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Characterization of the Bayes Estimator and
the MDL Estimator for Exponential Families

Jun-ichi Takeuchi

Abstract—We analyze the relationship between a Minimum of Rissanen’s MDL principle [12], which more generally also
Description Length (MDL) estimator (posterior mode) and a encompasses mixture-based codes).
Bayes estimator for exponential families. We show the following In two-step coding, we first use observed data to estimate a
results concerning these estimators: a) Both the Bayes estimator S - .
with Jeffreys prior and the MDL estimator with the uniform prior source d's_t”buuon' which we then encode. Next, on the basis
with respect to the expectation parameter are nearly equivalent Of the estimate, we encode the observed data. In the MDL
to a bias-corrected maximum-likelihood estimator with respect principle, an optimal estimate is defined as that which gives
to the canonical parameter. b) Both the Bayes estimator with the shortest total code length for given data, and we refer to
the uniform prior with respect to the canonical parameter and estimators based on the MDL principle as MDL estimators.

the MDL estimator with Jeffreys prior are nearly equivalent . - .
to the maximum-likelihood estimator (MLE), which is unbiased MDL estimators have been shown to be especially effective

with respect to the expectation parameter. These results together Wwhen the complexity (i.e., number of parameters) of the actual
suggest a striking symmetry between the two estimators, since source distribution is unknown [2], [3], [18], [19]. (Here,
the canonical and the expectation parameters of an exponential however, we will focus on the case of parameter estimation
family form a dual pair from the point of view of information in a fixed family.)

geometry. Moreover, a) implies that we can approximate a Bayes

estimator with Jeffreys prior simply by deriving an appropriate . BY Wa_‘y of contrast, Bayes codes dO.nOt encode the source

MDL estimator or an appropriate bias-corrected MLE. This is distribution and are a fundamenta”y different from the two-

important because a Bayes mixture density with Jeffreys prior is step type. Consider a parametric family of probability densi-

known to be maximin in universal coding [7]. ties, S = {p(z|#)|¢ € O} on a spacet, and a predictive
Index Terms—Bayes estimator, exponential family, higher or- density estimatoyf (z,41|z*) for S (i.e., 3", f(zlz*) = 1).

der asymptotic theory, information geometry, Minimum Descrip- The cumulative risk with KL divergence is defined as

tion Length principle, universal source coding.

N
Rx(6.9)= Y [ pla'16) p(ai]6)/ fanla' ) ds’
I. INTRODUCTION t=1

N this study, we examine the estimation of parameters @here In” denotes the natural logarithm,

probability densities in the general class of regular expo- .
nential families [5]. In particular, we analyze the relationship tigy _
between the following two estimators and reveal a symmetry p(a'l6) = H p(zul6)
between the two: a Minimum Description Length (MDL) esti-
mator [12] (also called a Minimum Message Length estimat@fd® is the actual parameter. This cumulative risk is also the
[15], [16], which has a posterior mode interpretation) and tig€dundancy of the code based on the joint density
estimator which is Bayes with respect to Kullback-Leibler di- N—1
vergence (KL divergence for short) between the parameterized flz™) = H flzegr|z?)
densities (it can be obtained by projecting the Bayes posterior =0
mixture density onto the original exponential family).

In the field of universal source coding, Bayes mixtur
densities have recently become a popular subject of study 66
two main reasons: 1) Bayes decision theory can be used to
determine the code which will achieve the minimax redun-

dancy [7]-[9], [11], and 2) codes based on a Bayes miXtU{ﬁ] B dict ith thi .
will be superior to two-step codes [13]. The MDL estimato € bayes predictor wi IS prior uses
fulernle!) = [ plalf)u(oic™) do

u=1

gsee [6]). Next, the Bayes risk (or Bayes redundancy)f of
'}h respect to the priotw(6)df is defined as

Rn(w, f) = / R (6, f)w(6) db.

we study here is based on a two-step code (This is one form
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Ry (0, f) and modifications of it are asymptotically minimaxparameter (as defined in Section II)” coincides V\fmJ up to
under certain conditions [7], [17], [4]. theO(1/N) term. This is the generalization of the equivalence
For Bernoulli sourcesX’ = {0,1}, p(1|r) = r), we have  between the two estimators for Bernoulli sources, because the
Ny . parameter = p(1|r) is the expectation parameter in that case.
Jus (Ua7) = (k+0.5)/(N +1) We also have shown that these estimators coincide with the
(k is the number of occurrences of™in N trials), i.e., a bias-corrected maximum likelihood estimator (bias-corrected

classic Laplace estimator is maximin for the Bayes reduffILE: for short) [1] with respect to theanonical parametefas

dancy. Moreover, this estimator can be derived from the MD€fined in Section II) up to the(1/.V) term. These results not
principle combined with the assumption that we either use tR8!Y SUPPly an easy way to approximate the projected Bayes
binary digit expansion of the value of itself as the code estimator, which is hard to calculate strictly, but characterize

for the source distribution or assume that the prior is uniforf§® Maximin estimator on the basis of information geometry.
over the range of [20], [16]. Bayes procedures for codingThat is, fw, is nearly unbiased with respect to the canonical

(unlike the two-step code) necessarily involve mixtures af@r@meters. Moreover, we show that both the projected Bayes
the corresponding predictive density estimates suffer from tR&timator with the uniform prior over the canonical parameter
problem that, in general, they do not belong to the class of tRBd theé MDL estimator with Jefireys prior equal the MLE
original source. When an estimate belongs to the original cld§§°ring terms of ordero(1/V). Noting that the MLE is
(i.e., densities estimated by plugging in parameter estimator&jPiased with respect to the expectation parameter, these
we say that the estimator is “proper.” Bayes predictors are 4&eUlts throw light on the symmetry between the projected
always proper, while MDL estimators are: An MDL estimat&ayes estimator _and the MDL estimator, becau_se the_ natural
(based on a two-step code) always belongs to the original cls22d the expectation parameters of an exponential family form
Inspired by the circumstances mentioned above, we analy¥8u@! pair from the point of view of information geometry [1].
the relatiqnship b_e.tweeﬁ_u and the MDL estimator for general Il. PRELIMINARIES
exponential families. Since we do not have the means to ) o ]
analyze the relationship between them directly, we consider the! '® exponential family is defined as follows [5], [1].
proper estimatoy minimizing Ry (w, f). We let f,, (-|z) = Definition 1: Let » be a o-finite measure on the Borel
p(|6.,) denote such an estimator. Note thatis equal to ~ Subsets oft" and X' be the support of.. Define

agisin [ D18 (16Ol .

0, = {6l §R",/ exp(#'z;)v(dr) < oo}
X

Let ©® denote a subset 0B,. Define a functionyy and a

(We let D(p||q) denote KL divergence of with respect to probability densityp on X' with respect tov by

p.) By simple manipulation, we can sga (:|z™) = p(-|f.)
can be obtained by proj_ectingw_(-|a:N) by KL divergence P(8) = ln/
to the original exponential family. Hence, we refer fo,
as the projected Bayes estimator. In information geometapd
[1] it is known that the—1-geodesic cpnnectingﬁw(-|a:1\‘:) p(z|6) = exp(8'z; — 9(0)).
and f,(-|z"V) is orthogonal to the familyS and f,(-|z") _
is referred to as the-1-projection of f,,(-|z) onto S. We _refer to the sef(©) = {p(z|6)|¢ € ©} as an exponential

In reference to the MDL estimator, in order to specify affmily- L o
estimator we have to specify a coding scheme for sourceln the above definition and hereafter, we use Einstein’s
distributions. Specifying a coding scheme is equivalent fPnvention about summation, i.effz; denotes_;_, 6"x;
specifying a discreet prior distribution, often obtained b{#: denotes theith component ofx). Exponential families
discretizing a continuous distributian for the parameters. As Include many common statistical models such as Gauss distri-

discussed in Section V, the MDL estimates take the fé#n butions, Pois_son distributions,_BernouIIi sources, etc.,_ \{vhere
. the role ofx is played by a suitable function of the original

Omar = argmin(—In p(z™0) — In(w(0)/\/1(6))) variables in these cases [5]. It is known thatis a convex set.
¢ Let W denote the closure of the convex hull&f It is known
where I(6) is the determinant of Fisher information matrixhat we can assume thdim W = dim &, = »n holds without
(see also [15], [16], [2]). We refer to the estimator specificldss of generality [5]. An exponential family which satisfies
in such a way as the MDL estimator with the prier When this condition is said to be minimal. We assurfié®,,) is
w IS uniform over the coordinates, e.g, we say that the minimal in this paper.
MDL estimator is taken with respect to the coordinate systemlt is known that)(8) is of classC> and strictly convex
&, since using that prior is equivalent to using the decimah ©S (where A° denotes the interior off C R™). We refer
expansion of¢’s value for coding the distribution. (A strict to # as the canonical parameter (@coordinates). We define
coding interpretation would require a proper prior that integralie expectation parameter (grcoordinates) as; = Fy(z;),
(sums) to one over afl. Here we will us€x) also forimproper where £y denotes the expectation with respectpi@|6). It
priors such as the uniform ovét.) is known that the function or®; mappingé — 7 is an
We have obtained the following result: Under a certain weakjection and of classC>. Let H, = {n(#)|6 € ©2} be
condition, “the MDL estimator with respect to the expectatiothe range of this map. The parametésand n have the

exp(6'z; )v(dx)
X
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geometrical interpretation as follow#-coordinates are the Il. THE BAYES ESTIMATOR
affine coordinates for thé-connection andj-coordinates is
the affine coordinates for thel-connection (see [1]).

We let 9; and &', respectively, denote the differential

We define the Bayes mixture estimator (Bayes predictor)
with the prior w as

operatorsd/d6* and 9/dn;. Note thatd;y» =n;, 8;0;v = gij, FulzV(x) = / p(]0)w (8™ )d8
and 9,00,y =13, hold on©;, where e
i = Eo((zi — 1)z — ;) wherew(#|z") is defined as
and #N|)w // N 0w
Tiji = Eo((wi — ni)(wj — ny)(wn — ). provided

Further,g,; is the Fisher information matrix with respectfo N

We let g* denote the Fisher information matrix with respect /p(x |0)w(6)df < 0.

to n. Then,g;;¢°* = 6 holds, i.e.,g" is the inverse matrix of B
gi;- (5% denotes the Kronecker’s delta.) Finally, we note that We define the projection of,, to S(©,) (denoted byf,,)
the following holds: as follows, whereD(p||q) is defined as

0 In(det |gij])"/* = Tijg™ /2. (1) D(pllg) = / p(a) In(p(x) /q(x) v (dz)

In this paper, we refer to a functiofi which maps (KL divergence):

X FNT — o . N
. Fule =aig i D)
to H (any set of probability distributions, referred to as gve refer tof,, as the projected Bayes estimator with the prior
hypothesis set) as an estimator. Letbe an estimator. We 4, As we mentioned in the Introductiorf,, equals the proper
let f[z"] denote the image o™ by f and f[z"](z) (or estimatorf minimizing Ry (w, f).

f(x]z™)) denote the density of[+"] atz. In particular, when  The following Proposition holds.
H C 5(0,), f is said to be proper. Proposition 1: Suppose

We let f denote the MLE, i.e.,
N
r pla™ |)w(f)dl < .
Flo™) = g wmax p(a™). i 10ye)

PES(©a)
R Define
We let7; and 6, respectively, denote( F1z™]) and 0(f[z™])

for simplicity. Moreover, le§;,, 1;;x, - - -, respectively, denote n= / n(@)w(B|z™ )db
their values atf[z"]. We let ©
N If 7 is finite and belongs td,, thenn;(f,,[z™]) = 7; holds.
= th/N Proof: Noting p(z|#) = exp (#'z; — 1(0)), we have

[ fele @) p(aloya)

where z; denotes thefth observed value of: (not the tth

component). This is a sufficient statistic fo®. It is known N ;
that if € H, holds, then the MLE:, equalsz. Note that v geep (@]€)w(€la™)de - (
if an exponential familyS(Q,) is “steep,” thenH, = W*°
holds. (If E¢(|x|) = oo holds for anyé € ©, — 6%, then
S(0,) is said to be steep, see for example [5].) Wlfﬂs{@ )

— 9(0))v(d)

/eee [ 0 s~ Oty - wiela e

is steep, by the definition ofy, £ € W, = H, holds (where :/ (gim(g) — z/}(g))w(ﬂxf\’)dg

A denotes the closure ol C ®™). Strictly speaking, there ¢eo

does not exisy; for T € 9H,, however, we defing = z for _ 91/ ‘ NYJE — (8

7 € H, for minimal steep exponential families (wheégd 0 Jee (& )w(Ela)de = (0)

denotes the boundary of C R"™). — ¢ — (). )

Now we define prior distributions. Le® (C ©,) be a 5
connected open set dR" and w(#)d# a prior distribution Note that the estimaté,[z"] maximizes
whose support i©. In the sequel, when we simply say “the
prior w,” it is supposed thatv is defined with respect to the / folz™ (@) Inp(z)v(dz)
measuredf. We assume tha is of classC? on © and that &
Jo w(6)de does not necessarily equialMoreover, we permit amongp in S. Sincef(#) belongs to®, by the assumptiorq
the case thatf@w(e)de = oo (improper prior). We define which maximizes (2) i9(#), i.e., we obtain the proposition.
Jeffreys prior asw;(6) = (det |g;;(6)])*/2. Q.E.D.
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Remark: If S(©,) is steep, then; € H, always holds  Remark: If £+ is a sample op* € S(©%,), then we can
whenevery) is finite. show

We let H;, denote a fixed compact set included in the
interior of H, andz>° an infinite sequence;xz- - --. Let 2
denote the sequence which consists of the fitstlements of
™. We define a class of>°, Tv as

Alim Pr{z eIn}=1

We give the proof in the next session.
We have the following corollary.

- ! Corollary 1: Suppose Assumptions 1-3 hold for an expo-
In= {“7 | VI 2N, th/f € Hm} nential family $(©) and Jeffreys prior. For anyv’ € NI

t=1
e define a family of real-valued functiafi, on W x © as i fuw, [#N]) = 0 + Tijwg™ n
We define a family of real-valued functiafi, on W x © (fu, [#™]) = i + Tijg?* /2N + O(VIn N/NVN)
Fo(2,0) = exp(a(8'z — 1(6))) holds, uniformly forz> € Ty.
. ; _ Proof: Let w(#) = wys(#) in Theorem 1. Using (1), we
]\ = T
W%;eféte@g;{%edcs:oglgeig 0) = Fn(z,0). obtain the claim of the corollary. Q.E.D.
{6, gi—1 gitl .. 6™)6 € O} IV. PROOF OF THEOREM 1
and for By differentiating
C(L) _ (Cl’ el Ci—l7 Ci-l—l’ el Cn) c @/{91} FN(fv 9)111(9) = eXp(N(ei.fi - 1/)(9)))111(9)
let I.(;y denote a line ik which is parallel to theith axis With respect toé*, we have
and goes through the poift?, .-, ¢i=1,0, ¢+, ... (™). Ok (exp (N (02; — (6)))w(6))
Now, we make the following assumptions: _ N i
Assumption 1:For anyi € {1,---,n} and almost all = N(@r = m(0)) exp (N(6'T; — 9(6)))w(d)
¢(z) € ©/{6"}, l;(;y N 0O s a finite set. +exp (N(0°%; — 1(6)))0% Inw(B) - w(6)
Assumption 2:When N is not less than a certain integer = (N(a:k — mk(6)) + O 1nw(9))FN(a;79)w(9)_
Ny, for any z € H;y, Fn(z,0)w(0) and n(6) Fn(z, 0)w(0)
are integrable ore. Hence, we have

Assumption 3:When NN is not less than a certain integer (Fn(Z,0)w(8)) = NZw Fi (T, 0)w(6)
Ny, for any z € H;,, (6;w(8))Fn(z,6) is integrable ord. N (OVF -
For example, ifO is a convex set oft™, then Assumption m(0) (2, O)w(f)
1 holds. It also holds, if® can be decomposed to finite + Ok Inw() - Fn(Z,0)w(8).

number ofn-dimensional convex sets, i.69 = Ui<i<r 0; Since the fact thatz € H,, holds for N > N’ and

and®; N ©; =0 (i # j) hold, wherer is a certain positive Assumptions 2 and 3, we can see that the right-hand side

Integer and eacly; is ann-dimensional open convex set. is integrable for sufficiently largév. Therefore, the left hand-

pﬁ;j;?opr?on 2 and 3 can be checked by using the followi "Hde is also integrable. Hence, integrating both sides éver

" . h
Proposition 2: Let £ be a real-valued function of. For we have
all sufficiently largeN, vz € H;, /3k(FN(f,9)w(9))d9=N57k/FN(57,9)w(9) 46

[ 160Fx 2 0)ld6 < o
(S
holds, if and only if3z € H;,
/ 16(8) Py (= 6)|d6 < o
(S

holds for a certain realV.

The proof is given in the Appendix. wy(0)2) = Fy(z, 0w //F]\ 2z, 0)w(6)do
Concerning the projected Bayes estimator, we obtain the

following theorem. _ (wn(6|Z) equals the posterior density), we have
Theorem 1: Suppose Assumptions 1-3 hold for an expo-

nential family S(©) and a priorw. For any N’ € NI Swn (8]7)do = ka—Nﬁk—l-/ A Inw(f) - wy (6|z)do
mi(fula™]) = i + 0 lnw() /N + OWBN/NVN) 7 ?
holds unformly forz*>° € Tn+. Especially whenu(#) is uni-
iform over © e = T + /ak lnw(8) - wy(0|Z)d8 /N
0i(fulz™]) = i+ O0(e™F)

-N / i (0) F (T, 0)w(6) do
+ / Oy lnw(6) - Fn(z, 0)w(6) do.

Dividing both sides by/, Fv(Z, #)w(#)dé and letting

Namely, we obtain

holds. - / Iwn (0|Z)d6/N. 3)
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We can prove the following two formulas: By Taylor's theoremyf € M;

. _ H i AV} / /
/ i In1w(8) - w (8]2)d8 = ) Inw(h.) + O(VIn N /VN) Inw(f) = lnw(®) + (6" — 6")9;w(8") /w(®")

© (4) holds, wher@’ = af+(1 — ) for a certaina € [0, 1]. Since
and w is of classC? andw > 0 on © and ©;,, is compact, we

have|9;w(6)/w(8)| < oo on ©,,. Therefore V8 € M
/ e (8]2)d6 = Oexp(—DN)) (5) )
© Inw(f) = lnw(d) + O(6)

where we letf. denotef|,—. and D is a certain constant. ie. Vo € M;
These hold uniformly forz € H,,. By the assumptiong in

(3) belongs taH,,, for N > N’. Therefore, the right-hand side w(B) = (1 + O(8))w(h)
of (3) belongs toH, for sufficiently largeN under (4) and o )
(5), i.e., we can obtain the claim of the theorem._ holds. Similarly, we also obtaint € M;
Now, we show (4). Hereafter in this section, wefalenote _p
6. = 0],—-.. Let Gy denote the left-hand side of (4) and let Mf) = h() + O(6).
h(6) = O Inw(f), then we have Then, using (6), we can transform the first term of the right-

hand side of (8) as follows:
Gy = / h(0) Fy (2, 0)w(6)d8/ / Fy (2, 0)w(6)db.
/ MO Fx (2, 0)w(0)dd = ABC - Fx(z,0)w(f)
Let § = ((n+ 1)In N/(2N))!/2 and define Ms

o . / o~ (N/2)ii; (6" 61)(67=69) g
Ms = {6]gi; (0" — 6°)(¢" — ¢7) < 6%} M;

(4:; denotes its value at = z.) By Taylor's theorem, we have where we let
In Fy(z,0) = In Fy (2, 0) — (N/2)3i,(6" — 69)(67 — 69) A= h(0) +0(9)

A B=
+NO(Jf — G, L1+0(3)
and
Since O;, is compact andg,; is of class C*° on ©3, C=140(N&).
|019:5(8)| < oo holds uniformly on®;,,. Then, the following
holds for an arbitraryd in M;: Moreover, we have
Fin(2,8) = Fr(z,0)e=(N/2)5:5(8' =687 =6)+0(Ne") / e~ (N/2)5i3(6'=61)(67=67) g
A NG (O — N9 — 6 M
= (1+ O(N&*)Fy(z,0)e™ N/ Dg: (0 =618 =67) o
( ( )) 1\( ) _ 6_(N/2)g7.j(97_gi)(ga_gj)de
(6) o
Here, though the term»(43) depends also of, the order of - / = (N/2)ds; (67=67)(67=67) gg
6 is uniform with respect t@. Hence, hereafter, we use the My
order notation foré in the same sense. . —(N/2)5:;(6°—67)(67 —g7
— (9r JaN Y2 _/ (N/2)315 (6" ~6)(6)~67) 4
We also havevfd € 9M; (2m/gN) Mg ©
InFy(z,6 —InFx(z,0) > (N/2)di; (6 — 69)(67 — 67) where we letj denotedet |j;;| and Mg denoteR™ — M;.
+N-0(|6 - 0]) Here, we have
= N§%/2+ O(N&). / o~ (N/2)gi5(6"=67)(67=67) 4
]\ <

Hence, by the fact that)(§) — #'z; is strictly convex on . e .
a convex set9?, the following holds for an arbitrarg in < e=V=1) /2/ e~/ (0 =60 =67 gg — O(e=NY).
© — Ms: M

Fx(20) < (1+O(N6*)Fx(z,8) exp (-N62/2). (7) Therefore, we have

—(N/2)g:;(6°—60)(67 —67) 39 _ A AT\R/2 —N§?
Now, we evaluate the numerator 6fy. We have /M om (N2 ¢ Jdg = (27/gN) /2 - O(e )-
&
/ h(O)YFn(z,0)w(0)db :/ h(8)Fn(z,0)w(6)dd Hence, notingABC = O(1), we obtain
e) M,

+/®_M h(8) Fn(z,0)w(6)db. /% h(6) Fx (2, 0)w(6)df

®) = F(z,0)w()(ABC(2r /gN)"? — O(=N%)).  (9)



1170

Noting (7) and
/ IB(6) P (2, 0)uw(0)[df < oo for N > max{Na, Na}
©
we have
[ @R 00| < [ ool
O—M; O—M;
—F]\ Zy 9 ( )
:FN(Z,Q)w(é)O(e Néz).

(The last equality follows from the fact thayw(6) < oo on
0;,.) Now, we obtain

/h(@)FN(z,H)w(H)dH
(]
= Fy(z,0)w(@)(ABC(2r/§N)"2 + O(cN)). (10)

Next, we consider the denominator@fy;. We can similarly

evaluate that by plugging ihto A except for the evaluation of

/ Fy (2, 0)w(6)db.
O—M;

Now, noting (7) and

/ (2 0)w(®)|df < o, for N > N
©

we have
/ Fy(z,0)w(8)d = Fy(z, 9)0( ”2)
O—Ms
= Fy(z 0w (é)o( ”2).

Namely, we obtain

/ Fy (2, 0)w(6)d6
(]
= Fx(z 0)w(@)(B'C'(2r /gN)"/? + O(c™™"))  (12)

where B’ = 1+ O(8) andC’ = 1 + O(N&3).

Now, using (11) and (10), we obtain
ABC(2r JgN)™? + O(e= V)
B2 [4N)7? + O V%)
_ ABC + O(N™/2e=No)
T BIO 4+ O(Nn/2e=NEy

Gy =

Hence, notings? = (n + 1)In N/(2N), we have

N™2e-N& = 0(1/v/N)
§ = O((In N/N)?)
and

N& = O((In N/N)H?),

Then, we have
B'C' =1+ 0O((InN/N)/?)
and
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ABC = h(d) + O((In N/N)*/?).
Therefore, we have

= (h(f) + O((In. N/N)M2)) /(1 4 O((In N/N)*/2))
h(6) + O((In N/N)/?),

Namely, we have (4).
Next, we show (5). Suppose= 1 for simplicity. Let

I= /@ (Orwn (0]2))d6

By Assumption 1, for almost alf(1) € ©/{6'}, ;1N 9O is

a finite set. LetQ(¢(1)) denotel;;y N d6. We let Z denote
the largest subset @/{6'}, such thatQ({(1)) is a finite set
for all {(1) € Z. Then, integratingwx (8|z) with respect to
6' (Fubini's theorem), we obtain

-

wheree(p) is +1 or —1. Hence, we have

s watac

€2 1eq()

/< > Fx(zpyw(p)dd

€2 1eQ(o)

/ Fi(z, 0)w(6)dd
6co

ST ) wn(l)de

€2 1eQ(0)

(12)

Sincez™ € Ty, § = ],=. € ©;, C ©° holds for all
N > N’. Hence d®©nNM;s = 0 holds for largeN. Hence from
(7), we havevd € 90

Fn(z,0) < (1+O(N&))Fy(z,0) exp(~N6§2/2).

Therefore, notingu € Q(¢) € 90 and
/ Z Fn(z, pw

C€Z 4eQ(o)
for N > max{Ny, N2}, we have

J

(D' is a certain constant.) Together with (12) and (11), we
can write

w)d¢ < oo

Fy(z, myw(p)d¢ = Fy(z,0)0(exp(—=D'N)).
€2 1eQ(o)

|| = O(N"/2 exp(~D'N)) = Ofexp(~DN))
where D is a certain constant. This concludes (5). Now we
have obtained the claim of the theorem. Q.E.D.
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V. THE MDL ESTIMATOR holds. (Hereafter, we define

In this section, we construct an estimator for the "
dimensional modeb = {p(x|#)|6 € O} (it is not necessarily )= H
an exponential family) based on the MDL principle, i.e., we o=l
determine the code (quantization) for parameters based on ghej ¢ ©y.) By Taylor expansion, we have
MDL principle. The argument in this section is essentially N .
parallel to those of Rissanen [12], Barron [2], and Wallackp(z™0:,) ~ Inp(z™|6) — (N/2)g:; (6, — 6))(8] — 6).
and Freeman [16]. The point that is unique to our derivation is . A N

Vg suppose that the conditional distribution ébfjiven 8 <
r(6) is approximately uniform so that

Qb>
Qb>

that we determine the code so as to minimize the average t
code length. In [12] and [2], théypical value of total code
Ie'ng.th was minimized. In [16], thexpectation(by the' prlqr Ee[gij(éfN - éi)(éle — 69)|6,,, = 8]
distribution) of the average total code length was minimized.

Suppose the priot¢ = w(6)d# over ©. The coding of almost equals
the parameted consists of two parts: 1) quantizin@ (to Z Al
obtain a countable set) and 2) describing quantized points.
Since the optimal coding depends on the data gizewe
let the quantization depend oW and let ©y denote the Then, we obtain
set of qu_ant|zed points. (We suppose thatis known prior DL (8) ~ Ey[— Inp(z™ |9)|91N =4
to encoding.) Let(#) denote the region represented by the
quantized poiné and letv(6) = [, w(6)dé. Moreover, +(N/24) Z)‘
we give the code lengthy(#) = —Inv(f) to the quantized
point . We let £y denote the set of such coding schemdjence, we can evaluate the (unconditional) expectation of the
obtained by varying the quantizatiogsy. Now, we give the total description length (denoted i) as follows:
definition of MDL estimator.

Definition 2: Define 6,,,4; as follows: L= ZDL ) Pr{f, =0}

8)2/12.

6
(@)% — Inv(d).

~ - — ~ —_ Nig — )
HINEarg_min (—lnp(azj\|9)+lj\r(9)), EG( lnp(ai |9))+z§:( 1111/(9)
0€ON
% =arg mi - Ng Ng( 24) Pr{f;, =
Iy =arg min Ey(=lnp(e™[01y) +In (b)), +Z 0)?/24) Pr{, = 6}.
NY — i [ N7 x /7
(™) = argmin(=lnp(e™18) + [y (@) Since
—Inv(8 +ZN)\ 6)% /24

We refer to the function which maps' € X* to f,[»"] =
p(:|0mar(zY)) as the MDL estimator with the priap. Espe- N
cially, whenw is uniform over®, we refer to f“4¢ as the Eq[—Inv(6) + ZN)‘ 0)? /2416 € r(
MDL estimator with respect to the coordinate systénand
let f¢ ,, denote it.
Remark: In the following approximation, the code length Pr{f,, =8} ~Pr{f € r(f)}
[* does not depend oé.
Let us determine on approximation . To this end we We obtain
shall obtain the conditional expected value of total description
length DL(8) under the conditiod;, € »(f). The code length Z <Z NAL( 6)%/24 — Inv(@ )) Pr{f,, =0}
for the parameter is given by Inv(d) and the code length & o
for the dataz™ is given by —Inp(z™|6;, ). Let g;; denote
the Fisher information matrix with respect #o We suppose ~ Ey
that 7(@)’s can be approximated by rectangles each axis of
which lies in the direction of principal axis af;(f). (If not i.e., we have
the case, the description length becomes longer. See [16].)
Let X, denote the unit tangent vector along thih principal L~ E,
axis of g;;(#), and A, denote the eigenvalue associated with
the ath principal axis. Letd, be a smooth function defined

on © and suppose tha,(#) equals the length of ther, Where we letCy = Ep(=Inp(z"]0) — Inw(6)). The
direction’s axis ofr(f). Then choice ofd,(6) minimizes this approximated code length is

dy = (12/(N)y))Y2. Hence, we have

le

)]

and

D (N Xa(B)da(6)? /24 - lnda(é))]

(a3

> (N Aa(0)da(6)?/24 = Inda(6))| + Co

(a3

v(0) ~ H do(0)w(f) v(f) = H do (0)w(8) = 127/2N""/2(det | gi;]) /2.

a=1 a=1
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Finally, we obtain Proof: Let us prove thatrg min,cg Ln (7, 0(n)) equals
- _ z +0;Inp(0)|,=-/N +O(1/N?) uniformly on H;,. That

F(6) ~ (1/2) - Indet |gi; (0)] implies the claim of the Lemma.
+(n/2)In N —Inw(f) — (nln12)/2. Let 6. denotef|,—.. Define K.(0.) = {6] |6 — 0| < €}.
First, we show that for any smadl, there existsiN, such
Then, we have that VN > N,, argmingeo Ln(z,0) € K.(6.). Sincew(d)
o Nz is of classC?, B = supycq, (—Inp(f)) < oo holds. Let
Omar = arg JS&( In p(a710) + (1/2) l. =0z —(0.), then we havd x(z,6.) < NI.+ B. Since
‘Indet |gi;(8)] — Inw(@)). Assumption 4, we haved € ©,, Ly (z,60) > Afor N = N,

where A is a certain real. Then, we have

The above lengtti*(#) is essentially equivalent to the ones .
given in [15], [16], [2] (where a term of orde®(Inln N) —Inp(f) > A+ Na(0'Zi = 4(9)).
:(s included, because of the lack of the assumption fias Hence, L (2, 0) > — (872 — 9(8))(N — N3) + A holds. Note
nown). t—(6'z #)) is strictly convex on®S and that®? is
In the sequel, we neglect the quantization error. Namely, \gé?:o;\(/exzzs;twl(:o)r) :lmy sma)gl there exists% >0 suchathat
employ the following as the definition of the MDL estlmatorw € (O — M), —(67: — 1(9)) > _i+ 6 holds. Then. we

Indet |g;;(6)] haveVN > N3, V8 € 6, — M,

[ arg Ieniél(— Inp(z™6) + — = In w(9))
c Ln(z,0) > (=1, +8)(N — N3) + A
We can rewrite the above definition as = NI+ A- Ng(_jJr &) + N6.
Omar = arglglégp(wN|9)w(9)/(det l9:5 (). Hence, for sufficiently largeV, V6 € (©, — M.), Ly(z,6) >

Ly(z,0.) holds. Thereforeargmingeg Ly(z,60) € K.(6.)
Hence, the estimatdt,,y; is equivalent to the posterior modeholds. SinceH;,, is included in H°, the above argument
estimator provided that posterior density is defined with reniformly holds forz € Hy,.
spect to the measur@let |g;;(#)])'/2d¢, which is the natural  Let ¢o be small such that{,(§) C © holds for any
volume element ofS. Therefore,f?,, is invariant under the ¢ € ©;,. Then, for sufficiently largeN, Ly(z,0) takes

transformation of coordinate system. the minimum in K, (z). Next, note thatLn(z,8) is strictly
Let p() denotew(d)/(det |g;])*/? and define a family of convex on©° (with respect tof) for sufficiently large V.
real-valued functionZ,(z,6) on W x © as Therefore, the equation®;Ly(z,6) = 0 have a unique

‘ solution in K., (8. ), which is the minimum point. We have
La(z,0) = =6z — 4(6)) — In p(6)
aiLN(Z, 9)/N = =2+ — d; lnp(e)/N
where « € R. Then, Ly (Z,6) equals the total description
length for the MDL estimator with the priow. We assume Noting [0;Inp(#)] < oo on U,y K (6.), we can see

the following. that the solution of the equation3,Ly(z,6) = 0 equals
Assumption 4:When N is not less than a certain integerz; + 9;1np(6.)/N + O(1/N?). This completes the proof.
N3, for any » € H;, . Q.E.D.
Remark: In particular, f"7, = f holds exactly.
argnin Ly (z,6) € ©° We let w, denote the uniform prior with respect tg.
Then w,(6)df  det |g;;|d6 holds. Hence, noting (1), we
holds. haved;w, () = T;;xg’*. Therefore, we can see the following
This assumption can be checked by using the followidlgmma holds as the special case of the Lemma 1.
proposition. Lemma 2: Suppose Assumptions 1 and 4 hold 6(O)

Proposition 3: Assumption 4 holds if and only if the fol- and w,,. For any N’ € NI
lowing holds: For a certaiav, € M, for a certainz € H;, ] R ,
ni(Fmalt™]) = i + Tijg’* /2N + O(1/N?)
argmin Ly(z,6) € ©°
bco holds uniformly forz®> € Ty.

holds. L . - VI. BIAS-CORRECTEDMAXIMUM -LIKELIHOOD ESTIMATOR
The proof is similar to that of Proposition 2, we omit it. ) o
We can prove the following lemma. Hereafter, we suppose th&{©,) is not only minimal but
Lemma 1: Suppose Assumptions 1 and 4 hold f§¢©) Steep. In this case, the expectationioE= = equalsy itself.

and w. For any N’ € NI Hence, we can say that the MLE is unbiased with respect to

the n-coordinates. Now, we think about the other coordinates
0 (FE ™) = 7 + (0 Inw(d) — Tijkgj’“/2)/N+O(1/N2) u. Let uy andn, denote the values af and# of the actual

distribution, respectively. Thinking of as the function of;,
holds, uniformly forz> € Ty-. taking Taylor expansion of. in the neighborhood ofyy, we
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have
i —woi = ("ui)o(f—70k)
+ (80w Yo (A — 7ok ) (i —101) /24 O([A—m0®).
Taking the expectation of both sides, we have
B, (i — uoi) = (8'9%ui)o(gr)o/2N + O(1/NVN).
Namely, & has bias of ordet/N. However, if we let
iy = 11y — 'O ui (e /2N (13)

it is known thaté’s bias is of orderO(N—%/2). Moreover,
the mean-square error @fis least (with respect to the/N?
term) among the efficient estimators (see [1]). The functi
fi a2 p(z|a) € S is called the bias-corrected MLE with
respect to the coordinate system

We can prove the following lemma.

Lemma 3: For any N’ € NI,

ni(fLl2™]) = 7 + Tijng’™ /2N + O(1/N?)

holds, uniformly forz™ € Tn-.
Proof: Plugging iné to » of (13), we have

6'(fr.la™]) — 0 (fle™]) = —0'5" gua/2N.
Hence, we have
7 ~ on; Atk A
n(Fule™]) = iy = =5 (09" /2N + O(1/N?)
= =;i(9'5%)g1a /2N + O(1/N?).  (14)
Now, differentiatingg;;g™ = 6% with respect toy;, we have

_ 09;i 90™
= 90 o,

ml ik

= j}nlig g .

—9;:0'g"* = (0'g;:) g™

Hence, we have

—gji (algzk)gkl — fzjjnligrnlgikgkl — fzvjnligrnléli — iTjrningi-
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TABLE |
DEPENDENCY OF ESTIMATORS ON PRIOR
Prior wd# dé V/det[gi;|de dn
fo n-unbiased 6-unbiased
e n-unbiased #-unbiased

on

Theorem 3:Let S(©) be a minimal steep exponential fam-
ily and © satisfy Assumption 1. Suppose that Assumptions 2
and 3 hold forS(®) and df, and that Assumption 4 holds
for S(®) and w;. For any N’ € NI, the differences be-
tweens( £27,[z™]), n(fas[z™]), ands) are of orderO(1/N?),
uniformly for z°° € Tn.

We can illustrate the above two theorems by Table I, where
we ignore the terms of ordei(1//V). Note thaty is the affine
parameter with respect to thel-connection and is dual té.
From this table, we assume th& and £, form a dual pair,
because if we exchangedandd, and the Bayes and MDL,
then we would have the same table again.

Now, we give some examples.

Example 1 (Bernoulli Sources)Define X’ = {0,1}

S={plzln) =n"1-n)'"l0<n<1}
and 6 = ln(n/(1 -n)). We have
g(n) = gt = 00/9n = 1/n(1 —n).

We letk = 31 ;. As it is well known, the Bayes predictor
with Jeffreys prior equalék + 0.5)/(N + 1), denoted byy..
Next, we consider the MDL estimator. The total description
length for the MDL with respect to thg-coordinates is

—klnn— (N —k)In(1 —n) — (lnn +1n(1 —7n))/2
=—(k+0.5)lnn— (N -k+05)In(1 -n).

The value ofn minimizing the total description length is
Nmdt = (k+ 0.5)/(N + 1), which strictly equals;.. Finally,

Together with (14), we obtain the claim of the lemma. Q.E.}V€ consider the bias-corrected MLE. Since

VII. DISCUSSION

Tiin = Eo((x —n)®) =n(1 = n)* = (L= n)n®
=n(1—n)(1-2n)

_Corollary 1 and Lemmas 2 and 3 give asymptotic forms of

fuw,s Iy and ff., and yield the following theorem.

Theorem 2:Let S(©) be a minimal steep exponential fam-

holds, we have

Ti1g*'t =1-27=1-2k/N.

ily and © satisfy Assumption 1. Suppose that Assumptions

2 and 3 hold forS(®) and wy, and that Assumption 4
holds for S(©) and w,. For any N’ € NI, the differences
between (2,4 [z™1), 7(fu, [zV]), and n(fL.[zV]) are of
order O((ln N)*/2N=3/2), uniformly for > € Ti.

Since the geometrical fact thgft,,J is a —1l-projection of

fw,» we can expect that Theorem 2 represents a certai

property of the maximin estimataf,,,. In particular, we can

think that the maximin property has strong relation with unbi-

Hence, we have

Me = k/N+(1=(2k/N))/(2N)+O(1/N?) = np+O(1/N?).

Example 2 (Normal Distributions)The family of normal
distributions is defined as

S = {p(z|n, o) = (1/V270)
cexp(—(z — 1)?/20°%)|p € R, 0% > 0}.

asness with respect to the canonical parameter. The canonjcdle define a new vector valued random variableas
parameter has a geometrical interpretation that it is the affine _ 2, 73 = 22 and letd* = pi/o?, 62 = —1/(20?), and

parameter associated with respect to theonnection [1]. It

would be interesting to analyze the relation between the above

optimality and thel-connection.

Using Theorem 1 and Lemma 1, we can also obtain tr\{\é

following theorem, which is dual to Theorem 2.

P(0) = —(6")?/(46%) + (1/2) - In(=7/6%)
e can se&5 is an exponential family. Now, we have

det |g;;| = —2/(6%)% = 164°.
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In reference to estimation ofi, both the projected BayesHence, we obtain

estimator and the MDL estimator give the same result as Fy,(2,0) = Fl(z,e)Nl

the MLE. Therefore, it is sufficient _to c_onsider estimation = Fi(2,6) To (L+A(2))/A(2) Fi(z e)u(z)
of a coordinatec? alone. We describe just the result for ’ ’

simplicity. Let o2 and ¢2,,4 denote the projected Bayes < Fy, (20, 0)C /@) L o),
estimate (withw;) and the MDL estimate (withv,) of 02,  Since F,(z,8) < C? hold for v > 0, we have

i 2 2 — . 2) ~u(z)+v
respectively, then we have? = (N +1)v°/(N —2) and F,1o(2,8) < F, (zO,G)Cf\O/A( )Cl( sl

02mat = Nv? /(N — 3), wherev? = 22 — 72, The difference
between the two is of orde®(1/N?). Compare this with the
so-called unbiased variandgv?/(N — 1).

In the above examples, we were able to analytically obtain Frny4o(2,0) < Fig (20,0)C,
the projected Bayes estimator and the MDL estimator. lmhereC, is a real determined by. Sinceé(6)Fn, (20,9) is
general, however, it is difficult to do so. In such casemtegrable on®, £(0) [y, +.(z,8) is integrable or® for any
Theorem 1 and Lemma 1 provide us with a way to approximate>> 0 and anyz € H,,. Since the converse is trivial, this
the projected Bayes estimator and the MDL estimator. Actualimplies the proposition. Q.E.D.
in [14], a similar method as the proof of Theorem 1 is used
to approximate the Bayes codes for the Markov sources.

Noting that0 < Ny/A(z) < oo and0 < u(z) < N; holds for
z € Zin — {70}, we have
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PROOF OF PROPOSITION 2
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