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V, and a pointv, on the boundary o¥} such that the line segment
L = {nva + (1 — n)vs: p € [0, 1]} is contained in botA} andU,.
Let H, (-) denote one-dimensional Hausdorff measuf@fh By virtue
of (19)

2e < ||va — vs|| = Hi(L). (21)

The definition ofL,, ensures thdt, is the union of < b,, disjoint sets
U, ..., U, each of which is a terminal region @F,. In conjunction
with (20), this implies that

k k
H(L)=Y H(LOU;) <Y diam(U;) < k bi <e
=1 =1 n

However, this contradicts (21), so that = U;; U; must be con-
tained inV},. The inequality above then shows thiaim (U, ) < €, and
thereforemax{diam(7,,[z]): € V,} < e. It follows that

lim sup P{a: diam (T} [2]) > €} < P(Vy) < 6

n—oo

for every choice of, § > 0. Relabeling the tree, if necessary,
Lemma 1 ensures th&k(T,,) — 0. The consistency of the complexity
pruned subtre€s,, follows immediately from Corollary 1.
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TABLE | 0 100 101 110 11101111

A CODEBOOK € | a 1 c \ d [b|f
A_ codeword k Fig. 1. Binary intervals corresponding to the code in Table I.
a 100 3
b 1110 4 o o . . . .

101 3 This idealization is motivated by the wish to avoid somewhat arbitrary
¢ effects caused by the choice of the binary alphdltetl} as refer-
d 110 3 ence alphabet, and can be justified in various ways, e.g., by pointing to
e 0 1 block coding and the noiceless coding theorem or by the fact that any
f 1111 4 idealized code length function will be at most one bit away from an in-

teger-valued code length functi@rA final modification of the notion

of a code length function is purely technical and a matter of mathemat-

as our first question (equivalent to the question “is the first binary OIi%al convenience. It consists in changing the base for logarithms and
in the codebook d?"). Continuing in this way, enquiring about theexponentiation fron? to ¢

further binary digits until identification is possible, we realize that the With the above remarks in mind, we now define the &) of

code length functiom which is shown in Table | gives us the numberidealized code-length functions, as we shall simply say in the sequal,

of bits needed for identification. -
of codes as the set of mappings A 0, oc] such that
By M1 (A) we denote the set of probability distributions o¥erlf, ? ppings A — [0, o]

besides the code given in Table I, we also know the true distribution e =1

P, then theaverage code lengtfior which we use the bracket notation a€h

(k. P), can be computed. According to what was said above, we canlf « € K(A) andP € M1(A), we say thatx, P) is amatching
interpret(x, P) asmean observation timasing observations on thepair if x(a) = — In P(a) for eacha € A (“In" is used for the natural

given code and assuming thais the true distribution). On the coding logarithm). We may also express this by saying, e.g.,tHatadapted
side, we realize that the detailed structure of the code is immatetialP, or thatP is the distributiormatchings.

for the calculation of mean observation time—only the code length, asAs above, we usé, P) to denote mean value with respect to (w.r.t.)
given by the functior, is important. It is, therefore, essential to noteP, and we uséf = H () to denote entropy anB = D(-||-) to denote

the following result. information divergence. For any € M} (A) and anyx € K(A)
Theorem 1 Kraft's Inequality:A necessary and sufficient condition (k, P) = H(P)+ D(P||Q) (2
for a function where() is the distribution matching. This is thelinking identity.

A slight variation of concepts is often natural.[ifis a distribution
andx a code, we introduce tlredundancy of? givenx, or theredun-
Hjeancy ofk assumingP, which may be thought of as the unavoidable
redundancy which results from usingin order to code events which
are governed by the true distributidn. This quantity is denoted by

k:A—->Ny={0,1,2,...}

to be a code-length function for a binary prefix-free code is that t
following inequality holds:

> 27 <1, (1) D(P||x) and defined to be equal ( P||Q) whereQ is the distribu-
en tion matchings. Thus, we may rewrite the linking identity in the form
It is convenient to expand this slightly by allowing the vakig) = {k, Py = H(P) + D(P||»).

oo corresponding to the “impossible,” infinitely long codeword, a code- Bv the usual topologvon
word which has no finite codeword as prefix and is, typically, used i y RO0gY0
situations where you believe that the letter in question cannot possi

occur. Allowingx (i) = oo does not change _the validity of Kraft's re- opology. For instance, the entropy functi H(P) is continuous
sult, quoted above. In order to be systematic, we should also allow {F% is finite but only lower semicontinuous for an infinite alphabet.

;emlpty co<_jewcr)]rd V;']'th length. In plrlal;:tlce, this is only used when YOUNpote that the usual topology is metrizable by total variation. This fol-
eel certain what the outcome will be. lows from Scheffé’s theorem, cf. [4]. We u3g P, Q) to denote the

A simple proof of Theorem 1, which works equally well for finitetotal variationbetweenP and() i.e.. V(P =S |p: —a:l and
and for infinite alphabets, depends on the natiirdl correspondence @18 VAP Q) =2, pi = ail,

between codewords and binary intervals. For this correspondence, P S aln in di do P
empty codeword corresponds[tb 1] and ife; - - - =4 correspondsto seq-uence{ nnzt & Mi(A) conve.rges in _ .|verg%n €
the intervall, then, - - - =,,0 corresponds to the left half, ang- - -2, 1 M+ (/) if D(P,|[P) — 0. We express this by writing, = P. Con-
to the right half off (and the “impossible” codeword corresponds to th¥ergence in divergence is stronger than convergence in t°t§| variation
empty sef). For instance, for the code given in Table I, you find thags follows from Pinskers inequaliyo(P||Q) > 5 V(P Q)" At
the set of corresponding binary intervals is as shown in Fig. 1. times we find it convenient to say th&), converges in entropip P if

Note also that the case of equality in (1) corresponds to the casefbfF) — H(P).In general, this will of course not say all that much
a “maximally compressed” code in the sense that no binary prefix-fr@é‘t for the specific situations we have in mind, this kind of convergence
codex™ has a code length function which satisfie¥:) < (i) for is even stronger than convergence in divergence and often requires a

all i € A with strict inequality for one or moré € A. The reader will SPecial argument. _ ) )
find more details in [7]. It may be reasonable to use the generic term “information space”

In spite of how well known the above facts are, they are still needdef any mathematical object which reflects the knowledge available in
as motivation for the game we shall study. a given situation. We shall only consider the simplest case when this

Apart from focusing on the code length functisr(and not on the Makes sense. Thus, to us,iafermation spacés a pair(A, 7), where
full code) we decide, first, to pay attention only to maximally com- Uf x: A — [0, oc] satisfiesY,, , 2 < 1and we pus” = [«] then

pressed codes, i.e., to the case of equality in (1), and, second, to 'kdg-p> < (", PYy < {x,Py+1foralP ¢ M (A), and there exists a
alize by allowing arbitrary nonnegative numbers as codeword lengthsary prefix-free code witls* as code length function.

ML (A) we shall mean the topology of
gointwise convergence and topological notions such as closure, con-
h’uity, and semicontinuity are understood to be with respect to this

\ﬁ%\write P, Lpif (Pn)n>1 converges in total variation tB.
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A—the alphabet as above—is a countable set®nd an arbitrary 1-3], cf. also [25, Theorem 2]. Note the use of “co” for “convex
subset ofM (A). We shall mostly use the relatively neutral termi-ull.”
nologymodeffor the setP. If you have applications to quantum physics
in mind, it would be better to calP thepreparation space-and distri-
butions in? individual preparations—whereas, if you think in terms
of statistical concepts, it would be natural to refeft@s astatistical
modeland, perhaps, to parametrize the distributiori® ifThe concept
has of course been studied extensively in one form or another. The vidl"
which we favor is forcefully put forward by Jaynes, cf., e.g., [15], where In particular, if the condition of the theorem holds then there is a
he stresses the distinction between distributions as the “truth” abeufique distribution to which any attempt of finding a maximum-en-
“reality” and as a means of expressing dmowledgeabout reality. tropy distribution must converge, even in a rather strong sense.
The distributions inP are referred to asonsistent distributions Though Theorem 2 is sufficient for most purposes, the existence of
A distribution P € M1 (A) is essentially consisterit there exists a the H,,...-attractor can be established under weaker conditions, cf.
sequence of consistent distributions which convergeB to diver- Section VII.
gence. For a model in equilibrium, we refer to the matching pair, the exis-
We shall exploit a game, theode-length gamevhich is closely re- tence of which is ensured by Theorem 2, asapimal matching pair
lated to themaximum entropy principleThis game was introduced associated with the model.
by the author in [24], cf. also [25], and is defined as the two-personwe warn the reader that in Theorem 2, the equdlityP*) = H oy
zero-sum game witlode lengthwhich maps(«, P) € K(A) x P need not hold, thus the maximum-entropy distribution may not exist.
into (x, P), as cost function. In more detail, the $is the strategy set In the more typical case wheli( P*) = H,... does hold, we say that
for the systeng“Player I”) and K'(A) the strategy set fahe observer the model ientropy-continuousAny model with a finite alphabet is
(“Player 1I”). It is the objective of the observer to minimize averagentropy-continuous by continuity of the entropy function. In the case
code length, whereas the system attempts to maximize this quaniityan infinite alphabet, the entropy function is only lower semicontin-

Theorem 2: The information spacé?, P) is in equilibrium if and
only if Hmax(co(P)) = Hmax(P) < oc. If this condition is ful-
filled, there exists a unique minimum risk cogeas well as a, likewise
unigue, maximum entropy attractd?,", and(x*, P~) is a matching

Forrx € K(A) uous. Thus, for a convergent sequefte> P, we can only assert that
liminf, . H(P,) > H(P). This is why we can only conclude that
R(k) = sup(k, P) the inequalityH (P*) < Hu.ax holds in Theorem 2.
repr
is therisk associated with and II. CRITERIA FOR OPTIMALITY

Roin = inf R(x) Theorem 2 is_ an existenc_e result an_d doe§ r_10t give _much_of a_clue
T ER(A) as to how one finds the optimal matching pair in any given situation.
Therefore, there is a need to develop criteria which will facilitate the
is theminimum riskof the model, written a®..... () when required. search for optimal strategies. In this respect the following concept,
The corresponding notions for the system are the infima evef  porrowed from mathematical economics, cf. [1], for example, turns
K (A) of (s, P) which, by (2), we recognize as the entrofP’), out to be particularly useful. The code is the Nash equilibrium
and the supremum ovd? € P of these quantities which then is thecodefor (A, P) if the distribution P* which matches:* is essen-
maximum entropy ValuH....x = Hmax(P). We also refer to the game tially consistent and?(x*) = H(P*) < cc. In the two theorems
as theHmax/ Rmin-game? to follow, we shall see that the Nash equilibrium code is unique and
Clearly, Huux < Ruin. If Hiax = Ruin, this is thevalueof the  that, typically, the Nash equilibrium codéoesexist. Note that, in
game and if, furthermord?min < oo, we say thatA, 7), or justP,  principle, it is possible to check if a code is a Nash equilibrium code
is in equilibrium without knowing Homax OF Rmin, Whereas a direct check if a given
A minimum risk codéR.min-codg) is an optimal strategy for the ob- distribution is theH,,..-attractor or aH,... -distribution requires that
server, i.e., a codewith R(x) = R..i,. A maximum entropy distribu- 7, . be known.
tion (Hmax-distribution) isan essentially consistent distributi@rwith For a number of natura”y Occurring mode|sv the Nash equi”brium
H(P) = Humax. We emphasize that a maximum entropy distributiogode is alsostable i.e., (v*, P) is finite and independent aP for
is only required to be essentially consistent, not necessarily consisteijery consistent distributiof® (cf. [25]). There may be many stable
The results to folow—and comments in Section VIl—constitute arg¢odes. If a stable code has a consistent-matching distribution, it must
ments in favor of this departure from usual practice. In our terminologye the Nash equilibrium code. Often, the Nash equilibrium code can be
the usual concept s a consistéfit,... -distribution which, in game-the- found in this way, i.e., by first searching for stable codes—Section IV
oretical terms, is the same as an optimal strategy for the system.  contains some illustrative examples of this approach. We stress that
Further concepts are important. First, a seque(Bg),>1 Of the Nash equilibrium code need not be stable and also, it may have an
consistent distributions iasymptotically optimalf H(FP,) — Hmax inconsistent matching distribution.
and, second,P" € Ml(g\) is the maximum-entropy attractor  Generalizing [25, Theorem 2] we obtain the following.
(the Hmax-attractor) if P, — P* for every asymptotically optimal ) . . .
sequencéP, ),>1. Clearly, theH....«-attractor need not exist—con- Theorem 3: LEt__(A? P) be ? n |'nformat|oi1 space a_md_ assume
sider, for example, the model of all deterministic distributions—but Hmt th.e Na*sh eq“"'b““m godg ex's.t.s' I.‘etP be tlje dLstr!butwn
it does, it is unique. IfP* is the H,.x-attractor, therP* is essentially maFchlngn ) 'I_'hen (F_\’ P) is in equilibrium é,nd(“ . P is Fhe
consistent, and? (P*) < Hmax. Therefore, it must be the uniquec’ptlmal matc_hmg pair. FOP. < 77 and k€ K(A), the following
Honaxc-distribution if H(P*) = Hiax. sharper versions of the trivial inequalitidd(P) < Hmax and
S . . . . Rmin < R(x) hold:
Basic information about thél .,/ Rmin-game is contained in the ~

following result which may be derived directly from [24, Theorems
H(P)+ D(P||P") < Hmnax(P) 3)
2In [24] and [25], this game is called tlasolute gamén contrast to certain
relative gamesvhich are of significance also for continuous distributions. Rin(P) + D(P"||r) < R(r). 4
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Proof: As P~
(Pa)n>1 € P such thatD(P,||P*) — 0. Then, by the linking
identity and by lower semi-continuity of the entropy function

R(k™) > limsup{x", P} = limsup(H (P,) + D(P,||P"))

n—oo n—oo

= limsup H(P,) > liminf H(P,) > H(P") = R(x").

n—00 n—oo

It follows that the sequenaéd (P, )).>1 is convergent and that

lim H(P,)= R(x")= H(P").

n—oo

In particular
Ruin < R(x") = H(P") < Huax.

AS Hiax < Rmin always holdsH (P*) = Hpax = Rmin = R(K™).
Thus,P is in equilibrium,( P, ) is asymptotically optimak:* is a min-
imum risk code, and®* a maximum entropy distribution.

If x is any code, then

R(r) > limsup(x, P,) = limsup (H(P,) + D(FPy||r))

n—oo n—00

= Humax + lim sup D( P, ||x)

n—oo

= Runin + limsup D(P,||k) > Ruin + D(P*||k)
where, in the last step, we used the lower semicontinuit 64)
and the fact thaf’, 2 P*, henceP, - P*. Thus, (4) holds and™
is the unique minimum risk code (uniqueness becd&E*||x) = 0
implies thatx is the code adapted t8*).
For@Q € P

H(Q)+ D(QIP") = (v, Q) < R(K") = Huax

thus (3) holds. ThereforeP* is the Humax-attractor as well as
the unique maximum entropy distribution (uniqueness beca

D(Q||P*) = 0implies@ = P*).

2371

is essentially consistent, we may choose We leave the simple proof, based on the linking identity and the pre-

ceding theory, to the interested reader.

For our last theoretical result, we point out that any result which
asserts the existence of tli&,.x-attractor can be viewed as a limit
theorem. In what follows, we further emphasize this aspect (note the
use of ‘co” for “closed convex hull”).

Theorem 5: Let (R, P, ).>1 be a sequence of information spaces
and assume that they are all in equilibrium, say with...-attractors
Pyin > 1.Assumethatup, >, Humax(Pr) < oo and thatthe models
are nested in the sense tha{P,) C co(P2) C ---.

Then all modelsP with

UP.cPcew| P

n>1 n>1

Q)

are in equilibrium and have the sarffg... -attractor,”*. Furthermore,
Py X p and, in case all modelB,, are entropy-continuous, conver-
. . D s
gence even takes place in divergenBg:— P*.
Proof: Puth=sup Hmax(P»). Then, for anyP satisfying (5)

n>1

h < Hinax(P) < Huax(co(P)) < Hyax [ @ | Pa

n>1

Hrnax co U Pn = Hma‘x

n>1

= sup Hmax(co(Pr)) = h
n>1

U co(Py)

n>1

where the first equality follows by lower semicontinuity of the entropy
function. By Theorem 2, we now see thdt,..(P) = L and thatP is
in equilibrium.

Again, letP satisfy (5) and lefP* be theH ....-attractor ofP. We
shall prove tha®; converges td”" in total variation. This will show

Ukfat the attractor is independent®fas long a$ satisfies (5). For each

n > 1, chooseP, € P, suchthatl (P,.) > Humax(P.)— L and such

The proof shows that if the Nash equilibrium code exists ari@iatV (., P7) < %-Then,(Pn)n;1 is asymptotically optimal foP,
(Pn)n>1 is a sequence of consistent distributions, then the conditiohenceP, ZP*in particular,P, L pr. Clearly then,P; Lp.

that (P,),.>1 converges in divergence tB* and that(l),>1 is
asymptotically optimal are equivalent.

In case all theP,, are entropy-continuous, we consider a closed
model P satisfying (5). Ther(P;),.>1 is asymptotically optimal for

The theorem points to a possible approach in the search for the gpand P D p* follows. O
timal matching pair in cases when a search for stable codes does not
lead to the goal. This approach is illustrated by examples in Sections '
and VI.

If (A, 7)) isin equi”brium and en’[ropy-continuous’ any asymptot- We shall Study some of the classical distributions based on in-
ica”y optima| sequence of distributions does of course Convergefmmation-theoretica' considerations. Without being comprehensive
entropy to theH .. -attractor. This points to the information spacedve mention earlier research in this direction: [19], [5], [8], and [2].
which are in equilibrium and entropy-continuous as the most impdrlowever, our approach is also based on games. The findings can
tant ones. Let us collect some facts for this class of spaces. be considered as a companion to the recent correspondence [9] by

) ) o _ Harremoés, where focus was on convexity properties and detailed
_ Theorem 4: Assume that the information spat@, 7) is in equi-  approximations regarding the binomial and Poisson distributions.
librium and denote byx", I’*) the optimal matching pair. Then the\wye shall derive basic properties by as simple considerations as
following conditions are equivalent. possible based on thH ... / Rmin-game. In order to stress the point
i) (A, P) is entropy-continuous. of view taken, we shall, slightly provocatively, redefine the classical
i) (A, P) has aHy.«-distribution (necessarily*). distributions involved. o -

iii) (A, P) has a Nash equilibrium code (necessasily. As an |I_Ius_trat|_ve example,_con3|der f_|rst a finite alphazﬁelnd the

) ) ) ST uniform distributionover A which we define as the maximum entropy
iv) Every gsymptotlcally optimal sequence of distributions coryistripution forP = ML (A). Of course, this makes good sense and

verges in entropy td>”*. leads to the usual uniform distribution (directly or via Theorem 3, say).
The point is that the information-theoretical approach stresses the im-
portance of this distribution as tlzero-knowledge distribution

SOME CLASSICAL MODELS AND ASSOCIATEDDISTRIBUTIONS

v) There exists an asymptotically optimal sequeff®),.>: of
distributions such thdtm,, ... (", P,) = (x", P*).
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The concrete information spaces which we shall study are connectedhen fix n. For each) < = < oo, let P, . be the distribution in
with the alphabets ML (A,.) for which the point probabilities are given by

A, ={0,1,2,....n}, n>1 Py o(k)=P, ,(0)-2%, 0<k<n. (10)
and ) ) ]
The cases = 0 andr = oc are conceived as singular cases with
P, 0 = 6o andP,, o = 6, (point distributions concentrated (hand
We now useE(P) for the mean value of a random variable with disin 7, respectively). .
tribution P. The matching codes,,, . are given by

For0 < A < n, B,.(\) C M{(A,) is the set of distributions of
sums of. independent Bernoulli variables for which the sum has mean
value A. Recall that Bernoulli variables are random variables that can

only assume the two value&andl. Note that we do not require that gnd are, therefore, stable for all modéls(1),0 < A < », indeed that

the Bernoulli variables are identically distributed, only that they ar'(S? how they were determlned_. The mean_vaE(dD,L, ) .varles fromo
independent. or x = 0) ton (for x = oo) with intermediate value /2 (for » = 1).

Further,G,,()\) is the set of allP € M (A,,) with mean value Itis clear thate ~ E(P,,.) is strictly increasing i, a fact that also

\: E(P) = A. Using the natural embedding of the sa# (A,) in follows fr_om continuity of this map and from Theorems 2 and 3
. . . Toagivend < A < n, letr = x,(\) denote that value of with
M{(A"), we putB*(\) = UB»(X) andG"(A) = |JGr(A), the ) . .
unions being over alk > . Clearly, for0 < p < 1 E(P,,.) = A. Then Theorem 3 applies. In particular, the geometric
= ' -0 = distributionGEO(n, \) has been identified as the distributiéh ...

A =1{0,1,2,...}.

Fn,z(k) = —=In Py »(0) — klnw, 0<k<n (11)

Bi(p) = G1(p) = {BIN(1, p)} It may be noted that fob < = < oo, x # 1
BIN(l,_g_a) denoting the Bernoulli distribution with parameter (success E(P,.,) = r (n+1) amt!
1—u 1—antt
probability) p.
By B..(\) we denote the set of distributions M} (A*) of infinite n4+1 1
sums of independeBIN(1, p,, )-distributed random variables with =n- <m 1z L,L,) (12)

> o2, p» = X (by the Borel-Cantelli lemma this makes good sense).
By G- (A) we denote the set of alP € M (A*) with mean valug\. By (11), and ag: =z, (\) <1 for A <n/2, we see that ik <n/2,
We shall use the notatiali (1), whereX could stand fol3,,, B*, Boo,  #n,, is also the Nash equilibrium code for the modg} ([0, \]).
Grn,G", orG and wherd is some subset ¢, o[, forthe unionof If n/2 < X\ < =, an analogous result is obtained for the model
X (M) over) € I.ForinstanceGo ([0, A]) isthe setof € M1 (A*)  G,.([\ n]).
with mean value at most. Our discussion and Theorems 3 and 4 now lead to the following
For the appropriate parameter values, we mefinethe binomial result.
distribution BIN(n, p), the geometric distributionGEO(n, A), the
geometric distributiorlGEO()), and thePoisson distributioPOI())
as the H,..-distribution of B, (np), of G..()), of G*(X) and of
B*()), respectively.
Itis notimmediately clear that these definitions make sense. We s
consider this problem in the next sections.

Theorem 6: For fixedn and0 < A < n, G, () is in equilibrium
and theH ...« -distribution, GEO(n, )), is well defined and character-
ized as the distribution ii#,,(\) determined by (10). Il < n/2,
HRjs distribution is also thelmax-distribution of G, (0, A]) and if
n/2 < A < n, itis the Hmax-distribution of G, ([\, n]).

For0 < X\ < oo, the modelG..(}) is in equilibrium and the
H.x-distribution, GEO()\), is well defined and characterized by (6)
and (8). This distribution is also th#.,..-distribution of any of the
The simplest cases to handle are the geometric distributions sine@delsG . ([0, A]), G*(A), andG™ ([0, A]). The maximum entropy

IV. THE GEOMETRIC DISTRIBUTIONS

for these, the relevant models are convex. value H .« is given by (9).
Consider first the familyP,; 0 < = < 1, of distributions onA* The models considered are entropy-continuous and) far A <
determined by the equation oo, the distributionszEO(n, A) converge in divergence as well as in
& entropy toGEO().

The matching codes, are given by V. THE BINOMIAL AND POISSONDISTRIBUTIONS

In this section, we agree to ug& to denote the distribution ot ,
whetherX is a random variable or a random vector. The key to the
results of this section is a combination of our game-theoretical results
with an inequality due to Hoeffding, cf. [12, Theorem 3]. We begin with
a statement of the inequality we need. For the convenience of the reader,
we also include a brief proof. Note the use ef for “convolution.”

(8) Theorem 7 (Hoeffding’s Inequality)Let P,, P, ..., P, be

distributions inM; (A*) and putP = % 37 P.. Then, in case
Thus, Theorem 3 applies. In particuldr, (with = = «()\))isthe P, P, ..., P, are all supported b§0, 1}, the inequality
Hpax-distribution of G (X) as well as ofG ([0, A]) and

ke(k)=—1uPy(0) — klnx, k>0 @)

and are, therefore, stable for all modéls. (\); 0 < A < oo. Itis easy
to determineP, (0) as well asr = x() explicitly such thatE' (P, ) =
. Not surprisingly, one finds the well-known expressions

1 A

Hulax(Goo()\)):Hn;ax(Goo([O,)\])) <ge P >!<P2>:<--->)<Pn>§ <ge P > (13)

=In(14+ A+ Aln <1+§). 9)

holds for any “integer convex” functiog A* — R, i.e., for any func-
tionk ~ g, suchthalgri+1 < gx + g2 for k € A~
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Proof: Let X;; 1 < k < n be independent’, -distributed By Theorem 7, each of the two averages here is maximized when the

random variables and puf, = T Xi. Putpr = Pi(1), underlying probabilitieg:, ..., p. are equal. Thus, (18), hence also
1 <k < n FixA =73 prand, for awhile, alsgs, ..., p,. Put (16), hold.
20 = XA — 37 pi. Thus, for ane with 2| < «,p1 = a — 2 and Now fix A > 0 and consider the modél*(\). It is convenient also
p2 = o+ 2. PutS’ = Xy + X, andS” = >} X;. Foreachv, one to consider the model
can split the probability”(.S,, = ») into three terms according to the y
value ofS’. This then leads to the following expression fgr Ps,, ): co(B*(\) = | co(Bn(N)).
n>A

n—2
<g, P5n> =cC— ;l¢2 Z (g,, — 29y+1 + gy+2)P(SII = l/) As CO(B*(A)) g G*(A)

v=0 * *
Wlth Hma‘((B ()\)) S H]na‘x(CO(B (A))) < 0.

n—2

= Z((l—a)zgy-l—?oz(l—a)gVH +a’gu42) P(S" = v). _Then Theorem 5 applies. It follows thBIN(, A/n) converges in
divergence to théf ... -attractor ofB* (), for which we again use the

o ) notation”*. In particular, the point probabilities converge. Then, by
By our reasoningg is to be considered as a constant. Therefore, th@s||-known reasoning, we conclude that

convexity assumption shows thég, Ps,. ) is maximal forx = 0,

v=0

k
i.e., forpi = p2. Here,ps, ..., p, were fixed. Repeating the argu- P (k) = L e, > 0.
ment with other values fixed we realize that as long\as >} pi is TR! ’ =
kept fixed,{y, Ps., ) is largest when all the;’s are equal. The result We can now summarize the findings.
follows. O

Theorem 8: The Hy,a.x-distribution for the modelsB,(\) =

First consider the modeB,, (\) for 0 < A < = (the cases\ = 0 B, (np) is the classical binomial distributionBIN(n, p), and the
andX = n are singular, trivial cases). Put= 2 andg = 1 — p and  H...-distribution for the models3*()), Boo(A) andco(Bx(A)) is
let P* be the distribution given by the classical Poisson distributi®tOI()). The models considered are
entropy-continuous and, for eagh> 0, BIN(n, A/n) converges in
total variation, in divergence as well as in entropyPtOI(\).

P (k) = <Z>pkq”k7 0<k<n (14)

For the convergence in entropy we refer the reader to [9, Theorem
8] where property v) of Theorem 4 is verifiéd.

Mateev [21] and Shepp and Olkin [23], proved the following further
result, cf. also Marshall and Olkin [20] and results in the next section.

andx* the matching code

Theorem 9: For fixed n, BIN(n, %) is the unigue maximum-en-
tropy distribution among all binomial distributiod3IN (7, p), 0 <
As is well known and classical* € B, (\). We shall showthat® p < 1.
is the Nash equilibrium code dB,,(A). Then Theorem 3 will apply,
in particular it will follow that P* is the H..«-distribution and in this
way we will have identifiedIN(n, p). It was proved independently by
Mateev [21] and by Shepp and Olkin [23], cf. also Marshall and OlIki
[20], that P* is indeed theH ... -distribution. For a recent treatment,
see [9]. We shall also present a proof, as the availability of Theorem 3Theorem 10: Forn > 2, consider the model of all binomial distri-
gives rise to some simplifications and as the game-theoretical approdationsBIN (n, p); 0 < p < 1. Then
leads to a more informative result.

k" (k)= —1In <Z> —klnp—(n—k)lng, 0<k<n (15)

The model considered here is an example of a naturally occurring
model which does not behave well from our information-theoretical
Roint of view in the sense that the value of the associated game does
not exist.

H,ax = H(BIN(n, 1/2)) < Rumin = In(n + 1).

What we have to prove isthat forapy, ..., p, With>_" | pi=A,
the inequality Proof: LetP denote the modelin question and considgf) =
(5%, PY < (n", P*) (16) co(P). We base the proof on the general equalities

Rmin(p) = Rmin(co(p)) = Hmax(co(p))' (20)
holds whereP = Ps_ with S, = >}, X}, the sum ofn inde- _ _ _ o ) )
pendenBIN (1, p,)-distributed random variables. It is convenient tol he first equality follows directly from the definitions of risk and min-
reformulate this by introducing the random variaile = n — S.,, imum risk, and the second equality is part of Theorem 2. The fact that
the number of “failures.” ByP we denote the distribution of the vector Hmax(co(P)) = In(n + 1) follows as the uniform distribution over
(S,, Tn) wherePs,, = P and similarly forP* (whenPs, = P*). {0, 1, 2, ..., n} belongstao(P). Indeed, this distribution is the uni-
By x* we denote the code adaptedRd, i.e., form mixture overr € [0, 1] of the binomial distribution8IN(n, =),

adirect consequence of the classical formula for the beta function since,
K" (K1, k) =—lnnl+Ink!+Ink! —kilnp — kolng (17) by that formula

1 -
where0 < k; < n andk; + k; = n. Then (16) is equivalent to the / 1 — ) e = [ Tk+1DI(n—-k+1)
inequality o \k / k T(n+2)

(x*. P) < (x", P"). (18) which equals_ forall 0 < k < n. O

) 3In fact, a simple proof—which, however, relies on more theory—amounts
We find that to a check that the Poisson distribution is not “hyperbolic,” cf. Harremoés and
Topsge [10, Theorem 8.4]. Intuitively, the requirement is that the tails must not

(", Py = —Inn!—nH(p, ¢)+{nk!, Ps )+ {lnk!, Pr, ). (19) be too large.
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VI. MULTINOMIAL DISTRIBUTIONS, EMPIRICAL DISTRIBUTIONS Xy, ..., X,, all with distribution. The qualifying “max” signals
The basis of considerations in the previous section was Bernoﬁnftetglzrin}ﬂg;aég'tsritlg'l?ﬁgr?;,hcisrrrgsxc'::g:nentgofnydim::geiltl rgﬁgi;]
variables. They only assume two values corresponding to “success” &né pIric " P 9 P . .
e n . - ... variables subject to the condition that the average of the associated dis-
failure.” Now let us consider a more general situation but still withi

. . . . ibutions coincide with(). This is the content of Theorem 11.
iscr r ility theory. With I f generality, we m h%ﬁ' .
discrete probability theory. Without loss of generality, we may the In [23, Theorem 3], a concavity result was proved for the entropy

confine the study to random variables taking values in the natural nun}- ; e - :
of multinomial distributions. In what follows, we generalize this result

bersN = {1, 2, ...} (representing the various levels of “success”). . T
Denote by(2" the set of infinite vectoré = (k1, k2, ...) with the tq one concerning thé[,mx-dlstnputlons of the_ ’T‘Ode'@("f Q) for
distributions which are not required to have finite support. The com-

integersk; all nonnegative an§_;° k; = n, and denote bf?* the set - ) .
of similar vectors but with theglc:;oser requirem&Af° k; < oc. Then putations needed for the proof are the same as those given in [23] and
' ’ are, therefore, only briefly indicated.

2" is countable and decomposed into the §¥tsQ', .. ..
We now fixn € NandQ € Mi(N). We also agree that if  Theorem 12:For alln > 1, the mapQ) ~ Hmax(n, Q) is strictly

Py, ..., P, are distributions in\/{ (N), thenP denotes the average concave, in fact, for any infinite convex combinatiBi¥ ,, Q,, of mea-
T2 D sures inM! (N)

Consider the modeP = P(n, Q) constructed as follows. For each . oo
finite set?, ..., P, in M (N)with P = @ we consider independent Hoox <n’ Z %Qy> > Z oy Hunax (0, Q) (23)
random variables(y, ..., X, such thatX, has distribution?,; 1 < = T = '

v < n and then we consider the random vedar= (S.1, Sx2, ...)

) 2 and, if the right-hand side is finite, the inequality is strict unlesg)all
where S,.; denotes the number df < v < n with X, = i;7 =

with «, > 0 are identical.

1, 2, .... By definition, th_e m_odel?J consists of_ all distributions_ of Proof: By Theorem 11 and its proof
random vectorsS,, that arise in this way. A typical element & is -
denotedP, i.e., P = Ps . SinceP € P depends o, ..., P, Hyne(n, Q) = —Inn! + Z Fulas) (24)

(with P = Q), we may writeP = P(Py, ..., P.,).

i=1
Theorem 11:If H((Q)) < oo, thenP(n, Q) is in equilibrium and with the functionsf,.: [0, 1] — R4 defined by
entropy-continuous. The maximum entropy distribution is "
n n—k
Py=P@Q..... Q). falg) = —nglng+ 3 Ikl (A-,)"k(l -0 @9
k=0
Proof: Letk, be the code adapted f& and letg;, i > 1 bethe A straightforward calculation shows that
point probabilities for). ThenP,, is given by

n—2
oo k. " _n n—2 k An—k—2 k+2
g w(g)=——4+n(n-1 1- In
Po(ki. k. ..) =t [T 45 @ IO=T );< k )‘1( 9 k1
i=1

and upper-bounding the logarithmic term p{; gives the inequality
W(g) <=5 (1- ¢)" ', hence each functiof, is strictly concave
and the result follows by (24). O

for all (k1, k2, ...) € Q" and for these vectors

Ko(k1, ko2, ...) = —Inn! — Z kilng: + Z In k;!. (22)
i=1 i=1 Forn = 1, Theorem 12 reduces to the usual concavity property of

In order to establish the theorem, we shall prove tkat is the entropy function.

the Nash equilibrium code, i.e., for anP = Ps, € P with Finally, let us consider the modgl(», Q) in caseq) has finite sup-
S, = (Sp1. Sna. ...) we shall prove thatk,, P) is maximal for Port. Then thef.....-distribution, identified in Theorem 11 as the em-
P =-..=P,=0Q.By(22) pirical distributionP(Q, ..., Q) is nothing but the multinomial distri-

- - bution determined by), denoted bMULT (n, @), say. We may now

(Ko, P) =—1Inn! — Z ng: Ingi + Z E(In S,.;!) combine the concavity off ...« (n, -) established in Theorem 12 and
i = = the obvious symmetry of this function with Theorem 11. In this way,
- we obtain the following result, generalizing parts of Theorems 8 and 9.
=—Inn!+nH(Q)+ ZE(IH Snil). Theorem 13:Letr > 2 andn > 2 be natural numbers. Among
= all generalized empirical distributions corresponding to independent
From the investigation in Section V, we realize that the individual e¥andom variablests, ..., X, with values in{1, ..., r}, the multi-
pectationst(In S»;!) are upper-bounded by the corresponding expegomial distributiolMULT(n, () with () the uniform distribution on
tations when allth-point probabilities of?, ..., P, are equal. Thus, {1..... r} has maximal entropy.
— ny g n—k For the case when only multinomial distributions are considered in
,P) < —Inn!+nH(C In k! J(1—q . :
(Ko, P) < —Inn!+nH(Q)+ ; ; t <L> @i ( @) the model, this result was proved, again both by Mateev and by Shepp
- ) and Olkin.
. n k n—k
=—Inn! H In k! (1 —q;
mot 4 nH Q)+ ; " <k> ; @ (1= a) VII. DISCUSSION
=H(Py). A. Theory

As we also find tha (Py) < oo, the proof is complete. O This correspondence and previous research demonstrates that the

Hmax / Rmin-game is useful when setting up natural models reflecting
Let us agree thall ... (n, (J) denotes the maximum entropy valueour knowledge in a given situation. Typically, the kind of results one

of the modelP(n, Q). Then Hnax(n, Q) is the entropy of the em- can expect from this approach are twofold: Identification of interesting

pirical distribution corresponding te independent random variablesdistributions and associated limit theorems, possibly accompanied by
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certain inequalities, facilitated by, e.g., (3) and (4). Future extensiofs,.x-attractor exists. If we weaken the condition and assume only
may involve extra structure, say in the form of Markov kernels, sidbat
information, or symmetry.

Theorem 3, which was overlooked in [25], is a key result. Note that
the proof given does not depend on previous results. Therefore, té;

tlin}L Huax(co(Py)) < R (26)

is . “ . .
. . . ' 1he existence of a “weakH .. -attractorP* follows, one for which
correspondence is largely self-contained. Previous research consis ofy P* for every asymptotically optimal sequenc&.) A
the author’s papers [24] and [25], and then, we point to [17] and, fof* . Y asymp y optim quente, Jn>1 .
) : rengthening of this result to one asserting the existence of the usual
games covering also the continuous case, [11]. In [10], further results,

" ) D s )
actually developed after the first submission of the present manuscriptroN9” Humax-attractor (one with?’, = ) is not possible, even for
can be found. a finite alphabet, as simple examples will show. For firflte(26) is

. . _ o also necessary for the existence of a wé&k.-attractor.
Regarding the controversial definition of &h,...-distribution, re- y ‘
quiring besides maximal entropy only essential consistency, note t@@tApplications
it follows from Theorem 5 (withP,,’s independent of:) that it does

not really matter if, to a given model, you add the essentially consistent! '€ tyPe of problems treated in Section IV are well known, even
distributions or even all distributions in the closure of the model. And fassical- This also concerns more general models defined by moment
ggpnditions. From the reference list we may quote [14], [15], [13], [24],

you do that, the normally accepted definition is of course all you need. - -
On the other hand, it is awkward only to work with models which argd [25]. but there are many other sources from physics, chemistry,
istics (exponential families), and information theory. Reference

closed. Indeed, the most frequently studied models are those givenS . ] . X
moment constraints and, typically, these models are not closed. [16] contains a comprehensive bibliography. The game-theoretical

A fundamental phenomenon s the possibity that the equaifPSIER (REHER 8 T8 BEERTL | PEEE TE RE e
H(P*) = Hmax may not hold for any consistent or essentially

consistent distribution. As examples show, cf. [13], [24] or, for a mor%n opﬁlznlzatlobr: V|adthe_|n_troduct|on cl)f_ Lahgrange multipliers). The
conclusive study, [10], this situation may occur. search for stable codes Is |nstrymenta In this respect. .
) ; ; ) Regarding Section V, we again stress the game-theoretical treatment.
This also explains the importance of thgn.x-attractor as it does o a more direct approach, see [9] where one also finds detailed ap-
allow for a discontinuity or loss of entropyf (P*) < Hmax) and  proximations relating binomial distributions to the limiting Poisson dis-
yet, if a maximum-entropy distribution exists, this is the one to searghition.
for. Originall;l/,.the notion ofH .« -attractor W?Ls defined differeptly, We also want to emphasize the conjecture, going back to [23],that
cf. [24], requiring only normal convergence (i.e., convergence in tot@kph ..., pn) IS CONCAVE iN(p1, ..., pn), Whereh(ps, ..., pn) de-
variation) rather than convergence in divergence for asymptotically gfstes the entropy of the Bernoulli sum of independent Bernoulli vari-
timal sequences. But as the stronger convergence property does, in {49fbs with success probabilities, respectively, . .. . p... For partial
hold for the main category of models—those in eqqlllbnum—and #8sults in this direction, see [23] and [9].
convergence in divergence appears to be the right kind of convergencg, section VI, we generalized one of Mateev and Shepp and Olkin’s
.to.v.vork with for |.nforr.nat|on-theoret|cal investigations, the chosen defagyits to a vector-valued setting. We now consider the possibility of
inition appears justified. a generalization in another direction. Letandn with 0 < X\ < n
If we turn our attention to differential entropy and the associatesk given and pup = 2. ThenBIN(n, p) is the Hn.x-distribution
maximum-entropy principle, the same phenomenon of loss of entroglythe modelB,, (). This result, due to Mateev (somewhat put away
may take place. The reader is referred to [7] for an illuminating discuigrthe proof of [21, Corollary 2]) and to Shepp and Olkin [23], was an
sion. important part of Theorem 8. Itis equivalent to the following inequality
Further comments on continuity considerations concern Theorem(®ijth notation as in Theorem 7):
In the case of entropy-continuous modéls, we cannot in general —n . .
assert that the limit modé? is also entropy-continuous, thug; may a (P ) 2 H(Prs Py o) 27
not converge in entropy t8”. An example to illustrate this point can bevalid for distributionsP;, P», ..., P, which are all supported by
extracted from [24, Theorem 21, case (d)] (start with the limit mod€D, 1}. To realize the stated equivalence, simply note thaPathre of
and consider approximating models by restricting the support of ttiee formP;, = BIN(1, p), thatP = BIN(1, p) withp = £ 37 ps,
distributions to larger and larger finite sets). Another comment is thaid recall that the distribution of a sum of independent random vari-
probablyP, Z P does not hold generally in Theorem 5. However, thables is the convolution of the corresponding individual distributions.
author is not aware of an example to illustrate this. It is natural to inquire if the above inequality holds under less strin-
One may consider the concept Hf..... -attractor as a key object of gent conditions on the support of the distributidfis Though inter-
study, quite independently of the game-theoretical setting. In this cd¥ting results in this direction may hold, it seems that (27) is a very
nection, we emphasize that existence of fhe.-attractor can be es- SPecial and perhaps in some sense unique instance of such results.
tablished in a number of cases not covered by Theorem 2. Simple &8s is illustrated by the simple example for whigh= 2 and I, =
amples with a finite alphabet point to this (consider, for example, the: 3+ 3- ---)» P2 = (3, 0. 3, ...) (in terms of the point probabili-
model consisting only of the two distributions with point masdes)) ~ ties associated with the elementsAn = {0, 1, 2, ...}). One finds

and(Z. 2), respectively). that
In order to state more general existence results forHhg-at- PP = 11211
tractor, we introduce the notation L 66666
and
[ — 25 20 54 20 25
h:Hlnax’ -t = P ’HP i, t h P P: . S T T Ty e
(P) and Pe={PePHP) >t fort< ¥ <144’ 1447 144 144" 144 )
hence

It follows from Theorem 2 that if there exists < / such that 9 3
Hoax(co (Pr)) < h (in which case equality must hold), then the H(PyxPy) = 3102 +1n3 ~ 1.5607
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Jarshoe who wrote an informal report, based on the technical report
from 1978 which preceded the publication of [23].

The essential importance of Hoeffding's inequality for a key argu-
ment in Section V was discussed with Paul Ressel who also drew the

authors attention to the papers [3], [6], and [22]. The discussion of (27)
A and of Hoeffding’s inequality owes much to the exchange of ideas with
Paul Ressel.
After presentations of the material in October 2001 in Warsaw and in
Budapest, discussions with Imre Csiszér led to several improvements,

c
¢ P,
PO D 2
[1]
Fig. 2. lllustration of models witl = {0, 1, 2}.
[2]
and (3]
-~ .
HP+P)= 2L g Tma— Bns 15241,
) { 8 36 [4]
Therefore, (27) does not hold in this case. 5

As we have seen, Hoeffding's inequality, Theorem 7, may be [
considered to lie behind (27). It is noteworthy that whereas (27) [6]
itself appears difficult to generalize, far-reaching generalizations of
Hoeffding’s inequality (weakening the requirement on the support of 7
the P,,’s and generalizing the whole setting to one based on abstrac{
semigroup theory) have appeared, cf. [3], [6] and [22]. How, or if, [8]
these results can be exploited in information-theoretical studies is
unclear. o

Shepp and Olkin’s paper [23] contains a reference to Hoeffding's in-
equality. Really, the reference is only one of analogy. Shepp and OIKipLoj
do not make any use of the inequality, only note its qualitative simi-
larity with problems and results they are led to consider. In this context
it is interesting that with the present approach, Hoeffding's inequalit)flll
is thecentral tool needed for the discussion of models defined in termg; 2]
of Bernoulli sums.

As noted several times, the results concerning binomial and multi3]
nomial distributions owes much to Mateev and to Shepp and Olkin 14]
The results, as far as they involve maximum-entropy considerationé,
are quite natural and were perhaps considered by several mathematis]
cians before they were settled. Both Mateev and Shepp and Olkin refer
to sources of inspiration from others—M. B. Malyutov, B. Lindstrom
[18], and A. D. Wyner. [16]

Finally, we shall illustrate some of the findings regarding the bino-[17]
mial and geometric distributions by looking at the case= 2. The
simplex M1 (A,) together with various models are shown in Fig. 2.
The pointsFy,, P, and P, represent the deterministic distributions [18]
concentrated i, 1, and2, respectively. The lined BC'D represents
the modelGz(\) for someX < 1, whereasd B represents the model
B, (\). Note that for higher values of, B,(\) is not convex (but
still connected). The point8 andC represent thél,...-distributions
of B2(\) and G2(\), respectively. The curvés BE P, represents [20]
the model of all binomial distributionBIN(2, p); 0 < p < 1, and [21]
FE the associated maximum entropy distribution. Similarly, the curve
P,CU P, is the model of geometric distributions afd the uniform  [22]
distribution, the corresponding maximum-entropy distribution.

[19]

(23]
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