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A Proof of the Fisher Information
Inequality via a Data Processing Argument

Ram Zamir,Member, IEEE

Abstract—The Fisher information J(X) of a random variable X

under a translation parameter appears in information theory in the
classical proof of the Entropy-Power Inequality (EPI). It enters the
proof of the EPI via the De-Bruijn identity, where it measures the
variation of the differential entropy under a Gaussian perturbation, and
via the convolution inequality J(X + Y )�1 � J(X)�1 + J(Y )�1 (for
independentX and Y ), known as the Fisher Information Inequality (FII).
The FII is proved in the literature directly, in a rather involved way.
We give an alternative derivation of the FII, as a simple consequence
of a “data-processing inequality” for the Cramer–Rao lower bound on
parameter estimation.

Index Terms—Cramer–Rao bound, data processing inequality, entropy-
power inequality, Fisher information, linear modeling, non-Gaussian
noise, prefiltering.

I. INTRODUCTION

The data processing inequality (or the data processing theorem) is
used in information theory for proving the converse channel-coding
theorem [4, Secs. V.3, V.4], [6, Secs. II.8, VIII.9]. This inequality
asserts that if the random variablesW �X�Y form a Markov chain
in this order, then the mutual informations between them satisfy

I(W ;Y ) � I(W ;X): (1)

In the special case whereY is given by a deterministic function�
of X, (1) becomes

I(W ;�(X)) � I(W ;X) (2)
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with equality if W � �(X)�X form a Markov chain, e.g., if�(�)
is an invertible function. The proof of (1) follows straightforwardly
from the chain rule and the positivity of the mutual information [6].

The name “data processing inequality” apparently came from the
analogy to the problem of optimal filtering. Suppose thatW;X; Y

are real variables. In analogy with (1) and (2), it is clear and easy
to verify that the conditional variance, i.e., the mean-squared error
of the conditional mean estimator ofW , satisfies the data processing
inequalities

VAR(W jY ) �VAR(W jX)

and

VAR(W j�(X)) �VAR(W jX) (3)

where

VAR(W jX)
�
= E[W � E(W jX)]2:

When the estimated quantity is a parameter��� (i.e., not a random
variable), it is impossible to use the conditional variance as a measure
for the goodness of the optimal estimator. Instead, it is common to
use the Fisher Information matrix (FI) of the measurementXXX relative
to the parameter vector���, defined as [4], [6], [10]

JJJ(XXX; ���)
�
= COV

@

@���
ln(f���(XXX))

=
1

f���(xxx)

@f���(xxx)

@���
�

@f���(xxx)

@���

t

dxxx (4)

where��� = (�1; � � � ; �m), the setff
���
(xxx)g is a family of densities ofXXX

parameterized by���; @=@��� denotes the gradient (i.e., a columnvector
of partial derivatives) with respect to the parameters�1; � � � ; �m;
ln(�) denotes the natural logarithm, andCOVf�g denotes them�m

covariance matrix calculated relative to the distribution ofXXX: HereXXX
may either be a single measurement or a vector ofn measurements.
The importance of the matrixJJJ(XXX; ���) follows from the Cramer–Rao
Bound (CRB), [4], [6], [10], saying that for any unbiased estimator
�̂�� = �̂��(xxx) (i.e., estimator for whichEf�̂��(XXX)g = ���) the error vector
�̂�� � ��� satisfies

COVf�̂��(XXX)g � JJJ(XXX; ���)�1 (5)

where throughout the correspondence an inequality between (nonneg-
ative definite) matrices means that the difference matrix is nonneg-
ative definite. As it turns out (see Lemma 3 below), the notion of
data processing extends easily to the FI; if����XXX�YYY satisfy a chain
relation of the formf(xxx; yyyj���) = f

���
(xxx)f(yyyjxxx) (i.e., the conditional

distribution of Y given X is independent of���), then we have the
data processing inequality

JJJ(YYY ; ���) � JJJ(XXX; ���) (6)

whose deterministic version (in analogy with (2)) is

JJJ(�(XXX);���) � JJJ(XXX; ���): (7)

Equality in (7) holds if�(X) is a sufficient statisticrelative to the
family ff

���
(x)g, i.e., ��� � �(XXX)�XXX form a chain [6, Sec. II.10].1

In the context of information-theoretic inequalities, e.g., in the
derivation of the Entropy Power Inequality (EPI), there appears a

1An alternative (“Bayesian”) way to express the equality condition is that
���� �(XXX)�XXX for a Markov chain for any distribution on the parameter�:
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special form of the FI matrix, namely, the FI of a random vector
with respect to atranslation parameter

JJJ(NNN)
�
= JJJ(��� +NNN ; ���) = COV

@

@NNN
ln f(NNN)

=
1

f(nnn)

@f(nnn)

@nnn
�

@f(nnn)

@nnn

t

dnnn (8)

where f(nnn) is the density function of the vectorNNN (f(n) is
independent of���), andJJJ(NNN) is a square matrix whose dimension
equals that ofNNN ; see [3], [4], [6], and [8]. Unlike the general case
(4), this form of the FI is a function of the density of the random
vector alone, and not of its parameterization.2

The FI under translation (8) exhibits some well-known properties
[1], [7], e.g.,

JJJ(ANNN) = A
�t
JJJ(NNN)A�1 (9)

for any nonsingular square matrixA, and

JJJ(NNN) � COV(NNN)�1 (10)

with equality iff NNN is Gaussian. Another property which is of
particular interest for us is a convolution inequality, called the
Fisher Information Inequality(FII). Let N1 andN2 be statistically
independent random variables. Then

J(N1 +N2)
�1 � J(N1)

�1 + J(N2)
�1 (11)

with equality iff N1 and N2 are Gaussian. Vector, matrix and
“convex” versions of (11) exist in the literature [7], [8], some of
which will be mentioned in the sequel. The FII (11), together with
the De-Bruijn identity,3 consist the key tools in the classical proof of
the EPI [3], [4], [8]. Both FII and EPI relate to the tendency towards
Gaussianity of the sum of independent random variables [1], [9], [16].

Existing proofs of the FII (11) [3], [4] involve a direct calculation
of the convolution of the densities ofNNN1 andNNN2 and application
of the Cauchy–Schwartz inequality, and they are rather technical.
In this correspondence we show that the FII follows from the Fisher
information data processing inequality given in (7). We derive the FII
by applying the data processing inequality to a suitable linear model
relating the measurements and the parameters. This model provides
an interesting interpretation to the difference between the two sides
of inequality (11):J(N1 +N2)

�1 � J(N1)
�1 � J(N2)

�1 amounts
to the loss in the CRB after optimal linearestimation. If N1 andN2

are Gaussian, linear estimation is globally optimum, and the CRB
loss is zero. However, ifN1 andN2 are not Gaussian, noninvertible
linear operation may increase the CRB.

In our proof, we consider a generalized form of the FII (11),
namely, the matrix form of the FII, which was presented in [15]
and [16]. The new derivation of the FII (11) is given in Section II.
Some additional properties of the matrix form of the FII are given
in Section III. In Section IV we use the matrix-FII to analyze the
loss in FI (or in CRB) due to prefiltering in a certain linear model
for parameter estimation. This part of the work appeared originally
in [14].

II. DERIVATION OF RESULTS

In this section we prove a matrix form of the FII using the Fisher
information data processing inequality (7). For completeness we give
also a proof for (7), for which we could not find a reference in the
literature. We then show that the matrix form of the FII implies the
form in (11).

2In some references the FI ofNNN is defined asK(NNN) = trace fJJJ(NNN)g:
3The scalar form of the De-Bruijn identity is

(d=dt)h(X +
p
tZ) = (1=2)J(X +

p
tZ)

whereZ is a standard normal variable.

The derivation follows a sequence of lemmas. Below we assume
that ff���(x; y)g is a family of density functions parameterized by���,
where the first and second derivatives off���(x; y) with respect to���
exist and are absolutely integrable (see [10, p. 66, eq. (c)]).

Lemma 1 (Chain Rule for the FI Matrix):

JJJ(X;Y ; ���) = JJJ(X;���) + JJJ(Y ; ���jX) (12)

where

JJJ(Y ; ���jX)=EXfJJJ(Y ; ���jX=x)g

=EXY

@ ln f���(Y jX)

@���

@ ln f���(Y jX)

@���

t

: (13)

Note that the argument of the first expectation in (13),JJJ(Y ; ���jX =
x); is the FI of Y relative to ���, calculated with respect to the
conditional density ofY given a specific valueX = x:

Proof: We prove assuming� is scalar. The generalization to a
vector ��� is straightforward. Since

J(X;Y ; �) = Ef[@ ln f�(X;Y )=@�]2g

and

ln f�(x; y) = ln f�(x) + ln f�(yjx)

we see thatJ(X;Y ; �) is given by the sum in the right-hand side of
(12), plus a cross term which is twice

E
@ ln f�(X)

@�
�
@ ln f�(Y jX)

@�

= EX

@ ln f�(X)

@�
� EY

@ ln f�(Y jX)

@�
X (14)

where the right-hand side follows by iterating the expectation. This
cross term is zero since the inner expectation in the right-hand side of
(14) is zero for each value ofX (see e.g. [10, p. 67, eq. (190)]).4

Lemma 2 (Data Refinement Inequality):

JJJ(X;Y ; ���) � JJJ(X;���) (15)

with equality if X is a sufficient statistic relative to the family
ff���(x; y)g, i.e., if ��� � X � (X;Y ) form a chain.

Proof: The inequality follows from Lemma 1 by the nonnega-
tivity of the FI JJJ(Y ; ���jX = x): The equality condition implies that
JJJ(Y ; ���jX = x) = 0 for eachx:

Lemma 3 (Data Processing Inequality):

JJJ(X;���) � JJJ(�(X);���) (16)

with equality if �(X) is a sufficient statistic relative to the family
ff���(x)g, e.g., if �(�) is an invertible function.

Proof: By Lemma 2 we have

JJJ(�(X);���) � JJJ(�(X);X; ���) = JJJ(X;���)

where the second equality follows from the chain rule (12) since
�(X) is deterministic givenX thus JJJ(�(X);���jX) = 0: The
inequality becomes equality ifJJJ(X;���j�(X)) = 0, i.e., if �(X) is a
sufficient statistic.

4As pointed out by A. Yeredor, the proof follows even more easily from
the equivalent formula for FIJ(X;Y ; �) = �Ef@2 ln f�(X;Y )=@�2g:
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Lemma 4 (Parameter Transformation):Let ff���(xxx)g be a family
of densities parameterized by���, and suppose that the vector of
parameters��� 2 Rn is a function of the vector��� 2 Rm: Then

JJJ(X; ���) =
@���

@���

t

� JJJ(X;���(���)) �
@���

@���
(17)

where

@
���

@���
=

@�i

@�j
; i = 1 � � �n; j = 1 � � �m

denotes the matrix of partial derivatives of the vector function���(���):
In the linear case��� = Qt���, whereQ is somem�n matrix, we have

JJJ(X;���) = Q � JJJ(X;� = Q
t
���) �Qt

: (18)

Proof: By the chain rule for derivatives, we have

@ ln f���(���)(x)

@���
=

@���

@���

t
@ ln f���(x)

@���

which when substituted in the definition ofJ(X;���) (4) results in
(17).

We now define a linear model relating the estimated parameters���

with their measurementsXXX andYYY : Let the random vectorNNN 2 Rn

have some joint densityfNNN , and letQ andP be somem� � n and
my � n matrices, respectively, wherem� � my � n: Let ��� 2 Rm

be a vector of parameters, and consider the linear model

XXX = Q
t
� ��� +NNN and YYY = P �XXX (19)

whereXXX 2 Rn andYYY 2 Rm :

Lemma 5: For the model in (19)

JJJ(XXX; ���) = QJJJ(NNN)Qt and JJJ(YYY ; ���) = QP
t
JJJ(PNNN)PQt (20)

whereJJJ(NNN) andJJJ(PNNN) are then� n and themy �my FI matri-
ces under a translation parameter (8) of the vectorsNNN and PNNN ,
respectively.

Proof: Let � = Qt���: Using Lemma 4 we have

JJJ(XXX; �) = JJJ(�+NNN ; ���) = QJJJ(�+NNN ;�)Qt = QJJJ(NNN)Qt

where the last equality follows from the definition of FI under a
translation parameter (8). The expression forJJJ(YYY ) follows similarly.

Lemma 6: For the model in (19)

JJJ(XXX; ���) � JJJ(YYY ; ���): (21)

Proof: The inequality follows from the data processing inequal-
ity (16) sinceYYY = PXXX:

Lemmas 5 and 6 above imply three inequalities regarding the effect
of linear transformation on the FI under translation:

Corollary 1:
a) For anym� n matrix A and random vectorNNN 2 Rn

A
t
JJJ(ANNN)A � JJJ(NNN): (22)

b) For anym � n matrix � with orthonormal rows, i.e.,��t =

Im�m
�

= them �m identity matrix, and anyNNN

JJJ(�NNN) � �JJJ(NNN)�t
: (23)

c) For anym�n matrixA with a full row rank, and random vector
NNN 2 Rn with nonsingular FI matrixJJJ(NNN)

JJJ(ANNN) � (AJJJ(NNN)�1At)�1 (24)

with equality if m = n or if NNN is Gaussian.

Remark: Inequality (24) was shown in [13] and [16] for the case
where the components ofNNN are statistically independent.

Proof:

a) Assumem� = 1: Combining (20) and (21) implies

Q � [JJJ(NNN)� P
t
JJJ(PNNN)P ]Qt

� 0

for any1�n� vectorQ: This implies that the inner difference
is a nonnegative definite matrix.

b) Substitutem� = my = m and Q = P = � in (20), use
��t = Im�m, and substitute in (21).

c) Substitutem� = my = m; P = A, and

Q = (AJJJ(NNN)�1At)�1AJJJ(NNN)�1

in (20), and substitute in (21) to obtain the inequality. The
sufficient conditions for equality follow from (9) and (10),
noting thatCOV (AN) = ACOV (N)At: See Proposition 3
in the next section for a necessary and sufficient condition for
N1 � � �Nn statistically independent.

In the model above the vectorNNN was arbitrary. We now specialize
to a vector withindependent componentsand give our main result.

Theorem 1 (FII): Let N1 and N2 be statistically independent
random variables. Then

J(N1 +N2) � (J(N1)
�1 + J(N2)

�1)�1 (25)

with equality if N1 and N2 are Gaussian. The inverse of the
left- and right-hand sides of (25) are equal to the CRB’s when a
single parameter� is estimated fromX1 +X2 and from(X1;X2),
respectively, whereXi = �i� + Ni and

�i = 1�
J(Ni)

J(N1) + J(N2)
; i = 1; 2:

Proof: SinceN1 andN2 are independent,JJJ([N1; N2]) is a2�2
diagonal matrix whose diagonal elements areJ(N1) and J(N2):
Hence the inequality and the equality condition follow by substituting
m = 1; n = 2; andA = [1; 1] in (24).

The interpretation ofJ(N1+N2)
�1 andJ(N1)

�1+J(N2)
�1 as

CRB’s can be seen by substitutingP = [1; 1] andQ = [�1; �2] in the
linear model (19), and then using (20) to calculate the corresponding
CRB’s J(X1 +X2; �) andJ(X1; X2; �).

We thus proved that the FII follows from the Fisher information
data processing inequality. Furthermore, the FII corresponds to the
loss in CRB due to “filtering” in a certain linear additive-noise model
for parameter estimation. This loss is due to the non-Gaussianity of
the noise and vanishes if the noise is Gaussian. A certain drawback in
this alternative derivation of the FII is that the necessity of the equality
condition does not follow easily, and requires some additional effort.
See Proposition 3 in the next section.

III. A DDITIONAL RESULTSREGARDING THE MATRIX FORM OF THEFII

For completeness, we review below additional results regarding
the matrix form of the FII, some of which appeared elsewhere. We
start with a convex-matrix form of the FII (11) which was presented
in [12] and [15].

Proposition 1 (Convex-Matrix Form of FII):Let

NNN = (N1; � � � ; Nn)

be a vector with statistically independent components, and� =
f�i;jg be anm�n matrix with orthonormal rows, i.e.,��t = Im�m:

Then

trace fJJJ(�NNN)g �

m

i=1

n

j=1

�
2

i;jJ(Nj): (26)
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In particular, if J(N1) = � � � = J(Nn) = JN , the inequality
becomes(1=m) trace fJJJ(�NNN)g � JN , since the orthonormality of
the rows implies

n

j=1

�
2

i;j = 1; for i = 1 � � �m:

Proof: SinceNNN is an independent vector, the matrixJJJ(NNN) is
diagonal

JJJ(NNN) = diag [J(N1); � � � ; J(Nn)]:

Thus thei; ith component of the matrix�JJJ(NNN)�t in the right-hand
side of (23) is given by

n

j=1

�
2

ijJ(Nj):

Taking the trace of both sides of (23) results in (26).

We turn to a convex-matrix version of the Entropy-Power Inequal-
ity (EPI) which also appears in [12] and [15].

Proposition 2 (Convex-Matrix-EPI):LetNNN and� be as in Propo-
sition 1 above. Then

h(�NNN) �

m

i=1

n

j=1

�
2

i;jh(Nj) (27)

whereh(�) denotes (joint) differential entropy.
Proof: The proof is based on the convex-matrix form of the FII

in Proposition 1 and the De-Bruijn identity, and follows the line of
the proof of Theorem 7 in [8, p. 1509].

From (27) it is easy to obtain the matrix form of the EPI presented
in [16]; see also [12] and [15].

We end this section with a special case of (24), regarding a linear
transformation of anindependentvector, for which we can prove a
necessaryand sufficient condition. The proof can be found in [13].

Proposition 3 (Necessary and Sufficient Condition for Equality in
the Matrix-FII for an Independent Vector):LetA be anm�n matrix
m � n: Let IR(A) denote the set of indicesj 2 f1 � � �ng for
which nj is uniquely determined byAnnn, and letI0(A) denote the
set of indices of the all-zero columns ofA: Assume thatNNN 2 Rn

is a random vector with independent components, each having finite
FI. Then, inequality (24),JJJ(ANNN)�1 � AJJJ(NNN)�1At, holds with
equality if and only ifNj is Gaussian for allj 62 IR(A) [ I0(A):

The necessary condition of Proposition 3 asserts that thejoint
FI can be used as a “contrast” (or “objective”) function for blind
deconvolution/signal separation [5], [9].

Clearly, ifm<n andA does not have all-zero columns, then there
is at least one indexj not in IR(A): We thus have the following
corollary of Proposition 3.

Corollary 2 If them�n matrixA does not have all-zero columns,
and N1 � � �Nn are independent and identically distributed (i.i.d.)
random variables withJ(Ni) = JN , thenJ(ANNN)�1 � J�1N AAt,
with equality if and only ifm = n or theNi’s are identical Gaussians.

IV. PARAMETER ESTIMATION FROM PREFILTERED MEASUREMENTS

Some insight into the problem of parameter estimation in the
presence ofnon-Gaussianmeasurement noise can be gained by
investigating the properties of the FI in the modelXXX = Qt���+NNN and
YYY = PXXX; ��� 2 Rm ;XXX;NNN 2 Rn;YYY 2 Rm given in (19). In many
practical situations, a large number of noisy measurementsX1 � � �Xn

is taken to estimate a small number of parameters�1 � � � �m: For

example, the linear relationXXX = Qt��� + NNN may represent a radar
application, whereX1 � � �Xn are the outputs of ann-element phased
array which observes the targets�1 � � � �m, wheren � m; here the
entry qij of the matrixQ is the (complex) gain of thejth element
towards theith target [11]. Another possible application is that of AR
parameter estimation, where a long “training” sequenceX1 � � �Xn is
modeled concisely by

Xj = �1Xj�1 + � � �+ �mXj�m +Nj ; j = 1 � � �n:

Here qij = Xj�i:

In the applications aboveYYY = PXXX represents a prefiltered
version of the measurements, from which we wish to estimate���:

The matrixP thus represents anoninvertible linear operation. For
instance, we may perform such a prefiltering operation to reduce the
dimensionality and hence the complexity of the (possibly nonlinear)
estimator. See [11], [2], and the references therein. A case of interest
would be when the matrixP is a projection matrix (i.e.,PP t =
Im �m ) whose rows span the row space ofQ (i.e., Q = GP for
somem�m matrixG). This guarantees that in the noisless(NNN � 0)
case,YYY contains the same information about��� asXXX. Furthermore,
it makes sense to assume that the noise samplesN1 � � �Nn are i.i.d.,
and that then columns ofQ have a fixed, say, unit norm, i.e.,

m

i=1

q
2

ij = 18j:

(The latter condition corresponds to a fixed total power gain per each
element in the radar phased array application above.)

Under these quite natural assumptions, one may wonder how does
the quality of the estimation vary withn and with the noise properties,
and how much do we loose (do we?) by applying the projection
operationP prior to estimation.

In order to isolate the effect of the signal-to-noise ratio (SNR)
on the performance, we introduce a noise gain parameter�, and
consider the model

XXX = Q
t
��� + �NNN and YYY = PXXX:

Using Lemmas 5 and 6, and the identityQP tPQt = QQt implied
by the model above, it is easy to prove that for anym� � my � n

JJJ(XXX; ���) =
JN

�2
QQ

t

and

JJJ(YYY ; ���) =QP
t
JJJ(PNNN)PQt

�
JN

�2
QQ

t (28)

whereJN is the FI of the (i.i.d.) noise samples. Furthermore, since

m

i=1

q
2

ij = 1; for j = 1 � � �n

it follows that

n
��2N

�2
� trace fJJJ(YYY ; ���)g � trace fJJJ(XXX; ���)g = n

JN

�2
(29)

where�2N is the variance of the noise, and the lower bound follows
from (10). Equality holds in both inequalities in (29) ifN is Gaussian
(in which caseJN = ��2N ). Furthermore, for any noise distribution,
the right inequality holds with equality ifn = my = m�: Otherwise
the inequalities are strict; see Corollary 2.

One simple implication of (29) is that without prefiltering the
total FI increaseslinearly with the number of the measurements. The
same is true even after projection byP if the measurement noise is
Gaussian. However, for non-Gaussian noise projection causes a loss
of FI whenevermy <n: Thus from the FI/CRB point of view, the
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optimal estimator cannot be decomposed into projection followed by
nonlinear processing.

This phenomena can be explained by the tendency towards Gaus-
sianity of the sum of independent random variables. Projection, which
is a noninvertible linear transformation, makes the residual noisemore
Gaussianand thus less favorable for estimation. A similar phenomena
causesincrease of entropyafter noninvertible filtering [9], [16].

In [14], we suggested another way to interpret (29), namely, as
an accuracy–quantity tradeoff relation. Notice that1=�2 represents
the accuracy (or the resolution) of the measurements. Thus without
prefiltering, keeping the quantity/accuracy productn=�2 fixed keeps
the FI constant. The same is true for a Gaussian noise evenafter
(appropriate) prefiltering, but not true when the noise is not Gaussian.
Thus if prefiltering (projection) is used prior to estimation in the
presence of a non-Gaussian noise,it is better to take few accurate
measurements than many noisy ones.
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Zero-Error Capacity for Models with Memory
and the Enlightened Dictator Channel
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Abstract—We present a general class of zero-error capacity problems
with memory covering known cases such as coding for error correction
and many new cases. This class can be incorporated into a model of
channels with memory, which thus are shown to give a unification
of a multitude of seemingly very different coding problems. In this
correspondence we analyze a seemingly basic channel in this class.

Index Terms—Finite-state channels, independence number, memory,
0-error capacity.

I. INTRODUCTION

A GENERAL 0-ERROR PROBLEM WITH MEMORY

For the spaceZn of words of lengthn over alphabetZ, there are
several interesting graphsG = (Zn; En) with vertex setZn and an
edge setEn reflecting string properties.

Examples are, the strong graph product (Shannon’s product graph)
and the caseZ = f0; 1g with (xn; x0n

) 2 E if and only if (iff) for
no two componentss; t xs = 1 6= x0

s andxt = 0 6= x0

t.
The product space structure makes it particularly interesting to

investigate�(Gn), the maximal size of cocliques, as a function ofn.
Then the coclique of the graph in the first example is Shannon’s well-
known zero-error code and the coclique of the graph in the second
example is the well-known Sperner system or antichain (c.f., e.g.,
[6, Ch. 1]). We propose here a quite general class of such problems,
which we term “0-error1-memory capacity problems,” because they
generalize Shannon’s well-known zero-error capacity problems and
concentrate on a new aspect, namely, memory. Those problems arose
for instance in [2].

Definition We call any pair of words fromZ` a separator and any
setS � (Z`

)
2 of pairs of words of length̀ a set of separators.

For any n � ` we consider the associated graphGn
S

=

(Zn; E(S)n), where (xn; x0n) 2 E(S)n iff for no (s`; s0`) 2 S

there is an index setI = fi1; � � � ; i`g � f1; � � � ; ng with xi = sj ;
x0i = s0j (i1 < i2 < � � � < i`).

In the examples aboveS is symmetric, that is,(s`; s0`) 2 S implies
(s0`; s`) 2 S. Here the graphs can be viewed as undirected graphs.
In the sequel we assume thatS is symmetric. ThusS can be viewed
as a set of unordered pairs of subsequences.

This covers alsot-error correcting codes forS = f(02t+1; 12t+1)g.
.

II. CONSECUTIVE SEPARATING PAIRS

Another associated graphG�
S

= (Zn; E�(S)n) is obtained by
limiting I in the previous definition to intervals inf1; 2; � � � ; ng.
S plays here the role of a set ofconsecutiveseparating pairs of
words of length`. Here the problem is to find a maximalC � Zn

such that for allcn; c0n 2 C there is anf�; �g 2 S and an
i 2 f1; 2; � � � ; n � ` + 1g such that

f(ci; ci+1; � � � ; ci+`�1); (c
0

i; c
0

i+1; � � � ; c
0

i+`�1)g = f�; �g:
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