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Abstract

We consider the problem of estimating a density function from a sequence of

independent and identically distributed observations xi taking value in Rd� The

estimation procedure constructs a convex mixture of �basis� densities and estimates

the parameters using the maximum likelihood method� Viewing the error as a

combination of two terms� the approximation error measuring the adequacy of the

model� and the estimation error resulting from the �niteness of the sample size�

we derive upper bounds to the expected total error� These results then allow us to

derive explicit expressions relating the sample complexity and model complexity

� Introduction

The problem of density estimation is one of great importance in many domains of en�
gineering and statistics� playing an especially signi�cant role in pattern recognition and
regression� There have traditionally been two principal approaches to dealing with den�
sity estimation� namely the parametric view which makes stringent assumptions about
the density� and the nonparametric approach which is essentially distribution free� In
recent years� a new approach to density estimation� often referred to as the method of
sieves ���	� has emerged� In this latter approach� one considers a family of parametric
models� where each member of the family is assigned a 
complexity� index in addition
to the parameters� In the process of estimating the density one usually sets out with
a simple model �low complexity index
 slowly increasing the complexity of the model
as the need may be� This general strategy seems to exploit the bene�ts of both the
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parametric as well as the nonparametric approaches� namely fast convergence rates and
universal approximation ability� while not su�ering from the drawbacks of the other
methods� As has been demonstrated by White ���	� the problem of learning in feed�
forward neural networks can be viewed as a speci�c implementation of the method of
sieves� Barron ��	� has recently studied a density estimator based on sequennces of ex�
ponential families� and established convergence rates� in the Kulback � Leibler measure�
In a related context� very encouraging results have been obtained recently by Barron
concerning the convergence rates for function approximation ��	 and estimation ��	 using
neural networks�

The purpose of this paper is to apply some of Barron�s results ��	 to the problem
of density estimation� We also utilize the general results of White ���	� concerning
estimation in a misspeci�ed framework� deriving upper bounds on the approximation and
estimation error terms� However� rather than representing the density as an arbitrary
combination of non�linearly parameterized functions� as in the function approximation
framework� we demand that the representation be given by a convex combination of
density functions� While this requirement seems rather stringent� it will turn out that
a very broad class of densities can be closely approximated by this model� The main
result is an upper bound on the total error between a target density and a �nite mixture
model estimator� This construction actually permits an interpretation of a broad class
of densities as mixture models� Furthermore� as long as the 
basis� densities belong
to a broad class of densities �the so�called exponential family
 a very e�cient learning
algorithm� known as the EM algorithm� exists ���	�

�From the point of view of density estimation� there are two basic questions of interest�
First� the approximation problem refers to the question of whether the representation
is su�ciently powerful to parsimoniously represent a broad class of density functions�
Assuming the answer to this question is a�rmative �as we demonstrate below
� the
question arises as to whether one can �nd an e�cient estimation scheme� which allows
one to compute the optimal values of the parameters from a �nite set of examples� As
we show� the answer to this question is also a�rmative� From the approximation point
of view� our results can be viewed as an extension of a well known result which we
have traced to Fergusson ��	� stating that any density function may be approximated to
arbitrary accuracy by a convex combination of normal densities� Normal� or Gaussian�
densities appear also� in the approximation literature in the more general form of Radial
Basis Functions �RBF
� This class has been studied extensively in the approximation
literature �see ���	 for instance
� and has found applications also in neural network models
in the form of RBF networks ���	� In the framework we present the approximating class
of densities is not necessarily constituted of the Gaussian type� rather we present the
general functional form of which RBF is a speci�c admissable choice��

Another model �introduced recently in by Jacobs et al� � ���	� termed the mixture of
experts model �MEM
� is motivated by the concept of mixture models� It is demon�
strated �see for instance ���	
 that an e�cient learning algorithm �EM
 is applicable in
this case and results in superior convergence rates and robustness ���	� The results we
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obtain herein� may be applied in the case of the MEM to relate model complexity and
sample complexity� and extend the estimation results to misspeci�ed scanrios �i�e�� when
the data generating probability law is not a subset of the models used to estimate it
�

It should be noted that utilizing the recent results concerning function approximation
��	� it is possible to achieve a representation for density functions� by transforming the
outputs of a neural network into exponential form and normalizing the density appropri�
ately� However� we believe that representing a general density as a convex combination
of densities a�ords much insight as well as giving rise to e�cient learning algorithms
which are not available in the case of neural network models�

The remainder of the paper is organized as follows� We present an exact de�nition of
the problem in section �� relating it to the general issue of function approximation� In
section � we then present some preliminary results which are needed in deriving the main
theorems� Section � of the paper then proceeds to present the theorems concerning the
approximation and estimation error for the convex combination of densities� A speci�c
estimation scheme �
learning algorithm�
 is presented in section �� and compared with
standard approaches used in the neural network literature� A summary of our results�
together with current research directions� is presented in section �� Some of the technical
details are relegated to the appendix� for the sake of coherence of presentation�

� De�nitions� Notation and Statement of the Prob�

lem

The problem of density estimation can be decomposed into two basic issues� The �rst
question is related to the quality of approximation� namely how well can a class of func�
tions approximate an unknown probability density� Assuming the approximation issue
has been addressed� one still has to deal with the question of whether an algorithm exists
to �nd the best approximation� and to characterize the dependence of the algorithm on
the size of the data set� The latter problem is usually referred to as the problem of
estimation�

The problem of density approximation by convex combinations can be phrased as
follows� we wish to approximate a class of density functions� by a convex combination
of 
basis� densities� Let us start clarifying this objective by introducing the following
function classes�

Fc �
�
f j f � Cc�IR

d
� f � ��
Z
f � �

�
��


which is the class of all continuous densities with compact support in IRd� denoted�
In general we can consider a target density to be any unknown� continuous� density�
restricted to some compact domain� where the approximation results are valid� We
de�ne the class of admissable target densities as

Fc�� � ff � Fc j �f ��� s�t� f � � � �g � ��
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This class is composed of all compactly supported continuous densities� bounded below
by some positive constant which we generically denote as �� While this requirement
may seem somewhat unnatural at this point� it is needed in the precise statement of the
theorems stated in section �� Since we will be utilizing the KL divergence �to be de�ned

as a discrepency measure� it is quite natural to consider densities that are bounded from
below� Unless this condition is satis�ed� densities may be arbitrarily close in the L�

metric� while the KL divergence is arbitrarily large �see for example Wyner and Ziv ���	
for a discussion in the context of discrete probability measures
� Having de�ned the
above classes� we note in passing that the following relation holds Fc�� � Fc�

With the class of target densities at hand� we proceed by de�ning the class of 
basis�
densities� which will serve as the approximation building blocks� These 
basis� densities
are then used to build a nested family of convex models� We begin by denoting the class
of continuous densities by

� �
�
� j � � C�IRd
� � � ��

Z
� � �

�
� ��


Recalling our restricted target class Fc�� and considering the characteristics of convex
combinations� we de�ne

�� � f� � � j � � � � �g� ��


Obviously� from the design standpoint� given some apriori knowledge concerning Fc��

characterizing the target density�s lower bound� the densities � � � may be chosen
accordingly� This generic class of densities will now be endowed with a parametric form�

���� �
�
�� � �� j �� �

� ��d�
� � � �

�

�
� � � IRd� � � R� s�t� � � � � �

�
� ��


The motivation for this parameterization will be made below� when we introduce the
approximating class of densities� and discussed further in section �� Notice that �� is
merely ���	�
 normalized in the d�dimensional space� This form of parameterization
formally classi�es the 
basis� densities as members of the scale�location family of den�
sities� We make the parameterization of � implicit by de�ning the 
basis� densities as
f������
g where � � ��� �
� Although we do not specify the exact functional form
of these densities� we consider some possible choices of multidimensional 
basis� densi�
ties� The following two candidates are adapted from the common kernel functions� used
in multidimensional nonparametric regression and density estimation �see for example
���	
�

	 Product kernel � Each �� can be written as a product of d univariate kernels�
In this case� the structure of each kernel usually depends on a separate smoothing
factor in each dimension� i�e � � ���� ��� � � � � �d
� The univariate 
basis� density
may be chosen from a list of common kernel functions such as� the triweight�
epanechnikov� normal etc�

	 Radial Basis Functions � The 
basis� densities are of the form ����	�
 
 ���k �
k	�
� that is a Euclidean norm is used as the metric� In this formulation only one
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smoothing parameter is used in each 
basis� density� This requires a pre�scaling
or pre�whitening of the data� since the 
basis� density function scales equally in
all directions� The formulation can� of course� be extended to handle a vector of
smoothing parameters �like the product kernel case
� In any such case the vector
of parameters remains of dimension O �nd
 where n is the complexity index of the
model� and d is the dimension of the data�

The form of the 
basis� density can be chosen from the list of common kernel
functions� all of which are radially symmetric and unimodal� Such kernels may be
the multivariate Gaussian kernel or the multivariate epanechnikov kernel� endowed
with the Euclidean distance norm�

As noted before� the latter functional class is of particular interest in function approxima�
tion problems in general� and an enormous literature exists� ranging from approximation
theory results �see ���	 and ���	 for some results in the context of neural netwroks
� to
applications� The original proof establishing the universal approximation capability of
convex combinations of Gaussian densities �traced to ��	
 also falls into this category�

We note that ���� � �� � � and ���� � Fc�� �considering a restriction to a compact
domain
� As stated previously� our objective is to approximate the target density by con�
vex combinations of the prede�ned� 
basis� densities� We now de�ne the approximation
class

Gn �

�
f �n j f �n��
 �

nX
i��


i������i
� �� � ���� � 
i � ��
nX
i��


i � �

�
��


so that Gn is the class of convex combinations of parameterized densities consisting of n
components� Note that Gn constitutes a nested family so that

G� � G� � � � � � Gn � � � � � G ��


where G � �Gn� We denote the full set of parameters by �� namely � � ff
ig� f�igg�
Note that the number of parameters in � is proportional to n� which will henceforth be
referred to as the complexity index or model complexity term� This formulation is quite
similar in content to that of �nite mixture models �see for example Titternigton ���	
�
though we take a di�erent approach in de�ning the classes of basis densities� Moreover�
we seek a relationship between the sample size and the complexity of the model� through
the upper bounds on the expected total error�

According to the approximation objective� we wish to �nd values �� such that for any
� � �

d�f� f�
 � � ��


where f� is the value of f �n evaluated at � � ��� Here d�f� g
 represents some generic
distance function between densities f and g� whose exact form will be speci�ed in the
next section� As discussed above� establishing the existence of a good approximating
density f� is only the �rst step� One still needs to consider an e�ective procedure�
whereby the optimal function can be obtained�
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The estimation objectivemay be stated as follows� Given a sample �data
 setDNfxigNi��
drawn from the underlying target density f � Fc��� we estimate a density �fn�N � Gn by
means of maximum likelihood �i�e� maximizing the empirical likelihood
� The follow�
ing step will be to assess the performance of this estimator� We shall carry this out
by de�ning an appropriate metric that will subsequently be used in establishing upper
bounds on the total error� In this work we utilize the Hellinger distance as a measure of
divergence between the target density and the estimator�

In summary then� the basic issue we address in this work is related to the relationship
between the approximation and estimation errors and �i
 the dimension of the data� d�
�ii
 the sample size� N � and �iii
 the complexity of the model class parameterized by n�

� Preliminaries

We devote this section to some technical de�nitions and lemmas which will be utilized
in the following section� where the main results are stated and derived� In order to
measure and discuss the accuracy of the estimation �and approximation
� we must de�
�ne an appropriate distance measure� d�f� g
� between densities f and g� A commonly
used measure of discrepancy between densities is the so�called Kullback�Leibler �KL

divergence �sometimes referred to as relative entropy
� given by

D�f jjg
 �
�
Z
f�x
 log

f�x


g�x

dx� ��


As is obvious from the de�nition� the KL divergence is not a true distance function since
it is not symmetric nor does it obey the triangle inequality� To circumvent this problem
one often resorts to an alternative de�nition of distance� namely the squared Hellinger
distance

d�H�f� g

�
�
Z �q

f�x
�
q
g�x


��
dx� ���


which can be shown to be a true metric �obeying the triangle inequality
 and is partic�
ularly useful for problems of density estimation �see Le Cam ���	
� Finally� for the sake
of completeness we de�ne the Lp distance

dp�f� g

�
�
�Z

jf�x
� g�x
jpdx
���p

���


We quote below without proof three lemmas relating the various distances� These
inequalities will be used in section � in the derivation of the estimation error�

Lemma ��� �Devroye � Gy�orfy� ����
 The Hellinger distance is related to the L� dis�
tance as follows� �

�

�
d��f� g


��
� d�H�f� g
 � d��f� g
� ���


�



Lemma ��� For all densities f and g� the squared Hellinger distance is bounded by the
KL divergence as follows

d�H�f� g
 � D�f jjg
� ���


Lemma ��� For any two strictly positive densities f and g� such that g� f � �	��� the
KL divergence is bounded as follows

D�f jjg
 � ��d���f� g
 ���


Proof� By Jensen�s inequality

D�f jjg
 � Ef log
f

g
� logEf

f

g
� log

Z
f�

g

and upper bound on the logarithm

log
Z
f�

g
�
Z
f�

g
� � �

Z �f � g
�

g
� ��d���f� g
 �

A crucial step in establishing our results is given by the following theorem� which
allows one to represent an Lp�IR

d
 function to arbitrary accuracy by a convolution with
a function � � L��IR

d
� Formally we have �see Petersen ���	
��

Lemma ��� �Petersen� ����� Let � � p 
 
 and let � � L��IR
d
�

R
� � �� Letting

���x
 � ��d��x	�
 �then for any f � Lp�IR
d
 we have �� � f � f in Lp�IR

d
 as �� ��
where

��� � f
�x
 �
�
Z
���x� y
f�y
dy ���


This statement establishes that � is dense in Lp�IR
d
� It is immediately obvious from

Lemma ���� that the only requirement of the function � is that it integrate to unity�
This condition immediately raises the possibility of considering � to be a density func�
tion� which imposes the further condition �allowed by the lemma
 that � � �� Although
Lemma ��� refers to the general space Lp�IR

d
� the result obviously holds also for Cc�IR
d


�for discussion see Adams ��	� ����� pp� �����
� At this point the motivation for the
classes of 
basis� densities is quite obvious� by a correct choice of �� we can approximate
any function in Lp�IR

d
 to any degree of accuracy� in the integral representation� This
continuous representation will later be seen to be merely the limit of a convex combina�
tion of in�nitely many 
basis� densities� The lemma states that for all � � � there exists
a positive constant � � � and some � � � such that

kf �  fkp 
 � ���


for � � p 

� where  f 
 f � ��� Since f is a density function� and both f and �� are
continuous functions� it follows that the integrand of the convolution ���
 is continuous
a�e� and thus from the Riemann theory of integration we have�

�One of the referees has pointed out that this lemma predates the refernece we quote here�
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Corollary ��� The function  f belongs to the closure of the convex hull of ���� � namely
 f �  co���� �

At this point we have shown that any density function can be approximated to ar�
bitrary accuracy by an in�nitely countable convex combination of densities ���x��
 �
��d� ��x� �
	�
� comprising  f � The question arises� however� as to how many terms
are needed in the convex combination in order to approximate  f to some arbitrary � � ��
From Corollary ��� we infer that  f belongs to the closure of the convex hull of the set
of functions ���� � thus we can immediately make use of the following remarkable result
attributed to Maurey and proved for example in Barron ��	� Denoting by kfk� the L�

norm of the function f � we have�

Lemma ��	 �Maurey� Barron ����
 If  f is in the closure of the convex hull of a set
G in Hilbert space� with kgk� � b for each g � G� then for every n � �� and every
c � �b� � k  fk��
���� there is a function f�n in the convex hull of n points in G such that

d���  f � f
�
n
 �

c

n
� ���


Proof Sketch� The main idea of the proof follows from a random coding argument�
Think of the functions as elements in a probability space� and the function in the closure
of the convex hull as the mean �w�r�t� a discrete probability measure
� By application of
Chebychev�s inequality� it is seen that there is a positive probability that any function in
the convex hull and the average of n functions �independently drawn
 are �	

p
n far apart�

Let us now consider the results of Lemma ��� in the context of the approximation
classes de�ned in the previous section� Recall the class Gn which was de�ned as the set
of convex combinations of n points in the convex hull of ���� � By Corollary ��� we have
 f �  co���� � thus restating the result of Lemma ��� we have that for every  f there exists
an approximation f�n � Gn such that

d���  f� f
�
n
 �

c

n
� ���


By Lemma ��� we have� for some �xed accuracy measure � � � and target density
f � Fc�� there exists an  f so that

d���f�  f
 � � ���


where  f is the convolution of f with the kernel function ��� Combining ���
 and ���

we have � by the triangle inequality

Corollary ��� For any f � Fc�� and some �xed accuracy measure � � �� there exists a
convex combination f�n� in the class Gn� such that

d���f� f
�
n
 � �!

c

n
�

�



This result establishes the relation between the approximation error and the number of
terms in the convex combination model� In the following section we shall make use of
this result in the context of the maximum�likelihood estimator� �fn�N � The existence of
an f�n � Gn for every f � Fc�� establishes� in essence� the approximation bound for the
maximum�likelihood estimator�

� Main Results

As we have shown in the previous section� given any � � � one can construct a convex
combination of densities� f � � Gn� in such a way that the squared L� distance between
an arbitrary density f � Fc�� and the model is smaller than � ! c	n� We consider
now the problem of estimating a density function from a sequence of d�dimensional
samples� fxig� i � �� �� � � � � N � which will be assumed throughout to be independent and
identically distributed according to f�x
� Following the de�nition of the approximation
class in eq� ��
� we let n denote the number of components in the convex combination�
The total number of parameters will be denoted by m� which in the problem studied
here is equal to n�d ! �
�

In the remainder of this section we consider the problem of estimating the parameters of
the density through a speci�c estimation scheme� namely maximum likelihood� De�ning
the log�likelihood function

l�xN ��
 �
�

N

NX
k��

log f �n�xk
 ���


where xN � fx��x�� � � � �xNg and f �n�x
 �
Pn

i�� 
i���x��i
� the method of maximum
likelihood attempts to maximize l in order to �nd the optimal �� Denoting the value of
the maximum likelihood estimate by ��n�N we have �by de�nition


��n�N � arg max
�

l�xN ��
� ���


We denote the value of f �n evaluated at the maximum likelihood estimate by �fn�N � Now�
for a �xed value of n� the �nite mixture model� f �n� may not be su�cient to approximate
the density f � to the required accuracy� Thus� the model for �nite n falls into the so
called class of misspeci�ed models ���	 and the procedure of maximizing l should more
properly be referred to as quasi maximum likelihood estimation� Thus� ��n�N is the quasi
maximum likelihood estimator� Since the data are assumed to be i�i�d� it is clear from
the strong law of large numbers �given that the D�fkf �n
 


 that

�

N
l�xN ��
� E log f �n�x
 �almost surely as N �

� ���


where the expectation is taken with respect to the true �but unknown
 density� f�x
�
generating the examples� From the trivial equality

E log f �n�x
 � �D�fkf �n
 ! E log f�x


�



we see that the maximum likelihood estimator ��n�N is asymptotically given by ��n� where

��n � arg min
�

D�fkf �n
� ���


We assume for simplicity that ��n is unique� and denote the value of f �n evaluated at ��n
by f�n �for a detailed discussion see White ���	 and ���	
� In order not to encumber the
text� we have collected the various technical assumptions needed in Appendix 

��

Now� the quantity of interest in density estimation is the distance between the true
density� f � and the density obtained from a �nite sample of size N � Using the previous
notation and the triangle inequality for metric d��� �
 we have

d�f� �fn�N 
 � d�f� f�n
 ! d�f�n � �fn�N 
 ���


This inequality stands at the heart of the derivation which follows� We will show that
the �rst term� namely the approximation error� is small� This follows from Lemma ���
as well as the inequalities presented in section �� In order to evaluate the second term�
the estimation error� we make use of the results of White ���	 concerning the asymptotic
distribution of the quasi maximum likelihood estimator ��n�N � The splitting of the error
into two terms in ���
� is closely related to the expression of the mean squared error in
regression as the sum of the bias �related to the approximation error
 and the variance
�akin to the estimation error
�

A stated in the previous section� Corollary ��� provides us with an existence proof� in
the sense that there exists a parameter value �� such that the approximation error of
the n�term convex combination model ��
 � belonging to Gn � is smaller than � ! c�	n�
Since we are dealing here with a speci�c estimation scheme� namely maximum likelihood�
which asymptotically approaches a particular parameter value ��n� the question we ask
is whether the parameter ��n� obtained through the maximum likelihood procedure� also
gives rise to an approximation error of the same order as that of ��� The answer to this
question is a�rmative� as we demonstrate in the next lemma�

Lemma ��� �Approximation error
 Given Assumption B�	� for any target density f �
Fc��� the Hellinger distance between f and the density f�n� minimizing the Kullback�
Leibler divergence� is bounded as follows�

d�H�f� f
�

n
 � �� !
CF��
n

���


where CF�� is a constant depending on the class of target densities Fc�� and the family
of basis densities ���� � and �� is some predetermined precision constant�

Proof� From Lemma ��� we have that

d�H�f� f
�

n
 � D�fkf�n
� ���


��



Denoting by f�n the value of f �n evaluated at the point ��� and obeying d���f� f
��

n 
 � �!c	n
�for some c � �� known to exist from Corollary ���
� we have

D�f jjf�n

�a�

� D�f jjf�n

�b�

� ��d���f� f
�
n


�b�

� ���! ��
c

n
� ���


where �� � �	� �� is the lower bound on the target density� over the compact domain X�
and the bound is valid by Lemma ��� and Assumption B��
� The inequality �a
 follows
from the fact that f�n minimizes the KL divergence between f and f �n� The second
inequality �b
 follows from ���
 and �c
 follows from Corollary ���� Combining ���
 and
���
 we obtain the desired result

d�H�f� f
�

n
 � �	� !
c	�

n
� ���


with �� 
 �	� and CF�� 
 c	� �

We stress that the main point of theorem ��� is the following� While Corollary ���
assures the existence of a parameter value �� and a corresponding function f�n which
lies within a distance of � ! O��	n
 from f � it is not clear apriori that f�n� evaluated
at the quasi maximum likelihood estimate� ��n� is also within the same distance from f �
Theorem ��� establishes this fact�

Up to now we have been concerned with the �rst part of the inequality ���
� In order
to bound the estimation error resulting from the maximum likelihood method� we need
to consider now the second term in the same equation� To do so we make use of the
following lemma� due to White ���	� which characterizes the asymptotic distribution of
the estimator ��n�N obtained through the quasi maximum likelihood procedure� The
speci�c technical assumptions needed for the lemma are detailed in Appendix 

� A
quantity of interest� which will be used in the lemma is

C��
 � A��
��B��
A��
��� ���


where

A��
 � E
h
rr

T log f �n�x

i
�

B��
 � E
��
r log f �n�x


	�
r log f �n�x


	T

� ���


and the expectations are with respect to the true density f � The gradient operator r
represents di�erentiation with respect to ��

Lemma ��� �White ����
 Given assumptions B�
 � B���
p
N
�
��n�N � ��n

	
� AN ��� C�
 � ���


where AN ��� C�
 should be interpreted as �asymptotically normal with mean zero and
covariance matrix C� 
 C���n

�

��



Finally� we will make use of the Fisher information matrix de�ned with respect to the
density f�n� which we shall refer to as the pseudo�information matrix� given by

I� � E��r log f�n�x
r log f�n�x

T 	 � ���


The expectation in ���
 is taken with respect to f�n� the density f �n evaluated at � � ���

With Lemma ��� in hand we are ready now to derive the main result of this paper�
concerning the expected estimation error for the maximum likelihood based estimator�
in the context of the convex combination model� Denoting expectations over the data
�according to the true density f
 by ED��	� we have�

Theorem ��� �Expected error bound
 For sample size N su�ciently large� and given

assumptions B�
 � B�	� the expected estimation error� ED

h
d�H�f�

�fn�N 

i
to some predeter�

mined accuracy �� obtained from the quasi maximum likelihood estimator �fn�N � is bounded
as follows�
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where m� � Tr�C�I�
 with C� and I� given in eq� ��
� and ���� respectively�

Proof� See Appendix A�

At this point we make several comments� regarding the result of the theorem� and
draw attention to some points which have been temporarily overlooked in the process of
derivation�

Remark ��� The three terms on the right hand side of eq� ���
 may be interpreted
as follows� The accuracy measure � results from the lower bound � on the parameter
� in ��� which restricts the approximation power of the family ���� � The second term
is a direct result of Lemma ��� concerning the degree of approximation obtained by the
class �� These two terms together constitute the approximation error� Finally� the third
term results from the estimation error of the maximum�likelihood estimator�

Remark ��� For n su�ciently large� the matrix C� converges to the inverse of the 
true
density� �i�e�� the approximation term becomes negligble
 Fisher information matrix�
which we shall denote by I����
� and the pseudo�information matrix� I�� converges to
the Fisher information I��
� This argument follows immediately from Lemma ���� which
ensures the convergence of the misspeci�ed model to the 
true�� underlying density �to
the � speci�ed accuracy
� Therefore their product will be of order m� where m denotes
the dimension of the parameter vectorm 
 n�d!�
� The bound on the estimation error
will therefore be given by
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Otherwise� the trivial bound on TrfC�I�g is only O�n�d�
�
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Remark ��� The optimal complexity index n may be obtained from eq� ���


nopt �
�
CF��N

d

����
���


where d is the dimension of the data in the sample space�

Remark ��� The parameter m� may be interpreted as the e�ective number of param�
eters of the model� under the misspeci�cation of �nite n� This parameter correlates the
misspeci�ed model�s generalized information matrix C�� with the pseudo�information
matrix related to the density f�n� so that the e�ect of misspeci�cation results in a mod�
i�cation in the number of e�ective parameters� We have argued that if n is su�ciently
large� the number of parameters is given bym 
 n�d!�
� which is exactly the number of
parameters in the model� This result is related to those obtained by Amari and Murata
��	� in a similar context� However� the latter authors considered the Kullback�Leibler
divergence� and moreover did not study the approximation error�

Remark ��	 How is the estimation a�ected by the dimensionality of the data" Obvi�
ously� the parameter m�� which was observed to be the e�ective number of parameters�
is proportional to d� The bound obtained in ���
 makes this relation more transpar�
ent� However� the so called 
curse of dimensionality� is still an intrinsic part of the
bound� though not quite evident by �rst inspection� The constant CF�� embodies the
dimensionality� giving rise to �xed term which may be exponential in the dimension d�
This is made clear by observing the di�erent sources comprising this constant� namely
d�dimensional integrals due to the norms over the 
basis� densities and the target density
�see Lemma ���
� As a result we would expect that� although the approximation error
converges at a rate of O��	n
� the number of terms in the convex combination which is
actually needed to reach a su�ciently small approximation error� may be exponentially
large in the dimension�

Recall that the � precision term appears in the error bound due to the insu�cient
representational power of the 
basis� functions �due to the bound on �
� Yet� under some
speci�c conditions� this term can be removed yielding a bound which is only dependent
on CF��� and the parameters N�n�m�� Following Barron � Cover ��	 we have

De�nition � The information closure of the approximation class fGng is de�ned as

 G �
�
f � Fc�� j inf

g�G
D�f jjg
 � �

�
���


where G � �Gn�

In other words� the densities in this class can be expressed in terms of an integral
representation� in accordance with the de�nition of  f �see eq� ���

�
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Since a target density which is in the information closure of the approximation class
may be approximated to any arbitrary degree of accuracy� we obtain in a similar manner
to Corollary ���� that d�H�f� f

�
n
 � c	n� Applying this result to Lemma ��� we have for

all f �  G
d�H�f� f

�

n
 �
CF��
n

���


where f�n is the density in Gn minimizing the KL divergence� Given a target density in
the information closure of G� and in view of the approximation bound ���
� Theorem
��� may be restated accordingly� The expected error� comprised of the approximating
error and the estimation error� will� under this assumption� be upper bounded by�
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An alternative statement of the main result can be made by application of the Chebychev
inequality to yield a bound in probability as follows�

Theorem ��� Suppose assumptions B�
 � B�	 hold� Then for any � � �� �� � � and N
su�ciently large� the total error� d�H�f�

�fn�N
 �where �fn�N is the quasi maximum likelihood
estimator� is bounded as follows�

d�H�f� �fn�N 
 � �� !
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with probability �� ��
The matrix C� is the asymptotic covariance matrix de�ned in Lemma ���� I� is the
pseudo information matrix de�ned in eq� ����� and �� is the resolution parameter which
may be set to zero if the target density belong to the information closure of G�

Proof See Appendix A�

� Learning Algorithm

Having established the global error bound� eq� ���
� we devote this short section to the
�nal subject of interest� namely a learning algorithm which allows the parameters of the
model to be estimated in an e�cient manner� As we have shown in Theorem ���� the
maximum likelihood estimation procedure can lead to e�cient asymptotic estimation
bounds� However� in order to compute the parameter values resulting from maximum
likelihood estimation� one needs an e�cient procedure for calculating the maximum of
the likelihood function for any sample size� We shall focus on an iterative estimation
procedure �rst formalized by Dempster et al� ��	 and termed by them the expectation
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and maximization algorithm �EM
� The EM algorithm in the context of mixture density
estimation problems has been studied extensively since its formal introduction and has
been at the heart of several recent research directions� Since the learning algorithm is
not the main focus of this work� we content ourselves with a few brief remarks concerning
the EM algorithm� referring the reader to the literature for a detailed discussion of the
algorithm �see for example ���	 for a comprehensive review� and ���	 for an interesting
recent contribution
�

In order to apply the EM algorithm to our problem� we �rst need to �x n� the number
of components in the mixture� This can be done using the asymptotic approximation
given in eq� ���
 and any a�priori knowledge about the constant c� We now wish to esti�
mate the parameters of the model according to the method of maximum likelihood� and
thus seek a point � � # �the parameter space
 which is an extremum �local maximum

of the likelihood function� The likelihood equation� in the case of mixture models� is typ�
ically a complicated nonlinear function of the parameters� and thus requires an iterative
optimization technique� in search of the maximum likelihood estimate point� However�
it turns out that as long as the basis densities �� belong to the class of exponential
densities� the EM algorithm gives rise to a very e�cient estimation scheme ���	� One of
the attractive features of the algorithm is its global convergence �i�e� convergence from
any initial condition
� While the rate of convergence of the algorithm is still a matter
of debate� there seem to be indications that in certain cases the convergence is in fact
superlinear�

It is useful in this context to draw attention to an obvious implementation of density
estimation using a neural network� transforming the output by an exponential func�
tion and normalizing appropriately� thus transforming the output into a density� Such
a model would obviously be capable of approximating a given density to any accuracy
�given the universal approximation power of neural nets
 and following the recent results
of Barron ��	 regarding the degree of approximation characteristic of sigmoidal neural
nets� an approximation bound could be derived� Since an EM algorithm is not avail�
able in the case of general function approximation� one would need to resort to some
gradient�based procedure� such as conjugate gradients or quasi�Newton methods� While
these procedures have some desirable theoretical attributes� they seem to scale more
poorly with the complexity of the problem �expressed through the input dimension d
and number of components n
� and are often very sensitive to numerical errors�

As a �nal comment concerning learning we note that an entirely satisfactory approach
to estimation in the context of convex combinations of densities would adaptively esti�
mate the required number of components� n� without any need to assign it some prior
value� In fact� such an adaptive scheme has been recently proposed and studied by
Priebe ���	 in the context of density estimation� While Priebe was able to prove that the
algorithm is asymptotically consistent� it seems much harder to establish convergence
rates�
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	 Discussion

We have considered in this paper the problem of estimating a density function over a
compact domain X� While the problem of density estimation can be viewed as a special
case of function estimation� we believe that by constraining the study to densities �im�
plying non�negativity and normalization of the functions
� much insight can be gained�
Speci�cally� the problem is phrased in the language of mixture models� for which a great
deal of theoretical and practical results are available� Moreover� one can immediately
utilize the powerful EM algorithm for estimating the parameters�

While we have restricted the mathematical analysis to continuous densities� so that the
theory of Riemann integration can be used� we believe that our results can be extended
to more general scenarios� We have been able� using Theorem ���� to present an upper
bound to the error of the maximum likelihood �functional
 estimator�

Barron ��	 has recently presented upper bounds on the same quantity� in the context
of function approximation� using an entirely di�erent approach based on complexity
regularization by the index of resolvability ��	� In this latter approach� one considers
a �nite covering of the parameter space� which allows one to de�ne a new complexity
limited estimator based on minimizing the sum of the log likelihood function and a
complexity term� related to the size of the covering� An astute choice of complexity
term then allows Barron to obtain an upper bound on the estimation error�

As opposed to Barron we have not added any complexity term� but rather used the
results of White �����
 concerning misspeci�ed models� together with the preliminary
approximation �Lemma ���
 and degree of approximation �Lemma ���
 results� to obtain
the required upper bounds� No need to discretise the parameter space� as has been done
by Barron� is required in our approach� Furthermore� the approach of Barron ��	 gives
rise to an extra factor of logN in the second term on the rhs of eq� ���
� making
our bound in fact tighter� We believe the reason for this extra tightness in our case is
related to the fact that White�s results yield the exact asymptotic behavior of the quasi
maximum likelihood estimator� In Barron�s approach� however� a rather general form
for the complexity function is used� which does not take into account the speci�c details
of the estimation procedure�

Note� however� that the results we obtain concerning the approximation error� contain
an extra factor of �� which although arbitrarily small� cannot be set to zero due to
Lemma ���� Moreover� unlike Barron�s results ��	 we do not prove the consistency of the
estimator� and merely give upper bounds on the total error� The main contribution of
this work is the upper bounds on the total error between a �nite mixturemodel estimator�
and an admissable target density� The issue of consistency can be approached using the
method of sieves as in ���	 and ���	�

We believe that our results concerning the estimation error are not restricted to density
estimation� and can be directly applied to function estimation using� for example� least�

��



squares estimation and the results of White ���	 w�r�t� non�linear regression � In this
context� we recently established upper bounds in the context of functional estimation
using the mixture of experts model ���	� These bounds are derived in the framework of
non�linear regression and utilize the results of White ���	�
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A Proof of Main Theorems

We present the proof of the main theorem�
Proof of Theorem ���� The proof proceeds by using �rst order Taylor expansion with
remainder� applied to the Hellinger distance� Expanding around the point �� we have�
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Denoting $� � ��N � ��
 and performing a �rst order binomial approximation one
easily �nds that
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where the order of the remainder follows from the results of Lemma ���� Denoting
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and by taking expectation with respect to the data ED��	 we have the following expression
as an approximation to the estimation error
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where the matrix I� may be interpreted as the pseudo�information matrix� taken with
respect to the density f�n� In order to evaluate the expectation term� we use Lemma ����

$� � AN���
�

N
C�


from which we infer that
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where m� � Tr�C�I�
� Finally� using Theorem ��� and the triangle inequality� eq� ���
�
we have
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Proof of Theorem ��� The proof follows from Chebychev�s inequality�
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The �rst moment of the squared Hellinger distance � between f�n and �fn�N 
 was esab�
lished in eq� ���
� thus by applying the triangle inequality and utilizing the bound on
the approximation error the result follows� The variance follows from the statistical
properties of the asymptotic expansion which yields a quadratic form of Gaussian r�v��s�
as given by the expression in eq� ���
� We omit the derivation of the variance expres�
sion and refer the reader to ���	� where the fundamental properties of quadratic form of
normal variables are studied� Plugging the moment expressions in eq� ���
 we have the
result� ��

B Technical Assumptions



 This appendix contains a list of the various assumptions needed in the proofs of the
theorems in Section �� Assumptions B���B�� are simple restatements of those in White
���	� whose results are utilized throughout the paper� Since we are concerned in this
paper only with Riemann�Stieljes integration over compact domains� we have simpli�ed
somewhat the technical requirements appearing in White�s paper� Assumption B�� is
essential for the proof of Theorem ���� In essence� this assumption ensures that the
target function� as well as the approximant f �n are positive� and greater than some
threshold �� so that the bound given in Lemma ��� is applicable� The precise details of
which assumptions are needed for proving each theorem� appear in the statement of the
theorems in Section ��

Assumption B�� The random variables fxigNi�� whose density is estimated� are in�
dependent and identically distributed according to a probability density f�x
� where
x � X � Rd�

Assumption B�� Each member of the family of densities f �n�x
� is piece�wise con�
tinuous for each value of the parameter � taking values in a compact subset� #� of
p�dimensional Euclidean space�

��



Assumption B�� �a
 E�log f�x
	 exists and j log f �n�x
j � m�x
 for all � � #� where
m�x
 is integrable with respect to f � �b
 E�log�f	f �n
	 has a unique minimum at �� in
#�

Assumption B�� � log f �n�x
	��i� i � �� �� � � � � p� are integrable functions of x for each
� � # and continuously di�erentiable functions of � for each x � X�

Assumption B�	 j�� log f �n�x
	��i��jj and j�f �n�x
	��i � �f �n�x
	��jj� i� j � �� �� � � � � p
are dominated by functions integrable with respect to f for all x � X and � � #�

Assumption B�� �a
 �� is interior to #� �b
 B���
 is nonsingular� �c
 �� is a regular
point of A��
� namely A��
 has constant rank in some open neighborhood of ���

Assumption B�
 The convex model f �n � Gn obeys the � positivity requirement for
a su�ciently large complexity index n� Equivalently� �n� s�t� �n � n� we have
infx�X f �n�x
 � ��
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