Classifying the Computational Complexity of Problems

Larry Stockmeyer
The Journal of Symbolic Logic, Vol. 52, No. 1. (Mar., 1987), pp. 1-43.

Stable URL:
http://links jstor.org/sici?sici=0022-4812%28198703%2952%3A1%3C1%3ACTCCOP%3E2.0.CO%3B2-Z

The Journal of Symbolic Logic is currently published by Association for Symbolic Logic.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/asl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue May 16 12:40:08 2006

THE JOURNAL OF SyMBoLIC LoGic
Volume 52, Number 1, March 1987

SURVEY/EXPOSITORY PAPER
CLASSIFYING THE COMPUTATIONAL COMPLEXITY OF PROBLEMS

LARRY STOCKMEYER

§1. Introduction. One of the more significant achievements of twentieth century
mathematics, especially from the viewpoints of logic and computer science, was the
work of Church, Gddel and Turing in the 1930’s which provided a precise and
robust definition of what it means for a problem to be computationally solvable, or
decidable, and which showed that there are undecidable problems which arise
naturally in logic and computer science. Indeed, when one is faced with a new
computational problem, one of the first questions to be answered is whether the -
problem is decidable or undecidable. A problem is usually defined to be decidable if
and only if it can be solved by some Turing machine, and the class of decidable
problems defined in this way remains unchanged if “Turing machine” is replaced by
any of a variety of other formal models of computation. The division of all problems
into two classes, decidable or undecidable, is very coarse, and refinements have been
made on both sides of the boundary. On the undecidable side, work in recursive
function theory, using tools such as effective reducibility, has exposed much
additional structure such as degrees of unsolvability. The main purpose of this
survey article is to describe a branch of computational complexity theory which
attempts to expose more structure within the decidable side of the boundary.

Motivated in part by practical considerations, the additional structure is obtained
by placing upper bounds on the amounts of computational resources which are
needed to solve the problem. Two common measures of the computational re-
sources used by an algorithm are time, the number of steps executed by the algo-
rithm, and space, the amount of memory used by the algorithm. Given a specific
decidable problem, one typically obtains an upper bound on the required time and
space by exhibiting a particular algorithm which solves the problem and bounding
its resources. However, in judging the optimality of algorithms it is necessary also to
have corresponding lower bounds on the computational complexity of the problem;
that is, one must show that a certain amount of time or space is used by any of the (in
general, infinitely many) algorithms which solve the problem. One method, based on
diagonalization, has been developed for proving lower bounds, and many appli-
cations of this method have been made to problems in areas including logic,

Received September 13, 1985; revised April 18, 1986.

© 1987, Association for Symbolic Logic
0022-4812/87/5201-0001/$05.30

2 LARRY STOCKMEYER

combinatorial games, and algebra. However, for many interesting and important
problems this method does not appear to be applicable, and proofs of nontrivial
lower bounds are not known. Even if close explicit upper and lower bounds on the
complexity of a problem are not known, it may still be possible to implicitly classify
the problem by relating its complexity to that of any problem in some large class of
problems. Both types of classification, explicit and implicit, are surveyed here.
Before getting into technical details in later sections, the basic ideas are outlined
informally in this Introduction.

We first consider an explicit classification. Historically, the first explicit exponen-
tial lower bounds on the complexities of natural decision problems were proved by
Meyer and Stockmeyer [MeS] for a certain problem in formal language theory and
by Meyer [Mel] for the weak monadic second-order theory of one successor; the
method introduced in these papers was used in subsequent papers to prove lower
bounds. By “natural problem” we mean a problem with a reasonable practical or
mathematical motivation, not a problem which is constructed specifically to be
complex. As our first example we choose another logical decision problem, the first-
order theory of the real numbers with addition, since this problem is probably more
familiar to many readers than the problems considered in [MeS] and [Mel].
Consider formulas written in first-order predicate calculus with equality using the
binary function symbol + and the binary relation symbol <, together with the usual
logical connectives such as and, or and implies, quantifiers 3 and V, variables, and
parentheses. A sentence is a formula in which every variable is bound by a quantifier.
When variables are interpreted as ranging over the real numbers, + is interpreted as
addition of real numbers, and < is interpreted as the order relation on real numbers,
every sentence is either true or false. Denote the set of true sentences by Th(R, +).
Decidability of Th(R, +) follows from the result of Tarski [Tars] that Th(R, +,-),
the first-order theory of the reals with both addition and multiplication, is
decidable. We say that a Turing machine accepts Th(R, +) if, when started with (an
encoding of) a sentence s on its tape, the machine always halts and it halts in a
distinguished - accepting state iff s is true. The time and space used by a Turing
machine depend, in general, on the particular input. One simplification which is
commonly made is to measure the consumption of these resources as a function of
the length of the input. Let us take the length of a sentence s, denoted |s|, to be the
number of occurrences of variable symbols and other symbols, 3, +,),etc.,ins. The
following theorem, due to Fischer and Rabin [FiR], is an example of an explicit
lower bound on the computational complexity of a problem.

THEOREM 1.1. There is a rational constant ¢ > 1, such that if M is a Turing machine
which accepts Th(R, +), then M runs for at least c'*! steps when started on input s, for
infinitely many sentences s.

Of course, the same lower bound holds for the decision problem Th(R, +,)
originally considered by Tarski. The fact that any Turing machine requires
exponentially growing time implies the same (with possibly a different constant c) for
more realistic models of computers such as random-access register machines (see
[CoR]and [AHU]); this is true because there are sufficiently efficient simulations of
random-access machines by Turing machines.

Regarding upper bounds, Ferrante and Rackoff [FeR1] have shown that there is
a constant d and a Turing machine M which accepts Th(R, +) and which uses space

COMPUTATIONAL COMPLEXITY OF PROBLEMS 3

(i.e.,amount of tape) at most d'*! when deciding the truth of sentence s. The time used
by this procedure grows double-exponentially in [s|. Ben-Or, Kozen and Reif
[BeKR] establish the upper bound d'*”” on the space complexity of Th(R, +,-),
where d is a constant. (Collins [Col] and Monk [Mo] had earlier given decision
procedures for Th(R, +,) where the time and space are both doubly exponential in
[s|. The time and space used by Tarski’s original decision procedure cannot be
bounded above by the composition of any fixed number of exponential functions.)
Thus the computational complexities of deciding Th(R, +) and Th(R, +,-) have
been roughly classified as lying between exponential time and exponential space.

One consequence of results such as Theorem 1.1 has been to blur the classical
distinction between decidable and undecidable problems. The fact that Th(R, +)
and Th(R, +,) are decidable is of little use in designing practical decision
algorithms. The exponential growth of the time required to accept Th(R, +)
suggests that any decision procedure for this problem will use hopelessly large
amounts of time on relatively short sentences, and therefore that Th(R, +) is
“practically undecidable” even though it is technically decidable. Even though the
value of ¢ and the density of sentences for which the theorem applies have not yet
been determined well enough to draw solid conclusions, the term practical
undecidability seems apt, since classical undecidability results are prone to similar
objections. At the very least, an exponential lower bound on the time complexity of a
problem serves as a warning not to seek a uniformly efficient decision algorithm
but either to settle for an algorithm which does not work in all cases or to simplify
the problem so that it becomes tractable. The implications of lower bounds such as
Theorem 1.1 are discussed in more depth by Rabin [Rab4].

To demonstrate that it is possible to prove an astronomical lower bound on the
complexity of a decidable theory, even when the length of sentences is restricted, one
example has been studied in detail. This example is the weak monadic second-order
theory of one successor (WS1S) restricted to sentences of length 616 or less.
Decidability of WSI1S in general is proved by Biichi [Bu] and Elgot [Elg]. For a
particular model of computation, the logical network model, which is appropriate
for measuring the computational complexity of finite decision problems, Meyer and
Stockmeyer [Stol] show that if a logical network decides truth or falsity of
sentences of length 616 or less in WS1S, then the size of the network must exceed the
size of the known universe. This result, together with more discussion of the logical
network model, is the subject of §7.4. A paper of Ehrenfeucht [Ehr] (originally
written in 1967) must also be mentioned as an early influence in this context. It is
shown there that if the first-order theory of the integers with addition and
multiplication is made decidable by requiring that all quantifiers be bounded by
constants defined using iterated exponential notation (e.g., 27°), then the sizes of
logical networks which decide truth of sentences of length n must grow faster than
any polynomial in n.

Beginning with papers of Cobham [Cob] and Edmonds [Edm], the class of
“practically decidable” problems has been identified with the class P of problems
which can be solved in polynomial time, that is, in time cn* for some constants c and
k, where n s the length of the input. Of course, this identification must be taken with
several grains of salt, since an exponential time algorithm may be preferable in
practice to an algorithm with running time n'°°, at least for small enough n.

4 LARRY STOCKMEYER

However, as a mathematical concept, the class P has proven to be a useful one. One
reason is that P, like the class of decidable problems, is invariant under a variety of
reasonable choices for the model of computation, e.g., Turing machines or random-
access machines. After a problem has been found to be decidable, a reasonable next
question to resolve is whether the problem belongs to P. If so, one can then seck
more precise information about the time required to solve the problem, e.g., whether
time proportional to n, or n log n, or n?, etc., is sufficient. The search for efficient
algorithms for problems in P, both general techniques and algorithms for specific
problems, is an active and interesting branch of theoretical computer science which
lies outside the scope of this paper; see, for example, [AHU], [PaS], and [Tarj].

Unfortunately, there are an embarrassingly large number of important problems
whose membership in P is unresolved. Work initiated by Cook [Co1] has decreased
the embarrassment somewhat by showing that many of these problems can be
grouped into classes such that either all of the problems in a class belong to P or
none of them do. Again, we use an example. Let SAT denote the set of formulas
F(y,,...,y,) written in propositional calculus which are satisfiable, i.e., for which
there is an assignment of truth values to the propositional variables y,, ..., y,, such
that F becomes true. An obvious algorithm is to try all 2™ assignments; since m will,
in general, increase as the length of F increases, this is not a polynomial time
algorithm. No polynomial time algorithm for SAT is known, but there is no proof
that one does not exist. However, SAT can be solved in “polynomial time” by a
nondeterministic Turing machine. The class NP of problems solvable in polynomial
time by nondeterministic Turing machines is defined in §2. For now, we can define
NP to be the class of decision problems (formally, sets of words) 4 which can be
specified by

(1.1) xeA iff (3y)[lyl < p(x]) and R(x, y)]

for some polynomial p and some binary relation R on words which is computable by
an ordinary (deterministic) Turing machine in polynomial time. It is not hard to see
that SAT e NP: x is the formula F being tested for satisfiability, the word y specifies
an assignment of truth values to the variables in x, and R(x, y) is true iff the formula
x is true under the assignment y. Another example of a problem in NP which is not
known to be in P is HC, the set of all undirected graphs which have a Hamiltonian
cycle, i.e., a cycle which visits every vertex of the graph exactly once. In this case, the
word y would specify a cyclic permutation of the vertices of the graph x, and R(x,)
would check that y specifies a Hamiltonian cycle in x. In general, NP is the class of
sets A such that x € A4 iff there is a short “proof” y of membership of x in 4, where
“short” means that |y| < p(|x|) for some polynomial p, and such that the validity of
the proof can be checked by a relation R computable in polynomial time. Even
though a given proof can be checked in polynomial time, there are 2P'* potential
proofs to be checked, so the algorithm which checks all potential proofs does not run
in polynomial time. Of course, this does not rule out the possibility that there is some
more clever way of determining whether x € A in time polynomial in |x|, and the
question of whether or not P = NP is one of the central open questions in
complexity theory.

The importance of the P vs. NP question is due to results of the following type
which were first proved independently by Cook [Col] and Levin [Lev]. The

COMPUTATIONAL COMPLEXITY OF PROBLEMS 5

following result, for example, shows that the complexities of SAT and HC are closely
related and implicitly classifies them as being among the most complex problems in
NP.

THEOREM 1.2 (Cook [Col], Karr [Kal]). SAT e Piff HC e P iff P = NP.

There are now known to be a few hundred natural decision problems 4 with the
property that 4 € P iff P = NP [GaJ].

We now describe informally the concepts which are used in the proofs of
Theorems 1.1 and 1.2 and related results. These are described more formally in later
sections of the paper. One concept, borrowed from recursive function theory [Rog],
is reducibility. A set A is many-one reducible to a set B if there is a computable
function f such that x € 4 iff f(x) € B. Then, for example, the undecidability of 4
implies the undecidability of B. In 1971, Cook [Col] made a key observation
concerning reducibility: if one also has an upper bound on the resources used in
computing f, then one can relate the complexity of accepting the set B to the
complexity of accepting A. Informally,

(1.2) “complexity of A” < “complexity of B” + “complexity of [,

since from any algorithm M, which accepts B we can obtain an algorithm M, which
accepts A: given an input x, the algorithm M, first computes f(x) and then applies
Mj to f(x). In applications of efficient reducibility, the resources used in computing
f are negligible compared to what we are trying to establish about the complexities
of 4 and B. Let us informally write A <. B to indicate that A is reducible to B via
a function f which is so efficiently computable that its complexity can be ignored.
For example, Theorem 1.2 is proved by first observing that SAT and HC belong to
NP, and then showing that if 4 is any decision problem in NP then A4 <. SAT
(Cook [Col])and A4 <. HC (Karp [Kal]), where in this case A <. B means that 4
is reducible to B via a function f which is computable in polynomial time.

Although Cook and Karp did not use efficient reducibility to prove explicit lower
bounds, it was not long before others, beginning with Meyer and Stockmeyer
[MeS], noticed that (1.2) could be used in this way. If we somehow knew that a set 4
were complex, then we could show other sets B to be complex by efficiently reducing
A to B. The existence of complex sets goes back to the early years (1960’s) of
complexity theory and the important papers of Rabin [Rabl] and Hartmanis and
Stearns [HarS] which show that the complexity of decision problems can be as
large as any recursive function. In particular, Hartmanis and Stearns [HarS] show
that there is a set of words A.,, such that any Turing machine which accepts A.,,
requires time d'*! for infinitely many inputs x, where d > 1 is a constant; moreover,
A.p 18 accepted by a Turing machine which uses time at most 2" on any input x of
length n. This is proved by showing that a Turing machine M running in time 2" can
diagonalize and differ from all Turing machines which run within time d" for a
suitably small constant d > 1. Then A.,, is the set of words accepted by M. (See
[AHU, Chapter 11] or [HoU, Chapter 12] for details.)

To prove Theorem 1.1, Fischer and Rabin show that A, <. Th(R, +), where
again <, is polynomial time reducibility. Actually, they show that any member of a
large class of sets is efficiently reducible to Th(R, +). In proofs of this type, one
usually chooses the class to be a complexity class, i.e., the class of all sets accepted by
Turing machines running within some prescribed time or space bound. In Fischer

6 LARRY STOCKMEYER

and Rabin’s case, this class is the class of all sets which can be accepted within time
2". They show that for any set A in this class and for any input word x, there is a
sentence s, , in the language of Th(R, +) such that xe 4 iff s,, € Th(R, +).
Moreover, s, is computable from x in time polynomial in |x|, and there is a
constant b, depending only on A such that |s, .| < b, - |x]| for all x. In particular,
Aexp <err Th(R, +) and Theorem 1.1 follows as outlined above; i.e., if there were a
fast algorithm for Th(R, +) then there would be a fast algorithm for A4.,,,
contradicting the fact that A,,, requires time d" for infinitely many inputs. The
constant ¢ in Theorem 1.1 depends on the dilation constant b, in the reduction and
on the constant d such that A4, requires time d". The reduction is reminiscent of the
“arithmetizations” of Turing machines used in the early undecidability proofs of
Church and Turing (see [Dav]), although the requirement that the reducibility be
efficiently computable introduces some new complications. Details can be found in
[FiR] or [HoU, §13.6].

A general scenario for classifying problems goes as follows. Suppose that one has a

specific decision problem (i.e., for each instance of the problem there is a yes/no
answer) which is viewed as a recognition problem for a set B of words. The goal is to
find complexity classes oy, and %, sSuch that
(1) Giower <err B (i.€., every set A in oy, is efficiently reducible to B), and
(2) B belongs to 6, ,pe;-
Of course, it is desirable to make the two classes @,y and %, e, as close as
possible. Ideally, if Goyer = Gipper = %, then we say that B is G-complete. If €y, is
known to contain complex sets (say, by invoking the theorem of Hartmanis and
Stearns), then one can infer a lower bound on the complexity of accepting B, as
outlined above for the example Th(R, +).

Sometimes one shows that B is é-complete where the class € is not presently
known to contain complex sets. Even in this case there is a sense in which such a
result classifies B. Several open questions in automata-based complexity theory ask,
for certain complexity classes 2 and %, whether or not 2 = %. Quite often, inclusion
is known in one direction, say, that @ < &. If Bis #-complete and & satisfies certain
technical conditions related to the particular efficient reducibility being used, then B
€ 2 iff 2 = ¥. To answer the general question, “Does every set in € also belong to
27 it is sufficient to focus on a single complete set B and answer the question “Does
B belong to 2?”. Theorem 1.2 is an example of such a classification where 2 = P,
% = NP, and SAT and HC are both NP-complete. Following the work of Cook
and Karp, complete problems have been found for other interesting complexity
classes such as P, polynomial space, and exponential time.

We now outline the remainder of the paper. §2 contains basic definitions,
including those of Turing machines, efficient reducibilities, and complete problems.
In §3 we state some general consequences of a problem being complete in a
complexity class. §4 gives examples of complete problems in four important
complexity classes. §5 touches on some other interesting complexity classes, such as
classes defined by probabilistic Turing machines and by parallel models of
computation. In §6 we survey a number of results giving upper and lower bounds on
the complexities of decision problems from logic, game theory, formal language
theory, and algebra. §7 discusses some related issues. §8 contains a few closing

COMPUTATIONAL COMPLEXITY OF PROBLEMS 7

remarks. Most of the paper is carried out at a level of formality sufficient to state
results precisely. Space does not permit the inclusion of full proofs, although a few
proofs are sketched to give the flavor of how results of the form € <., B are proved.
Readers who would prefer a less formal introduction to computational complexity
theory should see the Turing Award papers of Cook [Co6] and Karp [Ka2]. No
attempt has been made to give an exhaustive list of known lower bounds and
complete problems. Rather, the goal has been to mention early seminal papers as
well as representative later papers in various subareas. Historically, the period
covered by this article begins with Cook’s 1971 paper [Col] which gave the first
example of an NP-complete problem, although much foundational work occurred
earlier. Hartmanis [Har] gives a subjective account of this earlier period.

§2. Definitions.

2.1. Decision problems and encodings. Most of the computational problems con-
sidered here are viewed as problems of recognizing particular sets of words. If X is
afinite alphabet, 2* denotes the set of finite words, i.e., finite strings of symbols, over
2. A decision problem, or simply problem, is a subset of X* for some finite X. In the
literature, a set of words is also often called a language. In reality, a decision problem
is usually defined as the problem of recognizing some specific set of mathematical
objects such as true logical formulas, graphs having a certain property, etc. This
requires encoding each object as a string of symbols over some finite alphabet. In
the case of Th(R, +), for example, each well-formed sentence is already a string of
symbols over a finite alphabet containing +, A, —, 3, etc., except that as the length
of sentences grows, the number of variables need not remain fixed. This is handled
by tagging each distinct variable symbol with a different string over {0, 1}, that is,
distinct variables are v0, v1, v10, v11, 100,... . We prefer not to get bogged down in
the details of encodings in this paper since in each case there is an obvious and
natural encoding, and the results are invariant under minor differences in the
encoding used.

The length of a word x is denoted |x|. If 4 < Z* is a problem, 4 = X* — 4
denotes the complement of A.If € is a class of problems, co-¢ = {A| A€ ¢}. N
denotes the nonnegative integers and R denotes the real numbers.

2.2. Turing machines and complexity classes. The formal model of computation
used here is the Turing machine. In the literature, this choice is made in part for
historical reasons, but mainly because the simplicity of the definition of Turing
machines makes them convenient to work with. The results obtained in terms of
Turing machines usually carry over to more realistic models of computation; we
discuss this further below. For completeness we review the definition of Turing
machines, although we assume that the reader is already somewhat familiar with this
model. More information, if needed, can be found in [AHU] and [HoU]. We first
define nondeterministic Turing machines (NTM’s) with a finite number of read/write
work-tapes and a 2-way read-only input-tape. “Nondeterministic” means that there
may be several ways for the computation to proceed. A particular NTM M is
specified by finite sets Q (the states), X (the input alphabet), I" (the work-tape
alphabet), designated states g, (the initial state) and g, (the accepting state), an
endmarker § ¢ X, an integer k > 1 (the number of work-tapes), and a transition

8 LARRY STOCKMEYER

function 6,
8:0 x (£ U {$}) x I'* - powerset(Q x I'* x {left, right, stationary}***),

where powerset(S) denotes the set of subsets of S. If the machine is in state g
scanning ¢ on the input-tape and scanning y; on the ith work-tape for 1 < i < k,and
if

(G575 > VisMys. .., my) belongs to 6(q, 0,7y, .., V),

then M can in one step change its state to ¢’, print y; on the ith work-tape and move
the head in direction m;, and move the iriput head in direction m, . ;. A configuration
of M is specified by giving the nonblank contents of all tapes, the positions of all
heads, and the state. Write C I, C' if configuration C can reach C’ in one step of M.
The machine is given input x € Z* by writing x on the input-tape with the head
scanning the first symbol of x; the state is g, and all work-tapes are blank. Let Init,
denote this initial configuration on input x. An accepting computation of M on input
x is a sequence C,, Cy,...,C, of configurations such that C, = Init,, C;, C; 4,
for 0 < i < t, the state of C, is q,, and the state of C;is not g, for 0 < i < t. M accepts
x iff there exists an accepting computation of M on x. Let L(M) denote the subset
of X2* that M accepts.

An NTM is a deterministic Turing machine (DTM) if the range of its transition
function J contains only singleton sets or the empty set. In other words, for each
configuration C of a DTM there is at most one C’ with C ,, C’, so for each input x
the accepting computation of a DTM is unique when it exists.

The time of an accepting computation C,, C,,...,C, is t; the space of the
computation is the number of work-tape squares visited by heads on work-tapes
during the computation. Let F: N — R and let M be a Turing machine. M accepts
within time (space) F(n) if for each x € L(M) there is an accepting computation of M
on x such that the time (space) of the computation does not exceed F(|x|). Let
NTIME(F(n)) (resp., NSPACE(F(n))) denote the class of problems accepted by
NTM’s which accept within time (resp., space) F(n). Let DTIME(F(n)) (resp.,
DSPACE(F(n))) denote the class of problems accepted by DTM’s which accept
within time (resp., space) F(n).

In specifying resource bounds, we often use the O-notation. If G(n) is a function
from N to R, O(G(n)) is the set of functions G’ satisfying G'(n) < ¢ - G(n) for some
positive real constant c¢. The O-notation is used inside NTIME, DTIME, etc. in the
obvious way. For example, DTIME(2°™) denotes the union of DTIME(2") taken
over all constants c. We also let poly(G(n)) abbreviate O(G(n)°*)), that is, the class of
functions which are bounded above by some polynomial function of G. Of
particular interest are complexity classes defined by resource bounds which grow
logarithmically or polynomially in n:

DLOG = DSPACE(logn), ~ NLOG = NSPACE(logn),
P =DTIME(poly(n)), NP = NTIME(poly(n)),
PSPACE = DSPACE(poly(n)).

For definiteness, we let log n denote the base 2 logarithm forn > 2,and log0 = log 1
= 1. Note that since the space bound is imposed only on the work-tapes, but not on

COMPUTATIONAL COMPLEXITY OF PROBLEMS 9

the input-tape, it makes sense to consider space bounds such as logn which grow
much more slowly than n. We henceforth assume that all time bounds satisfy
T(n) = n and all space bounds satisfy S(n) > log n. We also assume that every time
bound T(n) (resp., every space bound S(n)) has the property that there is a DTM
which, when started on any input x, runs for T'(|x|) steps and halts (resp., uses S(|x|)
squares on its work-tapes and halts). Such functions are called fully constructible
(see, for example, [HoU, Chapter 12]). We impose the constructibility condition to
rule out pathological functions F(n) such that the time or space required to compute
F grows much faster than F itself. This condition is of no concern to us since all the
familiar examples of resource bounds such as logarithmic, polynomial, and
exponential functions are constructible.

The relationships between nondeterministic and deterministic time, between
nondeterministic and deterministic space, and between time and space are presently
not well understood. Some known relationships are given next.

(2.1) Nondeterministic versus deterministic time:

(2.1a) DTIME(T (n)) = NTIME(T (n)),

(2.1b) NTIME(T (n)) € DTIMEQ°T™),
(2.2) Nondeterministic versus deterministic space:

(2.2a) DSPACE(S(n)) = NSPACE(S(n)),

(2.2b) NSPACE(S(n)) = DSPACE(S(n)?).
(2.3) Time versus space:

(2.3a) NTIME(T (n)) = DSPACE(T (n)),

(2.3b) DTIME(T (n)) € DSPACE(T (n)/1og T (n)),

(2.3¢) NSPACE(S(n)) = DTIME(2°‘S‘")}).

(2.1a) and (2.2a) are immediate. (2.1b) and (2.3a) are proved by having the DTM
try all possible computations of the NTM whose time does not exceed T'(n) and see
if any of these computations are accepting. (2.2b)is proved by Savitch [Sav]. (2.3b)is
proved by Hopcroft, Paul and Valiant [HoPV].(2.3c) follows since there are at most
25 configurations which use at most S(n) squares on the work-tapes, for some
constant ¢ depending on the NTM; if the NTM has an accepting computation on
input x there must be one in which no configuration repeats, so the time bound
follows.

The questions of closing the large gaps in (2.1), (2.2) and (2.3) have been focused
down to several open questions of central importance such as:

Does P = NP?

Does P = PSPACE?

Does DLOG = NLOG?

Is P < DSPACE(poly(logn))?

These are apparently very difficult questions. Paul, Pippenger, Szemerédi and
Trotter [PPST] have made the first progress toward showing that nondeterministic
time is more powerful than deterministic time by proving that there is a problem in
NTIME(O(n)) which is not in DTIME(O(n)). Even this slight separation between

10 LARRY STOCKMEYER

NTIME and DTIME required combining several tools from complexity theory with
a clever combinatorial lemma. Technical evidence suggests that their method
cannot push the separation much farther and, in particular, is not strong enough to
prove that P # NP.

2.3. Other models of computation. The Turing machine is obviously not a very
realistic model of computation since its storage medium is linear tapes. Other formal
models which more closely mimic the capabilities of actual digital computers have
been defined and studied. One such model is the random access machine (RAM). The
storage of a RAM consists of an infinite sequence of numbered “registers”, ry,7,,...,
each of which can hold an integer. A particular RAM is specified by a finite sequence
of labelled instructions such as

r; < 8 (load the integer 8 into register r;),

r; < r; + r, (add the contents of registers r; and r, and store the result in
ris '

r;<r,, (load the contents of r, into r; where k is the contents of r)),
go to X if r; < r; (transfer execution of the program to the statement
labelled X if the contents of r; is less than the contents of r;),

read r; (read the next input symbol into register r;).

RAM programs can also be made nondeterministic in the obvious way. Given
reasonable definitions of the time and space of RAM computations, it is not difficult
to show that RAM’s and Turing machines can simulate one another with time
bounds preserved to within composition with a polynomial and space bounds
preserved to within a constant factor. More details of the definition of RAM’s,
definitions of time and space for RAM’s, and details of the simulations can be found
in [AHU, Chapter 1] or [CoR]. In particular, the complexity classes P, NP and
PSPACE do not change if defined in terms of RAM’s rather than TM’s. It also
follows that if we prove a lower bound of the form ¢” on the TM time or space
complexity of some problem, a lower bound of the same form, with possibly a
different constant ¢ > 1, holds also for RAM’s. To this extent, the definitions and
results do not depend on the particular choice of Turing machines as the model of
computation. Indeed, there is a thesis, a complexity-theoretic version of the Church-
Turing thesis, which states that a Turing machine can simulate any reasonable
model of computation with at most a polynomial increase in time and space. There
is no precise definition of “reasonable” but the idea is that the model should not be
able to do an unrealistic amount of computation in one step. For example, a
machine which could add numbers of length 2" in one step would not be considered
reasonable.

2.4. Efficient reducibility. We must first extend the definition of DTM’s to permit
them to compute functions rather than just accept sets of words. For function
computation,a DTM also has an output-tape which is scanned by a head which can
only move from left to right and which can print symbols from some output alphabet
A. The transition function é is augmented to specify at each step either the symbol
from 4 to be printed (which is followed by the head moving one square to the right)
or the fact that the output head does not print or move. In defining the space of a
computation, space used on the output-tape is not included, so that we can consider

COMPUTATIONAL COMPLEXITY OF PROBLEMS 11

functions being computed within space which is smaller than the length of the
output.

Let f: 2* — A* and let M be a DTM. M computes f within time (space) F(n) if (i)
M accepts within time (space) F(n), (i) M accepts 2*, and (iii) for each x € 2*, if
Co,-..,C,isthe unique accepting computation of M oninput x then f(x)is the word
written on the output tape in configuration C,.

Let logspace (resp., polytime) be the class of functions computable by DTM’s
within space log n (resp., within time poly(n)). Let 4 < 2* and B < 4* be problems.
A is logspace-reducible to B, written A <,,, B (resp., 4 is polynomial-time-reducible
to B, written 4 <, B), if there is a function f: Z* — 4* with f e logspace (resp., f
€ polytime) such that x € A iff f(x) € Bfor all x € Z*. If moreover there is a constant
b > 0 such that | f(x)| < b|x]| for all x with |x| > 0, then we write 4 <,,,;, B (resp.,
A <,,in B).

Polynomial-time reducibility was introduced by Cook [Col] and Karp [Kal].
The reducibilities defined above are resource bounded versions of the many-one
reducibility of recursive function theory [Rog]. One can similarly define polynomial
time bounded versions of other types of reducibility such as Turing reducibility and
truth-table reducibility. In fact, Cook’s original paper on the subject [Col] used
polynomial time Turing reducibility. Polynomial time many-one reducibility, <,,
was defined and used by Karp [Kal] shortly thereafter. For most applications,
many-one reducibility suffices. The relative power of various types of polynomial
time reducibilities, when viewed as relations on the recursive sets, is studied by
Ladner, Lynch and Selman [LaLS]. Logspace reducibility was introduced inde-
pendently by Cook [Co3], Jones [Jon], and Meyer and Stockmeyer [StoM]. Since
logspace < polytime (cf. (2.3¢)), 4 <), B implies 4 <, B. Since polytime is clearly
closed under functional composition and since Jones [Jon] and Meyer [StoM]
show that logspace is closed under composition, <,,, <jog-tin» <p and <, are all
transitive relations on problems. In the sequel, we let < denote one of <,
Slog-lin5 Sp’ or Sp-lin'

Let B be a problem and let € be a class of problems.

(1) € <. B, and we say that B is €-hard with respect to <., if 4 <. B for all
A€®.

(2) B is @-complete with respect to <. if both € <, Band Be %.

When we say that B is ¥-hard or 4-complete without specifying a particular
reducibility, <, reducibility is understood, except when & is either NLOG or P in
which case <,,, is understood. (The reason for the exception should be clear because
of the general requirement that the resources used in computing the reducibility
function should be smaller than the resource bounds which define the complexity
class.) For most of the polynomial time reductions found in the literature, closer
inspection reveals that the function can actually be computed in logarithmic space,
although this is a level of detail which we avoid in this paper. In general we use <,
only when this stronger reducibility is needed to obtain the desired result.

§3. Consequences of efficient reducibility.
3.1. A complete problem represents a class. As outlined in the Introduction, a
consequence of a problem B being NP-complete is that B € P iff P = NP. Thisis a

12 LARRY STOCKMEYER

general phenomenon, as pointed out by Book [Bo] using the following definition. A
class 2 of problems is closed under <. provided that if B € & and 4 <, B then 4
€ 9. For example, P is closed under <,. The proof of the following is immediate
from definitions.

PROPOSITION 3.1. Let 9 and € be classes of problems such that 9 < € and 9 is
closed under <., and say that B is 6-complete with respect to <. Then Be D if
and only if 9 = €.

3.2. Lower bounds on computational complexity. As outlined in the Introduction,
if € <.;; B and if % is known to contain sufficiently complex problems, then one can
infer an explicit lower bound on the computational complexity of B. In order to
make this formal, we need two lemmas.

When 4 <, B the first lemma provides an upper bound on the complexity of A4 in
terms of an upper bound on the complexity of B. Two relevant parameters of <
are the resources used in computing the reducibility function f and the extent to
which f increases the length of its argument.

LEMMA 3.1. Let A and B be problems and let S and T be nondecreasing functions
from reals to reals.

(1) If A <. Bvia f,and L: N — R is such that | f(x)| < L(|x|) for all x, then

B € DTIME(T (n)) implies A € DTIME(T(L(n)) + p(n))

for some polynomial p(n).
(2) If A <, Buia f, and L is as above, then

B e DSPACE(S(n)) implies A € DSPACE(S(L(n)) + log n).

Moreover, (1) is true with NTIME in place of DTIME, and (2) is true with NSPACE
in place of DSPACE.

PRrOOF (sketch). (1) Say that M is a DTM which accepts B within time T(n). A
DTM M’ accepts A as follows: given input x, first compute f(x) (this takes time
polynomial in | x| and produces a word f(x) of length < L(|x/)) and then apply M to
f(x) (this takes time at most T(L(|x|)) by assumption). The proof for NTIME is
identical.

(2) The obvious approach of part (1) does not work here because writing f(x) on a
work-tape might exceed the desired space bound S(L(n)) + logn. However, it is
possible to simulate the computation of M on f(x) by simply keeping track of the
position of M’s input head on the input f(x) (which can be done using an integer
with at most log n digits) and then recomputing the symbols of f(x) whenever they
are needed in this simulation. This technique is due to Jones and Meyer [Jon],
[StoM]. O

The second lemma concerns “hierarchy” theorems for time and space complexity
which state that for small increases in the growth rate of the resource bounding
function S(n) or T'(n), more problems can be accepted.

We use the following terminology: For a problem A and a function G(n), the
phrase “A requires nondeterministic time G(n) i.0.” means that if 4 is accepted by an
NTM within time T(n) then T(n) > G(n) for infinitely many n (i.o. stands for
“infinitely often”). Similar terminology is obtained by replacing nondeterministic by
deterministic and/or replacing time by space.

COMPUTATIONAL COMPLEXITY OF PROBLEMS 13

The following lemma, which concerns hierarchies for NTM’s, is due to Seiferas,
Fischer and Meyer [Se], [SeFM] and refines earlier results of Ibarra [Ib] and Cook
[Co2].

LeEMMA 3.2. (1) Let T,(n) and T,(n) be functions such that

lim Ty(n + 1)/ T,(n) = 0.
There is a problem A € NTIME(T,(n)) such that A requires nondeterministic time
T;(n) i.o.
(2) Let S,(n) and S,(n) be functions such that
lim S;(n + 1)/S,(n) = 0.
There is a problem A € NSPACE(S,(n)) such that A requires nondeterministic space
Si(n) i.o.

Similar hierarchies are known for DTM’s [HarS], [StHL] (see also [HoU,
Chapter 12]) although the known time hierarchy is slightly coarser in the
deterministic case.

To illustrate the use of Lemmas 3.1 and 3.2, we restate and outline the proof of
Theorem 1.1.

THEOREM 3.1. There is a constant ¢ > 1 such that Th(R, +) requires nondetermin-
istic time c" i.o.

ProoF (sketch). The key fact, proved by Fischer and Rabin [FiR], is that
3.1 NTIME(Q2") <,.;2 Th(R, +).

The proof of (3.1) is quite involved and we do not attempt to reproduce it here. Our
goal is only to show how (3.1) is used to prove a lower bound on Th(R, +).

Using Lemma 3.2(1), let 4 be a problem in NTIME(2") such that A requires
nondeterministic time 2”2 i.o. From (3.1), A <,;, Th(R, +) via a function f such
that | f(x)| < b|x| for some constant b. Choose ¢ such that 0 < ¢ < 2'/2% and assume
for contradiction that Th(R, +) € NTIME(c"). Using Lemma 3.1(1) it follows that
A € NTIME(c* + p(n)), where p(n) is a polynomial. But ¢ + p(n) < 2"? for
all but finitely many n, contradicting the fact that 4 requires nondeterministic time
2"2i0. O

The reader should have no trouble generalizing this proof to other situations. For
example, if B is a problem such that DSPACE(2") <,,, B, and moreover for each
A € DSPACE(2") there is a function f and a constant b such that 4 <,,, B via f and
| f(x)| < b|x|?, then one concludes that there is a constant ¢ > 1 such that B requires
deterministic space ¢""’” i.o.

We should point out that it is not strictly necessary to use the hierarchy theorems
in proving lower bounds. Once one has shown that € <. B for a sufficiently rich
class %, then it should be possible to carry out a direct diagonalization (in the spirit
of classical undecidability results, cf. [Dav]) to establish a lower bound. In fact, this
is how Fischer and Rabin proceed in their proof of Theorem 3.1. We prefer to make
explicit use of the hierarchy theorems.

A lower bound on the computational complexity of a problem sometimes implies
a lower bound on some other measure of the complexity of the problem. For a
logical decision problem another measure is the length of proofs required to prove

14 LARRY STOCKMEYER

the true statements. Suppose that AX is a system of axioms for Th(R, +) such that (i)
a sentence s is provable from AX iff s is true, and (ii) AX, when viewed as a set of
words, belongs to P. Then there is a constant ¢ > 1 and an infinite set S < Th(R, +)
of true sentences such that, for all s € S, the shortest proof of sfrom AX has length at
least c!*!. Briefly, this is true because if proofs were always “short” then there would
be a “fast” NTM which accepts Th(R, +): given an input s, such an NTM would
nondeterministically guess a “short” string p and then verify that p is a valid proof of
s from AX. Fischer and Rabin [FiR] discuss this further.

3.3. Speed-up. Given a sufficiently complex problem A4 and given an algorithm M
which accepts 4, one can sometimes find a more clever algorithm M’ which runs
much faster than M on infinitely many inputs. Blum in [Blu1] and [Blu2] shows that
there exist problems with this speed-up property for any given M. To simplify the
discussion, let us restrict attention to DTM’s which halt on all inputs, and let
Time,,(x) denote the number of steps in the computation of DTM M on input x. Let
us say that a problem 4 < X* has T (n)-to-polynomial effective i.o. speed-up if there is
a polynomial p(n) such that from any DTM M which accepts 4 we can effectively
produce a DTM M’ which accepts 4 and an infinite recursive set U < 2* such that

Timey,(x) > T(|x|) forall xe U,
and
Time,,.(x) < p(|x|]) forall xe U.

Blum’s work is carried out for a general axiomatic complexity measure. However,
the proof of Theorem 3 in [Blu2] can be carried out for the particular measure of
DTM time, and the proof yields the following result (this was pointed out to me by
A. Meyer).

THEOREM 3.2. For any constructible T (n), there is a problem A in DTIME(O(T (n)?))
which has T(n)-to-polynomial effective i.o. speed-up.

However, the problem A in this theorem is constructed specifically to have the
speed-up property; it is not a natural problem. Stockmeyer [Stol], following a
suggestion of Meyer, has shown that if 4 <., B via f, if f satisfies the mild
conditions of being one-to-one and efficiently invertible (all of the known reductions
satisfy these conditions), and if A has i.0. speed-up then so does B. (Although the
details are carried out in [Sto1] only for the space measure, the details for the time
measure are analogous.) Combining this with Theorem 3.2 and results such as (3.1),
it follows that natural problems such as Th(R, +) have i.0. speed-up. In particular,
the following can be shown. :

THEOREM 3.3. There is a constant ¢ > 1 such that Th(R, +) has c"-to-polynomial
effective i.o. speed-up.

Berman [Berl] has shown that if a problem is DTIME(T (n))-complete where
T(n) grows faster than polynomially in n, then the problem has the i.o. speed-up
property even without imposing an efficient invertibility condition on the reduci-
bility function.

§4. Complete problems in four important complexity classes. The purpose of this
section is to give examples of complete problems in four important complexity
classes, attempt to give the reader some feeling for how such results are proved, and

COMPUTATIONAL COMPLEXITY OF PROBLEMS 15

examine the consequences of complete problems to open questions in complexity
theory. From the inclusions (2.1), (2.2), and (2.3) is it known that

4.1) DLOG = NLOG < P < NP < PSPACE.

It is presently an open question whether any of these containments are proper.
(However it is known that NLOG # PSPACE, which follows from (2.2b) and
Lemma 3.2(2).) Since it is not known that P 2 PSPACE, we cannot use the method
of §3.2 to show that problems complete in these classes require more than
polynomial time. However, using the method of §3.1 it is easy to relate the
complexities of complete problems to questions of proper inclusion in (4.1). It is an
easy consequence of Lemma 3.1 that all five of the classes in (4.1) are closed under
<iog and that the last three are closed under <. Let %; denote the ith class from
the left in (4.1) for 1 < i < 5. By Proposition 3.1, if B is %;-complete then Be %;_,
if ¢,_, =%,.

In each of the following four subsections we choose as our main example a
problem which has been useful as a starting point for proving other problems to be
complete. Note that since <,,, and <, are transitive, once a particular problem 4
has been proved é-hard, one can show other problems B to be ¢-hard by showing
that A <. B for the appropriate <. . This is sometimes easier than showing
€ <. B directly.

Since several of our examples involve propositional variables and formulas, we
first introduce some terminology for this. Let {X,,X;,X,,...} be a set of
propositional variables where variables are encoded as described in §2.1 by writing
subscripts in binary notation, X0, X1, X10, X11, X100, etc. A propositional formula
either is a propositional variable or is of the form (1 F),(F — G),(F A G),or(F v G)
where F and G are propositional formulas. An assignment of truth values to the
propositional variables in a formula determines a truth value for the formula in the
obvious way. A propositional formula is satisfiable if the formula is true for some
assignment of truth values to its variables. A formula is in conjunctive normal form if
itis a conjunction of disjunctions of literals, where a literal is either a variable or the
_ negation of a variable. Disjunctive normal form is defined dually.

4.1. NLOG-complete problems. The first NLOG-complete problem is implicit in
a paper of Savitch [Sav], although the terminology of logspace reducibility had not
yet been formalized at that time (1970). Savitch’s problem, the set of “threadable
mazes”, is now usually referred to in the literature as the graph accessibility problem
or GAP: Given a directed graph G and two distinguished vertices s and ¢, does there
exist a directed path in the graph from s to t? More precisely, a graph on m vertices is
specified by giving its edge relation as an m x m matrix E of zeros and ones. For
1 <i,j<m, E(i,j)=1iff there is an edge directed from vertex i to vertex j. E is
written as a word in {0, 1}* of length m? by concatenating its rows. Define GAP to be
the set of all graphs such that there is a directed path from vertex 1 to vertex m, where
m is the number of vertices in the graph. In other words, E € GAP iff there is a
sequence of integers z,...,z, such that z; = 1, z, = m, and E(z;,z;,,) = 1 for all
1<i<k

THEOREM 4.1. GAP is NLOG complete.

PRrOOF (sketch) (1) GAP e NLOG. An NTM M can accept GAP within space
log n simply by nondeterministically guessing the sequence z,..., z, which certifies

16 LARRY STOCKMEYER

that E € GAP, and accepting E iff such a certificate is found. During this procedure,
the work-tape holds two integers i and j in the range from 1 to m; by writing the
integers in binary, this takes space logm < log|E|. First M sets i = 1. M then
nondeterministically chooses a j and checks that E(i, j) = 1 (how this is done in
space logn is an easy exercise). If the check succeeds, M sets i to j and continues
by guessing another j with E(i, j) = 1, and so on. M accepts if ever j = m.

(2) NLOG <,,, GAP. Let 4 € NLOG and let M be an NTM which accepts A
within space logn. We must show how to transform each input word x to an edge
relation E such that M accepts x iff E € GAP. Fix an input x of length nand let ./ be
the set of configurations (head positions and contents of work-tapes) of M such that
the space used on work-tapes does not exceed log n. There are at most poly(n) such
configurations (cf.(2.3c)) and each configuration C in .# can be encoded as a
distinct binary word bin(C) of length O(logn). Let z(C) be the integer whose
binary representation is bin(C). Let m be one more than the largest z(C). Set
E(z(C),z(C")) = 1 for all C and C’ such that C -, C’ when x is written on the input
tape of M. Also set E(1,z(C,)) = 1 where C,, is the initial configuration of M, and set
E(z(C),m) = 1 for all accepting configurations C. All other entries of E are set to
zero. It is clear by the definition of acceptance for NTM’s that M accepts x iff E
e GAP. It is not hard to see that the function mapping x to E can be computed in
space logn. [

Jones, Lien and Laaser [JoLL] show other problems to be NLOG-complete. One
example is the set of unsatisfiable propositional formulas in conjunctive normal
form with at most two literals per conjunct. (As discussed shortly in §4.3, if there can
be three literals per conjunct the satisfiability problem becomes NP-complete.)
Sudborough [Sud] shows that there is a (linear) context-free language which is
NLOG-complete.

4.2. P-complete problems. Problems which are P-complete are tied to the
relationship between time and space. In particular, if 4 is P-complete then

A € DSPACE(poly(logn)) iff P < DSPACE(poly(logn)).

We shall see in §5.3 that P-completeness is also related to the question of whether
problems can be solved much faster by using many computing elements in parallel.

The first P-complete problem was exhibited by Cook [Co3]. We give here another
problem which was proved P-complete by Ladner [Lad2] and which has been
useful in showing other problems to be P-complete. An instance of the circuit value
problem (CVP) is a sequence of equations among propositional variables X|,..., X,,
where each equation is of one of the forms:

X; = true, X; = false, X;=X;@ X, forsomej,k<i,

where @ denotes one of the 2-ary Boolean functions (and, or, exclusive-or, etc.), and
where each variable appears exactly once on the left-hand side of an equation.
Variables can appear any number of times within right-hand sides of equations.
Given such a sequence, it is clear how to assign truth values to all the variables in
order X;, X,,...,X,,. The condition j, k <i ensures that there are no cyclic
dependencies among the variables. CVP is the set of such sequences of equations
such that X, evaluates to true. (To explain the name “circuit value problem”, think

COMPUTATIONAL COMPLEXITY OF PROBLEMS 17

of each variable as representing the Boolean logic value on some wire in a
combinational logic circuit. Each equation says either that the wire has a fixed value
or that the value of the wire should be computed as a Boolean function of other
wires.) Clearly CVP e P. The intuition why CVP is apparently not solvable in
poly(log n) space is that any algorithm must remember the truth values of variables
as they are computed since these values will be needed later to evaluate other
variables. Of course, this is not a proof that poly(log n) space does not suffice.

THEOREM 4.2. CVP is P-complete.

Proor (sketch). Having noted that CVP e P is obvious, we need only show that
P <,,, CVP. For this proof, and the proofs in the next two subsections, it is
convenient to assume that Turing machines have a particular simple form. A simple
Turing machine has only one tape which is one-way infinite to the right. The machine
is given input x by writing x left-justified on the tape with the head scanning the
leftmost symbol of x. For each simple TM M we assume that there is a polynomial
p(n) such that M never visits more than p(|x|) squares on its tape. M accepts by
returning its head to the leftmost tape square and entering the accepting state q,.
Once in state q,, we assume that M stays in state g, without moving the head. It is
easy to see that P is the class of problems accepted by simple DTM’s which accept in
polynomial time. This is true because the information on the tapes of a DTM with
many tapes can be stored on the single tape of a simple DTM, and the running time
of the simple DTM is at most proportional to the square of the running time of the
multi-tape DTM (see Theorem 12.5 in [HoU1]).

Let M be a simple DTM which accepts in polynomial time p(n), which for
simplicity we assume is the same as the space bound of M. Let Q be the states of M,
let I' be the tape alphabet of M, and let $ be a symbol notin Q or I'. A configuration
of M on input x (with n = |x]) is a word of length p(n) + 3 of the form agB where
q € Q and o, f € I'*. The meaning is that af is written on the tape and M is in state ¢
scanning the leftmost symbol of B. In particular, the initial configuration is
Sqox# # # - #§ where # denotes the blank symbol, and accepting con-
figurations have g, as their second symbol. Let Cy, C,, ..., C,, denote the sequence
of configurations in the computation of M on input x and let c; ; denote the jth
symbolof C;for 1 < j < p(n) + 3.Since M is deterministic, it is easy to see that for all
i>1and all j, ¢; ; is determined by ¢;_; j_y, ¢i—y j» Ci—1,j+1, and ¢;_; ji,. For
example,if oneof ¢;_; ;_;,¢;—y j,0rc;_; j+isastatesymbol, thenc; ;is determined
by the transition function of M. If none of ¢;_; ;_;, ¢;—; j, OF ¢;_y j+; IS a state
symbol, thenc; ; =c¢;_, ;.

To write a set of equations, we associate a variable X(i,j,y) with each
i(0<i<p),j(l<j<pm+3),andyeQuTl u{$}. Theintended meaning is
that X (i, j,y) is true iff ¢; ; = y. The variables X(0, j, y) associated with the initial
configuration C, are set to true or false to make these variables encode C,. Each
variable X (i, j,y) with i > 0 is defined in terms of some of the variables X(i — 1,, -)
associated with C;_,. (In order to bring each equation into the simple form in the
definition of CVP, some additional variables must be introduced in defining X (i, j, 7)
from previous variables.) Finally, we number the variables so that the largest
numbered variable is X(p(n), 2,q,). This variable evaluates to true iff M accepts x.
Since the definition of X (i, j,7) in terms of previous variables is essentially the same

18 LARRY STOCKMEYER

for all i and j, a DTM can carry out the transformation of x to the sequence of
equations while using an amount of tape proportional to the space required to store
the indices i and j. By writing the indices in binary, this space is O(logn). [

Goldschlager [Gol] shows P-completeness for the monotone circuit value
problem, defined like CVP but allowing variables to be defined from other variables
using only A and v. Other interesting P-complete problems include the problem of
determining if a given context-free grammar generates the empty language (Jones
and Laaser [JoL]), finding the maximum flow in a network (Goldschlager, Shaw
and Staples [GoSS]), checking whether two terms are unifiable—a problem which
arises in resolution theorem proving (Dwork, Kanellakis and Mitchell [DKM]),
and checking whether a system of linear inequalities with rational coefficients has a
rational solution—a special case of linear programming (Dobkin, Lipton and Reiss
[DoLR] show P-hardness and Khachiyan [Kh] shows that this problem belongs to
P). Many other P-complete problems are surveyed by Hoover and Ruzzo [HooR].

4.3. NP-complete problems. The first problem to be proved NP-complete was the
satisfiability problem for the propositional calculus (Cook [Co1]). The importance
of the concept of NP-completeness was further established by Karp [Kal], who
proved NP-completeness for several classical problems such as checking whether a
graph is k-colorable, checking whether a graph has a Hamiltonian cycle, and
checking whether a system of linear inequalities has a 0-1 solution. There are now a
few hundred NP-complete problems known, each having some reasonable practical
or mathematical motivation [GalJ]. Since it is conjectured that P # NP, proving a
problem NP-complete is viewed as evidence that the problem cannot be solved in
deterministic polynomial time. We are content here just to sketch the proof that
SAT, the set of satisfiable propositional formulas, is NP-complete. The reader is
referred to [Gal] for more information about NP-completeness.

THEOREM 4.3. SAT is NP-complete.

ProOF (sketch). It is easy to see that SAT € NP: given a propositional formula
F(X,,...,X,,), an NTM can nondeterministically choose an assignment of truth
values to the variables X|,..., X,,, evaluate the truth value of F under the chosen
assignment, and accept iff the answer is true.

To sketch the proof that NP <, SAT, we use definitions and notation as in the
proof of Theorem 4.2. We first note that NP is the class of problems accepted by
simple NTM’s in polynomial time. Let M be a simple NTM with time and space
bound p(n). The proof of Theorem 4.2 does not work for NTM’s because c; ; is not
uniquely determined by the symbols of C;_,. However, it is not difficult to see that
there is a 6-ary relation R, such that C,,C,,...,C,, is a valid accepting
computation of M on input x (with n = |x|) iff Co=S8qox# # # - #3, Cp
contains the accepting state q,, and

RM(";‘»1'j—1»ci~1,j»ci~1,j+1aci,j~19ci.j»ci,j+1)

foralliand jwith 1 < i < p(n)and 2 < j < p(n) + 2. In other words, the validity of
the computation can be checked by making “local checks” within the computation.
Each local check, as well as the check that C, is the initial configuration and that

C, 1s an accepting configuration, can be expressed as a propositional formula

COMPUTATIONAL COMPLEXITY OF PROBLEMS 19

involving the variables X (i, j, 7). The conjunction of all these formulas is satisfiable
iff M accepts x. [

SAT remains NP-complete even when restricted to formulas in conjunctive
normal form with at most three literals per conjunct [Col]. Similarly, the set of
tautologous propositional formulas is co-NP-complete even when restricted to
formulas in disjunctive normal form with at most three literals per disjunct.

4.4. PSPACE-complete problems. PSPACE-completeness is, in a certain tech-
nical sense, even stronger evidence of intractability than NP-completeness. If
NP # PSPACE as is conjectured, PSPACE-complete problems cannot be solved
in polynomial time even nondeterministically. The first problem shown to be
PSPACE-complete was the equivalence problem for Kleene regular expressions
(Meyer and Stockmeyer [MeS]). As our main example, we choose the quantified
Boolean formula problem (QBF) which was shown PSPACE-complete by Stock-
meyer [StoM], [Sto2]. QBF is the set of propositional formulas F(X,,..., X,,) such
that

(AX)(VX)EX3)(VXL) (@ X)) LF (X, ., X))

where the quantifiers alternate (so that Q,, is 3 (V) if m is odd (even)).

THEOREM 4.4. QBF is PSPACE-complete.

ProoF (sketch). (1) QBF € PSPACE. Given a formula F(X,,...,X,,), a DTM
determines whether F € QBF by the brute-force approach of trying both truth
assignments to X, for each of these trying both truth assignments to X,, and so on.
This requires space to record a truth assignment to all the variables of F, which is
certainly polynomial in the length of F.

(2) PSPACE <, QBF. We again use terminology as in the proofs of Theorems 4.2
and 4.3. PSPACE is the class of problems accepted by simple DTM’s with a
polynomial space bound, but no time bound other than the bound 2°P°™ implied by
(2.3c). Let M be a simple DTM with polynomial space bound p(n). Since M can run
for 2P°™ steps, we cannot associate a sequence of propositional variables with each
configuration in a computation of M as was done in the proofs of Theorem 4.2 and
4.3. Instead, we write quantified formulas F(V, V'), where V and V' are sequences of
propositional variables V(j,y)and V'(j,y),for1 <j<p(n)+3andyeQu I u {3},
which occur free in F, and which encode configurations of M as described in the
proof of Theorem 4.2. F(V,V’) expresses the fact that ¥ and V' both encode
configurations of M and that if M is started in the configuration encoded by V then
M can reach the configuration encoded by V' by a computation involving 2 steps.
The formula F, checks that one configuration can reach another in one step of M,
and this formula is written as in the proof of Theorem 4.3 as a conjunction of local
checks within the two configurations. A first attempt to write F, for k > O is

E(V, V') = @W)[F_(V,W) A E_ (W, V")].

Here, W is another sequence of variables which encodes a configuration of M. The
idea of checking that V can reach V' in 2* steps by existentially choosing the
“midpoint” W is due to Savitch [Sav]. This does not quite work here because the
length of F, grows exponentially in k, and ultimately we need F, where k is some

20 LARRY STOCKMEYER

polynomial function of n. One more trick allows us to write F, in terms of one copy
of F,_, so that the length of F, grows only polynomially in k:

FE(V, V")
—@AWYYVZ(Y =V AZ=W)v(Y=W A Z=V))>F_,(Y,Z)]

Let g(n) be a polynomial such that M accepts within time 2?*. We can use Fy, to
express the fact that the initial configuration of M on input x can reach an accepting
configuration within 2¢® steps. []

QBF remains PSPACE-complete even when restricted to formulas in conjunctive
or disjunctive normal form with at most three literals per conjunct or disjunct
[Sto2]. By noting that the reduction of PSPACE to QBF described above can be
computed in logarithmic space and that the reduction maps an input x of length n to
a formula of length O(n?logn) in the case that M is an NTM with a linear space
bound (i.e., p(n) = n), the method of §3.2 can be used to show that QBF requires
nondeterministic space n’ i.0. for any fixed 5 < 3. Theorem 4.4 can be used to show
PSPACE-hardness of any first-order theory which has the ability to emulate QBF.
One example from [Sto2] is the first-order theory of equality which is, in fact,
PSPACE-complete. We shall see other examples of PSPACE-complete problems
in §6.

§5. Other classes.

5.1. Alternation and the polynomial-time hierarchy. Alternating Turing machines
(ATM’s) were defined by Chandra, Kozen and Stockmeyer [ChKS]. One of the
motivations for the definition was to generalize the concept of a nondeterministic
computation. Another way to think of the definition of acceptance for NTM’s is
that a configuration C of an NTM M leads to acceptance iff there exists a
configuration C’, with C k-, C’, such that C’ leads to acceptance. The definition of
alternation generalizes this to alternating quantifiers. A particular ATM is specified
like an NTM as described in §2.2, but in addition a particular subset U of the states Q
is specified. The states in U are called universal states and the states in Q — U are
called existential states. Configurations are called universal or existential according
to the state of the configuration. Informally, a universal configuration C leads to
acceptance if C' leads to acceptance for all C’ such that C -, C’. More formally, an
accepting computation of an ATM M on an input x is a rooted tree whose nodes are
labelled by configurations of M such that the root is labelled by Init,, all leaves are
labelled by accepting configurations, if an internal (i.e., nonleaf) node is labelled by
an existential configuration C then the node has one son which is labelled by some C’
with C -, C’, and if an internal node is labelled by a universal configuration C and if
C,,...,C, are the configurations reachable from C in one step of M then the node
hasd sonslabelled C,,..., C,. The time of a computation is the maximum length of a
path from the root to some leaf. The space of a computation is the maximum number
of work-tape squares visited in each of the configurations labelling nodes of the
configuration. A particular root-to-leaf path has k alternations if the number of
times the machine switches from an existential to a universal configuration, or vice
versa, on the path is k — 1. The alternations of a computation is the maximum, over
all root-to-leaf paths, of the alternations of the path. In complete analogy to the

COMPUTATIONAL COMPLEXITY OF PROBLEMS 21

definitions of §2.2 for NTM’s and DTM’s, we can define the set of words L(M)
accepted by the ATM M, the notion of M accepting in time T'(n), space S(n), or
alternations A(n), and the alternating complexity classes ATIME(T (n)) and
ASPACE(S(n)) defined by ATM’s which accept within time T'(n) or space S(n),
respectively. Alternating complexity classes are related to deterministic complexity
classes by the following result from [ChKS] which shows that alternating time
(space) corresponds to deterministic space (time).

THEOREM 5.1. (a) ATIME(poly(T'(n))) = DSPACE(poly(T(n))).

(b) ASPACE(S(n)) = DTIME(2°6™),

These relationships have been useful in classifying the complexities of certain
problems in logic and game theory, two areas where alternating quantifiers arise
naturally. We shall see some examples in §6.

Of special interest are classes defined by ATM’s which accept within poly-
nomial time and within a constant number of alternations. Such classes give a
polynomial time bounded analogue of Kleene’s arithmetical hierarchy [Rog,
Chapter 14], where P is the analogue of the recursive sets and NP is the ana-
logue of the r.e. sets. (To help see the analogy, note that the definition of NP
given by (1.1) defines the r.e. sets if the polynomial bound on the length of y is
omitted.) The classes of the polynomial-time hierarchy are Z? and II¥ for k > 0.
20 =Hf=P. For k>0, Z¥ (resp., I1f) is the class of problems accepted by
ATM’s whose initial state is existential (resp., universal) and which accept simul-
taneously within time poly(n) and within k alternations. The original definition
of the polynomial-time hierarchy, given by Meyer and Stockmeyer [MeS], more
closely mimics the definition of the arithmetical hierarchy. Specifically, Z? can be
defined equivalently as the class of problems accepted in polynomial time by
nondeterministic oracle Turing machines with oracles in 2?_,. (An oracle
machine can write words on a special oracle tape, and in one step find out
whether or not the word written on the oracle tape belongs to the oracle set.) The
definition in terms of oracle machines also allows us to define 47 to be the class
of problems accepted in polynomial time by deterministic oracle machines with
oracles in 2?_ . Trivial relationships are

p _ P _ p

2P = NP, II{ = co-2?¥,

p p p p p
ully A}, €27, , nI?, |,

>? < PSPACE

for all k > 0, although none of these inclusions are known to be proper. It is easy to
show that if 27 = 27, for some k >0, then 2} = 27 for all j > k [Sto2]. In
particular, if P # 27 for any k > 1, then P # NP.

One of the original hopes in defining the polynomial-time hierarchy was that it
would be useful in classifying certain recursive problems, just as the arithmetical
hierarchy has been useful in classifying certain nonrecursive problems. This hope
has not been completely borne out, although a few results are known. Sagiv and
Yannakakis [SaY] show that a certain problem in relational database theory is Z5-
complete. Huynh [Huy] shows that the equivalence problem for context-free
grammars with a one-letter terminal alphabet is IT5-complete. Papadimitriou

22 LARRY STOCKMEYER

[Pal] shows that, given a graph with an integer distance assigned to each edge,
determining uniqueness of the optimal traveling salesman tour is 45-complete.
Jeroslow [Je] shows that a certain linear programming game is complete in various
levels of the hierarchy, the level depending on the number of players. Other, more
artificial, problems complete in various levels of the hierarchy are given in [Sto2]
and [Wr]. ’

5.2. Probabilistic classes. There are certain problems which are not known to be
solvable in deterministic polynomial time but which can be solved in polynomial
time by algorithms which can utilize random numbers in their computations and
which may make errors with small probability. A simple example of this, as noted by
Schwartz [Schw], is the problem of checking whether a polynomial expression is
identically zero. Let x4, x,,... be a sequence of indeterminates. An indeterminate is a
polynomial expression of degree 1. An integer is a polynomial expression of degree 0.
If F and G are polynomial expressions then (F + G) and (F — G) are polynomial
expressions of degree max(deg(F), deg(G)), and (FG) is a polynomial expression of
degree deg(F) + deg(G). Let ZERO be the set of polynomial expressions which are
identically zero. For example, (x; + x,)(x; — X,) — X;X; + X,X, is in ZERO. An
obvious approach for solving this problem is to expand the given expression into a
sum of monomials. This is not a polynomial time algorithm since the expansion
could cause an exponential blow-up in the length of the expression. However, it is
not hard to prove that if a polynomial expression F(x;,..., x,,) is not identically zero
and if N > ¢ - deg(F), then F has at most ¢c”!N™ integral roots in [1, N]™ [Scwh].
Thus, another approach would be to independently choose m random integers from
the interval [1, N] for N = 2 - deg(F), evaluate F on the chosen random integers,
and accept iff F evaluates to 0. For inputs F with F € ZERO, this procedure is
always correct. For inputs with F ¢ ZERO, this procedure makes an error with
probability at most 1/2. By repeating this procedure ¢ times, using a new random
assignment at each trial, the error probability decreases to at most 27",

The concept of a resource bounded Turing machine which can make random
choices was formalized by Gill [Gi]. The definition of a probabilistic Turing machine
is actually identical to the definition of an NTM. The difference arises in the
definition of acceptance. When a probabilistic Turing machine M is in a
configuration C and there are d configurations C’ such that C -, C’, we imagine that
M generates a random integer between 1 and d to choose which of the d successors
of C to enter next. For simplicity, let us restrict attention to Turing machines with
the property that all computations, accepting or not, halt within p(n) steps for some
polynomial p. For each input x, there is a well-defined probability p,(x) that M
accepts x.

A problem A is in the class R, called random polynomial time, if there is a
probabilistic Turing machine M which always halts in polynomial time and a
constant ¢ > 0 such that p,(x) > ¢ for all x € 4 and p,(x) = O for all x ¢ A. Note
that M, when viewed as an NTM, accepts 4 and has the additional property that, for
each accepted input, at least the fraction ¢ of the possible computations are
accepting. It follows that

P <R = NP

We have noted above that the complement of ZERO belongs to R. Some

COMPUTATIONAL COMPLEXITY OF PROBLEMS 23

generalizations of this result are given by Ibarra and Moran [IbM]. An interesting
example of a problem which is known to belong to R, but whose membership in P is
unresolved, is the set of binary representations of composite integers. The proof that
the set of composite integers belongs to R is due to to Solovay and Strassen [SoS]
and independently to Rabin [Rab5], who bases the algorithm on a method of Miller
[Mi]. Berlekamp [Berl] and Rabin [Rab6] give probabilistic algorithms for other
number-theoretic problems, such as factoring polynomials over finite fields, which
are faster than the known deterministic algorithms.

Gill also defines the probabilistic complexity class BPP which allows errors on
both accepted and rejected inputs. Precisely, A is in BPP if there is a polynomially
time bounded probabilistic Turing machine M and a constant é > 1/2 such that
pu(x) > 6 forall x e A and p(x) <1 — 6 forall x ¢ 4. It is known that

R<BPPc XN IIL.

The second inclusion is due to Sipser and Gacs [Sip3] and is not obvious; a simpler
proof is given by Lautemann [Lau]. From a practical point of view, showing a
problem to bein R or BPP is almost as good as showing the problem to be in P, since
by repeating the probabilistic algorithm ¢ times, the error probability decreases
exponentially in ¢. There are no problems known to be R-complete or BPP-
complete. Gill [Gi] also defines probabilistic classes by requiring only p,(x) > 3
for x € A and p,(x) <1 for x ¢ A, so that the probabilities of accepting and re-
jecting need not remain bounded away from one another; such classes are more of
mathematical than practical interest. Space bounded probabilistic classes are also
considered in [Gi]. Further discussion of probabilistic complexity classes and
related issues can be found in [Joh3].

5.3. Parallel computation. As the price of computer hardware continues (o
decrease, it becomes quite attractive to speed up the solution to problems by having
many processors work on the problem in parallel. For this to succeed, it must be
possible to partition the computation among the processors so that the various
parts can be carried out more or less independently. This raises the theoretical
question of determining which problems can be solved much faster in parallel than
sequentially.

A very simple example of a problem which can be solved much faster in parallel
than sequentially is the problem of recognizing the set of words x such that x = uu
for some u € {0,1}*. Given an input x of even length n, and assuming that we have
n/2 processors, the ith processor can compare the ith symbol of x with the
(n/2 + i)th symbol of x for 1 < i < n/2. All of these comparisons are done in one
parallel step. In the next parallel step, the ith processor communicates the outcome
of its comparison to the (i — n/2)th processor for n/2 + 1 < i < n. Then the ith
processor communicates to the (i — n/4)th processor forn/4 + 1 < i < n/2, and so
on. After log n of these communication steps, the information of whether or not all
the comparisons resulted in equality has been fanned into the first processor. Thus, a
problem which requires time n to be solved sequentially can be solved in time
O(logn) in parallel. For some problems in P, it is not known whether they can be
solved in parallel time O(logn), although we can do almost as well by showing that
poly(log n) parallel time suffices. One example is the problem GAP discussed in §4.1

24 LARRY STOCKMEYER

which can be solved in parallel time O((log n)?) using O(n3/2) processors (see, for
example, Borodin [Boro]). For certain other problems in P, such as the problem
CVP defined in §4.2, it is not known whether parallel time poly(log n) suffices. In the
case of CVP, since a variable X; depends on other variables X; for j < i, there is
apparently no way to partition the computation into many independent pieces. The
following question is open.

(5.1) Can every problem in P be solved in parallel time poly(logn)?

Of course, before we can begin to answer this question, a precise definition of
“parallel time” is needed. Several parallel computational models have been
proposed. We do not attempt to reproduce a detailed definition of one of these
models, but we will attempt to give the idea. Probably the most popular theoretical
model is a parallel version of the random access machine described in §2.3. The
PRAM, defined by Fortune and Wyllie [FoW], consists of a sequence of
deterministic RAM processors, Ry, R,, ..., Rp,, operating in parallel. The number
P(n) of processors can be a function of the length n of the input. In order for the
RAM’s to communicate among one another, we assume that there is a common
memory consisting of registers c,, ¢,, c3,..., and there are instructions in the
programs of the individual RAM’s for writing into and reading from the common
memory. Each RAM has the same program. However, initially i is written in one of
the local memory registers of R;, so that different RAM’s can operate differently.
Initially, the symbols of the input are written in the first n registers of common
memory. The computation of a PRAM proceeds synchronously, that is, at each
parallel step all RAM’s execute the next step of their program in parallel. We assume
that the program is such that two different RAM’s never attempt to write into the
same common memory register at the same parallel step. The PRAM accepts if R,
accepts. For function computation, the output is in common memory when the
computation halts. Two resource bounds of interest are the parallel time T'(n), that
is, the number of parallel steps in a computation, and the number of processors P(n).
In this subsection, we permit parallel time bounds T'(n) to be as small as logn.
Another feature of the definition of the PRAM is that initially there is only one
“active” processor, R,, but a processor can activate another at any step. Thus, after ¢
parallel steps, 2! processors could be active but no more.

Investigation of a variety of parallel models has shown that if no explicit upper
bound is placed on the number of processors, then the class of problems accepted by
parallel machines in time poly(T'(n)) is precisely the class of problems accepted by
DTM’s in space poly(T (n)). This was first proved by Pratt and Stockmeyer [PrS] for
a parallel model called the vector machine. Fortune and Wyllie [FoW] prove this
equivalence for PRAM’s. If we view ATM’s (see §5.1) as a parallel model, then
Theorem 5.1(a) is another example of the equivalence. This has led to the
formulation of a “parallel computation thesis” by Chandra and Stockmeyer [ChS]
and Goldschlager [Go2] that parallel time is equivalent to Turing machine space, at
least to within composition with a polynomial. Adopting this thesis, the question
(5.1) is equivalent to a question we have seen before in §4.2, namely,

(5.2) Is P = DSPACE(poly(log n))?

As a result, proving a problem to be P-complete is viewed as evidence that the
problem cannot be solved in poly(log n) parallel time. We should point out that the

COMPUTATIONAL COMPLEXITY OF PROBLEMS 25

parallel models for which the parallel computation thesis has been verified all have
the property that if a parallel computation has ¢ parallel steps then at most 2°?
processors can take part in the computation; thus, there is the implicit bound that
P(n)is 2°T™_Blum [Blu3] points out that the parallel computation thesis can fail
if many more than 2°T™ processors can be employed.

Parallel time classes can be refined by also placing an upper bound on the number
of processors, and such upper bounds are necessary if parallel algorithms are to
have any practical significance. For example, it was shown in [PrS] that any
context-free language can be accepted in poly(log n) parallel time, but the number of
processors was not bounded above by a polynomial in n. Pippenger [Pi] suggested
that an interesting complexity class to study would be the class of problems solvable
by parallel machines in poly(log) time using poly(n) processors; this class has come
to be known as NC (for “Nick’s class”). Pippenger also provided a characterization
of NC in terms of Turing machines: NC is the class of problems solvable by DTM’s
which accept in polynomial time and whose work-tape heads make at most
poly(log n) reversals. Another characterization of NC, by Ruzzo [Ruz], is that NC s
the class of problems accepted by ATM’s which accept simultaneously within space
O(logn) and within time poly(logn). Ruzzo [Ruz] also shows that any context-free
language is in NC. One of the first problems shown to be in NC (even before the class
was formally defined) was the problem of inverting and computing the determinant
of a matrix (Csanky [Cs]). Placing problems in NC, including problems which are
not obviously amenable to significant parallelization, is currently a very active area.
The reader interested in finding out more about the theory of parallel computation
would do well to start with two survey articles of Cook, [Co4] and [Co5].

5.4. #P.Valiant [Val] hasintroduced the class # P to capture the complexity of
various counting problems. #P is a class of functions rather than decision
problems. A function g: 2* — N is in # P if there isan NTM M which always halts
in polynomial time such that, for all x € X*, M has g(x) accepting computations
on input x. For example, the function which maps a propositional formula
F(X,,...,X,) to the number of satisfying truth assignments of F is easily seen to be
in # P. Polynomial time Turing reducibility is the appropriate reducibility to use
in defining # P-completeness. A function g is # P-complete if g € # P and, for all
he #P, h can be computed in polynomial time by a deterministic oracle Turing
machine with an oracle for g; the oracle machine can write words on a special oracle
tape and in one step obtain the binary representation of g(w), where w is written on
the oracle tape.

It is clear that any function in # P can be computed in polynomial space, but the
relation between #P and the polynomial-time hierarchy is not known. # P-
completeness is also evidence of computational intractability, since if any # P-
complete function can be computed in polynomial time then the number of
accepting computations of an arbitrary polynomially time bounded NTM can be
computed in deterministic polynomial time; of course, this implies that P = NP.

Not surprisingly, # P-complete problems include counting versions of many NP-
complete problems, such as counting the number of satisfying assignments to a
given propositional formula and counting the number of Hamiltonian cycles in a
given graph. A more surprising result, due to Valiant [Val], is that the problem of

26 LARRY STOCKMEYER

computing the permanent of a matrix with integer entries is # P-complete, and the
problem remains # P-complete even for zero-one entries. The permanent of an m
X mmatrix {a; ;}[";— is the sum, over all permutations n: {1,...,m} — {1,...,m}, of
the product

tn = al,n(l)aZ,n(Z) tre am,n(m)'

The # P-completeness of the permanent is interesting because the existential
version of the problem (Does there exist a permutation n such that ¢, # 0?) can be
solved in deterministic polynomial time by a simple reduction to the problem of
checking whether a bipartite graph has a perfect matching, which can be decided
in polynomial time [PaS]. Other # P-complete problems in [Va2] include the
problem of computing the probability that a graph is connected when each edge of
the graph is present with a given probability.

5.5. DP. Papadimitriou and Yannakakis [PaY] consider the class D? defined as

D? = {4 B|Ae NP and B € co-NP}.
Obviously,
NP U co-NP < DP < 45.

DP has been useful for classifying various extremal graph problems such as
recognizing the set of undirected graphs G such that G does not have a Hamiltonian
cycle but adding any new edge to G produces a graph with a Hamiltonian cycle, and
recognizing the set of pairs (G, k) such that G is an undirected graph, k is an integer,
and the largest complete subgraph of G has exactly k vertices. Both of these
problems are DP-complete (see [PaY] and [PaW]). (In contrast, the set of (G, k)
such that G has a complete subgraph with at least k vertices is NP-complete.) One of
the original motivations for DP was to classify the problem of recognizing the set of
linear inequalities which describe facets of the traveling salesman polytope. This
problem has now been shown DP-complete by Papadimitriou and Wolfe [PaW].
Valiant and Vazirani [VaV] show that the unique satisfiability problem (given a
propositional formula F, does it have exactly one satisfying assignment?) is DP-
complete with respect to randomizing polynomial-time reducibility (ie., the
reducibility function is computed by a probabilistic Turing machine which can
make errors with small probability). Further discussion of DP and the complexity of
problems having unique solutions can be found in [Joh4].

§6. Complexities of some specific problems. In this section we survey several
classification results. The problems are grouped by the area (logic, games, algebra,
and formal languages) from which they are drawn. In each subsection it is assumed
that the reader is already somewhat familiar with the area being discussed. This
section is by no means an exhaustive list of known results. In particular, [Gal] lists
many other NP-complete problems as well as a few PSPACE-complete ones.

6.1. Logic. The complexities of nearly all the classical decidable theories have
been classified in terms of time or space requirements, although gaps between
known upper and lower bounds remain in a few cases. Since many of the relevant
time and space bounds involve iterated exponentiation, we define notation for this.

COMPUTATIONAL COMPLEXITY OF PROBLEMS 27

Define the function g(k,n) for n, ke N by g(0,n) = n and g(k + 1,n) = 29®" for
k=0.

We first consider decision problems which cannot be accepted within space g(k, n)
for any fixed k; such problems are termed nonelementary. The first example of a
decidable but nonelementary logical decision problem, the weak monadic second-
order theory of one successor, was due to Meyer [Mel]. In this theory, formulas
involve individual variables, set variables, primitive relations “y = x + 1” and “x
€ §” where x and y denote individual variables and S denotes a set variable,
quantifiers 3 and V for both individua! variables and set variables, and the usual
logical connectives. Let WS1S denote the set of sentences (i.e., closed formulas)
which are true when individual variables range over N and set variables range over
finite subsets of N.

THEOREM (MEYER [Mel]). There is a constant ¢ > 0 such that

DSPACE(g("c-logn™, 1)) <, WSIS,

and WS1S requires space g("c - logn™, 1) i.o.

M. Rabin has observed that “logn” can be replaced by “n” in this theorem. This
improved lower bound of g([cn], 1) is closer to the known upper bound of space
g(n, 1) which is implicit in the decision procedures of Biichi [Bu] and Elgot [Elg].
Meyer and Stockmeyer [Stol] and Robertson [Ro] have shown that if “x < y” is
also included as a primitive relation, then just one set quantifier suffices to make the
decision problem nonelementary. Meyer’s theorem implies that the more powerful
theory SnS, proved decidable by Rabin [Rab3], is also nonelementary. Thus, the
popular method of proving decidability by reduction to SuS, although a powerful
method for proving decidability, might give a poor upper bound on computational
complexity.

Provably nonelementary first-order theories include the theory of linear order
(Meyer [Me2], [Sto1]) and the theory of any nonempty family of pairing functions
(Rackoff [Racl1], [FeR2]). Other examples are given in the survey article by Meyer
[Me2].

We now turn to elementary theories, i.e., those which can be decided in space
g(ko,n) for some fixed constant k,. Table 1 summarizes known upper and lower
bounds for several first-order theories. In each row, €., is reducible to the decision
problem for the theory via the indicated reducibility, and the decision problem
belongs to %,,,... In each case it is straightforward to obtain an explicit lower bound
using the method of §3.2. Row 1 is due to Stockmeyer [Sto2], row 2 is due to
Ferrante [Fe], [FeR2], the lower bounds in rows 3-7 are by Fischer and Rabin
[FiR], the upper bounds in rows 3 and 5 are by Ferrante and Rackoff [FeR1], the
upper bound in row 4 is by Rackoff [Racl], [Rac3], [FeR2], the upper bound in
row 6 is due to Ben-Or, Kozen and Reif [BeKR], and the upper bound in row 7 is
by Lo [Lo] who also gives upper bounds for other decision problems concerning
abelian groups.

Berman [Ber2] has given a more precise classification for Th(R, +) by showing
that it is complete in the class of problems accepted by ATM’s (see §5.1) which accept
simultaneously within time 2°® and within O(n) alternations. In a technical sense,
this class lies between NTIME(2°™) and DSPACE(2°®), since if we fix the time

28 LARRY STOCKMEYER

bound at 2°®, then NTIME(2°™) corresponds to 1 alternation and DSPACE(2°™)
corresponds to 2°™ alternations (cf. Theorem 5.1(a)). (However it is not known
whether the class lies properly between; it is not even known that NTIME(2°®)
DSPACE(2°™),) Similar classifications using ATM’s which are both time and
alternation bounded are known for Th(N, +) (Berman [Ber2]) and the theory of
Boolean algebras (Kozen [Ko2]). Further evidence that Th(R, +) does not fit neatly
into a time or space class is given by Bruss and Meyer [BrM], who show that there is
a constant ¢ > 0 such that Th(R, +) either requires nondeterministic space 2" i.0. or
requires nondeterministic time 2" i.0. It is an interesting open question to give a
more precise classification of Th(R, +, -) than the one given in row 6 of Table 1.

Theory Blower Bupper reducibility
1. equality NSPACE(\/;) DSPACE(nlogn) Zlog-lin
2. N with successor NSPACE(n) DSPACE(n?) Zlog-lin
3. N with addition NTIME(g(2,n)) DSPACE(g(2,0(n))) Zp-lin
4. N with multiplication NTIME(g(3,n)) DSPACE(g(3,0(n))) Zpulin
5. R with addition NTIME(g(1, n) DSPACE(g(1,0(n))) Zpetin
6. R with addition NTIME(g(1,n)) DSPACE(g(1,0(n?)) Zp-tin
and multiplication
7. finite abelian groups NTIME(g(2,n)) DSPACE(g(2,0(n)) Zp-tin

TaBLE 1. Complexities of some first-order theories

Many of the lower bounds on the complexities of logical decision problems
(including all those in Table 1) rely on the ability to write formulas with many
alternations of quantifiers. The effect of the number of alternations on the
complexity of Th(N, +) is studied by Reddy and Loveland [ReL] (upper bounds)
and Fiirer [Fu2] (lower bounds). Sistla, Vardi and Wolper [SiVW] show that for
sentences of WS1S in prenex normal form, each additional alternation of second-
order quantifiers causes an exponential increase in the space complexity of the
decision problem; moreover, the same result holds for the (full) monadic theory S18,
allowing quantification over infinite sets. This improves a previous result of
Robertson [Ro].

Meyer and Rackoff [Rac2] show that the satisfiability problem for the monadic
predicate calculus requires nondeterministic time c"'°¢" for some constant ¢ > 1,
and Lewis [Lew] gives a similar upper bound of NTIME(d"'°#") for some constant
d. Lewis [Lew] also gives upper and lower bounds for other decidable subcases of
the predicate calculus obtained by restricting the form of the quantifier prefix. For
formulas in Schonfinkel-Bernays form, Plaisted [P1] considers the effect of also
restricting the form of the matrix, for example, to a conjunction of Horn clauses.

Compton and Henson [CoH] describe a method for proving lower bounds on the
computational complexity of decidable theories, which is analogous to known
machinery for proving undecidability of logical theories (see [Rab2]). In particular,
the method gives new proofs of the nonelementary complexity of the first-order
theory of one unary function and the first-order theory of a linear order.

There has also been much work on the complexity of modal logics. Ladner
[Lad3] shows that the satisfiability problems for the classical modal logics T and S4
are PSPACE-complete and that S5 is NP-complete in the case of one modality, i.e.,

COMPUTATIONAL COMPLEXITY OF PROBLEMS 29

one “knower”. For the case of many modalities, Halpern and Moses [HalM] show
that T and S4 remain PSPACE-complete and that S5 becomes PSPACE-complete.
Halpern and Moses [HalM] also consider the effect of adding an operator for
“common knowledge” to these logics, and find that all three become DTIME(2°™)-
complete in the case of m knowers for any m > 2. This line of work has been
continued by Halpern and Vardi [HalV], who classify the complexities of various
logics for reasoning about knowledge and time together. Propositional modal logics
are of considerable current interest in computer science as languages for expressing
the behavior of programs. Pnueli [Pn] has suggested this role for linear temporal
logic. Sistla and Clarke [SisC] and Halpern and Reif [HalR] show that linear
temporal logic is PSPACE-complete. Several new modal logics have also been
defined for this purpose. One of the more important is propositional dynamic logic
(PDL) which was defined by Fischer and Ladner [FiL] as a propositional version of
a first-order modal logic proposed earlier by Pratt [Pr1]. Formulas in PDL have
primitive symbols «, B, etc. which stand for programs. Semantics is in terms of
Kripke structures, and each primitive program is interpreted as a binary relation on
Kripke states (in general, a nonsymmetric nontransitive relation). New programs
can be formed using combining operators such as o; f§ (run program o, then run
program f), « U f (nondeterministically run either a or), and a* (run o zero or
more times); the interpretation of the new program is obtained by relational
composition, union, and transitive closure, respectively. There are modal operators
[y]and (y) for each program y. For example, [y] ¢ is true in state s iff ¢ is true in all
states ¢ such that (s, t) is in the relation y. Fischer and Ladner [FiL] show that PDL is
DTIME(2°®)-hard and Pratt [Pr2] shows that PDL is in DTIME(2°™). Various
extensions of PDL have been defined to capture the ongoing behavior of programs
by adding temporal operators which can, for example, express the fact that a formula
holds infinitely often during every infinite execution of a program. A recent paper of
Vardi and Stockmeyer [VarS] gives results on the complexities of some of these
temporal logics and contains references to earlier work.

6.2. Games. In this section we consider decision problems of the following form:
Given a position in some two-player game, decide whether the player moving first
has a “forced win”, that is, a strategy which leads to victory no matter which strategy
the second player employs. For many common games, including chess and go and
their generalization to boards of arbitrary size, this question is clearly decidable
simply by examining the full game tree rooted at the given starting position. But
since the size of the game tree could grow exponentially in the size of the initial
position, this is not a polynomial time algorithm.

We have seen one example of a game already in the problem QBF defined in §4.4.
To view QBF as a game, imagine that the first (second) player controls the odd (even)
numbered variables, and the players alternately fix the truth values of these
variablesin order X;, X5, ..., X,,. After all the variables have been set, the first player
wins iff F(X,,...,X,,) is true. Obviously, F € QBF iff the first player has a winning
strategy, so this is an example of a PSPACE-complete game. Variations of this game
are proved PSPACE-complete by Schaefer [Scha]. Reisch [Reis] shows that the
game of hex is PSPACE-complete when generalized to boards of arbitrary size and
to arbitrary starting positions. The games which have been proved PSPACE-
complete all have the property that when the game is played starting from a position

30 LARRY STOCKMEYER

of size n, the game is certain to end after at most poly(n) moves. It is not hard to see
that the acceptance condition foran ATM M (§5.1) can be defined as a game between
two players, the existential player and the universal player, in such a way that M
accepts x iff the existential player has a winning strategy starting from the initial
configuration on input x. Since alternating polynomial time equals PSPACE
(Theorem 5.1(a)), it should not be surprising that polynomially time bounded games
are PSPACE-complete.

However, some games such as chess and go are not polynomially time bounded
when generalized to large boards, since the game could conceivably cycle through
most of the exponentially many positions before ending. But since the board does
not grow in size as the game is played, these games are O(n) space bounded. The
equivalence ASPACE(O(n)) = DTIME(2°™) (Theorem 5.1(b)) suggests that these
games are DTIME(2°™)-complete. Stockmeyer and Chandra [StoC] first proved
games to be DTIME(2°®™)-complete. These were artificial games played on proposi-
tional formulas. These artificial games were later used to show that generaliza-
tions of natural games are exponential-time-complete. Fraenkel and Lichtenstein
[FrL] show that chess is DTIME(2°")-complete. Robson [Robl], [Rob2]
shows that go and checkers are DTIME(2°™)-complete. In all three cases,
the games are generalized to large boards in a natural way. For example, in the case
of chess, an input is an m-by-m chessboard for some m together with a placement of
pieces on some squares of the board (the placement need not correspond to the usual
starting position of a game of chess). Each player has only one king, but the other
pieces can occur any number of times.

Papadimitriou [Pa2] and Babai [Ba] study the complexity of games where one
of the players chooses his moves randomly. Papadimitriou calls these “games
against nature”; the decision problem here is whether the nonrandom player has a
strategy which leads to victory with probability greater than 1/2. In Babai’s case, the
probabilities of winning or losing must remain bounded away from one another,
say, greater than 2/3 or less than 1/3, respectively.

The games discussed above are all games of perfect information; both players
have complete knowledge of the position of the game at all times. Reif [Reif] has
considered games of imperfect information where some or all of the position is
hidden from one of the players. He defines new types of ATM’s to model games of
imperfect information and characterizes their complexity classes in terms of
deterministic complexity classes. Ladner and Norman [LaN] define automata to
model solitaire games where one player (the “dealer”) makes a number of moves at
the beginning of the game, but after the other player enters the game the dealer must
respond deterministically; solitaire games of both perfect and imperfect in-
formation are considered. A recent direction is to consider the effect of partial
information on the random games of Papadimitriou and Babai (see, for example,
Condon and Ladner [CoL], Goldwasser and Sipser [GoSi]).

Other results on the complexity of games are summarized in [Joh1].

6.3. Algebraic word problems. Let O be a finite alphabet of symbols. A semi-Thue
system over @ is a finite set 2 of productions of the form | — r, where I, r € @*. The
word « derives the word f in one step, written o — 8, if & = ulvand f = urv for some
|- rin 2. Let % denote the transitive closure of —. The reachability set R(a, P)is
the set of words § such that o % B. A semi-Thue system 2 is commutative if ab — ba

COMPUTATIONAL COMPLEXITY OF PROBLEMS 31

isin 2 for all a, b € @ (when it is clear that a semi-Thue system is commutative, these
productions do not appear explicitly in). A Thue system is a semi-Thue system
such that, for all l and r, I > r) e 2 iff (r —» 1) € #. The uniform word problem for
commutative semigroups (CSG) is the set of all (a, §,) such that 2 is a commutative
Thue system and B e R(x,#). Mayr and Meyer [MaM2] show that CSG is
DSPACE(2°™)-complete. They also show that CSG is efficiently reducible to the
polynomial ideal word problem (PI) defined as the set of all tuples of polynomials
(Po>P1»--->Pm) € QLX]™ "1, where X is a finite set of indeterminates, such that p, is
in the ideal of Q[X] generated by p, ..., p,. Therefore, PIis DSPACE(2°™)-hard.
It is also noted in [MaM2] that work of G. Hermann implies that PI is elementary
recursive.

Another result should be mentioned here since it holds the current record for the
size of a lower bound established for a “natural” decidable problem. Notational
variants of commutative semi-Thue systems, called vector replacement systems and
Petri nets, have been used in computer science to model the behavior of
asynchronous systems. Consider the finite equality problem (FEP) defined as the set
of (a, 2,0/, 2’) such that 2 and 2’ are commutative semi-Thue systems, R(a,) and
R(«',#’) are finite, and R(a, 2) = R(o', 2’). Decidability of FEP follows from an
algorithm of Karp and Miller [KaM] which checks whether a reachability set is
finite and generates it if it is finite. Mayr and Meyer [MaM1] show that FEP is not
primitive recursive. (Without the finiteness condition on the reachability sets, the
equality problem for commutative semi-Thue systems is undecidable, as shown by
Rabin and Hack [Hac].)

Kozen [Kol] shows that the uniform word problem for finitely presented
nonassociative algebras in P-complete.

6.4. Formal language theory. Many of the early classification results concerned
problems in formal language theory. We have noted in §4.4 that the first problem
proved PSPACE-complete was the equivalence problem for Kleene regular
expressions containing only the operations of union, concatenation and Kleene star
[MeS]. Other results have been obtained for other combinations of operations. For
example, Stockmeyer [Stol] shows that the equivalence problem for star-free
expressions, which contain only union, concatenation and complementation, is
nonelementary. Fiirer [Ful] improves the lower bound of [Stol] by showing that
the equivalence problem for star-free expressions requires space g(Ten/(log*n)*7, 1)
i.0., where log*n is defined as the smallest j such that g(j,1) > n. Hunt and
Rosenkrantz [HuR1], [HuR2] give various complexity-theoretic analogues of
Rice’s theorem [Rog, §2.1], which show that other decision problems concerning
regular expressions are at least as hard as the equivalence problem. Although the
equivalence problem for context-free grammars is undecidable, it is decidable in
special cases such as for grammars generating finite languages; Hunt, Rosenkrantz
and Szymanski [HuRS] show that this special case requires nondeterministic
exponential time i.0.

§7. Related issues

7.1. Relativization. For a complexity class % and a set 4 of words, let 4 denote
the same complexity class defined in terms of oracle Turing machines with oracle A
rather than in terms of ordinary Turing machines. For example, NP4 is the class of

32 LARRY STOCKMEYER

problems accepted in polynomial time by nondeterministic oracle machines with
oracle 4. Baker, Gill and Solovay [BaGS] show that there are recursive sets A and B
such that P4 = NP4 and P2 # NP2 One conclusion to be drawn from this result is
that any proof of either P = NP or P # NP cannot generalize to an arbitrary
oracle, so in trying to settle the P vs. NP question we can rule out proof methods
which relativize. The construction of an oracle B such that P? ## NP® was shown
independently by Dekhtiar [Dek]. There are many other results showing that
various complexity classes can be made equal or unequal relative to an oracle.
Recently Yao [Ya], using a line of attack suggested by Furst, Saxe and Sipser
[FuSS] and Sipser [Sip2], has shown that there is an oracle relative to which all
classes of the polynomial-time hierarchy (§5.1) are distinct, thus settling a question
which had remained open for over ten years. Yao’s proof has been simplified by
Hastad [Has]. Rackoff [Rac4] exhibits oracles D and E for which P? # R? and P%
= RE, where R is random polynomial time (§5.2). Bennett and Gill [BeG] show that
for a random oracle A, P # NP4 with probability 1 and P4 = R4 with probability
1. Other open questions, besides questions about equality of complexity classes,
have been studied in the relativized case. For example, Sipser [Sip1] shows that
there are oracles A and B such that R4 and NP? n co-NP2 do not have complete
problems with respect to <,,.

7.2. Structural issues. There has been a considerable amount of work on the
structure - complete problems. We mention a few examples.

Defiv:: « i, Bif A<, Band B <, A. Each equivalence class under =, is called a
p-degr - example, the class of NP-complete problems is a p-degree. Ladner
[Lad1] «#::w s thatif P # NP then the ordering of the p-degrees within NP is dense.
In partici'.. . there is a problem in NP — P which is not NP-complete. This is
significant siiice there are natural problems in NP which are neither known to be in
P nor known to be NP-complete; one interesting example is the problem of
checking whether two given undirected graphs are isomorphic. A recent paper of
Ambos-Spies [Amb] gives results on the structure of p-degrees and references to
other work on this subject.

In recursive function theory it is known that all r.e.-complete sets under many-one
reducibility are recursively isomorphic. In analogy, Berman and Hartmanis [BerH]
conjecture that all NP-complete problems are p-isomorphic. Sets A = X* and
B < A* are p-isomorphic if there is a bijection f: Z* — A* such that f and f~! are
computable in polynomial time, A <, B via f and B <, A via f~'. This conjecture
implies P # NP, since if P = NP then the finite sets {0} and {0, 1} are NP-complete
but they are obviously not p-isomorphic. Nevertheless, machinery is developed in
[BerH] which can be applied to show that many of the known NP-complete
problems are p-isomorphic. Mahaney [Mah1] shows that, within the class of NP-
complete problems, the number of p-isomorphism classes is either one or infinite.

A question raised in [BerH] is whether there are any sparse NP-complete
problems. A set A of words is sparse if there is a polynomial p(n) such that, for all n,
A contains at most p(n) words of length n. The existence of a sparse NP-complete
problem would provide a counterexample to the conjecture of Berman and
Hartmanis, since a nonsparse NP-complete problem such as SAT cannot be p-
isomorphic to a sparse problem. The question remained open a few years but was

COMPUTATIONAL COMPLEXITY OF PROBLEMS 33

finally settled by Mahaney [Mah2], who showed that if P # NP then there are no
sparse NP-complete problems. The history of the solution is described by
Hartmanis and Mahaney [HarM].

Lynch [Ly] shows that for every problem 4 which is not in P there is an infinite
recursive set X such that, given any DTM M which accepts 4 and any polynomial
p(n), there is an integer ny such that M runs for more than p(|x|) steps on input x for
all x € X with |x| = ny. We can think of X as a “hard-core” for A4, since it is a set of
inputs which are hard for all acceptors of A. General hard-core theorems for other
complexity classes are proved by Even, Selman and Yacobi [EvSY].

7.3. Languages which capture complexity classes. So far, logic has entered the
discussion mainly as a source of decision problems whose complexities have been
successfully classified. Logic can also be used to give alternate definitions of
complexity classes, and in some cases questions about computational complexity
can be rephrased as questions about logic. One of the first examples of this was work
of Jones and Selman [JoS] and Fagin [Fa] on spectra. Given a first-order sentence
¢ with equality, the spectrum of ¢ is the set of cardinalities of finite models of ¢.
Spectra were first considered by Scholz [Scho], who raised the question of
characterizing spectra. Jones and Selman [JoS] show that a set S of nonnegative
integers is a spectrum of some first-order sentence iff the set of binary represen-
tations of integers in S belongs to NTIME(2°™), Similarly, S is a spectrum iff the set
of unary representations of integers in S belongs to NP (the unary representation of
the nonnegative integer z is the word 111 --- 1 (z times)). It follows that the following
two questions are equivalent:

(1) Is the complement of every spectrum also a spectrum?

(2) Does NP = co-NP when both classes are restricted to subsets of {1}*?

Question (1) was posed by Asser [As]. In particular, if Asser’s question has a
negative answer then NP # co-NP, which in turn implies that P # NP.

Fagin [Fa] characterizes NP in terms of generalized second-order spectra.
Consider a second-order formula ¢(R,...,R,,) where some predicates R,...,R,,
occur free in ¢ and where all second-order quantifiers are existential. The
generalized spectrum of ¢ is the set of finite models of ¢. Fagin shows that a set of
finite models, suitably encoded as a set of words, is a generalized spectrum of some ¢
iff it belongs to NP. For example, consider the set of undirected 3-colorable graphs
(an NP-complete problem). A graph can be represented by its edge relation E. It is
straightforward to write a formula containing three existentially quantified unary
predictates R, B and G (the three colors) and the free binary predicate E which states
that each vertex is colored with exactly one color (i.e., Yu exactly one of R(u), B(u) or
G(u) is true) and that if E(u,v) then u and v are colored differently. Given Fagin’s
characterization of NP, it is easy to see that the classes of the polynomial-time
hierarchy can be similarly characterized by allowing a bounded number of
alternations of second-order quantifiers in ¢. Borger [Borg] gives a historical
discussion of the connection between complexity theory and spectra.

Immerman [Im1] and Vardi [Var] characterize P in terms of fixed point logic
over linearly ordered finite domains. Sentences in this logic are written using <, first-
order quantifiers, and the least fixed point operator (LFP). The least fixed point
operator has been extensively studied in mathematical logic (see [Mos]), although

34 LARRY STOCKMEYER

Chandra and Harel [ChH] initiated the study of its expressive power in the context
of finite structures. It is defined as follows. Given two k-ary relations R and R’
defined on some domain U, write R < R’ if R(uy,...,u)— R'(uy,...,u,) for all
Ug,...,u, € U Let p(uy,...,u, R)beafirst-order formula, where R is a k-ary relation
symbol and where u,...,u, and R occur free in ¢. For each interpretation of R, ¢
defines a k-ary relation which we denote ¢(R). We say that ¢ is monotone if R < R’
implies ¢(R) < ¢(R’). For a monotone ¢ define

LFP($) = min{R | $(R) = R}.

(For a monotone ¢, it is known that LFP(¢) exists and can be computed in
deterministic time polynomial in the cardinality of the domain.) Unaware of the
results concerning LFP, Livchak [Liv] independently defined another extension of
first-order logic which, together with order, captures P. It is an open question
whether there is a natural extention of first-order logic which captures P without
the use of order (without order, first-order logic with LFP cannot express “the
cardinality of the domain is even” [ChH]). Immerman [Im2] characterizes other
complexity classes in terms of logical languages and also summarizes previous
work. Two articles of Gurevich, [Gu2] and [Gu3], contain more discussion about
the subject of capturing P and the connections between logic and theoretical
computer science in general.

Gurevich [Gul] shows that if primitive recursive definitions are interpreted over
finite domains instead of over N, then the class of functions which can be defined is
precisely the class of functions computable in deterministic space logn. For
recursive definitions over finite domains, precisely the class of polynomial time
computable functions can be defined.

7.4. Complexity of finite problems. An objection both to undecidability results
and to lower bounds such as Theorem 1.1 is that in the real world one is not
interested in solving all instances of a problem but only a finite collection of them. In
the case of Th(R, +), for example, one might be uninterested in all sentences of
length greater than 1000. Thus, the value of ¢ in the lower bound c" and the
minimum length of sentences for which the lower bound takes effect become
germane. Estimates of these values are implicit in the proofs of lower bounds
obtained as in §3.2. However, in the literature on lower bounds these values are
usually not estimated, since this would be tedious and the estimates would not be
very useful in practice. However, one example of a finite decision problem has been
studied in detail. Consider sentences of WS1S (see §6.1) where order relations such as
“x < y”and “x > y” are allowed as primitives, and integer constants can be written
in decimal notation. Let 2 denote the set of sentences of length 616 or less. It turns
out that the alphabet used in writing sentences has 63 symbols, so each symbol can
be uniquely encoded as a binary word of length 6. In this way, each sentence in 2 is
encoded as a binary word of length 6 - 616 = 3696. Turing machine time is not
sufficient to measure the complexity of finite decision problems, since any finite
problem can be decided in linear time by building a table of all the answers into the
finite state control of the Turing machine. Thus, for assessing the complexity of
finite problems, account must be taken of the size of the device performing an
algorithm as well as the time required by the algorithm. One quite general way to do

COMPUTATIONAL COMPLEXITY OF PROBLEMS 35

this is to measure the number of logical operations or “gates”, and, or, exclusive-or,
etc., in an acyclic logical network which is capable of solving the finite decision
problem. In the case of deciding WSI1S on sentences of length 616 or less, the
network would have 3696 input lines and a single output line which should carry the
value 1 iff the values on the input lines are the code of a true sentence of length at
most 616. Formally, the network can be defined as a sequence of equations asin §4.2,
except that the 3696 variables corresponding to input lines do not appear as the left
side of any equation, and X,, is the output line. The number of gates is the number of
equations of the form X; = X; @ X,.

THEOREM (MEYER AND STOCKMEYER [Stol]). Any network which decides truth of
sentences of length 616 in WS1S contains at least 10123 gates.

Even if gates were the size of a proton and were connected by infinitely thin wires,
the network would densely fill the known universe.

Having brought up the subject of logical networks, we should mention that
interest in the complexity of problems as measured by the size of logical networks is
much wider than the example above. For each (infinite) problem A, one can define
the function C,(n), called the combinational complexity of A, which maps n to the
minimum number of gates in a network which decides membership in A4 restricted to
words of length n. It is easy to see that if A € DTIME(T (n)) then C,(n) is at most
polynomial in T(n); Pippenger and Fischer [PiF] sharpen this to C,(n)
= O(T'(n)log T'(n)). There is no relationship in the other direction since the network
model is nonuniform, i.e., we can choose a different network for each input length n.
In particular, it is easy to see that C,(n) is 2°® for any A (even nonrecursive 4).
However, if Turing machines are made nonuniform by giving them access to
arbitrary oracle sets D < {1}* or if the network model is made uniform by requiring
that the networks be efficiently constructable, then deterministic Turing machine
time complexity and combinational complexity are polynomially related; see, for
example, Schnorr [Schn]. Other relationships between Turing machine complexity
and network complexity are proved by Borodin [Boro].

As mentioned in the Introduction, Ehrenfeucht [Ehr] has shown that the
combinational complexity of the first-order theory of N with addition and
multiplication grows faster than any polynomial in n, even if the theory is made
decidable by bounding all quantifiers. A. Meyer has observed that a similar proof
can be done for any problem which is hard for the class of problems accepted by
ATM’s which accept simultaneously within time 2°® and within O(1) alternations.
For example, if 4 is Th(R, +) or Th(N, +), then C,(n) > ¢" for some constant ¢ > 1
and infinitely many n.

§8. Conclusion. The main message of this paper is that after a problem has been
proved decidable, there is still the opportunity to obtain much more precise
information about the problem’s computational complexity. Precise classifications
are often challenging mathematical questions. In addition, for problems with
practical applications such information can be useful. If a problem requires
exponential time i.0. or even if it is NP-complete, it suggests that one should not
waste time looking for an algorithm which is always fast and always correct. A more
reasonable approach for such problems might be to apply heuristic methods which

36 LARRY STOCKMEYER

are sometimes slow or sometimes incorrect (for example, see [GalJ, Chapter 6] for a
discussion of “approximation” algorithms for certain NP-complete optimization
problems) or to abandon the worst-case notion of complexity and seek algorithms
which do well on the average (for example, see [Joh2] for a survey).

Efficient reducibility, completeness, and explicit lower bounds are now tools of
the trade in the theoretical computer science community. These methods should be
useful in other areas of mathematics where decision problems arise.

Acknowledgements. I would like to thank Ron Fagin, Yuri Gurevich, Joe Halpern,
Albert Meyer, and Moshe Vardi for many helpful comments on early drafts of this

paper.

REFERENCES

[AHU] A. V. AHo, J. E. HOPCROFT, and J. D. ULLMAN, The design and analysis of computer
algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

[Amb] K. AMBOs-SPIES, Three theorems on polynomial degrees of N P-sets, Proceedings of the 26th
IEEE Symposium on Foundations of Computer Science (1985), pp. 51-55.

[As] G. Asser, Das Reprasentantenproblem im Pradikatenkalkiil der ersten Stufe mit Identitdt,
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), pp. 252-263.

[Ba] L. BaBal, Trading group theory for randomness, Proceedings of the 17th ACM Symposium on
Theory of Computing (1985), pp. 421-429.

[BaGS] T. BAKER, J. GILL, and R. SOLOVAY, Relativizations of the P = ? NP question, SIAM Journal
on Computing, vol. 4 (1975), pp. 431-442.

[BeKR] M. BeN-ORr, D. KozeN, and J. REIF, The complexity of elementary algebra and geometry,
Journal of Computer and System Sciences, vol. 32 (1986), pp. 251-264.

[BeG] C. H. BENNETT and J. GILL, Relative to a random oracle A, P* # NP* # co-NP* with
probability 1, SIAM Journal on Computing, vol. 10 (1981), pp. 96-113.

[Berl] E.R. BERLEKAMP, Factoring polynomials over large finite fields, Mathematics of Computation,
vol. 24 (1970), pp. 713-735.

[Ber1] L. BERMAN, On the structure of complete sets: almost everywhere complexity and infinitely
often speedup, Proceedings of the 17th IEEE Symposium on Foundations of Computer Science (1976),
76-80.

[Ber2]
pp. 71-77.

[BerH] L. BERMAN and J. HARTMANIS, On isomorphisms and density of NP and other complete sets,
SIAM Journal on Computing, vol. 6 (1977), pp. 305-322.

[Blul] M. BLUM, A machine independent theory of the complexity of recursive functions, Journal of the
Association for Computing Machinery, vol. 14 (1967), pp. 322-336.

[Blu2] , On effective procedures for speeding up algorithms, Journal of the Association for
Computing Machmery, vol. 18 (1971), pp. 290-305.

[Blu3] N. BLuM, A note on the parallel computation thesis, Information Processing Letters, vol. 17
(1983), pp. 203-205.

[Bo] R. V. Book, Translational lemmas, polynomial time, and (logn)’-space, Theoretical Computer
Science, vol. 1 (1976), pp. 215-226.

[Borg] E. BORGER, Spektralproblem and completeness of logical decision problems, Logic and
machines: decision problems and complexity, Lecture Notes in Computer Science, vol. 171, Springer-
Verlag, New York, 1984, pp. 333-356.

[Boro] A. BORODIN, On relating time and space to size and depth, SIAM Journal on Computing, vol. 6
(1977), pp. 733-744.

[BrM] A. R. Bruss and A. R. MEYER, On time-space classes and their relation to the theory of real
addition. Theoretical Computer Science, vol. 11 (1980), pp. 59—-69.

[Bu] J. R. BUcHI, Weak second order arithmetic and finite automata, Zeitschrift fiir Mathematische
Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 66—92.

, The complexity of logical theories, Theoretical Computer Science, vol. 11 (1980),

COMPUTATIONAL COMPLEXITY OF PROBLEMS 37

[ChH] A. K. CHANDRA and D. HAREL, Structure and complexity of relational queries, Journal of
Computer and System Sciences, vol. 25 (1982), pp. 99-128.

[ChKS] A.K.CHANDRA, D. C. KOZEN, and L. J. STOCKMEYER, Alternation, Journal of the Association
Sfor Computing Machinery, vol. 28 (1981), pp. 114-133.

[ChS] A.K.CHANDRA and L. J. STOCKMEYER, Alternation, Proceedings of the 17th IEEE Symposium
on Foundations of Computer Science (1976), pp. 98—108.

[Cob] A. CoBHAM, The intrinsic computational difficulty of functions, Proceedings of the 1964
international congress for logic, methodology and philosophy of science (Y. Bar-Hillel, editor), North-
Holland, Amsterdam, 1965, pp. 24-30.

[Col] G.E. CoLLINS, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,
Second Gl conference on automata theory and formal languages, Lecture Notes in Computer Science,
vol. 33, Springer-Verlag, New York, 1975, pp. 134-183.

[CoH] K. CompTON and C. W. HENSON, A new method for proving lower bounds on the computational
complexity of first-order theories, manuscript in preparation. 1984.

[CoL] A. ConpON and R. LADNER, Probabilistic game automata, Proceedings of the structure in
complexity theory conference (Berkeley, California, 1986), Lecture Notes in Computer Science, vol. 223,
Springer-Verlag, New York, 1986, pp. 144-162.

[Col] S. A. Cook, The complexity of theorem proving procedures, Proceedings of the 3rd ACM
Symposium on Theory of Computing (1971), pp. 151-158.

[Co2] , A hierarchy for nondeterministic time complexity, Journal of Computer and System
Sciences, vol. 7 (1973), pp. 343-353.

[Co3] , An observation on time-storage trade off, Journal of Computer and System Sciences, vol. 9
(1974), pp. 308-316.
[Co4] , Towards a complexity theory of synchronous parallel computation, L’Enseignement

Mathématique, vol. 27 (1981), pp. 99-124; also, Technical Report # 141/80, Department of Computer
Science, University of Toronto, 1980.

[CoS5] , A taxonomy of problems with fast parallel algorithms, Information and Control, vol. 64
(1985), pp. 2-22.

[Co6] , An overview of computational complexity, Communications of the ACM, vol. 26 (1983),
pp. 400-408.

[CoR] S. A.Cook and R. A. RECKHOW, Time bounded random access machines, Journal of Computer
and System Sciences, vol. 7 (1973), pp. 354-375.

[Cs] L. CsaNKY, Fast parallel matrix inversion algorithms, SIAM Journal on Computing, vol. 5 (1976),
pp. 618-623.

[Dav] M. Davis, The undecidable, Raven Press, Hewlett, New York, 1965.

[Dek] M. DEKHTIAR, On the impossibility of eliminating complete enumeration in computing a function
relative to its graph, Doklady Akademii Nauk SSSR, vol. 189 (1969), pp. 748-751 (in Russian); English
translation, Soviet Physics Doklady, vol. 14 (1969/70), pp. 1146—1148.

[DoLR] D. DoBkiIN, R. J. LipToN, and S. REIss, Linear programming is log-space hard for P,
Information Processing Letters, vol. 8 (1979), pp. 96-97.

[DKM] C. DWoRK, P. C. KANELLAKIS, and J. C. MITCHELL, On the sequential nature of unification,
Journal of Logic Programming, vol. 1 (1984), pp. 35-50.

[Edm] J. EDMONDS, Paths, trees and flowers, Canadian Journal of Mathematics, vol. 17 (1965),
pp. 449-467.

[Ehr] A. EHRENFEUCHT, Practical decidability, Journal of Computer and System Sciences, vol. 11
(1975), pp. 392-396.

[Elg] C.C.ELGOT, Decision problems of finite automata design and related arithmetics, Transactions of
the American Mathematical Society, vol. 98 (1961), pp. 21-51.

[EvSY] S. EVEN, A. L. SELMAN, and Y. YACOBI, Hard-core theorems for complexity classes, Journal of
the Association for Computing Machinery, vol. 32 (1985), pp. 205-217.

[Fa] R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of
computation (R. Karp, editor), SIAM-AMS Proceedings, vol. 7, American Mathematical Society,
Providence, Rhode Island, 1974, pp. 43-73.

[Fe] J. FERRANTE, Some upper and lower bounds on decision procedures in logic, Doctoral Thesis,
Department of Mathematics, M.L.T., Cambridge, Massachusetts, 1974; also Report TR-139, M.I.T.
Laboratory for Computer Science.

38 LARRY STOCKMEYER

[FeR1] J. FERRANTE and C. RACKOFF, A decision procedure for the first-order theory of real addition
with order, SIAM Journal on Computing, vol. 4 (1975), pp. 69-76.

[FeR2] , The computational complexity of logical theories, Lecture Notes in Mathematics,
vol. 718, Springer-Verlag, New York, 1979.

[FiL] M. J. FiscHeR and R. E. LADNER, Propositional dynamic logic of regular programs, Journal of
Computer and System Sciences, vol. 18 (1979), pp. 194-211.

[FiR] M. J. FiscHer and M. O. RABIN, Super-exponential complexity of Presburger arithmetic,
Complexity of computation (R. Karp, editor), SIAM-AMS Proceedings, vol. 7, American Mathematical
Society, Providence, Rhode Island, 1974, pp. 27-42.

[FoW] S.ForTUNE and J. WYLLIE, Parallelism in-random access machines, Proceedings of the 10th
ACM Symposium on Theory of Computing (1978), pp. 114-118.

[FrL] A.S.FRAENKEL and D. LICHTENSTEIN, Computing a perfect strategy for n x n chess requires time
exponential in n, Journal of Combinatorial Theory A, vol. 31 (1981), pp. 199-214.

[Ful] M.FURER, Nicht-elementare untere Schranken in der Automaten-theorie, Doctoral Thesis, ETH,
Ziirich, 1978.

[Fu2] , The complexity of Presburger arithmetic with bounded quantifier alternation depth,
Theoretical Computer Science, vol. 18 (1982), pp. 105-111.

[FuSS] M. FursT, J. B. SAXE, and M. SIPSER, Parity, circuits, and the polynomial-time hierarchy,
Mathematical Systems Theory, vol. 17 (1984), pp. 13-27.

[GaJ] M. R. GAREY and D. S. JOHNSON, Computers and intractability: a guide to the theory of NP-
completeness, Freeman, San Francisco, California, 1979.

[Gi] J. GiLL, Computational complexity of probabilistic Turing machines, SIAM Journal on
Computing, vol. 6 (1977), pp. 675-695.

[Gol] L. M. GOLDSCHLAGER, The monotone and planar circuit value problems are log space complete
for P, SIGACT News, vol. 9 (1977), no. 2, pp. 25-29.

[Go2] . A universal interconnection pattern for parallel computers, Journal of the Association
for Computing Machinery, vol. 29 (1982), pp. 1073-1086.

[GoSS] L. M. GOLDSCHLAGER, R. A. SHAW, and J. STAPLES, The maximum flow problem is log space
complete for P, Theoretical Computer Science, vol. 21 (1982), pp. 105-111.

[GoSi] S. GoLbwassER and M. SIPSER, Private coins versus public coins in interactive proof systems,
Proceedings of the 18th ACM Symposium on Theory of Computing (1986), pp. 59-68.

[Gul] Y. GUREVICH, Algebras of feasible functions, Proceedings of the 24th IEEE Symposium on
Foundations of Computer Science (1983), pp. 210-214.

[Gu2] , Toward logic tailored for computational complexity, Computation and proof theory
(M. M. Richter et. al,, editors), Lecture Notes in Mathematics, vol. 1104, Springer-Verlag, New York,
1984, pp. 175-216.

[Gu3] , Logic and the challenge of computer science, Report CRL-TR-10-85, Computing
Research Laboratory, University of Michigan, Ann Arbor, Michigan, 1985.

[Hac] M.HACKk, The equality problem for vector addition systems is undecidable, Theoretical Computer
Science, vol. 2 (1976), pp. 77-96.

[HalM] J. Y. HALPERN and Y. MOSES, A guide to the modal logics of knowledge-and belief, Proceedings
of the international joint conference on artificial intelligence (1985), American Association for Artificial
Intelligence, Menlo Park, California, 1985, pp. 480-490.

[HalR] J. Y. HALPERN and J. REIF, The propositional dynamic logic of deterministic well-structured
programs, Theoretical Computer Science, vol. 27 (1983), pp. 127-165.

[HalV] J. Y. HALPERN and M. VARDI, The complexity of reasoning about knowledge and time,
Proceedings of the 18th ACM Symposium on Theory of Computing (1986), pp. 304-315.

[Har] J. HARTMANIS, Observations about the development of theoretical computer science, Annals of the
History of Computing, vol. 3 (1981), pp. 42-51.

[HarM] J. HARTMANIS and S. R. MAHANEY, An essay about research on sparse complete sets,
Proceedings of the 9th symposium on mathematical foundations of computer science (1980), Lecture Notes
in Computer Science, vol. 88, Springer-Verlag, New York, pp. 40-57.

[HarS] J. HARTMANIS and R. E. STEARNS, On the computational complexity of algorithms, Transactions
of the American Mathematical Society, vol. 117 (1965), pp. 285-306.

[Has] J. HASTAD, Almost optimal lower bounds for small depth circuits, Proceedings of the 18th ACM
Symposium on Theory of Computing (1986), pp. 6-20.

COMPUTATIONAL COMPLEXITY OF PROBLEMS 39

[HooR] H. J. Hoover and W. L. Ruzzo, A compendium of problems complete for P, Techni-
cal Report, Department of Computer Science, University of Washington, Seattle, Washington (to
appear).

[HoPV] J. HoPCROFT, W. PAUL, and L. VALIANT, On time versus space, Journal of the Association for
Computing Machinery, vol. 24 (1977), pp. 332-337.

[HoU] J. E. HopcroFT and J. D. ULLMAN, Introduction to automata theory, languages, and
computation, Addison-Wesley, Reading, Massachusetts, 1979.

[HuR1] H.B.HUNT,III, and D. J. ROSENKRANTZ, On equivalence and containment problems for formal
languages, Journal of the Association for Computing Machinery, vol. 24 (1977), pp. 387-396.

[HuR2] , Computational parallels between the regular and context-free languages, SIAM
Journal on Computing, vol. 7 (1978), pp. 99-114. '

[HuRS] H.B. HUNT, III, D. J. ROSENKRANTZ, and T. G. SZYMANSKI, On the equivalence, containment,
and covering problems for the regular and context-free languages, Journal of Computer and System
Sciences, vol. 12 (1976), pp. 222-268.

[Huy] D. T. HUYNH, Deciding the inequivalence of context-free grammars with 1-letter terminal
alphabet is 25-complete, Theoretical Computer Science, vol. 33 (1984), pp. 305-326.

[Ib] O.H.IBARRA, A note concerning nondeterministic tape complexities, Journal of the Association for
Computing Machinery, vol. 19 (1972), pp. 608-612.

[IbM] O. H. IBARRA and S. MORAN, Probabilistic algorithms for deciding equivalence of straight-line
programs, Journal of the Association for Computing Machinery, vol. 30 (1983), pp. 217-228.

[Im1] N. IMMERMAN, Relational queries computable in polynomial time, Proceedings of the 14th
ACM Symposium on Theory of Computing (1982), 147-152.

[Im2] , Languages which capture complexity classes, Proceedings of the 15th ACM Symposium
on Theory of Computing (1983), 347-354.

[Je] R. G. JErosLOW, The polynomial hierarchy and a simple model for competitive analysis, Report
No. 83272-OR, Institut fiir Okonometrie und Operations Research, Rheinische Friedrich-Wilhelms-
Universitdt, Bonn, 1983.

[Joh1] D.S. JounsoON, The N P-completeness column: an ongoing guide, Journal of Algorithms, vol. 4
(1983), pp. 397-411.

[Joh2] , The N P-completeness column: an ongoing guide, Journal of Algorithms, vol. 5 (1984),
pp. 284-299.

[Joh3] , The N P-completeness column: an ongoing guide, Journal of Algorithms, vol. 5 (1984),
pp. 433-447.

[Joh4] , The N P-completeness column: an ongoing guide, Journal of Algorithms, vol. 6 (1985),
pp. 291-305.

[Jon] N. D. JoNEs, Space-bounded reducibility among combinatorial problems, Journal of Computer
and System Sciences, vol. 11 (1975), pp. 68-85.

[JoL] N.D.JonEs and W. T. LAASER, Complete problems for deterministic polynomial time, Theoretical
Computer Science, vol. 3 (1977), pp. 105-117.

[JoLL] N.D. Jongs, Y. E. LiEN, and W. T. LAASER, New problems complete for nondeterministic log
space, Mathematical Systems Theory, vol. 10 (1976), pp. 1-18.

[JoS] N. D. Jones and A. L. SELMAN, Turing machines and the spectra of first-order formulas, this
JOURNAL, vol. 39 (1974), pp. 139-150.

[Kal] R.M.KARP, Reducibility among combinatorial problems, Complexity of computer computations
(R. E. Miller and J. W. Thatcher, editors), Plenum Press, New York, 1972, pp. 85-104.

[Ka2] , Combinatorics, complexity, and randomness, Communications of the ACM, vol. 29
(1986), pp. 98-109.

[KaM] R. M. Karp and R. E. MILLER, Parallel program schemata, Journal of Computer and System
Sciences, vol. 3 (1969), pp. 147-195.

[Kh] L. G. KHACHIYAN, A polynomial algorithm for linear programming, Doklady Akademii Nauk
SSSR, vol. 244 (1979), pp. 1093-1096 (in Russian); English translation, Soviet Mathematics Doklady, vol.
20(1979), pp. 191-194.

[Kol] D.KozeN, Complexity of finitely presented algebras, Proceedings of the 9th ACM Symposium
on Theory of Computing (1977), pp. 164-177.

[Ko2] , Complexity of Boolean algebras, Theoretical Computer Science, vol. 10 (1980), pp. 221-
248.

40 LARRY STOCKMEYER

[Lad1] R. E. LADNER, On the structure of polynomial time reducibility, Journal of the Association Sfor
Computing Machinery, vol. 22 (1975), pp. 155-171.

[Lad2] , The circuit value problem is log space complete for P, SIGACT News, vol. 7 (1975),
no. 1, pp. 18-20.
[Lad3] » The computational complexity of provability in systems of modal propositional logic,

SIAM Journal on Computing, vol. 6 (1977), pp. 467—480.

[LaLS] R.E.LADNER,N. A. LYNCH, and A. L. SELMAN, A comparison of polynomial time reducibilities,
Theoretical Computer Science, vol. 1 (1975), pp. 103-123.

[LaN] R.E.LADNER and J. K. NORMAN, Solitaire automata, Journal of Computer and System Sciences,
vol. 30 (1985), pp. 116-129.

[Lau] C. LAUTEMANN, BPP and the polynomial hierarchy, Information Processing Letters, vol. 17
(1983), pp. 215-217.

[Lev] L. A. LEVIN, Universal sorting problems, Problemy Peredachi Informatsii, vol. 9 (1973), no. 3,
pp. 115-116 (in Russian); English translation, Problems of Information Transmission, vol. 9 (1973),
pp. 265-266.

[Lew] H.R. Lewis, Complexity results for classes of quantificational formulas, Journal of Computer
and System Sciences, vol. 21 (1980), pp. 317-353.

[Liv] A.B.LIVCHAK, The relational model for process control, Nauchno-T. ekhnicheskaya Informatsiya,
ser. 2, 1983, no. 4, pp. 27-29 (in Russian); English translation in Automatic Documentation and
Mathematical Linguistics, vol. 17 (1983), pp. 105-110.

[Lo] L.Lo, On the computational complexity of the theory of abelian groups, Ph.D. Thesis, Unlversny
of Michigan, Ann Arbor, Michigan, 1984.

[Ly] N. LYNCH, On reducibility to complex or sparse sets, Journal of the Association Jfor Computing
Machinery, vol. 22 (1975), pp. 341-345.

[Mah1] S.R. MAHANEY, On the number of p-isomorphism classes of NP-complete sets, Proceedings of
the 22nd IEEE Symposium on Foundations of Computer Science (1981), pp. 271-278.

[Mah2] , Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis,
Journal of Computer and System Sciences, vol. 25 (1982), pp. 130-143.

[MaM1] E. Mayr and A. R. MEYER, The complexity of the finite containment problem for Petri nets,
Journal of the Association for Computing Machinery, vol. 28 (1981), pp. 561-576.

[MaM2] » The complexity of the word problems for commutative semigroups and polynomial
ideals, Advances in Mathematics, vol. 46 (1982), pp. 305-329.

[Mel] A.R.MEYER, Weak monadic second-order theory of successor is not elementary-recursive, Logic
colloquium: symposium on logic held at Boston 1972-73 (R. Parikh, editor), Lecture Notes in
Mathematics, vol. 453, Springer-Verlag, New York, 1975, pp. 132-154.

[Me2] » The inherent computational complexity of theories of ordered sets, Proceedings of the
International Congress of Mathematicians (Vancouver, 1974), Vol. 2, Canadian Mathematical Congress,
Montreéal, 1975, pp. 477-482.

[MeS] A. R. MEYER and L. J. STOCKMEYER, The equivalence problem for regular expressions with
squaring requires exponential space, Proceedings of the 13th IEEE Symposium on Switching and Automata
Theory (1972), pp. 125-129.

[Mi] G. L. MILLER, Riemann’s hypothesis and tests for primality, Journal of Computer and System
Sciences, vol. 13 (1976), pp. 300-317.

[Mo] L. MoNK, Elementary recursive decision procedures, Ph.D. Thesis, University of California,
Berkeley, California, 1975.

[Mos] Y. N. MoscHovAKIS, Elementary induction on abstract structures, North-Holland, Amsterdam,
1974.

[Pal] C. H. PAPADIMITRIOU, On the complexity of unique solutions, Journal of the Association Jfor
Computing Machinery, vol. 31 (1984), pp. 392-400.

[Pa2] , Games against nature, Journal of Computer and System Sciences, Vol 31 (198S5),
pp. 288-301.

[PaS] C.H. PAPADIMITRIOU and K. STEIGLITZ, Combinatorial optimization: algorithms and complex-
ity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

[PaW] C. H. PapapiMiTRIOU and D. WOLFE, The complexity of facets resolved, Proceedings of the
26th IEEE Symposium on Foundations of Computer Science (1985), pp. 74-78.

COMPUTATIONAL COMPLEXITY OF PROBLEMS 41

[PaY] C. H. PApaDIMITRIOU and M. YANNAKAKIS, The complexity of facets (and some facets of
complexity), Journal of Computer and System Sciences, vol. 28 (1984), pp. 244-259.

[PPST] W. J. PauL, N. PIPPENGER, E. SZEMEREDI, and W. T. TROTTER, On determinism versus
nondeterminism and related problems, Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science (1983), pp. 429-438.

[Pi] N. PIPPENGER, On simultaneous resource bounds, Proceedings of the 20th IEEE Symposium on
Foundations of Computer Science (1979), pp. 307-311.

[PiF] N. PiPPENGER and M. J. FISCHER, Relations among complexity measures, Journal of the
Association for Computing Machinery, vol. 26 (1979), pp. 361-381.

[P1] D. A. PLAISTED, Complete problems in the first-order predicate calculus, Journal of Computer and
System Sciences, vol. 29 (1984), pp. 8-35.

[Pn] A. PNUELI, The temporal logic of programs, Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science (1977), pp. 46-57.)

[Pr1] V. R. PRATT, Semantical considerations on Floyd-Hoare logic, Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science (1976), pp. 109-121.

[Pr2] , Models of program logics, Proceedings of the 20th IEEE Symposium on Foundations of
Computer Science (1979), pp. 115-122.

[PrS] V.R.PRATT and L. J. STOCKMEYER, A characterization of the power of vector machines, Journal
of Computer and System Sciences, vol. 12 (1976), pp. 198-221.

[Rabl] M. O. RABIN, Degree of difficulty of computing a function and a partial ordering of recursive
sets, Technical Report 2, Hebrew University, Jerusalem, 1960.

[Rab2] , A simple method for undecidability proofs and some applications, Proceedings of the
1964 international congress for logic, methodology and philosophy of science (Y. Bar-Hillel, editor),
North-Holland, Amsterdam, 1965, pp. 58—68.

[Rab3] , Decidability of second-order theories and automata on infinite trees, Transactions of the
American Mathematical Society, vol. 141 (1969), pp. 1-35.

[Rab4] , Theoretical impediments to artificial intelligence, Information Processing 74
(J. Rosenfeld, editor), North-Holland, Amsterdam, 1974, pp. 615-619.

[Rabs] , Probabilistic algorithm for testing primality, Journal of Number Theory, vol. 12 (1980),
pp. 128-138.

[Rab6] , Probabilistic algorithms in finite fields, SIAM Journal on Computing, vol. 9 (1980),
pp. 273-280.

[Racl] C. W. RACKOFF, The computational complexity of some logical theories, Doctoral Thesis,
Department of Electrical Engineering, M.L.T., Cambridge, Massachusetts, 1974; also Report TR-144,
M.LT. Laboratory for Computer Science.

[Rac2] , The complexity of theories of the monadic predicate calculus, Research Report # 136,
IRIA-LABORIA, France, October 1975. '

[Rac3] , On the complexity of the theories of weak direct powers, this JOURNAL, vol. 41 (1976),
pp- 561-573.)
[Rac4] , Relativized questions involving probabilistic algorithms, Journal of the Association for

Computing Machinery, vol. 29 (1982), pp. 261-268.

[ReL] C. R. REDDY and D. W. LOVELAND, Presburger arithmetic with bounded quantifier alternation,
Proceedings of the 10th ACM Symposium on Theory of Computing (1978), pp. 320-325.

[Reif] J. REIF, The complexity of two-player games of incomplete information, Journal of Computer and
System Sciences, vol. 29 (1984), pp. 274-301.

[Reis] S. ReiscH, Hex ist PSPACE-vollstindig, Acta Informatica, vol. 15 (1981), pp. 167-191.

[Ro] E.L.ROBERTSON, Structure of complexity in the weak monadic second-order theories of the natural
numbers, Proceedings of the 6th ACM Symposium on Theory of Computing (1974), pp. 161-171.

[Robl1] J. M. ROBsSON, N by N checkers is exptime complete, SIAM Journal on Computing, vol. 13
(1984), pp. 252-267. :

[Rob2] , The complexity of go, Information Processing 83 (Proceedings of the ninth IFIP world
computer congress, Paris, 1983; R. E. A. Mason, editor), North-Holland, Amsterdam, 1983, pp. 413-418.

[Rog] H. ROGERS, JR., Theory of recursive functions and effective computability, McGraw-Hill,
New York, 1967.

42 LARRY STOCKMEYER

[Ruz] W.L.Ruzzo, On uniform circuit complexity, Journal of Computer and System Sciences, vol. 22
(1981), pp. 365-383.

[SaY] Y. SaGiv and M. YANNAKAKIS, Equivalences among relational expressions with the union and
difference operators, Journal of the Association for Computing Machinery, vol. 27 (1980), pp. 633-655.

[Sav] W. J. SavitcH, Relationships between nondeterministic and deterministic tape complexities,
Journal of Computer and System Sciences, vol. 4 (1970), pp. 177-192.

[Scha] T.J. SCHAEFER, On the complexity of some two-person perfect-information games, Journal of
Computer and System Sciences, vol. 16 (1978), pp. 185-225.

[Schn] C.P.SCHNORR, The network complexity and the Turing machine complexity of finite functions,
Acta Informatica, vol. 7 (1976), pp. 95-107.

[Scho] H. ScHoLz, Ein ungeléstes Problem in der symbolischen Logik, this JOURNAL, vol. 17 (1952),
p. 160.

[Schw] J. T. SCHWARTZ, Fast probabilistic algorithms for verification of polynomial identities, Journal
of the Association for Computing Machinery, vol. 27 (1980), pp. 701-717.

[Se] J.1.SEIFERAS, Relating refined space complexity classes, Journal of Computer and System Sciences,
vol. 14 (1977), pp. 100-129.

[SeFM] J. 1. SEIFERAS, M. J. FISCHER, and A. R. MEYER, Separating nondeterministic time complexity
classes, Journal of the Association for Computing Machinery, vol. 25 (1978), pp. 146-167.

[Sip1] M. SIPSER, On relativization and the existence of complete sets, Automata, languages and
programming (Aarhus, 1982), Lecture Notes in Computer Science, vol. 140, Springer-Verlag, New York,
1982, pp. 523-531.

[Sip2] , Borel sets and circuit complexity, Proceedings of the 15th ACM Symposium on Theory
of Computing (1983), pp. 61-69.

[Sip3] , A complexity theoretic approach to randomness, Proceedings of the 15th ACM
Symposium on Theory of Computing (1983), pp. 330-335.

[SisC] A.P.SistLA and E. M. CLARKE, The complexity of propositional linear temporal logics, Journal
of the Association for Computing Machinery, vol. 32 (1985), pp.733-749.

[SiVW] A.P.SisTLA, M. Y. VARDI, and P. WOLPER, The complementation problem for Biichi automata
with applications to temporal logic, Proceedings of the 12th international colloquium on automata,
languages and programming, Lecture Notes in Computer Science, vol. 194, Springer-Verlag, New York,
1985, pp. 465-474.

[SoS] R. SoLovAY and V. STRASSEN, A fast Monte-Carlo test for primality, SIAM Journal on
Computing, vol. 6 (1977), pp. 84-85; erratum, vol. 7 (1978), p. 118.

[StHL] R. E. STEARNs, J. HARTMANIS, and P. M. Lewis, II, Hierarchies of memory limited
computations, Proceedings of the 6th IEEE Symposium on Switching Circuit Theory and Logical Design
(1965), pp. 179-190.

[Sto1] L.J. STOCKMEYER, The complexity of decision problems in automata theory and logic, Doctoral
Thesis, Department of Electrical Engineering, M.I.T., Cambridge, Massachusetts, 1974; also Report
TR-133, M.I.T. Laboratory for Computer Science.

[Sto2] , The polynomial-time hierarchy, Theoretical Computer Science, vol. 3 (1977), pp. 1-22.

[StoC] L.J. STocKMEYER and A. K. CHANDRA, Provably difficult combinatorial games, SIAM Journal
on Computing, vol. 8 (1979), pp. 151-174.

[StoM] L. J. SToCKMEYER and A. R. MEYER, Word problems requiring exponential time: preliminary
report, Proceedings of the 5th ACM Symposium on Theory of Computing (1973), pp. 1-9.

[Sud] 1. H. SUDBOROUGH, A note on tape-bounded complexity classes and linear context-free languages,
Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 499-500.

[Tarj] R.E.TARIAN, Data structures and network algorithms, CBMS-NSF Regional Conference Series
in Applied Mathematics, no. 44, Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, 1983.

[Tars] A. TaRsK1, A decision method for elementary algebra and geometry, 2nd ed., University of
California Press, Berkeley, California, 1951.

[Val] L. G. VALIANT, The complexity of computing the permanent, Theoretical Computer Science,
vol. 8 (1979), pp. 189-202.

[Va2] , The complexity of enumeration and reliability problems, SIAM Journal on Computing,
vol. 8 (1979), pp. 410-421.

COMPUTATIONAL COMPLEXITY OF PROBLEMS 43

[VaV] L.G. VALIANT and V. V. VAZIRANIL, NP is as easy as detecting unique solutions, Proceedings of
the 17th ACM Symposium on Theory of Computing (1985), pp. 458—463.
[Var] M. Y. VARDL, The complexity of relational query languages, Proceedings of the 14th ACM

Symposium on Theory of Computing (1982), pp. 137-146.
[VarS] M. Y. VArDI and L. STOCKMEYER, Improved upper and lower bounds for modal logics of
programs: preliminary report, Proceedings of the 17th ACM Symposium on Theory of Computing (1985),

pp. 240-251.
[Wr] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoretical Computer Science,

vol. 3 (1977), pp. 23-33.
[Ya] A. C. YAo, Separating the polynomial-time hierarchy by oracles, Proceedings of the 26th IEEE

Symposium on Foundations of Computer Science (1985), pp. 1-10.

IBM ALMADEN RESEARCH CENTER
SAN JOSE, CALIFORNIA 95120

