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1 Introduction

This chapter examines the use of flexible methods to approximate an unknown
density function, and techniques appropriate for visualization of densities in up
to four dimensions. The statistical analysis of data is a multilayered endeavor.
Data must be carefully examined and cleaned to avoid spurious findings. A
preliminary examination of data by graphical means is useful for this purpose.
Graphical exploration of data was popularized by Tukey (1977) in his book on
exploratory data analysis (EDA). Modern data mining packages also include
an array of graphical tools such as the histogram, which is the simplest ex-
ample of a density estimator. Exploring data is particularly challenging when
the sample size is massive or if the number of variables exceeds a handful.
In either situation, the use of nonparametric density estimation can aid in
the fundamental goal of understanding the important features hidden in the
data. In the following sections, the algorithms and theory of nonparametric
density estimation will be described, as well as descriptions of the visualiza-
tion of multivariate data and density estimates. For simplicity, the discussion
will assume the data and functions are continuous. Extensions to discrete and
mixed data are straightforward.

Statistical modeling of data has two general purposes: (1) understand-
ing the shape and features of data through the density function, f(x), and
(2) prediction of y through the joint density function, f(x, y). When the ex-
perimental setting is well-known, parametric models may be formulated. For
example, if the data are multivariate normal, N(µ, Σ), then the features of
the density may be extracted from the maximum likelihood estimates of the
parameters µ and Σ. In particular, such data have one feature, which is a
single mode located at µ. The shape of the data cloud is elliptical, and the
eigenvalues and eigenvectors of the covariance matrix, Σ, indicate the orienta-
tion of the data and the spread in those directions. If the experimental setting
is not well-known, or if the data do not appear to follow a parsimonious para-
metric form, then nonparametric density estimation is indicated. The major
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features of the density may be found by counting and locating the sample
modes. The shape of the density cannot easily be determined algebraically,
but visualization methodology can assist in this task. Similar remarks apply
in the regression setting.

When should parametric methods be used and when should nonparametric
methods be used? A parametric model enjoys the advantages of well-known
properties and parameters which may be interpreted. However, using para-
metric methods to explore data makes little sense. The features and shape of
a normal fit will always be the same no matter how far from normal the data
may be. Nonparametric approaches can fit an almost limitless number of den-
sity functional forms. However, at the model, parametric methods are always
more statistically accurate than the corresponding nonparametric estimates.
This statement can be made more precise by noting that parametric estima-
tors tend to have lower variance, but are susceptible to substantial bias when
the wrong parametric form is invoked. Nonparametric methods are not unbi-
ased, but the bias asymptotically vanishes for any continuous target function.
Nonparametric algorithms generally have greater variance than a parametric
algorithm. Construction of optimal nonparametric estimates requires a data-
based approach in order to balance the variance and the bias, and the resulting
mean squared error generally converges at a rate slower than the parametric
rate of O(n−1). In summary, nonparametric approaches are always appropri-
ate for exploratory purposes, and should be used if the data do not follow a
simple parametric form.

2 Visualization

2.1 Data Visualization

Visualization of data is a fundamental task in modern statistical practice. The
most common figure for this purpose is the bivariate scatter diagram. Figure
1(a) displays the levels of blood fats in a sample of men with heart disease.
The data have been transformed to a logarithm base 10 scale to minimize the
effects of skewness. At a first glance, the data appear to follow a bivariate nor-
mal distribution. The sample correlation is only 0.22. One might examine each
of the two variables separately as a univariate scatter diagram, which is com-
monly referred to as a “dot plot,” but such figures are rarely presented. Tukey
advocated the histogram-like stem-and-leaf plot or the box-and-whiskers plot,
which displays simple summaries including the median and quartiles. Figure
1(b) displays box-and-whisker plots for these variables. Clearly triglyceride
values vary more than cholesterol and may still be right-skewed.

As shown later in Section 3.3, there may be rather subtle clusters within
these data. The eye can readily detect clusters which are well-separated, but
the eye is not reliable when the clusters are not well-separated, nor when the
sample size is so large that the scatter diagram is too crowded. For example,
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Fig. 1. Cholesterol and triglyceride blood levels for 320 males with heart disease.

consider the Old Faithful Geyser data (Azzalini and Bowman, 1990), (xt, yt),
where xt measures the waiting time between successive eruptions of the geyser,
and yt measures the duration of the subsequent eruption. The data were
blurred by adding uniform noise to the nearest minute for xt and to the nearest
second for yt. Figure 2 displays histograms of these two variables. Interestingly,
neither appears to follow the normal distribution. The common feature of
interest is the appearance of two modes. One group of eruptions is only 2
minutes in duration, while the other averages over 4 minutes in duration.
Likewise, the waiting time between eruptions clusters into two groups, one
less than an hour and the other greater than one hour. The distribution of
eruption durations appears to be a mixture of two normal densities, but the
distribution of the waiting times appears more complicated.

40 60 80 100

0
10

20
30

40

time between eruptions (minutes)
0 1 2 3 4 5 6

0
10

20
30

40
50

60

duration of eruption (minutes)

Fig. 2. Waiting time and duration of 299 consecutive eruptions of the Old Faithful
Geyser.

Finally, in Figure 3 we examine the scatter diagrams of both (xt, yt) as
well as the lagged values of eruption duration, (yt−1, yt). The common feature
in these two densities is the presence of three modes. As mentioned earlier, the
eye is well-suited to discerning clusters that are well-separated. From Figure
3(a), short waiting periods are associated with long eruption durations. From
Figure 3(b), all eruptions of short duration are followed by eruptions of long
duration. Missing from Figure 3(b) are any examples of eruptions of short
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duration following eruptions of short duration, which should be a plus for
the disappointed tourist. The observant reader may notice an odd clustering
of points at integer values of the eruption duration. A quick count shows
that 23, 2, and 53 of the original 299 values occur exactly at y = 2, 3, and
4 minutes, respectively. Examining the original time sequence suggests that
these measurements occur in clumps; perhaps accurate measurements were not
taken after dark. Exploration of these data has revealed not only interesting
features but also suggest possible data collection anomalies.
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Fig. 3. Two scatter diagrams of the Old Faithful Geyser data.

Massive datasets present different challenges. For example, the Landsat
IV remote sensing dataset described by Scott (1992) contains information on
22,932 pixels of a scene imaged in 1977 from North Dakota. The variables
displayed in Figure 4 are the time of peak greenness of the crop in each pixel
and the derived value of the maximum greenness, scaled to values 0-255 and
blurred with uniform noise. Overplotting is apparent. Each successive figure
drills down into the boxed region shown. Only 5.6% of the points are elimi-
nated going to the second frame; 35.5% eliminated between the second and
third frames; and 38.1% between the third and final frames, still leaving 8,624
points. Overplotting is still apparent in the final frame. Generally, gleaning
detailed density information from scatter diagrams is difficult at best. Non-
parametric density estimation solves this problem.

To see the difficulty of gleaning density information from the graphs in
Figure 4, compare the bivariate histogram displayed in Figure 5 for the data
in frame (b) from Figure 4. Using only the scatter diagram, there is no way to
know the relative frequency of data in the two largest clusters except through
the histogram.

The bivariate histogram uses rectangular-shaped bins. An interesting hy-
brid solution is to use hexagonal-shaped bins and to use a glyph to represent
the bin count. Scott (1988) compared the statistical power of using squares,
hexagons, and equilateral triangles as shapes for bins of bivariate histograms
and concluded that hexagons were the best choice. Carr et al. (1992) examined
the use of drawing a glyph in each bivariate bin rather than the perspective
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Fig. 4. Drilling into the Landsat IV data with n = 22,932.

Fig. 5. Histogram of data in Figure 4(b)
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view. For graphical reasons, Carr found hexagonal bins were more effective.
The bin count is represented by a hexagonal glyph whose area is proportional
to the bin count. Figure 6 displays the hexagonal mosaic map of the same
data as in Figure 5. This representation gives a quite accurate summary of
the density information. No bin counts are obscured as in the perspective view
of the bivariate histogram.

Fig. 6. Hexagonal bin glyph of the data in Figure 4(b)

In the next section, some of the algorithms for nonparametric density
estimation and their theoretical properties are discussed. We then return to
the visualization of data in higher dimensions.

3 Density Estimation Algorithms and Theory

This section includes enough algorithms and results to obtain a basic un-
derstanding of the opportunities and issues. Fortunately, there have been a
number of readable monographs available for the reader interested in pursuing
this subject in depth. In rough chronological order, excluding books primarily
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dealing with nonparametric regression, the list includes Tapia and Thompson
(1978), Wertz (1978), Prakasa Rao (1983), Devroye and Györfi (1985), Silver-
man (1986), Devroye (1987), Nadaraya (1989), Härdle (1990), Scott (1992),
Tarter and Lock (1993), Wand and Jones (1995), Simonoff (1996), Bowman
and Azzalini (1997), and Tarter (2000).

The purpose of the next section is to provide a survey of important results
without delving into the theoretical underpinnings and details. The references
cited above are well-suited for that purpose.

3.1 A High-Level View of Density Theory

Smoothing Parameters

Every algorithm for nonparametric density estimation has one or more design
parameters which are called the smoothing parameter(s) or bandwidth(s) of
the procedure. The smoothing parameter controls the final appearance of the
estimate. For an equally-spaced histogram, the bin width plays the primary
role of a smoothing parameter. Of course, the bins may be shifted and the
location of the bin edges is controlled by the bin origin, which plays the role of
a secondary smoothing parameter. For a kernel estimator, the scale or width
of the kernel serves as the smoothing parameter. For an orthogonal series
estimator, the number of basis functions serves as the smoothing parameter.
The smoothing parameters of a spline estimator also include the location of
the knots. Similarly, a histogram with completely flexible bin widths has many
more than two smoothing parameters.

No Unbiased Density Estimators

As a point estimator of f(x), Rosenblatt (1956) proved that every nonpara-
metric density estimator, f̂(x) is biased. However, it is usually true that the
integral of all of the pointwise biases is 0. Thus mean squared error (MSE) and
integrated mean squared error (IMSE) are the appropriate criteria to optimize
the tradeoff between pointwise/integrated variance and squared bias.

Nonparametric density estimators always underestimate peaks and over-
estimate valleys in the true density function. Intuitively, the bias is driven
by the degree of curvature in the true density. However, since the bias func-
tion is continuous and integrates to 0, there must be a few points where the
bias does vanish. In fact, letting the smoothing parameter vary pointwise,
there are entire intervals where the bias vanishes, including the difficult-to-
estimate tail region. This fact has been studied by Hazelton (1996) and Sain
and Scott (2002). Since the bias of a kernel estimator does not depend on the
sample size, these zero-bias or bias-annihilating estimates have more than a
theoretical interest. However, there is much more work required for practical
application. Alternatively, in higher dimensions away from peaks and valleys,
one can annihilate pointwise bias by balancing directions of positive curvature
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against directions of negative curvature; see Terrell and Scott (1992). An even
more intriguing idea literally adjusts the raw data points towards peaks and
away from valleys to reduce bias; see Choi and Hall (1999).

Rates of Convergence

The rate of convergence of a nonparametric density estimator to the true
density is much slower than in the parametric setting, assuming in the latter
case that the correct parametric model is known. If the correct parametric
model is not known, then the parametric estimates will converge but the bias
will not vanish. The convergence is slower still in high dimensions, a fact which
is often referred to as the curse of dimensionality. Estimating the derivative
of a density function is even harder than coping with an additional dimension
of data.

If the k-th derivative of a density is known to be smooth, then it is the-
oretically possible to construct an order-k nonparametric density estimation
algorithm. The pointwise bias is driven by the k-th derivative at x, f (k)(x).
However, if k > 2, then the density estimate will take on negative values
for some points, x. It is possible to define higher-order algorithms which are
non-negative, but these estimates do not integrate to 1; see Terrell and Scott
(1980). Thus higher-order density estimation algorithms violate one of the
two conditions for a true density: f(x) ≥ 0 and

∫ ∞
−∞ f(x) dx = 1. Of course,

there are cases where the first condition is violated for lower-order estimators.
Two such cases include orthogonal series estimators (Kronmal and Tarter,
1968; Watson, 1969) and boundary-corrected kernel estimators (Rice, 1984).
Note that positive kernel estimators correspond to k = 2. Wahba (G.) studied
the efficacy of higher-order procedures and suggested k = 3 often provided
superior estimates. Scott (1992) also studied this question and found some
improvement when k = 3, which must be traded off against the disadvantages
of negative estimates.

Choosing Bandwidths in Practice

Picking the best smoothing parameter from data is an important task in
practice. If the smoothing parameter is too small, the estimate is too noisy,
exhibiting high various and extraneous wiggles. If the smoothing parameter
is too large, then the estimate may miss key features due to oversmoothing,
washing out small details. Such estimates have low variance but high bias in
many regions. In practice, bandwidths that do not differ by more than 10-15%
from the optimal bandwidth are usually satisfactory.

A statistician experienced in EDA is likely to find all estimates informative
for bandwidths ranging from undersmoothed to oversmoothed. With a com-
plicated density function, no single choice for the bandwidth may properly
represent the density for all values of x. Thus the same bandwidth may result
in undersmoothing for some intervals of x, oversmoothing in another interval,
and yet near optimal smoothing elsewhere. However, the practical difficulty
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of constructing locally adaptive estimators makes the single-bandwidth case
of most importance. Simple transformations of the data scale can often be an
effective strategy (Wand et al., 1991). This strategy was used with the lipid
data in Figure 1, which were transformed to a log10 scale.

Consider the 21,640 x points shown in frame (b) of Figure 4. Histograms of
these data with various numbers of bins are shown in Figure 7. With so much
data, the oversmoothed histogram Figure 7(a) captures the major features,
but seems biased downwards at the peaks. The final frame shows a histogram
that is more useful for finding data anomalies than as a good density estimate.
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Fig. 7. Histograms of x variable in Figure 4(b) with 15, 35, and 100 bins.

The differences are more apparent with a smaller sample size. Consider the
320 log10-cholesterol levels shown in Figure 1. Three histograms are shown in
Figure 8. The extra one or two modes are at least suggested in the middle
panel, while the histogram in the first panel only suggests a rather unusual
non-normal appearance. The third panel has many large spurious peaks. We
conclude from these two figures that while an oversmoothed estimator may
have a large error relative to the optimal estimator, the absolute error may
still be reasonably small for very large data samples.
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Fig. 8. Histograms of log10-cholesterol variable in Figure 1 with 9, 19, and 39 bins.

Oversmoothed Bandwidths

While there is no limit on how complicated a density may be (for which∫
f (k)(x)2 dx may grow without bound), the converse is not true. Terrell and

Scott (1985) and Terrell (1990) show that for a particular scale of a density
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(for example, the range, standard deviation, or interquartile range), there is
in fact a lower bound among continuous densities for the roughness quantity

R(f (k)) =
∫ ∞

−∞
f (k)(x)2 dx. (1)

In a real sense, such densities are the smoothest possible and are the easiest to
estimate. The optimal bandwidth for these “oversmoothed densities” serves
as an upper bound. Specifically, any other density with the same scale will
have more complicated structure and will require a smaller bandwidth to more
accurately estimate those features. Since oversmoothed bandwidths (and ref-
erence bandwidths as well) only use the data to estimate the scale (variance,
for example), these data-based estimates are quite stable. Obtaining similar
highly stable data-based nearly optimal bandwidth estimators requires very
sophisticated estimates of the roughness function given in Equation 1. One
algorithm by Hall et al. (1991) is often highly rated in practice (Jones et al.,
1996). Scott (1992) noted the small-sample behavior of the algorithm seemed
closely related to the oversmoothed bandwidths. These approaches all rely on
asymptotic expansions of IMSE rather than an unbiased risk estimate, which
underlies the least-squares or unbiased cross-validation algorithm introduced
by Rudemo (1982) and Bowman (1984). However, the unbiased risk approach
has numerous extensions; see Sain and Scott (1996) and Scott (2001). Another
algorithm that should be mentioned is the bootstrap bandwidth. For a Gaus-
sian kernel, the bootstrap with an infinite number of repetitions has a closed
form expression; see Taylor (1989). Multivariate extensions are discussed by
Sain et al. (1994).

Many details of these ideas may be found in the literature and in the
many textbooks available. The following section provides some indication of
this research.

3.2 The Theory of Histograms

The basic results of density estimation are perhaps most easily understood
with the ordinary histogram. Thus more time will be spent on the histogram
with only an outline of results for more sophisticated and more modern algo-
rithms.

Given an equally spaced mesh {tk} over the entire real line with tk+1−tk =
h, the density histogram is given by

f̂(x) =
νk

nh
for tk < x < tk+1, (2)

where νk is the number of data points falling in the k-th bin. Clearly,
∑

k νk =
n and νk is a Binomial random variable with mean pk =

∫ tk+1

tk
f(x) dx; hence,

E νk = npk and Var νk = npk(1 − pk). Thus the pointwise variance of the
histogram (2) is npk(1−pk)/(nh)2, which is constant for all x in the k-th bin.
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Thus, the integrated variance (IV) over (−∞,∞) may be found by integrating
the pointwise variance over the k-th bin (i.e., multiply by the bin width h),
and summing over all bins:

IV =
∞∑

k=−∞

npk(1 − pk)
(nh)2

× h =
∞∑

k=−∞

pk(1 − pk)
nh

=
1

nh
−

∑
k

pk2

nh
, (3)

since
∑

pk =
∫ ∞
−∞ f(x) dx = 1. The final term may be shown to approximate

n−1
∫

f(x)2 dx, which is asymptotically negligible. Thus the global integrated
variance of the histogram can be controlled by collecting more data or choosing
a wider bin width.

Next consider the bias of f̂ at a fixed point, x, which is located in the k-th
bin. Note that E f̂(x) = npk/nh = pk/h. A useful approximation to the bin
probability is

pk =
∫ tk+1

tk

f(y) dy = h f(x) + h2

(
1
2
− x − tk

h

)
f ′(x) + · · · , (4)

replacing the integrand f(y) by f(x) + (y − x)f ′(x) + · · ·. Thus the pointwise
bias may be approximated by

Bias f̂(x) = E f̂(x) − f(x) =
pk

h
− f(x) = h

(
1
2
− x − tk

h

)
f ′(x) + · · · . (5)

Therefore, the bias is controlled by the first derivative of the unknown density
at x. Since tk < x < tk+1, then the factor (1/2 − (x − tk)/h) in Equation 5
varies from −1/2 to 1/2. Thus the bias is also directly proportional to the
bandwidth, h. To control the bias of the histogram estimate, the bandwidth
h should be small. Comparing Equations (3) and (5), the global consistency
of the histogram can be guaranteed if, as n → ∞, h → 0 while ensuring that
the product nh → ∞ as well, for example, if h = 1/

√
n (see Duda and Hart,

1973).
A more complete analysis of the bias (Scott, 1979) shows that the inte-

grated squared bias is approximately h2 R(f ′)/12, where R(f ′) =
∫

f ′(x)2 dx,
so that the IMSE is given by

IMSE [f̂k] =
1

nh
+

1
12

h2R(f ′) + O(n−1). (6)

From this equation, the optimal bandwidth is seen to be

h∗ =
[

6
nR(f ′)

]1/3

and IMSE∗ = (
9
16

)1/3 R(f ′)1/3 n−2/3 . (7)

Thus the optimal bandwidth approaches zero at the rate O(n−1/3) and not the
rate O(n−1/2) as suggested by Duda and Hart (1973) nor the rate O( 1

log n ) as
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suggested by Sturges (1926). With regards to IMSE, the best rate a histogram
can achieve is of order O(n−2/3), which falls well short of the parametric rate
of O(n−1). From Equation (7), the larger the value of the roughness R(f ′) of
the true density, the smaller the optimal bandwidth and the larger the average
error.

Finally, the smoothest density with variance σ2 is

g(x) =
15

16
√

7σ

(
1 − x2

7σ2

)2

−
√

7σ < x <
√

7σ (8)

and zero elsewhere, for which R(g′) = 15
√

7/(343σ3). Since R(f ′) ≥ R(g′) for
any other continuous density, f ,

h∗ =
[

6
nR(f ′)

]1/3

≤
[

6
nR(g′)

]1/3

=
[
686 σ3

5
√

7n

]1/3

= 3.73 σ n−1/3 , (9)

which is the “oversmoothed bandwidth” rule. Consider the normal reference
rule, f = φ = N(µ, σ2), for which R(φ′) = 1/(4

√
πσ3), which when substi-

tuted into Equation (7) gives h∗ = 3.49 σ n−1/3, a value that is only 6.4%
narrower than the oversmoothed bandwidth.

The oversmoothing rule (9) may be inverted when the scale is the range
of the density to obtain a lower bound of 3

√
2n on the number of bins in

the optimal histogram. This formula should be compared to Sturges’ rule of
1 + log2 n, which is in common use in many statistical packages (Sturges,
1926). In fact, the histograms in the first frames of Figures 7 and 8 corre-
spond to Sturges’ rule, while the second frames of these figures correspond to
the oversmoothed bandwidths. Presumably the optimal bandwidth would oc-
cur somewhere between the second and third frames of these figures. Clearly
Sturges’ rule results in oversmoothed graphs since the optimal number of bins
is severely underestimated.

3.3 ASH and Kernel Estimators

The histogram is an order-one density estimator, since the bias is determined
by the first derivative. The estimators used most in practice are order-two
estimators. (Recall that order-three estimators are not non-negative.) Perhaps
the most unexpected member of the order-two class is the frequency polygon
(FP), which is the piecewise linear interpolant of the midpoints of a histogram.
(Scott, 1985a) showed that

IMSE [f̂FP] =
2

3nh
+

49
2880

h4R(f ′′) + O(n−1). (10)

Compared to Equation (6), the integrated variance of a FP is 33% smaller
and the integrated squared bias is two orders of magnitude smaller. Clearly,
h∗ = O(n−1/5) and IMSE∗ = O(n−4/5). Thus the error converges at a faster
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rate than the histogram, by using bins which are wider and an estimator which
is not discontinuous. Examples and other results such as oversmoothing may
be found in Scott (1992).

The use of wider bins means that the choice of the bin origin has a
larger impact, at least subjectively. Given a set of m shifted histogram,
f̂1(x), . . . , f̂m(x), one might use cross-validation to try to pick the best one.
Alternatively, Scott (1985b) suggested the averaged shifted histogram (ASH),
which is literally defined:

f̂ASH(x) =
1
m

m∑
k=1

f̂k(x). (11)

To be specific, suppose the collection of m histograms has meshes shifted by an
amount δ = h/m from each other. Recompute the bin counts, νk, on the finer
mesh, t′k = kδ,−∞ < k < ∞. Then a bin count for one of the histograms
with bin width h may be computed by adding m of the bin counts on the
finer mesh. For x in the �-th (narrow) bin, there are m shifted histograms
that include the (narrow) bin count, ν�. Adding these m shifted histograms
together and averaging gives:

ν�+1−m + 2ν�+2−m + · · · + m ν� + · · · + 2ν�+m−2 + ν�+m−1

m × nh
, (12)

or after re-arranging

f̂ASH(x) =
1

nh

m−1∑
k=1−m

(
1 − |k|

m

)
ν�+k . (13)

As the number of shifted histograms m → ∞, the weights on the bin counts
approaches the triangular kernel given by K(t) = 1 − |t| for |t| < 1 and zero
elsewhere. The ASH may be generalized to handle general weights by sampling
from an arbitrary kernel function, K(t), which is any symmetric probability
density defined on the interval [−1, 1]. In this case,

f̂ASH(x) =
1

nh

m−1∑
k=1−m

wm(k) ν�+k where wm(k) ∝ K(k/m) . (14)

Like the FP, the ASH is an order-two algorithm, but more efficient in the
statistical sense.

In Figure 9, two ASHs of the log10-cholesterol data are shown. The bin
edge effects and discontinuities apparent in the ordinary histogram in Figure
8 are removed. The extra features in the distribution are hinted at.

The extension of the ASH to bivariate (and multivariate) data is straight-
forward. A number of bivariate (multivariate) histograms are constructed with
equal shifts along the coordinate axes and then averaged together. Figure 10
displays a bivariate ASH of the same lipid data displayed in Figure 1. The
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Fig. 9. Averaged shifted histograms of the log10-cholesterol data.

strong bimodal and weak trimodal features are evident. The third mode is
perhaps more clearly represented in a perspective plot; see Figure 11. (Note
that for convenience, the data were rescaled to the intervals (0, 1) for these
plots, unlike Figure 1.) The precise location of the third mode above (and be-
tween) the two primary modes results in the masking of the multiple modes
when viewed along the cholesterol axis alone. This masking feature is com-
monplace and a primary reason for trying to extend the dimensions available
for visualization of the density function.

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
oo

o
o

o

o

o

o o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o o

oo
o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

Fig. 10. Bivariate ASH of the log10-cholesterol and log10-triglyceride data.
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Fig. 11. Perspective view of the Bivariate ASH in Figure 10.

3.4 Kernel and Other Estimators

The ASH is a discretized representation of a kernel estimator. Binned ker-
nel estimators are of great interest to reduce the computational burden. An
alternative to the ASH is the fast Fourier transform approach of Silverman
(1982). Kernel methods were introduced by Rosenblatt (1956) and Parzen
(1962) with earlier work by Evelyn Fix and Joe Hodges completed by 1951 in
San Antonio, Texas (see Silverman and Jones, 1989).

Given a kernel function, K(t), which is generally taken to be a symmetric
probability density function, the kernel density estimate is defined by

f̂K(x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
=

1
n

n∑
i=1

Kh(x − xi) , (15)

letting Kh denote the kernel density transformed by the scale factor, h; that is,
Kh(t) = K(t/h)/h. Among kernels with finite support, Beta densities shifted
to the interval (−1, 1) are popular choices. Among kernels with infinite sup-
port, the normal density is by far the most common choice. An important
paper by Silverman (1981) showed that the normal kernel has the unique
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property that the number of modes in the kernel estimate monotonically de-
creases as the smoothing parameter increases. For many exploratory purposes,
this property alone is reason to use only the normal kernel. Minnotte and Scott
(1993) proposed graphing the locations of all modes at all bandwidths in the
“mode tree.” Minnotte (1997) proposed an extension of Silverman’s bootstrap
test (Silverman, 1981) for the number of modes to test individual modes. Soft-
ware for the ASH, kernel estimates, and the various mode tests may be found
on the web; see statlib at www.stat.cmu.edu, for example.

Multivariate extensions of the kernel approach generally rely upon the
product kernel. For example, with bivariate data {(xi, yi), i = 1, . . . , n}, the
bivariate (product) kernel estimator is

f̂K(x, y) =
1
n

n∑
i=1

Khx(x − xi)Khy(y − yi) . (16)

A different smoothing parameter for each variable generally gives sufficient
control. A full bivariate normal kernel may be used in special circumstances,
effectively adding one additional smoothing parameter in the form of the
correlation coefficient. However, an equivalent estimate may be obtained by
rotating the data so that the correlation in the kernel vanishes, so that the
product kernel may be used on the transformed data.

In higher dimensions, some care must be exercised to minimize the ef-
fects of the curse of dimensionality. First, marginal variable transformations
should be explored to avoid a heavily skewed appearance or heavy tails. Sec-
ond, a principal components analysis should be performed to determine if the
data are of full rank. If so, the data should be projected into an appropriate
subspace. No nonparametric procedure works well if the data are not of full
rank. Finally, if the data do not have many significant digits, the data should
be carefully blurred. Otherwise the data may have many repeated values,
and cross-validation algorithms may believe the data are discrete and suggest
using h = 0. Next several kernel or ASH estimates may be calculated and
explored to gain an understanding of the data, as a preliminary step towards
further analyses.

An extensive body of work also exists for orthogonal series density esti-
mators. Originally, the Fourier basis was studied, but more modern choices
for the basis functions include wavelets. These can be re-expressed as kernel
estimators, so we do not pursue these further. In fact, a number of workers
have shown how almost any nonparametric density algorithm can be put into
the form of a kernel estimator; see Walter and Blum (1979) and Terrell and
Scott (1992), for example. More recent work on local likelihood algorithms
for density estimation further shows how closely related parametric and non-
parametric thinking really is; see Loader (1999) for details and literature.
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4 Visualization of Trivariate Functionals

The field of scientific visualization has greatly enhanced the set of tools avail-
able for the statistician interested in exploring the features of a density esti-
mate in more than two dimensions. In this section, we demonstrate by example
the exploration of trivariate data.

We continue our analysis of the data given by the duration of 299 consec-
utive eruptions of the Old Faithful geyser. A graph of the histogram of these
data is displayed in Figure 2(b). We further modified the data as follows:
the 105 values that were only recorded to the nearest minute were blurred
by adding uniform noise of 30 seconds in duration. (The remaining data
points were recorded to the nearest second). An easy way to generate high-
dimensional data from a univariate time series is to group adjacent values. In
Figure 12, ASH’s of the univariate data {yt} and the lagged data {(yt−1, yt)}
are shown. The obvious question is whether knowledge of yt−1 is useful for
predicting the value of yt. Clearly, the answer is in the affirmative, but the
structure would not be well-represented by an autoregressive model.

geyser eruption duration (minutes)
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Fig. 12. Averaged shifted histograms of the Old Faithful geyser duration data.

Next, we computed the ASH for the trivariate lagged data {(yt−2, yt−1, yt)}.
The resulting estimate, f̂ASH(yt−2, yt−1, yt), may be explored in several fash-
ions. The question is whether knowing yt−2 can be used to predict the joint
behavior of (yt−1, yt). This may be accomplished, for example, by examining
slices of the trivariate density. Since the (univariate) density has two modes
at x = 1.88 and x = 4.33 minutes, we examine the slices f̂ASH(1.88, yt−1, yt)
and f̂ASH(4.33, yt−1, yt); see Figure 13. The 297 data points were divided into
two groups, depending on whether yt−2 < 3.0 or not. The first group of points
was added to Figure 13(a), while the second group was added to Figure 13(b).

Since each axis was divided into 100 bins, there are 98 other views one
might examine like Figure 13. (An animation is actually quite informative.)
However, one may obtain a holistic view by examining level sets of the full
trivariate density. A level set is the set of all points x such that f̂ASH(x) =
αf̂max, where f̂max is the maximum or modal value of the density estimate,
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Fig. 13. Slices of the trivariate averaged shifted histogram of lagged values of the
Old Faithful geyser duration data.

and α ∈ (0, 1) is a constant that determines the contour level. Such contours
are typically smooth surfaces in �3. When α = 1, then the “contour” is simply
the modal location point. In Figure 14, the contour corresponding to α = 58%
is displayed. Clearly these data are multimodal, as five well-separated high-
density regions are apparent. Each cluster corresponds to a different sequence
of eruption durations, such as long-long-long. The five clusters are now also
quite apparent in both frames of Figure 13. Of the eight possible sequences,
three are not observed in this sequence of 299 eruptions.

A single contour does not convey as much information as several. Depend-
ing on the display device, one may reasonably view three to five contours, using
transparency to see the higher density contours that are “inside” the lower
density contours. Consider adding a second contour corresponding to α = 28%
to that in Figure 14. Rather than attempt to use transparency, we choose an
alternative representation which emphasizes the underlying algorithms. The
software which produced these figures is called ashn and is available at the
author’s website. ASH values are computed on a three-dimensional lattice.
The surfaces are constructed using the marching cubes algorithm (Lorensen
and Cline, 1987), which generates thousands of triangles that make up each
surface. Here, we choose not to plot all of the triangles but only every other
“row” along the second axis. The striped effect allows one to interpolate and
complete the low-density contour, while allowing one to look inside and see
the high-density contour. Since there are five clusters, this is repeated five
times. A smaller sixth cluster is suggested as well.

5 Conclusions

Exploring data is an important part of successful statistical model building.
General discussions of graphical tools may be found in Tufte (1983), Wainer
(1997), Cleveland (1985, 1993), Wegman and Depriest (1986) and Buja and
Tukey (1991), for example. Advanced exploratory software may be found in
many commercial packages, but of special note is the XGobi (Swayne et al.,
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Fig. 14. Visualization of the α = 58% contour of the trivariate ASH of the lagged
geyser duration data.

1991) system and successors. Immersive environments are also of growing
interest (Cook et al., 1997). A general visualization overview may be found in
Wolff and Yaeger (1993).

Especially when the data size grows, point-oriented methods should be
supplemented by indirect visualization techniques based upon nonparamet-
ric density estimation or by parallel coordinates (Inselberg, 1985; Wegman,
1990). Many density algorithms are available. The use of order-two algorithms
is generally to be recommended. These should be calibrated by several tech-
niques, starting with an oversmoothed bandwidth and the normal reference
rule.

For data beyond three dimensions, density estimates may be computed and
slices such as f̂(x, y, z, t = t0) visualized. If advanced hardware is available,
the surfaces can be animated as t varies continuously over an interval (t0, t1);
see Scott (1986, 2000). Obviously, this is most useful for data in four and five
dimensions. In any case, multivariate density estimation and visualization are
important modern tools for EDA.
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Fig. 15. Visualization of the α = 28% and 58% contours of the trivariate ASH of
the lagged geyser duration data.
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