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Characterization of the Bayes Estimator and
the MDL Estimator for Exponential Families

Jun-ichi Takeuchi

Abstract—We analyze the relationship between a Minimum
Description Length (MDL) estimator (posterior mode) and a
Bayes estimator for exponential families. We show the following
results concerning these estimators: a) Both the Bayes estimator
with Jeffreys prior and the MDL estimator with the uniform prior
with respect to the expectation parameter are nearly equivalent
to a bias-corrected maximum-likelihood estimator with respect
to the canonical parameter. b) Both the Bayes estimator with
the uniform prior with respect to the canonical parameter and
the MDL estimator with Jeffreys prior are nearly equivalent
to the maximum-likelihood estimator (MLE), which is unbiased
with respect to the expectation parameter. These results together
suggest a striking symmetry between the two estimators, since
the canonical and the expectation parameters of an exponential
family form a dual pair from the point of view of information
geometry. Moreover, a) implies that we can approximate a Bayes
estimator with Jeffreys prior simply by deriving an appropriate
MDL estimator or an appropriate bias-corrected MLE. This is
important because a Bayes mixture density with Jeffreys prior is
known to be maximin in universal coding [7].

Index Terms—Bayes estimator, exponential family, higher or-
der asymptotic theory, information geometry, Minimum Descrip-
tion Length principle, universal source coding.

I. INTRODUCTION

I N this study, we examine the estimation of parameters of
probability densities in the general class of regular expo-

nential families [5]. In particular, we analyze the relationship
between the following two estimators and reveal a symmetry
between the two: a Minimum Description Length (MDL) esti-
mator [12] (also called a Minimum Message Length estimator
[15], [16], which has a posterior mode interpretation) and the
estimator which is Bayes with respect to Kullback–Leibler di-
vergence (KL divergence for short) between the parameterized
densities (it can be obtained by projecting the Bayes posterior
mixture density onto the original exponential family).

In the field of universal source coding, Bayes mixture
densities have recently become a popular subject of study for
two main reasons: 1) Bayes decision theory can be used to
determine the code which will achieve the minimax redun-
dancy [7]–[9], [11], and 2) codes based on a Bayes mixture
will be superior to two-step codes [13]. The MDL estimator
we study here is based on a two-step code (This is one form
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of Rissanen’s MDL principle [12], which more generally also
encompasses mixture-based codes).

In two-step coding, we first use observed data to estimate a
source distribution, which we then encode. Next, on the basis
of the estimate, we encode the observed data. In the MDL
principle, an optimal estimate is defined as that which gives
the shortest total code length for given data, and we refer to
estimators based on the MDL principle as MDL estimators.
MDL estimators have been shown to be especially effective
when the complexity (i.e., number of parameters) of the actual
source distribution is unknown [2], [3], [18], [19]. (Here,
however, we will focus on the case of parameter estimation
in a fixed family.)

By way of contrast, Bayes codes do not encode the source
distribution and are a fundamentally different from the two-
step type. Consider a parametric family of probability densi-
ties, on a space , and a predictive
density estimator for (i.e., ).
The cumulative risk with KL divergence is defined as

where “ ” denotes the natural logarithm,

and is the actual parameter. This cumulative risk is also the
redundancy of the code based on the joint density

(see [6]). Next, the Bayes risk (or Bayes redundancy) of
with respect to the prior is defined as

The Bayes predictor with this prior uses

which achieves (where is the pos-
terior density).

The Bayes predictor with theJeffreys prior [10] (denoted
by ) is of special importance among the Bayes proce-
dures, since asymptotically maximin for the redundancy

0018–9448/97$10.00 1997 IEEE



1166 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

and modifications of it are asymptotically minimax
under certain conditions [7], [17], [4].

For Bernoulli sources , we have

( is the number of occurrences of “” in trials), i.e., a
classic Laplace estimator is maximin for the Bayes redun-
dancy. Moreover, this estimator can be derived from the MDL
principle combined with the assumption that we either use the
binary digit expansion of the value of itself as the code
for the source distribution or assume that the prior is uniform
over the range of [20], [16]. Bayes procedures for coding
(unlike the two-step code) necessarily involve mixtures and
the corresponding predictive density estimates suffer from the
problem that, in general, they do not belong to the class of the
original source. When an estimate belongs to the original class
(i.e., densities estimated by plugging in parameter estimators),
we say that the estimator is “proper.” Bayes predictors are not
always proper, while MDL estimators are: An MDL estimate
(based on a two-step code) always belongs to the original class.

Inspired by the circumstances mentioned above, we analyze
the relationship between and the MDL estimator for general
exponential families. Since we do not have the means to
analyze the relationship between them directly, we consider the
proper estimator minimizing . We let

denote such an estimator. Note that is equal to

(We let denote KL divergence of with respect to
.) By simple manipulation, we can see

can be obtained by projecting by KL divergence
to the original exponential family. Hence, we refer to
as the projected Bayes estimator. In information geometry
[1] it is known that the -geodesic connecting
and is orthogonal to the family and
is referred to as the -projection of onto .

In reference to the MDL estimator, in order to specify an
estimator we have to specify a coding scheme for source
distributions. Specifying a coding scheme is equivalent to
specifying a discreet prior distribution, often obtained by
discretizing a continuous distribution for the parameters. As
discussed in Section V, the MDL estimates take the form

where is the determinant of Fisher information matrix
(see also [15], [16], [2]). We refer to the estimator specified
in such a way as the MDL estimator with the prior. When

is uniform over the coordinates, e.g.,, we say that the
MDL estimator is taken with respect to the coordinate system
, since using that prior is equivalent to using the decimal

expansion of ’s value for coding the distribution. (A strict
coding interpretation would require a proper prior that integrals
(sums) to one over all. Here we will use also for improper
priors such as the uniform over.)

We have obtained the following result: Under a certain weak
condition, “the MDL estimator with respect to the expectation

parameter (as defined in Section II)” coincides with up to
the term. This is the generalization of the equivalence
between the two estimators for Bernoulli sources, because the
parameter is the expectation parameter in that case.
We also have shown that these estimators coincide with the
bias-corrected maximum likelihood estimator (bias-corrected
MLE, for short) [1] with respect to thecanonical parameter(as
defined in Section II) up to the term. These results not
only supply an easy way to approximate the projected Bayes
estimator, which is hard to calculate strictly, but characterize
the maximin estimator on the basis of information geometry.
That is, is nearly unbiased with respect to the canonical
parameters. Moreover, we show that both the projected Bayes
estimator with the uniform prior over the canonical parameter
and the MDL estimator with Jeffreys prior equal the MLE
ignoring terms of order . Noting that the MLE is
unbiased with respect to the expectation parameter, these
results throw light on the symmetry between the projected
Bayes estimator and the MDL estimator, because the natural
and the expectation parameters of an exponential family form
a dual pair from the point of view of information geometry [1].

II. PRELIMINARIES

The exponential family is defined as follows [5], [1].
Definition 1: Let be a -finite measure on the Borel

subsets of and be the support of . Define

Let denote a subset of . Define a function and a
probability density on with respect to by

and

We refer to the set as an exponential
family.

In the above definition and hereafter, we use Einstein’s
convention about summation, i.e., denotes
( denotes the th component of ). Exponential families
include many common statistical models such as Gauss distri-
butions, Poisson distributions, Bernoulli sources, etc., where
the role of is played by a suitable function of the original
variables in these cases [5]. It is known that is a convex set.
Let denote the closure of the convex hull of. It is known
that we can assume that holds without
loss of generality [5]. An exponential family which satisfies
this condition is said to be minimal. We assume is
minimal in this paper.

It is known that is of class and strictly convex
on (where denotes the interior of ). We refer
to as the canonical parameter (or-coordinates). We define
the expectation parameter (or-coordinates) as ,
where denotes the expectation with respect to . It
is known that the function on mapping is an
injection and of class . Let be
the range of this map. The parametersand have the
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geometrical interpretation as follows:-coordinates are the
affine coordinates for the-connection and -coordinates is
the affine coordinates for the -connection (see [1]).

We let and , respectively, denote the differential
operators and . Note that , ,
and hold on , where

and

Further, is the Fisher information matrix with respect to.
We let denote the Fisher information matrix with respect
to . Then, holds, i.e., is the inverse matrix of

. ( denotes the Kronecker’s delta.) Finally, we note that
the following holds:

(1)

In this paper, we refer to a function which maps

to (any set of probability distributions, referred to as a
hypothesis set) as an estimator. Letbe an estimator. We
let denote the image of by and (or

) denote the density of at . In particular, when
, is said to be proper.

We let denote the MLE, i.e.,

We let and , respectively, denote and
for simplicity. Moreover, let , respectively, denote
their values at . We let

where denotes the th observed value of (not the th
component). This is a sufficient statistic for . It is known
that if holds, then the MLE equals . Note that
if an exponential family is “steep,” then
holds. (If holds for any , then

is said to be steep, see for example [5].) When
is steep, by the definition of , holds (where

denotes the closure of ). Strictly speaking, there
does not exist for , however, we define for

for minimal steep exponential families (where
denotes the boundary of ).

Now we define prior distributions. Let be a
connected open set of and a prior distribution
whose support is . In the sequel, when we simply say “the
prior ,” it is supposed that is defined with respect to the
measure . We assume that is of class on and that

does not necessarily equal. Moreover, we permit
the case that (improper prior). We define
Jeffreys prior as .

III. T HE BAYES ESTIMATOR

We define the Bayes mixture estimator (Bayes predictor)
with the prior as

where is defined as

provided

We define the projection of to (denoted by )
as follows, where is defined as

(KL divergence):

We refer to as the projected Bayes estimator with the prior
. As we mentioned in the Introduction, equals the proper

estimator minimizing .
The following Proposition holds.
Proposition 1: Suppose

Define

If is finite and belongs to , then holds.
Proof: Noting , we have

(2)

Note that the estimate maximizes

among in . Since belongs to by the assumption,
which maximizes (2) is , i.e., we obtain the proposition.

Q.E.D.
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Remark: If is steep, then always holds
whenever is finite.

We let denote a fixed compact set included in the
interior of and an infinite sequence . Let
denote the sequence which consists of the firstelements of

. We define a class of as

We define a family of real-valued function on as

where . We can write .
We let denote a set

and for

let denote a line in which is parallel to theth axis
and goes through the point

Now, we make the following assumptions:
Assumption 1:For any and almost all

, is a finite set.
Assumption 2:When is not less than a certain integer
, for any , and

are integrable on .
Assumption 3:When is not less than a certain integer
, for any , is integrable on .
For example, if is a convex set of , then Assumption

1 holds. It also holds, if can be decomposed to finite
number of -dimensional convex sets, i.e.,
and hold, where is a certain positive
integer and each is an -dimensional open convex set.

Assumption 2 and 3 can be checked by using the following
proposition.

Proposition 2: Let be a real-valued function on . For
all sufficiently large ,

holds, if and only if

holds for a certain real .
The proof is given in the Appendix.
Concerning the projected Bayes estimator, we obtain the

following theorem.
Theorem 1: Suppose Assumptions 1–3 hold for an expo-

nential family and a prior . For any

holds unformly for . Especially when is uni-
iform over

holds.

Remark: If is a sample of , then we can
show

We give the proof in the next session.
We have the following corollary.
Corollary 1: Suppose Assumptions 1–3 hold for an expo-

nential family and Jeffreys prior. For any

holds, uniformly for .
Proof: Let in Theorem 1. Using (1), we

obtain the claim of the corollary. Q.E.D.

IV. PROOF OF THEOREM 1

By differentiating

with respect to , we have

Hence, we have

Since the fact that holds for and
Assumptions 2 and 3, we can see that the right-hand side
is integrable for sufficiently large . Therefore, the left hand-
side is also integrable. Hence, integrating both sides over,
we have

Dividing both sides by and letting

( equals the posterior density), we have

Namely, we obtain

(3)
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We can prove the following two formulas:

(4)
and

(5)

where we let denote and is a certain constant.
These hold uniformly for . By the assumption, in
(3) belongs to for . Therefore, the right-hand side
of (3) belongs to for sufficiently large under (4) and
(5), i.e., we can obtain the claim of the theorem.

Now, we show (4). Hereafter in this section, we letdenote
. Let denote the left-hand side of (4) and let

, then we have

Let and define

( denotes its value at .) By Taylor’s theorem, we have

Since is compact and is of class on ,
holds uniformly on . Then, the following

holds for an arbitrary in :

(6)

Here, though the term depends also on, the order of
is uniform with respect to . Hence, hereafter, we use the

order notation for in the same sense.
We also have

Hence, by the fact that is strictly convex on
a convex set , the following holds for an arbitrary in

:

(7)

Now, we evaluate the numerator of . We have

(8)

By Taylor’s theorem,

holds, where for a certain . Since
is of class and on and is compact, we

have on . Therefore,

i.e.,

holds. Similarly, we also obtain

Then, using (6), we can transform the first term of the right-
hand side of (8) as follows:

where we let

and

Moreover, we have

where we let denote and denote .
Here, we have

Therefore, we have

Hence, noting , we obtain

(9)
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Noting (7) and

for

we have

(The last equality follows from the fact that on
.) Now, we obtain

(10)

Next, we consider the denominator of . We can similarly
evaluate that by plugging into except for the evaluation of

Now, noting (7) and

for

we have

Namely, we obtain

(11)

where and .
Now, using (11) and (10), we obtain

Hence, noting we have

and

Then, we have

and

Therefore, we have

Namely, we have (4).
Next, we show (5). Suppose for simplicity. Let

By Assumption 1, for almost all , is
a finite set. Let denote . We let denote
the largest subset of , such that is a finite set
for all . Then, integrating with respect to

(Fubini’s theorem), we obtain

where is or . Hence, we have

(12)

Since , holds for all
. Hence, holds for large . Hence from

(7), we have

Therefore, noting and

for , we have

( is a certain constant.) Together with (12) and (11), we
can write

where is a certain constant. This concludes (5). Now we
have obtained the claim of the theorem. Q.E.D.
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V. THE MDL ESTIMATOR

In this section, we construct an estimator for the-
dimensional model (it is not necessarily
an exponential family) based on the MDL principle, i.e., we
determine the code (quantization) for parameters based on the
MDL principle. The argument in this section is essentially
parallel to those of Rissanen [12], Barron [2], and Wallace
and Freeman [16]. The point that is unique to our derivation is
that we determine the code so as to minimize the average total
code length. In [12] and [2], thetypical value of total code
length was minimized. In [16], theexpectation(by the prior
distribution) of the average total code length was minimized.

Suppose the prior over . The coding of
the parameter consists of two parts: 1) quantizing (to
obtain a countable set) and 2) describing quantized points.
Since the optimal coding depends on the data size, we
let the quantization depend on and let denote the
set of quantized points. (We suppose thatis known prior
to encoding.) Let denote the region represented by the
quantized point and let . Moreover,
we give the code length to the quantized
point . We let denote the set of such coding schema,
obtained by varying the quantizations . Now, we give the
definition of MDL estimator.

Definition 2: Define as follows:

We refer to the function which maps to
as the MDL estimator with the prior . Espe-

cially, when is uniform over , we refer to as the
MDL estimator with respect to the coordinate systemand
let denote it.

Remark: In the following approximation, the code length
does not depend on.
Let us determine on approximation to . To this end we

shall obtain the conditional expected value of total description
length DL under the condition . The code length
for the parameter is given by and the code length
for the data is given by . Let denote
the Fisher information matrix with respect to. We suppose
that ’s can be approximated by rectangles each axis of
which lies in the direction of principal axis of . (If not
the case, the description length becomes longer. See [16].)
Let denote the unit tangent vector along theth principal
axis of , and denote the eigenvalue associated with
the th principal axis. Let be a smooth function defined
on and suppose that equals the length of the
direction’s axis of . Then

holds. (Hereafter, we define

for .) By Taylor expansion, we have

We suppose that the conditional distribution ofgiven
is approximately uniform so that

almost equals

Then, we obtain

DL

Hence, we can evaluate the (unconditional) expectation of the
total description length (denoted by) as follows:

DL

Since

and

we obtain

i.e., we have

where we let . The
choice of minimizes this approximated code length is

. Hence, we have



1172 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

Finally, we obtain

Then, we have

The above length is essentially equivalent to the ones
given in [15], [16], [2] (where a term of order
is included, because of the lack of the assumption thatis
known).

In the sequel, we neglect the quantization error. Namely, we
employ the following as the definition of the MDL estimator:

We can rewrite the above definition as

Hence, the estimator is equivalent to the posterior mode
estimator provided that posterior density is defined with re-
spect to the measure , which is the natural
volume element of . Therefore, is invariant under the
transformation of coordinate system.

Let denote and define a family of
real-valued function on as

where . Then, equals the total description
length for the MDL estimator with the prior . We assume
the following.

Assumption 4:When is not less than a certain integer
, for any

holds.
This assumption can be checked by using the following

proposition.
Proposition 3: Assumption 4 holds if and only if the fol-

lowing holds: For a certain , for a certain

holds.
The proof is similar to that of Proposition 2, we omit it.
We can prove the following lemma.
Lemma 1: Suppose Assumptions 1 and 4 hold for

and . For any

holds, uniformly for .

Proof: Let us prove that equals
uniformly on . That

implies the claim of the Lemma.
Let denote . Define .

First, we show that for any small, there exists such
that , . Since
is of class , holds. Let

, then we have . Since
Assumption 4, we have for ,
where is a certain real. Then, we have

Hence, holds. Note
that is strictly convex on and that is
a convex set. For any small, there exists such that

, holds. Then, we
have

Hence, for sufficiently large , ,
holds. Therefore,

holds. Since is included in , the above argument
uniformly holds for .

Let be small such that holds for any
. Then, for sufficiently large , takes

the minimum in . Next, note that is strictly
convex on (with respect to ) for sufficiently large .
Therefore, the equations have a unique
solution in , which is the minimum point. We have

Noting on , we can see
that the solution of the equations equals

. This completes the proof.
Q.E.D.

Remark: In particular, holds exactly.
We let denote the uniform prior with respect to.

Then holds. Hence, noting (1), we
have . Therefore, we can see the following
lemma holds as the special case of the Lemma 1.

Lemma 2: Suppose Assumptions 1 and 4 hold for
and . For any

holds uniformly for .

VI. BIAS-CORRECTEDMAXIMUM -LIKELIHOOD ESTIMATOR

Hereafter, we suppose that is not only minimal but
steep. In this case, the expectation of equals itself.
Hence, we can say that the MLE is unbiased with respect to
the -coordinates. Now, we think about the other coordinates

. Let and denote the values of and of the actual
distribution, respectively. Thinking of as the function of ,
taking Taylor expansion of in the neighborhood of , we
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have

Taking the expectation of both sides, we have

Namely, has bias of order . However, if we let

(13)

it is known that ’s bias is of order . Moreover,
the mean-square error of is least (with respect to the
term) among the efficient estimators (see [1]). The function

is called the bias-corrected MLE with
respect to the coordinate system.

We can prove the following lemma.
Lemma 3: For any ,

holds, uniformly for .
Proof: Plugging in to of (13), we have

Hence, we have

(14)

Now, differentiating with respect to , we have

Hence, we have

Together with (14), we obtain the claim of the lemma. Q.E.D.

VII. D ISCUSSION

Corollary 1 and Lemmas 2 and 3 give asymptotic forms of
and , and yield the following theorem.

Theorem 2: Let be a minimal steep exponential fam-
ily and satisfy Assumption 1. Suppose that Assumptions
2 and 3 hold for and , and that Assumption 4
holds for and . For any , the differences
between , , and are of
order , uniformly for .

Since the geometrical fact that is a -projection of
, we can expect that Theorem 2 represents a certain

property of the maximin estimator . In particular, we can
think that the maximin property has strong relation with unbi-
asness with respect to the canonical parameter. The canonical
parameter has a geometrical interpretation that it is the affine
parameter associated with respect to the-connection [1]. It
would be interesting to analyze the relation between the above
optimality and the -connection.

Using Theorem 1 and Lemma 1, we can also obtain the
following theorem, which is dual to Theorem 2.

TABLE I
DEPENDENCY OFESTIMATORS ON PRIOR

Prior wd� d� detjgij jd� d�

~fw �-unbiased �-unbiased

fwmdl
�-unbiased �-unbiased

Theorem 3: Let be a minimal steep exponential fam-
ily and satisfy Assumption 1. Suppose that Assumptions 2
and 3 hold for and , and that Assumption 4 holds
for and . For any , the differences be-
tween , , and are of order ,
uniformly for .

We can illustrate the above two theorems by Table I, where
we ignore the terms of order . Note that is the affine
parameter with respect to the -connection and is dual to.
From this table, we assume that and form a dual pair,
because if we exchangedand , and the Bayes and MDL,
then we would have the same table again.

Now, we give some examples.
Example 1 (Bernoulli Sources):Define

and . We have

We let . As it is well known, the Bayes predictor
with Jeffreys prior equals , denoted by .
Next, we consider the MDL estimator. The total description
length for the MDL with respect to the-coordinates is

The value of minimizing the total description length is
which strictly equals . Finally,

we consider the bias-corrected MLE. Since

holds, we have

Hence, we have

Example 2 (Normal Distributions):The family of normal
distributions is defined as

If we define a new vector valued random variableas
and let , , and

we can see is an exponential family. Now, we have
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In reference to estimation of , both the projected Bayes
estimator and the MDL estimator give the same result as
the MLE. Therefore, it is sufficient to consider estimation
of a coordinate alone. We describe just the result for
simplicity. Let and denote the projected Bayes
estimate (with ) and the MDL estimate (with ) of ,
respectively, then we have and

, where . The difference
between the two is of order . Compare this with the
so-called unbiased variance .

In the above examples, we were able to analytically obtain
the projected Bayes estimator and the MDL estimator. In
general, however, it is difficult to do so. In such cases,
Theorem 1 and Lemma 1 provide us with a way to approximate
the projected Bayes estimator and the MDL estimator. Actually
in [14], a similar method as the proof of Theorem 1 is used
to approximate the Bayes codes for the Markov sources.

APPENDIX

PROOF OF PROPOSITION 2

Suppose first that is integrable on , where
holds, and and are positive reals. In the sequel,

we assume that , since is integrable when
.

Let denote a compact set of such that and
hold. (There exists such a set, since .)

Let denote the value of which corresponds to .
Then, we have . Moreover, the function

is continuous on . Hence, is
bounded on , i.e., we have for
and . Define a function as

Let

and

( by the definition of , and holds.) Then,
holds, i.e., we have . Let

denote , then and

hold. Since , we have for .
Therefore, we have

Hence, we have

Let

and . Since
and hold, we have

Hence, we obtain

Since hold for , we have

Noting that and holds for
, we have

where is a real determined by. Since is
integrable on , is integrable on for any

and any . Since the converse is trivial, this
implies the proposition. Q.E.D.
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