall
present, the thickness of the domain wall is automatically zero.

The interactions between the localized electrons are also called theWeiss interac-
tions. In general two types of interactions do frequently occur:nearest neighborand
mean-field. When we restrict ourselves to nearest-neighbor interactions, we assume that
all of the remaining interactions between the electrons, which are not nearest neighbors,
are zero. When the interaction is mean-field, then the interaction between the moments
of any pair of sites is non-zero and all of them are equal.

For the Ising model we restrict ourselves to the nearest-neighbor interactions. For
the lanthanide series (a particular series of elements) this is a good approximation. Al-
though the model is simple and is for other magnetic metals at most only a rough ap-
proximation it is and has been very useful model. It is the first model (and for long time
the only model in statistical physics) which displays the phenomenon of phase transi-
tion (e.g. think about the liquid→ gas transition). Furthermore it is exactly solvable in
1 and 2 dimensions. Nowadays the Ising model (and generalizations of it) appears in
several places, e.g. all kinds of optimization problems, voter problems, models for gas
versus liquid, etc.

Now we give a mathematical description of the model. Take a piece of a lattice.
Every point where a vertical line does cross a horizontal one we refer to as asite. The
horizontal and vertical line-pieces starting from a site and ending by the nearest next
crossing we refer to asbonds. On every sitei there is an atom which has a net spin
magnetic moment to which the spin can have only two orientations. We denote the
spin-value byσi = +1 when the spin is oriented up andσi = −1 when the orientation
of the spin is down. We refer both to the atom as to the spin orientations asspin. The
configurationσ of the spins is in our case an array, which contains the spin-valuesσi of
every site.

Between each pair of nearest-neighbor spins (i.e. every pair of spins associated with
a single bond) there is aninteraction

Eex
ij = −βσiσj ≡ Jσiσj (1.1)

We call often this interaction also theexchange energybetween the atoms on sitei and
j. Theenergyof a configuration is the total of these exchange energies. The variableβ
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is the inverse of the temperature times a constant, which depends on the type of material
considered.

The probability of the configurations are determined by these interactions. In ferro-
magnets the nearest-neighbor spins tend to have equal orientations, i.e. they tend to be
aligned. Therefore we have chosen the interactions in the model such that it becomes
more probable for spins to be aligned: we have setJ < 0. WhenJ > 0, the model
behaves like an antiferromagnet. Then it becomes more probable for spins to be anti-
aligned. The higher the energy is the less probable the configuration becomes. The
probability of a single configuration equals

P (σ) =
exp

(
β
∑

i,j σiσj
)

Z(σ)
=

exp
(
−
∑

i,j E
ex
ij

)
Z(σ)

(1.2)

whereZ(σ) is the sum of the numerator over all configurations. We see that when
the temperature gets lower, the interaction (1.1) becomes stronger. Then it becomes
more probable for nearest-neighbor spins to be aligned. From (1.2) we immediately
see that for zero temperature only the two configurations which minimize the energy do
appear with positive probability: i.e. every spin has the same orientation. For very high
temperatures every configuration becomes almost equally probable. Then the model
behaves like a paramagnet. The temperature is thus a measure of the disorder in the
system. For low temperatures most of the spins do align with each other, for high
temperature the orientations of the spins are more or less randomly up or down. In
Chapter 4 we will consider the most interesting part, the low-temperature ferromagnetic
region of the Ising model.

Until this moment we did not bother about the environment. When the energy of
the system is independent of this environment, we say that the system hasfree boundary
conditions. But what happens when this environment is formed by a different material
with a particular chosen configuration of spins? The values of the spins next to the
boundary not only tend to align the internal spins but also feel the nearest-neighbor
spins in the environment.

In general a piece of metal contains a lot of atoms. Already one gram contains
around1023 atoms. One likes to consider volumes which are of the order of the size
of the piece of metal. The volume size is measured in the number of atoms, thus also
of the order of1023. In the mathematical description of the model we approximate
this huge number by infinity. First one takes a large finite-volume version of the Ising
model. Then one tries to extrapolate the resulting expressions to an ’infinite’ volume
size model.

What will happen to the system when we increase the volume size, and choose for
each step the orientations of the external spins arbitrarily up or down, i.e. we takeran-
dom boundary conditions? How does the alignment of the spins change in the process
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of increasing the volume? It turns out to be dependent on the way we let the volume size
increase. Our results depend on letting it increase fast enough. Furthermore we need to
choose the temperature very low so that there is a strong tendency for the spins to align.

Then, in the long run, by (1.2), in the appearing configurations almost every spin
has the same orientation. However, because we have chosen the boundary conditions
randomly, for half of the volumes the appearing configurations will have almost all of
the spins up and for the other half of the volumes the configurations have almost all of
its spins down.

But now, if we look into the volume but far away from the boundary? Do we still
see an effect of the boundary conditions? We prove that the local volume density of the
area’s of aligned spins becomes asymptotically independent of the boundary conditions.
However, even for very large volumes, there is a significant effect on the density of spin
values. If we look at a fixed (very large) volume, then with probability one, either
all configurations have all the spins up or have all the spins down. Almost all of the
orientations becomes equal to the orientation of the majority of the external spins which
are involved in the boundary condition. Because of the non-zero temperature a small
part of the spins has an opposite orientation.

Because we have increased our volumes fast enough the so-calledmixturesdo not
appear. This means we do not have with nonzero probability both type of configurations:
i.e. having configurations with most of the spins up and configurations with most of the
spins down.

This is the subject of Chapter 4. There as a technical tool we need to introduce
non-trivial expansion techniques, calledmulti-scale cluster expansions. Our multi-scale
expansion method is inspired by the ideas of Fröhlich and Imbrie [35]. The multi-
scale expansion is a generalization of the more familiar ’uniform’ cluster expansion
technique. To simplify our estimates we choose to use a different representation of
the expansions from the one used in [35], the so-calledKotecḱy-Preiss representation,
which was developed just two years later [50].

In order to have useful expansions, one needs to prove certaincriteria: we need the
convergence of some summations related to the expansions. For cluster expansions it is
crucial to check the Kotecký-Preiss criterion. However, in our expansions it is impossi-
ble to prove it directly. Therefore we introduce a new criterion, which we prove to be
equivalent. This new criterion enables us to obtain useful estimates even for our expan-
sions. In the final chapter the uniform and multi-scale cluster expansions are explained
more thoroughly.

Schematically the thesis is built up as follows:
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Chapter 2

General overview

2.1 Gibbs measures: Ising model

2.1.1 The Ising model

In some metals, some fraction of the atoms becomes spontaneously magnetized, when
the temperature is low enough. This happens for instance in iron and nickel. The
magnetized spins, which are the intrinsic magnetic moments of the atoms, tend to be
polarized in the same direction (e.g. all up) which gives rise to a macroscopic mag-
netic field. We call this ferromagnetic behaviour. However, when the temperature is
above someTc then all spins are oriented randomly and there is no macroscopic mag-
netic field anymore [44]. The interaction between the magnetic moments is short-range.
However these short-range interactions do provoke long-range ferromagnetic behavior
in the system. These metals have a rather homogeneous-crystalline structure with the
atoms fixed, apart for some minor moving. This makes that the short-range interactions
are typically homogeneous ones.

The Ising model tries to model this transformation of typically-homogeneous short-
range interactions into long-range phenomena in physical ferromagnets. In this model
we look only at the basic features of a ferromagnet. We assume that the metal atoms are
on a regular crystalline latticeΛ, which is in general a subset ofd. Every point of the
lattice contains precisely one atom.

Furthermore this atom is fixed and the only degree of freedom is its spin i.e. its
magnetic moment. In reality the atom moves a bit around its lattice point, but be-
cause of strong crystalline binding this movement is limited. In this model we have
neglected the effect of these movements. We assume that the environment outside the
metal changes adiabatically slowly. For real ferromagnets this is indeed typically the
case when we compare the microscopic changes in the crystal with the macroscopic
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exterior environment. Without any harm we consider this environment to be fixed: the
so called boundary condition toΛ. On every pointi of Λ there is precisely one particle
which has only its spin-valueσi as degree of freedom. The spins can only point up or
down, or equivalently its spin-valuesσi are restricted toσi = ±1. Here is some re-
scaling involved, but for the total picture this pre-factor is not important. There are only
nearest-neighbor pair interactions between the spins.

In reality crystals are never perfect, and because of thermal excitations some points
of the lattice are empty and other parts of the lattice are deformed. Also more spin-
values are allowed. Despite its serious restrictions compared to reality, the Ising model
still shows the long-range ferromagnetism it was designed for (if the dimensiond ≥ 2
and the temperatureT is low enough) e.g. [20]. This is in contrast to Ising’s claim; he
found no ferromagnetism in dimension 1 and he conjectured wrongly that the same was
true ford ≥ 2.

As usually happens to simple models, all sorts of generalizations to the Ising model
have been done. The reality connection with the ferromagnets is often not so clear
or not even there at all. However, we see Ising models in various places to explain
many phenomena; Ising models are equivalent to lattice gases, closely related to many
percolation problems and useful for optimization problems as well.

We can generalize the Ising model by allowing the spins to have more spin-values.
The result is a so-called Potts model when this amount of spin-values is finite. It was
proposed by Domb as a subject for his student Potts. Using duality arguments Potts was
able to determine for the standard Potts model ford = 2 the critical pointsβc for all
values ofq. Further on, in Chapter 3, we will see these Potts spins of the standard Potts
model. Another way of generalizing is to allow the spins to have continuous values on
a sphere: e.g. the Heisenberg model.

We return to the Ising model and make things more concrete. So -in other words-
let’s put the model into math. We use the canonical-ensemble description from statisti-
cal physics. It describes systems for which their exterior functions as a heat reservoir.
Each member of the ensemble is represented by a point in the phase space. All the
possible system behavior is described by this phase space together with a probability
distribution on the ensemble. For Ising systems the phase space is discrete because the
only freedom of the system are the spins. Because each spin can take only two values

the phase space equals{−1, 1}
d

. Each point of the phase space we call a (spin) con-

figuration. Denote byσ the spin configurationσ ∈ {−1, 1}
d

. The restriction ofσ to
the finite-sizedΛ we refer to asσΛ ∈ {−1, 1}Λ, where

Λ = {−L,−L+ 1, · · · , L− 1, L}d (2.1)

andΛc = d \ Λ.
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When the system settles into thermodynamical equilibrium, the probability of the
spins to be in the configurationσ is described by the so called (finite-size) Gibbs mea-
sure:

µηΛ(σΛ = σ̂Λ) =
exp (−Hη

Λ(σ̂Λ))
ZηΛ

(2.2)

We denote by< . >η the expectation of the argument with respect to the Gibbs measure
µηΛ. ZηΛ is the partition function which we obtain by summing over all configurations
the corresponding Gibbs-weight of the configuration.

The free energy of the system per spin equals

F ηΛ = − 1
β|Λ|

logZηΛ, with β =
1
T

(2.3)

For a setA ⊂ d, the symbol|A| refers to the number of sites contained inA. For more
details and the derivation for the particular choice of the Gibbs measureµΛ we refer to
any statistical mechanics book, for instance [44].

The functionsHη
Λ(σ) are the energy functions or the Hamiltonians of the configu-

rationsσΛ. For the Ising model they are defined as follows:

Hη
Λ(σΛ) = −β

∑
〈x,y〉⊂Λ

(σxσy − 1)− β
∑
〈x,y〉

x∈Λ, y∈Λc

σxηy (2.4)

where〈x, y〉 stands for nearest neighboring sites. This means in particular that‖x −
y‖ = 1, where‖.‖ is the Euclidean norm. Byη we denote the fixed boundary conditions,
i.e. to the spin-values of the spins inΛc. When we do not include boundary conditions
we speak about free boundary conditions. Equivalently we drop the second term in the
Hamiltonian. Indeed, the expression for the resulting free energy then is independent of
the boundary condition. For the corresponding Hamiltonian we writeHΛ(σ).

Note that because the interactions are only nearest neighbor only theη’s in the sites
x ∈ Λc with d(x,Λ) = 1 are involved.ZηΛ is the partition function which we obtain
by summing over the Gibbs-weights of all configurationsσΛ. As we see from (2.4) the
spins tend to align to each other.

Mean field: Curie Weiss

In general, the partition functionZηΛ is hard to compute for the Ising model. For one
dimension this can be treated simply by the so called transfer matrix methods. When
d = 2 there is the famous, much more involved, Onsager solution which gives an
complete analytic expression also by using transfer matrices. For higher dimensions
however only partial results are known. So some approximation is introduced: the
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mean-field theory (we follow closely [68]). With this approximation we are able to
obtain an explicit expression for the Gibbs average of the global magnetization.

We look at free boundary conditions and we rewrite the Hamiltonian to

HΛ(σΛ) = βN(L)− β
∑

〈x,y〉⊂Λ

σxσy (2.5)

where N(L) is the number of nearest-neighbor bond pairs. Because the first term is not
dependent on the spin-variables it drops out in the Gibbs measure. So we are allowed
to ignore it.

Then we ’expand’ every spinσi around its Gibbs mean value< σi >≡ m and
denote the fluctuations by∆i = σi −m. Rewriting the Hamiltonian (2.4) gives for free
boundary conditions

HΛ(σΛ) = −β
∑

〈x,y〉⊂Λ

(m+ ∆x)(m+ ∆y) (2.6)

Now we assume that we can neglect the higher order terms in∆ so

HΛ(σΛ) = βm2N(L)− βm
∑
<x,y>

(σx + σy) = βm2N(L)− 2dβm
∑
x

σx (2.7)

Here we have assumed that every sitei has 2d bonds coming out from it. The corners
and intersecting planes on the boundary ofΛ are of lower dimension and therefore
ignored.

With the above the partition function easily follows:

ZΛ = Trσ exp (−βHΛ(σΛ)) = Trσ exp
(
βm2N(L)− 2dβm

∑
x

σx

)
=

expβm2N(L)(2 cosh exp 2dβm)|Λ| (2.8)

By Trσ we mean the sum over all possible2|Λ| configurations. Now we remember
thatm =< σi > which is the Gibbs-expectation of the mean of a single spin-value.
When we put it in, we obtain the so called mean-field equation form:

m =
Trσ σi exp (−βHΛ(σΛ))

ZΛ
= tanh 2dβm (2.9)

This equation has three solutionsm?, 0 and−m? whenever2dβ > 1, i.e. whenβ >
1/2d. The critical valueβc: 2dβc = 1 is the value where region ends where there is no
global magnetization, i.e. there is no non-zero solution.
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It turns out that the above mean-field equation (2.9) (after re-scaling) is the exact
solution form =< σi > of the infinite range version of the Ising model (see e.g. [68]).
This version is also called the Curie-Weiss model which has as Hamiltonian

HN (σ) = − β

N

∑
i6=j

σiσj (2.10)

where1 ≤ i, j ≤ N . Each spin has an (uniform) interaction with any other spin. We
will encounter more mean-field equations in Chapter 3.

2.1.2 Thermodynamical limit

In nature macroscopic systems are extremely large of the order of1023 atoms and more.
So it is natural to take the system size limitL → ∞. But when we take this limit the
Hamiltonian goes to infinity as well. The infinite limit expression of the Hamiltonian
does not make any sense. So how to define an infinite-volume Gibbs measure which
depends on this divergent function?

All is settled by defining the infinite-volume Gibbs measure by the condition that
all the conditional probabilities to finite-sized volumes are finite-size Gibbs measures
in a consistent way. The corresponding equations due to this condition are called the
DLR-equations.

Definition 2.1. An infinite-volume measureµ is a Gibbs measure if it satisfies the so-
called DLR-equations:

µ(·|ηΛc) = µηΛ(.) (2.11)

for all finite Λ andµ-a.e. everyη.

Equivalently: if we conditionµ on the configurationη outsideΛ we obtain the
finite-volume Gibbs measureµηΛ.

If we look at the finite-size Gibbs measuresµηΛL
and if we take the sequenceL =

1, 2, · · · it depends on the boundary conditionη what will happen for very largeL. The
sequence does not need to settle to a single limit Gibbs measure. ForL → ∞ the
sequence may oscillate between two or even more infinite-volume Gibbs measures.

To see some limiting structure one can define metastates. These metastates are
probability measures over the infinite-volume Gibbs measures. Later on we reveal more
details about metastates in Section 2.5.

When we cannot write the Gibbs measureµ as a combination of Gibbs measures,
e.g.µ = (µ′+µ′′)/2, we callµ an extremal Gibbs measure or a pure state. From (2.11)
follows whenµ′ andµ′′ are pure states, then all the convex combinations in between are
infinite-volume Gibbs measures.
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Figure 2.1: Typical configuration forµ+
β

As T → 0 the inverse temperatureβ → ∞. From (2.2) we see that we obtain for
infinite volumes only Gibbs measuresµ for which configurations of a strictly non-zero
weight (with respect toµ) do minimize the corresponding energy functionHη(.).

We call these states ground states and the corresponding set of non-zero weight
configurations ground-state configurations due to the following property. From the
corresponding ground-state configurationsσ, for every configurationσ′ we can cre-
ate by flipping any finite number of spins inσ the following holds: the difference of
Hη(σ′) −Hη(σ) ≥ 0. Note that we need to be careful, because in the infinite volume
limit Λ →∞ the energy tends to−∞ for a lot of configurations.

This does not mean that there are no statesσ′ for which the differenceHη(σ′) −
Hη(σ) < 0, whereσ is a ground-state configuration. What it does mean in dynamical
sense, is that the system will stay in the same state for an infinite amount of time.

2.1.3 Some choices of boundary conditions

For getting a better understanding of the Gibbs measure subjects we just introduced,
we consider some examples. All is for the Ising model defined in Section 2.1.1. For
simplicity we restrict ourselves mostly to 2 dimensions.

Uniformly agreeing

First we take as boundary conditionη ≡ 1, i.e. every sitey hasηy = +1. Looking at
(2.4) we see easily that only the configurationσ ≡ +1 minimizes the Hamiltonian. This
means that there is exactly one ground stateµ+ which equalsµ+

β→∞(σ) = δ(σ ≡ +1).
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Forβ large enough but finite, the Gibbs stateµ+
β which does appear tends to concen-

trate around this configurationσ = +1. The set of configurationsσ′ which do appear
with µ+

β -measure 1 is of the following structure:σ′ has typically small islands of−
spins in a sea+-spins. The small islands have small lakes of+-spins which can contain
islands of−-spins and so on. This set we will refer to as the+-ensemble later on. See
Figure 2.1 for an example.

The same is true for the boundary conditionη ≡ −1. Then the configurations has
small islands of+-spins surrounded by−-spins: the−-ensemble.

We can make this image plausible by proving the absence of large contours: in
literature often referred to as a Peierls bound. Consider all the bonds of the dual lattice

2? between nearest neighbor spins which have opposite signs. When we take the
union, the resulting closed curvesΓ do form the boundary between+ and− spins.
Every closed curve we call a contourΓ. The length|Γ| of the contour is the number of
dual bonds involved. Because of the boundary conditionη ≡ +1 every contour does
appear as a closed curve. Every set of non-intersecting contours defines exactly one
configuration when we only look at the+-boundary condition and vice versa. Later on
for different boundary conditions a more general definition is needed and more general
curves do appear.

When we look at the definition for the Hamiltonian (2.4) we see that

H+
Λ (σ = {Γ})−H+

Λ (σ ≡ +) = 2β|Γ| (2.12)

This means that for the relative probability it holds:

µ+(σ = {Γ})
µ+(σ ≡ +1)

= exp (−2β|Γ|) (2.13)

also called the weight or the cost of contourΓ. Note that the weight of a configuration
consisting of more contours factorizes into the weights of the single contours making
up the configuration.

Now we can prove the statement:

Peierls bound: Assumeβ > (log 3)/2 and + boundary conditions. Then for any
θ > 0 with µ+-probability one there are no contours larger thanLθ whenL→∞.
Proof.

µ+
Λ (σ : ∃ Γ with |Γ| ≥ Lθ)︸ ︷︷ ︸
θ > 0, possiblyLθ � Ld

≡ µ+
L (σ : ?) (2.14)
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Figure 2.2: Alternating boundary conditionsη for Λ7

Because of factorizationH+
Λ ({Γ1,Γ2}) = H+

Λ ({Γ1}) +H+
Λ ({Γ2}) and therefore

µ+
Λ(σ : ?) =

1
Z+

Λ

∑
σ:?

exp (−βH+
Λ (σ)) =

∑
Γ:|Γ|≥Lθ

exp (−2β|Γ|) 1
Z+

Λ

∑
σ: σ={Γ′}︸ ︷︷ ︸

σ′

∪Γ

exp (−βH+
Λ (σ′)) <

Ld
∞∑

n=Lθ

3n exp (−2βn) ≤ 2Ld exp (−(2β − log 3)Lθ) → 0

for L→∞, θ > 0 , β >
1
2

log 3 (2.15)

Note that the proof of the Peierls bound heavily depends on the uniform exponential
size decay of the contour weights.

Alternating

Now we choose the boundary conditionη as an alternation of+ and− spins, see Figure
2.2. Every boundary spin involved has a sign opposite to its nearest neighbors. Note
that this boundary condition gives rise to contours which are not closed curves.

Because the boundary condition does not favor any sign, the ground stateµ(σ) =
1
2 (δ(σ ≡ +1) + δ(σ ≡ −1)) = 1

2(µ+ +µ−), when we take even volume sizes. We see
that this boundary condition gives rise to a mixture; the ground state is a combination
of the two pure statesµ+ = δ(σ ≡ +1) andµ− = δ(σ ≡ −1).
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Figure 2.3: Typical configuration forµDobrushinβ

The Gibbs states do concentrate now around both pure states which together do
make the ground state:µ = 1

2(µ+ + µ−). The measureµ+ is the Gibbs measure which
concentrates only on the+-ensemble andµ− concentrates on the−-ensemble.

We claim that this means that there are no interfaces involved with probability one.
By an interface we mean a contour which crosses the square lattice (so is at least of
orderL). Of a (vertically-crossing) interface maximally half of the vertical bonds do
cancel in considering the weight; the weight of an interface is at mostexp (−β|Γ|) so
we can apply again the Peierls bound for proving the claim.

Dobrushin

Now we create a boundary condition for which interfaces do exist. We chooseη as
follows. For the upper half of the boundary we take all the spins+1 and for lower
half we do the opposite: all the spins−1. This boundary condition is also called the
Dobrushin boundary condition.

The possible form of the ground states is dimension-dependent. Ford = 2 ground
states and ford = 3 also Gibbs states do exist with an interface like in Figure 2.3. This
means that the interfaces appear with non-zero probability at a particular position.

Chaotic size dependence

When we choose the boundary conditions carefully we can ensure that the system does
not have a limiting Gibbs measure. Take for even system sizeL the boundary condition
+ and for oddL the boundary condition−. Then the sequenceµΛ2L

converges to
the unique Gibbs measureµ+. The restricted odd sequenceµΛ2L+1

converges toµ−.
However the full sequenceµΛL

oscillates betweenµ+ andµ− and never settles to a
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limit. It depends on the volume size what the measure looks like even when this size
goes to infinity. This limiting dependence we call size dependence. Instead of even and
oddness we can also choose the+ or− boundary conditions in a random way. Then for
very largeL the measure still may depend randomly onL. This is called chaotic size
dependence.

Quenched-random boundary conditions

The environment around the system can be changing randomly in time. However in
reality when this happens then these changes are typically adiabatically slow with re-
spect to the dynamical changes of the system. To model this we assume the external
environment is fixed and is an outcome of the random variables making the randomness
of the environment. This type of randomness we callquenched disorder. However we
must be a bit careful when we say that the external environment is fixed. Although
the disorder is quenched and therefore fixed, the boundary condition changes randomly
when we look at increasing sequences of volumes which are independently chosen of
the disorder.

Choose allηi i.i.d. (=independently identically distributed) according to the follow-
ing distribution

P (ηi = ±1) =
1
2

(2.16)

What will happen now? This is the question a considerable part of this thesis is all
about, in particular Chapter 4. Are there Gibbs states or ground states involved which
do contain all the above features: mixtures, interfaces, + and - ensembles? The answer
is not obvious from the beginning. Because although the probability of having interfaces
goes to zero in theη-distribution (Dobrushin-type configurations), it certainly does not
immediately follow that the Gibbs probabilityµ also goes to zero for the interfaces.

Furthermore there is no such thing as a limiting Gibbs state, because chaotic size
dependence is involved. For sparse enough sequences the limiting measure oscillates
randomly between measures concentrated on the+-ensemble and measures concen-
trated on the−-ensemble. For large enough volumes, withη probability one, neither
interfaces nor mixtures will occur. The above model is one of the simplest in which one
can study these things rigorously. The concepts have been developed for spin glasses,
in which much less is clear even at a heuristic level.
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2.2 Spin glasses

2.2.1 Ising spin glasses

In the previous section we have considered the Ising model, which models metals with
uniform spin-interactions. The spin glasses we now consider, are modelled by a system
with the same concepts but now the spin-interactions will be modelled by random inter-
actions. The atoms do not lay regularly on a crystal but are randomly placed in space.
In these spin-glasses these random places do change very slowly in time. Compared to
the dynamics of the spins these positions are fixed. After some time the spin values are
more or less like random distributed but do not change in time anymore. This rather
unusual behavior is seen in some alloys of ferromagnets and conductors like AuFe and
CuMn. In these metals the so called RKKY spin interactions are rapidly oscillating and
slowly decreasing. Because the atoms are randomly placed the sign of the interactions
is also random distributed.

We use the term glass because of the similarity with the glass of windows, which
are fluids but where the flow is almost infinitely slow. In the literature the term spin
glass is often used for a wider class of models which have a high amount of quenched
disorder in common but where the connection to the alloys is often lost.

Spin-glass models with infinite-range interactions turn out to be useful also for
explaining pattern recognition in neural networks, in error-correcting codes, image
restoration, and in all kinds of optimization problems [68].

For an explanation of the spin-glass phenomena the Edwards-Anderson model has
been introduced. This is an Ising spin glass with only nearest neighbor interactions
and therefore has only interactions between neighboring pairs of spins. The rapidly
oscillating interactions are modelled by i.i.d. Gaussians.

The Hamiltonian is as follows

HΛ = −β
∑

<i,j>∈Λ

Jijσiσj + hβ
∑
i

σi (2.17)

TheJij are quenched i.i.d. non-trivial random variables with common mean IE[Jij ] =
IE[J12] ≡ IE[J ] andh is an uniform magnetic field. The setΛ is a subset of d. Because
no boundary conditions do enter in the Hamiltonian the boundary conditions here are
free.

In real life when we study spin-systems we expect to observe only quantities which
depend on macroscopic properties. The couplings are microscopic and in practice
we do not know all the random places of the individual atoms. When we make the
setup we do this without knowing the particular realization of the couplings. So for a
proper measurement we need that the macroscopic properties we measure are coupling-
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independent. Therefore we should observe only states which we can create in a coupling-
independent way. These states we call observable states. If a state is not observable we
will call it an invisible state [67].

Whenh = 0 it depends on IE[J ] and onβ for which kind of configurations there
is a tendency to order in the system. Whenβ is low enough:β < βc then there is
no ordering in the system at all. The spins behave approximately independent of each
other; the system showsparamagneticbehavior. For some systems only this behavior
is possible andβc = ∞.

Whenβ ≥ βc there are three possibilities. When IE[J ] > 0 the system prefers
ferromagneticbehavior: all spins tend to have equal values. For IE[J ] < 0 the spin
values of nearest neighbor spins tend to be different from each other, which means the
system prefers to beanti-ferromagnetic. The third possibility, happening typically when
IE[J ] = 0, is the spin glass phasewhich we will consider now.

A good way to see these tendencies is to look at the so called Edward-Anderson
order parameterqEA:

qEA =
1
|Λ|
∑
i∈Λ

< σi >
2 (2.18)

where< . > is the Gibbs mean of the argument and|Λ| is the total size or the volume
of Λ. For paramagnetic behavior< σi >= 0 for every sitei, makingqEA = 0. When
the system behaves like aferromagnetor aanti-ferromagnet< σi >

2= 1 for every site
i. This makesqEA = 1: its maximal possible value.

When we set the average IE[J ] of the couplings to zero the systems prefers as many
spin pairs for whichσiσj = +1 as for whichσiσj = −1.

With the field h we have some control over the spin-values, when the average
IE[J ] = 0 or small in magnitude compared toh. When we puth > 0 the system
gives preference to+-spins, whenh < 0, the−-spins are more favored. However when
the field is not too large there is an intimate interplay between tendency due to the field
h and the tendency due to the couplingsJij .

Denote by[.] the coupling average: the average over the disorderJij . For calculating
e.g. the averaged free energy we first calculate the trace as before with a fixed random
realization. Then we take the average over the randomness. This because the change in
randomness over time is adiabatically small compared to the spin value changes due to
thermal activity.

The free energy per spin turns out to be a self-averaging quantity. This means that
with probability 1 the free energy per spin for a fixed realization of the couplings is
equal to the coupling mean when we take the system size limitΛ →∞. So the limit is
independent of the realization of the couplings. This is as it should be, because the free
energy is a macroscopic object.
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When the temperature is not too low< σi >= 0 for any sitei, because of param-
agnetism. This makes both the average magnetismm = [< σi >] = 0 andq = [<
σi >

2] = 0. For low enough temperature in general< σi >6= 0 due to the quenched
couplings. However when we average over the disorder it can happen due to alternat-
ing signs that[< σi >] = 0 although< σi >6= 0 for the typical realizations of the
quenched couplings. Butq = [< σi >

2] = [qEA] > 0. This scenario is calledthe
spin-glass phasewhich is the third possibility we have mentioned earlier on.

2.2.2 Mean field: SK-model

Because calculations for the short-range EA-model are extremely hard we can try to do
the mean-field approximation like we did in the Ising model. The result is the infinite-
range Sherrington-Kirkpatrick model of which the Hamiltonian is

HN = − β√
N

N∑
i<j

Jijσiσj + hβ
∑
i

σi (2.19)

again withJij the outcome of an i.i.d. random distribution. Often one takesJij as
standard Gaussian:Jij ∼ N (0, 1) and the external fieldh = 0. It is believed that the
infinite dimension limitd → ∞ for the free energy density of the EA-model is equal
to the free energy density of the SK-model. As in the SK-model each spin interacts
directly with infinitely many other spins.

For the SK-model one can show that the spin-glass phase does occur when the
temperature is low enough and the coupling mean not too large [68].

When one tries to take the limitN →∞ various limit Gibbs statesµ seem to appear.
In general a Gibbs state then looks like a mixture of infinitely many pure statesµα:

µ(σ) ≈
∑
α

wJ(α)µα (2.20)

wherew(α) is the relative weight of the pure stateµα. [66]. Note that the decomposition
weights as well as theµα do depend on the disorderJ . Recently it was proven that in
the limitN →∞ each configuration is a ground state [67]. However taking the infinite-
volume limit is problematic. A slightly better-behaved class are the Hopfield models.

2.3 Hopfield model

Our brain is a complex structure of many neurons which interact with each other in
a non-trivial long-range way. For instance the cerebral cortex consists already about
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σ1(t)
...

σN (t)

−→ hi(t) =
∑

j:j 6=i Jijσj(t) −→ σi(t+ ∆t) = signhi(t)

Figure 2.4: The zero-temperature neuron dynamics

1010 neurons. Nowadays there is a lot of research in this area. It seems that our brain
network is scale free. It has the structure of a so called small world network: i.e. small
path length between two neurons in the order of the path length in a random edge neural
network, but with a relatively high amount of connections (e.g. [18]).

Originally Pastur and Figotin invented the Hopfield model as a model for a special
type of spin-glasses. Then Hopfield came up with it independently as a model for neural
networks as above. However it is a simplified model and the geometric structure of the
neural connections is totally missing.

2.3.1 Setting

Assume that the neural network containsN neurons and that every neuron interacts
with any other neuron (i.e. having mean-field like interactions). These interactions are
composed out of 2-neuron interactions only. Now consider a neuroni. The state of the
neuron is labelled by the variableσi. If the neuron is excited thenσi = +1. When
σi = −1 the neuron is at rest. As a current is going from neuronj into neuroni the
signal is altered due to chemical transmitters in the neuroni itself. This synaptic efficacy
we denote byJij . It alters the signalσj into Jijσj . The total inputhi of neuroni equals

hi =
∑
j: j 6=i

Jijσj (2.21)

2.3.2 Dynamics and ground states

Let us define the dynamics of this model. Ifσi(t) denotes the state of a neuroni at time
t then it becomes (or stays) excited at timet+ ∆t wheneverhi exceeds a thresholdθi.
Otherwise it is at rest at timet+ ∆t:

σi(t+ ∆t) = sign(hi(t)− θi) (2.22)

For simplicity we set this threshold to zero. Then the state of neuroni at timet + ∆t
becomes [19]

σi(t+ ∆t) = sign
( ∑
j: j 6=i

Jijσj(t)
)

(2.23)
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so without an extra constant term. See Figure 1.3 and also Figure 2.4.
A particular fixed configuration of neurons we denote by theN−dimensional vector

~ξ ∈ {−1, 1}⊗N . We call this a pattern. If this pattern~ξ is a stable fixed point of the
evolution defined by (2.23) then we say it is in the system’s memory. If we assume
that there are no metastable fixed points, then the following happens. If there is only
one stable fixed point, then whatever the initial state of the neurons, after long enough
time the system will be in the state defined by~ξ, i.e. the systemremembersthe pattern.
Of course there can be more patterns in the memory. Then if we pick at random an
initial configuration of neurons, at the end we will always end up in one of the patterns.
Furthermore every pattern of the memory can be reached with non-zero probability. In
general however it can happen that the dynamics get stuck in a metastable fixed point.

To illustrate this process better, imagine you want to answer a question for a quiz.
It can happen that you need a bit of time to remember the answer, because the question
appears to be difficult. But still you have the feeling that you might know this one.
In the process of remembering you try to find associations with the -according to you-
presumably right answer. You are fine-tuning your first thought. You are altering your
initial condition to a better one, a one with less energy. Then after some time you think
you know an answer and you believe it is right. You have recovered something of your
memory: either you are in the state of the right answer or in a state of wrongness.

A good way of measuring how well a configurationσ agrees with a given pattern~ξ
is to look at the corresponding order parameterq~ξ:

q~ξ =
1
N

N∑
i=1

σiξi (2.24)

Whenq~ξ = 1 then the configurationσ is equal to the pattern~ξ and whenq~ξ = −1 then it

is equal to the opposite:σ = −~ξ. The parametersq~ξ are also calledoverlap parameters.

Whenever±q~ξ > 0 the configuration±σ agrees with the pattern~ξ for more than half
of the neurons.

A good way of studying this system is to use the Gibbs description of statistical me-
chanics. Then the memory of the system is formed by the ground states of the model.
The equilibrium features are governed by the Gibbs measure. We choose the Hamilto-
nian as

HN = −
N∑
i=1

hiσi = −
N∑
i=1

σi
∑
j: j 6=i

Jijσj (2.25)

Now the zero temperature dynamics of this system is equivalent to the earlier-defined
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neuron dynamics (2.23). We see this as follows. The energy equals

HN (t+ ∆t) = −
N∑
i=1

hi(t)σi(t+ ∆t) (2.26)

For zero temperature the Gibbs measure for timet + ∆t becomes aδ-measure on the
configurationsσ(t+∆t) for which the energyHN (t+∆t) is minimal. As we see from
(2.26), this is the configurationσ for which for every neuroni σi(t+ ∆t) = signhi(t).
It is easy to see that the energy cannot increase in this operation. However it is not clear
that in the end whent is very large, we will end up in a single ground state configuration
or oscillate between more.

The above dynamics is deterministic. In reality the neurons might not be determin-
istic in this way. Furthermore we need to allow for some probability that the energy
in the operation can increase. This is to have the ability to get out of the local minima
formed by the metastable fixed points. Therefore we introduce a parameterβ to con-
trol the uncertainty in the model. The smallerβ, the more uncertainty. Whenβ = 0
the neurons behave perfectly random, because the energies of the configurations do not
matter. Takingβ →∞makes the system behave like the zero-temperature dynamics of
(2.23).

As example we takeJij ≡ +1. Then the system transforms into the Curie-Weiss
model. The behaviour of this model is well understood. The ground states areσ = ±1.
It is also easy to see that the same is true whenJij contains only one pattern~ξ, i.e.
Jij = ξiξj . Indeed the Hamiltonian (2.25) is minimized wheneverσ ≡ ± sign ~ξ. In this
case the pattern coordinatesξi are allowed to have a more general distribution but they
need to be i.i.d.

In reality one often knows only the global properties of the memory of the system.
Furthermore the memory also changes in time. But these changes in time are very slow
compared over the time in which the states of the neurons are changing. A good way
of modelling this is that instead of choosing the pattern ourselves we let the patterns be
chosen according to a quenched random distribution. All the randomness is i.i.d. and
is thus described by a product measure. The measure with respect to this randomness
~ξ we denote byP~ξ. Usually one takes the randomness as symmetric Bernoulli:~ξ ∼
{−1, 1}⊗N .

Note an important difference between the 1-pattern case and the SK-model. In the
SK-model all the bonds have independent disorderJij . In the 1-pattern Hopfield model
pairs of bonds with a common neuron e.g.(ij) and(jk) have highly dependent disorder.

We generalize from the 1-pattern system to the finitep-pattern system with patterns
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~ξ1, . . . , ~ξp. We take for theJij

Jij =
1
N

p∑
µ=1

ξµi ξ
µ
j (2.27)

For the patterns we take a random outcome of the uniform distribution on
(
{−1, 1}⊗N

)⊗p
.

In the literature this choice of theJij is referred to as the Hebb rule. Because of the scal-
ing the quenched patterns are asymptotically orthonormal to each other

lim
N→∞

1
N
~ξi · ~ξj = δij +O(

√
1/N) (2.28)

It is easy to see that the statesσ = ±~ξµ are equilibrium states of the system. Indeed if
we put inσ(t) = ~ξµ into theβ →∞-dynamics (2.23) we obtain forN →∞

σi(t+ ∆t) = sign
( ∑
j: j 6=i

Jijξ
µ
j

)
= sign

(
± 1
N

p∑
ν=1

ξνi
∑
j: j 6=i

ξνj ξ
µ
j

)
=

sign
(
±

p∑
ν=1

ξνi δνµ

)
= sign (±ξνi ) = ±ξνi (2.29)

In other wordsσ(t) = σ(t + ∆t). This makesσ(t) ≡ ±~ξµ fixed point configurations
and therefore equilibrium states. However it is not clear from these calculations whether
these states are also ground states. This is because the states can be unstable fixed points.
Furthermore we might not be allowed to omit theO(

√
1/N) term in the calculations

as we have done. Also it could be possible that the states only can be reached by a set
of P~ξ-measure 0. Or maybe there are more ground states than these fixed points. After

more analysis it turns out to be that the2p statesσ = ±~ξµ are indeed the only ground
states for this system (e.g. [10]).

2.3.3 System-size-dependent patterns

When the numberp of patterns depends on the system sizeN several things can happen.
Denote byα the ratio between the number of patterns and the system size:α = p/N .
We consider the phase regions in the(T, α) plane, see Figure 2.5. WheneverT > Tg
whereTg = 1 +

√
α the system behaves like aparamagnet.

There is a curveTc such that below this line all of thep patterns arestable, i.e.
absolute minima of the free energy. Between the curvesTc andTg there is a different
curveTM which separates between stability and metastability.
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Figure 2.5: Phase diagram for the Hopfield model(after [3])

Between the curvesTM andTc the patterns becomemetastable; they are local min-
ima of the free energy. The global minima correspond to the spin-glass states. These
states have vanishingly small overlapqµ (of orderO(1/

√
αN)) with all of the patterns

µ. So only if the initial configuration is close enough to a pattern the system will re-
member it.

Above TM and belowTg the spin-glass states become the only one present. So
none of the patterns can be remembered. In thisspin-glass phasethere is presence of
ageing. The decay of the energy becomes slower for longer waiting times. According
to numerical research the spin-glass properties seem to be closely related to properties
of the SK-model, which we obtain by taking the limitα → ∞. Analytic research of
the corresponding dynamics is highly complicated; it cannot be described only by the
overlap valuesqµ,t and the neuron statesσt at timest [3, 58, 68].

For a more extensive discussion of the Hopfield model, including some history and
its relation with the theory of neural networks, see [10, pag. 133 and further] or [12].

2.3.4 Some generalizations

To put in more realism we take into account that not every neuron need to be connected
with every other. For this goal we define the matrixΛij , which represents the structure
of the network. If neuroni is connected withj thenΛij = 1 otherwiseΛij = 0. When
the network is undirected we have a symmetric matrixΛij . Now we use the Hopfield
dynamics of (2.23) but we replaceJij by the valueΛijJij .

Numerical research seems to suggest that the task of recognition of a finite number
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of patterns is better performed (i.e. higher overlap after long time) when we decrease
the clustering coefficient of a network [48]. By the clustering coefficient we do mean
the following. Take a vertexv of a graph. Supposev hasN neighboring edges. Then
at mostN(N − 1)/2 edges can exist between these neighboring vertices. Denote by
Cv the actual number of these edges divided by the maximal amount possible. The
clustering coefficientC is the mean ofCv over all verticesv.

Another generalization is to allow the neurons to have more values. The neuron-
states increase toσi ∈ {1, . . . , q} instead ofσi = ±1. In spin-glass language we say
that we haveq-state Potts spins instead of Ising spins. For the patterns we can still take
the restriction toξµi = ±1. When the system has only one pattern in its memory then
we easily see that the form of the ground states is of the following type. Every sitei for
which ξi = +1 hasσi ≡ j and every site for whichξi = −1 hasσi ≡ k, with j 6= k.

Of course it is more realistic to consider Potts-patterns, when the neuron states are
equivalent to Potts-spins. Then the ground states are{~ξµ} with P~ξ probability one
whenever the numberp of patterns is not too large:α : 0 ≤ α < 1 arbitrarily, p <
(α/ ln q) lnN [37]. Note thatp is allowed to be infinite whenN →∞.

2.4 Scenarios for the spin glass

In the last decades researchers have tried to get an analytic-rigorous grip on the phenom-
ena of short-range spin-glasses. During this process various competing theories were
formed which were not at all conclusive. Most theories we can group into three scenar-
ios; the droplet-picture of Fisher and Huse [33], the chaotic-pairs picture of Newman
and Stein [66] and the replica symmetic breaking picture which resulted from mean-
field theory for the infinite range SK spin-glass developed by Parisi [56].

2.4.1 Droplet-picture short-range spin-glasses

At the end of the eighties Fisher and Huse introduced a so called droplet picture [33] to
describe the equilibrium phenomena for short-range spin glasses. For a clear example
of this picture we take a model which has the energy function (2.17) of the Edward-
Anderson model. The couplings (the spin-interactions) we choose symmetrically and
continuously distributed. We set the fieldh to zero.

For finite dimensional Ising spin glasses there are two possibilities for the equilib-
rium behavior for smallT . There is a critical dimensiondl such that:

d < dl: System is paramagnetic at allT > 0 soTc = ∞.
d ≥ dl: There exists exactly one pair of (flip-related) ground states. For0 < T < Tc <
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∞ the behavior of the system is described by a small non-zero density of excitations
with a volume which is non-zero relatively to the (infinite-sized) system.

Now we take a particular ground stateG and look at its excitations. BecauseT > 0
there are excited regions where the spins have opposite values compared toG. As in the
Ising model we can define contours by the boundaries of these regions. The contours
do exist on various scales. For a large enough system the probability of having at least
one large contour is of order 1, although the probability of having a particular large
contour is small. For low enoughT we assume that the contours with the lowest energies
dominate the physics. These contours we call droplets. More precisely

Definition 2.2. A dropletDL(j) of length scaleL is a contourΓ enclosing sitej and has
the minimum of energy of all possible contoursΓ enclosingj and containing between
Ld and(2L)d spins.

The energyFL(j) of a dropletDL(j) equals

FL(j) = min
Γ encl.j,

Ld≤|Γ|<(2L)d

EG(Γ) (2.30)

whereEG(Γ) is the energy of configuration{Γ} relatively to the ground state energy
EG(∅).

In case of an Ising ferromagnet (i.e. (2.17) withJij ≡ 1 andh = 0) FL(j) =
O(Ld−1). For the current Ising spin glass with the random symmetric couplings it is
expected that the droplet energy is much lower. This because there is a big amount
of frustration and also there are many configurations which are almost like the ground
states. However for a generic contour the energy scales still likeLd−1. Given this we
make the scaling ansatz:

FL(j) = O(Lθ), θ < d− 1 (2.31)

In [33] it is argued that

θ ≤ d− 1
2

(2.32)

However the arguments in favor of (2.32) use some assumptions which need not hold in
general [24].

For θ > 0 we expect the following picture. Because of the almost degenerate
ground state the Gibbs weight of the eventFL ≈ 0 is bigger than zero even for zero
energy. As we see from the Hamiltonian only the droplets at length scaleL with energy
FL ≤ O(T ) do contribute significantly to the Gibbs measure. WhenT � O(Lθ), only
a small fraction of these droplets does appear. Because of the positive weight ofFL near
zero some of the droplets will be excited at any positive temperature. These properties
make thatθ > 0 impliesd ≥ dl.
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When θ < 0, the energy cost is so low that the entropy will dominate and the
droplet-picture breaks down. Because every spin can be flipped with arbitrarily small
energy cost (by taking the system size large enough) the system is to be expected to
behave like a paramagnet. Thereforeθ < 0 impliesd < dl.

2.4.2 Parisi’s Replica Symmetry breaking picture

Parisi cleverly conjectured in the eighties an expression for the free energy function of
the SK-model and also an expression of the (Parisi) overlap distribution [56]. The idea
of this solution is also known as replica symmetry breaking (RSB). Recently the con-
jectured free energy expression was mathematically rigorously proven to be the correct
expression by Talagrand [74] who used in his proof results of Guerra and co-workers.
However, some of the aspects of Parisi’s RSB-picture are still open.

This RSB-picture predicts that in the infinite-volume limit states do appear which
are composed out of infinitely many pure states. It is not clear what a pure state means
for the infinite range SK-model. Assuming we still can define overlaps between differ-
ent ’pure states’, the overlap between ’pure state’α andα′ is

qαα′ =
1
N

N∑
i=1

< σi >α< σi >α′ (2.33)

By< . >α we mean the Gibbs measure over the pure Gibbs stateµα. From this quantity
we can read how much stateµα looks like stateµα′ . For every pure stateµα it holds

qα =< σα >
2= qEA (2.34)

whereqEA is the same parameter as in (2.18). Furthermore we see

−qEA ≤ qαα′ ≤ qEA (2.35)

To explicit construct the pure states is impossible. However, still some things can be
said about the distribution of the overlaps. We choose at random two pure states from
the Gibbs measures appearing in the limit of the SK-model. Then we denote byP (q)dq
the probability that the overlap of these two states lays in betweenq andq + dq. This
distribution is also called the Parisi overlap distribution. It looks like

PJ(q) =
∑
α,α′

wJ(α)wJ(α′)δ(q − qαα′) (2.36)

For high temperature the SK-model becomes a paramagnet andP (q) = δ(q = 0).
However the symmetric overlap functionP (q) is highly non-trivial when the tempera-
tureT is low enough and consist of manyδ-functions of non-zero weight. Furthermore
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it is coupling dependent, i.e. a non self-averaging object. When we average over the
couplings the resulting distribution shows to be continuous non zero between twoδ
spikes at±qEA. Furthermore there is chaotic size dependence. When we look at two
different infinite volumes which has a large difference in volume sizes then in general
P (q) also looks very different.

Another interesting concept which holds according to Parisi’s theory is ultrametric-
ity. Recall that for two equal pure states the overlap equalsqEA. With this we create a
distance function between two pure states

dαα′ = qEA − qαα′ (2.37)

Then we take at random three states 1, 2, 3. With these states we can make three pairs.
Ultrametricity then claims that either

d12 = d13 = d23 or d12 = d13 < d23 or

d12 = d23 < d21 or d21 = d23 < d12
(2.38)

So the three overlaps of the state pairs are intimately related. A mathematical rigorous
proof of this ultrametric structure is still an open problem.

2.4.3 Chaotic Pairs

The remaining possibility is [65, 66] that for largeL the Gibbs measure looks like (with
dependence onJ)

µL ≈
1
2
µαL,J +

1
2
µ−αL,J (2.39)

When we putL→∞ and take the union of all possible states emerging then we obtain
a set of uncountably many states. The Gibbs measure is approximately a combination
of two pure Gibbs statesαL and−αL out of the infinitely many. These two states are
each other’s global spin-flip. The state-labelsαL are chaotically dependent onL.

We encounter in Chapter 3 an example of an infinite-range system which has in-
finitely many ground states. For fixed sizeL only two pairs of ground states do appear
(or triples of pairs in case of 3-Potts spins) in the way of the Chaotic Pairs scenario.

2.5 Metastates

In spin glasses to get a grip on the quenched disorder we consider the following. Look
at a sequence of finite volume Gibbs measuresµηΛ. The disorder of the spin glasses is
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prescribed by the parameterη. It is treated as quenched disorder so we consider it as
fixed. Then we take the empirical average of these measures

KηN =
1
N

N∑
n=1

δµη
Λn

(2.40)

We try to take the limitN →∞. The result provides the so called (empirical) metastate.
This metastate is a probability measure on the Gibbs measure and is dependent on the
quenched disorderη [66]. The metastate gives the relative weight of the event that
a quenched disordered system of a very large volume behaves like a particular Gibbs
measure.

In general however (2.40) does not converge for almost every configurationη unless
we take a sparse enough subsequence. It does converge however in distribution. The
resulting distribution over the infinite Gibbs measures does not depend onη anymore.
The limiting process of the whole patht → µηΛ[tN ]

is described by the so called super-

state. The value[tN ] is equal to the largest integer smaller equaltN [54]. In [51] and
[53] there are two examples for which this behavior has been examined thoroughly.

For thed = 2 random boundary field Ising model, which we consider in Chapter
4, the metastate does concentrate on two extremal Gibbs measuresµ+ andµ−. We
conjecture that ford = 2, 3 every mixture ofµ+ andµ− can appear as a limit point along
the regular sequence of cubes. These mixtures are null-recurrent. So in the metastate
they do not appear and for this particular model the metastate is a.s. convergent.

For d > 3 for the random weak boundary field Ising model, the limit points along
the regular sequences are onlyµ+ andµ− almost surely. Each extremal Gibbs measure
appears with probability1/2 [28].

As example of an a.s. non-converging metastate we take the Curie-Weiss random
field Ising model. It has as Hamiltonian

HN = − β

N

∑
i<j

σiσj − βε

N∑
i=1

ηiσi (2.41)

The random variablesηi are i.i.d. and haveP(ηi = ±1) = 1/2. For β large enough
andε small the model behaves like a ferromagnet with one+-phaseµ+,η

∞ and one−-
phaseµ−,η∞ . When one takes the sequencen = 1, 2, · · · the corresponding metastate
converges in distribution to

lim
N→∞

Kη
N = lim

N→∞

1
N

N∑
n=1

δµη
n

law= n∞δµ+,η
∞

+ (1− n∞)δµ−,η
∞

(2.42)

The variablen∞ is a random variable independent ofη. It is distributed asP(n∞ <
x) = 2

π arcsin(
√
x) [51, 53].
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Chapter 3

Gaussian Potts-Hopfield model

In this chapter we study a Gaussian Potts-Hopfield model. Whereas for Ising spins and
two disorder variables per site the chaotic pair scenario is realized, we find that forq-
state Potts spinsq(q − 1)-tuples occur. Beyond the breaking of a continuous stochastic
symmetry, we study the fluctuations and obtain the Newman-Stein metastate description
for our model.

3.1 Introduction

The Gaussian Potts-Hopfield model is equal to the Potts-Hopfield model but with Gaus-
sian noise as patterns. What happens for two patterns with Ising or Potts-like neurons
is, surprisingly, that there are infinitely many ground-states. We study the mean-field
Potts model with Hopfield-Mattis disorder, and more in particular with Gaussianly dis-
tributed disorder. This model is a generalization of the Ising version of the model stud-
ied in [11]. It provides yet another example of a disordered model with infinitely many
low-temperature pure states, such as is sometimes believed to be typical for spin-glasses
[33]. In our model, however, in contrast to [11], instead of chaotic pairs we find that the
chaotic size dependence is realized by chaoticq(q − 1)-tuples.

A somewhat different generalization of the Hopfield model to Potts spins was intro-
duced by Kanter in [47] and was mathematically rigorously analysed in [37]. However,
whereas the version we treat here (in which the form of the disorder is the Mattis-
Hopfield one) displays the phenomenon of stochastic symmetry breaking, in which a
finite-spin, “finite pattern” model can end up with chaotic size dependence, and a real-
ization of chaoticn-tuples out of infinitely many “pure states”, we do not see how to
obtain such results in a version of Kanter’s form of the disorder distribution.

We are concerned in particular with the infinite-volume limit behaviour of the Gibbs
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and ground state measures. The possible limit points are labelled as the minima of
an appropriate mean-field (free) energy functional. These minima can be obtained as
solutions of a suitable mean-field equation. These minima lie on the minimal-free-
energy surface, which is am(q− 1)-sphere in the(e1, · · · ,eq)⊗m space. This space for
q-state Potts spins andm patterns is formed by them-fold product of the hyperplane
spanned by the end points of the unit vectorseq, which are the possible values of the
spins. But only a limited area of the minimal-free-energy surface is accessible. Only
those values for which certain mean-field equations hold, are allowed. These equations
have the structure of fixed point equations. We derive them in Chapter 3.4. To obtain
the Gibbs states we need to find the solutions of these equations on the minimal free
energy surface.

The structure of the ground or Gibbs states for Ising spins, whereq = 2, and 2
standard-Gaussian patterns~ξ, ~η is known since a few years [11]. Due to the Gaussian
distribution we have a nice symmetric structure: the extremal ground (and Gibbs) states
form a circle. The first time this degeneracy of the ground states due to the rotational
symmetry of the Gaussian’s is mentioned is in [2].

For a fixed configuration and a large finite volume the possible order-para-meter
values become close to two diametrical points (which ones depend on the volume of the
system) on this circle. This chapter treats the generalization of this structure toq-state
Potts spins withq > 2. To have a concrete example, we concentrate on the caseq = 3.
It turns out that we again obtain a circle symmetry but also a discrete symmetry, which
generalizes the one for Ising spins. One gets instead of a single pair a triple of pairs
(living on 3 separate circles), where for each pair one has a similar structure as for the
single pair forq = 2. For q > 3 we get q(q−1)

2 pairs and a similar higher-dimensional
structure.

Our model contains quenched disorder. It turns out that there is some kind of self-
averaging. The thermodynamic behaviour of the Hamiltonian is the same for almost
every realization. This is the case for the free energy and the associated fixed point
equations, as is familiar from many quenched disordered models. However, this is not
precisely true for the order parameters. We will see that they show a form of chaotic
size dependence, i.e. the behaviour strongly depends both on the chosen configura-
tion and on the way one takes the infinite-volume limitN → ∞ (that is, along which
subsequence).

3.2 Notations and definitions

We start with some definitions. Consider the setΛN = {1, · · · , N} ⊂ IN+. Let the
single-spin spaceχ be a finite set and theN -spin configuration space beχ⊗N . We
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Figure 3.1: Wu representation spin values forq = 3

denote a spin configuration byσ and its value at sitei by σi. We will consider Potts
spins, in the Wu representation [76]. Each of the possibleq values provides a spin-
vectorei. Thei-th coordinates are given byei,j = δi,j . Then the setχ⊗N is theN -fold
tensor product of the single-spin spaceχ = {e1, · · · ,eq}. Theeσi are the projections of
the spin-vectorseσi on the hypertetrahedron in IRq−1 spanned by the end points ofeσi .
So every spinvalueσi is represented by the projection vectoreσi .

For q = 3 we get for example fore1, e2 ande3 the vectors of Figure 3.1. We have set
the projection of the origin(0, 0, 0) to (0, 0) and rescaled the projection ofe1 to (1, 0).

The Hamiltonian of our model is defined as follows:

−βHN =
β

N

m∑
k=1

N∑
i,j=1

ξki ξ
k
j δ(σi, σj) (3.1)

with

δ(σi, σj) =
1
q

[1 + (q − 1)eσi · eσj ] (3.2)

whereξki is thei-th component of the randomN -component vectorξk. For theξki ’s we
choose i.i.d.N(0, 1) distributions. The vectorsξk = (ξk1 , · · · , ξkN ), by analogy with the
standard Hopfield model, are called patterns. If we combine the above, we can rewrite
the HamiltonianHN as:

−βHN = β
q − 1
q

N

m∑
k=1

(∑N
i=1 ξ

k
i eσi

N

)2

+
1

q − 1

(∑N
i=1 ξ

k
i

N

)2
 (3.3)
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So asymptotically

− βHN = N
K

2

m∑
k=1

q2kN

with K = 2β
(
q − 1
q

)
and order parametersqkN =

1
N

N∑
i=1

ξki eσi

(3.4)

The last term in (3.3) inside the brackets is an irrelevant constant; in fact it approaches
zero, due to the strong law of large numbers. Note that for the infinite pattern-limit
m → ∞ the Hamiltonian is still of the same form asymptotically. (Theξki ’s are i.i.d.
N(0, 1) distributed so IEξki = 0.) Note that any i.i.d. distribution with zero mean,
finite variance and symmetrically distributed around zero will give an analogous form
of HN , but we plan to consider only Gaussian distributions, for which we will find that
a continuous symmetry can be stochastically broken, just as in [11]. From now on we
drop the subscriptN to simplify the notation, when no confusion can arise.

3.3 Ground states

Now it is time to reveal the characteristics of the ground states for the Potts model. First
we discuss the simple behaviour for 1 pattern. Then the more interesting part:q > 2
and 2 patterns.

3.3.1 Ground states for 1 pattern

For one pattern~ξ the Hamiltonian is of the following form:

−βHN = N
K

2
~q21 =

β

N

N∑
i,j=1

ξiξjδ(σi, σj) (3.5)

We easily see that the ground states are obtained by directing the spins withξi > 0
in one direction and the spins withξi ≤ 0 in a different direction. If we have as the
distribution for theξi’s P (ξi = ±1) = 1

2 , then the order parameter is of the form:
~q1 = 1

2(eσi − eσj ), with 1 ≤ i, j ≤ q andi 6= j, see also [27]. So forq = 3 we have
only 6 ground states. They form a regular hexagon:(

±3/4,∓
√

3/4
)
, ±

(
3/4,

√
3/4
)
,
(
0,±

√
3/2
)

(3.6)

This regular hexagon with its interior is the convex set of possible order parameter
values. It is easy to see that forξi N(0, 1)-distributed we get the same ground states
except for a scaling factor

√
2/π multiplying the values of the order parameter values.

46



3.3.2 Ground states for 2 patterns

The Hamiltonian for 2 patterns (Gaussian i.i.d.) is:

−βHN =
β

N

N∑
i,j=1

(ξ1i ξ
1
j + ξ2i ξ

2
j )δ(σi, σj) = N

K

2
(~q21 + ~q22) (3.7)

Similarly as in [11], we make use of the fact that the distribution of 2 independent
identically distributed Gaussians has a continuous rotation symmetry. This symmetry
shows also up in the order parameters.

Ising spins

First we consider Ising-spins (i.e. we takeq = 2). In [11] it is proven that the ground
states are as follows. The order parameters become±(r? cos θ, r? sin θ), with θ ∈ [0, π)
andr? =

√
2/π. Note that there are uncountably many ground-states.

This can be made plausible by the following observations. Note that the random
fields{sign (ξµi )} are equally distributed as standard Hopfield-patterns:
P (sign (ξµi ) = ±1) = 1/2. So if we chooseσ such that for eachi: σi = sign(ξ1i ), then
we obtain the state with corresponding order parameters(r?, 0) for the limitN → ∞,
which is the ground state configuration corresponding toθ = 0. The spin-configuration
σi = sign(ξ2i ) for all i corresponds toθ = π/2. By the global spin-flip symmetry of the
Hamiltonian we obtain the ground-states corresponding toθ = π andθ = 3π/2.

But what about theθ values in between? The set of Gaussian patterns has a contin-
uous rotation symmetry. We obtain two new patterns for which we multiply the patterns
with a rotation matrix, i.e. rotating the patterns over an angleθ (with 0 ≤ θ < π/2):(

η1
i (θ)
η2
i (θ)

)
=
(

cos θ sin θ
sin θ − cos θ

)(
ξ1i
ξ2i

)
(3.8)

The corresponding order-parameters we define as~q(θ). To obtain the original patterns
from ~η1(θ) and~η2(θ) simply perform the rotation again:(

ξ1i
ξ2i

)
=
(

cos θ sin θ
sin θ − cos θ

)(
η1
i (θ)
η2
i (θ)

)
(3.9)

By the rotation (3.8) of the standard Gaussian patterns~ξ1 and~ξ2 we obtain two new
patterns~η1 and~η2 which again are Gaussian distributed. Note that IEη1

i (θ) = IEη2
i (θ) =

IEξ1i = IEξ2i = 0. Furthermore the variance ofη1
i (θ) andη2

i (θ) is the same as forξ1i and
ξ2i , i.e. 1. Therefore the distribution of the rotated patterns~η1(θ) and~η2(θ) is the same
as for the old ones, namely standardN -multivariate Gaussian. It is easily checked that
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eachη1
i (θ) andη2

i (θ) are uncorrelated and because they are both Gaussian they are also
independent.

For anyθ it holds

ξ1i ξ
1
j + ξ2i ξ

2
j = η1

i (θ)η
1
j (θ) + η2

i (θ)η
2
j (θ) (3.10)

By this it follows that the energy of the configurations

σ(θ) = {sign(ηi(θ))} (3.11)

are the same in the limitN →∞ and therefore ground states. This we see by calculating
the two corresponding energies:

−βHN (σ(0)) =
β

N

N∑
i=1

|ξ1i ξ1j |+
β

N

N∑
i=1

ξ2i ξ
2
j sign (ξ1i ξ

1
j ) =

2β
π

+O
(
β/N

)
,

−βHN (σ(θ)) =
β

N

N∑
i=1

(
ξ1i ξ

1
j + ξ2i ξ

2
j

)
sign (η1

i (θ)η
1
j (θ)) =

β

N

N∑
i=1

(
η1
i (θ)η

1
j (θ) + η2

i (θ)η
2
j (θ)

)
sign (η1

i (θ)η
1
j (θ)) =

2β
π

+O
(
β/N

)
(3.12)

So in the limit indeed it holds

lim
N→∞

HN (σ(θ)) = HN (σ(0)) for all θ (3.13)

This means that we have an uncountable number of ground-state configurations in the
limit N →∞.

Structure of the order parameters

Now we look what this symmetry does mean for the order parameters. We consider
the Gibbs measure with the original patterns~ξµ. Take a configurationσ(θ). The cor-
responding order-parameters we denote by~q(θ). Rewriting the patterns~ξµ into ~η(θ)
according to (3.9) gives(

q1(θ)
q2(θ)

)
=

(
1
N

∑N
i=1

(
cos (θ)η1

i (θ) + sin (θ)η2
i (θ)

)
sign(η1

i (θ))
1
N

∑N
i=1

(
sin (θ)η1

i (θ)− cos (θ)η2
i (θ)

)
sign(η1

i (θ))

)
=√

2
π

(
cos θ
sin θ

)
+O

(√
1/N

)
(3.14)
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becausesign(η1
i ) is independent ofη2

i . TheO
(√

1/N
)

term is in general different
for different θ. However the equality~q(θ) = −~q(θ + π) is exact becauseηµ(θ) =
−ηµ(π + θ). Because of this the energy of the configurationsσ = sign(ηµ(θ)) and
σ = − sign(ηµ(θ)) = sign(ηµ(π + θ)) are also the same. In [11] it is proven that for
finiteN only for one pair (θ0(N) andθ0(N) + π) the energy is in its global minimum.
The value ofθ0(N) depends on the system size.

When we add to the Hamiltonian the term−(ε/N)
∑N

i=1 η
1
i (θ1)σi, with ε > 0 and

θ1 fixed, the degeneracy of the ground-states is broken even whenN → ∞. Now only
the configuration{sign (η1

i (θ1))} is a ground-state, i.e.~q =
√

2/π(cos θ1
, sin θ1). For β finite and large enough the same holds in the limitN → ∞ but with
r?(β) instead of

√
2/π. This also corresponds to the results proven in [11].

Potts-spins

For obtaining the ground-states in case of Potts-neurons we perform the same strategy as
for the Ising-neurons. We consider the distributions{sign (η1

i (θ))}. The corresponding
ground-states configurationsσ(θ) we obtain as follows. Ifsign (η1

i (θ)) = 1 we set
σi = k. Whensign (η1

i (θ)) = −1 we setσi = k′, with k 6= k′ andk, k′ ∈ {1, · · · , q}.
This gives usq(q − 1) possible values for the order-parameters~q(θ) for eachθ, the
so-called discrete symmetry. If we look carefully at the values of~q(θ) we see that when
we take the union of~q(θ) over allθ the resulting curves consist ofq(q − 1)/2 circles in
the order-parameter space. This provides the continuous symmetry of the ground-states
which originates from the continuous rotational symmetry between the two Gaussian
patternsξ1 andξ2.

We take one of theq(q − 1) values by considering the ground-state configurations

sign (η1
i (θ)) = 1 → σi = e1, sign (η1

i (θ)) = −1 → σi = e2 (3.15)

In the same way as (3.14) we obtain for~q1(θ) by using independence

~q1(θ) =
cos(θ)
2N

N/2∑
i=1

|η1
i (θ)|

[(
1
0

)
−
(

−1
2

1
2

√
3

)]
+O

(√
1/N

)
= cos(θ)

√
2
π

(
3
4

−1
4

√
3

)
+O

(√
1/N

)
(3.16)

and

~q2(θ) = sin(θ)

√
2
π

(
3
4

−1
4

√
3

)
+O

(√
1/N

)
(3.17)
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By considering the other possibilities we obtain all the six discrete points. These have
the~q1-coordinates of (3.6) multiplied by the factor

√
2/π. By rotating we obtain the

circles. Because~q(θ) = −~q(θ + π) we obtain the same structure as for the Ising-spins.
The same is true for the order-parameters resulting from the Gibbs-states.

Without much effort this is also seen to be true for infinitely many patterns (as long
as their number grows logarithmic compared to the system size). However the precise
structure of the Gibbs-states is not proven yet but still being investigated.

This is an example of chaotic size dependence, based on the breaking of a stochas-
tic symmetry, of the same nature as in [11]. Because of weak compactness, different
subsequences exist whoseq(q− 1)-tuples of ground states converge toq(q− 1)-tuples,
associated to particularθ-values. These subsequences depend on the random pattern
realization. See Section 3.5.

For any finitem ≥ 3 patterns one has the same discrete structure as before, but in-
stead of a continuous circle symmetry we have a continuousm-sphere symmetry (iso-
morpic toO(m)). The case of an infinite (that is, increasing with the system)m is
still open. However the limit meta-state structure of the Gibbs-states when considering
infinite sequences inN is more complicated.

3.4 Positive temperatures

In this section we obtain an expression for the free energy which is maximized over
the order parameters~qk. By large deviation arguments we relate this expression and
therefore the free energy to the average of the energy over the induced measure of the
order parameters~qk.

3.4.1 Fixed-point mean-field equations

Remember

ZN = Trσ exp

(
N
K

2

m∑
k=1

~q2k

)
(3.18)

Due to the quadratic dependence on~qk this is hard to compute. Therefore we like to
linearize the terms in the exponential. For this we use the following identity:

eax
2/2 =

√
aN

2π

∫ ∞

−∞
dm e−Nam

2/2+
√
Namx (3.19)

Note

~q2k =
q−1∑
i=1

q2ki (3.20)
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So if we setx =
√
Nqki anda = K we obtain

exp
(
N
K

2
~q2k

)
=

q−1∏
i=1

√
K

2π

∫ ∞

−∞
dmki exp

(
−KNm2

ki/2 +KNmkiqki
)

(3.21)

Applying it for everym order-parameters~qk and putting the result intoZN we obtain

ZN = Tr
m∏
k=1

(
K

2π

)q−1
2
∫

IRq−1
d~mk exp

(
−KN ~m2

k/2 +KN ~mk · ~qk
)

(3.22)

This transformation is called the Hubbard-Stratonovich transformation. Notice that the
dependence on~qk now is linear. BecauseN →∞ the integral behaves like its maximal
value. Maximizing the exponent in (3.22) gives the saddle point equations formki:

∂

∂mki

(
−KN ~m2

k/2 +K~mk ·N~qk
)

= 0 →

−KNmki +KNqki = 0 → ~mk = ~qk

(3.23)

Further rewriting of (3.22) gives that the partition functionZN is equal to

ZN =
(
K

2π

)m(q−1)
2

∫
IRm(q−1)

d~m1 · · · d~mm exp
(
−KN

m∑
k=1

~m2
k/2 +

N
〈
log
{

Trσ exp
[ m∑
k=1

K~mk · ξk1eσ
]}〉

ξ11 ,···ξm
1

)
(3.24)

Now we maximize this exponent. Using both equations gives the so-called fixed-point
mean-field equation. Maximizing and putting~mk = ~qk (the first equation) give the
mean field equations for the order parameters which have the structure of a system of
fixed point equations~q = F (~q). When we have only two patterns~ξ1 and~ξ2 these are as
follows: 

~q1 =
〈

trσ{ξeσ exp [K(ξ11~q1+ξ21~q2)·eσ ]}
trσ{exp [K(ξ11~q1+ξ21~q2)·eσ ]}

〉
ξ11 ,ξ

2
1

~q2 =
〈

trσ{ηeσ{exp [K(ξ11~q1+ξ21~q2)·eσ ]}
trσ{exp [K(ξ11~q1+ξ21~q2)·eσ ]}

〉
ξ11 ,ξ

2
1

(3.25)

3.4.2 Induced measure on order parameters

Now we try to find an expression which in the infinite neuron limit equals the induced
Gibbs measureL∞,β on the order-parameters. For this end we calculate the free energy
by using the Laplace method. When we look carefully at the integrand in (3.22) we see

−βf(β) = lim
N→∞

1
N

logZN = max
~m

(−Q(~m) + c(K~m)) (3.26)

51



wherec(~m) is the generating function of the pattern distributions:

c(~m) =
m∑
k=1

〈
ln
{

IEσ exp (ζk ~mk · eσ)
}〉

ζk
(3.27)

Because
Q = K~m2/2, ∇Q(~m) = K~m (3.28)

From these solutions we can also read out the fixed point equations. When we differen-
tiate (3.28) to~m componentwise we get

∇Q(~m) = K∇c(∇Q(~m)) ⇒ ~m = ∇c(∇Q(~m)) (3.29)

This we can relate to the rate-functionc?(~t), which is the Legendre transform ofc(~m):

c?(~m) = sup
~t

[~m · ~t− c(~t)] (3.30)

For fixed~m the vector~t has to be such that~m = ∇c(~t). But because of the fixed point
equations~m = ∇c(∇Q(~m)). Therefore~t = ∇Q(~m). So

c?(~m) = ~m · ∇Q(~m)− c(∇Q(~m)) (3.31)

Insert this into (3.26) to obtain

−βf(β) = max
~m

(Q(~m)− c?(~m)) (3.32)

ForN →∞ the equation~m = ~q holds. This gives that

lim
N→∞

1
N

logZN = lim
N→∞

1
N

log
{∫

IRm(q−1)
d~q expN(Q(~q)− c?(~q))

}
(3.33)

Also it holds asymptoticallyNQ(~q) = −βHN (~q).
Now we define the measurẽLN,β . For this measure the limitlimN→∞ L̃N,β ap-

proaches the induced infinite-volume Gibbs measureL∞,β on the order parameters~q.
The density is given by (3.33)

L̃N,β ≡
e−βHN (~q) exp (−Nc?(~q))∫

IRm(q−1) e−βHN (~q) exp (−Nc?(~q))d~q
=
e−βNφN

ZN,β
(3.34)

with

βφN ≡ −Q(~q) + c?(~q) = −Q(~q) + ~q · ∇Q(~q)− c(∇Q(~q)) (3.35)

For this measurẽLN,β we have good large deviation estimates, with the rate function
given byc?(~q), where the rate equalsN .
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3.4.3 Radius of the circles labeling the Gibbs states

Ising spins

For all Gibbs states the value of the energy is constant, therefore:

q21 + q22 = (r?(β))2 (3.36)

To obtain the radius of the circle of Gibbs statesr?(β) we make use of the rotation
symmetry between the two patterns. Now we take the point(q1, q2) = (r?(β), 0). For
Ising spinsK = 2β(2 − 1)/2 = β. We insert all this into the fixed point equations
(3.25), withe1 = +1 ande2 = −1. Then we obtain the following equation for the
radiusr?(β):

r?(β) =
1√
2π

∫
ξ tanh (βξr?(β)) exp

(
−ξ

2

2

)
dξ (3.37)

Forβ > β0 this equation has a nontrivial solution forr?(β). The equation is the same
as in [11]. The limitβ →∞ gives the radius of the ground-states:

r? =
1√
2π

∫ ∞

−∞
|ξ|
(
−ξ

2

2

)
dξ =

√
2
π

(3.38)

Potts spins

If we takeq = 3, thenK = 4
3β. The set of ground states now can be parametrized

by three (in generalq(q−1)
2 ) circles, and similarly for the low-temperature Gibbs states.

To obtain the radiuŝr of such a circle parametrizing the ground or Gibbs states, we
follow the same recipe as in the case of Ising spins. Here we take the point(~q1, ~q2) with
~q1 = (0, r̂) and~q2 = (0, 0). This we insert into the fixed point equations (3.25) with
e1 = (1, 0), e2 = (−1

2 ,
1
2

√
3) ande3 = (−1

2 ,−
1
2

√
3). From which the equation for the

radiusr̂(β) follows:

r̂(β) =

√
3
2π

∫
ξ sinh (2βξr̂(β)/

√
3)

2 cosh (2βξr̂(β)/
√

3) + 1
exp

(
−ξ

2

2

)
dξ (3.39)

We can easily check that this expression indeed approaches the one for the radius for
the circles through the ground states, by considering the behaviour of the integrand for
K →∞. It behaves like:

r̂ =
√

3
2

1√
2π

∫ ∞

−∞
|ξ| exp

(
−ξ

2

2

)
dξ =

√
3
2π

(3.40)
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Remark 3.1. Note that for finiteβ: r̂ < r?
√

3/2 and forβ →∞: r̂ ↗ r?
√

3/2.

The chaotic size-dependent behaviour of the order parameters is stated in the fol-
lowing theorem which we will prove in the next section:

Theorem 3.2. Let LN,β be the induced distribution of the overlap parameters and let
~mij(θ) = (cos θ(ei− ej)/2, sin θ(ei− ej)/2), where1 ≤ i < j ≤ q andθ ∈ [0, π) is a
uniformly distributed random variable. Then there existq(q − 1)/2 pairs ~mij(θ) such
that

LN,β
D→ 1
q(q − 1)

∑
i<j

(
δ~mij(θ) + δ−~mij(θ)

)
≡ L∞,β[{~mij(θ)}]

Furthermore, the (induced) AW-metastate is the image of the uniform distribution ofθ
under the measure-valued mapθ → L∞,β [{~mij(θ)}].

The case ofm an arbitrary finite number of patterns is a straightforward extension.

3.5 Stochastic symmetry breaking forq = 3

In this section we adapt the fluctuation analysis of [11] to include Potts spins. We
essentially follow the same line of argument, and find that the fluctuations, properly
scaled, after dividing out the discrete symmetry, approach again a Gaussian process on
the circle.

For notational simplicity we treat the caseq = 3 only. Forq > 3 a similar analysis
applies. We denote the two patterns~ξ1 and~ξ2 by ~ξ and~η respectively.

Define the functionφN as (3.35):

βφN (~z) = −Q(~z) + ~z · ∇Q(~z)− c(∇Q(~z)) (3.41)

wherec(~t) equals (3.27):

c(~t) =
1
N

ln
{

IEσ exp~t1 ·N~q1 + ~t2 ·N~q2
}

=
1
N

N∑
i=1

ln
{

IEσi exp~t1 · ξieσi + ~t2 · ηieσi
}

(3.42)
Then forN →∞ the measure

LN,β =
e−βNφN

ZN
→ L∞,β (3.43)

whereL∞,β is the induced distribution of the overlap parameters.
For q = 3 it holds:

Q(~z) =
K

2
‖~z‖2

2 =
2
3
β‖~z‖2 (3.44)
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Thus:

φN (~z) =
2
3
‖~z‖2

2−
1
βN

N∑
i=1

ln
{

IEσ exp
4
3
β(ξi~z1 · eσi + ηi~z2 · eσi)

}
≡ 2

3
‖~z‖2

2−
1
βN

ΞN

(3.45)
Usinge1 = (1, 0), e2 = (−1

2 ,
1
2

√
3), e3 = (−1

2 ,−
1
2

√
3) andK = 4

3β

ΞN =
N∑

i=1

ln

{
expK(ξiz11 + ηiz21)

3
+

2
3

exp
−K
2

(ξiz11 + ηiz21) cosh
K
√

3
2

(ξiz12 + ηiz22)

}
≡

N∑
i=1

ln

{
1
3
φ1(z11, z21)ξ,η +

2
3
√
φ1(z11, z21)ξ,η

φ2(z12, z22)ξ,η

}
(3.46)

Because for finiteN the set of 6 Gibbs states has a discrete symmetry, as mentioned
before, we choose out of these 6 states one preferred one, namely the one of the form
~q = (0, r̂(β) sin θ, 0, r̂(β) cos θ), see (3.6) and the remark below (3.16). Note that theθ
depends both onN and on the realization of the random disorder variable. Then because
of this particular choicez11 = z21 = φ1 = 0. Inserting this and definingz12 = z̃1 and
z22 = z̃2 we get forφN :

φN (z̃1, z̃2) =
2
3
‖(z̃1, z̃2)‖2

2 −
1
βN

N∑
i=1

ln
{

1
3

+
2
3

cosh
2√
3
β(ξiz̃1 + ηiz̃2)

}
(3.47)

Now we re-scale by putting(z1, z2) = 2√
3
(z̃1, z̃2). Note that 2√

3
r̂(β) → r? for β →∞,

so after re-scaling tor?. We obtain:

φN (z1, z2) =
1
2
‖(z1, z2)‖2

2−
1
βN

N∑
i=1

ln
{

1
2

+ coshβ(ξiz1 + ηiz2)
}

+
1
β

ln
3
2

(3.48)

So it is enough to prove now thatwith the 1
2 term we get the desired chaotic pairs

structure between the patterns due to the quenched disorder for this class of ground
states, once we divide out the appropriate discrete Potts permutation symmetry. Thus
the original model displays chaotic 6-tuples.

First we show that the induced measure is exponentially concentrated about these
circles around the origins. We denote byP the probability given by the Gibbs measure.

Lemma 3.3 (Concentration near the circle).Let δN = N−1/10 and r̃(β) = 2√
3
r̂(β).

Then forK andl strictly positive constants it holds:∫
‖~z‖−r̃(β)|≥δN exp (−βNφN (~z))d~z∫
‖~z‖−r̃(β)|<δN exp (−βNφN (~z))d~z

≤ K exp (−KN l) (3.49)
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on a set ofP-measure which converges exponentially fast to one asN →∞.
(Equivalent to lemma 2.1 in [11])

Because of the circle concentration ofLN,β it is convenient to transformφN to polar
coordinates. Define~z(r, θ) = (r cos θ, r sin θ). Then transforming (3.48) leads to:

|(φN − IEφN )(r, θ)| =∣∣∣∣∣ 1β IEψIEζ ln
[
1
2

+ cosh {βζr cosψ}
]
− 1
βN

N∑
i=1

ln
[
1
2

+ cosh {βrζi cos (θ − ψi)}
]∣∣∣∣∣

(3.50)

Hereζ, ψ denote the polar decomposition of the two-dimensional vector(ξ, η), i.e. ζ is
distributed with densityx exp−x2/2 on IR+ andψ uniformly on the circle[0, 2π). See
[11, page 188]. This we see easily because:

ξz1 + ηz2 = (ζ cosψ)(r cos θ) + (ζ sinψ)(r sin θ) = ζr(cos θ cosψ + sin θ sinψ)
= ζr cos (θ − ψ) and IEψ cos (θ − ψ) = IEψ cosψ (3.51)

Proof of lemma 3.3:Denote

exp (−βNφN (~z)) = exp (−βN IEφN (~z)) exp (−βN(φN − IEφN (~z))) (3.52)

The function IEφN (~z) has its minimum for ãr(β) which follows from the fixed point
equations. Because IEφN (~z) is sufficiently smooth it can estimated from above and
below by a quadratic functionC(‖~z‖ − r̃(β))2.

Now we consider the fluctuations ofφN (~z) from its mean. The proof is equal to the
proof of lemma 2.1 of [11], which we do not reproduce here. Important in this proof is
the random matrixA = (~ζ, ~η)T (~ζ, ~η)/N . The eigenvalues of this matrix are very close
to one. Therefore it follows (see [11]):

P[‖A‖ − 1 ≥ x] ≤ Ce−Nx
2/C (3.53)

Now define

f(·) =
1
β

ln
(

1
2

+ cosh (β ·)
)

(3.54)

Note |f ′(·)| < | tanh(.)| and|f ′(·)| < 1. Then with this functionf we have by [11] an
upper bound of the form‖~z − ~z′‖‖A‖1/2. The lemma is proven by a coarse graining
procedure.

Only a small part of the circles does contribute to almost all the mass of the distri-
bution. The lemma below makes this precise:
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Lemma 3.4 (Concentration around minima). Assume the hypotheses of lemma 3.3.
LetaN = N−1/25. Then there exist strictly positive constantsK1,K2, C1, C2 such that
on a set ofP-measure at least1−K1e

−N1/25
the following bound holds,∫

A′N
e−βNφN (~z)d~z∫

AN
e−βNφN (~z)d~z

≤ C1e
−N1/5

(3.55)

where

AN = {(r, θ) ∈ IR+
0 × [0, 2π)||r − r̃| < δN , gN (θ)−min

θ
gN (θ) < aN}

A′N = {(r, θ) ∈ IR+
0 × [0, 2π)||r − r̃| < δN , gN (θ)−min

θ
gN (θ) ≥ aN}

(3.56)

(Equivalent to lemma 2.2 in [11])

For above lemma we look at the following decomposition of the fluctuations ofφN (~z):

(φN − IEφN )(~z) = β
√
N(gN (~z′) + hN (~z)) (3.57)

where

hN (~z) = gN (~z)− gN (~z′) (3.58)

The variable~z′(~z) is the projection of~z onto the circleS1(r̃). In above lemma

gN (θ)=
1√
N

N∑
i=1

[
ln
{

1
2
+cosh {βr̃ζi cos (θ−ψi)}

}
−IEψIEζ ln

{
1
2
+coshβζr̃ cosψ

}]
(3.59)

which is the polar coordinate form of the functiongN (~z), but for the projected~z′(~z)
instead of~z, where

gN (~z) =
1√
N

N∑
i=1

[
ln
{

1
2

+ coshβ~z · (ξ, η)
}
− IE ln

{
1
2

+ coshβ~z · (ξ, η)
}]
(3.60)

If we look at (3.57) then we see thathN (~z) represents the error in the fluctuations
when we replace~z by its projection on the circle. The functiongN (~z′) represents the
fluctuations for the projected~z on the circle.

Proof of Lemma 3.4:Again its proof is equal to the proof in [11]. First it is proven there
that the projectional errorhN (~z) is vanishing exponentially inN . A important tool for
this is the mean value theorem. This because|f ′(·)| < 1 of function f(.) in (3.54).
Then after some calculations a lemma similar to above lemma is proven.
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Proof of theorem 3.2:In the preceding paragraphs we have seen that the measuresL̃
concentrate on a circle at the places where the random functiongN (θ) takes its mini-
mum. Now it only remains to show that these sets degenerate to a single point, a.s. in
the limitN →∞. In [11] this is already done for a class of functions which include the
aperiodic even function

g(·) = ln
{

coshβ ·+ 1
2

}
(3.61)

This means that the processηN = gN (θ) − IEgN (θ) converges to a strictly stationary
Gaussian process, having a.s. continuously differentiable sample paths. And on any
interval [s, s + t], t < π the functionηN has only one global minimum. Furthermore,
if we define the sets:

LN = {θ ∈ [0, π) : ηN (θ)−min
θ′

ηN (θ′) ≤ εN} (3.62)

with εN some sequence converging to zero,LN
D→ θ?. Then some remaining consider-

ations are needed from [11] to conclude the proof.

Remark 3.5. We can easily generalize the above two lemmas to the infinite pattern case
where the number of patternsm = logN . The corrections to the stated probabilities are
only of orderexp (P (logN)), whereP is a polynomial of finite degree. However these
trivial considerations do break down when we choosem = αN , whereα > 0 even if it
is small. In these considerations we make use of the fact that for aC3-functionf from
IRm → IR it holds that the Hessian off at its minima is positive definite. Therefore there
exists positive constantsc, C such that for every vector~h with ‖~h‖ ≥ 0

c‖~h‖2 ≤ f(min+~h)− f(min) ≤ C‖~h‖2 (3.63)

Whenm → ∞ there is sphere-concentration of the order-parameters itself, so the
minima ofφN might not be unique (except for spin-symmetry) anymore.
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Chapter 4

The 2d Ising model with random
boundary conditions

In this chapter we study the infinite-volume limit behavior of the 2d Ising model un-
der possibly strong random boundary conditions. The model exhibits chaotic size-
dependence at low temperatures and we prove that the ‘+’ and ‘-’ phases are the only
almost sure limit Gibbs measures, assuming that the limit is taken along a sparse enough
sequence of squares. In particular, we provide an argument to show that in a sufficiently
large volume a typical spin configuration under a typical boundary condition contains no
interfaces. In order to exclude mixtures as possible limit points, a detailed multi-scale
contour analysis is performed. Finally we show that the 2d Ising model with a high
random boundary field coincide with 2d Ising model with random boundary conditions.

4.1 Introduction

A fundamental problem in equilibrium statistical mechanics is to determine the set of
physically accessible thermodynamic states for models defined via a family of local
interactions. Usually [26, 38] one interprets the extremal elements of the set of transla-
tionally invariant Gibbs measures as the pure thermodynamic phases of the model. In
particular this means that one gathers all periodic or quasiperiodic extremal Gibbs mea-
sures into symmetry-equivalent classes and identifies the latter with the pure phases.
Examples are the ferromagnetic, the antiferromagnetic, crystalline or quasicrystalline
phases exhibited by various models. In this approach one does not consider either inter-
face states or mixtures as pure phases. The mixtures allow for a unique decomposition
into the extremal measures and are traditionally interpreted in terms of a lack of the
knowledge about the thermodynamic state of the system. They can also be classified as
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less stable than the extremal measures [40, 59]. It is thought that interface states which
are extremal Gibbs measures are more stable than mixed states, but less so than pure
phases. However, such an “intrinsic” characterization has not been developed. Note,
moreover, that in disordered systems such as spin glasses, the stability of pure phases is
a priori not clear and characterizing them remains an open question.

An efficient strategy for models with a simple enough structure of low-temperature
phases is to associate these with suitablecoherent boundary conditions. The latter are
usually chosen asground statesof the model. As an example, the ‘+’ and ‘-’ Ising phases
can be obtained by fixing the constant ‘+’, respectively the constant ‘-’ configurations at
the boundaries and by letting the volume tend to infinity. This idea has been generalized
to a wide class of models with both a finite and a ‘mildly’ infinite number of ground
states, and is usually referred to as thePirogov-Sinai theory[8, 15, 77, 70, 71]. The
main assumption is that the different ground states are separated by high enough energy
barriers, which can be described in terms of domain walls, referred to as contours. A
useful criterion to check this so-called Peierls condition is within the formalism ofm-
potentials due to Holzstynski and Slawny [43].

An alternative strategy is to employ a boundary condition that does not favor any
of the phases. Examples are the free and periodic boundary conditions for the zero-
field Ising model, or the periodic boundary conditions for the Potts model at the critical
temperature. In all these cases, an infinite-volume Gibbs measure is obtained that is a
homogenous mixture of all phases.

Another scenario has been expected to occur for spin glasses. Namely, Newman and
Stein have conjectured [61, 62, 63, 65, 66] that some spin glass models under symmetric
boundary conditions exhibit non-convergence to a single thermodynamic limit measure,
a phenomenon calledchaotic size dependence(see also [32, 55, 24]). In this case, both
the set of limit points of the sequence of the finite-volume Gibbs measures and their
empirical frequency along the sequence of increasing volumes are of interest, and the
formalism ofmetastateshas been developed [63, 65, 64] to deal with these phenomena.
These arguments have been made rigorous for a class of mean-field models [12, 51, 53,
11, 29, 67, 52], whereas no such results are available for short-range spin glasses. For
some general background on spin glasses and disordered models we refer to [10, 34, 54,
73].

A natural toy-problem where the usual contour methods can be used in the regime of
chaotic size-dependence is the zero field Ising model with the boundary condition sam-
pled from a random distribution which is symmetric under the spin flip. In dimension 2
or more and at any subcritical temperature (includingT = 0) the finite-volume Gibbs
measures are expected to oscillate randomly between the ‘+’ and the ‘-’ phases, demon-
strating the chaotic size dependence with exactly two limit points coinciding with the
thermodynamic phases of the model [62]. In particular, one does not expect either any
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interface (e.g. Dobrushin) Gibbs states or any non-trivial statistical mixtures to occur
as the limit points. This problem was addressed in [28] where the conjecture was rig-
orously proven as the almost sure picture in the regime of the weak boundary coupling.
In this regime, the boundary bonds are made sufficiently weaker w.r.t. the bulk bonds
so that the interface configurations become damped exponentially with the size of the
system, uniformly forall boundary conditions. Hence, all translationally non-invariant
Gibbs measures are forbidden as possible limit points and one only needs to prove that
the mixtures do not appear with probability 1.

In this chapter we continue this study by removing the weakness assumption on
the boundary bonds. To be specific, we consider the 2d Ising model with the random
boundary condition sampled from the symmetric i.i.d. field{−1, 1}Z2

and coupled to
the system via thebulk coupling constant. The conjecture remains true in this case and
the crucial novelty of our approach is a detailed multi-scale analysis of contour models
in the regime where realizations of the boundary condition are allowed that violate the
‘diluteness’ (Peierls) condition, possibly making interfaces likely configurations. To be
precise, these interfaces can have large Gibbs probabilities for certain boundary condi-
tions, but we will show that such boundary conditions are sufficiently unlikely to occur
for large volumes. An important side-result is the almost sure absence of interface con-
figurations. This means that for a typical boundary condition, the probability of the
set of configurations containing an interface tends to zero in the infinite-volume limit.
Note that this excludes interfaces in a stronger way than the familiar result about the ab-
sence of translationally non-invariant Gibbs measures in the 2d Ising model [36, 1, 42].
Indeed, the absence of fluctuating interfaces basically means that not only the expecta-
tions of local functions but also their space averages (e.g. the volume-averaged magne-
tization) have only two limit points, corresponding to the two Ising phases. Hence, we
believe that our techniques allow for a natural generalization to any dimensiond ≥ 2.
However, as already argued in [28], in dimensionsd ≥ 4, the set{µ+, µ−} is expected
(and partially proven) to be thealmost sureset of limit measures, the limit being taken
along the regular sequence of cubes. On the other hand, ford = 2, 3 the same result
can only be obtained if the limit is taken along a sparse enough sequence of cubes. In
the latter case it remains an open problem to analyze the set of limit points along the
regular sequence of cubes. Our conjecture is that the almost sure set of limit points
coincides then with the set of all translationally invariant Gibbs measures, i.e. including
the mixtures.

The structure of this chapter is as follows. We will first introduce our notation in
Section 4.2, and describe our results in Section 4.3. Then in Sections 4.4 and 4.5 we
will introduce a contour representation of the model and set up our cluster expansion
formalism. In Section 4.6 we first exclude the occurrence of interfaces. In the rest of the
chapter we develop a multiscale argument, providing a weak version of the local limit
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theorem to show that no mixed states can occur as limit points in the infinite-volume
limit. In Section 4.12 we discuss the high field case. Two general results, the first one
on a variant of the cluster expansion convergence criteria for polymer models and the
second one on local limit upper bounds, are collected in two final sections.

4.2 Set-up

We consider the two-dimensional square latticeZ2 and use the symbolsσ, η, . . . for
the mapsZ2 7→ {−1, 1}. They are calledspin configurationsand the set of all spin
configurations isΩ = {−1, 1}Z2

. Furthermore, the symbolσA is used for the restriction
of a spin configurationσ ∈ Ω to the setA ⊂ Z2. If A = {x}, we writeσx instead. The
set of all restrictions ofΩ to the setA is ΩA.
A function f : Ω 7→ R is called local whenever there is a finite setD ⊂ Z2 such
that σD = σ′D implies f(σ) = f(σ′). The smallest set with this property is called
thedependence setof the functionf and we use the symbolDf for it. To every local
functionf we assign the supremum norm‖f‖ = supσ∈Ω |f(σ)|.
The spin configuration spaceΩ comes equipped with the product topology, which is
followed by the weak topology on the spaceM(Ω) of all probability measures onΩ.
The latter is introduced via the collection of seminorms

‖µ‖X = sup
‖f‖=1
Df⊂X

|µ(f)| (4.1)

upon all finiteX ⊂ Z2. Then, the weak topology is generated by the collection of open
ballsBε

X(µ) = {ν; ‖ν − µ‖X < ε}, ε > 0, X finite, and a sequenceµn ∈ M(Ω)
weakly converges toµ if and only if ‖µn − µ‖X → 0 for all finiteX ⊂ Z2. Under the
weak topology,M(Ω) is compact.

We consider a collection of the HamiltoniansHη
Λ : ΩΛ 7→ R for all square volumes

Λ = Λ(N),N = 1, 2, . . .,

Λ(N) = {x ∈ Z2; ‖x‖ ≤ N} ‖x‖ = max{|x1|, |x2|} (4.2)

andboundary conditionsη ∈ Ω. The Hamiltonians are given by

Hη
Λ(σΛ) = −β

∑
〈x,y〉⊂Λ

(σxσy − 1)− β
∑
〈x,y〉

x∈Λ, y∈Λc

σxηy (4.3)

where〈x, y〉 stands for pairs of nearest neighboring sites, i.e. such that‖x − y‖1 :=
|x1 − y1| + |x2 − y2| = 1, andΛc = Z2 \ Λ. We consider the ferromagnetic case,
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β > 0. Following a familiar framework, we introduce thefinite-volume Gibbs measure
µηΛ ∈M(Ω) by

µηΛ(σ) =
1
ZηΛ

exp[−Hη
Λ(σΛ)] 1l{σΛc=ηΛc} (4.4)

and define the setGβ of (infinite-volume)Gibbs measures, Gβ, as the weak closure of
the convex hull over the set of all weak limit points of the sequences(µηΛ(N))N→∞,
η ∈ Ω. A standard result reads that there existsβc such that for anyβ > βc the set
of Gibbs measuresGβ = {αµ+ + (1 − α)µ−; 0 ≤ α ≤ 1}. Here, the extremal mea-
suresµ± are translation-invariant, they satisfy the symmetry relation

∫
dµ+(σ) f(σ) =∫

dµ−(σ) f(−σ), and can be obtained as the weak limitslimN→∞ µηΛ(N) for η ≡ ±1.

4.3 Results

We consider the limit behavior of the sequence of finite-volume Gibbs measures
(µηΛ(N))N∈N under boundary conditionsη sampled from the i.i.d. symmetric random
field

P {ηx = 1} = P {ηx = −1} =
1
2

(4.5)

Our first result concerns the almost sure structure of the set of all limit points of the
sequence of the finite-volume Gibbs measures, the limit being taken along a sparse
enough sequence of squares.

Theorem 4.1. For arbitrary ω > 0 there is aβ1 = β1(ω) such that for anyβ ≥ β1 the
set of all weak limit points of any sequence(µΛ(kN ))N=1,2,..., kN ≥ N2+ω, is{µ+, µ−},
P -a.s.

Remark 4.2. The above theorem does not exclude other measures as the almost sure
limit points, provided that other (non-sparse) sequences of squares are taken instead.
Actually, our conjecture is that, forβ large enough, the set of all weak limit points
of (µΛ(N))N=1,2,... coincidesP -a.s. withGβ. On the other hand, in dimension3, it
is rather expected to coincide with the set of all translation-invariant Gibbs measures,
and, in any dimension higher than3, with the set{µ+, µ−}.

Remark 4.3. A modification of the Hamiltonian(4.3) is obtained by re-scaling the
boundary coupling by a factorλ to get

Hλ,η
Λ (σΛ) = −β

∑
〈x,y〉⊂Λ

(σxσy − 1)− λβ
∑
〈x,y〉

x∈Λ, y∈Λc

σxηy (4.6)
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In this case, the claim of Theorem 4.1 for the sequence of the finite-volume Gibbs mea-
sures

µλ,ηΛ (σ) =
1

Zλ,ηΛ

exp[−Hλ,η
Λ (σΛ)] 1l{σΛc=ηΛc} (4.7)

was proven in [28] under the condition that|λ| is small enough (= the boundary cou-
pling is sufficiently weak w.r.t. the bulk one). It was also shown that{µ+, µ−} is the
almost sure set of limit points of the sequence(µηΛ(N))N∈N, provided that the space
dimension is at least4.

To reveal the nature of all possible limit points that can appear along the sequence
of squaresΛ(N),N = 1, 2, . . ., we study the empirical frequency for the finite-volume
Gibbs states from the sequence(µηΛ(N))N∈N to occur in a fixed set of measures. More
precisely, for any setB ⊂ M(Ω), boundary conditionη ∈ Ω, andN = 1, 2, . . ., we
define

QB,ηN =
1
N

N∑
k=1

1l{µη
Λ(k)

∈B} (4.8)

The next theorem shows thenull-recurrentcharacter of all measures different from both
µ+ andµ−. We use the notation̄B andB0 for the weak closure and the weak interior
of B, respectively.

Theorem 4.4. There isβ2 such that for anyβ ≥ β2 and any setB ⊂M(Ω), one has

lim
N↑∞

QB,ηN =


0 if µ+, µ− 6∈ B̄
1
2 if µ± ∈ B0 andµ∓ 6∈ B̄
1 if µ+, µ− ∈ B0

(4.9)

with P -probability1.

Both theorems follow in a straightforward way from the following key estimate that
will be proven in the sequel of this chapter.

Proposition 4.5. Givenα > 0, there is aβ0 = β0(α) such that for anyβ ≥ β0, ε > 0
andX ⊂ Zd finite,

lim
N→∞

N
1
2
−α P {(‖µηΛ(N) − µ+‖X ∧ ‖µηΛ(N) − µ−‖X) ≥ ε} <∞ (4.10)

Remark 4.6. The proposition claims that, for atypicalη ∈ Ω, the finite-volume Gibbs
measures are expected to be near the extremal Gibbs measuresµ±. The above proba-
bility upper-bound of the formO

(
N− 1

2
+α
)

will be proven by means of a variant of the
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local limit theorem for the sum of weakly dependent random variables. Although we
conjecture the correct asymptotics to be of orderN− 1

2 , the proof ofany lower bound
goes beyond the presented technique. This is why the detailed structure of the almost
sure set of the limit Gibbs measures is not available, except for the limits taken along
sparse enough sequences of squares.

Proof of Theorem 4.1.Given ω > 0, we choose anα < ω/(2(2 + ω)) and define
β1(ω) = β0(α). Letβ ≥ β1(ω) andkN ≥ N2+ω.

First letµ 6∈ {µ+, µ−}. There exists a weakly open setB ⊂M(Ω) such thatµ ∈ B
andµ+, µ− 6∈ B̄. Choosing a finite setX ⊂ Z2 andε > 0 such thatBε

X(µ±) ∩B = ∅,
Proposition 4.5 gives the bound

P {µηΛ(kN ) ∈ B} ≤ P {µηΛ(kN ) 6∈ B
ε
X(µ+) ∪Bε

X(µ−)}

= O(k(N)−
1
2
+α) = O(N−1+α(2+ω)−ω

2 )
(4.11)

Since
∑

N P {µηΛ(kN ) ∈ B} < ∞, the setB containsP -a.s. no limit points of the

sequenceµηΛ(kN ) due to the Borel-Cantelli argument. Hence, withP -probability 1,µ is
not a limit point.

To prove that bothµ+ andµ− areP -a.s. limit points, take any finite set of sites
X and ε > 0 such thatBε

X(µ+) ∩ Bε
X(µ−) = ∅. By the symmetry of the distri-

bution, P {µΛ(kN ) ∈ Bε
X(µ+)} = P {µΛ(kN ) ∈ Bε

X(µ−)} and, employing Propo-
sition 4.5 again,limN P {µΛ(kN ) ∈ Bε

X(µ±)} = 1
2 . By the Borel-Cantelli and the

compactness arguments, the weak closureB̄ε
X(µ±) contains a limit point,P -a.s. As

µ± = ∩X,εB̄ε
X(µ±), the statement is proven.

Proof of Theorem 4.4.Chooseβ2 = β0(α) for an arbitraryα ∈ (0, 1
2) and assume

β ≥ β2, B ∈ M(Ω). Using the notationqB,ηN = P {µηΛ(N) ∈ B} and repeating the
reasoning in the proof of Theorem 4.1, one gets

E 1l{µη
Λ(N)

∈B} = qB,ηN

=


O(N− 1

2
+α) → 0 if µ+, µ− 6∈ B̄

1
2 −O(N− 1

2
+α) → 1

2 if µ± ∈ B0 andµ∓ 6∈ B̄
1−O(N− 1

2
+α) → 1 if µ± ∈ B0

(4.12)

and

Var 1l{µη
Λ(N)

∈B} = qB,ηN (1− qB,ηN ) ≤ 1
4

(4.13)

Hence,
∑

N
1
N2 Var 1l{µη

Λ(N)
∈B} <∞ and since the functions 1l{µη

Λ(N)
∈B},N = 1, 2, . . .

are independent, the result immediately follows from the strong law of large numbers
[23].
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4.4 Geometrical representation of the model

We define thedual lattice(Z2)∗ = Z2 + (1/2, 1/2). The (unordered) pairs of nearest
neighboring sites〈x, y〉 ⊂ Z2 are calledbondsand to every bond we assign a unique
dual bond〈x∗, y∗〉 ≡ 〈x, y〉∗ ⊂ (Z2)∗. Given a set of dual bondsA∗, we use the
symbol|A∗| to denote the number of all dual bonds inA∗. Further, with a slight abuse
of notation, we also writex∗ ∈ A∗ whenever there exists a dual bond〈x∗, y∗〉 ∈ A∗,
i.e.A∗ also stands for the corresponding set of dual sites.

Any setA∗ of dual bonds is calledconnectedwhenever for any dual sitesx∗, y∗ ∈
A∗ there exists a sequence of dual bonds〈x∗, x∗1〉, 〈x∗1, x∗2〉, . . . , 〈x∗k−1, y

∗〉 ∈ A∗. The
distanced[A∗, B∗] of the sets of dual bondsA∗, B∗ is defined as the smallest integerk
such that there existx∗ ∈ A∗, y∗ ∈ B∗, and a sequence of dual bonds〈x∗, x∗1〉, 〈x∗1, x∗2〉,
. . . , 〈x∗k−1, y

∗〉 ⊂ (Z2)∗. Similarly, a set of sitesA ⊂ Z2 is calledconnectedwhenever
for all x, y ∈ A there exists a sequence of bonds〈x, x1〉, 〈x1, x2〉, . . . , 〈xk−1, y〉 ⊂ A.
Correspondingly, the distanced[A,B] of the setsA,B ⊂ Z2 is understood in the sense
of the‖.‖1-norm.

In the sequel we assume that a volumeΛ = Λ(N) is fixed and we define thebound-
ary ∂Λ as the set of all dual bonds〈x, y〉∗ such thatx ∈ Λ andy ∈ Λc. In general,∂A,
A ⊂ Λ is the set of all dual bonds〈x, y〉∗, x ∈ A, y ∈ Λc. For any subsetP ⊂ ∂Λ we
use the symbolP to denote the set of all sitesy ∈ Λc such that there is a (unique) bond
〈x, y〉∗ ∈ P , x ∈ Λ. If P is a connected set of sites, thenP is called aboundary interval.
Obviously, any boundary interval is a connected set of dual bonds, however, the opposite
is not true. However, any setP ⊂ ∂Λ has a unique decomposition into a family of (max-
imal) boundary intervals. Furthermore, consider all connected setsPi of dual bonds sat-
isfyingP ⊂ Pi ⊂ ∂Λ which are minimal in the sense of inclusion. The smallest of these
sets is calledCon(P ) (in the case of an equal size take the first one in the lexicographic
order) and we use the shorthand|P |con = |Con(P )|. Finally, we define thecornersof
Λ(N) as the dual sitesx∗C,1 = (−N − 1/2,−N − 1/2), x∗C,2 = (N +1/2,−N − 1/2),
x∗C,3 = (N + 1/2, N + 1/2), andx∗C,4 = (−N − 1/2, N + 1/2).

Pre-contours

Given a configurationσ ∈ ΩΛ = {−1,+1}Λ, the dual bond〈x, y〉∗ to a bond〈x, y〉 ⊂
Λ is calledbrokenwheneverσx 6= σy, and the set of all the broken dual bonds is
denoted by∆Λ(σ). In order to define a suitable decomposition of the set∆Λ(σ) into
components, we take advantage of a certain freedom in such a construction to obtain
the components with suitable geometrical properties. In this first step, we define the
pre-contoursas follows. Consider all maximal connected components of the set of dual
bonds∆Λ(σ). By the standard ‘rounding-corner’ procedure, see Figure 4.1, we further
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Figure 4.1: Pre-contours constructed via the rounding corner procedure.

split them into connected (not necessarily disjoint) subsets,γ, which can be identified
with (open or closed) simple curves. Namely,

γ = {〈x∗0, x∗1〉, 〈x∗1, x∗2〉, . . . , 〈x∗k−1, x
∗
k〉} k ∈ N

such that ifx∗i = x∗j , i 6= j, then{i, j} = {0, k} andγ is closed. Otherwise,x∗i 6= x∗j
for all i 6= j andγ is open withx∗0, x

∗
k ∈ ∂Λ.

Theseγ are calledpre-contoursand we use the symbol̃DΛ(σ) for the set of all pre-
contours corresponding toσ; write alsoD̃Λ = {D̃Λ(σ), σ ∈ ΩΛ} and use the symbol
K̃Λ for the set of all pre-contours inΛ. Any pair of pre-contoursγ1, γ2 ∈ K̃Λ is called
compatiblewhenever there is a configurationσ ∈ ΩΛ such thatγ1, γ2 ∈ D̃Λ(σ). A
set of pairwise compatible pre-contours is called acompatible set. Obviously,D̃Λ is
simply the collection of all compatible sets of pre-contours fromK̃Λ. Intuitively, the
pre-contours that are closed curves coincide with the familiar Ising contours, whereas
the pre-contours touching the boundary become open curves.

Obviously,ΩΛ 7→ D̃Λ is a two-to-one map with the images of the configurationsσ
and−σ being identical. In order to further analyze this map, we introduce the concept
of interior and exterior of the pre-contours briefly as follows (the details can be found
in [9, 28]). If σ ∈ ΩΛ is a configuration such that̃DΛ(σ) = {γ}, then there is a unique
decomposition of the setΛ into a pair of disjoint connected subsets,Λ = Λ1 ∪ Λ2,
such that for any bond〈x, y〉, x ∈ Λ1, y ∈ Λ2, one has〈x, y〉∗ ∈ γ. These are called
the exterior, Ext(γ), and theinterior, Int(γ), where the assignment is given by the
following procedure. We distinguish three mutually exclusive classes of pre-contours:

i) Bulk pre-contours.
∂Λ = ∂Λ1. Then,Ext(γ) := Λ1 andInt(γ) := Λ2, see Figure 4.1.
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Figure 4.2: Small boundary pre-contour.

ii) Small boundary pre-contours.
Λ1 contains at least three corners ofΛ and∂Λ2 6= ∅. Then,Ext(γ) := Λ1 and
Int(γ) := Λ2, see Figure 4.2.

iii) Interfaces.
Both Λ1 and Λ2 contain exactly two corners ofΛ and a)|Λ1| > |Λ2|, or b)
|Λ1| = |Λ2| and xC,1 ∈ Λ1. Then, Ext(γ) := Λ1 and Int(γ) := Λ2, see
Figure 4.3.

The set∂γ := ∂ Int(γ) is called theboundaryof the pre-contourγ.

Contours

Next, we define contours by gluing some boundary pre-contours together via the follow-
ing procedure. Any compatible pair of pre-contoursγ1, γ2 ∈ K̃Λ is calledboundary-
matchingiff ∂γ1 ∩ ∂γ2 6= ∅. Any compatible set of pre-contours such that the graph
on this set obtained by connecting the pairs of boundary-matching pre-contours be-
comes connected is called acontour. In particular, every bulk pre-contour is boundary-
matching with no other compatible pre-contour. Therefore, every bulk pre-contour is
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Figure 4.3: Interface.

trivially a contour. We use the symbolDΛ(σ) for the set of all contours corresponding
to σ ∈ ΩΛ andKΛ for the set of all contours inΛ. Any pair of contoursΓ1,Γ2 is com-
patible,Γ1 ∼ Γ2, whenever all pairs of pre-contoursγ1 ∈ Γ1, γ2 ∈ Γ2 are compatible,
and we writeDΛ for the set of all families of pairwise compatible contours inΛ. All the
above geometrical notions naturally carry over to contours and we define the exterior,
Ext(Γ) := ∩γ∈Γ Ext(γ), the interior,Int(Γ) := Λ \ Ext(Γ) (in general, not a con-
nected set anymore), the boundary∂Γ := ∪γ∈Γ∂γ, and the length|Γ| :=

∑
γ∈Γ |γ|.

Similarly, if ∂ ∈ DΛ is a configuration of contours, letExt(∂) := ∩Γ∈∂ Ext(Γ),
Int(∂) := Λ \ Ext(∂), and|∂| :=

∑
Γ∈∂ |Γ|.

Eventually we arrive at the following picture. The setKΛ of contours is a union of
three disjoint sets of contours, namely of the sets of all

i) bulk (pre-)contours.

ii) small boundary contoursΓ defined by 1)∂Γ 6= ∅, and 2) no pre-contourγ ∈ Γ is
an interface.

a) simplesmall boundary contours: the boundary∂Γ contains no corner, i.e.
∂Γ is a boundary interval.
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Figure 4.4: Bulk and small boundary contours.

b) cornersmall boundary contours: there is exactly one cornerx∗C,i ∈ ∂Γ.

iii) large boundary contoursΓ, i.e. containing at least one interfaceγ ∈ Γ.

Examples of the bulk, small boundary, and large boundary contours are given in Fig-
ures 4.4 and 4.5.

Furthermore,DΛ(σ) is a two-to-one mapΩΛ 7→ DΛ satisfying the spin-flip sym-
metryDΛ(σ) = DΛ(−σ). Sinceσ takes a unique spin value in the setExt(DΛ(σ)),
there is a natural decompositionΩΛ = Ω+

Λ ∪ Ω−
Λ according to this value, i.e.

Ω±
Λ := {σ ∈ ΩΛ; σ|Ext(DΛ(σ)) = ±1} = −Ω∓

Λ (4.14)

As a consequence,DΛ splits into a conjugated (by spin-flip symmetry) pair of one-to-
one mapsΩ±

Λ 7→ DΛ. This enables us to represent the finite-volume Gibbs measure (4.4)
in the form of a convex combination of two conjugated constrained Gibbs measures as
follows:

µηΛ(σ) =
[
1 +

Z−,η
Λ

Z+,η
Λ

]−1
ν+,η
Λ (σ) +

[
1 +

Z+,η
Λ

Z−,η
Λ

]−1
ν−,ηΛ (σ) (4.15)
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Figure 4.5: Large boundary contour.

where we have introduced the Gibbs measure constrained toΩ±
Λ by

ν±,ηΛ (σ) =
1

Z±,η
Λ

exp[−Hη
Λ(σ)]1{σ∈Ω±Λ }

(4.16)

Moreover, for anyσ ∈ Ω±
Λ , the Hamiltonian can be written as

Hη
Λ(σ) = E±,η

Λ (∂) + 2β
∑
Γ∈∂

|Γ| (4.17)

with ∂ = DΛ(σ), and we have introduced

E±,η
Λ (∂) = −β

∑
〈x,y〉

x∈Λ, y∈Λc

σxηy (4.18)

Finally, Z±,η
Λ is essentially the partition function of a polymer model [50], see also

Section 4.14,

Z±,η
Λ = exp (−E±,η

Λ (∅))
∑
∂∈DΛ

∏
Γ∈∂

ρ±,η(Γ) (4.19)
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where the polymers coincide with the contours and the polymer weights are defined by

ρ±,η(Γ) = exp (−2β|Γ|) exp
(
−E±,η(Γ) + E±,η(∅)

)
(4.20)

By the spin-flip symmetry, we can confine ourselves to the ‘+’ case and use the short-
hand notationsρη(Γ) := ρ+,η(Γ) = ρ−,−η(Γ), ZηΛ := Z+,η

Λ = Z−,−η
Λ , EηΛ := E+,η

Λ =
E−,−η

Λ , andνηΛ(σ) := ν+,η
Λ (σ) = ν−,−ηΛ (−σ). Moreover, the boundary∂Γ of a contour

Γ has a natural decomposition into components as follows. Letσ ∈ Ω+
Λ be such that

DΛ(σ) = {Γ}. Then the ‘±’ boundary component∂Γ± is defined as the set of all dual
bonds〈x, y〉∗ such thatx ∈ Λ, y ∈ Λc, σx = ±1. With this definition, the contour
weight (4.20) is

ρη(Γ) = exp
[
−2β

(
|Γ|+

∑
x∈∂Γ−

ηx
)]

(4.21)

Using the representation (4.15) of the finite-volume Gibbs measureµηΛ, the strategy
of our proof consists of two main parts:

1. To prove that the constrained (random) Gibbs measureνηΛ asymptotically coin-
cides with the Ising ‘+’ phase, for almost allη.

2. To show that a sufficiently sparse subsequence of the sequence of random free
energy differenceslogZηΛ − logZ−η

Λ has+∞ and−∞ as the only limit points,
for almost allη.

Then, Proposition 4.5 follows almost immediately. Moreover, we will show that for
a P -typical boundary conditionη and aµηΛ-typical configurationσ ∈ ΩΛ, the corre-
sponding set of pre-contours̃DΛ(σ) contains no interfaces.

Theorem 4.7. There isβ3 such that for anyβ ≥ β3 one has

lim
N↑∞

µηΛ(N){D̃Λ(N)(σ) contains an interface} = 0 (4.22)

for P -a.e.η ∈ Ω.

Remark 4.8. Note that the low-temperature result by Gallavotti [36], extended to all
subcritical temperatures in [1, 42], about the absence of translationally non-invariant
Gibbs measures in the 2d Ising model does not exclude fluctuating interfaces under
a suitably arranged (‘Dobrushin-like’) boundary condition. On the other hand, the
above theorem claims that atypicalboundary condition gives rise to a Gibbs measure in
which interfacesanywhereare suppressed. We mention this side-result to demonstrate
the robustness of the presented multi-scale approach and to argue that it is essentially
dimension-independent, thed = 2 case being chosen only for simplicity.
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It is easy to realize that, for a typicalη, the polymer model (4.19) fails the ‘dilute-
ness’ condition on the sufficient exponential decay of the polymer weights, which means
one cannot directly apply the familiar formalism of cluster expansions. These violations
of the diluteness condition occur locally along the boundary with low probability, and
hence have typically low densities. Nevertheless, their presence on all scales forces a
sequential, multi-scale, treatment. Multi-scale methods have been employed at various
occasions, such as for one-phase models in the presence of Griffiths singularities or for
the random field Ising model [13, 14, 22, 31, 35, 45]. In contrast to the usual case of
cluster expansions one does not obtain analyticity (which may not even be valid). In
our approach, we loosely follow the ideas of Fröhlich and Imbrie [35]. For other recent
work developing their ideas, see [6, 7].

4.5 Cluster expansion of balanced contours

In this section we perform the zeroth step of the multi-scale analysis for the polymer
model (4.19), and set up the cluster expansion for a class of contours the weight of
which is sufficiently damped. As a result, an interacting polymer model is obtained that
will be dealt with in the next section.

Let an integerl0 be fixed. It is supposed to be large enough and the precise con-
ditions will be specified throughout the sequel. It plays the role of anη-independent
’cut-off scale’. Given any boundary conditionη (fixed throughout this section), we start
by defining the set of contours that allow for the cluster expansion. Obviously, every
bulk contourΓ has the weightρη(Γ) = exp(−2β|Γ|). For boundary contours, there
is no such exponential bound with a strictly positive rate, uniformly inη. Instead, we
segregate anη-dependent subset of sufficiently damped boundary contours as follows.

Definition 4.9. Givenη ∈ Ω, a boundary contourΓ is called balanced (orη-balanced)
whenever ∑

x∈∂−Γ

ηx ≥ −
(
1− 1

l0

)
|Γ| (4.23)

OtherwiseΓ is called unbalanced.
A setB ⊂ ∂Λ is called unbalanced if there exists an unbalanced contourΓ, ∂−Γ = B.

While the case of large boundary contours will be discussed separately in the next
section, some basic properties of unbalanced small boundary contours are collected in
the following lemma. We define theheightof any simple boundary contourΓ as

h(Γ) = max
y∗∈Γ

d[y∗, ∂Γ] (4.24)
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Figure 4.6: Height of small boundary contours.

In order to extend this definition to small boundary contoursΓ such that∂Γ contains an
(exactly one) corner, we make the following construction. If∂Γ is a connected subset of
the boundary with the endpoints[±(N+1/2), a] and[b,±(N+1/2)], then we define the
setR(Γ) ⊂ (Z2)∗ as the (unique) rectangle such that[±(N+1/2), a], [b,±(N+1/2)],
and[±(N + 1/2),±(N + 1/2)] are three of its corners. Now the height is the maximal
distance of a point in the contour to this rectangle,

h(Γ) = max
y∗∈Γ

d[y∗, R(Γ)] (4.25)

The situation is illustrated in Figure 4.6.

Lemma 4.10. LetΓ be an unbalanced small boundary contour. Then,

i)
∑

x∈∂Γ ηx ≤ −
(
1− 2

l0

)
|∂Γ|.

ii) |∂Γ| ≥ l0h(Γ). In particular, if Γ is simple then|∂Γ| ≥ l0.

Proof. For any unbalanced contourΓ, Definition 4.9 together with the bound|Γ| ≥ |∂Γ|
valid for any small boundary contour implies the inequalities

−|∂−Γ| ≤
∑

x∈∂−Γ

ηx < −
(
1− 1

l0

)
|Γ| ≤ −

(
1− 1

l0

)
|∂Γ| (4.26)
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Hence,|∂+Γ| ≤ 1
l0
|∂Γ| and we obtain

∑
x∈∂Γ

ηx ≤ −
(
1− 1

l0

)
|∂Γ|+ |∂+Γ| ≤ −

(
1− 2

l0

)
|∂Γ| (4.27)

proving i).
If Γ is simple, then we use (4.26) again together with the refined relation|Γ| ≥

|∂Γ|+ 2h(Γ) to get

|∂Γ| ≥
(
1− 1

l0

)
|Γ| ≥

(
1− 1

l0

)
(|∂Γ|+ 2h(Γ)) (4.28)

which implies|∂Γ| ≥ l0h(Γ) ≥ l0, assumingl0 ≥ 2 and using thath(Γ) ≥ 1 for any
simple small boundary contour.
Since the definition of the height is such that the inequality|Γ| ≥ |∂Γ|+2h(Γ) remains
true as well for any small boundary contourΓ such that∂Γ contains a corner, the lemma
is proven.

The union of the set of all bulk contours and of the set of all balanced boundary
contours is denoted byKη0 . We also writeDη

0 for the set of all compatible families
of contours fromKη0 , andDη

>0 for the set of all compatible families of contours from
KΛ \ Kη0 . Later we will show that, for almost everyη, all large boundary contours (i.e.
those containing at least one interface) are balanced for all but finitely many squares
Λ(N).

Formally, the partition function (4.19) can be partially computed by summing over
all contours from the setKη0 . We start by rewriting partition function (4.19) as

ZηΛ = exp (−Eη(∅))
∑
∂∈Dη

>0

∏
Γ∈∂

ρη(Γ)
∑

∂0∈D
η
0

∂0∼∂

∏
Γ0∈∂0

ρη(Γ0) (4.29)

Here, the first sum runs over all compatible families∂ of contours not belonging toKη0 ,
while the second one is over all collections of contours fromKη0 , compatible with∂.
Let C0

Λ denote the set of all clusters of contours fromKη0 . Then, the cluster expansion
reads, see Section 4.14,

ZηΛ = exp (−Eη(∅))
∑
∂∈Dη

>0

∏
Γ∈∂

ρη(Γ) exp
(∑

C∈C
η
0

C∼∂

φη0(C)
)

(4.30)

where the sum runs over all clusters of contours fromKη0 that are compatible with∂, and
we have denoted the weight of a clusterC by φη0(C). Note that the cluster expansion
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was applied only formally here and it needs to be justified by providing bounds on the
cluster weights. This is done in Proposition 4.12 below.

Hence, we rewrite the model with the partition functionZηΛ as an effective model
upon the contour ensembleKΛ\Kη0 , with a contour interaction mediated by the clusters:

ZηΛ =Zη1 exp
(
−Eη(∅) +

∑
C∈Cη

0

φη0(C)
)

(4.31)

where

Zη1 =
∑
∂∈Dη

>0

exp
(
−
∑

C∈C
η
0

C 6∼∂

φη0(C)
)∏

Γ∈∂
ρη(Γ) (4.32)

After establishing an exponential upper bound on the number of incompatible contours
in the next lemma, a bound on the cluster weights immediately follows by recalling the
basic result on the convergence of the cluster expansions [50].

Lemma 4.11. There exists a constantc1 > 0 (independent ofl0) such that the number
of all contoursΓ′ ∈ KΛ, |Γ′| = n, Γ′ 6∼ Γ is upper-bounded by|Γ| ec1n, for anyΓ ∈ KΛ

andn = 1, 2, . . .

Proof. Note thatΓ is not necessarily a connected set. However, the relationΓ′ � Γ
implies(Γ′ ∪ ∂Γ′) ∩ (Γ ∪ ∂Γ) 6= ∅, and using thatΓ ∪ ∂Γ is connected, we get:

#{Γ′ : Γ′ � Γ, |Γ′| = n} ≤ |Γ ∪ ∂Γ| sup
x∗

#{Γ′ : x∗ ∈ Γ′ ∪ ∂Γ′, |Γ′| = n}

≤ 3|Γ| sup
x∗

#{A ⊂ (Z2)∗ connected, x∗ ∈ A, |A| ≤ 3n}

≤ |Γ| · 46n+1 ≤ |Γ| ec1n

by choosingc1 large enough.

Assigning to any clusterC ∈ C
η
0 thedomainDom(C) = ∂C where∂C = ∪Γ∈C∂Γ

is the boundary ofC, and the length|C| =
∑

Γ∈C |Γ|, we have the following result.

Proposition 4.12. There are constantsβ4, c2 > 0 (independent ofl0) such that for any
β ≥ l0β4, one has the upper bound

sup
x∗

∑
C∈C

η
0

x∗∈C

|φη0| exp
[(2β
l0
− c2

)
|C|
]
≤ 1 (4.33)

uniformly inΛ.
Moreover,φη0(C) only depends on the restriction ofη to the setDom(C).
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Proof. Using Definition 4.9 and equation (4.21), we haveρη(Γ) ≤ exp(−2β
l0
|Γ|) for

any balanced contourΓ. In combination with Lemma 4.11, we get

∑
Γ∈Kη

0
x∗∈Γ

|ρη(Γ)| exp
[
(
2β
l0
− c2 + 1)|Γ|

]
≤

∞∑
n=1

exp[−(c2 − c1 − 1)n] ≤ 1 (4.34)

provided thatc2 is chosen large enough. The proposition now follows by applying
Proposition 4.50, withβ4 = c2

2 .

4.6 Absence of large boundary contours

By the construction, all unbalanced contours are boundary contours, either small or
large. In this section we show that unbalanced large boundary contours actually do not
exist under a typical realization of the boundary condition. This observation will allow
us to restrict our multi-scale analysis entirely to the class of small boundary contours.

Lemma 4.13. There is a constantc3 > 0 such that for anyN ∈ N and any unbalanced
large boundary contourΓ ∈ KΛ(N), the inequality∑

x∈∂Γ

ηx ≤ −c3N (4.35)

holds true.

Proof. Using the geometrical inequality|Γ| ≥ 2N + |∂+Γ| and Definition 4.9, we have∑
x∈∂Γ

ηx ≤ −
(
1− 1

l0

)
|Γ|+

∑
x∈∂+Γ

ηx

≤ −
(
1− 1

l0

)
(2N + |∂+Γ|) + |∂+Γ|

≤ −2N
(
1− 3

l0

)
(4.36)

where in the last inequality we used that|∂+Γ| ≤ |∂Γ| ≤ 4N .

Proposition 4.14. There is a constantc4 > 0 such that for anyN ∈ N,

P {∃Γ ∈ KΛ(N) large unbalanced} ≤ exp(−c4N) (4.37)
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Proof. If B ⊂ ∂Λ(N) is a connected set containing exactly two corners, then, using
Lemma 4.13,

P {∃Γ ∈ KΛ(N) large unbalanced: ∂Γ = B} ≤ P
{∑
x∈B

ηx ≤ −c3N
}

≤ P
{∑
x∈B

ηx ≤ −c3
2
|B|
}
≤ exp

(
−c

2
3

8
|B|
) (4.38)

Hence,

P {∃Γ ∈ KΛ(N) large unbalanced}

≤
∑
B⊂∂Λ

P {∃Γ ∈ KΛ(N) large unbalanced: ∂Γ = B}

≤
∑
l≥2N

8N exp
(
−c

2
3

8
l
)
≤ 128N

c23
exp
(
−c

2
3N

4
)
≤ exp(−c4N)

(4.39)

for N large enough and an appropriatec4. Choosingc4 small enough gives (4.37) for
all N .

Corollary 4.15. There exist a setΩ∗ ⊂ Ω, P {Ω∗} = 1 and a functionN∗ : Ω∗ 7→ N
such that for any b.c.η ∈ Ω∗ and any volumeΛ = Λ(N), N ≥ N∗(η), all large
boundary contours are balanced.

Proof. Since ∑
N

P {∃Γ ∈ KΛ(N) large unbalanced} <∞ (4.40)

the Borel-Cantelli lemma implies

P {∀N0 ∈ N : ∃N ≥ N0 : ∃Γ ∈ KΛ(N) large unbalanced} = 0 (4.41)

proving the statement.

We are now ready to prove the almost sure absence of interfaces in the large-volume
limit.

Proof of Theorem 4.7.Let η ∈ Ω∗∩(−Ω∗) andN ≥ N∗(η). Then, any large boundary
contourΓ is bothη- and(−η)-balanced and, using the Peierls inequality and (4.15), the
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Gibbs probability of any collection of (possibly large boundary) contoursΓ1, . . . ,Γm,
m = 1, 2, . . . has the upper bound

µηΛ(N)(Γ1, . . . ,Γm) ≤ max
a∈{−1,1}

νaηΛ(N)(Γ1, . . . ,Γm)

≤ max
a∈{−1,1}

m∏
i=1

ρaη(Γi) ≤ exp
(
−2β
l0

m∑
i=1

|Γi|
) (4.42)

Hence, using Lemma 4.11 and the bound|Γ| ≥ 2N for any large boundary contourΓ,
we get

µηΛ(N)(∃ a large boundary contour) ≤
∞∑
m=1

1
m!

∑
Γ1,...,Γm large
∀i:Γi∩∂Λ 6=∅

µηΛ(N)(Γ1, . . . ,Γm)

≤
∞∑
m=1

1
m!

∑
x1,...,xm∈∂Λ

∑
Γ13x1,...,Γm3xm

exp
(
−2β
l0

m∑
i=1

|Γi|
)

≤ exp
(
−2β
l0
N
) ∞∑
m=1

1
m!
(
4N

∑
Γ3x

|Γ|≥2N

e
− β

l0
|Γ|)m

≤ exp
[
−
(2β
l0
− 8e−2( β

l0
−c1)N)

N
]
−→ 0

(4.43)

provided thatβ is large enough. SinceP {Ω∗∩(−Ω∗)} = 1, the theorem is proven.

As a consequence, all interfaces getP -a.s. and for all but finitely many volumes
uniformly exponentially damped weights. Hence, their Gibbs probabilities become ex-
ponentially small as functions of the size of the system and, therefore, no interfacial
infinite-volume Gibbs measure occurs as a limit point, withP -probability 1. While
such a result is not sensational ind = 2 (in this case, no translationally non-invariant
Gibbs measure exists by [1, 42]), similar arguments are expected to apply in higher
dimensions.

In the next sections, a perturbation technique is developed that allows us to address
the question whether non-trivial mixtures ofµ+ andµ− can occur as limit measures.

4.7 Classification of unbalanced contours

We now consider the interacting contour model introduced by the partition function
(4.32), defined on the set of unbalanced contoursKΛ \ Kη0 . As a consequence of Corol-
lary 4.15, we can restrict our analysis to the setΩ∗ of boundary conditions under which
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the setKΛ \ Kη0 of unbalanced contours contains only small boundary contours, both
simple and corner ones.

Our multi-scale analysis consists of a sequential expansion of groups of unbalanced
contours that are far enough from each other. The groups are supposed to be typi-
cally sufficiently rarely distributed, so that the partition function (4.31) can be expanded
around the product over the partition functions computed within these groups only. Un-
der the condition that the density of the groups decays fast enough with their space
extension, one can arrive at an expansion that essentially shares the locality features
of the usual cluster expansion, at least forP -typical boundary conditionsη. To make
this strategy work, we define a suitable decomposition of the setKΛ \ Kη0 into disjoint
groups associated with a hierarchy of length scales. Also, the unbalanced contours close
enough to any of the four corners will be dealt with differently and expanded in the end.

Definition 4.16. Assumingl0 to be fixed, we define the two sequences(ln)n=1,2,... and
(Ln)n=1,2,... by the following recurrence relations:

Ln =
ln−1

5n
, ln = exp

(Ln
2n
)

n = 1, 2, . . . (4.44)

For anyn = 1, 2, . . ., any pair of contoursΓ,Γ′ is calledLn-connected, ifd[Γ,Γ′] ≤
Ln. Furthermore, fixing a positive constantε > 0, we introduce theN -dependent length
scale

l∞ = (logN)1+ε (4.45)

Introducing the boundary∂∆ for any set of contours∆ ⊂ KΛ by ∂∆ = ∪Γ∈∆∂Γ,
we consider theη-dependent decomposition of the set of contoursKΛ \ Kη0 defined by
induction as follows.

Definition 4.17. 1) A maximalL1-connected subset∆ ⊂ KΛ \ Kη0 is called a
1-aggregatewhenever i)|∂∆|con ≤ l1, ii) there is no cornerx∗C,i such that
maxy∗∈∂∆ d[y∗, x∗C,i] ≤ l∞. We use the notation(Kη1,α) for the collection of
all 1-aggregates, and writeKη1 = ∪αKη1,α.

...

n) Assume the sets(Kηj,α)j=1,...,n−1 have been defined. Then, then-aggregates
are defined as maximalLn-connected subsets∆ ⊂ KΛ \ ∪j<nKηj satisfying i)
|∂∆|con ≤ ln, ii) there is no cornerx∗C,i such thatmaxy∗∈∂∆ d[y∗, x∗C,i] ≤ l∞.
The set of alln-aggregates is denoted by(Kηn,α), andKηn = ∪αKηn,α.

To eachn-aggregateKηn,α we assign the domain

Dom(Kηn,α) := {x∗ ∈ ∂Λ; d[x∗, ∂Kηn,α] ≤ Ln} (4.46)
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Obviously, the setKη∞ := KΛ\(Kη1∪K
η
2∪. . .) need not be empty, and since all large

boundary contours are balanced, for every contourΓ ∈ Kη∞ there is exactly one corner
x∗C,i such thatmaxy∗∈∂Γ d[y∗, x∗C,i] ≤ l∞. Hence, there is a natural decomposition of
the setKη∞ into at most fourcorner aggregates,Kη∞ = ∪iKη∞,i, each of them consisting
of contours within the logarithmic neighborhood of one of the corners. In general, any
corner aggregate contains both simple and corner boundary contours. Later we will
show that withP -probability 1, every unbalanced corner boundary contour belongs to a
corner aggregate. In other words, everyn-aggregate,n = 1, 2, . . . contains only simple
boundary contours.

Remark 4.18. By Definition 4.17, anyn-aggregate has a distance at leastLn from all
m-aggregates,m ≥ n. In this way, in then-th step of our expansion, after having re-
moved all lower-order aggregates, we will be able to use the ‘essential independence’
of all n-aggregates. Namely, on the assumption thatLn is big enough, depending on
the aggregate sizeln, both the interaction among then-aggregates and the interaction
betweenn-aggregates andm-aggregates,m ≥ n will be controlled by a cluster expan-
sion.

Our first observation is a local property of the above construction, which will be
crucial to keep the dependence of expansion terms to be defined later depending only
on a sufficiently small set of boundary spins.

Lemma 4.19. Let a set of small boundary contours∆ be fixed and assume thatη, η′ ∈
Ω are such thatηDom(∆) = η′Dom(∆). Then,∆ is ann-aggregate w.r.t. the boundary

conditionη if and only if it is ann-aggregate w.r.t.η′.

The super-exponential growth of the scalesln will imply an exponential decay of
the probability for ann-aggregate to occur. An upper bound on this probability is stated
in the following proposition, the proof of which is given in Section 4.11.1.

Proposition 4.20. There is a constantc5 > 0 (independent ofl0) such that for any
n = 1, 2, . . . and any connected setB ⊂ ∂Λ,

P {∃Kηn,α : Con(∂Kηn,α) = B} ≤ e−c5|B| (4.47)

uniformly inΛ.

Note that, given a connected setB ⊂ ∂Λ, there is at most one aggregateKηn,α,
n = 1, 2, . . . such thatCon(∂Kηn,α) = B.

Corollary 4.21. There existsΩ∗∗ ⊂ Ω∗, P {Ω∗∗} = 1 andN∗∗ : ω∗∗ 7→ N,N∗∗(ω) ≥
N∗(ω) such that for anyω ∈ Ω∗∗ and anyΛ = Λ(N), N ≥ N∗∗(ω) every aggregate
Kηn,α, n = 1, 2, . . . satisfies the inequality|∂Kηn,α|con≤ l∞. In particular:
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i) The setCon(Kηn,α) is a boundary interval and there is at most one cornerx∗C,i
such thatd[x∗C,i, ∂K

η
n,α] ≤ l∞.

ii) All contoursΓ ∈ Kηn,α are simple boundary contours.

Proof. Using Proposition 4.20, the probability for any aggregate to occur can be esti-
mated as

P {∃Kηn,α, n = 1, 2, . . . : |∂Kηn,α|con> l∞} ≤
∑

B⊂∂Λ conn.
|B|>(log N)1+ε

P {∃Kηn,α : Con(Kηn,α) = B}

≤ |∂Λ|
∑

l>(logN)1+ε

e−c5l ≤ 16
c5
N1−c5(logN)ε

= o
(
N−δ)

(4.48)

for any (arbitrarily large)δ > 0. Hence,

∞∑
N=1

P {∃Kηn,α, n = 1, 2, . . . : |∂Kηn,α|con> l∞} <∞ (4.49)

and the statement follows by a Borel-Cantelli argument.

For convenience, let us summarize the results of the last three sections by reviewing
all types of contours again together with their balancedness properties. For anyη ∈ Ω∗∗

andΛ = Λ(N),N ≥ N∗∗(ω), any configuration of contours∂ ∈ DΛ possibly contains

i) Bulk contours(trivially balanced).

ii) Large boundary contoursthat are balanced.

iii) Corner boundary contoursthat are either balanced or elements of corner aggre-
gates.

iv) Simple boundary contourswhich are balanced or elements of eithern-aggregates,
n = 1, 2, . . ., or of corner aggregates.

4.8 Sequential expansion of unbalanced contours

The next step in our strategy is to proceed by induction in the order of aggregates,
rewriting at each step the interacting polymer model (4.32) as an effective model over
the contour ensemblesKΛ \ (Kη0 ∪ K

η
1), KΛ \ (Kη0 ∪ K

η
1 ∪ K

η
2), etc. At then-th step,

a compatible set of contours inside all corner and all normalm-aggregates,m > n, is
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fixed, and we perform the summation over contours in all normaln-aggregates. This
is a constrained partition function which is approximately a product over the normal
n-aggregates. By the construction, the latter are sufficiently isolated on the scaleLn,
which will allow for the control of the remaining interaction by means of a cluster ex-
pansion. At the end, we arrive at an effective model over the contour ensembleKη∞,
which is the union of (at most four) corner aggregates. In large volumes, the corner
aggregates become essentially independent, the error being exponentially small in the
size of the volume. The reason we distinguish between then-aggregates and the cor-
ner aggregates is that the partition function within the former allows for a much better
control, which will be essential in our analysis of the characteristic function of the ran-
dom free energy differencelogZηΛ − logZ−η

Λ in Section 4.10. Note that the lack of
detailed control around the corners is to be expected as there may more easily occur
some low-energy (unbalanced) boundary contours, but at most of logarithmic size inN .

Then-th step of the expansion,n ≥ 1, starts from the partition function,

Zηn =
∑

∂∈Dη
>n−1

exp
(
−

∑
C∈C

η
n−1

C�∂

φηn−1(C)
)∏

Γ∈∂
ρη(Γ) (4.50)

which in the casen = 1 coincides with (4.32). Here,Dη
>n−1 is the set of all compatible

families of contours fromKη>n−1 := KηΛ \ (Kη0 ∪K
η
1 ∪ . . .∪K

η
n−1), i.e. with all normal

m-aggregates,m ≤ n − 1, being removed. Furthermore, we use the notationC
η
n−1 for

the set of all(n− 1)-clusters. Here, the0-clusters have been introduced in Section 4.5,
and the clusters of higher order will be defined inductively in the sequel.

In order to analyze partition function (4.50), we follow the ideas of Fröhlich and
Imbrie [35], however, we choose to present them in a slightly different way. Observing
that, by construction, the family of aggregates compose a ‘sparse set’, one is tempted
to approximate the partition function by a product over the aggregates and to control
the error by means of a cluster expansion. However, to make this strategy work, we
need to ‘renormalize’ suitably the contour weights. Namely, only the clusters that in-
tersect at least two distinct aggregates generate an interaction between them, and are
sufficiently damped by using the sparsity of the set of aggregates. On the other hand,
the (sufficiently short) clusters intersecting a single aggregate cannot be expanded, and
they modify the weights of contour configurations within the aggregate. An important
feature of this procedure is that the weight of these contour configurations is kept posi-
tive. In some sense, it is this very renormalization of the weights within each aggregate
that can hardly be done via a single expansion and requires an inductive approach. In
what follows, we present this strategy in detail, via a number of steps.

83



4.8.1 Renormalization of contour weights

For any compatible set of contours∂ ⊂ Kηn, define the renormalized weight

ρ̂η(∂) = exp
(
−

∑
C∈C

η
n−1

C�∂; |C|<Ln

φηn−1(C)
)∏

Γ∈∂
ρη(Γ) (4.51)

Note that the above sum only includes the clusters of length smaller thanLn. By
construction, any such cluster is incompatible with at most onen-aggregate. Hence,
the renormalized weight̂ρη(Γ) factorizes over then-aggregates and we havêρη(∂) =∏
α ρ̂

η(∂α) where∂α = ∂ ∩ Kηn,α. Therefore, formula (4.50) gets the form

Zηn =
∑

∂∈Dη
>n

∏
Γ∈∂

ρη(Γ)
∑

∂n∈Dη
n

ρ̂η(∂n) exp
(
−

∑
C∈C

η
n−1

(C�∂)∨(C�∂n; |C|≥Ln)

φηn−1(C)
)

=
∑

∂∈D>n

∏
Γ∈∂

ρη(Γ) exp
(
−

∑
C∈C

η
n−1

C�∂

φηn−1(C)
)

×
∑

∂n∈Dη
n

ρ̂η(∂n) exp
(
−

∑
C∈C

η
n−1; |C|≥Ln

C∼∂; C�∂n

φηn−1(C)
) (4.52)

Defining the renormalized partition function̂Zηn,α of the contour ensembleKηn,α as

Ẑηn,α =
∑

∂n∈Dη
n,α

ρ̂η(∂n) (4.53)

and using the shorthand

φ̃ηn−1(C, ∂
n) = φηn−1(C)1{C�∂n; |C|≥Ln} (4.54)

we obtain

Zηn =
∏
α

Ẑηn,α
∑

∂∈Dη
>n

∏
Γ∈∂

ρη(Γ) exp
(
−

∑
C∈C

η
n−1

C�∂

φηn−1(C)
)

×
∑

∂n∈Dη
n

∏
α

ρ̂η(∂n,α)
Ẑηn,α

exp
(
−

∑
C∈C

η
n−1

C∼∂

φ̃ηn−1(C, ∂
n)
) (4.55)

where∂n,α = ∂n ∩ Kηn,α is the restriction of∂n to then-aggregateKηn,α. In the last
expression, the second sum contains the interaction betweenn-aggregates, to make a
correction to the product over the renormalized partition functionsẐηn,α.
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4.8.2 Cluster expansion of the interaction betweenn-aggregates

Now we employ a trick familiar from the theory of high-temperature (Mayer) expan-
sions, and assign to any familyC ⊂ C

η
n−1 of (n− 1)-clusters the weight

wηn(C) =
1∏

α Ẑ
n,α
Λ

∑
∂n∈Dη

n

ρ̂η(∂n)
∏
C∈C

(
e−φ̃

η
n−1(C,∂n) − 1

)
(4.56)

See Figure 4.7 for an example of a family of 1-clusters that generically gets a nontrivial
weight according to this construction.

Definition 4.22. Any pair of(n− 1)-clustersC1, C2 ∈ C
η
n−1 is calledn-incompatible,

C1

n
6↔ C2, whenever there exists ann-aggregateKηn,α such thatC1 � Kηn,α andC2 �

Kηn,α.
In general, the setsC1, C2 ⊂ C

η
n−1 aren-incompatibleif there areC1 ∈ C1, C2 ∈ C2,

C1

n
6↔ C2.

One easily checks the following properties of the weightwηn(C).

Lemma 4.23. For any set of(n− 1)-clustersC ∈ C
η
n−1,

i) supη |w
η
n(C)| ≤

∏
C∈C(e

|φη
n−1(C)| − 1).

ii) If C = C1 ∪ C2 such thatC1
n↔ C2, thenwηn(C) = wηn(C1)w

η
n(C2).

iii) The weightwηn(C) depends only on the restriction ofη to the set(∪C∈C Dom(C))∪
(∪′α Dom(Kηn,α) where the second union is over alln-aggregatesKηn,α such that
C � Kηn,α.

In the second sum in (4.55) we recognize the partition function of a polymer model
with the polymers being defined as then-connected subsets ofCηn−1, which are in-
compatible if and only if they aren-incompatible. Treating this polymer model by the
cluster expansion, and using the symbolsD

η
n for the set of all clusters in this polymer

model andψηn(D) for the weight of a clusterD ∈ D
η
n , we get

Zηn =
∏
α

Ẑηn,α
∑

∂∈Dη
>n

∏
Γ∈∂

ρη(Γ) exp
(
−

∑
C∈C

η
n−1

C�∂

φηn−1(C)
) ∑
C⊂C

η
n−1

C∼∂

wηn(C)

= exp
( ∑
D∈Dη

n

ψηn(D)
)∏

α

Ẑηn,α
∑

∂∈Dη
>n

∏
Γ∈∂

ρη(Γ)

× exp
(
−

∑
C∈C

η
n−1

C�∂

φηn−1(C)−
∑

D∈D
η
n

D�∂

ψηn(D)
) (4.57)
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Figure 4.7: A pair of 2-compatible families of 1-clustersC1, C2 ⊂ C
η
1 intersecting 2-

aggregatesKη
2,α, α = 1, 2, 3, 4. The dashed rectangles illustrate 1-aggregates which

have become parts of the 1-clusters. By construction,wη2(C1 ∪ C2) = wη2(C1)w
η
2(C2)

Defining the set of alln-clustersCηn = C
η
n−1 ∪ D

η
n and the weight of anyn-cluster

C ∈ C
η
n as

φηn(C) =

{
φηn−1(C) if C ∈ C

η
n−1

ψηn(C) if C ∈ D
η
n

(4.58)

we finish the inductive step by obtaining the final expression

Zηn = Zηn+1

∏
α

Ẑηn,α exp
( ∑
D∈Dη

n

ψηn(D)
)

(4.59)

with the partition function of a new interacting polymer model

Zηn+1 =
∑

∂∈Dη
>n

exp
(
−
∑

C∈C
η
n

C�∂

φηn(C)
)∏

Γ∈∂
ρη(Γ) (4.60)

We need to extend the notion of domain from the set of(n − 1)-clustersCηn−1 to
the set ofn-clustersCηn. Realizing that anyn-clusterD ∈ D

η
n is a collection(Ci) of

Ln-connected families of(n− 1)-clusters,Ci = (Csi ), we first introduce the domain of
any such familyCi asDom(Ci) = ∪s Dom(Csi ). Next, we define

Dom(D) :=
⋃
i

Dom(Ci) ∪
⋃

α:Kη
n,α�D

Dom(Kηn,α) (4.61)
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Furthermore, the length|D| of the cluster is defined as

|D| :=
∑
i

|Ci| =
∑
i

∑
s

|Csi | (4.62)

Note that this is possibly much smaller than the diameter of the cluster, since the sizes
of then-aggregates in the domain ofD are not counted in the length of the cluster. The
reason for this definition is that the cluster weights are not expected to be exponentially
damped with the cluster diameter. Note, however, that theprobability of a cluster to
occur is exponentially damped with the size of then-aggregates in its domain.

In the next proposition, we provide uniform bounds on then-cluster weights. For
the proof, see Section 4.11.

Proposition 4.24. There isβ5 > 0 such that for anyβ ≥ l0β5, η ∈ Ω∗∗, Λ = Λ(N),
N ≥ N∗∗(η), the inequalities

sup
x∗

∑
D∈D

η
n

x∗∈D

exp
(β
l0
|D|
)
|ψηn(D)| ≤ 2−n n = 1, 2, . . . (4.63)

and

sup
n

sup
x∗

∑
C∈C

η
n

x∗∈C

exp
(β
l0
|C|
)
|φηn(C)| ≤ 1 (4.64)

hold true.
Moreover, ifC ∈ C

η
n and η′|Dom(C) = η|Dom(C), then alsoC ∈ C

η′
n andφη

′
n (C) =

φηn(C). Similarly,D ∈ D
η
n and η′|Dom(D) = η|Dom(D) implies bothD ∈ D

η′
n and

ψη
′
n (D) = ψηn(D).

4.8.3 Expansion of corner aggregates

For any finite squareΛ = Λ(N) andη ∈ Ω, all aggregates from the set∪nKηn are
expanded in a finite number of steps. Afterwards, all corner aggregates are treated by a
similar procedure. Throughout this section, we use the notationn0 for the highest order
in the collection of all normal aggregates. The expansion goes similarly as in the case
of normal aggregates, so we only sketch it.

The renormalized weight of any compatible family of contours∂ ⊂ Kη∞ is defined
by the formula

ρ̂η(∂) = exp
(
−

∑
C∈C

η
n0

C�∂; |C|<2l∞

φηn0−1(C)
)∏

Γ∈∂
ρη(Γ) (4.65)
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which factorizes over the corners,ρ̂η(∂) =
∏
i ρ̂
η(∂ ∩ Kη∞,i), assumingΛ(N) to be

large enough. ClustersC1, C2 ⊂ C
η
n0 are called∞-incompatible whenever there is a

corner aggregateKη∞,i such thatC1 � K∞,i andC2 � K∞,i. Defining the weight
wη(C) as

wη(C) =
1∏

i Ẑ
η
∞,i

∑
∂∈Dη

∞

ρ̂η(∂)
∏

C∈Cη
n0

(
e−φ̃

η
n0

(C,∂) − 1
)

(4.66)

where

Ẑη∞,i =
∑

∂∈Dη
∞,i

ρ̂η(∂) (4.67)

and

φ̃η∞(C, ∂) = φη∞(C)1{C�∂; |C|≥2l∞} (4.68)

an obvious variant of Lemma 4.23 holds true andwη(C) factorizes into a product over
maximal connected components ofC w.r.t.∞-incompatibility. Treating these as poly-
mers in a new polymer model with∞-incompatibility used as the incompatibility re-
lation, and using the notationDη

∞ for the set of all clusters in this polymer model and
ψη∞(D) for the cluster weights, we obtain as the final step of the sequential expansion,

Zηn0+1 = exp
( ∑
D∈Dη

∞

ψη∞(D)
) ∏

i

Ẑη∞,i (4.69)

Proposition 4.25. There exist constantsβ6 ≥ β5, c6 > 0 such that for anyβ ≥ l0β6,
η ∈ Ω∗∗, and volumeΛ(N),N ≥ N∗∗(η), one has the bound∑

D∈Dη
∞

|ψη∞(D)| ≤ e−c6l∞ (4.70)

Gathering all expansion steps, we arrive at the final expression for the partition
functionZηΛ in the form

logZηΛ =− Eη(∅) +
∑
C∈Cη

0

φη0(C) +
∑
n≥1

∑
D∈Dη

n

ψηn(D) +
∑

D∈Dη
∞

ψη∞(D)

+
∑
i

log Ẑη∞,i +
∑
n≥1

∑
α

log Ẑηn,α
(4.71)

The terms collected on the first line contain the ‘vacuum’ energy under the boundary
conditionη, together with the contributions of clusters of all orders. Recall that the latter
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allow for a uniform exponential upper bound. On the second line there are the partition
functions of alln- and all corner aggregates. Although we can provide only rough
upper bounds for these terms, a crucial property to be used is that the probability of an
aggregate to occur is exponentially small in the size of its boundary, see Section 4.7.
In this sense, the above expansion is a natural generalization of the familiar ‘uniform’
cluster expansion [50].

4.8.4 Estimates on the aggregate partition functions

In expression (4.71) we do not attempt to perform any detailed expansion of the aggre-
gate’s (log-)partition functionŝZηn,α and Ẑη∞,i via a series of local and exponentially
damped terms. Instead, we follow the idea that a locally ill-behaving boundary condi-
tion forces a partial coarse-graining represented above via the framework of aggregates
of different orders. Although the detailed (cluster expansion-type) control within the ag-
gregates is lost, we still can provide generic upper bounds on these partition functions.
Notice a basic difference betweenn-aggregates and corner aggregates: The former con-
tain only simple boundary contours the weights of which exponentially decay with the
height of the contours. In some sense, the partition functionsẐηn,α can be compared
with the partition function of a 1d interface to get an upper bound. On the other hand,
the corner aggregates are ensembles of contours the weight of which obey no uniform
exponential bound with the space extension of the contours, and allow possibly for a
non-trivial ‘degeneracy of vacuum’. As a consequence, only rough (counting-type) es-
timates can be provided for the partition functionsẐη∞,i.

Lemma 4.26. There are constantsc7, c′7 > 0 (c7 ↓ 0 if β → ∞) such that for any
n-aggregateKηn,α, one has the bound

log Ẑηn,α ≤ c7|∂Kηn,α| (4.72)

For any corner aggregateKη∞,i,

log Ẑη∞,i ≤ c′7l
2
∞ (4.73)

4.9 Asymptotic triviality of the constrained Gibbs measure
νηΛ

As the first application of expansion (4.71) we prove that the weak limit of the con-
strained measureνηΛ coincides with the ‘+’ phase Gibbs measureµ+, finishing the first
part of our program.
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Proposition 4.27. There exists a constantc > 0 such that for anyβ ≥ l0β6 (with the
β6 the same as in Proposition 4.25), anyη ∈ Ω∗∗, andX ⊂ Z2 finite,

‖νηΛ(N) − µ+‖X = O(e−cN ) (4.74)

In particular, limN→∞ νηΛ(N) = µ+, P -a.s.

Proof. The idea of the proof is to express the expectationνηΛ(N)(f) of any local function
f as the sum of a convergent series by using the multi-scale scheme developed in the
last section, and to compare the series with a standard cluster expansion forνη≡+1

Λ(N) . The
difference between both series is given in terms of clusters both touching the boundary
and the dependence set off . Restricting only to the boundary conditionsη ∈ Ω∗∗ and
volumesΛ(N), N ≥ N∗∗(η) and using the exponential decay of the cluster weights,
we prove the exponential convergenceνηΛ(N)(f) → ν+(f).

For notational simplicity, we only restrict to a special case and give a proof of the
equality

lim
Λ
νηΛ(σ0 = −1) = µ+(σ0 = −1) (4.75)

The general case goes along the same lines.
Assumingσ ∈ Ω+

Λ , observe thatσ0 = −1 if and only if the setDΛ(σ) contains an
odd number of contoursΓ such that0 ∈ Int(Γ). In an analogy with (4.19), we write the
νηΛ-probability thatσ0 = −1 in the form

νηΛ(σ0 = −1) =
1
ZηΛ

∑
∆<Λ

ZηΛ(\∆)
∏
Γ∈∆

ρη(Γ) (4.76)

where we have used the shorthand∆ < Λ for any compatible family of contours inΛ
such thatcard(∆) is an odd integer and0 ∈ Int Γ for everyΓ ∈ ∆ . Furthermore,
ZηΛ(\∆) is the partition function

ZηΛ(\∆) = exp (−EηΛ(∅))
∑

∂∈DΛ(\∆)

∏
Γ∈∂

ρη(Γ) (4.77)

of a polymer model over the restricted ensembleKΛ(\∆) ⊂ KΛ of all contoursΓ such
that i) Γ ∼ ∆, and ii) 0 6∈ Int(Γ). We can now repeat the same procedure as in the
last sections, but with the contour ensembleKΛ being replaced byKη(\∆). A crucial
observation is that all contours from the setKη \ Kη(\∆) are balanced, at least for
all η ∈ Ω∗∗ and provided that the volumeΛ(N) is large enough. Hence, the sets of
unbalanced contours coincide for both contour ensemblesKη andKη(\∆), hence, the
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same is true for the collections of bothn- and corner aggregates. Finally, we compare
the terms in the expansions forZηΛ andZηΛ(\∆), and arrive at the formula

log
ZηΛ(\∆)
ZηΛ

= −
∑

C∈Cη
0\C

η
0(\∆)

φη0(C)−
∑
n≥1

∑
D∈Dη

n\Dη
n(\∆)

ψηn(D)−
∑

D∈Dη
∞\Dη

∞(\∆)

ψη∞(D)

(4.78)
where each of the three sums runs over all (0-, n-, or∞-)clusters that are either incom-
patible with∆ or contain a contourΓ, 0 ∈ Int(Γ). By construction, eachn-, respec-
tively ∞-cluster is further required to be incompatible with ann-, respectively corner
aggregate, and since their weights are uniformly exponentially bounded by Proposi-
tions 4.24-4.25, we get the uniform upper bound

sup
Λ

∣∣∣ log
ZηΛ(\∆)
ZηΛ

∣∣∣ ≤ c|∆| (4.79)

with a constantc large enough, as well as the existence of the limit

lim
Λ

log
ZηΛ(\∆)
ZηΛ

= −
,∑

C

φ0(C) (4.80)

where the sum runs over all finite0-clusters inZ2 that are either incompatible with∆
or contain a contour surrounding the origin.
Since everyΓ ∈ ∆ surrounds the origin, it is necessarily balanced and satisfiesρη(Γ) ≤
exp(−2β

l0
|Γ|). Combined with (4.79)-(4.80), one easily checks that

lim
Λ
νηΛ(σ0 = −1) =

∑
∆<Z2

exp
(
−

,∑
C

φ0(C)
) ∏

Γ∈∆

ρ(Γ) (4.81)

and the convergence is exponentially fast. Obviously, the right-hand side coincides with
the limit limΛ µ

η≡+1
Λ (σ0 = −1) = µ+(σ0 = −1), which finishes the proof.

4.10 Random free energy difference

In this section we analyze the limit behavior of the sequence of the random free energy
differences

F ηΛ = logZηΛ − logZ−η
Λ (4.82)

In order to show that the probability thatF ηΛ takes a value in a fixed finite interval is

bounded asO(N− 1
2
+α) with α > 0, we can use the local central limit upper bound
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proven in Section 4.15, provided that a Gaussian-type upper bound on the characteristic
functions of the random variablesF ηΛ can be established. The basic idea is to prove the
latter by employing the sequential expansion forlogZηΛ developed in section 4.8 and
by computing the characteristic functions in a neighborhood of the origin via a Mayer
expansion. However, a technical problem arises here due to the high probability of the
presence of corner aggregates. That is why we need to split our procedure in two steps
that can be described as follows.

In the first step, we fix the boundary condition in the logarithmic neighborhood of
the corners and consider the random free energy differenceF ηΛ conditioned on the fixed
configurations. For this conditioned quantity a Gaussian upper bound on the character-
istic function can be proven, implying a bound on the probability that the conditioned
free energy differenceP -a.s. takes a value in a scaled interval(aN δ, bN δ). This can
be combined with a Borel-Cantelli argument to exclude all values in such an interval,
at leastP -a.s. and for all but finitely many volumes from a sparse enough sequence of
volumes.

In the second step, we consider the contribution to the free energy difference coming
from the corner aggregates. However, their contribution to the free energy will be argued
to be of a smaller order when compared with the contribution of the non-corner terms.

Note that we also include the∞-clusters in the first step. Because we have uniform
bounds inη for the∞-cluster weights, we are allowed to do so.

The free energy differenceF ηΛ can be computed by using the sequential expan-
sion (4.71). For convenience, we rearrange the terms in the expansion by introducing

Uη(B) =
∑
n

∑
α

log Ẑηn,α1{Dom(Kη
n,α)=B} +

∑
i

log Ẑη∞,i1{Dom(Kη
∞,i)=B}

+
∑
C

φη0(C)1{Dom(C)=B} +
∑
n

∑
D

ψηn(D)1{Dom(D)=B}

+
∑
D

ψη∞(D)1{Dom(D)=B}

(4.83)

for any setB ⊂ ∂Λ. Note that any functionUη(B) only depends on the restriction of
η to the setB. Using the notation̄Uη(B) = Uη(B) − U−η(B), the expansion for the
free energy differenceF ηΛ reads, formally,

F ηΛ = 2β
∑
x∈∂Λ

ηx +
∑
B⊂∂Λ

Ūη(B) (4.84)

Obviously, no bulk contours contribute tōUη(B). Using the notation∂ΛC,i := {y∗ ∈
∂Λ : d[y∗, x∗C,i] ≤ 2l∞} and∂ΛC := ∪4

i=1∂ΛC,i, we consider the decomposition
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F ηΛ = F̃ ηΛ + F̂ ηΛ, where

F̃ ηΛ = 2β
∑

x∈∂Λ\∂ΛC

ηx +
∑

B⊂∂Λ
Dom(B) 6⊂∂ΛC

Ūη(B) (4.85)

and
F̂ ηΛ = 2β

∑
x∈∂ΛC

ηx +
∑

B⊂∂Λ
Dom(B)⊂∂ΛC

Ūη(B) (4.86)

The first term,F̃ η(B), can be analyzed by means of the Mayer expansion of its charac-
teristic function

Ψ̃η
Λ(t) := E[exp(itF̃ ηΛ) | η∂ΛC

] = E
[
exp
(
2itβ

∑
x∈∂Λ\∂ΛC

ηx
)∑

B

∏
B∈B

(eitŪ
η(B)−1) | η∂ΛC

]
= [Ψ0(t)]|∂Λ\∂ΛC |

∑
B
wt(B | η∂ΛC

)

(4.87)

where we have assigned to any familyB of subsets of the boundary the weight

wt(B | η∂ΛC
) =

1
[Ψ0(t)]|∂Λ\∂ΛC |

E
[
exp(2itβ

∑
x∈∂Λ\∂ΛC

ηx)
∏
B∈B

(eitŪ
η(B) − 1) | η∂ΛC

]
× 1{∀B∈B:B 6⊂∂ΛC}

(4.88)

and have introduced the notation

Ψ0(t) = E[exp(2itβη0)] = cos 2tβ (4.89)

Observing that

w(B1 ∪ B2 | η∂ΛC
) = w(B1 | η∂ΛC

)w(B2 | η∂ΛC
) (4.90)

wheneverB1 ∩ B2 = ∅ for anyB1 ∈ B1 andB2 ∈ B2, the last sum in equation (4.87)
is a partition function of another polymer model and using the symbolsB,B1, . . . for
the clusters in this model andwTt for the cluster weights, we get

Ψ̃η
Λ(t) = [Ψ0(t)]|∂Λ\∂ΛC | exp

[∑
B
wTt (B | η∂ΛC

)
]

(4.91)

A crucial observation is that for anyη ∈ Ω∗∗ and Λ(N), N ≥ N∗∗(η) no corner
aggregate contributes to the weightwt(B) for anyB. On the other hand, the partition
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function of anyn-aggregate is balanced by a small probability of the aggregate to occur.
Another observation is that every weightwt(B) is of orderO(t2) due to the symmetry
of the distributionP . To see this explicitly, formula (4.88) can be cast into a more
symmetrized form,

wt(B | η∂ΛC
) =

1
[Ψ0(t)]| Supp(B)| E

[
T
{
t
[
2β

∑
x∈Supp(B)

ηx +
1
2

∑
B∈B

Ūη(B)
]}

×
∏
B∈B

2i sin
( tŪη(B)

2

) ∣∣∣ η∂ΛC

] (4.92)

whereSupp(B) := ∪B∈BB and

T{Y } :=

{
i sinY if card(B) = 2k − 1
cosY if card(B) = 2k k ∈ N

(4.93)

In section 4.11.5 we give a proof of the following upper bound on the corresponding
cluster weights:

Lemma 4.28. There exist constantsβ8, l0 > 01 such that for anyβ ≥ β8l0 there is
t0 = t0(β) > 0 for which the following is true. For anyη ∈ Ω∗∗ and Λ = Λ(N),
N ≥ N∗∗(η), the inequality

sup
x∗∈∂Λ\∂ΛC

∑
B:x∗∈Supp(B)

|wTt (B | η∂ΛC
)| ≤ 1

2
β2t2 (4.94)

is satisfied for all|t| ≤ t0.

With the help of the last lemma, it is easy to get an upper bound onΨ̃η
Λ(t):

Lemma 4.29. Under the assumptions of Lemma 4.28, we have

Ψ̃η
Λ(t) ≤ exp

(
−1

2
β2t2|∂Λ(N) \ ∂ΛC(N)|

)
(4.95)

for all |t| ≤ t0, η ∈ Ω∗∗, andN ≥ N∗∗(η).

Proof. It immediately follows by combining Lemma 4.28, equation (4.91), and the
boundΨ0(t) ≤ exp[−β2t2].

For the corner part̂F ηΛ of the free energy difference we use the next immediate upper
bound:

1Recall that the construction of aggregates depends on the choice ofl0.
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Lemma 4.30. Givenη ∈ Ω∗∗ andβ ≥ β6l0, thenF̂ ηΛ(N) = O(N δ) for anyδ > 0.

Proof. Using Proposition 4.25 and Lemma 4.26, we have
∑

B⊂∂ΛC
|Ūη(B)| = O(l2∞)

and the above claim immediately follows.

Proof of Proposition 4.5.Combining Lemma 4.29 with Proposition 4.53 in the ap-
pendix, we get

lim
N→∞

N
1
2
−αP

{
|F̃ ηΛ(N)| ≤ Nατ

∣∣ η∂ΛC

}
<∞ (4.96)

for anyα, τ > 0. By Lemma 4.30,̃F can be replaced with the full free energy difference
F . As a consequence,

lim
N→∞

N
1
2
−αP {|F ηΛ(N)| ≤ τ} <∞ (4.97)

and the proof is finished by applying Proposition 4.27.

4.11 Proofs

In this section, we collect the proofs omitted throughout the main text.

4.11.1 Proof of Proposition 4.20

In order to get the claimed exponential upper bound on the probability for ann-aggregate
to occur, we need to analyze the way how the aggregates are constructed in more detail.
We start with an extension of Definition 4.17. Throughout the section, a finite volume
Λ = Λ(N) is supposed to be fixed.

Definition 4.31. For everyn = 1, 2, . . ., any maximalLn-connected subset∆ ⊂ K \
(Kη0 ∪ K

η
1 ∪ . . . ∪ K

η
n−1) is called ann-pre-aggregate.

Obviously,n-aggregates are exactly thosen-pre-aggregates∆ that satisfy the con-
dition |∂∆|con ≤ ln. Moreover, everyn-pre-aggregate can equivalently be constructed
inductively by gluing pre-aggregates of lower orders:

Lemma 4.32. Every n-pre-aggregate∆n is the union of a family of(n − 1)-pre-
aggregates,∆n = ∪α∆α

n−1. Moreover,

i) Each(n− 1)-pre-aggregate∆α
n−1 satisfies|∂∆α

n−1|con> ln−1,

ii) The family(∆α
n−1)α isLn-connected.
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Proof. Forn = 1 the statement is trivial.
Assume thatn ≥ 2, and let∆n be ann-pre-aggregate andΓ ∈ ∆n be a contour.
Then, there exists an(n − 1)-pre-aggregate∆α

n−1 such thatΓ ∈ ∆α
n−1 (otherwiseΓ

would be an element of ak-aggregate,k ≤ n − 2). Moreover, since∆α
n−1 is not an

(n− 1)-aggregate by assumption, it satisfies|∂∆α
n−1|con> ln−1, proving i).

The claim ii) is obvious.

Lemma 4.33. Let∆ by any family of unbalanced contours. Then,

i) There exists a subset̃∆ ⊂ ∆ such that

a) ∂∆̃ = ∂∆,

b) if Γ1,Γ2,Γ3 ∈ ∆̃ are any three mutually different contours, then∂Γ1 ∩
∂Γ2 ∩ ∂Γ3 = ∅.

ii) The inequality ∑
x∈∂∆

ηx < −
(
1− 4

l0

)
|∂∆| (4.98)

holds true.

Proof. i) Assume thatΓ1,Γ2,Γ3 ⊂ ∆ is a triple of mutually different contours such
that ∂Γ1 ∩ ∂Γ2 ∩ ∂Γ3 6= ∅. Since∂Γi, i = 1, 2, 3 are connected subsets of∂Λ, it
is easy to realize that, up to a possible permutation of the index set{1, 2, 3}, one has
∂Γ1 ⊂ ∂Γ2 ∪ ∂Γ3. Hence,∂(∆ \ {Γ1}) = ∂∆. Since the set∆ is finite, a subset
∆̃ ⊂ ∆ with the claimed property is constructed by iterating the argument.

ii) Let ∆̃ ⊂ ∆ be the same as in i). Then, using Lemma 4.10, the inclusion-exclusion
principle implies∑

x∈∂∆

ηx =
∑
Γ∈∆̃

∑
x∈∂Γ

ηx −
∑

(Γ,Γ′)⊂∆̃

∑
x∈∂Γ∩∂Γ′

ηx

< −
(
1− 2

l0

)∑
Γ∈∆̃

|∂Γ|+
∑

(Γ,Γ′)⊂∆̃

|∂Γ ∩ ∂Γ′|

≤ −
(
1− 4

l0

)
|∂∆|

(4.99)

It remains to prove that one still gets a large deviation upper bound by replacing
the sum over the boundary sitesx ∈ ∂∆ in equation (4.98) with the sum over all
x ∈ Con(∂∆), provided that∆ is a pre-aggregate. Technically, we need to exploit the
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basic feature of any pre-aggregate∆ that the setCon(∂∆) \ ∂∆ is not ‘too big’. A
minor complication lies in the fact that the boundary distanced[∂γ, ∂γ′] is allowed to
exceed the contour distanced[γ, γ′]. To overcome this difficulty, it is useful to define

C̃on(∂∆) = ∂∆ ∪
{
x ∈ Con(∂∆); ∀γ ∈ ∆ : d[x, ∂γ] >

|∂γ|
l0

}
(4.100)

for which the first equation in the proof of Lemma 4.10 implies the upper bound

|∂∆|con≤ (1 +
2
l0

)|C̃on(∂∆)| (4.101)

We are now ready to prove the following key estimate from which Proposition 4.20
immediately follows by using a large deviation upper bound.

Lemma 4.34. Let∆ be ann-pre-aggregate,n = 1, 2, . . . Then,∑
x∈Con(∂∆)

ηx ≤ −1
3
|∂∆|con (4.102)

uniformly inn.

Proof. We prove by induction in the order of the pre-aggregates the refined bound

∑
x∈C̃on(∂∆)

ηx ≤ −
(
1− 3

n∑
i=1

Li
li−1

)
|C̃on(∂∆)| (4.103)

for any n-pre-aggregate∆, from which the statement follows by using the defini-
tion 4.16 of length scalesln andLn, and equation (4.101). Indeed, one obtains then

∑
x∈Con(∂∆)

ηx ≤ −
(
1− 3

∞∑
i=1

Li
li−1

)
|C̃on(∂∆)|+ |Con(∂∆) \ C̃on(∂∆)|

≤ −
(1
4
− 2
l0

) |∂∆|con

1 + 2
l0

≤ −1
3
|∂∆|con

(4.104)

First, assume that∆ is a 1-pre-aggregate, and let∆ = ∪mi=1Ai be the (unique)
decomposition of∆ into disjoint subsets such that∂∆ = ∪mi=1∂Ai is the decomposition
of ∂∆ into maximal connected components. For convenience, we use the notationJi :=
∂Ai. Considering furthermore the decompositioñCon(∂∆) \ ∂∆ = ∪m−1

k=1 Gk into

maximal connected components, the set̃Con(∂∆) can be finally written as the union

C̃on(∂∆) =
(
∪mi=1Ji

)
∪
(
∪m−1
k=1 Gk

)
(4.105)
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of disjoint connected subsets, which satisfy the inequalities|Ji| > l0 and|Gk| ≤ L1,
for all i, k = 1, 2, . . . Using Lemma 4.33, we have

∑
x∈Ji

ηx ≤ −
(
1 − 4

l0

)
|Ji|, and

since
∑m−1

k=1 |Gk| ≤
L1
l0

∑m
i=1 |Ji|, we finally get

∑
x∈C̃on(∂∆)

ηx =
m∑
i=1

∑
x∈Ji

ηx +
m−1∑
k=1

|Gk| ≤ −
(
1− L1 + 4

l0

) |C̃on(∂∆)|
1 + L1

l0

≤ −
(
1− 3L1

l0

)
|C̃on(∂∆)|

(4.106)

provided that, say,L1 ≥ 4.
Next, we will prove the statement for an arbitraryn-pre-aggregate∆. By Lemma 4.32,
∆ is the union of a family of(n − 1)-pre-aggregates,∆ = ∪i∆i

n−1. In order to gen-
eralize our strategy used in then = 1 case, we consider the (possibly disconnected)
boundary setsJi = C̃on(∂∆i

n−1), and the family of connected sets(Gi)i=1,2,... defined
as the maximal connected components of the setCon(∂∆) \ ∪i Con(∆i

n−1). Note that

#{Gi} = #{Ji}− 1 and the identitỹCon(∆) = (∪iJi)∪ (∪iGi). Hence, by using the
induction hypothesis,

∑
x∈C̃on(∂∆)

ηx =
m∑
i=1

∑
x∈Ji

ηx +
m−1∑
k=1

|Gk| ≤
[
−
(
1− 3

n−1∑
i=1

Li
li−1

)
+

Ln
ln−1

] |C̃on(∂∆)|
1 + Ln

ln−1

≤ −
(
1− 3

n∑
i=1

Li
li−1

)
|C̃on(∂∆)|

(4.107)

as required.

4.11.2 Proof of Proposition 4.24

The proof goes by induction in the order of aggregates.

The casen = 1.
As the initial step we bound the sums over 1-clusters inD

η
1. Recall that the 1-clusters

consist of 0-clusters which connect 1-aggregatesKη1,α. Throughout this section we use

the shorthand̃β := β
l0

.
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From Proposition 4.12 we know that for any integerr0,∑
C∈C

η
0 : |C|≥r0
C3x

|φη0(C)| exp (β̃(2− (1/8))|C|) ≤ 1

which implies∑
C∈C

η
0 : |C|≥r0
C3x

|φη0(C)| exp (2β̃(1− (1/8))|C|) ≤ exp (−β̃r0/8) (4.108)

We split the procedure into four steps as follows.

Part 1. For any 1-cluster inDη
1, none of its 0-clusters contributes to the dressed weight

of a 1-aggregate. Hence, all these 0-clusters have at least sizeL1. Moreover, they are
incompatible with a 1-aggregateKη1,α. Using Lemma 4.10 and choosingr0 = L1 in
(4.108), this results in the inequality∑

C∈C
η
0

C 6∼Kη
1,α

|φη0(C)| exp (2β̃(1− (1/8))|C|) ≤ l21 exp
[
−(β̃L1)/8

]
≤ 2−2 (4.109)

Part 2. In order to prove the convergence of the cluster expansion resulting from the
Mayer expansion, we apply Proposition 4.50. As our initial estimate, we get, using
(4.109) and since

C
1
6↔ C ′ ⇔ ∃α such thatC,C ′ 6∼ Kη1,α

the inequality∑
C∈C

η
0

C
1↔C0

|φη0(C)| exp (2β̃(1− (1/8))|C|)

≤
∑

Kη
1,α: Kη

1,α 6∼C0

∑
C∈C

η
0

C 6∼Kη
1,α

exp (2β̃(1− (1/8))|C|)|φη0(C)|

≤ 2−2#{Kη1,α 6∼ C0}

(4.110)

Part 3. Using Lemma 4.23, the weight of any set of 0-clusters appearing in the Mayer
expansion is bounded as

|wη1(C)| ≤
∏
C∈C

(e|φ
η
0(C)| − 1) ≤

∏
C∈C

2|φη0(C)|

99



Hence, by using Proposition 4.50, we obtain the bound∑
C1

1
6↔C0

C1∈D
η
1

|ψη1(C1)| exp [(2β̃(1− (1/8))− 1/2)|C1|] ≤ 2−1#{Kη1,α 6∼ C0} (4.111)

Taking nowC0 ∈ C
η
0 such thatKη1,α is the only1-aggregate satisfyingC0 � Kα1 ,

inequality (4.111) yields∑
C1 6∼K

η
1,α

C1∈D
η
1

|ψη1(C1)| exp [(2β̃(1− (1/8))− 1/2)|C1|] ≤ 2−1 (4.112)

Part 4. In order to bound the sum over all 1-clustersC1 ∈ D
η
1 such thatC1 3 x and

|C1| ≥ r1, we use that|C1| ≥ L1 and write∑
C13x, |C1|≥r1

C1∈D
η
1

|ψη1(C1)| exp [(2β̃(1− (1 + 1/2)/8)− 1/2)|C1|]

≤
∑
Kη

1,α

∑
C1 6∼K

η
1,α: C13x

|C1|≥r1, C1∈D
η
1

|ψη1(C1)| exp [(2β̃(1− (1 + 1/2)/8)− 1/2)|C1|]

(4.113)

Substituting (4.112), we obtain

(4.113)≤
∑
Kη

1,α

2−1 exp (−(β̃/8) ·max [d(Kη1,α, x), r1])

≤
∞∑
R=0

∑
Kη

1,α: d(Kη
1,α,x)=R

2−1 exp (−εβ̃ ·max [R, r1])
(4.114)

The last sum can be estimated by a partial integration and we finally get

(4.113)≤ exp (−β̃r1/8)
[
r21 +

16r1
β̃

+ 2
]
≤ 2−1 · 4r21 exp (−β̃r1/8)

where we have used thatr1 ≥ L1 and thatL1 is large enough.
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Induction step.
The induction hypothesis reads

∑
Ci3x: |Ci|≥ri

Ci∈D
η
i

|ψηi (Ci)| exp

(2β̃(1−
i+1∑
j=0

(1/2)j/8)−
i∑

j=1

(1/2)j
)
|Ci|


≤ 4 · 2−ir2i exp (−β̃(1/2)i+1ri/8)

(4.115)

for any1 ≤ i ≤ n− 1.

Part 1. As in part 1 of then = 1 case, we want to prove first that

∑
C∈C

η
n−1

C 6∼Kη
n,α

|φηn−1(C)| exp

(2β̃(1−
n∑
j=0

(1/2)j/8)−
n−1∑
j=1

(1/2)j
)
|C|

 ≤ 2−n−1

(4.116)
Recalling Definition (4.58) forφηn−1(C), we know thatφηn−1(C) = ψηj (C) for any
C ∈ D

η
j . Hence, using (4.115) withri = Ln, we write

(4.116)≤ l2n

n−1∑
i=1

∑
Ci3x: |Ci|≥Ln

Ci∈D
η
i

|ψηi (Ci)| exp

(2β̃(1−
n∑
j=0

(1/2)j/8)−
n−1∑
j=1

(1/2)j
)
|Ci|



≤ 4l2nL
2
n

n−1∑
i=0

2−i exp

(−β̃ n∑
j=i+1

(1/2)j/4−
n−1∑
j=i+1

(1/2)j
)
Ln


≤ 2−n−1 · 32l2nL

2
n exp

[
−β̃(1/2)nLn/4

]
≤ 2−n−1

(4.117)

where we have used thatln = exp (Ln/2n) andβ̃ is large enough. This proves inequal-
ity (4.116).

Part 2. Similarly as in then = 1 case, we prove by using (4.116) the inequality

∑
C

n
6↔C0

C∈C
η
n−1

|φηn−1(C)| exp

(2β̃(1−
n∑
j=0

(1/2)j/8)−
n−1∑
j=1

(1/2)j
)
|C|

 ≤
2−n−1#{Kηn,α 6∼ C0} (4.118)
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Part 3. By construction, anyn-clusterCn ∈ D
η
n consists of a family of0-clusters

C0 ∈ C
η
0 andi-clustersC1 ∈ D

η
0, 0 ≤ i ≤ n − 1, which are all incompatible withKηn.

Using Lemma 4.23 again, we have the upper bound

|wηn(Cn)| ≤
n−1∏
i=0

∏
C∈Cn∩Dη

i

2|ψηi (C)|

where we have identifiedψη0(.) ≡ φη0(.) andD
η
0 ≡ C

η
0. Applying Proposition 4.50 with

z(C) = 2|ψηi (C)| then gives

∑
Cn

n
6↔C0

Cn∈D
η
n

|ψηn(Cn)| exp

(2β̃(1−
n∑
j=0

(1/2)j/8)−
n∑
j=1

(1/2)j
)
|C|

 ≤ 2−n#{Kηn,α 6∼ C0}

Taking againC0 ∈ C
η
0 such thatKηn,α 6∼ C0 implies the inequality

∑
Cn 6∼K

η
n,α

Cn∈D
η
n

|ψηn(Cn)| exp

(2β̃(1−
n∑
j=0

(1/2)j/8)−
n∑
j=1

(1/2)j
)
|Cn|

 ≤ 2−n (4.119)

Part 4. Repeating the argument for then = 1 case, we obtain the inequality

∑
Cn3x, |Cn|≥rn

Cn∈D
η
n

|ψηn(Cn)| exp

(2β̃(1−
n+1∑
j=0

(1/2)j/8)−
n∑
j=1

(1/2)j
)
|Cn|


≤ 2−n · 4r2n exp (−(1/2)n+1β̃rn/8)

(4.120)

Using thatrn ≥ Ln for anyCn ∈ D
η
n and choosingrn = Ln proves the proposition for

the weightsψηn, n = 1, 2, . . ..

Equation (4.58) reads thatφηn(C) = ψηj (C) wheneverC ∈ D
η
j andj ≤ n. Using

further thatCηn = C
η
0∪D

η
1∪· · ·∪D

η
n and summing up the cluster weights of the clusters

of all orders yields inequality (4.64), which finishes the proof.
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4.11.3 Proof of Proposition 4.25

Let n0 be the same as in Section 4.8.3. Due to the second part of Proposition 4.24,

sup
x

∑
C3x, |C|≥r0

C∈C
η
n0

|φηn0
(C)| exp [(β/4l0)] |C| ≤ 2 exp (−(3β/4l0)r0)

According to the definition of the corner-aggregates, we have∑
C 6∼K∞,i

C∈C
η
n0

|φηn0
(C)| exp [(β/4l0)|C|] ≤ 2l2∞ exp (−l∞(3β/2l0)) ≤ 2−3 exp (−l∞(β/l0))

Applying Proposition 4.50, we obtain∑
C 6∼K∞,i

C∈D
η
∞

|ψη∞(C)| exp [(β/4l0)] |C| ≤ 2−2 exp (−l∞(β/l0))

which implies ∑
D∈Dη

∞

|ψη∞(D)| ≤ exp (−(3β/2l0)l∞)

4.11.4 Proof of Lemma 4.26

Let η ∈ Ω∗∗ andKηn,α be ann-aggregate,n = 1, 2, . . .. Recall that

Ẑηn,α =
∑

∂∈Dη
n,α

ρ̂η(∂) (4.121)

where
ρ̂η(∂) =

∏
Γ∈∂

ρη(Γ) exp
(
−

∑
C∈C

η
n−1

C 6∼∂; |C|<Ln

φηn−1(C)
)

(4.122)

Using theη-uniform bounds

ρη(Γ) ≤ exp[−2β(|Γ| − |∂Γ|)] (4.123)

and

sup
x?

∑
C∈C

η
n−1

x?∈C

|φηn−1(C)| ≤ exp
[
−3β
l0

]
(4.124)
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for all n = 1, 2, . . ., one can subsequently write (for simplicity, we use the shorthand
ε = exp

[
−3β
l0

] below):

Ẑηn,α ≤
∑

∂∈Dη
n,α

∏
Γ∈∂

exp[−(2β − ε)|Γ|+ 2β|∂Γ|]

≤ e(ε+4e−2β+ε)|∂Kη
n,α|

∑
∂∈Dη

n,α

∏
Γ∈∂

exp[−(2β − ε)|Γ|+ (2β − ε− 4e−2β+ε))|∂Γ|]

≤ e(ε+4e−2β+ε)|∂Kη
n,α|

∑
∂∈Dη

n,α

∏
Γ∈∂

∏
γ∈Γ

exp[−(2β − ε)|γ|+ (2β − ε− 4e−2β+ε)|∂γ|]

≤ e(ε+4e−2β+ε)|∂Kη
n,α|
{

1 +
∑
γ3p

exp[−(2β − ε)|γ|+ (2β − ε− 4e−2β+ε))|∂γ|]
}|∂Kη

n,α|

(4.125)

where the last sum runs over all pre-contours (= connected components of contours)
such that a fixed dual bondp = 〈x, y〉?, d(x,Λc) = d(y,Λc) = 1 is an element ofγ and
it is the leftmost bond with these properties, w.r.t. a fixed orientation on the boundary.
To estimate this sum, we associate with each pre-contourγ a path (= sequence of bonds;
not necessarily unique) starting atp. Every such a path consists of steps choosing from
three of in total four possible directions. One easily realizes that, for every such a path,
the total number of steps to the right is bounded from below by|∂γ|. Hence, the last
sum in (4.125) is upper-bounded via the summation over all paths started atp, so that
to each step going to the right (respectively to the left/up/down) one assigns the weight
e−4e−2β+ε

(respectivelye−2β+ε), which yields∑
γ3p

exp[−(2β − ε)|γ|+ (2β − ε− 4e−2β+ε))|∂γ|]

≤ e−2β+ε
∞∑
n=1

(
2e−2β+ε + e−4e−2β+ε)n ≤ 2e−2β+ε

(4.126)

All in all, one obtains
Ẑηn,α ≤ e(ε+6e−2β+ε)|∂Kη

n,α| (4.127)

proving the first part of the statement.
The proof of the second part is trivial by counting the number of all configurations

in the square volume with side2l∞. Note that the latter contains all contoursΓ ∈ ∂
for any configuration∂ ∈ Dη

∞,i and that the weights of all clusters renormalizing the
contour weights are summable due to Proposition 4.24.
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4.11.5 Proof of Lemma 4.28

Due to Proposition 4.50, it is enough to show that the inequality∑
B:x∗∈Supp(B)

|wt(B | η∂ΛC
)| exp

(1
2
β2t2|Supp(B)|

)
≤ 1

2
β2t2 (4.128)

holds true for all|t| ≤ t0, with a constantt0 > 0. Remark that the RHS of the last
equation is not optimal and can be improved, as obvious from the computation below.

In order to prove (4.128), we use the symmetric representation (4.92) of the weight
wt(B | η∂ΛC

), the lower boundΨ0(t) ≥ e−α which is true for anyα > 0 provided that
|t| ≤ t1(α) with a constantt1(α) > 0, and the estimate∣∣∣T{t[2β ∑

x∈Supp(B)

ηx +
1
2

∑
B∈B

Ūη(B)
]}∣∣∣

≤

{
t
[
2β
∑

x∈B |ηx|+
1
2 |Ū

η(B)|
]

for B = {B}
1 otherwise

(4.129)

which will be enough in order to get thet2 factor in what follows. Using Proposi-
tion 4.24 and Lemma 4.26, we get a uniform upper bound|Ūη(B)| ≤ c|B| with a
constantc > 0 such thatc ↓ 0 for β ↑ ∞. Hence, in the caseB = {B} we have

|wt(B = {B}) | η∂ΛC
|

≤ eα|B|t2E
[(

2β
∑
x∈B

|ηx|+
1
2

∑
B∈B

|Ūη(B)|
) ∏
B∈B

|Ūη(B)|
∣∣∣ η∂ΛC

]
≤ eα|B|t2(2β +

c

2
)|B|E

[
|Ūη(B)|

∣∣∣ η∂ΛC

] (4.130)

Note that the above uniform upper bound on|Ūη(B)| is not sufficient to get a sensible
estimate on the conditional expectation. However, a more detailed upper bound can be
obtained. Without loss of generality, we can assume thatB ∩ ∂ΛC = ∅, so that the
conditioning onη∂ΛC

can be omitted. First, assume there is an aggregate2 Kηα such

thatDom(Kηα) = B. Then, Lemma 4.26 gives the estimatelog Ẑηα ≤ c7|B| and, since
|∂Kηα| ≥ |B|/2, Proposition 4.20 reads that the probability of such an event is bounded
by exp(− c5

2 |B|). Second, assume there is a family of aggregates(Kηαi)i (of possibly
different orders) such thatDη := ∪i Dom(Kηαi) ⊂ B. Then, any clusterC such that

2For simplicity, we suppress the subscriptn here.
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Dom(C) = B has the length|C| ≥ |B \Dη| and Proposition 4.24 gives the estimate∑
C∈∪nC

η
n

Dom(C)=B

|φηn| ≤ exp
(
− β

2l0
|B \Dη|

)

Moreover, the probability thatDη = D for a fixed setD is bounded bye−
c5
2
|D|. Note,

however, that the above two scenarios are possible only provided that|B| ≥ l1, oth-
erwise we only get a contribution from0-clusters, the sum of which is bounded by

e
− β

2l0
|B|

. All in all, we obtain

E
[
|Uη(B)|

]
≤ c7|B| e−

c5
2
|B|1|B|≥l1 + e

− β
2l0

|B| + 1|B|≥l1
∑
D⊂B

e
− c5

2
|D|− β

2l0
|B\D|

≤ e
− β

2l0
|B| + 1|B|≥l1(c7 + 1)|B| e−

c5
4
|B|

(4.131)

provided thatβ/l0 is large enough. Recall thatc5 does not depend onl0, which means
that the latter can be adjusted as large as necessary. Using the same argument for
U−η(B) and substituting (4.131) into (4.130), we get∑

B3x
B⊂∂Λ

|wt(B = {B}) | η∂ΛC
)| eτ |B| ≤ 2 · t2(2β +

c

2
)
∑
B3x

B⊂∂Λ

|B| e(τ+α)|B|

×
[
e
− β

2l0
|B| + 1|B|≥l1(c7 + 1)|B| e−

c5
4
|B|
]
≤ τ ′βt2

(4.132)

which is true for anyτ ′ > 0 provided thatτ andα are chosen sufficiently small andl0
(and hencel1) sufficiently large. This argument can easily be generalized by taking into
account all collectionsB, card(B) > 1. Hence, the proof of (4.128) is completed by
choosingτ = 1

2β
2t2, under the condition|t| ≤ t0 with t0 = t0(β) being small enough.

4.12 High field

Let us consider again the Ising model but now with a high boundary field:

Hη
Λ,λ(σ) = −β

∑
〈x,y〉⊂Λ

(σxσy − 1)− βλ
∑
〈x,y〉

x∈Λ, y∈Λc

σxηy (4.133)

where we takeλ ≥ 5. The corresponding Gibbs measure we denote byµηΛ,λ. Assuming
λ → ∞ (independently of the volume size) the field determines the spin configuration
of the non-corner sites next to the boundary. Together with the corner spins these sites
form the inner boundary∂Λi of Λ:
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Definition 4.35. The inner boundary∂Λi is the set of all bonds<x, y>∈ Λ? such that
d(<x, y>, ∂Λ) = 1.

The set∂Λi corresponds to the set{x ∈ Λ : d(x,Λc) = 1}.

The setΛi = Λ \ {x ∈ Λ : d(x,Λc) = 1}.

For the corner spins it can happen that the fields from its nearest neighbor spins
are opposite to each other and therefore cancel out. We need to separate these spins,
because we can not let ’these spins follow the field’; it simply does not make any sense.
The union of these corner spins we denote byxCa:

Definition 4.36. The setxCa is the set of corner spins for which the adjacent fields
cancel each other out.

Remark 4.37. For shortening notation we sometimes write for the fieldηy adjacent to
the spinsx ∈ ∂Λi \ xCa simplyηx. Because for these spins the field next to it has only
one value we are allowed to do this.

Now we try to find the nature of the Gibbs measures for the infinite-field case.
Suppose that for a configurationσΛ there is a spinσi with i ∈ ∂Λi \ xCa for which
σi = −ηi. Automatically in the limitλ → ∞ the energy becomes infinite by equation
(4.133). Therefore this occurs only with zero probability. So the boundary field func-
tions as a boundary condition for the spinsσi for whichd(Λc, i) = 2. Apart from some
minor finite contribution of the spins of the sites inxCa, the infinite boundary field Ising
model onΛ, whereλ = ∞, is equivalent to the Ising model with random boundary con-
ditions forΛi, whereλ = 1. Because we consider 2 dimensions only:|xCa| ≤ 4, which
is a finite number.

With some rewriting we easily see the following:

lim
λ→∞

ZηΛ,λ =

lim
λ→∞

exp
(
β(λ− 1)|∂Λi|

)
exp

(
β

∑
<x,y>:

x,y∈∂Λi\xCa

ηxηy

) ∑
σxCa

exp
(
β

∑
<x,y>:

x∈xCa, y∈∂Λi

σxηy

)
Zη

Λi,1

(4.134)

Note that the factor before the partition functionZη
Λi,1

only depends onλ, η andσxCa .
Of course this holds only in the limitλ → ∞. This makes that when we calculate the
Gibbs mean of a spin-function which does not depend onxCa we obtain

lim
λ→∞

< F (σΛ\xCa
) >µη

Λ,λ
= < F (η∂Λi\xCa

, σΛi) >µη

Λi,1
(4.135)
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Because the value of the spins on∂Λi \ xCa is determined byη, we only need to use
the Gibbs measure restricted toΛi with boundary conditionη instead of the full volume
Gibbs measure forΛ with the infinite boundary field.

Now we takeλ ≥ 5 but finite. By our assumption onλ it is more beneficial for spins
on ∂Λi \ xCa to follow the field instead of following the adjacent spins. This suggests
to expand differently than before. Then we expanded around the two ground states
σ ≡ +1 andσ ≡ −1 which appear when we have zero-field:the zero-field expansion.
Now we expand from the two ground states which appear in the infinite boundary field
case.

DenoteσΛ = σ∂Λi ∨ σΛi . For the ground-states restricted toΛ \ xCa it holds:
σ∂Λi\xCa

≡ η combined withσΛi ≡ ±1. For the corner spinsxCa we set the spin
values equal to +1 or -1, equal to the chosen ground state value in the interiorΛi. This
expansion we refer to asthe high-field expansion. The corresponding ensembles we
again refer to as the+ and− ensemble.

4.12.1 Contour representation

In this setup there will be two types of contours. The first type of contours are contours
Γ for which Γ ⊂ Λi? and therefore do not contain sites of∂Λi. These contours we
define as before but with the role of∂Λ replaced by∂Λi. The second type of contours
represent the part of the spins on∂Λi which do not follow the field or where the spin-
values are∓1 on the corner sitesxCa. These contoursγ are connected sets of sites on
the inner boundary:

Definition 4.38. A contourγ is a set of sites of∂Λi such that

1. For every sitex ∈ γ andx 6∈ xCa: σx = −ηy, andσx = ∓1 whenx ∈ xCa,
wherey ∈ Λc andd(x, y) = 1.

2. For every sitex ∈ ∂Λi andx 6∈ xCa with d(x, γ) = 1: σx = ηy, y ∈ Λc and
d(x, y) = 1, and above withσx = ±1 in casex ∈ xCa.

3. The length|γ| is the number of sites inγ.

In this way every collection of contoursΓ∪γ correspond to two flip-related (except
for the part in∂Λi \xCa) spin configurations. This gives a natural separation into the+
and− ensemble. The two corresponding partition functions are:

ZηΛ,λ = Z+,η
Λ,λ + Z−,ηΛ,λ , Z

±,η
Λ,λ = pref±,ηλ (∅)

∑
∂1⊂∂Λi

∏
γ∈∂1

ρ±,ηλ (γ)
∑

∂2⊂KΛi

∏
Γ∈∂2

ρ±,η(Γ)

(4.136)
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with

pref±,ηλ (∅) = exp

β(λ− 2)|∂Λi|+ β
∑

<x,y>: x,y∈∂Λi\xCa

ηxηy


exp

(
±β
( ∑
x∈∂Λi\xC

ηx +
∑

y∈∂Λi

d(y,xCa)=1

ηy

))
(4.137)

We define for convenience

Z±,η∂Λ,λ ≡
∑

∂1⊂∂Λi

∏
γ∈∂1

ρ±,ηλ (γ) (4.138)

Then
Z±,ηΛ,λ = Z±,η∂Λ,λ · pref±,ηλ (∅)

∑
∂2⊂KΛi

∏
Γ∈∂2

ρ±,η(Γ) (4.139)

The weights of the contours are defined as follows:

ρ±,η(Γ) = exp
(
−2β

(
|Γ| ±

∑
i∈∂Λ: d(i,∂Γ∓)=1

ηi

))
(4.140)

just as before and

ρ±,ηλ (γ) = exp
[
− 2β

(
λ(|γ \ (γ ∩ xCa)|+ |γ ∩ xC \ xCa|)±

∑
i∈γ\γ∩xC

ηi +
∑

<x,y> x∈γ

y∈∂Λi: y 6∈γ


ηxηy if x, y 6∈ xCa
±ηx if y ∈ xCa
±ηy if x ∈ xCa


 (4.141)

Remark 4.39. Theλ-dependent part ofρ±,ηλ (γ) does not depend on the ensemble. This
is also true for the pre-factors. It suggests that the restrictionλ ≥ 5 might not be
necessary.

From now on we restrict ourselves to the+-ensembles. We setZηΛ,λ ≡ Z+,η
Λ,λ and

ρη(Γ) ≡ ρ+,η(Γ). The−-ensemble we can treat in a way similar to the−-ensemble of
the zero-field expansion.
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4.12.2 Partitioning contour families

Because of the form of the weights of the contoursΓ andγ we expand these two types
separately. Note that the weights of the contoursΓ do coincide with the correspond-
ing weights of the zero-field expansion of the volumeΛi with boundary conditionη.
Therefore we treat the contoursΓ with the zero-field expansion forΛi.

Except for the contoursγ ∈ xCa we can expand every contourγ in a single step.
This because the weights of the contoursγ behave well-damped. By our assumption
λ ≥ 5

ρηλ(γ) ≤ exp (−2β((λ− 1)|γ \ (γ ∩ xCa)| − 2)) ≤ exp (−2β|γ|) (4.142)

except for allγ ∈ xCa.

Remark 4.40. Equation(4.142)shows us that forγ with |γ| ≥ 3 or γ not containing
any point ofxCa

ρηλ(γ) ≤ exp (−2β|γ|/l0) whenever(λ− 1)|γ| ≥ 1/l0 + 2 (4.143)

This means in particular that we can use the high field expansion forλ ≥ 3 + 1/l0. For
intermediateλ (i.e. 1 < λ < 3 + 1/l0) the way of proceeding is not clear.

Because of the uniform decay of the contours in (4.142) we are allowed to cluster
expand:

Proposition 4.41. There is a constantc5 such that forβ large enough

sup
x∈∂Λi

∑
C∈C

η
0

C3x

|φη0,λ(C)| exp (2β − c5)|C| ≤ 1 (4.144)

To shorten notation we have defined

Definition 4.42. The setCη0 is the union of all clustersC such that for allγ ∈ C:
γ ⊂ ∂Λi andγ 6∈ xCa.

Proof. The proof goes in a rather standard way. Because the contours are sets of sites
which are adjacent to each other the entropy is limited.

sup
x∈∂Λi

∑
γ3x

ρηλ(γ) exp (2β − c5 + 1)|γ| ≤
∞∑
n=1

n exp (1− c5)n ≤ 1 (4.145)

for c5 large enough. Now apply Proposition 4.50 to obtain the Proposition.
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We put this cluster expansion into the partition functionZ+
Λ,λ given by (4.138) and

we obtain

Zη∂Λ,λ = exp
( ∑
C∈Cη

0

φη0,λ(C)
) ∑
∂⊂xCa

∏
γ∈∂

ρηλ(γ) exp
( ∑
C∈Cη

0 : C 6∼∂

φη0,λ(C)
)

(4.146)

Now we put the pre-factor at the left-hand site for notational convenience and we rewrite
the above to

exp
(
−
∑
C∈Cη

0

φη0,λ(C)
)
Zη∂Λ,λ = ZηCa

[
1
ZηCa

∑
∂⊂xCa

∏
γ∈∂

ρη(γ) exp
( ∑
C∈Cη

0 : C 6∼∂

φη0,λ(C)
)]

(4.147)
where

ZηCa =
∑
∂⊂xCa

∏
γ∈∂

ρη(γ)

We use the Mayer expansion as we did before in theλ = 1 boundary field case. To
every familyC ⊂ C

η
0 we set the weight

wηλ(C) =
1
ZηCa

∑
∂⊂xCa

∏
γ∈∂

ρη(γ)
∏
C∈C

(
exp

(
φη0,λ(C)(1){C 6∼∂}

)
− 1
)

(4.148)

Then
(4.147)= ZCa

∑
C∈Cη

0

wηλ(C) (4.149)

We define

Definition 4.43. Any pair of clustersC1 andC2 of C
η
0 is called corner-incompatible,

C1

Ca
6↔ C2, whenever there is a corner sitex in xCa such that for the contourx : x 6∼ C1

andx 6∼ C2. And any pair of families of clustersC1 and C2 is corner-incompatible,

C1

Ca
6↔ C2, whenever there are clustersC1 ∈ C1, C2 ∈ C2 such that there is a corner site

x in xCa so the contourx : x 6∼ C1 andx 6∼ C2.

One can check the properties of the weight (compare lemma 4.23)

Lemma 4.44. For any set of clustersC ∈ C
η
0

1. supη |w
η
λ(C)| ≤

∣∣∣∏C∈C(e
|φη

0,λ(C)| − 1)
∣∣∣ ≤ 2

∏
C∈C |φ

η
0,λ(C)|,

2. If C = C1 ∪ C2 with C1
Ca↔ C2 thenwηλ(C) = wηλ(C1)w

η
λ(C2).
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Equation (4.149) represents the partition function of a polymer model. The poly-
mers are the sets of clustersC ∈ C

η
0, which are incompatible if and only if they are

corner-incompatible. We cluster expand this polymer model to obtain the second and
final cluster expansion. We useDη

Ca for the set of all clusters in this polymer model and
ψηCa(D) for the weight of a clusterD ∈ D

η
Ca,λ. Then we get

(4.149)= ZηCa exp
( ∑
D∈Dη

Ca

ψηCa,λ(D)
)
,

Zη∂Λ = ZηCa exp
( ∑
C∈Cη

0

φη0,λ(C)
)

exp
( ∑
D∈Dη

Ca

ψηCa,λ(D)
) (4.150)

The cluster weights turn out to behave well damped. The corner partition functionZηCa
is well controlled:

Proposition 4.45. There exist a constantc5 (the same as in Proposition 4.41) such that
for β large enough

sup
x∈∂Λi

∑
D∈D

η
Ca

D 6∼x

|ψηCa,λ(D)| exp (2β − c5 − 6)|D| ≤ 1 (4.151)

Proof. Because of Lemma 4.44 we can use our generalized KP-criterion defined in
Proposition 4.50 (2). This proposition tells us that whenever we can prove the following
inequality

sup
C0∈Cη

0

∑
C 6∼C0
C∈C

η
0

2|φ0,λ(C)| exp (2|C|+ (2β − c5 − 4)|C|) ≤ |C0| (4.152)

automatically ∑
D 6∼C0

|ψηCa,λ(D)| exp (2β − c5 − 4)|D| ≤ |C0| (4.153)

follows. For each pointx there are only two contoursγ 3 x with |γ| = 2. WhenD 6∼ x
thenD must be incompatible with at least one of these two contours. Then by using
(4.152) the Proposition follows.

By Proposition 4.41 it holds:

sup
C0∈Cη

0

∑
C 6∼C0
C∈C

η
0

|φη0,λ(C)| exp (2β − c5)|C| ≤ |C0|+ 2 (4.154)
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making
sup
C0∈Cη

0

∑
C 6∼C0
C∈C

η
0

2|φη0,λ(C)| exp (2β − c5 − 2)|C| ≤ |C0| (4.155)

proving (4.152).

Any cluster inD ∈ D
η
Ca is corner incompatible. Because there are at most 4 corners

in the setxCa, immediately it follows

Corollary 4.46. ∑
D∈Dη

Ca

|ψηCa,λ(D)| exp (2β − c5 − 6)|D| ≤ 4

Proposition 4.47. For the partition functionZηCa it holds

sup
η
ZηCa ≤ 2 exp (16β) (4.156)

Proof. By (4.141) it holds for every contourγ ∈ xCa : ρη(γ) ≤ exp 4β. So

ZηCa =
∑
∂⊂xCa

∏
γ∈∂

ρη(γ) ≤
∑
∂⊂xCa

exp (4β|∂|) ≤ 2 exp (16β) (4.157)

for β large enough.

Now we try to find a good estimate for the free energy difference. It turns out that
thelog-difference of the pre-factors appearing in (4.137) is of a convenient nature:

log pref+λ (∅)− log pref−λ (∅) = 2β
[ ∑
∂Λi\xC

ηx +
∑

y∈∂Λi

d(y,xCa)=1

ηy

]
=

E+
Λi(∅)− E−

Λi(∅) + 2β
∑

y∈∂Λi

d(y,xCa)=1

ηy

(4.158)

In fact they decompose nicely into the pre-factor difference of thelog-differen-ce of
the partition functions of the interiorΛi and an additional part coming solely from the
boundary∂Λi.

So it holds by (4.150), (4.158) and the above

logZ+
Λ,λ− logZ−Λ,λ = logZ+

Λi,1
− logZ−

Λi,1
+ 2β

∑
y∈∂Λi

d(y,xCa)=1

ηy + logZ+
Ca− logZ−Ca

∑
C∈C+

0

φ+
0,λ(C)−

∑
C∈C−0

φ−0,λ(C) +
∑

D∈D+
Ca

ψηCa,λ(D)−
∑

D∈D−
Ca

ψηCa,λ(D) (4.159)
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Now we put in Corollary 4.46 and Proposition 4.47 to obtain

logZ+
Λ,λ − logZ−Λ,λ = logZ+

Λi,1
− logZ−

Λi,1
+
∑
C∈C+

0

φ+
0,λ(C)−

∑
C∈C−0

φ−0,λ(C) +O(β)

(4.160)
For the clusters ofC±0 we now need to define the domain.

Definition 4.48.

1. The ’interior’ Int(γ) of a contourγ ∈ ∂Λi equals the set of unit cubes which has
as center points the sites ofγ,

2. The domainDom(C) of a clusterC ∈ C±0 equalsDom(C) = ∪γ∈C Int(γ)∩∂Λi.

Then we defineUη(B) for a setB ⊂ ∂Λi as in (4.83) but withφη0(C) replaced by
φη0(C) + φ+

0,λ(C). In the same way we replaceφ−η0 (C) by φ−η0 (C) + φ−0,λ(C).
When we consider the upper bounds for both the cluster expansions we easily realize

that still it holds:

|Uηs (B)| =
∣∣∣ ∑

C∈C+
0 :

Dom(C)=B

φ+
0,λ(C) +

∑
C∈C

η
0 :

Dom(C)=B

φη0(C)
∣∣∣ ≤ e−β|B|/l0 (4.161)

For the free energy we can make use of the characteristic function expansion. In this
expansion we do not put theO(β) term. Whenβ is finite or not growing too fast
compared to the volume sizeL, we can neglect it. All the properties of the zero-field
do follow for the free energy. Because forL → ∞ the boundary moves to infinity the
nature of the high-field states is the same.

This shows that forλ ≥ 5 the random boundary field is only a small perturbation
of the case of infinite random boundary field whereλ = ∞. When the volume goes to
infinity the scenario of the high-field expansion turns into the scenario of the zero-field
expansion. In this sense the Ising model with a random high boundary field is equivalent
to the Ising model with ordinary random boundary conditions.

4.13 Concluding remarks and some open questions

Our result that a typical boundary condition (w.r.t. a symmetric distribution) suppresses
both mixed and interface states explains why these states are typically not observed in
experimental situations without a special preparation. To a certain extent it justifies the
standard interpretation of extremal invariant Gibbs measures as pure phases.

Although this result, which finally solves the question raised in [63], is only about
the 2-dimensional Ising ferromagnet, and thus seemingly of limited interest, it is our
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opinion that the perturbation approach developed in this chapter is actually very robust
(compare [39]). As we have observed at various points in this chapter, there seems to
be no barrier except some technical ones to extend the analysis to the Ising model with
random boundary conditions in higher dimensions. In fact, there might be extensions of
our approach into various different directions.

Instead of Ising spins one can consider the same model with Potts spins. The set-up
is a more general Pirogov-Sinai one in which the number of extremal Gibbs measures
could be larger than two. The contour analysis still can be performed, but we need to
add labels to the contours, representing the different spin-values in their exterior and
their interior. We conjecture that the same results as for Ising model hold. Again there
is chaotic size dependence, but now the measure oscillates betweenq different Gibbs-
measuresµq. These are generalizations of the Ising measuresµ+ andµ−, having the
same type of island structures.

One can consider a more general symmetric distribution of the random field, pos-
sibly with some weak dependence. This can serve as a model of a high-temperature
environment. We conjecture that the additional interaction between the fields can also
be analyzed by a similar expansion technique, leading to the same result.

One can also extend the model by taking non-symmetric distributions for theη’s.
In general we do not expect chaotic size dependence. However, can we choose a non-
symmetric distribution such that there is still chaotic size dependence, but with a slight
preference for one of the two extremal statesµ+ andµ−?

Instead of nearest neighbor interactions one can consider (long-range) Kac-potentials.
This needs a refinement of the definitions of the contours. Because of the long-range
nature of the interaction, the spins tend to behave like the spins in the mean-field model.
Now, the contours are formed by blocks of spins with size of order of the interaction,
which behave in a significantly different way than in the mean-field case. After this
blocking the model turns into a short-range model with a boundary field which is typi-
cally weak. Again large boundary fields do appear on all scales, so a multi-scale expan-
sion is needed. A special interest in the Kac-model is due to the possibility of extending
the contour analysis up to the critical temperature.

Another possible extension could be to finite-range Hopfield-type models, in which
periodic or fixed boundary conditions lack a coherence property with respect to the pos-
sible Gibbs measures, and thus are expected to behave as random ones [69]. Actually,
our result can be translated in terms of the Mattis (= single-pattern Hopfield) model with
fixed boundary conditions, proving the chaotic size-dependence there.

More generally, in principle the phenomenon of the exclusion of interface states
for typical boundary conditions might well be of relevance for spin glass models of
Edwards-Anderson type, which has indeed been one of our main motivations. Our
result illustrates in a simple way how the Newman-Stein metastate program, designed
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for the models exhibiting the chaotic size-dependence, can be realized. The number of
states, as well as the number of “physically relevant” states for short-range spin glasses
has been an issue of contention for a long time. In this chapter, we have provided a
very precise distinction between the set of all Gibbs states, the set of all extremal Gibbs
measures, and the set of “typically visible” ones, without restrictinga priori to the states
with a particular symmetry. We hope the provided criterion might prove useful in a more
general context.

We mention that the restriction to sparse enough sequences of volumes is essential
to obtain almost sure results. Actually, for a regular sequence of volumes, we expect all
mixtures (in dimension three all translation-invariant Gibbs measures) to be almost sure
limit points, although in a null-recurrent way. This still would mean that the metastate
would not be affected, and that it would be concentrated on the plus and minus measures.
See also the discussion in [28]. However, proving this conjecture goes beyond the
presented technique and remains an open question.

A different but very intriguing problem is to analyze thed = 3 random field Ising
model with free or periodic boundary conditions. In order to have a phase transition
the field has to be typically small enough. On the other hand, when the field takes
typically high values, then the spins tend to follow the direction of the field and there
is only one Gibbs state. The famous paper by Bricmont and Kupiainen [14] consid-
ers the cases of+ and− boundary conditions. They show that the resulting Gibbs
measures are different. We conjecture that for free boundary conditions the same type
of chaotic size dependence as in the random Ising boundary field model does occur;
on sparse enough sequences of volumes the Gibbs measure randomly oscillates be-
tween two infinite-volume Gibbs statesµ+ andµ− with probability 1, forβ ≥ β0 large
enough. In [14] a delicate multi-scale block spin approach is used. We conjecture that
our techniques, avoiding a systematic blocking procedure, can be used as well. Work in
this direction is in progress.

4.14 Appendix on cluster models

In this section we present a variant of the familiar result on the convergence of the
cluster expansion for polymer models, which proves useful in the cases when the sum-
mation over polymers becomes difficult because of their high geometrical complexity.
Such a situation arises, for example, in the applications of the cluster expansion to the
study of the convergence of high-temperature (Mayer) series in lattice models with an
infinite-range potential. Since the Mayer expansion techniques are by no means re-
stricted to the high-temperature regimes (note e.g. its application in the RG schemes
for low-temperature contour models), the result below can be applied in a wide class of
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problems under a perturbation framework. In our context, we use the result to provide
upper bounds on the weightsψηn of n-clusters, see Section 4.11.2.

We consider an abstract cluster model defined as follows. LetG = (S,�) be a
finite or countable non-oriented graph and call its verticespolymers. Any two polymers
X � Y are calledincompatible, otherwise they arecompatible,X ∼ Y . By convention,
we add the relationsX � X for all X ∈ S. Any non-empty finite set∆ ⊂ S is called a
clusterwhenever there exists no decomposition∆ = ∆1 ∪∆2 such that∆1 and∆2 are
non-empty disjoint sets of polymers and∆1 ∼ ∆2, where the latter means thatX ∼ Y
for allX ∈ ∆1 andY ∈ ∆2. LetP(S) denote the set of all finite subsets ofS andC(S)
denote the set of all clusters. A functiong : P(S) 7→ C is called aweightwhenever

i) g(∅) = 1,

ii) If ∆1 ∼ ∆2, theng(∆1 ∪∆2) = g(∆1) g(∆2).

If the extra condition

iii) g(∆) = 0 whenever there is anX ∈ ∆ such thatX � ∆ \ {X}

holds true, then we obtain the familiarpolymer model. In the sequel we do not assume
Condition iii) to be necessarily true, unless stated otherwise.

Note a simple duality between the classes of polymer and cluster models: Any
cluster model over the graphG = (S,�) is also a polymer model over the graphG′ =
(C(S),�). The other inclusion is also trivially true. A natural application of this duality
is to the polymer models with a complicated nature of polymers. Such polymers can
often be represented as clusters in a new cluster model with the polymers being simpler
geometric objects.

To any setA ∈ P(S) we assign thepartition functionZ(A) by

Z(A) =
∑
∆⊂A

g(∆) (4.162)

The map between the functionsg andZ is actually a bijection and the last equation can
be inverted by means of the M̈obius inversion formula. In particular, we consider the
functiongT : P(S) 7→ C such that the M̈obius conjugated equations

logZ(A) =
∑
∆⊂A

gT (∆) gT (∆) =
∑
A⊂∆

(−1)|∆\A| logZ(A) (4.163)

hold true for allA ∈ P(S) and∆ ∈ P(S), respectively. The functiongT is called a
clusterweight, the name being justified by the following simple observation:

Lemma 4.49. For any cluster model,gT (∆) = 0 whenever∆ is not a cluster.
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A familiar result about the polymer model is the exponential decay of the clus-
ter weightgT under the assumption on a sufficient exponential decay of the weight
g, see [50, 57]. We use the above duality to extend this result to the cluster models,
formulating a new condition that can often be easily checked in applications.

Proposition 4.50. Let positive functionsa, b : S 7→ R+ be given such that either of the
following conditions is satisfied:

1. (Polymer model)
Condition iii) is fulfilled and3

sup
X∈S

1
a(X)

∑
Y�X

e(a+b)(Y )|g(Y )| ≤ 1 (4.164)

2. (Cluster model)
There isz : S 7→ R+ satisfying the condition

sup
X∈S

1
a(X)

∑
Y�X

e(2a+b)(Y )z(Y ) ≤ 1 (4.165)

such that|g(∆)| ≤
∏
X∈∆ z(X) for all ∆ ∈ P(S).

Then,

sup
X∈S

1
a(X)

∑
∆�X

e
∑

Y ∈∆ b(Y )|gT (∆)| ≤ 1 (4.166)

Proof. (1) For the case of the polymer models, see [50] or better [57] for the proof.
(2) To prove the statement for a cluster model, we represent it as a polymer model over
the graph(C(S),�) and make use of the above result. Hence, it is enough to show the
inequality ∑

∆∈C(S)
∆�X

e
∑

Y ∈∆(a+b)(Y )|g(∆)| ≤ a(X) (4.167)

for all X ∈ S. Indeed, then one gets∑
∆∈C(S)
∆�∆0

e
∑

Y ∈∆(a+b)(Y )|g(∆)| ≤
∑
Y ∈∆0

a(Y ) (4.168)

for all ∆0 ∈ C(S) and the statement about the polymer models yields∑
∆∗∈C(C(S))

∆∗�∆0

e
∑

∆∈∆∗
∑

Y ∈∆ b(Y )|gT (∆∗)| ≤
∑
Y ∈∆0

a(Y ) (4.169)

3We use the convention0
0

= 0 here.

118



where the sum on the LHS is over all clusters incompatible with∆0 in the polymer
model with the set of polymersC(S). Since the weightsgT (∆) of the clusters in the
original cluster model are related to the cluster weightsgT (∆∗) in the polymer model
under consideration as

gT (∆) =
∑

∆∗: ∪∆′∈∆∗∆′=∆

gT (∆∗) (4.170)

we immediately get∑
∆�X

e
∑

Y ∈∆ b(Y )|gT (∆)| ≤
∑

∆∗∈C(C(S))
∆∗�X

e
∑

∆∈∆∗
∑

Y ∈∆ b(Y )|gT (∆∗)| ≤ a(X) (4.171)

which is inequality (4.166).
Using the notation̂z(X) := z(X) ea(X)+b(X) and

ZX(A) =
∑

∆∈C(A)
∆3X

∏
Y ∈∆

ẑ(Y ) (4.172)

for anyA ∈ P(S) andX ∈ A, inequality (4.167) follows from the next two lemmas.

Lemma 4.51. The functionZX(A) satisfies the recurrence inequality

ZX(A) ≤ ẑ(X) exp
[ ∑

Y �X
Y ∈A\{X}

ZY (A \ {X})
]

(4.173)

Proof. For any cluster∆ we split∆ \ {X} into connected components, i.e. a family of
clusters(∆j), and subsequently write:

ZX(A) = ẑ(X)
∑

∆∈C(A)
∆⊂A\{X}

∏
j

∏
Y ∈∆j

ẑ(Y )

≤ ẑ(X)
∞∑
n=0

1
n!

∑
Y1,...,Yn∈A\{X}

∀j: Yi�X

n∏
j=1

∑
∆j⊂A\{X}

∆j3Yj

∏
Y ∈∆j

ẑ(Y )

= ẑ(X)
∞∑
n=0

1
n!
[ ∑

Y �X
Y ∈A\{X}

ZY (A \ {X})
]n

= ẑ(X) exp
[ ∑

Y �X
Y ∈A\{X}

ZY (A \ {X})
]

(4.174)
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Lemma 4.52. Assume that ∑
Y�X

ẑ(Y )ea(Y ) ≤ a(X) (4.175)

Then ∑
Y�X

ZY (S) ≤ a(X) (4.176)

Proof. We prove the inequality

ZX(A) ≤ ẑ(X)ea(X) (4.177)

for all A ∈ P(S) andX ∈ A, by induction in the number of polymers in the set
A. Assuming that this bound is satisfied whenever|A| < n, we can estimateZX(A)
for |A| = n by using Lemma 4.51, condition (4.175), and the induction hypothesis as
follows:

ZX(A) ≤ ẑ(X) exp
[∑
Y�X

ẑ(Y )ea(Y )
]
≤ ẑ(X)ea(X) (4.178)

As the statement is obvious for|A| = 1, the lemma is proven.

4.15 Appendix on interpolating local limit theorem

We present here a simple general result that can be useful in the situations where a full
local limit theorem statement is not available due to the lack of detailed control on the
dependence among random variables the sum of which is under consideration. For a
detailed explanation of the central and the local limit theorems as well as the analysis
of characteristic functions in the independent case, see e.g. [23]. Here, under only mild
assumptions, we prove an asymptotic upper bound on the probabilities in a regime that
interpolates between the ones of the central and the local limit theorem. Namely, we
have the following result that is a simple generalization of Lemma 5.3 in [28]:

Proposition 4.53.Let(Xn)n∈N be a sequence of random variables and denote byψn(t)
the corresponding characteristic functions,ψn(t) = E eitXn . If (An)n∈N, (δn)n∈N and
(τn)n∈N are strictly positive sequences of reals satisfying the assumptions

i) limn→∞An
∫ τn
−τn dt|ψn(t)| ≤ 2π

ii) There isk > 1 such thatlimn→∞
An

δk
n τ

k−1
n

= 0
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then

lim
n→∞

An
δn

P {aδn ≤ Xn ≤ bδn} ≤ b− a (4.179)

for anya < b.

Remark 4.54. Note that:

1. Up to a normalization factor, Condition i) of the proposition only requiresAn to
be chosen as

An = O
([∫ τn

−τn
dt |ψn(t)|

]−1)
(4.180)

2. If there isε1 such thatAnτn ≤ nε1 eventually inn, then Assumption ii) of the
proposition is satisfied wheneverδnτn ≥ nε2 with a constantε2 > 0.

3. The choiceδn = An (if available) gives an upper-bound on the probabilities in
the regime of the central limit theorem. On the other hand,δn = const corre-
sponds to the regime of the local limit theorem. However, for the latter choice it
can be difficult to check the assumptions, and that is why one has to allow for a
sufficient scaling ofδn, see Part (2) of this remark.

4. Much more information about the distribution of the random variablesXn would
be needed in order to get anylower boundson the probabilities (except for the
caseτn = ∞ in which a full local limit theorem can be proven). This is a hard
problem that we do not address here.

Proof. Let sequences(An), (τn), (δn) be given such that the assumption of the propo-
sition is true and take an arbitrary positive functionh ∈ C∞(R) for which i) h(x) = 0
for anyx 6∈ (−ε, ε) and ii)

∫ 1
−1 dxh(x) = 1. Using the notationGn for the distribu-

tion function ofXn, we consider its ‘regularized version’̄Gn defined by the Lebesgue
density

dḠn(x)
dx

=
∫ ∞

−∞
dGn(y)hn(x− y) (4.181)

wherehn(x) := 1
δn
h( xδn ). Obviously, dḠn

dx ∈ C∞(R) and it can be expressed by the
Fourier integral as follows:

dḠn(x)
dx

=
1
2π

∫ ∞

−∞
dt e−itxψn(t)

∫ ∞

−∞
dy eityhn(y)

=
1
2π

∫ ∞

−∞
dt e−itxψn(t) ĥ(tδn)

(4.182)

121



whereĥ(t) :=
∫∞
−∞ dx eitxh(x) and we have used thatψn(t) ĥ(tδn) ∈ L1(R) following

from Assumption i) of the proposition and from the bounds|ψn(t)|,|ĥ(t)|≤ 1. More-
over, if k > 1 is such that Assumption ii) holds, then, using the bound|ĥ(t)| ≤ c|t|−k
which is true with some constantc for all t ∈ R \ {0}, we obtain the estimate

lim
n→∞

sup
x
An

dGn(x)
dx

≤ 1
2π

lim
n→∞

(
An

∫ τn

−τn
dt |ψn(t)|+

∫
R\[−τn,τn]

dt |ĥ(tδn)|
)

≤ 1 +
1
π

c

k − 1
lim
n→∞

An

δknτ
k−1
n

= 1

(4.183)

Finally, by using the inequality

P {aδn ≤ Xn ≤ bδn} =
∫ bδn

aδn

dGn(y)
∫ ∞

−∞
dxhn(x− y)

≤
∫ (b+ε)δn

(a−ε)δn
dx
∫ bδn

aδn

dGn(y)hn(x− y)

≤
∫ (b+ε)δn

(a−ε)δn
dḠn(x)

(4.184)

we get

lim
n→∞

An
δn

P {aδn ≤ Xn ≤ bδn} ≤ (b− a+ 2ε) lim
n→∞

sup
x
An

dGn(x)
dx

≤ b− a+ 2ε

(4.185)
and the proposition follows by taking the limitε→ 0.
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Appendix A

Cluster expansions for Ising-type
models

In this appendix we present more background information about cluster expansions. The
cluster expansion is a frequently used perturbation expansion in statistical mechanics.
There is a vast amount of literature, for reviews see [10, 17, 30, 49, 72, 75] and many
others. First we look at high temperature models and introduce the Mayer expansion
which is an example of a high temperature cluster expansion. Then we look at the low
temperature Ising model for which the objects in the cluster expansion are contours.
Together with this expansion we review the more general setting of the expansion into
polymers. Then we introduce multi-scale methods, which enlarge the area to which the
single cluster expansion is restricted.

A.1 High temperature results

A.1.1 1D Ising model by Mayer expansion

Consider the 1D Ising model without boundary field and with free boundary conditions.
It has as Hamiltonian:

−βHN = −β
N−1∑
i=1

(σiσi+1 − 1) (A.1)

As we see from (A.1) the interactions are only between nearest neighboring sites. We
assumeβ is small so thatT = 1/β is large. Every set of broken bonds corresponds
uniquely to two flip-related configurationsσ and−σ. We setΛb equal to the set of
bondsb = (i, i+ 1):

Λb = {(i, i+ 1), 1 ≤ i ≤ N − 1} (A.2)
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The partition function becomes

ZN = 2
∑
B⊂Λb

∏
b∈B

exp (−2β) (A.3)

We expand the partition function by the Mayer expansion technique. This technique is
represented by the following identity:∑

A⊂Λ

∏
A∈A

(exp fβ(A)− 1) = exp
( ∑
A⊂Λ

fβ(A)
)

(A.4)

The symbolA represents a family of mutually different subsetsA ⊂ Λ. One uses the
Mayer expansion often for high temperature expansions [72]. When these expansions
are to converge, it is needed that the absolute values of the functionsfβ(A) become
small for the desired values ofβ. Whend = 1, due to analytic continuation, it gives
a solution everywhere. The expansion is an example of a cluster expansion. We have
used a variant of it in Chapter 4 for highβ.

To apply this technique we first rewrite (A.3) into the form of (A.4):

ZN = 2
∑
B⊂Λb

∏
b∈B

(
exp (log (e−2β + 1))− 1

)
(A.5)

When we compare (A.5) with (A.4) we see the following relations. The setΛ ≡ Λb and
the subsetsA ≡ {b}, whereb is a bond ofΛb. The setsA are subsetsB ⊂ Λb. The
functionfβ(A) ≡ f({b}) = log (e−2β + 1) for all bondsb ∈ Λb.

Now we apply the Mayer expansion (A.4) to (A.5) and obtain

ZN = 2 exp
( ∑
b∈Λb

log (e−2β + 1)
)

= 2
(
e−2β + 1

)N−1
(A.6)

So the pressure equals

lim
N→∞

1
N

logZN = log (e−2β + 1) = −β + log (2 cosh(β)) (A.7)

A.1.2 Uniqueness of Gibbs measure for high temperature ord=1

For more general models one always need some regularity of the interactions.

Definition A.1. An interactionΦ is called a regular interaction whenever

∀x ∈ d :
∑
A3x

‖ΦA‖∞ ≤ C <∞ (A.8)
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For a subclass of these interactions the following theorem does hold:

Theorem A.2 (Dobrushin uniqueness criterion).AssumeΦ is a regular interaction.
Whenever it moreover holds:

sup
x∈ d

∑
A3x

(|A| − 1)‖ΦA(σ)‖∞ < β−1 (A.9)

then there is only one limiting infinite-volume Gibbs measure.

So for regular interactions, when the temperatureβ−1 is high enough, there is al-
ways an unique Gibbs measure.

Remark A.3. The original uniqueness criterion is stated for slightly more general in-
teractions. It can also be used for getting more information about the unique Gibbs
measure, e.g. its decay of correlations, which goes like the potential. For all of this and
more see [10, 21, 72].

Corollary A.4. Assumeβ < 1/2d. Then for thed-dimensional Ising model the Gibbs
measure is unique irrespectively of the 1-site interactions.

Proof. In (A.9) only setsA are summed with|A| ≥ 2. With this condition the interac-
tions of the Ising model only cover bonds{i, j} for whichΦ{i,j} ≤ 1. Then inequality
(A.9) turns into our assumption, where2d is the number of nearest neighbors. We apply
Theorem A.2 to obtain the result.

For one-dimensional translational-invariant interactions the criterion for
uniqueness turns out to be easier:

Proposition A.5. AssumeΦ is a regular translational-invariant interaction on. Then
for having an unique Gibbs measure at everyβ <∞ it is sufficient that∑

A30

A⊂

|φA|diam(A)
|A|

<∞ (A.10)

Corollary A.6. The 1 dimensional Ising model(A.1) has an unique limiting Gibbs
measure forβ <∞.

Proof. From (A.1)

−βHN (σ) = −β
∑

A⊂{1,··· ,N}

ΦA(σ) (A.11)
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with

ΦA(σ) =

{
σiσi+1 − 1 if A = {i, i+ 1},
0 0 otherwise

(A.12)

In particularΦA is translational invariant. Without losing generality we assume
N is odd. Then we can translate uniquely every setA point-wise by transformation
τ : τ(i) = i − (N + 1)/2. The setN = {1, · · · , N} translates toτN = {−(N −
1)/2, · · · , 0, · · · , (N − 1)/2}. Now we are allowed to apply the Dobrushin uniqueness
criterion in the above Proposition for the interactionsΦA.∑

A3i

|ΦA(σ)|diam(A)
|A|

≤
∑
τA30

|Φ{−1,0}(σ)|+ |Φ{0,1}(σ)| ≤ 4 (A.13)

so the Gibbs measure is unique.

A.1.3 High temperature polymer expansions

The above theorems do not state whether or not the free energy is analytic orCk. When
we restrict to interactions with stronger decay properties it holds (e.g. [72])

Theorem A.7. AssumeΦ(.) is translation invariant and

sup
x

∑
A3x

|A|k−1‖Φ(A)‖∞ <∞ (A.14)

Then the corresponding free energy isCk in the region of(A.9)

When the interactionsΦ(A) have an exponential decay in size|A| the pressure is
analytic and allows for a so-called convergent polymer expansion.

Theorem A.8. AssumeΦ(.) is translation invariant and that there is ar > 0 such that

sup
x

∑
A3x

βer|A|‖Φ(A)‖∞ < er ln
(

2
1 + e−r

)
(A.15)

Then the corresponding free energy is analytic in the region of(A.9) and so are the
correlation functions.

Having (A.9) is no guarantee for having analyticity. There are examples of non-
translation invariant interactionsΦ for which |Φ(.)|∞ is such that Theorem A.2 does
hold, but for which the free energy is not analytic (not even defined). One needs to be
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careful which interactions are taken into account [25]. The class defined by the regular
interactions is too wide to state general results about analyticity.

In high temperature spin systems the spins behave almost independently. Now we
consider the Hamiltonian defined by a more general potentialΦη

Λ(A, σΛ) (free after
[60]). As boundary condition we haveη defined onΛc. We define

Definition A.9. The supportSupp(Φη
Λ(A)) is the union of the setsA for which

Φη
Λ(A, σΛ) 6= 0 for at least one configurationσΛ.

The corresponding expansion is an expansion around the uniform measure over the
spin configurations. Forβ small the proper normalization constant is different from the
low temperature expansion. When we takeβ → 0, the Gibbs measure becomes equal
to the mentioned uniform measure. So the proper normalization is to put the partition
functionZηΛ = 1 for β = 0. The partition function is equal to

ZηΛ =
1

2|Λ|
∑
σΛ

exp
(
− β

∑
A∩Λ6=∅

Φη
Λ(A, σΛ)

)
(A.16)

Indeed, when we takeβ → 0 in (A.16) it turns into the partition function of the product
measure over the spins, which is equal to one. Now we see that the Mayer expansion
is in particular very useful for high temperature expansions. When we put (A.4) into
(A.16) we obtain

ZηΛ =
1

2|Λ|
∑
σΛ

(
e−β

∑
A∩Λ 6=∅ Φη

Λ(A,σΛ)−1
)
+1=

1
2|Λ|

∑
σΛ

∑
∂⊂SuppΦη

Λ

∏
A∈∂

(
e−βΦη

Λ(A,σΛ)−1
)

(A.17)
This is the proper setting for a polymer expansion. If we rewrite (A.17) we see

ZηΛ =
∑

∂⊂SuppΦη
Λ

wηΛ(∂) (A.18)

with

wηΛ(∂) =

{
1 if ∂ = ∅

1
2|Λ|

∑
σΛ

∏
A∈∂

(
e−βΦη

Λ(A,σΛ) − 1
)

otherwise
(A.19)

Note thatwηΛ(∂) can be negative. Furthermore, because∂ ⊂ SuppΦη
Λ, it is decompos-

able into subsetsAi such that for alli 6= j: d(Ai, Aj) ≥ 1 andwηΛ(∂) =
∏
iw

η
Λ(Ai).

This makes the above a polymer model, where the polymers are connected sets of sites
in Supp(Φη

Λ). When the interactionsβΦη
Λ(A, σΛ) are exponentially decaying in|A|
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andβ is small enough, the polymer expansion and therefore the free energy becomes
analytic uniformly for such a boundary conditionη. Becausee−x−1 ≤ 2|x| for |x| ≤ 1

|wηΛ(∂)| ≤ 2
∏
A∈∂

β|Φη
Λ(A)|, with |Φη

Λ(A)| = sup
σΛ

|Φη
Λ(A, σΛ)| (A.20)

Now we can apply the generalized Kotecký-Preiss Proposition 4.50 (2), which we have
proven in Section 4.14. By this we prove the next proposition.

Proposition A.10. There exists aτ0 > 0 such that if we assume

β|Φη
Λ(A)| ≤ exp (−τ |A|), τ > τ0 (A.21)

then
sup

A0⊂Supp(Φη
Λ)

∑
C6∼A0

e(τ−τ0)|C||φηΛ(C)| ≤ |A0| (A.22)

Proof. The condition needed for the generalized Kotecký-Preiss Proposition reads

sup
A0⊂Supp(Φη

Λ)

∑
A6∼A0

e(2+b)|A|β|Φη
Λ(A)| ≤ 1

2
|A0| (A.23)

Then if we takeb = τ − c1d− 4 = τ − τ0 − 2∑
A6∼A0

e(τ−τ0)|A|β|Φη
Λ(A)| ≤

∑
x∈A0

∑
A connected:A3x

e−τ0|A| (A.24)

Because
#{A connected:A 3 x, |A| = n} ≤ ec1dn (A.25)

and
#{x ∈ Ac, x 6∼ A} ≤ 2d|A| (A.26)

if we chooseτ0 = (c1 + ln 2)d+ 2, then it holds:

∑
A6∼A0

e(τ−τ0)|A|β|Φη
Λ(A)| ≤ 2d|A0|

∞∑
n=1

e−(2+d ln 2)n ≤ 1
2
|A0| (A.27)

i.e. the needed condition (A.23). Now we apply Proposition 4.50, the generalized KP
(2), to condition (A.23) to obtain the result.

Now we combine Theorem A.8 and above Proposition A.10 and obtain
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Corollary A.11. AssumeΦ such that for allη andΛ

β|Φη
Λ(A)| ≤ exp (−τ |A|), τ ≥ τ0 + 1 (A.28)

then the Gibbs measure is unique. The free energy is analytic in the region of(A.9), and
so are the correlation functions. The corresponding partition function is given by the
polymer expansion of which the cluster weights satisfy the bounds given by Proposition
A.10.

Proof. The condition (A.28) of the corollary is far in the region of (A.9), so the Gibbs
measure is unique by Theorem A.2. Furthermore Proposition A.10 does hold, giving
the convergent polymer expansion. Now use condition (A.23) which is also true for
anyx ∈ d if we takeA0 = {x}. This makes that condition (A.15) does hold. We
apply Theorem A.15 to obtain the analyticity of the free energy and the correlation
functions.

A.2 Low temperature expansions of 2D Ising model

A.2.1 Upper bound on the pressure by cluster expansion

As an another example we apply the cluster expansion techniques of the previous chap-
ter to the zero-field2d Ising model with+ boundary conditions, at lowT . The Hamil-
tonian equals

−βHΛ(σ) = −β

 ∑
<x,y>⊂Λ

(σxσy − 1) +
∑

<x,y>: x∈Λ, y∈Λc

(σx − 1)

 (A.29)

Note that we sum now overσxσy − 1 instead ofσxσy. It turns out to be conve-
nient for low temperature expansions. This shifts the energy by a constant, physically
unobservable. In the Gibbs measure the constant also appears in the partition func-
tion, so it cancels. The partition functionZ+

Λ is obtained by the sum over all possible
configurationsσ. The boundary ofΛ we define as

Definition A.12. For a setΛ ⊂ 2 the boundary∂Λ ⊂ 2? equals

∂Λ = {< x, y >?: x ∈ Λ, y ∈ Λc} (A.30)

An equivalent way of writing the partition functionZ+
Λ is to rewrite it into a sum

over sets of non intersecting contours (see Chapter 2).
We denoteK as the set of all contoursγ ⊂ 2?. With this we build the graph

G = (K, 6∼). The vertices are formed by the contoursγ. Between every pair of vertices
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γ andγ′ there is an edge wheneverγ 6∼ γ′. We say thatγ 6∼ γ′ wheneverγ touchesγ′.
Because of the rounding corner procedure the intersection set(γ∪Int(γ))∩(γ′∪Int(γ′))
is either empty or contains at least one dual bond. In other wordsγ 6∼ γ′ whenever the
set of the two contours{γ, γ′} does not correspond to any spin-configurationσ.

Then we putP(K) as the set of all finite subsets ofK. For a finite set of sitesΛ ⊂ 2

the setKΛ ∈ P(K) is the set of all closed contoursγ ⊂ Λ?∪∂Λ. This is because of our
chosen uniform+ boundary conditions. The setDΛ is the set of all compatible families
of contours out ofKΛ. A family ∂ of contoursγ is compatible whenever

for all γ ∈ ∂ : everyγ′ ∈ ∂ \ γ hasγ′ ∼ γ (A.31)

Or equivalently: the subgraph(∂, 6∼) of G = (K, 6∼) only consists of isolated vertices.
With these notions we rewrite the partition functionZ+

Λ :

Z+
Λ =

∑
∂⊂KΛ

wI(∂) =
∑
∂∈DΛ

∏
γ∈∂

exp (−2β|γ|) (A.32)

It is the sum over the weightswI(∂) of every set of contours∂, where we have defined
the weightwI(.) as follows:

1. wI(∅) = 1,

2. wI(γ) = exp (−2β|γ|),

3. wI(∂) =
∏
γ∈∂ wI(γ) whenever∂ compatible,

4. wI(∂) = 0 whenever∂ not compatible.

This representation (A.32) is an example of a so called polymer model. The con-
toursγ form the polymers with the weightwI(γ). For the more general case we refer
to Section 4.14.

To obtain the thermodynamic properties of the model one needs to calculate or at
least get some bounds on the free energyF . The limiting free energy is defined as

F+
I,Λ = lim

Λ→∞

logZ+
I,Λ

|Λ|
(A.33)

We see that it is convenient to rewrite the partition functionZ+
I,Λ into a product of objects

for which we have good bounds. This we can do by the so called cluster expansion and
we obtain a well controlled expansion for thelogZ+

I,Λ. The Mayer expansion is another
example of a cluster expansion.
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Note that in the partition functionZ+
Λ (A.32) every set of polymers appears only

once in the sum. There is an equivalent way of cluster expanding where the order of
polymers does matter. Every set ofn polymers is countedn! times. Then in the result-
ing clusters every polymer can appear more than once [17, 30, 72]. For an equivalent
analytic approach but with a different language see [21]. For some extensions see [13].
Our way of cluster expanding is due to Kotecký and Preiss [50] and reduces a lot of
combinatorics.

When we cluster expand equation (A.32) forZ+
Λ it results into

logZ+
I,Λ =

∑
C∈CΛ

φ+(C) (A.34)

The weightsφ+(C) we call cluster weights. They are given by the Möbius inversion
formula

φ+(C) =
∑
∂⊂C

(−1)|C\∂| log
( ∑

∂′⊂∂

∂′ compatible

∏
γ∈∂′

exp (−2β|γ|)
)

(A.35)

The setCΛ is the set of all clusters fromKΛ. ClustersC here are sets of contours such
that every contour in it is incompatible with at least one other contour from the cluster.
Furthermore any clusterC does not contain two or more mutual compatible clusters.

The clusters can be of any shape. Some are like a chain: they contain many contours
and are very long but not very wide. Others are more like a ball: they consist of a bunch
of contours which are not going far from each other.

It is easy to see that

Lemma A.13.
φ+(C) = 0, wheneverC is not a cluster

Proof. Note that the number of∂ ⊂ C is even (we also count∂ = ∅ and∂ = C). So∑
∂⊂C

(−1)|C\∂| = 0 (A.36)

This makesφ+(C) zero wheneverC is not a cluster; ifC is not a cluster thenC =
C1 ∪ C2 with C1 ∼ C2. By the Möbius inversion formula

φ+(C) =
∑
∂1⊂C1

(−1)|C1\∂1|
∑
∂2⊂C2

(−1)|C2\∂2| (logZ(∂1) + logZ(∂2)) (A.37)
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where
logZ(∂i) = log

( ∑
∂′⊂∂i

∂′ compatible

∏
γ∈∂′

exp (−2β|γ|)
)

(A.38)

Using (A.36)∑
∂2⊂C2

(−1)|C2\∂2| logZ(∂1) = logZ(∂1)
∑
∂2⊂C2

(−1)|C2\∂2| = 0 (A.39)

because of independence on∂1. Then

φ+(C) = (A.37) =
∑
∂2⊂C2

(−1)|C2\∂2|
∑
∂1⊂C1

(−1)|C1\∂1| logZ(∂2) = 0 (A.40)

For estimates on the cluster weightsφ+(C) we need to fulfill the Kotecḱy-Preiss
criterion. Then there is an uniform exponential bound. In our case it reads basically

Proposition A.14. Suppose that for a positive functionf(β) it holds

sup
γ0∈KΛ

∑
γ 6∼γ0

exp [(f(β) + 1)|γ|] exp (−2β|γ|) ≤ |γ0| (A.41)

Then
sup
γ0∈KΛ

∑
C∈C

C 6∼γ0

exp (f(β)|C|)|φ+(C)| ≤ |γ0| (A.42)

We have puta(γ) ≡ |γ| andf(β)|γ| ≡ b(γ). Finally we have set
∑

γ∈C b(γ) =∑
γ∈C f(β)|γ| = f(β)|C|. For the more general case we refer to Proposition 4.50 part

(1).
Using this Proposition it holds

Corollary A.15. For β large enough there exists a constantc0 such that for anyx ∈ Λ

sup
γ0∈KΛ

∑
C∈C

Int(C)3x

exp [(2β − c0)|C|]|φ+(C)| ≤ 1 (A.43)

Proof. By using Lemma 4.11 we prove this Proposition in the same way as we have
proven Proposition 4.12. For any constantc0 it holds:

sup
x?∈Λ?

∑
γ3x?

exp (2β − c0 + 1) exp (−2β|γ|) ≤
∞∑
n=4

exp [−(c0 − c1 − 1)n] ≤ 1
4

(A.44)
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whenc0 > c1 + 2. Because the number of dual bonds of a contour equals it length the
condition does hold for applying Proposition A.14. Now chooseγ0 as the contour with
|γ0| = 4 andInt(γ0) 3 x. Becauseγ0 contains 4 dual bonds the corollary follows by
above Proposition A.14.

A.2.2 Site percolation

Now consider the following model on the lattice2. Take the finite setΛ. Associate
with every sitei ∈ Λ the unit cube with sitei in its center. We denote this unit cube also
by i. To every cubei there is a variableσi which can be0 or 1. Now we denote byA
the setA = {i ∈ Λ : σi = 1}. Every configurationσ has an unique corresponding set
A. The weight ofσ we put equal tows(A) = exp (−8β|A|) andws(∅) = 1. Note that
this model is equivalent to independent site-percolation onΛ with p = exp (−8β).

The resulting partition function we obtain by summing over the weights of all sub-
sets ofΛ. This is equivalent with the sum over all possible configurationsσ. It is equal
to

Zs,Λ =
∑
A⊂Λ

ws(A) =
∑
A⊂Λ

∏
x∈A

exp (−8β) =
∑
A⊂Λ

exp (−8β|A|) (A.45)

Now we expand the partition functionZs,Λ by the Mayer expansion technique. Us-
ing (A.4) in (A.45) we obtain

Zs,Λ =
∑
A⊂Λ

∏
x∈A

(
exp (log (e−8β+1)−1

)
= exp

(∑
x∈Λ

log (e−8β+1)
)

=
(
1+e−8β

)|Λ|
(A.46)

Polymer representation

The above model has a polymer representation on2. The polymers are the unit cubes
x. Cubex 6∼ y if and only the associated sitesx andy are nearest neighbors. For the
cluster modelwe define the weightW (A) of a set of mutually different polymersA as
W (A) = exp (−8β|A|). Because for instancew({x, y}) 6= 0 for x 6∼ y this model is
not a polymer model. The partition functionZC,Λ of this cluster model equals

ZC,Λ =
∑
A⊂Λ

w(A) =
∑
A⊂Λ

exp (−8β|A|) = Zs,Λ (A.47)

As mentioned in Section 4.14 we have an equivalent representation which turns the
cluster model into apolymer model. Now the polymers are formed by the clusters of unit
cubesx. Each polymer one can associate with a connected set of sites ind. Any family
of mutual compatible polymers corresponds uniquely to a set of sites ind which is in
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general not connected anymore. We define the weightW (A) =
∏
a∈A exp (−8β|a|),

wherea is a connected set, whenever we can decomposeA into mutual compatible
connected setsa andW (.) = 0 otherwise. Then the partition functionZp,Λ of this
polymer model is equal to

Zp,Λ =
∑
A⊂Λ

∏
a∈A

W (a) =
∑
A⊂Λ

∏
a∈A

exp (−8β|a|) =
∑
A⊂Λ

exp (−8β|A|) = Zs,Λ

(A.48)

A.3 Nature of the clusters

In Subsection A.2.1 we have derived a cluster expansion for the 2D Ising model. Now
we consider this expansion in more detail to obtain an lower bound. For large enoughβ

Z+
I,Λ = exp

( ∑
C∈CΛ

φ+(C)
)

(A.49)

Because of the product structure of the cluster expansion forZ+
I,Λ:

Z+
I,Λ = exp

( ∑
C∈CΛ
|C|=4

φ+(C)
)

exp
( ∑

C∈CΛ
|C|≥6

φ+(C)
)

(A.50)

For clustersC with |C| = 4 the cluster weights areφ+(C) = log (1 + e−8β), compare
(A.35). Clusters with|C| = 4 do contain only one contour which encloses one site. We
can associate these clusters with the sites ofΛ. This provides

exp
( ∑

C∈CΛ
|C|=4

φ+(C)
)

=
(
1 + e−8β

)|Λ|
= Zs,Λ (A.51)

We see that, when we sum the cluster weights and take the exponential, we obtain the
same expression as for the partition function (A.45) of the site percolation model with
p = e−8β.

Intuitively (A.51) seems to be a lower bound forZ+
I,Λ because less clusters are

summed over. However in general the weight of a clusterφ(C) can be negative. So
the factor ofZ+

I,Λ in (A.50) coming from the exponential of the sum over the remaining
clustersC with |C| ≥ 6 does not need to be at least 1. By a more careful analysis we
can show that the cluster-expansion part formed by the clustersC with |C| = 4, making
upZs,Λ, is indeed a lower bound for the pressure. This is even true for smallβ, where
the total cluster expansion diverges:
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Lemma A.16. For anyβ ≥ 0
Zs,Λ ≤ Z+

I,Λ (A.52)

Proof. Each setA we can uniquely decompose in mutually compatible subsetsAi
which are clusters of cubes. Denote by∂Ai the boundary of the setsAi. This boundary
consists only of closed curvesγ in Λ? ∪ ∂Λ.

Now we compare the site model to the 2d-Ising model. Take a finite set of sites
Λ ⊂ 2. Consider a set of cubesA with A∩Λc = 0. Every sitei ∈ Λ which is covered
by a unit cubei in setA we give the spinσi = −1. The boundary of the unit cubei we
denote by∂i. The spins outsideA we set toσi = +1.

The closed curves which make the boundary∂A are the contoursγ which are
formed by the broken bonds inΛ? ∪ ∂Λ. So for every spin configuration we have
two equivalent representations. The site representation is by a setA of cubes, the Ising
representation is by a set{γ} = ∂A of contours.

The Ising weight of this configurationA equalswI(A) ≡ wI(∂A) andwI(∂A) =
exp (−2β

∑
γ∈∂A |γ|). Comparing it with the site-model weight, which isws(A) =

exp (−2β
∑

i∈A |∂i|), we see thatws(A) ≤ wI(A). In the 2d Ising model only the dual
bonds forming∂A are accounted for in the weight ofγ. But in the site model all the
dual bonds in∂i of every cubei ∈ A are accounted for.

Bond percolation

We have analyzed the part ofZ+
I,Λ coming from the single-site enclosing clusters. Now

we look at the clusters with|C| = 6. These clusters encloses two sites and contain
only one contour. So these clusters we can associate with the bondsb in Λb: the set
containing all nearest neighbor bonds inΛ. When we take the exponential of the sum
of the corresponding cluster weights we obtain

exp
( ∑

C∈CΛ
|C|=6

φ+(C)
)

=
(
1 + e−12β

)|Λb|
=

∑
A⊂Λb

∏
b∈A

(
exp (log (e−12β + 1)− 1

)
=
∑
A⊂Λb

∏
b∈A

e−12β = Zb,Λ (A.53)

This is the partition function for independent 2d bond percolation withp = e−12β .
Together with the site-percolation part ofZ+

I,Λ we see

Z+
I,Λ = Zs,ΛZb,Λ exp

( ∑
C∈CΛ
|C|≥8

φ+(C)
)

(A.54)
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More general clusters

For the remaining clusters, which has|C| ≥ 8, it can happen that the cluster weight
becomes negative. Now a particular length corresponds to more classes of clusters.
For instance the clusters with|C| = 8 we can divide in two classes. First there is the
cluster which encloses three or four sites and therefore contains only one contour. The
corresponding weight islog (1 + exp (−16β)). But now a clusterC can also consists of
two contoursγ, γ′ which enclose two adjacent sites. Then the weight becomes negative:
φ+(C) = log (1 + 2 exp (−8β))−2 log (1 + exp (−8β)) < 0. Furthermore we see that
φ(C) = O(exp (−16β)) = O(exp (−2β|C|)).

Bounds for pressure

Now we apply (A.15) to the cluster part of (A.54) to obtain an upper bound. When we
combine it with the lower bound (A.46) of the two previous sections we obtain for the
free energy for large enoughβ

log (1 + e−8β) ≤
logZ+

I,Λ

|Λ|
≤ log (1 + e−8β) + 2 log (1 + e−12β) +O(exp (−16β))

(A.55)
Note that the lower bound does hold for anyβ. By symmetry the same holds forZ−I,Λ,
which means we have proven:

Proposition A.17. For the 2d-Ising model with uniform + or - boundary conditions it
holds forβ large enough

logZ±I,Λ
|Λ|

= O(exp (−8β)) (A.56)

A.4 Multi-scale expansion for random systems

Until now in this chapter no randomness has been involved. Now we consider models
which contain some randomnessη and see if or in what way we still can apply the
expansion techniques just introduced to the partition functions which now depend onη.
Often they fail to behave in a controllable way. A more powerful expansion technique
is needed. The set of bad polymers are the polymers which decay too slow compared to
their volume size. These are responsible for the failure of the single cluster expansion.
When the set of bad behaving polymers is small enough then the disorder functions like
a small perturbation of the ordered model. For this setting the multi-scale expansion
is invented. Even when the set of bad behaving polymers still contains polymers of
logarithmic order in the system size, when this size is going to infinity we can use the
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multi-scale expansion. However the probability of having these bad polymers must be
very small and decrease fast enough when the volume size diverges.

For this multi-scale expansion we need to sort all polymers into classes. Each class
consists of only sufficiently bad polymers for which the damping of the weights rela-
tively to the size of the bad polymers lays in a carefully chosen interval. In this way the
small probability inη of a polymer being in this class should balance the relatively large
weight of the class in the sense of the Gibbs measure.

The remaining polymers which decay fast enough we treat in step zero of the ex-
pansion. This gives a partial cluster expansion consisting out of so called zero-clusters.
Afterward the multi-scale expansion is performed by expanding step by step the bad
polymers. After every step the bad contours appearing in a single class are expanded,
together with the interaction with the clusters coming from the previous steps including
the zero clusters.

The multi-scale technique originated from the KAM-theory, which originated in
classical mechanics. The unperturbed system there is rewritable as a so-called inte-
grable system(~φ, ~I) ∈ Tn × IRn with action variablesIi and angle variablesφi. The
Hamiltonian depends on the action variables only. The action variablesIi are constant
in time. The angle variablesφi(t) have as derivatives time-independent frequencies
ωi. When these frequencies are rationally independent then the motion is called quasi-
periodic. During time the trajectory fills up dense the invariant toriTn.

KAM-theory deals with small perturbations of the Hamiltonian of the formH1(~I)+
εH2(~I, ~φ). The frequencies need to be sufficiently non-rational, i.e. so-called diophan-
tine conditions need to hold. Then, when the perturbationH2 is small enough, for a
large-measure set of action variables~I the quasi-periodic tori present in the unperturbed
system will be present in the perturbed system, although slightly deformed [4].

When we apply the KAM-theory directly, usually we have unsatisfactory restric-
tions. It can be improved significantly by performing first a couple of renormalizations
on the Hamiltonian. It is written as a simplified Hamiltonian plus a perturbation. This
perturbation gets smaller after each renormalization. These renormalizations are the
multi-scale type of expansions appearing in the KAM-theory, e.g. [16].

In statistical physics a single cluster expansion (or more generally: the Pirogov-
Sinai theory when more ground states are involved) can only be used whenever we have
uniform decay in the polymer weights. Equivalently we need thePeierls conditionto
be fulfilled:

Condition A.18 (Peierls). There exists aτ > 0 independent of any polymer such that
for all polymersγ

W (γ) < exp (−τβ|γ|) (A.57)

By |γ| we denote the area which makes up polymerγ. For usual Ising contours this
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is equal to the length ofγ. This Peierls condition is an uniform condition on the decay of
polymer weights. Because of the randomness, in general this uniformity does not hold.
However often it holds foralmostall polymers withτ depending on the randomness.

Then, because of the almost uniform decay, the model with disorderη seems to be
a perturbation of the model without the disorderη. However, the perturbation can be
big on all scales; for every scale there are unbalanced contoursγ which do violate the
Peierls condition (A.57). They appear only with small and fast decaying probability in
|γ|. This is also the setting in the random boundary field Ising model we have treated
in Chapter 4; there the disorder is present on all scales and the multi-scale technique is
very useful.

Now we restrict ourselves to systems of contours on a latticed. First we have
to distinguish the contours which are well enough damped to be expanded in the 0-th
step. For this extend we define a cut-off scalel0. Every contour of which the weight
W (γ) ≤ exp (−|γ|/l0) we call balanced.

Equivalently:

Definition A.19. A contourγ is called balanced, whenever(A.57) does hold forτ =
1/l0. It is called unbalanced otherwise. The setKη0,Λ is the set of all balanced contours
restricted toΛ

It is needed that the set of balanced contours is large compared to the rest. Other-
wise the model is not treatable by a perturbational multi-scale expansion. So we need
strong large deviation estimates of the type of Proposition 4.20, which ensure that the
fraction of the total domain of the aggregates of the unbalanced contours is going to zero
when the volume gets large for almost allη. This total domain also covers the clusters
inside the renormalized weights. Note that this region is larger than the union of the
interiors of the unbalanced contours. Because these estimates are intimately related to
the construction of the regionsKi,α it is in general highly non-trivial to obtain useful
upper bounds.

Assumingη is in the mentioned set of measure 1, we perform the multi-scale ex-
pansion. First we expand the set of balanced contours by a single cluster expansion, the
zeroth step:

ZηΛ = Zb,ηΛ Zu>0

〈interaction 0-clusters︷ ︸︸ ︷
exp

( ∑
C∈C

η
0

C 6∼∂

φη0(C)
)〉

ν>0
Λ

≡ Zb,ηΛ Zη,1Λ (A.58)
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where

Zb,ηΛ = exp (−Eη(∅))︸ ︷︷ ︸
∅-configuration

exp
( ∑
C∈Cη

0

φη0(C)
)

︸ ︷︷ ︸
expansion cluster weights

(A.59)

and

ν>iΛ [.] =
1
Zu>i

∑
∂∈Dη

>i

∏
Γ∈∂

ρη(Γ)[.], Zu>i =
∑
∂∈Dη

>i

∏
Γ∈∂

ρη(Γ) (A.60)

As before we have denotedC0
Λ as the set of all clusters of balanced contours. We call its

elements 0-clusters andDη
>0 is the set of all families of compatible unbalanced contours.

The mean< . >ν represents the dependence between the balanced and the unbalanced
contours. The measureν>0

Λ is localized on the unexpanded partK\K0, which is formed
by the unbalanced contours.

However, because the setK\K0 is still relatively large, we have not enough control
overZu,ηΛ . It is not possible to cluster expandZu,ηΛ by a convergent single-step cluster
expansion. We need to define a cut-off scalel1. With this cut off scale we separate
the class of unbalanced contours, which behave well enough to expand in the first step.
Because of the cluster interactions we also need that this class is not too close to the
remaining unbalanced contours. The union of the first step contours is formed by the
setKη1 .

Afterwards, the unexpanded partK \ (K0 ∪ K1) is further localized, allowing to
separate a second class of contoursK2 with less decay. After the separation of the
contours inK1 the partition functionZη1 turns into

Zη1 =
∑
∂∈Dη

>1

∏
Γ∈∂

ρη(Γ) exp
( ∑

C∈C
η
0

C 6∼∂

φη0(C)
)

︸ ︷︷ ︸
only expandable in higher steps

∑
∂1∈Dη

1

∏
Γ∈∂1

ρη(Γ) exp
( ∑

C∈C
η
0

C 6∼∂1, C∼∂

φη0(C)
)

︸ ︷︷ ︸
this we will expand now

(A.61)

After the first step expansion as in Section 4.8 it becomes

Zη1 = exp
( ∑
D∈Dη

1

ψη1(D)
)

︸ ︷︷ ︸
prefactor clusters 1-st step

∏
α

Ẑη1,α︸ ︷︷ ︸
byproduct

renormalization

Zu1>

〈
exp

(
−
∑

C∈C
η
1

C 6∼∂

φη1(C)
)〉

ν>1
Λ

(A.62)
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When we compare (A.62) with (A.60) we see that the not expanded part changes from

Zu>0

〈
exp

(
−

∑
C∈C

η
0

C 6∼∂, ∂∈D
η
>0

φη0(C)
)〉

ν>0
Λ

toZu1>
〈

exp
(
−

∑
C∈C

η
1

C 6∼∂, ∂∈D
η
>1

φη1(C)
)〉

ν>1
Λ

(A.63)
It has become more localized. After the first step expansion the unexpanded part

has been restricted fromK \ K0 toK \ (K0 ∪ K1). Then, if we expand further until we
are finished with highly localized terms, after several steps finally we end up with an
unexpanded term like

Zu∞

〈
exp

(
−

∑
C∈C

η
∞

C 6∼∂, ∂∈D
η
∞

φη∞(C)
)〉

ν∞Λ

(A.64)

If we have chosen the cut-off scalesli and the renormalization scalesLi carefully
enough, the sum of these terms should be small compared to the sum of the remain-
der. Furthermore for the cluster expansions inψηi (D) to have a well controlled behavior
like in Proposition 4.24, we need the following. The numberslogLi should be large
compared to the volume size of any componentKi,α. Otherwise the cluster expansions
tend to diverge inli. In general the size|Ki,α| has a polynomial upper bound inli.
However the renormalization scalesLi should not be too large, because otherwise the
large deviation estimates onK\K0 go down and the normalized partition functionsẐηi,α
diverge too fast.

In the random boundary field Ising model we have treated in Chapter 4 we end up
with the interactions with and between the corner componentsK∞,i. As Proposition
4.25 and Lemma 4.26 show, the sum of these unexpanded terms is indeed small com-
pared to the sum of the remainder. ForZu∞ we can only use rough estimates, because of
the ill behavior of the involved contours. However, the area ofK∞ is small compared
to the complete volumeΛ, which is enough to compensate the lack of control over the
corner-aggregate terms.
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Samenvatting
Denk eens aan een rivier, voortdurend stromende volgt hij zijn weg. De aard van de
stroom verandert niet: het water van de rivier volgt altijd de weg van de minste weer-
stand. Stel je3 eens voor dat het hard regent, het waterpeil van de rivier wordt hoger en
hoger. Dan, opeens, is het water zo hoog gestegen dat de oevers overstromen. Daardoor
kan het water in de nabijgelegen weilanden vloeien. Het zal nu wel even duren voordat
de rivier zich heeft aangepast aan deze nieuwe situatie.

In de statistische fysica proberen we natuurlijke processen te modelleren. In het
bijzonder proberen we de verbinding te leggen tussen de micro- en macroscopische
eigenschappen. Voor de rivier koppelen we de globale stroming aan de beweging van
de watermoleculen. Sommige universele wetten, betreffende enige globale (= macro-
scopische) kenmerken, beschrijven de algemene eigenschappen van de rivier, dit on-
danks dat er een enorme hoeveelheid aan watermoleculen bij betrokken is. Daartoe
gebruiken we kanstheoretische methoden (stochastiek) nodig om toe te passen op de
onderliggende microscopische differentiaalvergelijkingen waaruit de beweging van de
watermoleculen volgt. Als we dan kijken naar de macroscopische eigenschappen, weten
we het globale gedrag van de rivier. Dit globale gedrag kan worden beschreven door
vergelijkingen die alleen afhankelijk zijn van macroscopische eigenschappen. Het on-
derliggende microscopische deel is verdwenen door onze toegepaste stochastiek.

We pakken eens een dobbelsteen waarmee we een paar van de betrokken stochas-
tische principes gaan demonstreren. Zoals we weten, hebben we dezelfde kans om een
1 of een 6 te gooien. Maar door ervaring weten we dat na een klein aantal worpen,
de ontstanerelatieve frequentiesvan de gegooide cijfers, significant van elkaar kunnen
verschillen. Alleen als we een dobbelsteen heel vaak gooien, zullen de ontstane relatieve
frequenties meer en meer gelijk worden. Hetzelfde resultaat verkrijgen we wanneer we
in plaats vańeén dobbelsteen heel vaak, een heleboel dobbelstenen tegelijk gooien en
dan pas te kijken naar de relatieve cijferfrequentie. Natuurlijk, het is evident dat met
een dobbelsteen 1000 keer gooien, hetzelfde is als met 1000 dobbelstenenéén keer
gooien. Uiteindelijk zal de relatieve frequentie van elk van de zes cijfers1

6 naderen:
gemiddeld komt elk cijfer een keer voorbij als we een dobbelsteen zes keer gooien.
Deze relatieve frequentie wordt soms ook wel dekansop het cijfer genoemd. Met een
kortere notatie noteren we dit alsP (i). Voor elk cijfer i op onze dobbelsteen geldt dat
P (i) = 1

6 . De functie die aan elk cijferi de bijbehorende kans toekent, noemen we de
waarschijnlijkheidsverdelingvan de eigenschap.

Al de materie om ons heen bestaat uit atomen. Elke gram van materie bevat zo

3Ik heb bewust gekozen voor een informeel getinte samenvatting. Wanneer U niet wenst getutoyeerd te
worden dan mag U in plaats van je U lezen.
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rond de1023 atomen. Vaak kijkt men naar een collectie van een aantal globale (bulk)
eigenschappen als toevoeging bij de atomaire eigenschappen. In de beschrijving van
de materie beschrijven alle atomen bij elkaar met de bovengenoemde globale eigen-
schappen hetsysteem. Elke bepaalde realisatie van de bijbehorende atomaire waarden
noemen we deconfiguratievan het systeem. Het bepalen van de configuratie heeft wel
wat weg van het ińeén keer gooien van1023 dobbelstenen.

Stel je nu voor dat je een macroscopische eigenschap wil meten, bijvoorbeeld de
gemiddelde dichtheid. Omdat het aantal atomen heel groot is, is er geen noodzaak om in
de waarschijnlijkheidsverdeling van de atomaire waarden de posities van alle afzonder-
lijke atomen bij te houden. Bij de rivier is de tijd die de globale aanpassingen in beslag
nemen extreem lang, als je het vergelijkt met de tijdschaal van de lokale beweging van
de watermoleculen. De manier waarop de eigenschappen van het systeem evolueren,
noemen we dedynamicavan het systeem. In het globale gedrag van de stroming van de
rivier zijn de microscopische bewegingen van de watermoleculen uitgemiddeld.

Neurale netwerken

Het eerste onderwerp van het proefschrift is over een model dat zijn oorsprong heeft in
de theorie van neurale netwerken. In het bijzonder willen we graag het begrip geheugen
beter begrijpen. Onze hersenen zijn opgebouwd uit biljoenen neuronen die op een zeer
complexe manier met elkaar verbonden zijn. Deze structuur noemen we eenneuraal
netwerk. Het is moeilijk om rechtstreeks dit netwerk te bestuderen, omdat er in een re-
latief klein gebied erg veel neuronen betrokken zijn. Om te begrijpen hoe het geheugen
werkt, is een gebruikelijke methode om een simpeler model te construeren dat nog
steeds de hoofdkenmerken van het geheugen bevat. Net zoals het neurale netwerk van
de hersenen moet het model voldoende robuust zijn: als er tussen neuronen signalen
worden doorgestuurd dan kunnen er altijd kleine afwijkingen ontstaan. De hersenen
zijn in staat om van het licht vervormde signaal de ruis te verwijderen en zo het pure
signaal te reconstrueren. Voor een goed globaal overzicht van neurale netwerken zie
[19]. Een neuron is opgebouwd uit drie delen: het cellichaam, de dendrieten en het
axon, zie Figuur A.1. De dendrieten hebben een boomachtige vertakte structuur en zijn
verbonden aan het cellichaam. Het axon is de enige uitgaande verbinding van het neu-
ron. Aan het einde van het axon vertakt het zich en is het verbonden aan de dendrieten
van de andere neuronen via synapsen. Tussen het uiteinde van elke tak en dendriet zit
een smalle ruimte: de synapsspleet.

Neuronen communiceren met andere neuronen via elektrische signalen. De weg
die het elektrische signaal aflegt van een neuroni naar een neuronj is als volgt, zie
Figuur A.2. Eerst stroomt het signaal vanuit het cellichaam van neuroni in het axon
dat verbonden is met neuronj. Dit is hetoutput-signaal van neuroni. Als het signaal
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Figuur A.1: Componenten van een
neuron(overgenomen uit [19])

Figuur A.2: De synaps(overgenomen
uit [19])

bij het einde van het axon komt, dan geeft het axon neurotransmitters af aan de synaps-
spleet. Dan worden de neurotransmitters door de receptoren aan de dendriet van neuron
j terugvertaald naar een elektrisch signaal. Er zijn verscheidene soorten neurotransmit-
ters. Sommige versterken het binnenkomende signaal voordat het naar de dendrieten
gaat van andere neuronen, en andere verzwakken het.

Dit uiteindelijke signaal dat door de receptoren van neuronj geproduceerd wordt,
noemen we hetinput-signaal van neuroni naar neuronj. Uiteindelijk komt het signaal
aan in het cellichaam van neuronj. In het cellichaam van neuronj komen alle inputs
bij elkaar. De cel verwerkt de inputs (die we wiskundig modelleren door het uitvoeren
van eengewogen som). Dat noemen we detotale inputhj van neuronj. Afhankelijk
van de uitkomst, zendt het cellichaam een nieuw signaal uit dat gaat naar het axon van
neuronj, zodat het doorgestuurd kan worden naar andere neuronen. Dit noemen we de
output of detoestandvan neuronj.

Om een bruikbaar model te maken dat gebaseerd is op deze neurale processen is het
nodig om enige flinke vereenvoudigingen door te voeren. Als eerste vereenvoudiging
nemen we aan dat elk neuron interactie heeft met elk ander neuron: het neurale netwerk
is volledig verbonden. Verder nemen we aan dat elk neuron slechts twee mogelijke
outputs heeft. We schrijvenσi als we de toestand van neuroni bedoelen:σi = +1 als
hetgëexciteerdis enσi = −1 als het zich in derusttoestandbevindt. Ook nemen we
aan dat het signaal niet verandert wanneer het door de synapsspleet gaat. Hierdoor is de
input naar neuronj die komt van neuroni gelijk aan de outputσi van neuroni die gaat
naar neuronj.

Om de dynamica van ons model te modelleren, introduceren we de tijdt. Na elke
tijdperiode van∆t (met ∆ zeer klein) veranderen we tegelijkertijd de output van elk
neuron. Het verwerkingsproces van het cellichaam modelleren we door twee stappen:

1. Op tijdstipt vermenigvuldigen we elke binnenkomende input van de andere neuronen
met een gewicht. Hierover nemen we de som over alle neuronen (behalve neuronj). Het
resultaat is de totale inputhj(t) op tijdstipt.

2. De outputσj(t + ∆t) van neuronj op tijdstip t + ∆t is de uitkomst van een waar-
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output van alle neu-
ronen op tijdstipt

→
totale inputhj(t):

gewogensom
over alle outputs

→ output neuronj op tijdstipt+ ∆t:
resultaat stochastische wet ophj(t)

Figuur A.3: Dynamica van het neurale netwerk model

schijnlijkheidsverdeling over de twee mogelijke neuron toestanden. Deze verdeling komt
tot stand met behulp van een stochastische wet ophj(t).

We nemen aan dat de cellichamen van de neuronen de verbindingen op een sym-
metrische manier behandelen: het gewicht dat neuronj aan de input van neuroni
toekent, is gelijk aan het gewicht dat neuroni aan de input van neuronj toekent. In
realistische neurale netwerken geldt deze interactiesymmetrie in het algemeen niet.
Figuur A.3 vat de dynamica van ons model nog eens samen.

De stabiele configuraties onder deze dynamica vormen hetgeheugenvan het sys-
teem. Stabiel betekent dat als je begint met een stabiele configuratie dat het systeem
alleen in configuraties terecht komt die er heel erg veel op lijken (wat neuronconfi-
guraties betreft). Door het kiezen van geschikte gewichten kunnen we de dynamica zo
afstellen dat het geheugen wordt gevormd door een eindig aantalm vooraf geselecteerde
neuron configuratiesξ(m), die we ook welpatronennoemen.

De stochastische wet hangt af van een parameterβ. De inverseT = 1/β hiervan
heettemperatuur. Als parameterβ groot is, dan heeft het neuron een sterke neiging (een
grote kans) om gelijk te worden aan het teken van zijn totale input. Wanneerβ oneindig
nadert, dan verandert de stochastische wet in een deterministische. Als we dan een
configuratie nemen die dicht genoeg bij bijvoorbeeldξ(1) ligt, dan evolueert het systeem
naar configuraties die gelijk zijn aan het patroonξ(1). Met andere woorden: het neurale
netwerkherinnertzich de configuratieξ(1) vanuit zijn geheugen. Dit betekent dat de
neuron configuratie gelijk wordt aanξ(1) en dat daarna het systeem in deze configuratie
blijft, zie Sectie 2.3.2.

Om de capaciteit van het geheugen te vergroten, kun je natuurlijk de generalisatie
maken naar een hoger aantalq van mogelijke neuron toestanden. Maken we in boven-
staand model deze generalisatie naarq > 2 dan noemen we het ontstane model het
Potts-Hopfield model.

In het model dat we in Hoofdstuk 3 hebben behandeld, kiezen we de gewichten in
de totale inputs op een andere manier. Hiervoor moeten we eerst voor elk neuron een
verzameling vanp continue variabelenξ(p)i definïeren: de patronen. We nemen een
willekeurig gekozen realisatie van deze variabelen. Ze hebben een Gaussische verde-
ling. Met de waarden van de geı̈ntroduceerde patronenξ(j)i stellen we de gewichten
voor de totale input vast. De gewichten van de totale input bepalen we door twee van
deze Gaussische patronen. Het aantal mogelijke toestanden per neuron zetten we vast
op drie.
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Als we het aantal neuronen laten toenemen, dan gebeurt het volgende indien het
aantal groot genoeg is: voor elk gegeven aantal van neuronen concentreert het geheugen
zich rond zes neuron configuraties. Deze configuraties zijn aan elkaar gerelateerd door
middel van een discrete symmetrie. Bij elke neuron configuratie hoort een punt in de
macroscopische ruimte die wordt opgebouwd door enige macroscopische variabelen.
De zes stabiele neuron configuraties zijn te verdelen in paren van lijnrecht tegenover
elkaar staande punten. Als we het aantal neuronen laten toenemen, zie je altijd de dis-
crete symmetrie terug. Als je echter kijkt naar de plaats van de zes neuron configuraties
dan draaien ze rond op drie cirkels naarmate het aantal neuronen groter wordt. Dit is
nader uitgewerkt in Hoofdstuk 3. In de rij van groeiende neuron aantallen vullen de
optredende neuron configuraties met elkaar op een regelmatige uniforme wijze de drie
cirkels op in de eerdergenoemde macroscopische ruimte.

Ferromagneten

Het andere onderwerp van het proefschrift betreft een beroemd model voor magnetische
materialen: het Ising model. In het algemeen zijn er vele soorten magnetisme. De zo-
genaamdeparamagnetenzijn metalen die alleen gemagnetiseerd zijn, wanneer we een
extern veld aanbrengen. Een ander belangrijk type metaal zijn deferromagneten. Deze
metalen behouden hun magnetisatie, zodra ze blootgesteld zijn aan een magnetisch veld.
Als we het metaal verwarmen, dan verdwijnt uiteindelijk dit effect: het metaal gedraagt
zich als een paramagneet. Voor meer uitgebreide informatie over magnetisme zie [46].

Ising modellen

Het Ising model is een model voor een ferromagneet. Om dit aannemelijk te maken,
hebben we een aantal aannames nodig. We nemen aan dat de niet gepaarde elektronen in
de buitenste schilgelokaliseerdzijn: d.w.z. sterk gebonden aan de bijbehorende atomen.
Alleen deze ongepaarde elektronen zijn verantwoordelijk voor het magnetisme. In het
Ising model nemen we aan dat voor elk atoom er maar een niet gepaarde elektron in de
buitenste schil zich bevindt.

Elke elektron heeft een intrinsiek hoekmoment:spin. Deze spin is verantwoordelijk
voor een magnetisch moment. Dankzij de quantummechanica kan de spin slechts twee
oriëntaties t.o.v. dit magnetische moment hebben:op en neer [5]. Met enig misbruik
van notatie noemen we deze oriëntaties dewaardenvan de spin. Vanwege de aanname
over het aantal ongepaarde elektronen hebben we voor de totale spin per atoom ook
maar twee orïentaties. De meeste metalen hebben meer danéén ongepaard elektron
in de buitenste schil. Deze metalen kunnen dan ook meer dan twee oriëntaties hebben
voor de totale spin per atoom. De meeste vaste materialen hebben een kristalstructuur:
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de atomen, of ionen of moleculen liggen in een regelmatig herhaald 3 dimensionaal
patroon. Dit maakt een aantal spin oriëntaties qua energie voordelig.

In magnetiseerbare materialen is het metaal onderverdeeld in domeinen met een
netto magnetische lading. De overgangsgebieden tussen deze domeinen noemen we
domain walls[46]. Het Ising model heeft alleen configuraties waar twee naast elkaar
gelegen elektronen gelijke of tegenovergestelde spins hebben. Als er een domain wall
is, dan is de dikte ervan automatisch nul.

De interacties tussen de gelokaliseerde elektronen worden ook wel deWeiss inter-
actiesgenoemd. In het algemeen komen twee types van interacties regelmatig voor:
naaste-buuren mean-field. Voor mean-field interacties zijn de interacties tussen elk
paar van atomen gelijk aan elkaar. In het Ising model beperken we ons tot naaste buur
interacties. Dit houdt in dat we aannemen dat al de overige interacties tussen de elek-
tronen nul zijn. Dit is een goede benadering voor de lanthaniden groep (een bepaalde
groep van elementen). Ondanks dat het een simpel model is en voor andere magneti-
sche metalen op zijn hoogst een ruwe benadering, is het een erg succesvol model. Het
beschrijft het fenomeen van fase overgang (denk aan de overgang vloeibaar→ gas) en
wordt gebruikt in allerlei praktische toepassingen. Bovendien is het exact oplosbaar in
1 en 2 dimensies.

Nu geven we een wiskundige beschrijving van het model. Pak een stuk rooster-
papier. Elke punt waar een verticale lijn een horizontale lijn kruist noemen we een
site. De horizontale en verticale lijnstukken die beginnen bij een site en stoppen bij de
dichtstbijzijnde kruising noemen webonds. Op elke sitei bevindt zich een atoom dat
een netto spin heeft, met twee mogelijke oriëntaties ten opzichte van de spins van de
andere atomen die we aangeven metσi = +1 (spin ’op’) enσi = −1 (spin ’neer’).
Zowel het atoom als de bijbehorende spinwaarden noemen wespin. In ons geval is de
spinconfiguratieσ een array, die de spinwaardenσi van elke site bevat.

Tussen elke naaste-buur spinpaar is er eeninteractie
Eui
ij = −βσiσj ≡ Jσiσj (A.65)

We noemen deze interactie ook wel deinteractie-energietussen de atomen op sitei en
j. Deenergievan een configuratie is het totaal van de interactie-energieën. De variabele
β is afhankelijk van het type materiaal waar we naar aan het kijken zijn. Deze interac-
ties bepalen de waarschijnlijkheden van de configuraties. In ferromagneten hebben de
naaste-buur spins de neiging om gelijke waarden te hebben. Daarom kiezen we de in-
teracties in het model zo, dat de kans groter is dat dit zo is: we nemenJ < 0. Hoe hoger
de energie des te lager de kans is op de configuratie. De kans op een configuratie is

P (σ) =
exp

(
β
∑

i,j σiσj
)

Z(σ)
=

exp
(
−
∑

i,j E
ui
ij

)
Z(σ)

(A.66)

met Z(σ) de som van de noemer over alle configuraties. We zien dat naarmate de
temperatuur daalt, de interactie (A.65) sterker wordt. Dan is het extra waarschijnlijk
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dat naaste-buur spins dezelfde spinwaarde hebben. Met (A.66) zien we meteen dat
voor T = 0 slechts twee configuraties met minimale energie positieve kans hebben:
elke spin heeft dezelfde waarde. Voor zeer hoge temperatuur heeft elke configuratie
gelijke kans. Dan gedraagt het model zich als een paramagneet. De temperatuur is
dus een maat van wanorde in het systeem. Voor lage temperaturen hebben de meeste
spins gelijke waarden ten opzichte elkaar, voor hoge temperaturen zijn de waarden min
of meer willekeurig verdeeld. In het proefschrift hebben we gekeken naar het meest
interessante deelgebied van het Ising model: lage temperatuur en ferromagnetisch.

We hebben tot nu toe niet naar de omgeving gekeken. Als de energie van het systeem
onafhankelijk is van zijn omgeving, zeggen we dat het systeemvrije randvoorwaarden
heeft. Maar wat gebeurt er als de omgeving bestaat uit een ander materiaal met een
vooraf gekozen spinconfiguratie? De waarden van de spins bij de rand voelen nu ook
de invloed van de naaste buur spins van het andere materiaal.

In het algemeen bevat een stuk metaal een heleboel atomen. Een gram bevat al
rond de1023 atomen. We willen graag naar volumes kijken van die orde van grote.
We meten in aantallen atomen, dus ook de volumegrootte is in de orde van1023. Eerst
kijken we naar het Ising model met een groot eindig volume. Daarna proberen we om
de uitdrukkingen hiervan te extrapoleren naar een ’oneindig’ volume.

We laten het volume toenemen en voor elke stap nemen we de externe spinwaarden
willekeurig +1 of −1: willekeurige randvoorwaarden. Ook nemen we de temperatuur
laag genoeg, zodat de spins sterk de neiging hebben om gelijke
waarden aan te nemen. Het gedrag van de mate van overeenkomst van de spins blijkt af
te hangen van hoe we het volume laten toenemen.

Uiteindelijk, door (A.66), zijn in alle voorkomende configuraties bijna alle spins
hetzelfde. Omdat we de randvoorwaarden willekeurig hebben gekozen, heeft in de
optredende configuraties desondanks de ene helft van de volumes bijna alle spins op en
de andere helft bijna alle spins neer.

Als we diep in het volume ver weg van de rand kijken zien we nog steeds een
effect van de randvoorwaarden. De lokale volume dichtheden van gebieden van gelijke
spins zijn asymptotisch onafhankelijk van de randvoorwaarden. Maar zelfs voor hele
grote volumes is er een significant effect op de spinwaarden. Als we kijken naar een
heel groot volume, dan geldt met kans 1 dat ofwel alle configuraties bijna alle spins op
hebben, ofwel bijna alle spins neer. De voorkeurswaarde is gelijk aan de spinwaarde
die de meerderheid heeft van de externe spins van de randvoorwaarde met afstand 1 tot
het volume. Omdat de temperatuur hoger is dan nul, heeft toch nog een klein deel van
de spins een tegenovergestelde waarde.

Omdat we de volumes snel genoeg laten toenemen, zien we geen zogenaamdemix-
tures. Dit betekent dat het niet mogelijk is om met een positieve kansén configuraties
te zien met de meeste spins opén configuraties met de meeste spins neer.

155



Deze onderwerpen hebben we behandeld in Hoofdstuk 4. Het was nodig om niet-
triviale expansie technieken te introduceren: demulti-scalecluster-expansies. Onze
multi-scale expansiemethode is geı̈nspireerd door ideëen van Fr̈ohlich and Imbrie [35].
Het is een generalisatie van de meer bekende ’uniforme’ cluster-expansie techniek. Met
als doel vereenvoudiging van onze afschattingen kozen we ervoor om een andere repre-
sentatie te gebruiken dan die in [35], en wel de zogenaamdeKotecḱy-Preiss represen-
tatie, die twee jaar later al werd ontwikkeld in [50].

Om bruikbare afschattingen te hebben, moesten we bepaaldecriteria bewijzen: we
hebben de convergentie nodig van sommige sommaties die gerelateerd zijn aan de ex-
pansies. Voor cluster-expansies is het cruciaal om te controleren of het Kotecký-Preiss
criterium geldt. Voor onze expansies kan dit echter niet op een directe manier. Daarom
introduceerden we een nieuw criterium en hebben we bewezen dat het equivalent hier-
aan is. Met dit nieuwe criterium kunnen we zelfs voor onze expansies bruikbare af-
schattingen verkrijgen. Het laatste hoofdstuk geeft meer uitleg over deze uniforme en
multi-scale cluster-expansies.
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