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SUMMARY

In this paper, reference priors are derived for three cases where partial information is
available. If a subjective conditional prior is given, two reasonable methods are proposed
for finding the marginal reference prior. If, instead, a subjective marginal prior is available,
a method for defining the conditional reference prior is proposed. A sufficient condition
is then given under which this conditional reference prior agrees with the conditional
reference prior derived in the first stage of the reference prior algorithm of Berger &
Bernardo (1989, 1992). Finally, under the assumption of independence, a method for
finding marginal reference priors is also proposed. Various examples are given to illustrate
the methods.

Some key words: Beta distribution; Gamma distribution; Kullback-Leibler divergence; Neyman—Scott problem;
Noninformative prior; Normal distribution.

1. INTRODUCTION

Bayesian analysis using noninformative or default priors has received considerable atten-
tion in recent years. A common noninformative prior is the Jeffreys prior (Jeffreys, 1961),
which is proportional to the square root of the determinant of the Fisher information
matrix. The Jeffreys prior is quite useful for a single parameter, but can be seriously
deficient in mutliparameter problems (Berger & Bernardo, 1992). For a recent review of
various approaches to the development of noninformative priors, see Kass & Wasserman
(1996). Here, we will concentrate on the reference prior approach, as developed in
Bernardo (1979) and Berger & Bernardo (1992).

In many practical problems, one has partial prior information for some of the param-
eters. For example, in a N(u, 6?) population, one might possess reasonably strong prior
information about g, while the prior information for ¢ is vague. As another example,
Lavine, Wasserman & Wolpert (1991) considered robust Bayesian inference with specified
prior marginals. As a third example, the prior knowledge could be of independence of the
parameters, such as in the ECMO clinical trial example studied by Ware (1989). Another
common type of partial information is constraints on the parameter space. This is typically
casily handled, however, in that reference priors for a constrained space are almost always
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just the unconstrained reference prior times the indicator function on the constrained
space.

The paper is arranged as follows. In § 2, we will develop the reference priors when two
types of partial information are available. We first consider the case when a conditional
prior is known and it is desired to find the marginal reference prior. Two options are
given. One is similar to the final stage of Berger & Bernardo’s reference prior algorithm;
the other is more intuitive and is based on deriving the marginal model. Next, the con-
ditional reference prior is derived when a marginal prior is known. A sufficient condition
is found under which the conditional noninformative prior often agrees with the con-
ditional reference prior from the first stage of Berger & Bernardo’s algorithm. Some
examples are given in § 3, illustrating various aspects of these results. In § 4, an algorithm
is proposed for determining marginal reference priors when the two parameters are known
to be independent. Some sufficient conditions are given under which the answers can be
written in closed form. Formal examples and the ECcMO clinical trial example are used for
illustration. Finally, § 5 contains some discussion.

2. KNOWING A MARGINAL OR CONDITIONAL PRIOR
2-1. Introduction
Let X, = (x4, ..., x,) be arandom sample from the density p(x: 6, 0,), where the param-
eters 6, and 6, are vectors of dimensions d; and d,, respectively. Let n(6,, 6,) denote the
prior density of (6,, 6,). The following questions are of interest.
(i) Suppose there is available a subjective conditional prior density =°(6,|60,) for 0,
given 6,. How can we find the marginal noninformative prior ="(0,) for 6,?
(ii) Suppose there is available a subjective marginal prior density =°(6;) for 6;. How
can we find the conditional noninformative prior n"(6,|6,) for 8, given 6,.
Solutions to these two questions will be discussed in §§ 2-2 and 2-3, respectively. We will
use n(0,, 0, X,) to denote the joint posterior density of 6, and 0, and =(0,|X,) for the
marginal posterior density of 6.

2-2. Finding the marginal prior
When the conditional density of 6, given 6, is available, there are two reasonable
options for finding a marginal prior n"(6,).

Option 1. Following Bernardo (1979), define the expected Kullback—Leibler divergence
between the marginal posterior density of 6; given X, and the marginal prior of 6, by

0:1X,
7005wy = | [ w0 1x0108 {05 o, | (1)

where the expectation is with respect to the marginal density m(X,)=
[ p(X,10,)7"(6,) d6,. We seek that prior, n'(0;), which maximises (1) asymptotically, since
maximising the distance between the prior and posterior is a plausible way to define a
prior which has minimal influence on the analysis. It follows from Ghosh & Mukerjee
(1992) that, under some regularity conditions and as n— oo,

d, 6,
J{X,; 7'()} = 5 log (ﬁ;) + fn'(@l) log {Z'((Ol))} do, +o(1), (2)
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1 z
10 =exp {3 [wi@aioytog (L) an}.

Here £ =3%(0,, 0,) is the per observation Fisher information matrix for (0, 0,), Z,, =
25,(0, 0,) is the per observation Fisher information for 6,, given that 6, is held fixed,
and |X| is the determinant of .

The reference prior strategy suggests choosing 7" to maximise (1) or (2) asymptotically
on compact sets; this can easily be seen to lead to n}(0,) ocn(6,). In fact, this is essentially
the solution used in Berger & Bernardo (1989, 1992). The following theorem gives an
important special case.

where

THEOREM 1. (a) If |Z|/|Z,,| does not depend on 0,, then, for any subjective conditional
density n%(0,|0,), the marginal reference prior from Option 1 has the form

71(01) o (IZI/1 2%
(b) If |Z|/|Z,;| depends only on 0, and 7°(6,|0,) does not depend on 0,, then
ni(el)%l.

Proof. The results follow from the definition of 7}(6,) and the assumption. O

Option 2. Find the marginal model p(X,|6,) = [ p(X,|0;, 0,)7%(0,]0,) d6,. Let *(9,) be
the Fisher information matrix for 6, based on this marginal model. Then the reference
prior for 6, in this model, again maximising, asymptotically, the expected Kullback—
Leibler divergence between the marginal posterior and the marginal prior, is

m5(61) oc {|Z*%(6,) |},

Option 2 more closely mirrors the underlying motivation for reference priors in that,
with 7*(6,|0,) given, the information in the data about 0, resides in p(X,|0,). Hence the
marginal reference prior for 6, should, ideally, be computed with respect to this mixture
model. Unfortunately, the Fisher information matrix for such mixture models is often
difficult to compute, so that implementation of Option 2 is often difficult. This same
difficulty also motivated the use of the analogue of Option 1 in Berger & Bernardo (1989,
1992), in place of the more natural Option 2.

2-3. Finding the conditional prior

For the case when the marginal prior density n°(6;) is known, consider the expected
Kullback-Leibler divergence between the conditional posterior density of 8,, given 6, and
X,, and the conditional prior of 6,, given 6,,

[ 0,10,, X
X w(.10,)) = B [ 7(0,] X,) f 70,101, X,) log {M} a6, del]
Jo, e, 7'5(02|01)

[ 0,,0,|X,
=El: f 0y, 0, X,,) log {”(1—92;—-—)} do, del]
Jo, Je, n(0y, 6,)

i n(6,| X,
_E_Ll (6, | X,) log { 0 }d@l]

From an asymptotic expansion of the first term, compare formula (1.1) of Ghosh &
Mukerjee (1992) and (2), we have that
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F{X,; n'(.100)}

20 ()4 | 70| | 76,16, 108 Zal Lo T e L ot). (3)
2 2me o, o, ! 7'(6,]6,)

Choosing 7'(6,]6,) to maximise (3) asymptotically thus suggests defining the conditional
reference prior as

7'(0,]01) oc | Z2,(6,, 92)|%~ (4)

When this conditional reference prior is proper, matters are straightforward. In practice,
it may be improper and will then encounter normalisation concerns. The compact support
argument that is typically used in the reference prior approach (Berger & Bernardo, 1992)
may then be applied here. Choose a nested sequence A; = A, < ... of compact subsets of
the parameter space A for (6;, 6,), such that U;A; = A and #'(0,|0,) has finite mass on
Q,=1{0,:(6,, 0,) e A;}. Let 1, be the indicator function on A and let

Ki(el) = J |222(91, 02)|% d02.
Q;

The conditional reference prior of 6, on Q; is

|20, 02)*

n;(0,10,) = K,(0,)

15,(0).

Now define the conditional reference prior of 6, by

X n{(02|91)
77(6,10,) = lim i 10\
( 2| 1) i n{(020|910)

when the limit exists; here (0,9, 0,0) is any fixed point. It is easy to see that

. Kl(e ) 1
n'(0,10,) oc lim —=—5 | 5,,(6;, 0,)[%. (5)

i-w Ki(6;)

The following theorem gives a sufficient condition under which this limit is proportional
to [X,,(6;, 0,)[*.

THEOREM 2. Assume
|Z55(01, 0,) = g1(01)g2(6), (6)

for some functions g, and g,. Suppose A = ®; x ®, and the compact sets are chosen to be
of the form A;= ®y; x ©®,;. Then the conditional reference prior of 0, satisfies

m'(60,10;) oc | Z55(0;, 92)|% oC {gz(ez)}%~

Proof. Clearly, the normalising constants K; are independent of 6,. The result follows
immediately. O

Note that the conditional reference prior, n"(0,|60;), never depends on the specified
marginal prior 7%(6,).
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3. EXAMPLES
3-1. Multinomial distribution
Consider the multinomial density for 3 cells
k!
yi!ylk—y; —

where k is a positive integer, y; is the observed frequency in cell i, p; is the probability of
cell i, and 0 < p; + p, < 1. Without loss of generality, we will suppress the cell count and
probability for the third cell. The Fisher information matrix for (p,, p,) is

1(/p;* 0 1 11
> _ - 1 .
(P, P2) k{< 0 P2_1>+1—P1—P2<1 1>}

The marginal reference prior. Given p,, assume that p, has a conditional density
7°(p,|p1) on (0, 1 —p;). We want to find the marginal reference prior for p;.

p(¥1, ¥2|p1, P2) = Y Pip%(1 —py—py)f 7717,
2 .

Option 1. Since
IZ|=1/{p1p2(1 =P —P2)}, Zpo=p3 ' +(1—p—py)~",
|Z|/Z, =1/{p1(1 — p,)}. From Theorem 1, the marginal reference prior for p, is

(7)

1
mi(py) e {p.(1 _Pl)}%.

Option 2. Assume that n observations x;=(yy;, y») (i=1,...,n) are obtained. Note
that, in reference prior developments, one considers replications of the full experiment in
creating the asymptotics. A considerable simplification results if

m'(p2|p1) = (1 —p1) " 'g{p2/(1 — p1)}, (8)

for some density g on (0, 1). This says that the random variable p,/(1 — p,) has the same
distribution for any p,. Then the marginal model is

1-py

_ 1 p
Pl (1= py = g Ot 1 g< : >dpz
—P1

p(Xn|p1)= f 1—171

0
1

=p{1+(1 _pl)nk‘.V1+ f SY1+(1 _ S)"k_)’1+_}’2+g(s) ds
0

oc pit+(1—py )70,
where y;, =2.7_, ;. The Fisher information corresponding to this model is then
nk
pi(1—py)’

Therefore, 75(p,) is also given by (7) when (8) holds. If (8) does not hold, the marginal
reference priors will typically be different.

X¥(py) =

The conditional reference prior of p,. For any marginal subjective prior on p,, the
conditional reference prior of p, is

n'(p2|p1)oc (0<p,<1—py).

{p.(1—p; — Pz)}%
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3-2. Normal distribution

Consider the normal density with a mean u and a standard deviation o. The Fisher
information matrix for (g, o) is £ = Z(u, o) = diag(c "2, 267 2).

Case 1: Marginal and conditional reference priors for u. We have the following
proposition.

ProrositioN 1. (a) If n°(o|u) is independent of p, the marginal reference prior under
Option 1 is i (u) oc 1.

(b) If n%(c|u) is independent of u, the marginal reference prior under Option 2 is
ma(p) oc 1.

(c) For any given marginal prior of o, the conditional reference prior of u is n'(pu|o)oc 1.

Proof. Note that |Z|/|Z,,| =072 and (a) follows from Theorem 1(b). For (b), since
n*(a | u) = 7°(0), the marginal probability density p(X,|u) is a scale-mixture of normals and
hence a location probability density. Consequently, the Fisher information for u will be
constant. Part (c) is obvious. O

When 7%(c| p) depends on u, Option 1 and Option 2 can generate different marginal
priors for p.

Case 2. Marginal and conditional reference priors for ¢. We have the following
proposition.

PrOPOSITION 2. (a) For any conditional prior of u given a, the marginal prior for o under
Option 1 has the form n'i(o) c 1/0.

(b) If the prior distribution for u is normal with mean m and variance %, then the marginal
prior for o under Option 2 has the form

. (0) n—1 N o? %
75(0) oc .
2 o2 (0% +nt?)?
(c) For any given marginal prior on p, the conditional prior for ¢ is also proportional to

1/o, independent of p.

Proof. Part (a) is immediate from Theorem 1(a). Part (c) is easy. For (b), let
X,=(x;,...,x,) be a random sample from N(u, ¢*). Define X, =(x;+ ...+ x,)/n and
§%=3"_, (x; — X,)*. The marginal model is

(X, |0) = 1 2 [ nx,—w’| 1 (u—m) P
p(Xnl0) = o P\ 7 22 e PIT T 22 (2n)*t P\T o #

S?2  n(x,—m)?
% " Y(o? + n1?)? °xp {_ 20 2(c*+ ntz)}'
Therefore, writing & = o2, we have
2 2 = 2
a_aéf log{p(Xulo)} = n2&21 T2 +1 2R % N r(lc(ri—m%
Under the marginal model, we have E;S? = (n — 1)é and E;(X, — m)*> = &/n + t> The Fisher
information for & under the marginal model is then
2¥(5) = (n — 1)/(28%) + 1(6 + nt?)~

The result is immediate. O
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Note that 7% (o) differs from 7} (s). When n— oo, however, 7 (o) will converge to =} (o).

3-3. Gamma distribution
Consider the gamma density

B .
p(x|a, f)=——x*""exp(—px) (x>0),
I'(e)
where « >0 and f > 0. The Fisher information matrix for («, ) is
1
Yl — B
=3 pf)= ,
1 a
g B

where Y(x) = d log {I'(«)}/da.

ProrosiTiON 3. (a) For any conditional density of B given «, the marginal reference prior
for o under Option 1 is given by

(@) oc {Y'(e) — ™1} 9)
(b) Assume that the conditional distribution of B given a is Ga (a, b). The marginal refer-
ence prior for o under Option 2 is given by
(@) oc {Y' (o) — i (noe + a)}*.
(c) For any given marginal prior on a, the conditional reference prior for B is independent
of « and is given by ™.

Proof. 1t is easy to see that |Z|=pB"*{ay'(®) —1} and X,, =aBf % Thus |Z|/Z, =
Y'(@) — ™1, which implies (9). Part (c) is clear. For (b), let X, =(x,, ..., x,) be a random
sample from a gamma distribution. The marginal model is then

_ (Xt e, (_ d )b“ 1ol
POl =2 f preexp( =B X x ) 67" exp(—pb)df
C(na + a)(I T}, x;)*
@ X+ by

The second derivative of the logarithm of p(X,|a) is —ny'(«) + n*Y/'(nx + a), from which
(b) follows immediately. O

Using an expansion for y/(.), compare equation (1.45b) of Bowman & Shenton (1988),
we can show that y'(x)=x"1+(2x?)"1 + O(x3) as x — 0. Therefore, ny'(na + a) > o~ *
as n— 0. Consequently, the marginal reference prior for « under Option 2 converges to
the marginal reference prior for « under Option 1.

3-4. Neyman—Scott problem
Suppose that y; (i=1,...,n; j=1,2) are independent observations, and y;; has a
normal distribution with mean y; and variance o2 We want to find the marginal reference
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prior distribution for 62 or ¢. The Fisher information matrix for (uy, ..., u,, 6%) is given
by

2

E=Z(Uy, ..., Uy 02)=diag(207%...,20 % ne"4).

ProrosiTION 4. For any conditional prior of (uq, ..., iven o2, the marginal reference
y p u U) & 4

prior for 6 under Option 1 is ',(62) oc 6 2 Equivalently, the marginal reference prior for o

is m(6)oc o™ L.

Proof. Let 0, =2 and 0, =(uy, . .., 4,). We note that |Z|/|Z,,| = no %, which does not
depend on 6,. The first result follows from Theorem 1(a). The second result is an immediate
corollary. O

PROPOSITION 5. Suppose that the prior distributions for y; i=1,...,n) are independent
normal with mean m; and variance t%. The marginal reference prior for o> under Option 2
then has the form

my(0%) oc {o ™ + (6% + 27%) 72}5.
Equivalently, the marginal reference prior for a under Option 2 has the form
n5(0) oc {072 + 0%(0? + 212) "2}

Proof. Define 7; = (y + yi)/2 and 8> =Y"_, ¥:2_, (y;; — 7:)* The marginal model is
i=14&j=1 J

1 AT b 27— wf| 1
X 2 . o _ 1 i .
p(X,|0%)c 520 OXP ( 262) i]:II J exp { 202 2n)t

cexpd - Lzl
212 l’l'l
" 1 §2 X (i—m)
——— —eXpl— 5 — —————¢.
o"(a? + 212)*" P17 252 o? + 2%
Therefore, writing & = o2, we have

0? n n S22 (Fi—m)
| XloN=— +— = _ =171 4
T A Tr N N P E S

Under the marginal model, we have E;S?=né and E;(j;—m;)*> =16 + 1> The Fisher
information for & under the marginal model is then £*(&) = n/(26%) +3n(¢ + 27%)* This
proves the first assertion. The second assertion follows immediately. O

Interestingly, 7} (¢) and =5 (o) remain substantially different because of the strong prior
input on the y; in Option 2 even if n— co. This prior input weakens if we take 1> very
large, and in that case 7} (g) and 7% (o) approximately agree. Also, for any given marginal
prior on (yq, ..., u,), the conditional prior of ¢ is independent of (u,, ..., u,), and is the
same as 7} (o).

3-5. Bivariate normal distribution

Suppose that (Y;, ¥;) has a bivariate normal distribution with unknown mean vector
(04, 0,), variances equal to one and known correlation p. Write the joint density of
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(Y1, Y5) as p(y1, y2164, 6,). The Fisher information matrix is the inverse of the covari-
ance matrix.

PROPOSITION 6. (a) For any conditional prior of 0, given 0,, m;(6,)c 1.
(b) Suppose that 6, and 6, are independent. Then, for any subjective prior for 0,,
n5(0,) oc 1.

Proof. Part (a) is an immediate corollary of Theorem 1(a). For any subjective prior for
0,, n°(0,), say, the Fisher information of 6 from the marginal model is given by

Y LT S AL NN
C)=E\ "= p(x,, B16,, 6,)70,) o,

B J J {I7 . (0/001)p(y1, y210;, 0,)7°(0,) dO,}>
B _(oo p(¥1, ¥2104, 6,)7°(0,) db,
J [jw p(y1, ¥2 | 91: 0,){(y1 — 0,) + p(y, — 0,)}7°(0,) d02]2
P()’p Y2104, 0,)7%(6,) O,

By making the transformation t; = y; — 0;, we know that the right-hand side does not
depend on 6, and the Fisher information for 6, is in fact a constant. The result follows
immediately. O

V1 4dY,

dy, dy,.

In general, the marginal priors under Option 1 and Option 2 are different. Here is an
example, where 7°(0,|6,) does depend on 6;. Suppose that p = 0 and assume that 7°(8,|6,)
has a N(0,, 6%) distribution. It is easy to see that Y; |0, has a N(6,, 1) distribution and,
independently, Y,|0; has a N(0;, 1+ 6%) distribution. The Fisher information based on
the observation Y; is 1. Furthermore,

L Y,|6,)) = 2 207 40u(h,—0) 403(,—0) (-6,
e T N (R N (R N (e s i

The Fisher information based on the observation Y, is then (1 + 6%)~' +202/(1 + 6%)
Therefore,

2602
1+(92 (1+0%2)7*

Clearly, the reference priors under Option 1 and Option 2 are thus different.

Z¥*0) =1+

3-6. Beta distribution
Consider the beta density
'@+ p)
I'(@I(B)

where o >0 and B> 0 are unknown parameters. The Fisher information matrix for («, f)
is

¥ 1—x)Pf1 (0<x<1),

p(x|a, f) =

o (VA=W h) W+ p) )
E=2@h) ( Yt VH-va+p)
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where y'(a) = (d2/do?) log {T'(«)} is the poly-gamma function. A computational formula for
Y'is Y(x) =172 (x +j)"? (Bowman & Shenton, 1988).

We now try to find the conditional reference prior of § given a. Note that the Fisher
information matrix does not satisfy the condition in Theorem 2. We will see that the
conclusion of Theorem 2 fails in this case. Let [;<u; be two sequences of constants
satisfying

[;-0, u;— 0. (10)

Let Ky(@) = [} {y/(B) — ¥'(a+ B)}* dp. When a =1, it is easy to show that
V(B —v(B+1)=p7% Ki(l)= f B~ dp =logu; —logl;.
L
For an arbitrary « > 0, exact computation of K;(«) is quite complicated, but we have the
following expansion.
LemMmaA 1. For fixed o and as i — oo,
Ki(®) = /o logu; —logl;+ O(1),

where O(1) is a bounded constant.

The proof is given in the appendix.

ProrosITION 7. Assume that (10) holds and that u;l;— 1 as i — co. For any given marginal
prior of «, the conditional reference prior of f given a is

Rl VD=V P

Proof. From Lemma 1,

i K@) _ log(u;) —log(l;) 2

im = lim = .

ivo0 Ki(@)  ima /o log(u;) —log(l}) + O(1) \/oz +1

The result then follows from (5). O

This fact illustrates that, when |X,,(6,, 0,)| does not have the form (6), n"(6,]0,)
may not be proportional to |X,,(0;,6,)|*. Furthermore, n"(9,|0;) may depend on
the choice of the compact supports [I,u;]. For example, if I;=u; V% then
7'(B| o) oc " F{Y'(B) — Y'(ex + B)} %, although such a choice of the compact sets would be
rather unusual.

4. WHEN TWO PARAMETERS ARE KNOWN TO BE INDEPENDENT
4-1. Basic algorithm
Other types of possible partial information may be available. For example, one might
believe that 6, and 6, are independent. Then one wants, as a reference prior, the product
of marginal reference priors, n7(6,) and 75(6,). It is not clear how to define these, but
Option 1 in § 2-1 suggests the following iterative algorithm.

ALGORITHM
Step 0. Choose any initial nonzero marginal prior density for 0,, 15(0,), say.
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Step 1. Define an interim brior density for 0, by
1
n{"(0,) occexp {5 Jngo)(ez) log(|1Z|/1Z2,1) d92}~
Step 2. Define an interim prior density for 0, by

n5(6,) oc exp {% jﬂ‘f’(@l) log(IZ|/1Z111) d91}.

Now replace n%¥ in Step 0 by =" and repeat Step 1 and Step 2, to obtain 7 and
7. Consequently, we generate two sequences {n{’},>; and {n¥},> ;. The desired marginal
priors will be the limits 7} =1lim,, ,, ©{ (j = 1, 2) if the limits exist. In applying the iterative
algorithm, it may be necessary to operate on compact sets, and then let the sets grow.

We do not know the extent to which this algorithm converges in general. We have
studied several specific situations, and convergence was achieved quickly. For instance, in
the two-parameter Weibull model the equations iterate to the usual reference prior given
in Sun (1997). It would clearly be of interest to establish conditions under which conver-
gence is guaranteed. For many important situations, it is possible to deduce the result of
the above algorithm directly without actually going through the iterations. Here are two
sufficient conditions under which this can be done.

THEOREM 3. (a) If |Z|/|X,,| does not depend on 0,, then the marginal reference priors
are

1
m1(01) oc (I1Z1/|Z2,1)%,  m5(6,) oc exp {5 Jni(el) log(|1Z1/1Z11]) d91}~

(b) If |Z|/|Z41| does not depend on 0., then the marginal reference priors are

s 1
m3(0,) oc (|1 Z1/12441)%, =7(0;) ccexp {E J”S(ez) log(1Z/1Z,1) d92}.

Proof. Under the assumption in (a), n;(6;) does not depend on the choice of 7 in
Step 0. [

The reference priors under the independence assumption are, in general, different from
the reference prior or the reverse reference prior (Berger & Bernardo, 1992). The following
result gives a condition under which they are the same. Its proof is obvious, and is omitted.

THEOREM 4. If the Fisher information matrix of (6, 0,) is of the form

2(6y, 0,) = diag{g(6,)h1(0,), g2(01)h,(6,)},
then the independent marginal reference priors are

1 (01) oc {g1(61)}%,  75(6;) oc {hy(02)}E. (11)

Under the conditions of the theorem, when either 0, or 6, is the parameter of interest,
the reference priors have the same form: n(0,, 6,) oc {g,(0,)h,(0,)}* (Datta & Ghosh, 1995).
Therefore, the reference prior and the reverse reference prior are also as in (11).

4-2. Examples for independent priors

Example 1: Normal distribution. Clearly, when u and ¢ are independent, the marginal
reference priors are nj(u)oc 1 and n5 (o) oc 1/0.
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Example 2: Gamma distribution. It is easy to see that |X|/|Z,,| does not depend on f.
From Theorem 3, the marginal reference priors are mj(x)oc {¥/'(«) — 1/a}* and

1 -1
(o] 3 [ we—a o {0t dn] gt

This is also the unrestricted reference prior when « is the parameter of interest (Sun &
Ye, 1996).

Example 3: Bivariate binomial distribution. Crowder & Sweeting (1989) consider the
following bivariate binomial distribution, whose probability density is given by

fslp @)= (T) p(l—pm " <:> ¢F(1—q)",

where 0 < p, g < 1, and s and r are nonnegative integers satisfying 0 < s <r < m. The Fisher
information matrix for (p, q) is given by = =m diag[{p(1 — p)} ~%, p{q(1 — q)} "!]. Clearly,
the Jeffreys prior is proportional to {(1 —p)q(1 —q)} ~*. Based on the assumptions that
p and q are independent, that 6 =pq and ¢ = p(1 —q)(1 — pq)~! are independent, and
some invariance considerations, Crowder & Sweeting (1989) derived the noninformative
prior, nes(p, q) oc {p(1 — p)q(1 — q)} ~1. Polson & Wasserman (1990) derived, as the refer-
ence prior when either p or g is the parameter of interest, 7,(p, q) oc {p(1 — p)q(1 — q)} ~%.
From Theorem 3, this is also the reference prior based on independence of p and q.

4-3. A clinical trial: ECMO

Ware (1989) considered a Bayesian solution of a clinical trial. Ten patients were given
standard therapy and six survived. On the other hand, nine patients were treated with
ECMO (extra corporeal membrane oxygenation) and all nine survived. Let p; be the prob-
ability of success under standard therapy and p, be the probability of success under ECMO.
It is desired to compare the two treatments. Let n;=log{p;/(1—p;)} (i=1,2) and
0 =n, —n,. The quantity of interest is then the posterior probability that § > 0, where 7,
is a nuisance parameter. This example was reanalysed by Kass & Greenhouse (1989), who
considered 84 different proper prior distributions, all involving the independence assump-
tion. They said that the independence assumption is somewhat subtle and reasonable.

A follow-up to Kass & Greenhouse’s study was given in Lavine et al. (1991), who
studied bounds on the posterior probability that 6 >0 under various priors with and
without the independence constraint. Berger & Moreno (1994) also treated the example
from a robust Bayesian viewpoint. Lavine et al. (1991) and Berger & Moreno (1994) all
showed that, without the independence assumption, the infima of the posterior probability
that 6 > 0 for a reasonable class of priors might be very small. They also thus suggested
use of the independence assumption, assuming, of course, that it was plausible in the
application.

For this problem, both the Jeffreys prior and the Berger & Bernardo (1992) reference
prior will give a dependent prior for 6 and #,. We now derive the reference prior under
the independence assumption. First, the Fisher information matrix of (p,, p,) is

2(p1, pp) =diag[n,/{p:(1 — p1)}, ny/{p,(1 — p,)}],

where n; = 10 and n, =9. Thus the Fisher information matrix of (1, §) is given by



Reference priors with partial information 67

nyem nyem*o nyen ™o
(1 +en1)2 (1 +en1+6)2 (1 +en1+6)2

nyen*? nyen*?
(1+4em*2)? (14 em*o)y?

We can now apply Theorem 3, because |Z|/|Z,,| =n,e™/(1 + e™)? is independent of §.
Note that the two marginal priors are proper, so it is not necessary to use a compact set
limiting argument for the derivation.

ProrosITION 8. (a) Under the constraint that the marginal priors for 6 and n, be indepen-
dent, the marginal reference priors are of the form

i (n,) = e"?/{n(1 4 eM)}, (12)
5 (8) oc exp (— % Jl {t(1—1)} *log l:l + Zi {(1—t)e %2+ te"/z}z] dt). (13)
0

(b) The marginal densities in (a) are both symmetric and exp (1,/2) has a folded Cauchy
(0, 1) density.

Proof. The density in (12) follows from the fact that

© e’l1/2 1 B 1 2
L,o 1+en1dm=fo {e(1 - 1) fdt={r<5>} _n

For (13),
i nyem nyem*?
5 1 [ em?2 (1 + e'l1)2 (1 + e'l1+5)2
(0)oce - — —1
nz( ) Xp 27_[ Jow 1 + eﬂl Og nl eﬂl nzeql +é ’71

(1+em)y (1+em*?)?
[ 1 [ em? nie"(1+e"n* 2?2 4 nyemnto(1 + M)y
log d’h]

“P| T ) Ttem

- LY

ehent?

1 [ em?
=exp I:— o T4 om log{n,e”™M*(1 + e *2 4 nye m(1 + e™)*} d’11]-

Making the transformation ¢ = e"/(1 + e"t), we have

1 _ J \ 2
75(J) oc exp [— 517; L {t(1—1)} "*log {nl(tlea ) <1 + fi t>
. nz(lt— 0 (1 . it>2} dt]

1t 1 1 — De-%2 4 1212
=exp<—£J‘ {t(l—t)}_flog[m{( t)et(l_—l-t)te } +n2]dt>

0

1
oc eXp (— % J; {t(1 — 1)} “*log[n, {(1 —t)e %2 + te’?}2 + n,] dt).

Formula (13) then follows. Part (b) is clear. 1
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Kass & Greenhouse (1989) found that the posterior probability pr(é > 0|data) is
approximately 0-95 based on the independence of the proper prior they favoured. For
their independent prior in the é and 5, parameterisation, pr(é > 0|data) was approximately
0-99. Figure 1 compares the independent reference prior density and the resulting posterior
density of §. The resulting posterior probability that J > 0 is about 0-99. It is interesting
that the noninformative prior analysis yields the same conclusion as the Kass &
Greenhouse (1989) subjective analysis for the same parameterisation, even though it can
be shown that the reference priors are considerably more diffuse than the subjective priors
of Kass & Greenhouse. Note finally that, even though 7%(J5) can be expressed only in
terms of an integral, this is not a problem in that computation must be done by Monte
Carlo integration in any case.

Posterior

0-20

0-15

0-10

0-05 -

0-00

—-20 —10 0 10 20

Fig. 1. Prior and posterior densities of 4 from EcMO data.

5. DiscuUSSION

We have proposed two options to find the marginal reference prior for §; when the
conditional prior for 8, is known. Option 2 was felt to be the most natural approach, but
difficulty in its implementation will usually necessitate use of the easy Option 1. Table 1
summarises, for the examples in this paper, when the two options are known to yield the
same answer. Note, however, that, for all examples considered in which the two options
give different answers with the exception of the Neyman—Scott problem, 7(.) and 75(.)
agree asymptotically, as n— oo. This lends further support to general use of the simple
Option 1. In the Neyman—Scott problem, the two marginal reference priors do remain
different as n— oo, but, since the number of unknown parameters grows with n, this is
perhaps not unexpected.

The conditional reference prior, n'(6,]6,), is usually given by (4), and does not then



Reference priors with partial information 69

Table 1. Comparison of marginal reference priors
Jfrom two options

Distribution 04, 6,) 75(0,) = 71 (6,)?
Multi(py, p,) (p1, P2) Yes if (8) holds
N(u, 0 (1, 0) Yes if n°(c | u) = n(o)

(o, 1) No

Ga(a, B) (@ B) No

Neyman-—Scott {o, (e, .-, )} No
NZ(ela 02’ 1’ la p)a (61’ 62) Yes if 01 and 02
p is known are independent

depend on the specified marginal prior for 6;. However, as shown in the example of the
beta distribution in § 3-6, #"(6,]6,) can differ from (4).

In dealing with the partial prior knowledge that 6, and 6, are independent, an iterative
application of the reference prior algorithm was proposed. While this can be trivially
implemented in many important special cases, its general applicability and convergence
require further study.
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APPENDIX
Proof of Lemma 1
Let
LAB)= T A+ =+ f+1) .
Then

Y(B) =¥+ )= B2~ (+B) 72+ J.(B) = a(o + 2B) {BA ot + B*} ' + J(B).
Define h(x) = (B + x) "2 — (¢ + B+ x) ™2, for x > 0. Since
Rx)=—=2{(B+x)>—(@+p+x)73} <0

for x >0, h(x) is a monotone decreasing function of x. Thus,
Jo(B) = Jw {(B+x) =@+ B+x) 2 dx=(F+ 1) =@+ p+ D) ' =a{(B+ D)@+ p+1)} 1
1

On the other hand, for any x> 1 and o >0,

{_1_ 1 } 1 1 }_ ) 2[ 1 1 }
e B EE ST | A ] P s Ll
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which is negative. Thus, for any j> 1,

1 11 1 _J#%{ 1 1 }d
BHjP @+B+IP S (B+iP—3 @+B+P=1 S, \B+xP @+p+x

Therefore,

@ 1 1 o
JulB)< J {(/3+x)2—(0€+/3+x)2} D p+D

2

Consequently, HE(«x) < K;(«) < HY (), where

B u; OC+2B 1 H
= e ﬁ {ﬁz(ot+ﬂ)2 T DT 1)} "

v Jo |2t 2B 1 }%d
Hi©) J"‘L {ﬂ2<a+ﬁ)2+(ﬁ+%)(a+ﬁ+%> b

For any 0 <& <1 small enough and i large enough such that [; <& < 1/e <u;, we have

v 81{a+2ﬂ p? }%
Hi@) J“(Lﬂ wrpr A puriip o

+rl[ 2+af ! N 1 Tdﬁ)
ye BLBA+aB™Y? (14387 H{1+@+3)p71}

¢ 1 “q 1
=\/oc|:  Jap L OBY A+ O(0)+ Le—B{Ho(B)} dﬂ]

= Jalogu; —logl; + O(1).
Similarly, we have H¥(«) = ./ logu; —log; + O(1). This completes the proof. |
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