
r
THE AXIOMS OF MAIMUM ENTROPY

John Skilling
Department of Applied Mathematics

and Theoretical Physics
Silver Street
Cambridge CB3 9EW, England

Abstract. Maximum entropy is presented as a
universal method of finding a "best" positive
distribution constrained by incomplete data.
The generalised entropy E (f - m - flog (£1m) ) )
is the only form which selects acceptable
distributions f in particular cases. It holds
even if f is not normalised, so that maximum
entropy applies directly to physical distrib-
utions other than probabilities. Furthermore,
maximum entropy should also be used to select
"best" parameters if the underlying mopel m
has such freedom.

INTRODUCTION
Many quantities of interest are positive distribu-

tions. Typical examples are the pattern of light intensity
arriving on a photographic plate, and the power spectrum of
some radiative field. Following Jaynes (1984), we shall
call such a distribution a "scene", and an estimate of it an
"image" . Usually a scene is a real function f of a
continuous spatial or temporal argument x (which may itself
have more than one dimension), requiring an infinite numer
of bits of information to specify it fully. Our knowledge
of it, gleaned ultimately from observation, will only be
fini te.

,,'

Even though our knowledge is incomplete, we still wish to
obtain a single image from the many which are consistent
with our knowledge. In the first half of this paper, we
discuss some guidelines (axioms) for finding a single "best"
image, based purely on realistic selection criteria, and not
relying on probability or information theory. These axioms
lead to the maximum entropy (MaxEnt) method for selecting
the best image consistent with our knowledge.

MaxEnt needs a given prior model of the scene. This is
useful, because it allows prior insight into the nature of
the scene to be incorporated into the formalism. However,
the insight may be somewhat vague, and contain unknown
parameters, such as the positions and intensities of point
stars in an astronomical photograph, or lines in a spectrum.
In the second half of this paper, we discuss a related set
of guideline axioms for finding the best values of any such
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parameters. Again,
selection criteria.

these rules based purely uponare

Remarkably, the ~ entropy formula is derived. Thus
MaxEnt should be used both to find the best single image and
to find the best set of parameters underlying it.

SELECTING AN IMAGE
We aim to provide an image which is the "best"

according to an agreed criterion. This involves setting up
a ranking procedure which determines which of two images is
"better". To avoid circularity, and to ensure that there is
always some image which is not "bettered" by any other, we
impose the transitivity requirement

(f better than g) and (g better than h)~ (f better than h).
Any transitive ranking can be described by real
assigning a number S (£) to each image f, such that

numbers,

"f better than g" S(£) ;. S(g) ( 1 )~
Choosing the "best" image is equivalent to regularising f by
maximising S (£) . However, the form of S (£) remains to be
defined.

A fundamental requirement is
should be independent of the
assumption is useful because
data analysis.

universal applicability, that S
type of data we are given. This
it allows a unified approach to

The axioms
Remarkably, a few very simple examples of accept-

able reconstructed images suffice to determine the form of
S. These examples, considered as axioms, progressively
restrict the form of S, until only one form remains (or
equi valently a monotonic function of it). Anticipating the
resul t, S is the entropy of f.

For the special case of a probability distribution, it seems
that Jaynes (1957a,b) was the first to suppose that
consistency arguments alone might suffice to determine the
entropy formula in the context of inference. His conjecture
was proved by Shore and Johnson (1980) who gave a formal
axiomatic derivation. independently, Tikochinsky, Tishby
and Levine (1984) arrived at the same formula from a
somewhat more physical viewpoint. Earlier derivations of
entropy as an uncertainty or information measure (Shannon
1948, Shannon and Weaver 1949, Kullback 1959, Cox 1961) also
treated it as a property of a probability distribution.'
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based purely upon However, the theorems are more generally applicable, and
+ndeed the proofs are simpler without the normalisation

J'f(x)dx = 1 which is imposed on probability distributions.

In the following presentation, the formal statement of eachaxiom is followed by a justification, then by its
consequence, a proof thereof, and a comment. Greek letters
denote functions appearing in S except that À and ~ are
reserved for Lagrange multipliers such as that appearing in
the archetype variational equation

is derived. Thus
!st single image and
_ying it.

.ch is the "best"
~nvolves setting up
~h of two images is
~nsure that there is
i" by any other, we

6 ( S - À. constraint) = 0
The symbol f (I,m) represents the image f reconstructed by
maximising S with respect to constraint information I, over
a Lebesgue measure m on x.

than h)
than h).

i by real
such that

numers,

Axiom I. Subset independence.
Let I1 be information pertaining only to
similarly let I2 pertain only to f(x) for
and D2 are disjoint,

f(x) for xeD1 and
XED2' Then, if D1

~ S (g) (1 ) f(I1,m) U f(I2,m) f (11 U 12 , m) (2 )

to regularising f by
5 (£) remains to be

where "U" is the union operator.

?plicability, that S
~ we are given. This
unified approach to

Justification:
Information about one domain should not
reconstruction in a different domain, provided
constraint directly linking the domains.

affect
there is

the
no

Consequence:
S must be of the form

examples of accept-
termine the form of
ioms, progressively

form remains (or
Anticipating the

S(£) = J dx m(x) e(f(x) ,m(x) ,x) (3 )

where e is an arbitrary function.

stribution, it seems
to suppose that

ce to determine the
nce. His conjecture
who gave a formal
Tikochinsky, Tishby
me formula from a
ier derivations of
n measure (Shannon
1959, Cox 1961) also
ili ty distribution.

Proof:
Consider first the discrete case.
intersecting domains with union D.
constraint

Let D1 and D2
Let there be

be non-
a linear

E aU fi = b1
ÜD1

E a2i fi = b2
iED2

(4 )

on each domain. In D1 and D2 respectively, f is
determined by the variational equations

separately

ès/Mi = À1aU ~S/~fi = À2a2i (5 )

Using both constraints together, f is determined by
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~s/lHi ~ 1
~laU iED1

( 6 )
~2a2i ieD2

Taking two cells j, k both in D1, the reconstruction is to be
independent of the constraints and values of f in the other
domain D2' Accordingly, (òS/òfj)/(òS/òfk) is independent of
all fi for iED2' This must hold for arbitrary decomposition
of D into D1 and D2' Hence

(òS/òfj)/(òS/òfk) = ajk(fj,fk) ( 7 )

where ajk is a function which might depend on coordinates
j , k but which does not depend on any f i other than f j and fk
themselves.

A technical argument now leads from this to the result (3).
Consideration of a third cell 1 yields

(òS/òfk)/(òS/òfl) = aki(fk,fi)

(òS/òfi)/(ÒS/òfj) = alj(fi,fj)

( 8)

( 9 )

Mul tiplying the latter three equations,

1 = ajk(fj1fk) aki(fk,fi) alj(fi,fj) (10 )

Hence

o = ò2(log ajk)/òfjòfk (11 )

so that, on using the anti symetry (7) of log a in j and k,
ajk(fj,fk) = ßjk(fj)/ßkj(fk) ( 12)

where ßjk is an as yet un-determined function. Substituting
in (10) and differentiating with respect to f j yields

(log ßjk(fj))' = (log ßji(fj))' (13 )

for arbitrary k and l, so that the differential ßjk'(fj)
does not depend on k. The arbitrary constant which appears
on integration can be absorbed in the definition (12), so
that the second suffix on ß may be dropped. Equation (7)
can then be rewritten as

(òS/Òfj)/(òS/Òfk) = ßj(fj)/ßk(fk) ( 14 )

Define

R(£) = ~ ai(fi)i where ai' (x) = ßi(x) ( 15)
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Then ÒR/òfi = ßi(fi) for all if and (14) shows that

( 6 ) (òS/òfj)/(òS/~fk) = (ÒR/òfj)/(ÒR/òfk) ( 16)

struction is to be
of f in the other
is independent of

,rary decomposition

This means that the gradients (ò/òfi) of Rand S are
parallel. Accordingly, R(£) and S (£) produce exactly the
same reconstructions from given constraints, because any
difference in the gradient magnitudes is absorbed in the
Lagrange multiplier (s) of the constraint (s). Hence, without
loss of generality, S can be restricted to the form

(7 ) S(£) = ~ ai(fi)i
Passage to the continuum limit requires a Lebesgue measure m
to be introduced on the coordinate x, as ai(fi) is replaced
by its continuum equivalent a(f(x) ,x). This completes the
proof of (3), in which a is assigned an explicit additional
argument m(x), separate from x, for later convenience.

(17)

id on coordinates
:her than f j and fk

to the result (3).

( 8 )

( 9 )

Commen t :
It is not surprising that the axiom is
simple sum over the individual cells i
effect of the axiom is precisely to
between different points.

only satisfied by a
of the scene. The
exclude cross-terms

, f j) (10 )
Axiom II. Coordinate invariance.
Let r be a coordinate transformation from x
f(I,m) transforms to

to rx. Then

r(f(i,m)) = f(ri,rm) ( 18)
(11 )

(12 )

Justification:
We expect the same answer when we solve the same problem in
two different coordinate systems, in that the reconstructed
images in the two systems should be related by the
coordinate transformation.

log a in j and k,

tion. Substi tuting
to f j yields Consequence:

S must be of the form

(13 ) S(£) = J dx m(x) ~(f(x)/m(x)) (19)
ferential ß jk' (f j )
tant which appears
finition (12), so
ed. Equation (7 )

Proof:
Write (3) in the form

S (£) = J dx m ( x ) ~(f(x)/m(x) ,m(x) ,x) ( 20 )

( 14 ) First, let I be the simple linear constraint J dx f(x) = 1 .
The variational equation gives

a(f(x)/m(x) ,m(x) ,x) = À (21 )
= ßi (x) (15 )

~~
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where a is the derivative of ~ with respect to its first
argument, and À is the Lagrange multiplier. Suppose there
are two points xl and x2 at which m takes the same value,
and in the neighbourhood of which m is continuous. Let r be
the transformation which exchanges equal-volume neighbour-
hoods D1 of xl and D2 of x2' Then ri=i and rm=m, hence
rf=f. Also rÀ = À because (by axiom I) operation of r
leaves all points other than those in D1 and D2 unaffected.
Substi tution in (21) yields

a(f/m,m,x1) = a(f/m,m,x2) ( 22)

showing that a
Integrating, ~
argument, except
the maximisation

does not depend on its third argument.
itself is also independent of its third
for an additive term which does not affect
over f and may be dropped.

Next, let I be the more general linear constraint

f dx a ( x ) f ( x) = 1 (23 )

for which the variational equation is

a(f(x)/m(x),m(x)) = Àa(x) ( 24 )

Apply a coordinate transformation x -~ rx with Jacobian Y (x)
ò(rx/òx). This gives

dx -; "' dx m ~ "i-1m f -;: )'-If a -; a (25 )

and the variational equation becomes

a(f(x)/m(x) ,m(x)/)(x)) = ~a(x) (26 )

where ~ is a (possibly different)
Dividing the two forms, we see that

Lagrange mul tiplier.

a(f(x)/m(x) ,m(x)/Y(x))
a(f(x)/m(x) ,m(x))

is constant in x . ( 27 )

This holds for arbitrary 1 (x), so a can not depend on its
second argument. Integrating, neither does ~ depend on its
second argument, except for a term which does not affect the
maximisation over f and can be omitted. This proves the
required result (19).
Because S is now constructed purely from invariants m(x)dx
and f(x)/m(x), reconstructions obtained from it must clearly
satisfy axiom II as well as axiom I. The proof would have
been shorter if S itself had been assumed to be invariant.
Such an assumption would be plausible, but its truth is a
consequence of the prime requirement that the reconstructed
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~ct to its first
ir. Suppose there
i the same value,
itinuous. Let r be
-volume neighbour-
and rm=m, hence
i operation of r
ind D2 unaffected.

image should be invariant.

(22 )

Comment:
It is via this axiom that the additive nature of f is
introduced. For example, in incoherent 0jtics, it makes
sense to treat the radiative energy flux intensity(x) dx
in a domain as an invariant quantity under coordinate
transformation, whereas it would not make Sjnse to treat the
corresponding integral of wave amplitude ampli tude (x) dx
as an invariant. Accordingly, we would identify f (x) wi th
the additive flux density rather than some other function of
it such as its square root.

5 third argument.
~nt of its third
~h does not affect
1.

Axiom III. System Independence.
We now restrict the form of S (£) by requiring a
reconstruction for a particularly simple problem.

specific

rrstraint Let m(x1,x2) = 1 on the unit square O~x1~1, O~x2~1.
constraints I be values of the marginals

Let the

(23 )
f dx 2 f ( xl, x 2) = a 1 ( xl) f dx 1 f ( xl, x 2) = a 1 ( x 2 ) (28 )

themselves obeying the consistent normalisation condition

(24 )
f dx 1 a 1 ( xi) f dx 2 a 2 ( x 2) = 1 ( 29 )

wi th Jacobian Y (x) Then we
product

require the reconstructed image to be the direct

a -; a (25 ) f(x1,x2) = a1(x1) a2(x2) ( 30)

(26 )

Gull, reported in Gull and Skilling (1984) and Livesey and
Skilling (1985), has presented a less abstract formulation
of this axiom.

Lgrange mul tiplier.

itant in x . (27 )

Justification:
f(x1,x2) represents a distribution 0fiproportions, because
clearly it is constrained to satisfy dX1dx2 f(x1,x2) = 1.
If all we know about fare its margina distributions a1 (xl)
and a2 (x2), then (in the absence m = 1 of any contrary bias)
we wish to recover the uncorrelated reconstruction f = a1a2.
Any other choice of f(x1,x2) would imply correlations for
which there is evidence neither in the data nor in the
measure. Good (1963) showed that this lack of correlation
in contingency tables would be a consequence of MaxEnt, but
here we reverse the argument and use the lack of correlation
in a derivation of MaxEnt.

not depend on its
Jes ~ depend on its
does not affect the

This proves the

n invariants m(x)dx
from it must clearly
he proof would have
ad to be invariant.
but its truth is a
t the reconstructed

Consequence:
S must be of the form

S(£) = - f dx f(x) (log(f(x)/m(x)) + c) ( 3 1)

tt~
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where c is a constant.

Proof:
With the given constraints, the variational equation

6 ( S - f dx 1 À 1 (x 1) a 1 ( xl) - f dx 2 À 2 ( x 2) a 2 ( x 2 )) = 0

yields
(32 )

a(f(x1,x2)) = À1(x1) a1(x1) + À2(X2) a2(x2) (33 )

in which a is the derivative of ~ as before, and
f (xi ,x2) is given in terms of a1 and a2 by the axiom
Applying ò2/ÒX1ÒX2 yields

y a' , (y) + a' (y) = 0

where
(30) .

(34 )

in which y=f(x1,x2) can be chosen to take arbitrary values
by sui table choice of constraint functions. Integrating
twice,

a (y) = A log y + B (35 )

where A and B are constants. Integrating again,

~(y) = A Y log y + (B-A) Y ( 36)

plus another constant which does not affect the maximisation
of S over f and may be dropped. A should be nega ti ve, to
ensure that the extremum of S is a maximum (62S ~ 0), but is
otherwise merely an arbitrary scaling of S. Choosing A = -1,
we have

~ (y) = - y (log y + c) ( 37)

(c = constant), which immediately gives the
( 31) .

required form

Commen t :
This is the crucial axiom, which reduces S to the entropic
form. The basic point is that when we seek an uncorrelated
image from marginal data in two (or more) dimensions, we
need to multiply the marginal distributions. On the other
hand, the variational equation tells us to add constraints
through their Lagrange multipliers. Hence the gradient
òS/òf must be the loqarithm,

òS/òf = log m - log f (38 )

which
sum.

is the only function which converts a product into a
Integrating log f yields the "f log f" entropic form.
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Axiom IV: Scalinq.

f(ø,m) = m ( 39 )
al equation where ø represents the absence of any information.

) a2(x2)) = 0 ( 3 2) Justification:
In the absence of any additional information, we
recover the initial measure.

wish to

!(X2) a2(x2) ( 33 ) Consequence:
The last ambiguity is resolved, and

S(£) = f dx ( f(x) - f(x) log(f(x)/m(x)) ) (40)

before, and
by the axiom

where
( 30 ) .

(34 ) Proof:
Unconstrained maximisation of (31) over f yields

f(x) = m(x) e-1-c (41)
ce arbitrary values
:ions. Integrating

( 35 )

It would not actually be inconsistent to have a universal
scaling factor e-1-c between initial measure m and
reconstruction f, but it would be arbitrary and often
inconvenient. The value c = -1 avoids the difficulty.;J again,

(36 ) Commen t :
This choice may be viewed as a convention defining the units
of f to be those of m.ect the maximisation

ld be negative, to
urn (62S ~ 0), but is
S. Choosing A = -1,

The entropic regularisation function (40), properly
with two arguments as

wri tten

S(£,m) = f dx ( f(x) - f(x) log(f(x)/m(x)) ) (42)
( 37) is

f.
that
S in
role

the form to be maximised when selecting an optimal image
We should note that S does obey all four axioms, so
the axioms are mutually consistent. Before defining
(42) to be the "entropy of f", we shall investigate the
of the measure m more closely.

the required form

!s S to the entropic
¡eek an uncorrelated
)re) dimensions, we
itions. On the other
; to add constraints
Hence- the gradient

(38 )

SELECTING A MODEL
The global maximum of S over f, attained in the absence of
further constraints, occurs at f=m, when the image equals
the measure. This suggests a useful interpretation of m.
As well as being an abstract Lebesgue measure, m can also be
thought of as a prior model for the image. Imposi tion of
further constraints will modify the selected image in such a
way that it will always be as "close" (in the sense of
maximising S) to the model as possible.~ts a product into a

Jg f" entropic form.

~~
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It often happens that a scene contains particular features,
such as point sources or spectral lines, which can be
described by a fairly small number of parameters. It would
be helpful to provide model parameters which were "best"
according to an agreed criterion. This involves setting up
a ranking of models which itself implies the existence of a
functional H(m,£) , or H(m) for short, to be maximised
over m.

The Axioms
Again, we will use simple properties of selected

models to restrict the form of H until only one form remains
(or equivalently a monotonic function of it). We assign the
symbol J to such freedom, by analogy with possible
constraint information I on f. The symbol miJ, f l represents
the optimal model allowed by J, on the basis of scene f.

Axiom I'. Subset independence.
Let J1 be freedom allowed to m(x) in XED1, and let J2
freedom independently allowed to m(x) in xED2' Then, if
and D2 are disjoint,

be
D1

miJ1,fl U miJ2,fl mP1 U J2 , q (43 )

Justification:
The model fitted to one domain should not affect
in a different domain, provided there are no
directly linking the domains.

the model
parameters

Consequence:
H must be of the form

H ( m ) = f dx f ( x ) a (m ( x ) / f ( x) , f ( x ) , x ) (44 )

Proof:
This follows exactly
H, and f replaced
different.

as before (axiom I), with S replaced by
by m, though the function a may be

Axiom II'. Coordinate invariance.
Let r be a coordinate transformation from x to
miJ, f l transforms to

rx. Then

r(miJ,fl) = mirJ,rfl (45 )

Justification:
We expect the same answer when we solve the same problem in
two different coordinate systems, in that the models in the
two system should be related by the coordinate
transformation.
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irticular features,
ies, which can be
=ameters. It would
which were "best"
Lnvolves setting up
the existence of a
t, to be maximised

Consequence:
H must be of the form

H (m) = I dx f (x) ~ (m (x) If (x) ) (46 )

Proof:
This follows
by H, and f
different.

exactly as before (axiom II), with S
replaced by m, though the function ~

replaced
may be

erties of selected
nly one form remains
it). We assign the

ogy with possible
ol miJ, f l represents
asis of scene f.

Axiom I I I'. System independence.
We now restrict the form of H(m) by requiring a
model for a particularly simple problem. Let

!jfined on the unit square 0$x1~1, 0~x2~1, be
dX1dx2 f(x1,x2) = 1. Let it be modelled by the

orm

specific
f(x1,x2),

normalised
factorised

m(x1 ,x2) = n1 (xl) n2 (x2) ( 47)

:ED1, and let J2
L xED2' Then, if

be
D1 with normalisation

! , q (43)
I dx 1 n 1 ( xl) = I dx 2 n 2 ( x 2) = 1

(48)

For this, we require

iot affect the model
are no parameters

n 1 ( xl) = I dx 2 f ( xl' x 2 ) n 2 ( x 2) = I dx 1 f ( xl, x 2 ) (49 )

(x),x) (44 )

Justification:
f(x1,X2) represents a distribution of proportions, because
of its normalisation. In the model, n1(x1) represents
proportional structure in the xl dimension, as does n2 (x2)
in the x2 dimension, and we wish to recover the correct
marginals. The model has no way of displaying correlations
between xl and x2, and we do not wish east-west (xl)
knowledge to influence our reconstruction of overall north-
south structure (x2), neither should x2 structure influence
xl'), with S replaced by

function a may be

Consequence:
H must be of the form

from x to rx. Then
H(m) = I dx ( f (x) log(m(x) If (x)) - c m(x) ) (50 )

(45 ) Proof:
Perturbing the model in (46) yields, in this two-dimensional
example

! the same problem in
ia t the mode i s in the
by the coordinate

SH = II dX1dx2 a(m(X1,X2)/f(X1,X2)) Sm(x1,x2) (51 )

where a is the differential of ~.
(47),

From the factorised form

~iD
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6m(x1 ,x2) = n1 (xl) 6n2 (x2) + 6n1 (xl) n2 (x2) (52 )

where n1 and n2 obey normalisation (48) but are otherwise
unrestricted. Substi tuting this into the variational
equation

6 ( H - À 1 I dx 1 n 1 ( xl) - À 2 I dx 2 n 2 ( x 2 ) ) = 0 (53)

for model parameter perturbations 6n1 and 6n2 gives

I dx 2 a (

I dx 1 a (

n1(x1)n2(x2)/f(x1,x2) ) n2(x2) = À1

n1(x1)n2(x2)/f(X1,X2) ) n1(x1) = À2
(54 ) )

from 6n1 and 6n2 respectively. In (54), n1(x1) and n2(x2)
are to equal the marginals (49), for arbitrary scene f.
Perturb f in such a way that the marginals are unchanged.
This gives

I dx 2 c ( f ( xl, x 2 ) In 1 ( xl) n 2 ( x 2 ) ) 6 f ( xl, x 2) = 6 À 1 n 1 ( xl) . (55 )I dx 1 T ( f ( xl' x 2 ) In 1 ( xl) n 2 ( x 2 ) ) 6 f ( xl, x 2) = 6 À 2 n 2 ( x 2 )
where c(y)=da(y-1)/dy. Select the particular marginal-
preserving perturbation proportional to

I

~

6f(x1,x2) = 6(x1-a1)6(x2-a2) - 6(x1-b1)6(x2-a2)
- 6(x1-a1)6(x2-b2) + 6(x1-b1)6(x2-b2) (56 )

where 6 on the right-hand side is the Dirac delta function
and a1, a2, b1, b2 are coordinates between 0 and 1, so that
the rectangle of points (x1,x2) selected by the four delta
functions lies within the given unit square. Values of xi
other than a1 and b1 show that 6À1 = O. putting xl = a1
gives

T(f(a1,a2)/n1(a1)n2(a2) )
- T(f(a1,b2)/n1(a1)n2(b2)) = 0 (57)

This holds for arbitrary a1, a2, b2 so that
arguments of T can each take arbitrarily different
The only way of satisfying this is to set

the two
values.

T (y) = A A = constant (58 )

from which

a ( y) = A y- 1 + B (59 )

Integrating again,

~(y) = A log y + B Y ( 60)
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1(x1) n2(x2) (52 ) plus a constant which does not affect the maximisation over
m and may be omitted. A should be positive, to ensure that
the extremum of H is a maximum (62H ~ 0), but is otherwise
merely a scaling factor. Choosing A = 1 and setting B = -c
gives the quoted form (50).

but are otherwise
the variational

n2(x2) ) = 0 (53 ) Axiom IV': Scalinq.

,d 6n2 gives miØ,q = f ( 61)

) n2(x2) = À1

) n1(x1) = À2
(54 )

where
mode I .

ørepresents the absence of any restriction on the

, n 1 ( xl) and n 2 ( x 2 )

arbi trary scene f.
ials are unchanged.

Justification:
In the absence of any restriction, we seek to
starting scene.

recover the

,x2) = 6À1 n1(x1)
(55 )

,x2) = 6À2 n2(x2)

Consequence:
The last ambiguity is resolved, and

H(m,£) = I dx ( f(x) log(m(x)/f(x)) -m(x) ) (62 )

Jarticular marginal-
Proof:
Unconstrained maximisation of (50) yields

m(x) = f(x)/c ( 63)
)1) 6 (x2-a2)
)1) 6 (x2-b2) (56 ) whereas m=f is required. Thus c=l and (62) is obtained.

)irac delta function
~en 0 and 1, so that
ad by the four del ta
luare. Values of xi
= O. putting xl = a1

Finally, we should note that H(m) defined in (62) does obey
all four axioms, so that the axioms are mutually consistent.

(57)

SYNTHESIS
S(£,m) from (42) and H(m,£) from (62) are the same

function (apart from additive terms in each which do not
affect maximisation of the other). They can be combined
into the joint form (denoted by S, because there is now no
need for separate symols):

2 so that
ly different
et

the two
values. S(£,m) = I dx ( f(x) - m(x) - f(x) log(f(x)/m(x)) ) (64 )

in the continuous case, and in the discrete case
(58 )

S(£,m) = ~ ( fi - mi - fi log(fi/mi) )i (65 )

( 60)

This can be used to rank and thence to select image-model
(£,m) pairs, and is the only function which obeys all theaxioms above. We shall call S "entropy" because of its
close connection with the classic "-E p log pOI form. The
decrease of S from its global maximum of zero quantifies the
deviation of f from its model m.

(59 )
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The "maximum entropy method" in data analysis, then, consists
of maximising the entropy S, either over an image f subject
to given constraints, or over the model m within given
degrees of freedom, or both.

CONCLUS IONS
Any universally applicable method of selecting a

single positive image ought to give acceptable, sensible
resul ts in particular cases. Four such cases, codif ied as
axioms, lead to MaxEnt as the only consistent selection
procedure. The MaxEnt method is valid for any type of data,
regardless of the normalisation of the image. Of
fundamental importance is that the entropy gradient (38) is
logari thmic. This neatly ensures that any reconstructed
image is both positive and finite, and as close as possible
to some prior model. The more complicated formula (64)

S(£,m) = f dx ( f(x) - m(x) - f(x) log(f(x)/m(x)) )

for the entropy itself is the integral of this gradient.

Even though MaxEnt has already had considerable practical
success in reconstructing various types of positive distrib-
ution, theory indicates that the method should be yet more
powerful, because the same entropy formula should be used to
select optimal parameters in the underlying prior model.
Thus MaxEnt should also be used to estimate parameters
pertaining to posi ti ve distributions, which opens a partic-
ularly promising avenue to future research.

In this paper, no attempt has been made to quantify the
probabilistic reliability of the MaxEnt estimates. Maximum
entropy can stand in its own right as a selection procedure.
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Lysis, then, consists
an image f subject
al m within given

log(f(x)/m(x)) )
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