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Va and a pointvb on the boundary ofVb such that the line segment
L = f�va + (1 � �)vb: � 2 [0; 1]g is contained in bothVb andUs.
LetH1(�) denote one-dimensional Hausdorff measure inIRd. By virtue
of (19)

2� � kva � vbk = H1(L): (21)

The definition ofLn ensures thatUs is the union ofk � bn disjoint sets
U1; . . . ; Uk, each of which is a terminal region ofTn. In conjunction
with (20), this implies that

H1(L) =

k

j=1

H1(L \ Uj) �

k

j=1

diam(Uj) � k
�

bn
� �:

However, this contradicts (21), so thatUs = k

j=1
Uj must be con-

tained inVb. The inequality above then shows thatdiam(Us) � �, and
thereforemaxfdiam(T 0n[x]): x 2 Vag � �. It follows that

lim sup
n!1

Pfx: diam(T 0n[x]) > �g � P (V c
a ) � �

for every choice of�; � > 0. Relabeling the treesT 0n if necessary,
Lemma 1 ensures thatR(T 0n)! 0. The consistency of the complexity
pruned subtreeŝTn follows immediately from Corollary 1.
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Maximum Entropy Versus Minimum Risk and Applications
to Some Classical Discrete Distributions

Flemming Topsøe

Abstract—The game which can be taken to lie behind the maximum-en-
tropy principle is studied. Refining previous techniques, new theoretical re-
sults are obtained. These results are illustrated by concrete examples per-
taining to well-known classical models.

Index Terms—Binomial distribution, code length game, convergence in
divergence, empirical distribution, geometric distribution, maximum-en-
tropy attractor, maximum-entropy distribution, multinomial distribution,
Nash equilibrium code, Poisson distribution.

I. INTRODUCTION AND BACKGROUND INFORMATION

Let , thealphabet, be a finite or countably infinite set. The notion
of (idealized) codeswill play an important role in the sequel. For the
purpose of motivation, we remind the reader of the usual notion of a
binary prefix-free code. This is a map which to anya 2 assigns
a binary codeword in such a way that no codeword which appears in
this way is a prefix of another such codeword. An example is shown in
Table I which displays a codebook for the first six letters of the English
alphabet. We may use the code for identification of an unknown letter
from or we may conceive the code as a strategy for observation,
assuming that an observation is broken down in units of binary ques-
tions, and that any such question is feasible. For the example shown,
the code points to the question “is the letter one ofa; b; c; d; or f?”
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TABLE I
A CODEBOOK

as our first question (equivalent to the question “is the first binary digit
in the codebook a1?”). Continuing in this way, enquiring about the
further binary digits until identification is possible, we realize that the
code length function� which is shown in Table I gives us the number
of bits needed for identification.

By M1
+( ) we denote the set of probability distributions over. If,

besides the code given in Table I, we also know the true distribution
P , then theaverage code length, for which we use the bracket notation
h�; P i, can be computed. According to what was said above, we can
interpreth�; P i asmean observation time(basing observations on the
given code and assuming thatP is the true distribution). On the coding
side, we realize that the detailed structure of the code is immaterial
for the calculation of mean observation time—only the code length, as
given by the function�, is important. It is, therefore, essential to note
the following result.

Theorem 1 Kraft’s Inequality:A necessary and sufficient condition
for a function

�: ! 0 = f0; 1; 2; . . .g

to be a code-length function for a binary prefix-free code is that the
following inequality holds:

i2

2��(i) � 1: (1)

It is convenient to expand this slightly by allowing the value�(i) =
1 corresponding to the “impossible,” infinitely long codeword, a code-
word which has no finite codeword as prefix and is, typically, used in
situations where you believe that the letter in question cannot possibly
occur. Allowing�(i) = 1 does not change the validity of Kraft’s re-
sult, quoted above. In order to be systematic, we should also allow the
empty codeword with length0. In practice, this is only used when you
feel certain what the outcome will be.

A simple proof of Theorem 1, which works equally well for finite
and for infinite alphabets, depends on the natural1–1 correspondence
between codewords and binary intervals. For this correspondence, the
empty codeword corresponds to[0; 1] and if "1 � � � "k corresponds to
the intervalI , then"1 � � � "k0 corresponds to the left half, and"1 � � � "k1
to the right half ofI (and the “impossible” codeword corresponds to the
empty set;). For instance, for the code given in Table I, you find that
the set of corresponding binary intervals is as shown in Fig. 1.

Note also that the case of equality in (1) corresponds to the case of
a “maximally compressed” code in the sense that no binary prefix-free
code�� has a code length function which satisfies��(i) � �(i) for
all i 2 with strict inequality for one or morei 2 . The reader will
find more details in [7].

In spite of how well known the above facts are, they are still needed
as motivation for the game we shall study.

Apart from focusing on the code length function� (and not on the
full code) we decide, first, to pay attention only to maximally com-
pressed codes, i.e., to the case of equality in (1), and, second, to ide-
alize by allowing arbitrary nonnegative numbers as codeword lengths.

Fig. 1. Binary intervals corresponding to the code in Table I.

This idealization is motivated by the wish to avoid somewhat arbitrary
effects caused by the choice of the binary alphabetf0; 1g as refer-
ence alphabet, and can be justified in various ways, e.g., by pointing to
block coding and the noiceless coding theorem or by the fact that any
idealized code length function will be at most one bit away from an in-
teger-valued code length function.1 A final modification of the notion
of a code length function is purely technical and a matter of mathemat-
ical convenience. It consists in changing the base for logarithms and
exponentiation from2 to e.

With the above remarks in mind, we now define the setK( ) of
idealized code-length functionsor, as we shall simply say in the sequal,
of codes, as the set of mappings�: ! [0; 1] such that

a2

e
��(a) = 1:

If � 2 K( ) andP 2 M1
+( ), we say that(�; P ) is amatching

pair if �(a) = � lnP (a) for eacha 2 (“ ln” is used for the natural
logarithm). We may also express this by saying, e.g., that� is adapted
to P , or thatP is the distributionmatching�.

As above, we useh�; P i to denote mean value with respect to (w.r.t.)
P , and we useH = H(�) to denote entropy andD = D(�k�) to denote
information divergence. For anyP 2 M1

+( ) and any� 2 K( )

h�; P i = H(P ) +D(PkQ) (2)

whereQ is the distribution matching�. This is thelinking identity.
A slight variation of concepts is often natural. IfP is a distribution

and� a code, we introduce theredundancy ofP given�, or theredun-
dancy of� assumingP , which may be thought of as the unavoidable
redundancy which results from using� in order to code events which
are governed by the true distributionP . This quantity is denoted by
D(Pk�) and defined to be equal toD(PkQ) whereQ is the distribu-
tion matching�. Thus, we may rewrite the linking identity in the form

h�; P i = H(P ) +D(Pk�):

By the usual topologyon M1
+( ) we shall mean the topology of

pointwise convergence and topological notions such as closure, con-
tinuity, and semicontinuity are understood to be with respect to this
topology. For instance, the entropy functionP H(P ) is continuous
if is finite but only lower semicontinuous for an infinite alphabet.
Note that the usual topology is metrizable by total variation. This fol-
lows from Scheffé’s theorem, cf. [4]. We useV (P; Q) to denote the
total variationbetweenP andQ, i.e.,V (P; Q) =

i
jpi � qij, and

we writePn
V
!P if (Pn)n�1 converges in total variation toP .

A sequence(Pn)n�1 � M1
+( ) converges in divergenceto P 2

M1
+( ) if D(PnkP ) ! 0. We express this by writingPn

D
!P . Con-

vergence in divergence is stronger than convergence in total variation
as follows from Pinskers inequality:D(PkQ) � 1

2
V (P; Q)2. At

times we find it convenient to say thatPn converges in entropytoP if
H(Pn) ! H(P ). In general, this will of course not say all that much
but for the specific situations we have in mind, this kind of convergence
is even stronger than convergence in divergence and often requires a
special argument.

It may be reasonable to use the generic term “information space”
for any mathematical object which reflects the knowledge available in
a given situation. We shall only consider the simplest case when this
makes sense. Thus, to us, aninformation spaceis a pair( ; P), where

1If �: ! [0; 1] satisfies 2 � 1 and we put� = d�e then
h�; P i � h� ; P i � h�; P i + 1 for all P 2 M ( ), and there exists a
binary prefix-free code with� as code length function.
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—the alphabet as above—is a countable set andP is an arbitrary
subset ofM1

+( ). We shall mostly use the relatively neutral termi-
nologymodelfor the setP . If you have applications to quantum physics
in mind, it would be better to callP thepreparation space—and distri-
butions inP individual preparations—whereas, if you think in terms
of statistical concepts, it would be natural to refer toP as astatistical
modeland, perhaps, to parametrize the distributions inP . The concept
has of course been studied extensively in one form or another. The view
which we favor is forcefully put forward by Jaynes, cf., e.g., [15], where
he stresses the distinction between distributions as the “truth” about
“reality” and as a means of expressing ourknowledgeabout reality.

The distributions inP are referred to asconsistent distributions.
A distributionP 2 M1

+( ) is essentially consistentif there exists a
sequence of consistent distributions which converges toP in diver-
gence.

We shall exploit a game, thecode-length game, which is closely re-
lated to themaximum entropy principle. This game was introduced
by the author in [24], cf. also [25], and is defined as the two-person
zero-sum game withcode length, which maps(�; P ) 2 K( ) � P
into h�; P i, as cost function. In more detail, the setP is the strategy set
for the system(“Player I”) andK( ) the strategy set forthe observer
(“Player II”). It is the objective of the observer to minimize average
code length, whereas the system attempts to maximize this quantity.
For � 2 K( )

R(�) = sup
P2P

h�; P i

is therisk associated with� and

Rmin = inf
�2K( )

R(�)

is theminimum riskof the model, written asRmin(P) when required.
The corresponding notions for the system are the infima over� 2
K( ) of h�; P i which, by (2), we recognize as the entropyH(P ),
and the supremum overP 2 P of these quantities which then is the
maximum entropy valueHmax = Hmax(P). We also refer to the game
as theHmax=Rmin-game.2

Clearly,Hmax � Rmin. If Hmax = Rmin, this is thevalueof the
game and if, furthermore,Rmin < 1, we say that( ; P), or justP ,
is in equilibrium.

A minimum risk code(Rmin-code) is an optimal strategy for the ob-
server, i.e., a code� withR(�) = Rmin. A maximum entropy distribu-
tion (Hmax-distribution) is an essentially consistent distributionP with
H(P ) = Hmax. We emphasize that a maximum entropy distribution
is only required to be essentially consistent, not necessarily consistent.
The results to follow—and comments in Section VII—constitute argu-
ments in favor of this departure from usual practice. In our terminology,
the usual concept is a consistentHmax-distribution which, in game-the-
oretical terms, is the same as an optimal strategy for the system.

Further concepts are important. First, a sequence(Pn)n�1 of
consistent distributions isasymptotically optimalif H(Pn) ! Hmax

and, second,P � 2 M1
+( ) is the maximum-entropy attractor

(the Hmax-attractor) if Pn
D
!P � for every asymptotically optimal

sequence(Pn)n�1. Clearly, theHmax-attractor need not exist—con-
sider, for example, the model of all deterministic distributions—but if
it does, it is unique. IfP � is theHmax-attractor, thenP � is essentially
consistent, andH(P �) � Hmax. Therefore, it must be the unique
Hmax-distribution ifH(P �) = Hmax.

Basic information about theHmax=Rmin-game is contained in the
following result which may be derived directly from [24, Theorems

2In [24] and [25], this game is called theabsolute gamein contrast to certain
relative gameswhich are of significance also for continuous distributions.

1–3], cf. also [25, Theorem 2]. Note the use of “co” for “convex
hull.”

Theorem 2: The information space( ; P) is in equilibrium if and
only if Hmax(co (P)) = Hmax(P) < 1. If this condition is ful-
filled, there exists a unique minimum risk code�� as well as a, likewise
unique, maximum entropy attractor,P �, and(��; P �) is a matching
pair.

In particular, if the condition of the theorem holds then there is a
unique distribution to which any attempt of finding a maximum-en-
tropy distribution must converge, even in a rather strong sense.
Though Theorem 2 is sufficient for most purposes, the existence of
the Hmax-attractor can be established under weaker conditions, cf.
Section VII.

For a model in equilibrium, we refer to the matching pair, the exis-
tence of which is ensured by Theorem 2, as theoptimal matching pair
associated with the model.

We warn the reader that in Theorem 2, the equalityH(P �) = Hmax

need not hold, thus the maximum-entropy distribution may not exist.
In the more typical case whenH(P �) = Hmax does hold, we say that
the model isentropy-continuous. Any model with a finite alphabet is
entropy-continuous by continuity of the entropy function. In the case
of an infinite alphabet, the entropy function is only lower semicontin-
uous. Thus, for a convergent sequencePn

V
!P , we can only assert that

lim inf n!1H(Pn) � H(P ). This is why we can only conclude that
the inequalityH(P �) � Hmax holds in Theorem 2.

II. CRITERIA FOR OPTIMALITY

Theorem 2 is an existence result and does not give much of a clue
as to how one finds the optimal matching pair in any given situation.
Therefore, there is a need to develop criteria which will facilitate the
search for optimal strategies. In this respect the following concept,
borrowed from mathematical economics, cf. [1], for example, turns
out to be particularly useful. The code�� is the Nash equilibrium
code for ( ; P) if the distributionP � which matches�� is essen-
tially consistent andR(��) = H(P �) < 1. In the two theorems
to follow, we shall see that the Nash equilibrium code is unique and
that, typically, the Nash equilibrium codedoesexist. Note that, in
principle, it is possible to check if a code is a Nash equilibrium code
without knowingHmax or Rmin, whereas a direct check if a given
distribution is theHmax-attractor or aHmax-distribution requires that
Hmax be known.

For a number of naturally occurring models, the Nash equilibrium
code is alsostable, i.e., h��; P i is finite and independent ofP for
every consistent distributionP (cf. [25]). There may be many stable
codes. If a stable code has a consistent-matching distribution, it must
be the Nash equilibrium code. Often, the Nash equilibrium code can be
found in this way, i.e., by first searching for stable codes—Section IV
contains some illustrative examples of this approach. We stress that
the Nash equilibrium code need not be stable and also, it may have an
inconsistent matching distribution.

Generalizing [25, Theorem 2] we obtain the following.

Theorem 3: Let ( ; P) be an information space and assume
that the Nash equilibrium code�� exists. LetP � be the distribution
matching��. Then ( ; P) is in equilibrium and(��; P �) is the
optimal matching pair. ForP 2 P and� 2 K( ), the following
sharper versions of the trivial inequalitiesH(P ) � Hmax and
Rmin � R(�) hold:

H(P ) +D(PkP �) �Hmax(P) (3)

Rmin(P) +D(P �k�) �R(�): (4)
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Proof: As P � is essentially consistent, we may choose
(Pn)n�1 � P such thatD(PnkP

�) ! 0. Then, by the linking
identity and by lower semi-continuity of the entropy function

R(��) � lim sup
n!1

h��; Pni = lim sup
n!1

(H(Pn) +D(PnkP
�))

= lim sup
n!1

H(Pn) � lim inf
n!1

H(Pn) � H(P �) = R(��):

It follows that the sequence(H(Pn))n�1 is convergent and that

lim
n!1

H(Pn) = R(��) = H(P �):

In particular

Rmin � R(��) = H(P �) � Hmax:

AsHmax � Rmin always holds,H(P �) = Hmax = Rmin = R(��).
Thus,P is in equilibrium,(Pn) is asymptotically optimal,�� is a min-
imum risk code, andP � a maximum entropy distribution.

If � is any code, then

R(�) � lim sup
n!1

h�; Pni = lim sup
n!1

(H(Pn) +D(Pnk�))

=Hmax + lim sup
n!1

D(Pnk�)

=Rmin + lim sup
n!1

D(Pnk�) � Rmin +D(P �k�)

where, in the last step, we used the lower semicontinuity ofD(�k�)

and the fact thatPn
D
!P �, hencePn

V
!P �. Thus, (4) holds and��

is the unique minimum risk code (uniqueness becauseD(P �k�) = 0
implies that� is the code adapted toP �).

ForQ 2 P

H(Q) +D(QkP�) = h��; Qi � R(��) = Hmax

thus (3) holds. Therefore,P � is the Hmax-attractor as well as
the unique maximum entropy distribution (uniqueness because
D(QkP�) = 0 impliesQ = P �).

The proof shows that if the Nash equilibrium code exists and
(Pn)n�1 is a sequence of consistent distributions, then the conditions
that (Pn)n�1 converges in divergence toP � and that(Pn)n�1 is
asymptotically optimal are equivalent.

The theorem points to a possible approach in the search for the op-
timal matching pair in cases when a search for stable codes does not
lead to the goal. This approach is illustrated by examples in Sections V
and VI.

If ( ; P) is in equilibrium and entropy-continuous, any asymptot-
ically optimal sequence of distributions does of course converge in
entropy to theHmax-attractor. This points to the information spaces
which are in equilibrium and entropy-continuous as the most impor-
tant ones. Let us collect some facts for this class of spaces.

Theorem 4: Assume that the information space( ; P) is in equi-
librium and denote by(��; P �) the optimal matching pair. Then the
following conditions are equivalent.

i) ( ; P) is entropy-continuous.

ii) ( ; P) has aHmax-distribution (necessarilyP �).

iii) ( ; P) has a Nash equilibrium code (necessarily��).

iv) Every asymptotically optimal sequence of distributions con-
verges in entropy toP �.

v) There exists an asymptotically optimal sequence(Pn)n�1 of
distributions such thatlimn!1 h��; Pni = h��; P �i.

We leave the simple proof, based on the linking identity and the pre-
ceding theory, to the interested reader.

For our last theoretical result, we point out that any result which
asserts the existence of theHmax-attractor can be viewed as a limit
theorem. In what follows, we further emphasize this aspect (note the
use of “co” for “closed convex hull”).

Theorem 5: Let ( ; Pn)n�1 be a sequence of information spaces
and assume that they are all in equilibrium, say withHmax-attractors
P �n ;n � 1. Assume thatsup

n�1 Hmax(Pn) <1 and that the models
are nested in the sense thatco(P1) � co(P2) � � � �.

Then all modelsP with

n�1

Pn � P � co
n�1

Pn (5)

are in equilibrium and have the sameHmax-attractor,P �. Furthermore,
P �n

V
!P � and, in case all modelsPn are entropy-continuous, conver-

gence even takes place in divergence:P �n
D
!P �.

Proof: Puth=sup
n�1

Hmax(Pn). Then, for anyP satisfying (5)

h �Hmax(P) � Hmax(co(P)) � Hmax co
n�1

Pn

=Hmax co
n�1

Pn = Hmax

n�1

co(Pn)

= sup
n�1

Hmax(co(Pn)) = h

where the first equality follows by lower semicontinuity of the entropy
function. By Theorem 2, we now see thatHmax(P) = h and thatP is
in equilibrium.

Again, letP satisfy (5) and letP � be theHmax-attractor ofP . We
shall prove thatP �n converges toP � in total variation. This will show
that the attractor is independent ofP as long asP satisfies (5). For each
n � 1, choosePn 2 Pn such thatH(Pn) � Hmax(Pn)�

1

n
and such

thatV (Pn; P
�
n) �

1

n
. Then,(Pn)n�1 is asymptotically optimal forP ,

hencePn
D
!P �, in particular,Pn

V
!P �. Clearly then,P �n

V
!P �.

In case all thePn are entropy-continuous, we consider a closed
modelP satisfying (5). Then(P �n)n�1 is asymptotically optimal for
P andP �n

D
!P � follows.

III. SOME CLASSICAL MODELS AND ASSOCIATEDDISTRIBUTIONS

We shall study some of the classical distributions based on in-
formation-theoretical considerations. Without being comprehensive
we mention earlier research in this direction: [19], [5], [8], and [2].
However, our approach is also based on games. The findings can
be considered as a companion to the recent correspondence [9] by
Harremoës, where focus was on convexity properties and detailed
approximations regarding the binomial and Poisson distributions.
We shall derive basic properties by as simple considerations as
possible based on theHmax=Rmin-game. In order to stress the point
of view taken, we shall, slightly provocatively, redefine the classical
distributions involved.

As an illustrative example, consider first a finite alphabetand the
uniform distributionover which we define as the maximum entropy
distribution forP = M1

+( ). Of course, this makes good sense and
leads to the usual uniform distribution (directly or via Theorem 3, say).
The point is that the information-theoretical approach stresses the im-
portance of this distribution as thezero-knowledge distribution.
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The concrete information spaces which we shall study are connected
with the alphabets

n = f0; 1; 2; . . . ; ng; n � 1

and
� = f0; 1; 2; . . .g:

We now useE(P ) for the mean value of a random variable with dis-
tributionP .

For 0 � � � n, Bn(�) � M1
+( n) is the set of distributions of

sums ofn independent Bernoulli variables for which the sum has mean
value�. Recall that Bernoulli variables are random variables that can
only assume the two values,0 and1. Note that we do not require that
the Bernoulli variables are identically distributed, only that they are
independent.

Further,Gn(�) is the set of allP 2 M1
+( n) with mean value

�: E(P ) = �. Using the natural embedding of the setsM1
+( n) in

M1
+(

�), we putB�(�) = Bn(�) andG�(�) = Gn(�), the
unions being over alln � �. Clearly, for0 � p � 1

B1(p) = G1(p) = fBIN(1; p)g

BIN(1; p) denoting the Bernoulli distribution with parameter (success
probability)p.

By B1(�) we denote the set of distributions inM1
+(

�) of infinite
sums of independentBIN(1; pn)-distributed random variables with
1

n=1
pn = � (by the Borel–Cantelli lemma this makes good sense).

By G1(�) we denote the set of allP 2M1
+(

�) with mean value�.
We shall use the notationX(I), whereX could stand forBn,B�,B1,
Gn,G�, orG1 and whereI is some subset of[0; 1[, for the union of
X(�) over� 2 I . For instance,G1([0; �]) is the set ofP 2M1

+(
�)

with mean value at most�.
For the appropriate parameter values, we nowdefinethe binomial

distribution BIN(n; p), the geometric distributionGEO(n; �), the
geometric distributionGEO(�), and thePoisson distributionPOI(�)
as theHmax-distribution of Bn(np), of Gn(�), of G�(�) and of
B�(�), respectively.

It is not immediately clear that these definitions make sense. We shall
consider this problem in the next sections.

IV. THE GEOMETRIC DISTRIBUTIONS

The simplest cases to handle are the geometric distributions since,
for these, the relevant models are convex.

Consider first the familyPx; 0 � x < 1, of distributions on �

determined by the equation

Px(k) = Px(0) � x
k; k � 0: (6)

The matching codes�x are given by

�x(k) = � lnPx(0)� k ln x; k � 0 (7)

and are, therefore, stable for all modelsG1(�); 0 � � <1. It is easy
to determinePx(0) as well asx = x(�) explicitly such thatE(Px) =
�. Not surprisingly, one finds the well-known expressions

Px(0) =
1

1 + �
; x =

�

1 + �
: (8)

Thus, Theorem 3 applies. In particular,Px (with x = x(�)) is the
Hmax-distribution ofG1(�) as well as ofG1([0; �]) and

Hmax(G1(�)) =Hmax(G1([0; �]))

= ln(1 + �) + � ln 1 +
1

�
: (9)

Then fix n. For each0 � x � 1, let Pn; x be the distribution in
M1

+( n) for which the point probabilities are given by

Pn; x(k) = Pn; x(0) � x
k; 0 � k � n: (10)

The casesx = 0 andx = 1 are conceived as singular cases with
Pn; 0 = �0 andPn;1 = �n (point distributions concentrated in0 and
in n, respectively).

The matching codes�n;x are given by

�n;x(k) = � lnPn; x(0)� k lnx; 0 � k � n (11)

and are, therefore, stable for all modelsGn(�),0 � � � n, indeed that
is how they were determined. The mean valueE(Pn;x) varies from0
(for x = 0) ton (for x =1) with intermediate valuen=2 (for x = 1).
It is clear thatx E(Pn;x) is strictly increasing inx, a fact that also
follows from continuity of this map and from Theorems 2 and 3.

To a given0 � � � n, let x = xn(�) denote that value ofx with
E(Pn;x) = �. Then Theorem 3 applies. In particular, the geometric
distributionGEO(n; �) has been identified as the distributionPn; x.
It may be noted that for0 � x � 1; x 6= 1

E(Pn;x) =
x

1� x
� (n+ 1)

xn+1

1� xn+1

=n�
n+ 1

1� xn+1
�

1

1� x
: (12)

By (11), and asx=xn(�)�1 for ��n=2, we see that if��n=2;
�n;x is also the Nash equilibrium code for the modelGn([0; �]).
If n=2 � � � n, an analogous result is obtained for the model
Gn([�; n]).

Our discussion and Theorems 3 and 4 now lead to the following
result.

Theorem 6: For fixedn and0 � � � n, Gn(�) is in equilibrium
and theHmax-distribution,GEO(n; �), is well defined and character-
ized as the distribution inGn(�) determined by (10). If� � n=2,
this distribution is also theHmax-distribution ofGn([0; �]) and if
n=2 � � � n, it is theHmax-distribution ofGn([�; n]).

For 0 � � < 1, the modelG1(�) is in equilibrium and the
Hmax-distribution,GEO(�), is well defined and characterized by (6)
and (8). This distribution is also theHmax-distribution of any of the
modelsG1([0; �]), G�(�), andG�([0; �]). The maximum entropy
valueHmax is given by (9).

The models considered are entropy-continuous and, for0 � � <
1, the distributionsGEO(n; �) converge in divergence as well as in
entropy toGEO(�).

V. THE BINOMIAL AND POISSONDISTRIBUTIONS

In this section, we agree to usePX to denote the distribution ofX,
whetherX is a random variable or a random vector. The key to the
results of this section is a combination of our game-theoretical results
with an inequality due to Hoeffding, cf. [12, Theorem 3]. We begin with
a statement of the inequality we need. For the convenience of the reader,
we also include a brief proof. Note the use of “�” for “convolution.”

Theorem 7 (Hoeffding’s Inequality):Let P1; P2; . . . ; Pn be
distributions inM1

+(
�) and putP = 1

n

n

1
Pk. Then, in case

P1; P2; . . . ; Pn are all supported byf0; 1g, the inequality

hg; P1 � P2 � � � � � Pni � g; P
�n

(13)

holds for any “integer convex” functiong: � ! , i.e., for any func-
tion k gk such that2gk+1 � gk + gk+2 for k 2 �.
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Proof: Let Xk; 1 � k � n be independentPk-distributed
random variables and putSn = n

1
Xk. Put pk = Pk(1),

1 � k � n. Fix � = n

1
pk and, for a while, alsop3; . . . ; pn. Put

2� = � � n

3
pk. Thus, for anx with jxj � �, p1 = � � x and

p2 = �+ x. PutS0 = X1 +X2 andS00 = n

3
Xk. For each�, one

can split the probabilityP (Sn = �) into three terms according to the
value ofS0. This then leads to the following expression forhg; PS i:

hg; PS i = c� x2
n�2

�=0

(g� � 2g�+1 + g�+2)P (S00 = �)

with

c =

n�2

�=0

(1��)2g�+2�(1��)g�+1+�
2g�+2 P (S00= �):

By our reasoning,c is to be considered as a constant. Therefore, the
convexity assumption shows thathg; PS i is maximal forx = 0,
i.e., for p1 = p2. Here,p3; . . . ; pn were fixed. Repeating the argu-
ment with other values fixed we realize that as long as� = n

1
pk is

kept fixed,hg; PS i is largest when all thepi ’s are equal. The result
follows.

First consider the modelBn(�) for 0 < � < n (the cases� = 0
and� = n are singular, trivial cases). Putp = �

n
andq = 1 � p and

let P � be the distribution given by

P �(k) =
n

k
pkqn�k; 0 � k � n (14)

and�� the matching code

��(k) = � ln
n

k
� k ln p� (n� k) ln q; 0 � k � n: (15)

As is well known and classical,P � 2 Bn(�). We shall show that��

is the Nash equilibrium code ofBn(�). Then Theorem 3 will apply,
in particular it will follow thatP � is theHmax-distribution and in this
way we will have identifiedBIN(n; p). It was proved independently by
Mateev [21] and by Shepp and Olkin [23], cf. also Marshall and Olkin
[20], thatP � is indeed theHmax-distribution. For a recent treatment,
see [9]. We shall also present a proof, as the availability of Theorem 3
gives rise to some simplifications and as the game-theoretical approach
leads to a more informative result.

What we have to prove is that for anyp1; . . . ; pn with n

i=1
pi=�;

the inequality

h��; P i � h��; P �i (16)

holds whereP = PS with Sn = n

k=1
Xk, the sum ofn inde-

pendentBIN(1; pk)-distributed random variables. It is convenient to
reformulate this by introducing the random variableTn = n � Sn,
the number of “failures.” ByPPP we denote the distribution of the vector
(Sn; Tn) wherePS = P and similarly forPPP � (whenPS = P �).
By ���� we denote the code adapted toPPP �, i.e.,

����(k1; k2) = � lnn! + ln k1! + ln k2!� k1 ln p� k2 ln q (17)

where0 � k1 � n andk1 + k2 = n. Then (16) is equivalent to the
inequality

h����; PPP i � h����; PPP �i: (18)

We find that

h����; PPP i = � lnn!�nH(p; q)+ hln k!; PS i+ hln k!; PT i: (19)

By Theorem 7, each of the two averages here is maximized when the
underlying probabilitiesp1; . . . ; pn are equal. Thus, (18), hence also
(16), hold.

Now fix � > 0 and consider the modelB�(�). It is convenient also
to consider the model

co(B�(�)) =
n��

co(Bn(�)):

As co(B�(�)) � G�(�)

Hmax(B
�(�)) � Hmax(co(B

�(�)))<1:

Then Theorem 5 applies. It follows thatBIN(n; �=n) converges in
divergence to theHmax-attractor ofB�(�), for which we again use the
notationP �. In particular, the point probabilities converge. Then, by
well-known reasoning, we conclude that

P �(k) =
�k

k!
e��; k � 0:

We can now summarize the findings.

Theorem 8: The Hmax-distribution for the modelsBn(�) =
Bn(np) is the classical binomial distributionsBIN(n; p), and the
Hmax-distribution for the modelsB�(�); B1(�) andco(B1(�)) is
the classical Poisson distributionPOI(�). The models considered are
entropy-continuous and, for each� � 0, BIN(n; �=n) converges in
total variation, in divergence as well as in entropy toPOI(�).

For the convergence in entropy we refer the reader to [9, Theorem
8] where property v) of Theorem 4 is verified.3

Mateev [21] and Shepp and Olkin [23], proved the following further
result, cf. also Marshall and Olkin [20] and results in the next section.

Theorem 9: For fixed n, BIN(n; 1

2
) is the unique maximum-en-

tropy distribution among all binomial distributionsBIN(n; p), 0 �
p � 1.

The model considered here is an example of a naturally occurring
model which does not behave well from our information-theoretical
point of view in the sense that the value of the associated game does
not exist.

Theorem 10: Forn � 2, consider the model of all binomial distri-
butionsBIN(n; p); 0 � p � 1. Then

Hmax = H(BIN(n; 1=2)) < Rmin = ln(n+ 1):

Proof: LetP denote the model in question and considerco(P) =
co(P). We base the proof on the general equalities

Rmin(P) = Rmin(co(P)) = Hmax(co(P)): (20)

The first equality follows directly from the definitions of risk and min-
imum risk, and the second equality is part of Theorem 2. The fact that
Hmax(co(P)) = ln(n + 1) follows as the uniform distribution over
f0; 1; 2; . . . ; ng belongs toco(P). Indeed, this distribution is the uni-
form mixture overx 2 [0; 1] of the binomial distributionsBIN(n; x),
a direct consequence of the classical formula for the beta function since,
by that formula

1

0

n

k
xk(1� x)n�k dx =

n

k

�(k+ 1)�(n� k + 1)

�(n+ 2)

which equals 1

n+1
for all 0 � k � n.

3In fact, a simple proof—which, however, relies on more theory—amounts
to a check that the Poisson distribution is not “hyperbolic,” cf. Harremoës and
Topsøe [10, Theorem 8.4]. Intuitively, the requirement is that the tails must not
be too large.
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VI. M ULTINOMIAL DISTRIBUTIONS, EMPIRICAL DISTRIBUTIONS

The basis of considerations in the previous section was Bernoulli
variables. They only assume two values corresponding to “success” and
“failure.” Now let us consider a more general situation but still within
discrete probability theory. Without loss of generality, we may then
confine the study to random variables taking values in the natural num-
bers = f1; 2; . . .g (representing the various levels of “success”).

Denote by
n the set of infinite vectorskkk = (k1; k2; . . .) with the
integerski all nonnegative and 1

1
ki = n, and denote by
� the set

of similar vectors but with the looser requirement1
1
ki <1. Then


� is countable and decomposed into the sets
0; 
1; . . ..
We now fix n 2 andQ 2 M1

+( ). We also agree that if
P1; . . . ; Pn are distributions inM1

+( ), thenP denotes the average
1

n

n

1
Pk.

Consider the modelP = P(n; Q) constructed as follows. For each
finite setP1; . . . ; Pn inM1

+( )withP = Qwe consider independent
random variablesX1; . . . ; Xn such thatX� has distributionP� ; 1 �
� � n and then we consider the random vectorSSSn = (Sn1; Sn2; . . .)
whereSni denotes the number of1 � � � n with X� = i; i =
1; 2; . . .. By definition, the modelP consists of all distributions of
random vectorsSSSn that arise in this way. A typical element ofP is
denotedPPP , i.e.,PPP = PSSS . SincePPP 2 P depends onP1; . . . ; Pn
(with P = Q), we may writePPP = PPP (P1; . . . ; Pn).

Theorem 11: If H(Q) < 1, thenP(n; Q) is in equilibrium and
entropy-continuous. The maximum entropy distribution is

PPP 0 = PPP (Q; . . . ; Q):

Proof: Let���0 be the code adapted toPPP 0 and letqi, i � 1 be the
point probabilities forQ. ThenPPP 0 is given by

PPP 0(k1; k2; . . .) = n!

1

i=1

qki
ki!

(21)

for all (k1; k2; . . .) 2 
n and for these vectors

���0(k1; k2; . . .) = � lnn! �

1

i=1

ki ln qi +

1

i=1

ln ki!: (22)

In order to establish the theorem, we shall prove that���0 is
the Nash equilibrium code, i.e., for anyPPP = PSSS 2 P with
SSSn = (Sn1; Sn2; . . .) we shall prove thath���0; PPP i is maximal for
P1 = � � �= Pn =Q. By (22)

h���0; PPP i =� lnn!�

1

i=1

nqi ln qi +

1

i=1

E(lnSni!)

=� lnn! + nH(Q) +

1

i=1

E(lnSni!):

From the investigation in Section V, we realize that the individual ex-
pectationsE(lnSni!) are upper-bounded by the corresponding expec-
tations when allith-point probabilities ofP1; . . . ; Pn are equal. Thus,

h���0; PPP i � � lnn! + nH(Q) +

1

i=1

n

k=0

ln k!
n

k
qki (1� qi)

n�k

=� lnn! + nH(Q) +

n

k=2

ln k!
n

k

1

i=1

qki (1� qi)
n�k

=H(PPP 0):

As we also find thatH(PPP 0) <1, the proof is complete.

Let us agree thatHmax(n; Q) denotes the maximum entropy value
of the modelP(n; Q). ThenHmax(n; Q) is the entropy of the em-
pirical distribution corresponding ton independent random variables

X1; . . . ; Xn, all with distributionQ. The qualifying “max” signals
that this empirical distribution has maximal entropy among all “gener-
alized empirical distributions” corresponding to independent random
variables subject to the condition that the average of the associated dis-
tributions coincide withQ. This is the content of Theorem 11.

In [23, Theorem 3], a concavity result was proved for the entropy
of multinomial distributions. In what follows, we generalize this result
to one concerning theHmax-distributions of the modelsP(n; Q) for
distributions which are not required to have finite support. The com-
putations needed for the proof are the same as those given in [23] and
are, therefore, only briefly indicated.

Theorem 12: For alln � 1, the mapQ Hmax(n; Q) is strictly
concave, in fact, for any infinite convex combination�11 ��Q� of mea-
sures inM1

+( )

Hmax n;

1

�=1

��Q� �

1

�=1

��Hmax(n; Q�) (23)

and, if the right-hand side is finite, the inequality is strict unless allQ�

with �� > 0 are identical.
Proof: By Theorem 11 and its proof

Hmax(n; Q) = � lnn! +

1

i=1

fn(qi) (24)

with the functionsfn: [0; 1] ! + defined by

fn(q) = �nq ln q +

n

k=0

ln k! �
n

k
qk(1� q)n�k: (25)

A straightforward calculation shows that

f 00n (q)=�
n

q
+n(n� 1)

n�2

k=0

n� 2

k
qk(1� q)n�k�2 ln

k+2

k+1

and upper-bounding the logarithmic term by1
k+1

gives the inequality
f 00n (q) < �n

q
(1 � q)n�1, hence each functionfn is strictly concave

and the result follows by (24).

Forn = 1, Theorem 12 reduces to the usual concavity property of
the entropy function.

Finally, let us consider the modelP(n; Q) in caseQ has finite sup-
port. Then theHmax-distribution, identified in Theorem 11 as the em-
pirical distributionPPP (Q; . . . ; Q) is nothing but the multinomial distri-
bution determined byQ, denoted byMULT(n; Q), say. We may now
combine the concavity ofHmax(n; �) established in Theorem 12 and
the obvious symmetry of this function with Theorem 11. In this way,
we obtain the following result, generalizing parts of Theorems 8 and 9.

Theorem 13: Let r � 2 andn � 2 be natural numbers. Among
all generalized empirical distributions corresponding to independent
random variablesX1; . . . ; Xn with values inf1; . . . ; rg, the multi-
nomial distributionMULT(n; Q) with Q the uniform distribution on
f1; . . . ; rg has maximal entropy.

For the case when only multinomial distributions are considered in
the model, this result was proved, again both by Mateev and by Shepp
and Olkin.

VII. D ISCUSSION

A. Theory

This correspondence and previous research demonstrates that the
Hmax=Rmin-game is useful when setting up natural models reflecting
our knowledge in a given situation. Typically, the kind of results one
can expect from this approach are twofold: Identification of interesting
distributions and associated limit theorems, possibly accompanied by
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certain inequalities, facilitated by, e.g., (3) and (4). Future extensions
may involve extra structure, say in the form of Markov kernels, side
information, or symmetry.

Theorem 3, which was overlooked in [25], is a key result. Note that
the proof given does not depend on previous results. Therefore, this
correspondence is largely self-contained. Previous research consists of
the author’s papers [24] and [25], and then, we point to [17] and, for
games covering also the continuous case, [11]. In [10], further results,
actually developed after the first submission of the present manuscript,
can be found.

Regarding the controversial definition of anHmax-distribution, re-
quiring besides maximal entropy only essential consistency, note that
it follows from Theorem 5 (withPn ’s independent ofn) that it does
not really matter if, to a given model, you add the essentially consistent
distributions or even all distributions in the closure of the model. And if
you do that, the normally accepted definition is of course all you need.
On the other hand, it is awkward only to work with models which are
closed. Indeed, the most frequently studied models are those given by
moment constraints and, typically, these models are not closed.

A fundamental phenomenon is the possibility that the equality
H(P �) = Hmax may not hold for any consistent or essentially
consistent distribution. As examples show, cf. [13], [24] or, for a more
conclusive study, [10], this situation may occur.

This also explains the importance of theHmax-attractor as it does
allow for a discontinuity or loss of entropy(H(P�) < Hmax) and
yet, if a maximum-entropy distribution exists, this is the one to search
for. Originally, the notion ofHmax-attractor was defined differently,
cf. [24], requiring only normal convergence (i.e., convergence in total
variation) rather than convergence in divergence for asymptotically op-
timal sequences. But as the stronger convergence property does, in fact,
hold for the main category of models—those in equilibrium—and as
convergence in divergence appears to be the right kind of convergence
to work with for information-theoretical investigations, the chosen def-
inition appears justified.

If we turn our attention to differential entropy and the associated
maximum-entropy principle, the same phenomenon of loss of entropy
may take place. The reader is referred to [7] for an illuminating discus-
sion.

Further comments on continuity considerations concern Theorem 5.
In the case of entropy-continuous modelsPn, we cannot in general
assert that the limit modelP is also entropy-continuous, thus,P �

n may
not converge in entropy toP �. An example to illustrate this point can be
extracted from [24, Theorem 21, case (d)] (start with the limit model
and consider approximating models by restricting the support of the
distributions to larger and larger finite sets). Another comment is that
probablyPn

D
!P does not hold generally in Theorem 5. However, the

author is not aware of an example to illustrate this.

One may consider the concept ofHmax-attractor as a key object of
study, quite independently of the game-theoretical setting. In this con-
nection, we emphasize that existence of theHmax-attractor can be es-
tablished in a number of cases not covered by Theorem 2. Simple ex-
amples with a finite alphabet point to this (consider, for example, the
model consisting only of the two distributions with point masses(1; 0)
and( 1

4
; 3

4
), respectively).

In order to state more general existence results for theHmax-at-
tractor, we introduce the notation

h = Hmax(P) and Pt = fP 2 PjH(P ) > tg; for t < h:

It follows from Theorem 2 that if there existst < h such that
Hmax(co (Pt)) � h (in which case equality must hold), then the

Hmax-attractor exists. If we weaken the condition and assume only
that

lim
t!h

Hmax(co(Pt)) � h (26)

the existence of a “weak”Hmax-attractorP � follows, one for which
Pn

V
!P � for every asymptotically optimal sequence(Pn)n�1. A

strengthening of this result to one asserting the existence of the usual
“strong”Hmax-attractor (one withPn

D
!P �) is not possible, even for

a finite alphabet, as simple examples will show. For finite, (26) is
also necessary for the existence of a weakHmax-attractor.

B. Applications

The type of problems treated in Section IV are well known, even
classical. This also concerns more general models defined by moment
conditions. From the reference list we may quote [14], [15], [13], [24],
and [25], but there are many other sources from physics, chemistry,
statistics (exponential families), and information theory. Reference
[16] contains a comprehensive bibliography. The game-theoretical
approach, however, is not standard. It leads more directly to an
understanding of such models than other approaches (typically based
on optimization via the introduction of Lagrange multipliers). The
search for stable codes is instrumental in this respect.

Regarding Section V, we again stress the game-theoretical treatment.
For a more direct approach, see [9] where one also finds detailed ap-
proximations relating binomial distributions to the limiting Poisson dis-
tribution.

We also want to emphasize the conjecture, going back to [23],that
h(p1; . . . ; pn) is concave in(p1; . . . ; pn), whereh(p1; . . . ; pn) de-
notes the entropy of the Bernoulli sum of independent Bernoulli vari-
ables with success probabilities, respectively,p1; . . . ; pn. For partial
results in this direction, see [23] and [9].

In Section VI, we generalized one of Mateev and Shepp and Olkin’s
results to a vector-valued setting. We now consider the possibility of
a generalization in another direction. Let� andn with 0 � � � n

be given and putp = �

n
. ThenBIN(n; p) is theHmax-distribution

of the modelBn(�). This result, due to Mateev (somewhat put away
in the proof of [21, Corollary 2]) and to Shepp and Olkin [23], was an
important part of Theorem 8. It is equivalent to the following inequality
(with notation as in Theorem 7):

H P
�n

� H(P1 � P2 � � � � � Pn) (27)

valid for distributionsP1; P2; . . . ; Pn which are all supported by
f0; 1g. To realize the stated equivalence, simply note that allPk are of
the formPk = BIN(1; pk), thatP = BIN(1; p) with p = 1

n

n

1
pk,

and recall that the distribution of a sum of independent random vari-
ables is the convolution of the corresponding individual distributions.

It is natural to inquire if the above inequality holds under less strin-
gent conditions on the support of the distributionsPk. Though inter-
esting results in this direction may hold, it seems that (27) is a very
special and perhaps in some sense unique instance of such results.
This is illustrated by the simple example for whichn = 2 andP1 =
( 1
3
; 1

3
; 1

3
; . . .); P2 = ( 1

2
; 0; 1

2
; . . .) (in terms of the point probabili-

ties associated with the elements in� = f0; 1; 2; . . .g). One finds
that

P1 � P2 =
1

6
;
1

6
;
2

6
;
1

6
;
1

6
; . . .

and

P � P =
25

144
;
20

144
;
54

144
;
20

144
;
25

144
; . . .

hence

H(P1 � P2) =
2

3
ln 2 + ln 3 � 1:5607
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Fig. 2. Illustration of models with = f0; 1; 2g.

and

H(P � P ) =
221

72
ln 2 +

7

8
ln 3�

35

36
ln 5 � 1:5241:

Therefore, (27) does not hold in this case.
As we have seen, Hoeffding’s inequality, Theorem 7, may be

considered to lie behind (27). It is noteworthy that whereas (27)
itself appears difficult to generalize, far-reaching generalizations of
Hoeffding’s inequality (weakening the requirement on the support of
thePk ’s and generalizing the whole setting to one based on abstract
semigroup theory) have appeared, cf. [3], [6] and [22]. How, or if,
these results can be exploited in information-theoretical studies is
unclear.

Shepp and Olkin’s paper [23] contains a reference to Hoeffding’s in-
equality. Really, the reference is only one of analogy. Shepp and Olkin
do not make any use of the inequality, only note its qualitative simi-
larity with problems and results they are led to consider. In this context,
it is interesting that with the present approach, Hoeffding’s inequality
is thecentral tool needed for the discussion of models defined in terms
of Bernoulli sums.

As noted several times, the results concerning binomial and multi-
nomial distributions owes much to Mateev and to Shepp and Olkin.
The results, as far as they involve maximum-entropy considerations,
are quite natural and were perhaps considered by several mathemati-
cians before they were settled. Both Mateev and Shepp and Olkin refer
to sources of inspiration from others—M. B. Malyutov, B. Lindström
[18], and A. D. Wyner.

Finally, we shall illustrate some of the findings regarding the bino-
mial and geometric distributions by looking at the casen = 2. The
simplexM1

+( 2) together with various models are shown in Fig. 2.
The pointsP0, P1, andP2 represent the deterministic distributions
concentrated in0; 1; and2; respectively. The lineABCD represents
the modelG2(�) for some� < 1, whereasAB represents the model
B2(�). Note that for higher values ofn, Bn(�) is not convex (but
still connected). The pointsB andC represent theHmax-distributions
of B2(�) andG2(�), respectively. The curveP0BEP2 represents
the model of all binomial distributionsBIN(2; p); 0 � p � 1, and
E the associated maximum entropy distribution. Similarly, the curve
P0CUP2 is the model of geometric distributions andU , the uniform
distribution, the corresponding maximum-entropy distribution.
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