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Abstract—The Fisher information J(X) of a random variable X =] Fola) 20 ) 20 dx 4)
under a translation parameter appears in information theory in the o
classical proof of the Entropy-Power Inequality (EPI). It enters the whered = (61, -+, 6,,), the set{ fo()} is a family of densities oX

proof of the EPI via the De-Bruijn identity, where it measures the A . .
variation of the differential entropy under a Gaussian perturbation, and parameterized bg, 9/06 denotes the gradient (i.e., a coluwector

via the convolution inequality J(X + Y)~! > J(X)~! 4+ J(v)~! (for  Of partial derivatives) with respect to the parametérs:-- .0,
independent.X’ and Y’), known as the Fisher Information Inequality (FIl).  lu(-) denotes the natural logarithm, a@@V{-} denotes then x m
The FIl is proved in the literature directly, in a rather involved way.  coyariance matrix calculated relative to the distributioXofHere X
We give an alternative derivation of the FIl, as a simple consequence may either be a single measurement or a vector aieasurements.

of a “data-processing inequality” for the Cramer—Rao lower bound on . o
parameter estimation. The importance of the matriX(X; ) follows from the Cramer—Rao

Index T < Rao bound. dat I lit " Bound (CRB), [4], [6], [10], saying that for any unbiased estimator
ndex Terms—Cramer—Rao bound, data processing inequality, entropy- 7 _ 5 : ! : - -

power inequality, Fisher information, linear modeling, non-Gaussian 0 =6(z) .("?" estimator for whichE{#(X)} = 6) the error vector
noise, prefiltering. # — 0 satisfies

COV{B(X)} > J(X:;8) " (5)
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special form of the FI matrix, namely, the FI of a random vector The derivation follows a sequence of lemmas. Below we assume

with respect to dranslation parameter that { fe(x,y)} is a family of density functions parameterized by
N P where the first and second derivatives fgf -, y) with respect tof
J(N)=JO0+ N;0) = COV{@W In f(N)} exist and are absolutely integrable (see [10, p. 66, eq. (c)]).
B / 1 (9f(n)\ [0f(n) ¢ in @© Lemma 1 (Chain Rule for the FI Matrix):
“ ) fm)\ om on J(X.Y:6)=J(X:0)+J(Y;0|X) (12)

where f(n) is the density function of the vectoN (f(n) is Wwhere

independent ob), and J(N) is a square matrix whose dimensiony(y, g|x)=Ex{J(Y:8|X =)}

equals that ofV; see [3], [4], [6], and [8]. Unlike the general case ) o . .

(4), this form of the FI is a function of the density of the random :E‘\Y{<8 In fo(} |X)> <8 In fp(} |X)) } (13)

vector alone, and not of its parameterizaﬁon. o6 06

The FI under translation (8) exhibits some well-known properties Note that the argument of the first expectation in (1B); 8| X =
(1. [7] e.g., x), is the FI of Y relative to#, calculated with respect to the
J(AN) = ATTJ(N)A™' (9) conditional density oft” given a specific valuel' = .
Proof: We prove assuming is scalar. The generalization to a

for any nonsingular square matri, and vector @ is straightforward. Since

J(N) > COV(N)™! (10)
with equality iff N is Gaussian. Another property which is of J(X,Y:8) = B{[0 In fy(X,Y)/06]"}
particular interest for us is a convolution inequality, called the
Fisher Information Inequality(FIl). Let N; and N, be statistically and
independent random variables. Then

J(Nt + No)™' > J(N) ™' + J(N2) ™! (11) o fo(m,y) =In fo(z) +1n folylw)

with equality iff N, and NN, are Gaussian. Vector, matrix andwe see that/(X,Y’; ) is given by the sum in the right-hand side of
“convex” versions of (11) exist in the literature [7], [8], some of(12) plus a cross term which is twice

which will be mentioned in the sequel. The Fll (11), together with
the De-Bruijn identity® consist the key tools in the classical proof of {8 In fo(X) 8 ln fo(Y|X) }
06 a6

the EPI [3], [4], [8]. Both FIl and EPI relate to the tendency toward
Gaussianity of the sum of independent random variables [1], [9], [16]. o | 5 ~
_ E\,{O n fo(X) o {0 In fo(Y]X) ‘A}} (14)

Existing proofs of the FllI (11) [3], [4] involve a direct calculation 29 a9
of the convolution of the densities d¥y and N» and application

of the Cauchy-Schwartz inequality, and they are rather technicghore the right-hand side follows by iterating the expectation. This
In this correspondence we show that the Fil follows from the Fishgf,ss term is zero since the inner expectation in the right-hand side of

information data processing inequality given in (7). We derive the IEM) is zero for each value of (see e.g. [10, p. 67, eq. (1L90f]]
by applying the data processing inequality to a suitable linear model ' '

relating the measurements and the parameters. This model providdsesmma 2 (Data Refinement Inequality):

an interesting interpretation to the difference between the two sides

of inequality (11):J(N, 4+ No) ™t — J(N,) "t = J(N2)~! amounts J(X.Y:0) > J(X:0) (15)
to theloss in the CRB after optimal linearstimation If N; and NV,

are Gaussian, linear estimation is globally optimum, and the CRB@th equality if X is a sufficient statistic relative to the family
loss is zero. However, iiV; and N, are not Gaussian, noninvertible{ fo(x,y)}, i.e., if 8 — X — (X,Y) form a chain.

linear operation may increase the CRB. Proof: The inequality follows from Lemma 1 by the nonnega-
In our proof, we consider a generalized form of the FII (11)vity of the FI J(Y;8|X = z). The equality condition implies that
namely, the matrix form of the FlI, which was presented in [15J(Y;#|X = 2) = 0 for eachz. O

and [16]. The new derivation of the FIl (11) is given in Section Il.
Some additional properties of the matrix form of the Fll are given
in Section lll. In Section IV we use the matrix-FIl to analyze the

Lemma 3 (Data Processing Inequality):

loss in FI (or in CRB) due to prefiltering in a certain linear model J(X:8) 2 J(6(X):9) (16)
for parameter estimation. This part of the work appeared originall
in [54] P PP g With equality if o(X) is a sufficient statistic relative to the family
' {fo(2)}, €.9., if ¢(-) is an invertible function.
Il. DERIVATION OF RESULTS Proof: By Lemma 2 we have

In this section we prove a matrix form of the Fll using the Fisher
information data processing inequality (7). For completeness we give
also a proof for (7), for which we could not find a reference in the ) ) ]
literature. We then show that the matrix form of the Fil implies th¥/here the second equality follows from the chain rule (12) since

J(6(X):8) < J(6(X). X:6) = J(X:0)

form in (11). _(,b(X) i_s deterministic gi\_/en_X thus J(gb(X);9|_X) = (): The
inequality becomes equality if (X;8|¢(X)) =0, i.e., if ¢(X) is a
2In some references the Fl &f is defined agi (V) = trace { J(N)}. sufficient statistic. O

3The scalar form of the De-Bruijn identity is

(d/dt)h(X + ‘/;Z) =(1/2)J(X + '\/ZZ) 4As pointed out by A. Yeredor, the proof follows even more easily from
whereZ is a standard normal variable. the equivalent formula for FV (X, Y;6) = —E{9? In fo(X,Y)/06%}.
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Lemma 4 (Parameter Transformation)et {fs(x)} be a family
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Remark: Inequality (24) was shown in [13] and [16] for the case

of densities parameterized by, and suppose that the vector ofwhere the components &¥ are statistically independent.

parameterg € R" is a function of the vectof € R™. Then

J(X:8) = <0¢)t -J(X;6(0)) - <8—¢>

8 8 (47)

where

$ (00
26 — 109,

denotes the matrix of partial derivatives of the vector funcof).
In the linear case = Q'#, where() is somem x n matrix, we have

}, i=1nj=1--+m

J(X:0)=Q J(X:6=0Q'8)-Q". (18)
Proof: By the chain rule for derivatives, we have
9 In fyo)(x) _ <%>t8 In fe(x)
o6 o6 0¢
which when substituted in the definition of( X;8) (4) results in
7). |

Proof:
a) Assumemy = 1. Combining (20) and (21) implies
Q- [J(N)- P J(PNPIQ" >0

for any 1 x ny vector@. This implies that the inner difference
is a nonnegative definite matrix.

b) Substitutemy = m, = m and@ = P = A in (20), use
AA' = I.x.m, and substitute in (21).

c) Substitutems = my, = m, P = A, and

Q= AJN)'AHT ATV

in (20), and substitute in (21) to obtain the inequality. The
sufficient conditions for equality follow from (9) and (10),
noting thatCOV (AN) = ACOV (N)A". See Proposition 3

in the next section for a necessary and sufficient condition for
N, --- N, statistically independent. O

In the model above the vect& was arbitrary. We now specialize
to a vector withindependent componerasid give our main result.

We now define a linear model relating the estimated paraméters Theorem 1 (FIl): Let N, and N, be statistically independent

with their measurementX andY'. Let the random vectolV € R"
have some joint densityy, and let@ and P be somemn, x n and
my X n matrices, respectively, wherey < m, < n. Letd € R™¢
be a vector of parameters, and consider the linear model

X=Q'-+N and Y=P . X (19)
whereX € R™ andY € R™v.
Lemma 5: For the model in (19)
J(X:6)=QJN)Q' and J(Y:8)=QP'J(PN)PQ' (20)

whereJ(N) andJ(PN) are thern x n and them, x m, Fl matri-
ces under a translation parameter (8) of the vecf¥rand PN,
respectively.

Proof: Let ¢ = Q'6. Using Lemma 4 we have

J(X:0) = J(6+ N:8) = QJ(6+ N:6)Q' = QI(N)Q'

random variables. Then
J(Ni 4+ No) < (J(N) T+ J(No)~H) ™! (25)

with equality if N; and N, are Gaussian. The inverse of the
left- and right-hand sides of (25) are equal to the CRB’s when a
single parametef is estimated fromX; + X, and from(X;, X5),
respectively, whereX; = «;# + N; and
](_Nvl)
T I(ND) + J(Ny)
Proof: SinceN; andN are independentf ([N, N:]) isa2x2

diagonal matrix whose diagonal elements digV,) and J(N2).
Hence the inequality and the equality condition follow by substituting
m=1,n=2,and A = [1,1] in (24).

The interpretation off (N + No)™" andJ(N,)™' + J(N:)~" as
CRB’s can be seen by substitutifiy= [1, 1] and@ = [a1, az] in the
linear model (19), and then using (20) to calculate the corresponding

i=1,2.

o =

where the last equality follows from the definition of FI under £RB’s J(X1 + X»; #) and J(X1, Xo; 6). o

translation parameter (8). The expressionfoY") follows similarly.
|
Lemma 6: For the model in (19)

J(X:0) > J(Y;0). (1)

We thus proved that the FllI follows from the Fisher information
data processing inequality. Furthermore, the Fll corresponds to the
loss in CRB due to “filtering” in a certain linear additive-noise model
for parameter estimation. This loss is due to the non-Gaussianity of
the noise and vanishes if the noise is Gaussian. A certain drawback in

Proof: The inequality follows from the data processing inequals alternative derivation of the Fll is that the necessity of the equality

ity (16) sinceY = PX.

condition does not follow easily, and requires some additional effort.

Lemmas 5 and 6 above imply three inequalities regarding the effexg® Proposition 3 in the next section.

of linear transformation on the FI under translation:

Corollary 1:
a) For anym x n matrix A and random vectoN € R"
A'J(AN)A < J(N). (22)
b) For anym x n matrix A with orthonormal rows, i.e. AA" =
Luxm 2 them x m identity matrix, and anyV’

J(AN) < AJ(N)AL (23)

¢) For anym x n matrix A with a full row rank, and random vector

N € R™ with nonsingular FI matrixJ(N)
J(AN) < (AJ(N) A (24)

with equality if m = n or if N is Gaussian.

I1l. ADDITIONAL RESULTS REGARDING THE MATRIX FORM OF THE FII

For completeness, we review below additional results regarding
the matrix form of the Fll, some of which appeared elsewhere. We
start with a convex-matrix form of the FIl (11) which was presented
in [12] and [15].

Proposition 1 (Convex-Matrix Form of Fll):Let
N=(Ni,-.N,)

be a vector with statistically independent components, And-
{X\i,;} be anm x n matrix with orthonormal rows, i.eAA" = L, xm.
Then

trace {J(AN)} < Z Z A?,j'](‘WTJ)'

i=1 j=1

(26)
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In particular, if J(Ny) = --- = J(N,) = Ju, the inequality example, the linear relatioX = Q‘4 + N may represent a radar
becomeg1/m) trace {J(AN)} < Jn, since the orthonormality of application, whereX; - -- X,, are the outputs of an-element phased
the rows implies array which observes the targéts- - - 4,,,, wheren > m; here the

entry ¢;; of the matrix( is the (complex) gain of thgth element
Z =1, fori=1---m. towards theth target [11]. Another possible application is that of AR
j=1 parameter estimation, where a long “training” sequelige - - X, is

Proof: Since N is an independent vector, the matdN) is modeled concisely by

dlagonal XJ = el_X-j—l +---+ ern)(j—m + ‘7\/7]7 j =1---n.

J(N):dla‘g[J(JVl),-J(Nn)] Hel’eq" = X._.
iy = Nj—i-

Thus thei, ith component of the matriJ(N)A® in the right-hand ~ In the applications abov&” = PX represents a prefiltered

side of (23) is given by version of the measurements, from which we wish to estinfate
" The matrix P thus represents aoninvertiblelinear operation. For
ZAZ' J(N;) instance, we may perform such a prefiltering operation to reduce the
Nty d . . . . .
= imensionality and hence the complexity of the (possibly nonlinear)

estimator. See [11], [2], and the references therein. A case of interest
Taking the trace of both sides of (23) results in (26). U would be when the matrixP is a projection matrix (i.e.PP' =
We turn to a convex-matrix version of the Entropy-Power Inequaf«, xm,) Whose rows span the row space@f(i.e., @ = GP for
ity (EPI) which also appears in [12] and [15]. somem X m matrle). This guarantees that in the noisl¢®é = 0)
case,Y contains the same information abdutas X. Furthermore,
Proposition 2 (Convex-Matrix-EPI):Let N andA be as in Propo- it makes sense to assume that the noise saniples: NV, are i.i.d.,

sition 1 above. Then and that the: columns of@Q have a fixed, say, unit norm, i.e.,
R(AN) > A2 h(N;) (27) o o
where/.(-) denotes (joint) differential entropy. (The latter condition corresponds to a fixed total power gain per each

Proof: The proof is based on the convex-matrix form of the Flbiement in the radar phased array application above.)
in Proposition 1 and the De-Bruijn identity, and follows the line of ynder these quite natural assumptions, one may wonder how does

the proof of Theorem 7 in [8, p. 1509]. U the quality of the estimation vary with and with the noise properties,
From (27) it is easy to obtain the matrix form of the EPI presentédld how much do we loose (do we?) by applying the projection
in [16]: see also [12] and [15]. operation P prior to estimation.

We end this section with a special case of (24), regarding a linear" Order to isolate the effect of the signal-to-noise ratio (SNR)
transformation of arindependenwector, for which we can prove a O the performance, we introduce a noise gain paramefeand
necessanand sufficient condition. The proof can be found in [13]. consider the model

Proposition 3 (Necessary and Sufficient Condition for Equality in X=Q0+aN and Y =PX.
iX- A )X N i . . , . .
the Matrix-FII for an Independent Vector)Let A be anm x » matrix Using Lemmas 5 and 6, and the identi” PQ' = Q0" implied

m < n. Let Tr(A4) denote the set of indiceg € {1---n} for o -
which n; is uniquely determined byin, and letZ,(A) denote the by the model above, it is easy to prove that for any < my < n

set of indices of the all-zero columns df. Assume thatV € R"

is a random vector with independent components, each having finite
Fl. Then, inequality (24)J(AN)"! > AJ(N) *A', holds with and
equality if and only if V; is Gaussian for alf & Zr(A) U Zy(A). J(Y:0) =QP'J(PN)PQ' < In 00" (28)

a?

I(X:0) = 250q"

The necessary condition of Proposition 3 asserts thatjdhme

FI can be used as a “contrast’ (or “objective”) function for b“nd/vhereJN is the FI of the (i.i.d.) noise samples. Furthermore, since

deconvolution/signal separation [5], [9]. re
Clearly, if m < n andA does not have all-zero columns, then there Z qi; =1, forj=1---n
is at least one indeX not in Zr(A4). We thus have the following =1
corollary of Proposition 3. it follows that
Corollary 2 If the m x»n matrix A does not have all-zero columns, o In
and N, --- N, are independent and identically distributed (iid.) "oz = tacC {J(¥:0)} < trace {J(X:6)} =n-—7 (29)

random variables with/(N;) = Jx, then J(AN)™' > J ' AA",

5 . . .
with equality if and only ifm = n or theN;’s are identical Gaussians.WhereUN is the variance of the noise, and the lower bound follows

from (10). Equality holds in both inequalities in (29)Af is Gaussian
(in which caseJx = o 7). Furthermore, for any noise distribution,
IV. PARAMETER ESTIMATION FROM PREFILTERED MEASUREMENTS  he right inequality holds with equality i = m, = ms. Otherwise
Some insight into the problem of parameter estimation in thitbe inequalities are strict; see Corollary 2.
presence ofnon-Gaussianmeasurement noise can be gained by One simple implication of (29) is that without prefiltering the
investigating the properties of the Fl in the mod&l= Q'+ N and total Fl increasesinearly with the number of the measuremerithe
Y=PX;0 e R"; X, N e R";Y € R™v given in (19). In many same is true even after projection 5y if the measurement noise is
practical situations, a large number of noisy measuremgnts - X,,  Gaussian. However, for non-Gaussian noise projection causes a loss
is taken to estimate a small number of parametars.-6,,. For of FI wheneverm, <n. Thus from the FI/CRB point of view, the
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optimal estimator cannot be decomposed into projection followed by ~ Zero-Error Capacity for Models with Memory
nonlinear processing. and the Enlightened Dictator Channel
This phenomena can be explained by the tendency towards Gaus-
sianity of the sum of independent random variables. Projection, whidRudolf Ahlswede, Ning Cai, and Zhen Zharggnior Member, IEEE
is a noninvertible linear transformation, makes the residual noize
Gaussiarand thus less favorable for estimation. A similar phenomenaAbstract—We present a general class of zero-error capacity problems
causesncrease of entropyfter noninvertible filtering [9], [16]. with memory covering known cases such as coding for error correction
In [14], we suggested another way to interpret (29), namely d many new cases. This class can be incorporated into a model of
' . . . y ' channels with memory, which thus are shown to give a unification
an accuracy—quantity tradeoff relation. Notice th#t“ represents

. > of a multitude of seemingly very different coding problems. In this
the accuracy (or the resolution) of the measurements. Thus with@bfrespondence we analyze a seemingly basic channel in this class.

S . . > o
prefiltering, keeping the quar?tlty/accuracy produgﬁtr flxgd keeps Index Terms—Finite-state channels, independence number, memory,
the FI constant. The same is true for a Gaussian noise aften g oo, capacity.

(appropriate) prefiltering, but not true when the noise is not Gaussian.

Thus if prefiltering (projection) is used prior to estimation in the

presence of a non-Gaussian noigds better to take few accurate |I. INTRODUCTION

measurements than many noisy ones A GENERAL 0-ERROR PROBLEM WITH MEMORY

For the spaceZ™ of words of length. over alphabetZ, there are
ACKNOWLEDGMENT several interesting grapiis = (2", £,) with vertex setZ™ and an
edge set, reflecting string properties.

My joint work with Meir Feder on information-theoretic in-  Examples are, the strong graph product (Shannon’s product graph)
equalities formed the basis for this correspondence. | also wish4gad the caseg = {0, 1} with (2™, 2'™) € € if and only if (iff) for
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