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ABSTRACT
Association rules have received a lot of attention in the data
mining community since their introduction. The classical
approach to find rules whose items enjoy high support (ap-
pear in a lot of the transactions in the data set) is, however,
filled with shortcomings. It has been shown that support
can be misleading as an indicator of how interesting the rule
is. Alternative measures, such as lift, have been proposed.
More recently, a paper by DuMouchel et al. proposed the
use of all-two-factor loglinear models to discover sets of items
that cannot be explained by pairwise associations between
the items involved. This approach, however, has its limita-
tions, since it stops short of considering higher order interac-
tions (other than pairwise) among the items. In this paper,
we propose a method that examines the parameters of the
fitted loglinear models to find all the significant association
patterns among the items. Since fitting loglinear models for
large data sets can be computationally prohibitive, we apply
graph-theoretical results to divide the original set of items
into components (sets of items) that are statistically inde-
pendent from each other. We then apply loglinear modeling
to each of the components and find the interesting associa-
tions among items in them. The technique is experimentally
evaluated with a real data set (insurance data) and a series
of synthetic data sets. The results show that the technique is
effective in finding interesting associations among the items
involved.
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1. INTRODUCTION
Since their introduction in [1], association rules have re-

ceived a lot of attention in the data mining community, hav-
ing been used in multiple applications. Association rules are
defined by the support of the set of items (itemset) that are
involved in the rule (number of transactions in the database
that contain the items), and their confidence (number of
times that the right hand side appears in records where the
left hand side itemset appears). Algorithms to discover as-
sociation rules usually prune the choices by considering only
itemsets whose support exceeds a threshold. A key property,
called Apriori, states that for an itemset to exhibit high sup-
port, all its subsets must have high support. This has given
way to a popular algorithm (Apriori [2]) that searches for
high support itemsets incrementally, beginning from item-
sets of size 1, and considering candidates for high support
whose size is one unit higher than those considered in the
previous iteration. Other efficient algorithms have been in-
vestigated ([14]).

In spite of the success of association rules, there are in-
herent problems with the concept of finding rules based on
their support and confidence. In [19], Silverstein et. al show
the pitfalls of using support as the guide for pruning rules.
It shows that ”interest” (or lift), the ratio between the ac-
tual probability of the itemset divided by the product of
the individual probabilities of each item, is a better guide.
Obviously, the denominator in the interest is simply the esti-
mated probability using independence. So, this ratio simply
compares the actual support with the estimation that results
from assuming independence among the items. Contrary to
rules based exclusively on support, those that are found by
using lift show that there exists some correlation between
the itemset on the right hand side of the rule and the one
on the left hand side (as long as the lift value is greater than
1). As the authors of [19] show, rules of the type X− > Y ,
that have high support for the itemset XY , may be mis-
leading in the sense that the itemset Y overall support may
be higher when considered by itself than when considering
only transactions that also contain the itemset X.

In [12], DuMouchel and Pregibon go further in showing
the limitations of support-based algorithms. Assume you
have a three item set ABC with strong support and lift.
You really do not know if these are the consequence of a
strong show of the triplet ABC or because a combination
of two attributes is the strong one (e.g., AB or AC) – They
present a meaningful example using two drugs (AB) and
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kidney failure (C): given that you find association between
the three is it due to the combined effect of the two drugs
(ABC)? Or is it simply the effect of one (AC)? The authors
propose to select the multi-item associations that can not
be explained by the pairwise associations in the item set by
using the standard statistical theory of log-linear models.

However, DuMouchel and Pregibon stop short of fully an-
alyzing the interestingness of multi-item associations. The
interpretation of “interesting” large item sets can be confus-
ing since it is often unclear whether the item set is interest-
ing because it contains all the items, or if it is interesting
because it consists of interesting subsets of items.

In this paper, we will analyze and interpret the associ-
ations among items by using loglinear modeling. Loglinear
models describe association patterns among categorical vari-
ables. With the loglinear approach, we model cell counts in
a contingency table in terms of associations among the vari-
ables. There are several problems that need to be addressed
in order to apply loglinear models to market basket data.
First, loglinear modeling is usually applied to domains with
low or medium dimensionality (< 20). In a typical mar-
ket basket application, the number of dimensions may be
much larger than that. The number of transactions may be
very large as well [19], as opposed to the typical data sets
for which loglinear modeling is applied. Also, with loglinear
models, we need to have at least 5 times the number of cases
as cells in our data, a requirement that is not commonly
met by market basket data (as the contingency table is very
sparse). Lastly, the complexity of algorithms for comput-
ing the maximum likelihood estimates (MLE) in loglinear
models is exponential in the dimension of the table thus
computationally expensive for large tables. Hence build-
ing loglinear models directly over all items is prohibitive.
Fortunately for us, not all combinations of items exhibit as-
sociations: some itemsets may be independent from other
itemsets. We apply graph-theoretical results to divide the
problem into smaller components of items and fit each com-
ponent using a loglinear model.

Our work is different from DuMouchel’s work [12] in the
following aspects. First, we aim to get only one optimal log-
linear model to describe all the possible associations among
the items in the component instead of building many all-
two-factor models. For example, in the component com-
posed by five variables (item ABCDE), they need to build
15 all-two-factor models, one for each multi-item set (i.e,
ABC, ABD, · · · , ABCD, · · · , ABCDE) and compare with
shrinkage estimates. Second, we interpret the associations
among the items by using standardized parameters of fit-
ted loglinear model instead of the EXCESS2 measure used
in [12] 1. The large EXCESS2 value indicates complex re-
lationships involving more than pairwise association among
the items of the item set. However, from EXCESS2 we can
not always infer what causes the support of the itemset to
be a large value. For example, if we know that the EX-
CESS2 measure for ABCD is large, is it due to ABC,ABD
or ABCD? By analyzing the parameters of the fitted log-
linear model, we can interpret the interestingness of asso-

1EXCESS2 = Λ × e − eAll2F denotes an estimate of the
number of transactions containing the item set over and
above those that can be explained by the pairwise associa-
tions of the items in the item set, Λ×e is shrinkage estimates
which is a substitute of raw data, eAll2F is predicted count
of all-two-factor model based on all two-way distribution.

ciations among items. The γ-term included in the fitted
loglinear model (γABC , γABCD etc.) precisely describes the
interactions of items. Third, by analyzing residuals, we can
automatically pick out the multi-item associations that can
not be explained by all the (not just pairwise) associations
included in our fitted loglinear model in the item set. As our
model fits better than the assumed all-two-factor model, the
number of residuals generated by our method is far less than
that generated by all-two-factor model.

The rest of the paper is organized as follows. In Section
2 we review the loglinear model. Section 3 presents our
method. Experimental results are discussed in Section 4. In
Section 5 we draw conclusions and describe directions for
future work.

2. LOGLINEAR MODELS REVISITED
Loglinear modeling is a methodology for approximating

discrete multidimensional probability distributions. The multi-
way table of joint probabilities is approximated by a product
of lower-order tables. In the database area, loglinear mod-
eling techniques have been successfully applied to high di-
mensional data compression [5, 6], histogram synopses [11],
query approximation [17], and exploratory data cube anal-
ysis [18]. Here we should note that loglinear models use
only categorical attributes and continuous attributes must
be converted to discrete values first.

For a value yi1i2···in at position ir of the rth dimension dr

(1 ≤ r ≤ n), we define the log of anticipated value ŷi1i2···in
as a linear additive function of contributions from various
higher level group-bys as:

l̂i1i2···in = log ŷi1i2···in =
X

G⊆{d1,d2,··· ,dn}
γG
(ir|dr∈G) (1)

We will refer to the γ terms as the coefficients of the
model. The coefficients corresponding to any group-by G are
obtained by subtracting from the average l value at group-by
G all the coefficients from higher level group-by-s.

For instance, in a 4-dimensional table with dimensions
A, B,C, D, we use (i, j, k, l, yijkl) to denote the cell in a 4-D
cube space, where i = 0, · · · , I − 1,j = 0, · · · , J − 1,k =
0, · · · , K − 1,l = 0, · · · , L − 1. Equation 2 shows the satu-
rated loglinear model which contains all the possible k-factor
effects, all the possible k − 1-factor effects, and so on up to
the 1-factor effects and the mean γ. For example, γA

i is
one-factor effect, γAB

ij is two-factor effect which shows the
dependency within the distributions of the associated at-
tributes A,B. The singly-subscripted terms are analogous
to main effects, and the doubly-subscripted terms are anal-
ogous to two-factor interactions.

log ŷijkl = γ + γA
i + γB

j + γC
k + γD

l

+ γAB
ij + γAC

ik + γAD
il + γBC

jk + γBD
jl + γCD

kl

+ γABC
ijk + γABD

ijl + γACD
ikl + γBCD

jkl

+ γABCD
ijkl (2)

Equation 3 shows the linear constraints among coefficients,
where a dot “.” means that the parameter has been summed
over the index (For example, γAB

i. =
PJ−1

j=0 γAB
ij ). In short,

the constraints specify that the loglinear parameters sum to
0 over all indices.

277



γA
. = γB

. = γC
. = γD

. = 0

γAB
i. = γAB

.j = γAC
i. = γAC

.k = · · · = γCD
.l = 0

· · ·
γABCD

ijk. = γABCD
ij.l = γABCD

i.kl = γABCD
.jkl = 0 (3)

Equation 4 shows how to compute the coefficients in a
4-dimensional table.

γ = l....

γA
i = li... − γ

· · ·
γAB

ij = lij.. − γA
i − γB

j − γ

γABC
ijk = lijk. − γAB

ij − γAC
ik − γBC

jk − γA
i − γB

j − γC
k − γ

· · ·
(4)

In [18] a fast computation technique called the UpDown
method that makes this approach feasible for large sets is
described. In the Up-phase, all the l parameters shown be-
fore are computed. For each group-by in Equation 4, the
corresponding l value from the parameters in the previous
group-by-s is computed. For example, in order to compute
lij.., we could use the values of lijk., aggregating for all k.
(In general, there is more than one way of computing the
parameters, since there is a lattice of group-by aggregations;
A benefit analysis approach like the one in [15] can be used
to select the best choice.) We need to start from the most
detailed group-by: in general this is the one defined by the
raw data.

In the Down-phase, for each group-by starting from the
least detailed (for instance, l.... in Equation 4), we can com-
pute the corresponding effect (i.e., γ) at G by subtracting
from the corresponding l value the parameters from all the
group-by-s H where H ⊂ G. (For instance, to compute γAB

ij ,

we need to subtract from lij.. the values of γA
i , γB

j and γ.)
It is obvious that a large number of models can be used to

fit a given data set. For an k-dimensional loglinear model,

there are a total 22k

possible models (determined by which
parameters of the saturated model are set to zero). There
are several possible strategies of model selection (see [8] for
more discussion). One approach consists of fitting the model
having only single-factor terms, then the model having only
single-factor and two-factor terms, then the model having
only three-factor and lower order terms, and so forth. Fit-
ting such models often reveals a restricted range of good-
fitting models. In our earlier work [6], we apply this strategy
to compress data cubes where the objective is to achieve a
good compression ratio instead of interpreting the associa-
tions.

Brown et. al., in [9, 7], suggested model fitting by using
two tests to screen the importance of each possible term. In
one test the term is the most complex parameter in a simple
model, whereas in the other test all parameters of its level
of complexity are included. This strategy works well when
our main objective is to test whether a particular interaction
is present or significant. However, this strategy involves a
large computational cost to build loglinear model as it needs
to evaluate the importance of all possible terms.

3. OUR METHOD
In this section we describe in detail how we screen and

interpret associations by means of building loglinear models
and examining their parameters and residuals using market
basket data. For market basket data, we define each trans-
action, such as list of items purchased, as a subset of all
possible items.

Definition 1. Let I1, · · · , Ik be a set of k boolean vari-
ables called attributes. Then a set of baskets B = {b1, · · · , bn}
is a collection of n k-tuples from {TRUE,FALSE}k which
represent a collection of value assignments to the k attributes.

Our method involves decomposing the initial set of items
into groups that are mutually independent, building loglin-
ear models for these components, interpreting associations
and examining residuals. The method can be sketched as
follows:

• Step 1. Decompose k items into m groups S = {S1, · · · ,
Sm}, where ‖Si‖ = ki. (Section 3.3.)

• Step 2. Transform market basket data into m contin-
gency tables with dimension size ki respectively.

• Step 3. For each contingency table,

– Step 3.1. Apply the UpDown method to compute
the parameters of saturated model over each de-
rived 2ki contingency table.

– Step 3.2. Order and partition the parameters into
bins according to their magnitude. Fit and com-
pare two models iteratively by including in the
first model those parameters from the first j bins
and in the second model those parameters from
the first j + 1 bins. If the second model fits well
while the first one does not, go to Step 3.3. Oth-
erwise, increase j by one and repeat Step 3.2.

– Step 3.3. Examine iteratively each interaction
from the j + 1-th bin by comparing the current
model with the new model including one new pa-
rameter. The likelihood estimation is used to test
the significance of each interaction.

– Step 3.4. Examine the parameters of the fitted
model to derive the interestingness patterns of as-
sociations.

– Step 3.5. Examine residuals computed from the
fitted model.

As we stated in the introduction, to effectively process a
data set with large number of items, we need to decompose
the items into components and build a loglinear model for
each component separately. All the significant interactions
of a loglinear model built over the original data set must
remain unchanged in the loglinear models built over compo-
nents. In other words, the MLEs for each parameter of the
original model should equal to the MLEs of models for com-
ponents. We apply graph-theoretical results to decompose
the items into components while keeping the MLEs of pa-
rameters unchanged. We leave the discussion of this part in
Section 3.3 and assume the number of dimensions is low or
medium (i.e., k < 20) in Sections 3.1 and 3.2. In Section 3.1
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Table 1: COIL 2000 data set with four dimensions
denoted by A,B, C, D respectively

B True B False
A True A False A True A False

D True C True 457 1162 175 526
C False 156 48 12 0

D False C True 944 851 89 307
C False 901 187 6 1

ALL

A B C D

ACD

AB AC AD BC BD CD

ABC ABD BCD
(

ABCD

(4.560)

(0.284) (1.407) (1.493) (−0.144)

(−0.044) (0.681) (−0.006) (−0.765) (−0.296) (0.245)

(0.233) (−0.185) (−0.118) −0.093)

(0.038)

Figure 1: Lattice for the data set with four dimen-
sions denoted by A, B, C, D respectively. The value in
() denotes the value of γ-term of saturated loglinear
model

we focus on how to fit loglinear model for each component.
In Section 3.2 we present how to interpret the interesting
patterns of associations and how to screen interesting item-
sets by examining the parameters and residuals of the fitted
loglinear model.

3.1 Loglinear Model Fitting
The first step of loglinear model fitting is to compute the

parameters of the saturated model by applying the UpDown
method(Step 3.1).

We present our strategy by using one example. Table 1
shows a contingency table with four attributes. This table
is derived from COIL real data set [10]. The original data
set contains 86 attributes and we present our experiment
with full 86 attributes in Section 4.1. Table 2 shows the
meaning of the four attributes (A,B,C,D) and the other six
attributes (E-J). These ten attributes are the most signifi-
cant attributes after applying univariate analysis [22]. We
use these ten attributes to illustrate our method (including
decomposition and loglinear model fitting).

Figure 1 shows the parameter values from the saturated
model computed by using the UpDown method. Each of
the γ-term in the saturated loglinear model describes the

interaction of item variables. For example, γAB represents
the interaction between item A and B. Notice that in market
basket data, each item variable can only have two categories:
presence, absence. Hence, each of the γ-term has only one
absolute value due to linear constraints of coefficients (See
Equation 3) and the positive (negative) value implies posi-
tive (negative) associations. For example, γAB = −0.044 in
Figure 1 implies γAB

00 = −0.044, γAB
01 = 0.044, γAB

10 = 0.044,
and γAB

11 = −0.044. It can be interpreted that the presence
(absence) of A implies the absence (presence) of B with in-
teraction effect 0.044. Note in general contingency table
cases, the γ-term for a particular interaction (i.e., γAB) has
more than one absolute value due to variables with more
than two categories.

Furthermore, we can compare the interactions according
to their magnitude of γ-terms derived from the saturated
models in market basket case. For example, the compari-
son of γAC (0.681) and γCD (0.245) implies the interaction
of AC is more significant than that of CD. It is important
to point out that, in general, we cannot compare the mag-
nitude of γ-terms directly. This is due to several reasons.
First, the degree of freedom (d.f.) for each particular inter-
action varies (however, in market basket data, the d.f. for
each particular interaction is always 1). Secondly, the vari-
ance for each interaction varies (however, in market basket
data, the variances for all γ-terms equal to the same value
-see Appendix A for proof details). The values γAC

00 = 0.681
and γCD

00 = 0.245 do not necessarily imply that the interac-
tion of AC is greater than that of CD, since the variances of
γAC
00 , γCD

00 can be different. So in the general case, we have
to compute the standardized parameter value (γ/σ(γ)) for
each γ-term in order to compare the significance of each in-
teraction. The cost to standardize each γ-term is very high.
Thirdly, in general, there can be more than one absolute
value for each γ-term and we have to combine the estimates
in some way to form an overall test statistic (This is usually
hard and subjective [13]). However, for market basket data,
we do not need to do this since each γ term exactly has one
absolute value.

Our modeling strategy consists in ordering the γ-terms
based on their magnitude and including those γ-terms ex-
ceeding some threshold (we can do this since the γ-terms
are comparable). The idea of fitting the saturated model
and noting which estimates of association and interaction
parameters are large compared to their estimated standard
errors was first proposed by Goodman, in [13]. However, it
is not widely used because the high computational cost of
standardizing parameters. For market basket data, this idea
is very attractive as we can drastically decrease the cost of
modeling without computing the variance of each γ-term.

To determine which interactions should be included in the
fitted model, we need a threshold. However, there is no good
way to determine the threshold for a given data set. It is
unknown what the distribution of all γ-terms estimates is,
although each γ-term estimate follows an approximate nor-
mal distribution with mean γ and variance σ(γ) [3]. We
apply a heuristic strategy here. We order γ-terms according
to their magnitude and divide them into bins (equi-width).
We first include in the starting model those terms in the
first bin. When that model fits well, it may be possible
to simplify it and remove some terms with small absolute
values. When it does not fit well, we need to include ad-
ditional parameters in the second bin. In other words, we
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Table 2: COIL significant attributes used in example. The column “Mapping” shows how to map each
original variable to binary variable.

attribute i−th attribute Name Description Mapping
A 18 MOPLLAAG Lower level education > 4 → 1
B 37 MINKM30 Income < 30K > 4 → 1
C 42 MINKGEM Average income > 4 → 1
D 43 MKOOPKLA Purchasing power class > 3 → 1
E 44 PWAPART Contribution private third party insurance > 0 → 1
F 47 PPERSAUT Contribution car policies > 0 → 1
G 59 PBRAND Contribution fire policies > 0 → 1
H 65 AWAPART Number of private third party insurance > 0 → 1
I 68 APERSAUT Number of car policies > 0 → 1
J 86 CARAVAN Number of mobile home policies > 0 → 1

keep comparing models built with parameters up to the j-th
and j + 1-th bin until the latter fits well. During step 3.3,
we apply the likelihood ratio L2 (see equation 5) to assess
the importance of terms in j +1-th bin. The likelihood ratio
is minimized and follows a chi-square distribution with the
d.f. equal to the number of γ-terms set equal to zero. For a
given d.f., larger L2 values give smaller right-tail probabil-
ities (P-values), and represent poor fits. Equation 6 shows
how the L2 statistics is used for comparison of two models.
The d.f. is calculated by subtracting the d.f. of model2 from
the d.f. of model1. In this step, the difference of d.f. is al-
ways 1 as the two models we compared are same except the
tested γ-term.

L2 = 2
X

yiLog(yi/ŷi) (5)

L2
comparison = L2

model1 − L2
model2

= 2
X

yiLog(ŷmodel2
i /ŷmodel1

i ) (6)

3.2 Interpreting and Screening Associations
As we stated in the introduction, we are departing from

the majority of published approaches to the market basket
problem by going beyond the examination of frequent item-
sets. The idea of using measures other than itemset fre-
quency has been explored a few times. For example, in [19],
they propose measuring significance of dependence via the
chi-squared test for independence from classical statistics.
In [12], they only distinguish between multi-item associa-
tions that can be explained by all pairwise associations, and
item sets that are significantly more frequent than their pair-
wise associations would suggest. In our framework, we inter-
pret associations by examining the γ-terms of fitted loglin-
ear models instead of by examining the differences between
observed frequencies of itemsets and expected frequencies
computed from assumed models.

log ŷlift = γ + γA + γB + γC + γD (7)

log ŷpairwise = γ + γA + γB + γC + γD + γAB

+ γAC + γAD + γBC + γBD + γCD (8)

log ŷfitted = γ + γA + γB + γC + γD + γAC + γBC

+ γBD + γCD + γABC + γABD (9)

Now we illustrate the difference of our work with previous
approaches using an example. Equation 7 assumes the in-
dependence model and includes all-one-factor (main) effects
and grand mean. Equation 8 includes all-two-factor effects
apart from all-one-factor effects and grand mean. The com-
parison between the observed value y with either ŷlift or
ŷpairwise is used to screen interesting itemsets in [19] or [12]
respectively. The assumed independence model (shown in
Equation 7) or pairwise model (shown as Equation 8) may
be inaccurate. By comparing with an inaccurate model,
false interpretations may be introduced when we examine
itemsets. In our framework, we fit the market basket data
to derive the fitted loglinear model (as shown in Equation 9)
instead of just assuming some specific model (independence
or pairwise model).

As our model really fits the underlying data and includes
significant interactions at all possible levels, we can derive
the association patterns by examining the γ-terms of our
fitted model directly. For example, from γAC = 0.681,
γBC = −0.765, and γABC = 0.223, we can see the pos-
itive two-factor interaction (i.e., the presence of one item
implies the presence of the other one) between item A and
C, the negative two-factor interaction between item B and
C, no significant two-factor interaction between item A and
B, and positive three-factor interaction among ABC. From
γBD = −0.296, γABD = −0.185, we can see the negative
two-factor interaction between item B and D, the three-
factor negative interaction among ABD, however no signifi-
cant two-factor interaction for item sets AB or AD.

We would like to point out that we apply a non-hierarchical
modeling strategy (step 3.2 and 3.3). Hierarchical models
are nested models in which when an interaction of d factors
is present, all the interactions of lower order between the
variables of that interaction are also present. For example,
if a three-way interaction (γABC) is present, the model must
also include all two-way effects (γAB, γAC , γBC) as well as
the single variable effects (γA, γB, γC) and the grand mean
(γ). Non-hierarchical modeling can better interpret the as-
sociations for market basket data. Consider one example
for the concept of synergism2 where each item from A, B,
C is sold independently and the third item is free if cus-

2A response occurs when two factors are present together
but not when either occurs alone. This is the perfect illus-
tration for the example that two drugs together cause kidney
failure.
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Table 3: Comparison of three models. Residuals
is the number of cells by comparing standardized
residuals to standard normal percentage points 3.29

Model Likelihood ratio L2 d.f. Residuals
independence 2597.4 11 10
all-two-factor 226.7 5 6

our model 64.8 5 2

tomer buys any other two items. Clearly there exists a
three-way interaction effect (γABC) but no two-way inter-
action between any pairs among A, B, C (γAB , γAC , γBC).
Clearly only non-hierarchical model (i.e., log ŷijk = γ+γA

i +
γB

j + γC
k + γABC

ijk ) can explain this case correctly. Notice
in the non-hierarchical model, the two-way effects are not
included in the model therefore violating the hierarchical
requirement.

The parameters of the loglinear model provide the inter-
actions between item variables. Further analysis of residuals
may reveal in cell-by-cell comparisons of observed and fit-
ted frequencies. Note here our loglinear model is built at
the finest level (containing all variables) and it is easy to
compute expected frequencies of itemsets at any upper level
by simply summing those cells from the finest level. Equa-
tion 10 shows the standardized residual form used in our
framework.

ei =
yi − ŷi

ŷ
1/2
i

(10)

When the model holds, ei is asymptotically normal with
mean 0. In comparing standardized residuals to standard
normal percentage points, we obtain conservative indica-
tions of cells having lack of fit. Table 3 shows the compar-
ison of independence model, pairwise model, and our fitted
model for the COIL data set. The likelihood ratio and the
size of residuals from Table 3 clearly show that our fitted
model is better than the independence and pairwise mod-
els as it includes significant high-factor effects and excludes
those non-significant 2-factor effects (even the main effect).

3.3 Graphical Decompositions for Large Con-
tingency Tables

As we stated in the introduction, we cannot build loglin-
ear models over the very sparse and large contingency table
that results from market basket data. Besides, even if the
data set is dense, the complexity of algorithms for computing
the MLEs in loglinear models is generally exponential in the
dimension of the item variables and thus computationally
expensive for large tables. In this section, we discuss how
to decompose the problem into subsets and build loglinear
models for each subset without losing any significant inter-
action. We do this by using graph-theoretical results. The
procedure involves two steps: 1) we build one independence
graph for all item variables; 2) we apply graph-theoretical
results to decompose the graph into non-decomposable irre-
ducible components.

The independence graph is defined by making every ver-
tex of the graph correspond to a discrete random variable,
and the edges denoting the dependency of the two variables
linked. A missing edge in the graph represents the condi-

tional independence of the two variables associated with the
two vertices. Models with the maximal permissible higher-
order interactions corresponding to a given independence
graph are called graphical models. (See [16, 21] for compre-
hensive treatment of graphical models.) Figure 2(a) shows
the independence graph (two disconnected subgraphs FI,
ABCDJGEH) for our COIL data set. From this graph, we
can infer for instance that variables I and F are independent
with respect to the remaining variables. We can also derive
that variables E and H are conditionally independent with
respect to the set ACDEJ given the variable G. Intuitively,
there is no interaction between any variable from set EH
and any variable from the set ACDEJ given variable G.

The second step is to decompose the graph into basic, ir-
reducible components. Graph-theoretical results show that
if a graph corresponding to a graphical model for a con-
tingency table is decomposable into subgraphs by a clique
separator 3, the MLEs for the parameters of the model can
easily be derived by combining the estimates of the models
on the lower dimensional tables represented by the simpler
subgraphs. Hence, applying a divide-and-conquer approach
based on the decompositions will make the procedure appli-
cable to much larger tables.

The theory may be interpreted by the following way: if
two disjoint subsets of vertices Sa and Sb are separated by a
subset Sc in the sense that all paths from Sa to Sb go through
Sc, then the variables in Sa are conditionally independent
of those in Sb given the variables in Sc. The subgraphs may
be further decomposed into subgraphs. The requirement
that the subgraph on Sc is complete implies that there is
no further independence constraints on the elements of Sc,
so that this factorization contains all the information about
the joint distribution.

Figure 2(b) shows the components (ABCD, ACJ, EHG,
AG, IF). We can see the interactions among ABCD are in-
dependent with respect to other variables. The interactions
among ABCD (i.e., γAB, γAC , γABC etc.) can be derived
directly from the condensed 4-dimensional contingency ta-
ble (i.e., ABCD) instead from the original 10-dimensional
contingency table (i.e., ABCDEFGHIJ). The MLEs of the
interactions for each component are the same as those for
the original graphs. In our experiments, we apply CoCo [4]
within XLISP-STAT with a complexity of O(nm3), with m
the number of generators and n the number of variables, to
perform decomposition for large contingency tables. To find
the clique separators of a graph or to find the vertex-sets of
the irreducible components of the graphs, an algorithm with
a complexity of O(ne + n2) can be used [20], where n is the
number of vertices and e is the number of edges.

To build the independence graph, we need to test condi-
tional independence for every pair of variables, controlling
for the other variables. There are several approaches to test
conditional independence (See [3]). In our paper, we build
the independence graph by applying the Cochran-Mantel-
Hasenzel test. For any pair of two items Ii, Ij from item set
I = {I1, · · · , Ik}, we derive one partial 2 × 2 contingency
table (stratum) for each possible value from set I \ {Ii, Ij}.
Hence we can have L (L = 2k−2) strata. For each stratum l,

3A clique is a subset of vertices which induce a complete
subgraph for which the addition of any further vertex ren-
ders the induced subgraph incomplete. A graph is complete
if all vertices are joined with undirected edges. In other
words, the clique is maximally complete.
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Figure 2: Composition of COIL data set with 10 variables

we need to compute the marginal totals {n(l)
.0 , n

(l)
.1 , n

(l)
0. , n

(l)
0. }.

Table 5(a) shows the stratum form for item variable A and B
while Table 5(b) shows one stratum (C = 1, D = 1) derived
from Table 1. Equation 11 shows the summary statistics

where m
(l)
11 and V (n11) is mean and variance respectively.

m
(l)
11 = E(n

(l)
11 ) =

n
(l)
1. n

(l)
.1

n(l)
..

V (n
(l)
11 ) =

n
(l)
1. n

(l)
0. n

(l)
.1 n

(l)
.0

n(l)
.. n(l)

.. (n(l)
.. − 1)

M2 =
(‖P

n
(l)
11 −

P
m

(l)
11‖ − 0.5)

2P
V (n

(l)
11 )

(11)

The summary statistics M2 has approximately a chi-squared
distribution with d.f. = 1 under the null hypothesis of con-
ditional independence. Hence, if M2 > Pα, we can reject
the null hypothesis of conditional independence and include
the edge of Ii and Ij in the interaction graph. In our ex-
periments, we choose α = 0.05 and Pα = 3.84146. However,
the Cochran-Mantel-Hasenzel test does not work well for
very sparse data sets because the marginal totals for a given
partial table usually equal zero. To deal with very sparse
market basket data sets, we may test marginal independence
for each pair of variables by applying log odds ratio over one
marginal 2× 2 table (shown in Table 5(c)) which contains
summary frequencies and ignores the other controlling vari-
ables.

4. EXPERIMENTAL RESULTS
In this section we show the results of experimenting with

one real data set and some synthetic data sets. The experi-
ments were conducted in a DELL Dimension 8100, with one
1.7G processor, and 640 Mbytes of RAM.

4.1 COIL Data
The COIL Challenge 2000 [10] provides data from a real

insurance business. The competition consisted of two tasks:
1) Predict which customers are potentially interested in a
Caravan insurance policy; 2) Describe the actual or poten-
tial customers; and possibly explain why these customers
buy a Caravan policy. Information about customers con-
sists of 86 attributes and includes product usage data and
socio-demographic data derived from zip area codes. The
training set consists 5822 descriptions of customers, includ-
ing the information of whether or not they have a Cara-
van insurance policy. A test data set contains 4000 tuples

Table 4: A 2×2 contingency table for variable A and
B

B eB
A n11 n10 n1.eA n01 n00 n0.

n.1 n.0 n..

(a) stratum form

B eB
A 457 175 632eA 1162 526 1688

1619 737 2320

(b) stratum for C =
1, D = 1

B eB
A 2458 282 2740eA 2248 834 3082

4706 1116 5822

(c) marginal table

which only the organizers know if they have a Caravan in-
surance policy. Here our aim is to identify interaction pat-
terns among 86 attributes varying from product usage to
socio-demographic. Our data is formed by collapsing non-
binary categorical attributes into binary form (the data can
be found at www.cs.uncc.edu/ xwu/classify/b86.dat), with
n = 5822 baskets and k = 86 binary items.

We successfully decomposed the data set with 86 variables
into components with much less variables (the largest one
with 20 variables and most components with less than 5 vari-
ables). After decomposition, we got 22 components (Figure
5 shows 10 components which contain 3 or more variables)
and we then fit each component by using loglinear model.

We also did the experiment over this data set by using
the Apriori algorithm. The algorithm generated 6050 large
item sets and 13131 rules under support 0.1 and confidence
0.8. We found it was much harder to draw interesting con-
clusions about data from support-confidence results. We
compared the significant interactions discovered by our al-
gorithm with the large item sets discovered by Apriori al-
gorithm and found the percentage of overlap is very low.
Table 6 shows several significant interactions discovered by
our loglinear fitting algorithm and the actual support val-
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Table 5: Component after decomposition for COIL
data set, we omit 12 components which contain less
than 3 variables.

component variables
1 44, 45,46,48,50, 51,52,53,56,58,

59,65,67,68,69,71,72,73,74,79
2 16,17,18,19,22,23,24,25,26,29,41
3 61, 68, 81,82,84
4 1,5,21,43
5 37, 38,39
6 19, 25,36
7 19,25,35
8 16,20,25
9 10,12,13

10 3, 10,13

Table 6: Several significant interactions

term interaction actual support(%)
γ16,17,18 -1.21 0

γ1,5,21 1.01 14.2

γ10,12,13 -0.41 0.02
γ61,68,81,82 0.302 0

γ48,74,79 0.28 0

ues for those subsets. The lower support value for all subsets
(except for γ1,5,21) definitely prevent them to be discovered
by traditional support-confidence framework. For instance,
the association γ48,74,79 reveals that people are inclined to
buy delivery van policies (48), agricultural machines policies
(74) and disability insurance policies (79) together.

4.2 Synthetic Data set
The COIL data set is too sparse to study the performance

(running time) of our algorithm. In order evaluate the per-
formance our algorithm properly, we turn to synthetic data
(the same market basket data generator used in [1]) from
IBM’s Quest Group.

We generated two data sets (one with 50 items and the
other with 100 items). We have not done the experiments
over data sets with more than 100 variables as we have used
CoCo [4] (an environment for graphical models) which can
not deal with more than 128 variables. We are currently im-

Table 7: Parameter description

parameter value meaning
ntrans 10k-1M number of transactions
nitems 50,100 number of different items

tlen 10 average items per transaction
npats 10000 number of patterns (large item sets)
patlen 4 average length of maximal pattern

corr 0.25 correlation between patterns
conf 0.75 average confidence in a rule
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Figure 3: Execution time by varying ntrans from
(10K, 20K, 50K, 100K, 200K, 500K, 1M)

plementing the decomposition algorithm proposed by [20] to
be able to handle data sets with larger number of variables.
We set the average basket size to be 10, the average of large
itemsets to be 4, the correlation between large itemsets to
be 0.25, the confidence in a rule to be 0.75, the number of
transactions varying from 10k to 1M. We ran some experi-
ments with the tlen set to 6 or the correlation level set to
0.75 but did not find significant difference in the nature of
our performance results.

Figure 3 shows our execution time. Note that decompo-
sition step is determined by the size of independence graph
(i.e., the number of variables k, the number of edges e or the
number of generators m). We observe the decomposition
time is small compared with the preprocessing time because
the size of independence graph in our experiment is usually
small (with 100 nodes and several hundreds edges). As the
number of items contained in each component is compara-
bly small (most less than 10), the time of loglinear model
fitting for each component is trivial. In Figure 3, we also
include the execution time of Apriori algorithm (with min-
inum support 0.1% and minimum confidence 80%). We can
see the execution time of our algorithm is comparable to that
of Apriori algorithm for medium dimension size (50, 100).
Figure 4 shows the number of components generated in our
experiment. When we fix the other parameters of market
basket generater and increase the number of transactions,
the number of components decreases because the number of
edges in independence graph increases.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented how to interpret associations

among items by fitting loglinear models and examining those
magnitude of parameters for market basket data. Our work
departed from earlier work that just aims to find large or
interesting itemsets and leaves those itemsets to domain ex-
pert directly. On the contrary, we build loglinear model
and apply the values of γ-terms as measures of associations
among item variables directly. We believe those values pro-
vided by our loglinear model are very helpful for domain
expert to make judgments about cause and effect relations
among items. To deal with large number of variables, we
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applied graph-theoretical results to decompose items into
subsets without losing any significant interaction.

There are some aspects of this work that merit further re-
search. Among them, we are trying to automatically derive
rules from the γ-terms included in fitted loglinear model.
For components with more than 10 variables, it is hard for
user to grasp all the association patterns. We will be explor-
ing how to combine visualization techniques and association
graph for this issue.

Another aspect that merits further research is that of in-
teractive analysis of associations among items. For example,
the user may want to examine a given subset (say ABC).
Clearly collapsing into contingency table of ABC directly
will lose information as item A, B, or C may have interac-
tions with other items. To find the smallest set containing a
given set (i.e., ABC) and onto which the model is collapsi-
ble was studied in [4]. We will investigate this problem for
online association analysis.

Finally, we will study how to better deal with sparse data
when either structural zero cells present or it contains many
small cell values. It is known that loglinear model can still
work for small incomplete table with structural or sam-
pling zeros [8]. We will investigate other techniques such
as shrinkage estimates [12] for large incomplete market bas-
ket data.
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APPENDIX

A. VARIANCE OF PARAMETERS OF LOG-
LINEAR MODELS

Each parameter (γ) in loglinear model (shown in Equation
12) can be rewritten in the form of a linear contrast of the
logarithms of the expected cell counts. For example, Equa-
tion 13 shows the linear contrast form for each parameter of
2-d loglinear model.

l̂i1i2···in = log ŷi1i2···in =
X

G⊆{d1,d2,··· ,dn}
γG
(ir|dr∈G) (12)

γA
i =

X
l 6=i,m

−1

IJ
logylm +

X
m

1

J
(1− 1

I
)logyim

γB
j =

X
l,m6=j

−1

IJ
logylm +

X
l

1

I
(1− 1

J
)logylj

γAB
ij = (1 − 1

I
)(1− 1

J
)logyij +

X
l=i,m6=j

−1

J
(1− 1

I
)logylm

+
X

l 6=i,m=j

−1

I
(1− 1

J
)logylm +

X
l 6=i,m6=j

1

IJ
logylm

(13)

Theorm 1. The asymptotic variance of fi(p̂) =PT
k=1 ciklog(p̂k) is N−1(

PT
k=1 c2

ikpk−1 − c2
i+) where ci+ =P

k=1 Tcik, N is the size of samples and T is the size of
cells.

Theorem 1 ([8], page 495) shows the variance form for
parameters which can be expressed as linear contrasts. For
example, Equation 14 shows how to compute variance for
each parameter of 2-d loglinear model.

V ar(γA
i ) = (

1

IJ
)
2 X

l,m

(Nylm)−1 + (
I − 2

IJ2
)

X
m

(Nyim)−1

V ar(γB
j ) = (

1

IJ
)
2 X

l,m

(Nylm)−1 + (
J − 2

IJ2
)

X
l

(Nylj)
−1

V ar(γAB
ij ) = (

1

IJ
)
2 X

l,m

(Nylm)−1 + (
I − 2

IJ2
)

X
m

(Nyim)−1

+(
J − 2

IJ2
)

X
l

(Nylj)
−1

+
(I − 2)(J − 2)

IJ
(Nyij)

−1

(14)

In general case, the variances of parameters are different
from each other. However, the variance of each parameter
is the same for market basket data as the domain size for
each variable (I,J etc.) is always 2.
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