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Infinite Electrical Networks: A Reprise

A. H. ZEMANIAN, FELLOW, IEEE

Abstract —This is a tutorial paper on resistive infinite electrical net-
works presented at an undergraduate level. Rather than being a compre-
hensive survey on the wide variety of results existing in this subject, it
introduces the basic ideas with several examples and puzzles, examines
how the theory branches into two separate avenues of investigation, points
out how infinite networks differ in their behavior from finite networks, and
ends with a brief survey of the literature. No apology is offered for several
cheeky remarks.

1. A TALE AND A MORAL

NCE UPON A TIME, an electrical engineer set out
to discover the value of the driving-point resistance R
between two adjacent nodes a and b in an infinite resistive
square grid of 1-Q resistors shown in Fig. 1(a). He fulfilled
his quest as follows: He first connected one of the termi-
nals of a 1-A current source to node a and the other
terminal to infinity, as shown in Fig. 1(b). (He reached
infinity through some magic he happened to have at hand
—this is a fairy tale.) That source current was directed
toward node a. The engineer found that the 1 A split up
evenly into 1/4-A currents flowing away from node a
through the four grid branches incident to node a. This
was to be expected because the grid was symmetric around
node a. Next, he removed that current source and con-
nected another 1-A current source between node b and
infinity, but this time he directed the source current away
from node b, as shown in Fig. 1(c). This resulted in a
1/4-A current flowing toward node b in each of the grid
branches incident to b. He knew from the superposition
principle that, when both sources were connected simulta-
neously, the current in the branch between a and b would
be the sum of the currents occurring when each source was
connected all by itself, that is, 1 /2 A would flow, as shown
in Fig. 1(d). Moreover, the simultaneous connection would
both inject and extract 1 A at infinity; therefore, he
concluded, the connection at infinity could be removed
and the two 1-A sources could be combined into the single
1-A source shown in Fig. 1(d). Thus with the latter connec-
tion, a potential of 1/2 V would appear across the branch
between nodes a and b, by virtue of Ohms law. In this
way the engineer determined that R=1/2 Q.
“Suddenly, a mathematician appeared. “Stop,” said he,
“You can’t do that.”
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“What do you mean I can’t do that,” retorted the
engineer, “I just did.”

“Look,” said the mathematician, “if you're going to
determine node voltages in a network by connecting cur-
rent sources out to infinity, you’ve first got to tell us what
the potential at infinity is. Moreover, your 1-A current
source from infinity to some node is a discrete version of a
1-A current injection into an infinite uniform conducting
plate; for the latter the potential function is proportional
to log », where r is the radial distance from the point of
current injection. Now, I’'ve got some bad news for you,”
continued the mathematician, “ The logarithm function has
an infinite range. So, if you take the potential at infinity to
be zero or, for that matter, any finite value, then any node
you might point to will have an infinite potential. What
you've really done is the following: With the first current-
source connection to infinity, you have subtracted an
infinite potential at node & from an infinite potential at
node a to get a finite voltage drop between those nodes; in
short, you’ve written oo —oc=1/4. Similarly, with the
second current-source connection to infinity, you have
again obtained tacitly oo — 00 =1/4. Finally, appealing to
superposition, you have added those two equations to
obtain oo — 00 =1/2. You can’t do that.”

At a loss for a better response, the engineer shifted the
argument. “Look, if we engineers stopped whenever you
mathematicians told us to stop, we’d never get anything
done. After all, it was our rockets that reached the moon,
and they would never have been launched if we had to
“prove” everything we did.”

“Oh really? Tell me about the space shuttle,” the mathe-
matician shot back and then disappeared in a puff before
the rejoinder could be made that it was an engineer who
warned of the shuttle’s problem.

Now, it happens that R=1/2 is the “right answer.”
This can be seen by setting up (or simulating on a com-
puter) a large finite square grid of 1—  resistors, connect-
ing a 1-A current source across a central branch, and then
noting that the voltage drop across the branch gets closer
and closer to 1/2 as the grid is made larger and larger.
Engineers “knew” this fact through their symmetry argu-
ment, faulty though it may be for mathematicians, while
mathematicians “proved” it through a formal justification,
fussy though it may be for engineers.

The moral of all this—at least for engineers—is that it
really does not matter how heuristic one’s reasoning is so
long as the right answer is obtained. This remark is not
meant to be either facetious or flippant. It asserts an
important principle of engineering practice. One does not
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(b)
(a) An infinite szuare grid, each branch of which is a 1-Q resistor. The driving-point resistance R between the two

Fig. 1.
adjacent nodes a and

simultaneously and then combined into a single source.

stop just because a theory fails us or a proof is unavailable.
Any argument, any experiment, any hunch that leads to a
worthwhile result is justified by that result. In engineering
research and development, the ends do justify the means.
(We are referring here to engineering methodology, not to
uncthical, immoral, or illegal means.) Of course, more
successes and fewer failures are achieved when hunches are
based upon valid reasoning. The point here is that engi-
neering endeavor is generally quite different from mathe-
matical endeavor.

II. SCIENCE, TECHNOLOGY, AND ENGINEERING

This paper is a tutorial exposition of a mathematical
theory spawned by electrical engineering. Much new math-
ematics has been and continues to be generated by engi-
neering, but this is incidental to engineering’s primary
function. So, let us digress still further to examine briefly
how mathematics—and science as well—relate to engi-
neering,.

Engineering students, having struggled through physics,
chemistry, and calculus during their freshman and sopho-
more years, are well aware of the fundamental roles that
science and mathematics play in engineering. In fact, the
college experience can lead to the view that engineering
is simply applied science. In short, the scientist creates a
theory or the mathematician proves a theorem, and the

is to be determined. (b) A current source injecting 1 A into node a from infinity. () A current
source extracting 1 A from node b and sending it out to infinity. (d)

e situation when both current sources are im

role of the engineer is to apply it somchow to benefit
society; that is, scientists and mathematicians create, soci-
ety consumes, and engineers are the middlemen. Hardly.
Engineering is more than applied science. It also originates
from another source: technology—useful products, struc-
tures, and techniques often empirically developed and not
necessarily derived from scientific comprehension. (We
shall henceforth use the word “technology” in this particu-
lar way.)

The flowering of science has occurred only during the
last two or three hundred years, although its roots are
considerably older—extending back about two or three
millenia to its origins in the Middle East, India, and
China, with incipient activities in other parts of the world
such as Mesoamerica. Technology, on the other hand is
older, indeed, very much older. A technological revolution
occurred ten thousand or so years ago with the domestica-
tion of plants and animals, the development of agriculture,
and the consequent rise of civilizations. However, technol-
ogy is even older than that. Its roots are lost in prehistory,
and archeologists tell us that technological artifacts date
back to the evolutionary beginnings of humankind. Stone
toolmaking and the controlled use of fire are just two of
the attributes that set human beings apart from all other
forms of life. In fact, some argue that there is a strong link
between primitive technology and human evolution. (See
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[23] or [30]). For instance, the opposable thumb enabled
the handling of tools, and reciprocally the development of
tools bestowed an evolutionary advantage upon the oppos-
able thumb; so, tools and thumbs were symbiotic during
the genesis of homo sapiens. More generally, a technologi-
cal imperative, which is characteristic of human behavior,
is an evolutionary heritage dating back perhaps many
hundreds of thousands of years—or so the speculation
goes.

Engineering derives not only from science but also from
technology, and the impact of the latter should not be
slighted. For example, the structural arch was used ubiqui-
tously in Roman architecture without the Romans know-
ing the science of solid mechanics. More recent examples
are the typewriter, the mechanical clock, and the bicycle.
These were not designed from theoretical learning. Tinker-
ers, innovators, and inventors exploited practical workshop
techniques to produce them as well as many other goods
for which we now credit science.

The importance of empirical technological development
is masked by the current prominence of high technology,
which depends so heavily upon science. Electrical engineer-
ing students study Maxwell’s equations but hear only
anecdotes about Thomas Edison, who contributed so much
to the initiation of the electrical industry. This is as it
should be, for modern engineering practice requires scien-
tific knowledge but hardly the history of inventions.
Nonetheless, engineering students should be aware that
many latter-day Edisons are contributing a steady stream
of trial-and-error improvements without making sophisti-
cated scientific analyses, that indeed inventiveness is cru-
cial to engineering advancements but is not and probably
cannot be taught in a formal way.

The purpose of these remarks is to emphasize the differ-
ence between engineering and science. Engineering has its
own distinctive objective and should not primarily be
Jjudged as a science. The goal of science may be succinctly
stated as the creation of new knowledge, whereas the aim
of engineering is to utilize science and current technologies
in order to design and improve new technologies. Those
distinctive goals, the creation of knowledge and the devel-
opment of technology, should not be confused. However,
the interaction between science and mathematics on the
one hand and engineering on the other has become so
strong that these disciplines have become intertwined and
in certain ways indistinguishable. For example, engineer-
ing is continually spawning new science and mathematics.
Much of engineering research, especially in academia, is
aimed at the creation of the science and mathematics that
nourish engineering advancements. Indeed, mathematical
and scientific endeavor is now an integral part of engineer-
ing. Unlike engineering in general, this activity should be
held to the same standards that the sciences and mathe-
matics impose upon themselves.

In particular, when an engineer publishes a “theorem”
in an engineering journal, he purports to be doing mathe-
matics and his theorem should be subjected to the criteria
of rigor and proof that mathematics requires. The argu-
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ment that o0 — o0 =1/2 remains mathematically invalid,
even though it may in some context be useful and war-
ranted by its end result. In the prior section that end result
was a fairly convincing argument that R=1/2, so con-
vincing in fact that one is surely justified in basing an
engineering design upon it and relying upon a testing
program to make sure that the design truly works.

The theory of infinite electrical networks is an example
of mathematics spawned by engineering. It is not in the
mainstream of either mathematics or engineering. The
subject seems to be too much like electrical engineering to
attract mathematicians and too much like mathematics
to attract engineers. Nonetheless, it has been steadily de-
veloping, it is accessible to anyone with a knowledge of
circuit theory and some elements of functional analysis,
and, most importantly, it does have practical applications.
The rest of this paper explains various parts of the subject
at an undergraduate level of exposition. So, with no fur-
ther apology, let us now plunge into the thicket of infinite
electrical networks.

II. TueMm

They are all around us. We just haven’t been paying
attention. Mathematicians allude to them with a fancy
name: “the exterior problem.” Indeed, there are a variety
of partial differential equations, such as Poisson’s equa-
tion, the heat equation, the acoustic wave equation, and
polarized forms of Maxwell’s equations, whose finite-dif-
ference approximations are realized by electrical networks.
So, if the domain at hand is infinite in extent, then a
discretized analysis leads to an infinite electrical network.

For example, a current area of research is the
computer-aided determination of the capacitance coeffi-
cients of VLSI interconnection wires. A typical model
consists of several wires of various shapes above a grounded
conducting plane, which represents the semiconducting
chip. Laplace’s equation is to be solved in the infinite
region between the wires and above the conducting plane,
when particular electrical potentials are assigned to the
wires. Analytical solutions are available only for the sim-
plest geometries (e.g., a single, infinitely long wire with a
circular cross section). In fact, a numerical analysis must
be used for virtually every practical model. The discretiza-
tion required by the numerical analysis leads to an infinite,
purely capacitive network [59]. The latter can be treated as
a purely resistive network just by changing the meaning of
the symbols. In that network, the ground plane is repre-
sented by an infinite node, that is, by a node having an
infinity of incident branches. The conventional approach
to this problem truncates the infinite network into a finite
one by introducing an artificial grounded boundary sur-
rounding all the wires but at some distance away from the
wires. However, this introduces a truncation error. It would
be better if the infinite network could be solved directly.
This has recently been accomplished [59], and in fact the
computations required by the infinite-network solution are
considerably fewer than those needed by a reasonably
accurate, finitely truncated network.
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Another example is provided by the resistivity method
of geophysical exploration, in which a large electrical cur-
rent is injected into and extracted from the earth and the
resulting potentials along the earth’s surface are measured.
The domain is now the semi-infinite region below a hori-
zontal plane (the flat-earth model), and Laplace’s equation
again governs the phenomenon. Once again, a discretized
analysis calls for a solution to an infinite resistive network
[61}, [62]: In the same way, the flow of petroleum from the
carth into the bottom of an oil well can be represented by
the flow of current in an infinite spherical grid of resistors
[63]. As a final example, consider an electromagnetic
method of geophysical exploration where a polarized elec-
tromagnetic wave is radiated into the earth. In this case,
the appropriate model is an infinite RLC network [56].

There is a good reason to view infinite electrical net-
works as practical models of important problems and,
therefore, as comprising a compelling research area. To be
sure, the jump in complexity from finite networks to
infinite ones is comparable to the jump in complexity from
finite-dimensional spaces to infinite-dimensional spaces.
On the other hand, the theory of infinite electrical net-
works is still in its puberty with many questions largely
unexplored, especially with regard to computational prob-
lems. As compared to the networks research currently
being applied to other areas, such as nonlinear, distributed,
large-scale, active, or digital finite networks, the amount of
effort being expended on infinite networks is meager.
Infinite networks deserve better attention. Let’s take a
closer look at them.

IV. SoME PRECISE DEFINITIONS

We start with a definition of a finite electrical network.
With this in hand, we can examine the peculiar problems
that can arise in formulating the idea of an infinite electri-
cal network. The mathematical style we now adopt will last
only through this section. The rest of the paper will be
presented in a manner more common to engineering.

A finite electrical network is a finite graph upon which
an analytical structure has been imposed. The graph is
defined as the pair (N, B). N is any finite set, and its
elements are called nodes. We think of the nodes as points
in space, whereas in various applications they could repre-
sent other ideas, such as places where wires are connected
together in electrical circuits, bus or train stations in
transportation networks, atoms in crystalline structures,
and so on. Actually, however, the definition of a graph
does not require any interpretation to be assigned to a
node; it can be simply an abstract entity. Furthermore, B
is a family of unordered pairs of not necessarily distinct
nodes; these pairs are called branches. Thus if n» and m
denote two distinct nodes, then the set {n,m} and the
family {n, n} are both branches. Conventionally, a branch
is visualized as a line connecting the nodal points n and m
or connecting n to itself. Moreover, a “family” is different
from a “set” in these definitions; whereas the elements are
all different from one another in a set, this need not be so
in a family, that is, an element may appear more than once
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Fig. 3. The standard circuit symbolism for the five real numbers as-
signed to branch ;. The branch’s orientation is from top to bottom.

in a family. We shall also denote a branch by the symbol
bj; no two branches will have the same index j, even
among the repetitions of a node pair.

As an example, consider the graph in Fig. 2. The node
set is {ny,n,,n;} and the branch family is {{»,, n,},
{ny, n},{ny n3},{nns},{ny, n;}}. We have designated
those branches by b,, b,, b;, b,, and b;, respectively. A
branch with only one node, such as b,, is called a self-
branch, and branches with the same node pair, such as b,
and b,, are said to be in parallel.

In order to impose an analytical structure, we first
specify an orientation to each branch. Then, each branch
b, is assigned four real numbers: vjs i} €, and h;, which
we refer to, respectively, as the branch voltage, branch
current, branch voltage source, and branch current source.
Each of these quantities are said to be in the direction of
the branch’s orientation if it is positive, and opposite to
that direction if it is negative. Furthermore, a fifth real
number r;, which is now required to be positive, is also
assigned to b, and is called its branch resistance. By
definition, these quantities are related to each other by the
following equation, namely, Ohm’s law.

v+e,=rli,+h). 4.1)
Fig. 3 illustrates the analytical structure of a typical branch
b; using standard circuit symbolism.
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To complete the definition of a finite network, two more
laws are required. The first of these is Kirchhoff’s current
law, which is imposed at every node. Léet n denote a
particular node and let the branches incident to »n be

by, b;,- - -4 b;,.. Then, Kirchhoff’s current law asserts that
K
L +i,=0 (42)
kw1

where the plus sign is used if b, is oriented toward n and
the minus sign is used otherwise.

The second law is Kirchhoff's voltage law, which is
required to hold around every loop of the network. A loop
is a finite alternating sequence of nodes n, and branches
by ”k,’b n,(, " T My s by, My, where each branch is
incident to the two nodes 1mmed1ately preceding and
succeeding it in the sequence and no node appears more
than once in the sequence except for the starting and
ending elements; those two elements are one and the same
node, which appears no place else in the sequence. An
orientation is assigned to every loop by choosing one of
the two ways of tracing through the sequence (i.e., from
left to right or from right to left). For a given loop
Kirchhoff’s voltage law asserts that

M
Yty =0

m=]

(4.3)

where the plus sign is used if the orientations of b, and
the loop agree and the minus sign is used othcrwxse “Since
the network is finite, there are only a finite number of
distinct loops.

Our complete definition of a finite network consists of
the finite graph (N, B), the analytical structure illustrated
in Fig. 3, and the three laws (4.1), (4.2), and (4.3). It can be
proven [37] that every finite network has a unique
voltage—current regime, that is, one and only one assign-
ment of branch voltages and branch currents that satisfy
(4.1) on every branch, (4.2) at every node, and (4.3) around
every loop.

Actually, what has been defined here is a finite resistive
network with independent voltage and current sources, but
no dependent sources nor mutual coupling between
branches. More complicated analytical structures can be
defined for electrical networks by allowing v, i, e;, and
h; to be functions of time or of a complex variable, by
allowing 7, to be zero, negative, or complex, or by replac-
ing r; with a differential or integral operator or some still
more general, linear or nonlinear, time invariant or time
varying, mathematical operator. Furthermore, in our defi-
nition each branch is a two-terminal device, but n-terminal
devices could be allowed; this would complicate both the
constituent relationship (4.1) and the graph-theoretical ba-
sis of the network. We will not allow any of these general-
izations because a discussion of the more complicated
kinds of infinite networks would require a substantial
amount of functional analysis.

Let us turn now to the idea of an infinite electrical
network. A rigorous construction of such a concept leads
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to a series of perplexing choices, the first of them being
just what kind of infinities should be allowed in the
definition of the network’s graph (N, B). To avoid the
formidabilities of uncountably infinite sets, we shall re-
strict N to a finite or countably infinite set of nodes and B
to a countably infinite (not finite) family of unordered
pairs of not necessarily distinct nodes. As before, the
members of N are all distinct. However, any member of B
can appear in B finitely or infinitely many times. Thus an
infinity of parallel branches may occur between a given
pair of nodes.

As for the analytical structure, we begin exactly as
before. Four real numbers v, i e, and h_ and a positive
number ; are assigned to each branch b; and interpreted
in accordance with Fig. 3. The assumpuons imposed up to
this point can be illustrated with infinite-network dia-
grams, examples of which appear in most of the figures of
this paper.

To complete our definition of an infinite electrical net-
work, we need some laws to interrelate the five quantities
of the analytical structure. Unfortunately, Ohm’s law (4.1)
and Kirchhoff’s laws (4.2) and (4.3) are not enough to
yield a unique voltage-current regime, except in certain
trivial cases such as an infinite collection of finite net-
works. We now examine some particular infinite-network
diagrams to illustrate various difficulties that can arise if
insufficient care is taken in the definition of an infinite
electrical network.

V. HIDE AND GO SEEK

Let’s play a game. I'll hide a mistake somewhere in the
next paragraph, and your task is to find it. That a mistake
is there will be obvious, for my argument will lead to a
mathematical absurdity.

Consider the infinite ladder network indicated in Fig.
4(a). The resistance values are understood to extend in-
finitely to the right by continuing the indicated pattern of
numbers. R denotes the driving-point resistance as mea-
sured from the two input terminals on the left. Upper and
lower bounds on R can be obtained by using a basic
principle of purely resistive networks, namely, any driving-
point resistance is a monotone nondecreasing function of
every branch resistance. As a result, R is no less than the
driving-point resistance R, obtained by letting every hori-
zontal resistor in Fig, 4(a) tend to a short circuit. The
limiting network is shown in Fig. 4(b). Specifically, the
voltage drops become confined to the vertical resistors
only, and a parallel connection of an infinity of resistors is
obtained. By the formula for parallel resistances,

1
1 1 1

o+ 100 " 1000 *

The aforementioned basic principle also implies that R is
no larger than the driving-point resistance R, obtained by
letting every vertical resistor in Fig. 4(a) tend to an open
circuit. This confines the current flow to the horizontal
resistors, and we obtain the infinite series circuit of Fig.

R>R,= =9. (5.1)
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Fig. 4. (a) An infinite ladder network. All resistance values are given in
ohms. R is the driving-point resistance as observed from the input
terminals. (b) The infinite paraliel circuit obtained by letting every
horizontal resistor tend to a short circuit. (¢) The infinite scries circuit
obtained by letting every vertical resistor tend to an open circuit.

4(c). Thus

R<Ry=01+001+0.001+ -+ = (5.2)

N-T

Equations (5.1) and (5.2) taken together yield

1
9 5.3
<5 (5.3)
the promised absurdity. What went wrong? Review this
paragraph to see if you can find the flaw, if you have not
found it already. Hint: The given argument is perfectly
correct for finite networks, but now we have an infinite
one.

Here’s the answer: We have tacitly used two different

conditions at infinity. When computing R, we assumed in

effect that there is no connection at infinity between the
upper and lower horizontal portions of the network. This
open circuit at infinity forces the currents to flow through
the vertical resistors of Fig. 4b). On the other hand, when
computing R, we tacitly assumed that there was a short
circuit at infinity, which completed the series connection
of Fig. 4(c). All this shows that at least for some infinite

networks it truly does matter what is occurring at infinity. -

In fact, for Fig. 4(a) we should deal with two driving-point
resistances, R, for the case of an open circuit at infinity
and R, for the case of a short circuit at infinity, Upon
repeating the argument of the last paragraph for each case,
we obtain 9§ R o0 and 0§ R, <1/9. We may say
that “infinity is perceptible” to the observer at the input
terminals of Fig. 4(a).
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This matter can be explained still further by using the
series and parallel rules for combining resistances to write
the driving-point resistance—for both the open-circuit and
short-circuit cases—as the infinite continued fraction

1

01+ T

0.1+ i
0.01+

0.01+
0.001 +

T
0.001+ o

(5.4)

It happens that this is a divergent continued fraction [39,
p- 28). In particular, its odd and even truncations converge
to two different limits. Indeed, if we replace the nth
horizontal resistor in Fig. 4(a) by an open circuit and then
let n — o0, we obtain the odd truncations of (5.4), which
converge to the value R . =9.001--- >9, as can be seen
with a hand calculator. Furthermore, if we replace the nth
vertical resistor in Fig. 4(a) by a short circuit and then let
n— o0, we get the even truncations of (5.4), which con-
verge to R,,=0.1098 --- <1/9.

We should mention that for some infinite ladder net-
works, it does not matter at all whether we have an open
circuit or short circuit at infinity. For example, if we
change every resistance value in Fig. 4(a) to 1 £, we obtain
the infinite continued fraction

1
1
1
1
1+

.

1+
1+
1+

which converges [39, p. 120], that is, its odd and even
truncations both converge to the same limit: (V5 —1)/2.
In this case, infinity is not perceptible to an observer at the
input terminals, in contrast to Fig. 4(a). Moreover, the
argument of the second paragraph of this section now
yields R; = 0 and R, = w0, 50 no absurdity arises despite
the two different tacit assumptions at infinity. In fact, we
now have R, =R, = (V5 —1)/2. In this case, we might
say that “infinity is imperceptible” to the observer at the
input terminals.

One last matter before we leave this section. It seems
intuitively clear that the short-circuit connection for R
can be made at the “ends at infinity” of the two horizontal
portions of Fig. 4(a). However, how can we define the
“ends at infinity” of more general kinds of infinite net-
works? We will need to do this if we are going to specify
what occurs at infinity. This is discussed in Section IX and
in much greater detail in [57].
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V1. THE TROUBLE vhm KIRCHHOFF

Mr. Kirchhoff is capable enough with finite networks,
but he is not too reliable when it comes to infinite net-
works. See how he handles the infinite network of Fig. 5(2)
wherein a 1-V voltage source in series with a 1-Q resistor is
connected to an infinite parallel circuit of 1-& resistors.
The infinite parallel connection should be equivalent to a
short circuit, according to the rule for combining parallel
resistances, and so the voltage v between nodes a and &
should be zero. Hence, the current i through the source
ought to be 1 A, whereas the currents flowing through each
of the purely resistive branches ought to be zero. However,
calculus is unambiguous about the fact that an infinite
series of zeros sums to zero. Therefore, we are led to
conclude that 1 A flows toward node a while 0 A flows
away from it.

Perhaps our supposition that v =0 is wrong; perhaps
v+ 0. If s0, then i=(1—v) A and the current flowing
downward through every purely resistive branch is v A. In
this case, calculus dictates that an infinite series of nonzero
constants o, all identical, is infinite. So, now we have a
finite current flowing toward node a, and an infinite
current flowing away from it.

We have to conclude that Kirchhoff’s current law fails
at node a—and at node b too. Actually, we might blame
the mathematicians who spoiled the calculus with their e’s
and 3’s. In the early days of calculus one could circumvent
the above discrepancy in current flows by working with
quantities that are extremely small (smaller in absolute
value then any positive real number) but are nonetheless
. not zero: namely, the infinitesimals.

For instance, we could approximate our infinite network
by using a large but finitc number n of paraliel 1-Q
resistors, as indicated in Fig. 5(b). Let us now denote the
currents flowing in this finite network by i, o, 7, 3," - -, as
shown. The first subscript » is simply a parameter indicat-
ing the number of purely resistive branches. By Ohm’s law
and Kirchhoff’s laws, v=1/(n+1), i,o=n/(n+1), and
i, ;=1/(n+1) for all j=1,---, n. Moreover, Kirchhoff’s
current law at node a is

in,O - E in,j‘
. 1

There is no problem in passing to the limit as n — 00 on
both sides of this equation; we obtain 1=1 so long as we
sum first and then take the limit on the right-hand side.
However, in passing to the limit for the current 1/(n +1)
in each resistive branch, we have in effect interchanged
these two processes: We have taken the limit and then
summed. This is invalid, for we get 1=0. (It would have
been valid had L. ,i, ; converged uniformly with respect
to all », but this unfortunately is not the case).

But wait; let’s relax a bit. Let’s say that the 1-A current i
flowing toward node a in Fig. 5(a) splits up into an
infinity of infinitesimals and that the sum of those in-
finitesimals is 1. That is, the current in cach purcly resis-
tive branch of Fig. 5(a) is infinitesimally small and yet
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Fig. S. (a) An infinity of 1-Q resistors all connected in parallel with a

ranch having a 1-0 resistor and a 1-V source in series. (b) A finite
network that approximates the infinite network. All resistors are again
18

Kirchhoff’s current law continues to hold. Standard calcu-
lus does not allow this, but there is a nonstandard calculus
that may [32], [35], that in fact rigorously resurrects the
infinitesimals. I have felt for some time that a more
satisfactory theory of infinite electrical networks, which
eliminates the present discrepancy and others of a similar
nature, might be built upon nonstandard analysis. How-
ever, the months—probably years—of effort it would take
me to penetrate the mysteries of nonstandard analysis
would go unrewarded if appreciation by engineers is the
goal, for who would understand a nonstandard network
theory? It is expedient to stay with standard calculus and
to build a theory that at times allows the nonsatisfaction of
Kirchhoff’s current law at an infinite node and (i.e., at a
node with an infinity of incident branches).

Standard calculus also forces at times the nonsatisfac-
tion of Kirchhoff’s voltage law. That law may fail if we try
to apply it to an extended loop, that is, an infinite path
that extends out to infinity in two directions and whose
“ends at infinity” are shorted together. Such a network can
be constructed by taking the electrical dual of Fig. 5(a).
This is shown in Fig. 6. By interchanging voltages and
currents in the arguments given above for Fig. 5(a), one
can show that Kirchhoff’s voltage law cannot be satisfied
around that extended loop if all resistance values are 1 §.

However, it is not true that Kirchhoff’s current law is
never satisfied at an infinite node and that Kirchhoff’s
voltage law is never satisfied around an extended loop. A
theory in which these laws do hold at certain infinite nodes
and around certain extended loops exists [41), [44], [57]
and will be described briefly in Section IX.
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1A
1Q 19 10 18 18

Fig. 6. An extended kxx consisting of an infinity of 1-@ resistors all
connected in series with a branch havi;gin: 1-Q resistor and a 1-A
source in parallel. The network extends infinitely to the left and to the
right and 1ts “ends at infinity” are shorted together. Kirchhoff's voltage
law cannot be satisfied around this extended loop.

VII. Two Roaps DIVERGED

As yet, we have not indicated any method for determin-
ing a branch current in an infinite network. Here’s one
method that almost always works: Just guess!

For example, consider the infinite network of Fig. 7(a);
e and all the r; are given and it is desired to find the
current i through the voltage source when Ohm’s law and
Kirchhoff’s two laws are satisfied throughout the network.
Any arbitrary choice of i is correct in the sense that there
is a corresponding voltage—current regime that satisfies
Ohm’s law and Kirchhoff’s two laws everywhere and for
which i is the chosen value. Indeed, since i also flows
through r; and r,, the voltage drop upward across r, is
v;=i(r,+r)—e, and so the current flowing upward
through r, is iy =uv;/r. Then, Kirchhoff's current law
applied to the two nodes of r, dictates that the currents
flowing to the right in 7, and to the left in r; are both
i+ i,. Then, Kirchhoff’s voltage law applied to the second
loop shows that the voltage drop upward across r, is
Ug ™= 05 + (i + i, X(ry + r5). This determines the current in iq,
which by Kirchhoff’s current law determines the currents
in ry and rg. These manipulations can be continued indefi-
nitely, and thus there truly is a voltage-current regime of
the asserted sort. A numerical example is shown in Fig,
7(b), where it has been assumed that e is 1 V and all the r;
are 1 §; upon choosing i=1 and repeating the above
manipulations, we obtain the indicated branch currents.

Had the network been finite, in particular, had 7, been
the last resistor toward the right, only one choice of i
would be correct, namely, e/R where

R=rn+n++ ! 1
- —
n Ty + I + Ts

For any other choice of i, the above construction of a
voltage—current regime would violate Kirchhoff’s current
law at the nodes of r; because of the absence of r, and r;.

Let us return to Fig. 7(a). The power from the voltage
-source is ei watts, a finite amount. On the other hand, the
power dissipated in all the resistors might well be—and
generally is—infinite. This indeed is so for Fig. 7(b). What
is happening is that there is an implicit power source out
at infinity pumping energy into the network. By specifying
i, we indirectly specify that power source at infinity. Upon
choosing a different i, we specify indirectly a different
(probably infinite) power source at infinity. Moreover,
there is no way of directly specifying an infinite power
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Fig. 7. (a) An infinite network in which e and all the r; are given. It is
desired to determine i. It turns out that / can be u;y

number at all. (b)
Tbcblnl'anchcumntswhene-r,-rz— -++ =1 and i is chosen to be 1
as well.

source out at infinity; standard calculus does not allow us
to distinguish one infinite source from another infinite
source.

Special cases do arise where the power source at infinity
is finite and perhaps zero. The zero source occurs when i is
chosen to be ¢/R_ or e/R,, where R and R, are the
driving-point resistances as observed from the voltage
source e for, respectively, an open circuit and a short
circuit at infinity. Furthermore, if the 7; decrease in value
quickly enough as j— o0, it is possible to have a finite
power source at infinity whose value can be assigned
arbitrarily through an appropriate choice of i. This last
statement is not obvious; it is a consequence of the results
of {57]. .

We can state all this in a different way: Ohm’s law and
Kirchhoff’s two laws do not by themselves determine a
unique voltage—current regime (except for certain special
infinite networks such as an infinite block-star network
whose blocks are finite). This leads to two divergent ways
of studying infinite electrical networks. One way is to
impose only Ohm’s law and Kirchhoff’s laws and to exam-
ine the whole class of different voltage~current regimes
that the network can have. Typical questions in this ap-
proach are the following. Can one always specify any
permitted voltage—current regime by assigning currents to
certain branches? Can arbitrary currents be assigned to
more than one branch? If so, for how many branches can
this be done, and how are those branches chosen? Does the
above procedure for constructing a voltage—current regime
always work, and, if not, can it be generalized to make it
work? This is the less traveled road in the investigation of
infinite electrical networks. A smaller body of results have
been obtained along it. Nonetheless, the posed questions
have all been answered. This is discussed in the next
section.

The other road through infinite network theory starts
with the following question. What additional requirements

Further reproduction prohibited.
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d

J3

Fig. 8 An infinitc network in which the maximum number of non-touching onc-cnded paths is four. The thick lines
represent a set of four such paths. J;, J;, and J; are three possible joints.

must be added to Ohm’s law and Kirchhoff’s voltage and
current laws in order to ensure the existence of a unique
voltage—current regime? This has been answered in differ-
ent ways and has led to various results that extend proper-
ties of finite networks. Much more has been achieved in
this direction. It is in fact the main road in infinite
network theory and leads to some practical applications.
We will describe one such result in Section IX.

VIII. Tue ONE Liss TRAVELED By

Let us now use only Ohm’s law and Kirchhoff’s laws as
the governing equations. In this section we shall describe
the key idea underlying an analysis of the many different
voltage—current regimes that can appear in a given infinite
network,

We are trying to determine how many degrees of free-
dom a network has with regard to arbitrary choices of
certain branch currents. Those degrees of freedom arise
from the fact that unspecified sources may be connected to
the network out at infinity. This leads to the question of
how many different ways one can reach out to infinity
through the network using one-ended paths that do not
touch. A one-ended path is simply a tracing along branches
that starts at some node and continues on indefinitely
without ever looping back on itself. It turns out that the
more non-touching one-ended paths one can squeeze into
the network, the more independent connections at infinity
the network can sustain. So finally, the basic task is to find
a maximal set of disjoint one-ended paths in the network
—maximal with regard to the number of paths.

When this has been done, the next step is to extend the
paths so that every node is in a path and the resulting
paths remain non-touching. (Actually, this may require
that the paths be extended into more complicated subnet-
works, but in our examples they will remain one-ended
paths.) Finally, we choose branches, called joints, such
that the following conditions are satisfied: (i) Each joint
connects together two of the extended paths. (ii) The
subnetwork consisting of all the joints and extended paths
has no loops, that is, it is a tree. The joints are the
branches in which we may choose currents arbitrarily. This
construction can be performed in many different ways.
Therefore, an infinite network has in general many differ-
ent sets of joints, but every set of joints will have the same
number (i.e., cardinality) of joints. It is worth mentioning
at this point that a method of analyzing an infinite net-
work based upon the selected paths and joints has been
devised for determining all the other currents in the net-
work once the joint currents have been assumed [48).

These ideas may (indeed, should) strike you as being
nebulous. Nonetheless, they do have precise versions and

Js

s
Ja

J3
J2

)

1

Fig. 9. A maximal set of non-touching one-ended paths is indicated for

ll;i; infinite square grid. The branches J; comprise an appropriate set
of joints.

rigorous proofs, which however are beyond the scope of
this paper. Our brief description along with the following
examples should give you an intuitive appreciation of the
key concept.

For instance, what is the maximum number of non-
touching one-ended paths that can be drawn in the ladder
network of Fig. 8?7 The answer is four. One possible choice
of the four paths, which together contain all the nodes, is
indicated by the thick lines. Then, J;, J,, and J, comprise
one of the many possible sets of joints satisfying condi-
tions (i) and (ii). On the other hand, the threc branches
incident at any one node (that is, three branches that form
a “T”) would fail to satisfy those conditions, for there is
no way they could connect together four nontouching
one-ended paths—nor would Kirchhoff’s current law be
satisfied in general at their central node if their currents
were chosen arbitrarily. Note also that the number of
joints for this network must be exactly three under condi-
tions (i) and (ii).

As another example, consider the infinite square grid of
Fig. 9. How many disjoint onc-ended paths can be traced
in it? An infinity of them is now possible, as is shown by
the thick lines. Moreover, a complicated argument, which
we skip, shows that this set of paths is maximal. Finally,
the branches labeled J, comprise a possible set of joints.
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Fig. 10. The circuit of Fig. § reduwnthh nodes a and b replaced by
one-ended thsofshonmmts pon choosing i arbitrarily, we can

determme YRR offs current law is now satisfied at
every nod Tﬁe choice of i indirectly specifies a source of infinity,
even r.hough that source may be infinitely large.

Our method works even when infinite nodes are present.
Those nodes behave as infinite paths of short circuits to
which sources at infinity can be connected. A simple
example of this is provided by Fig. S(a), which can be
redrawn as in Fig. 10 by replacing nodes 2 and b by
one-ended paths of short circuits represented by the hori-
zontal branches of Fig. 10. Upon choosing i arbitrarily as
the single joint current, we can then determine the currents
iy, i i3+ -+ . In this case, Kirchhoff’s current law is satis-
fied at every (now finite) node. Moreover, the choice of i
indirectly specifies a source at infinity. This is one way of
resolving the paradox regarding Fig. 5(a).

Have 1 piqued your curiosity? If someday you wish to
see where these ideas lead to in mathematical circuit
theory, read [46), [48], and [49].

IX. THE ROAD NOT TAKEN

Unlike Robert Frost's traveler, we can easily return to
where the two roads diverged and set out upon the one not
as yet taken. So, let’s do so, for that will prove to be the
more rewarding journey.

Our aim now is to seck other requirements upon the
infinite electrical network in addition to Ohm’s law and
Kirchhoff’s laws that will eliminate all but one of the
possible voltage—current regimes. A conspicuous require-
ment is finiteness for the total dissipated power. This
works for some networks but not for all. The network in
Fig. 4(a) with a 1-A current source connected to its input
terminals has at least two finite-power regimes, one for an
open circuit at infinity and another for a short circuit at
infinity. Actually, it has an infinity of finite-power regimes,
for any finite-power source can be connected out at infin-
ity.

Thus it appears that a unique voltage-current regime
might be established if two additional conditions are im-
posed, namely, finite total power dissipation and open
circuits everywhere at infinity. Flanders [2] showed that
this is truly so. He imposed the finite-power condition by
allowing only a finite number of finite sources within the
network, and he guaranteed the open-circuits-at-infinity
condition by having the allowed current flows be the limits
of current flows in an expanding sequence of finite subnet-
works. He also assumed that there are no infinite nodes.
More general theorics, which relax these conditions, now
exist [41}, {44], [57]. Our aim in this section is to describe
some of the key ideas in an intuitive fashion once again.
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ng. 11. The assumed Thevenms equivalent form of every branch for
the theorem in Section IX.

Given an infinite electrical network, number its branches
with the index j=1,2,3,---. Assume that every branch
appears in its Thevenin’s equivalent form shown in Fig. 11.
To insure that no more than a finite amount of power is
dissipated in all the resistors, 7;, we require that the branch
currents i; satisfy

Yilr, <o, (93)

Throughout this section, L will denote a summation over
all the indices j. With regard to the voltage sources, we
require that

Yei/r<en. (92)

It can be shown that the total power delivered by all the
sources is never greater than 2e}/rj, and so (9.2) insures
that that power is finite as well.

Finally, we wish to allow current regimes that flow out
to infinity, pass through connections there, and then flow
back into the network. However, we do not want the
connections at infinity to be infinite-valued sources; this
would permit the many degrees of freedom discussed in
the preceding section and would in fact violate (9.1).

The idea is to construct the sought-for current regime
out of certain basic current flows; this is analogous to
constructing a current flow in a finite network as a sum of
fundamental mesh currents. One kind of basic current is a
single flow around a finite loop; we will call it a Joop
current. Another kind is one that flows around an extended
loop, that is, out along a one-ended path to infinity,
through a short circuit at infinity, and then back along
another one-ended path to the starting point; this will be
called an extended-loop current. For example, a flow
through J; and the two one-ended paths on the right in
Fig. 8 would be an extended-loop current. Whenever an
extended-loop current is allowed in the construction of a
solution, it is tacitly being assumed that a short circuit at
infinity connects the two one-ended paths in the extended
loop. (Actually, finite sources at infinity could be allowed
but this requires a more complicated construction [57].)
Furthermore, one more condition must be imposed in
order to satisfy (9.1): The sum of the resistances in the
extended loop must be finite; if this is not so, the corre-
sponding extended-loop current will not be allowed as a
basic current.

In short, the basic currents are the loop currents for all
the finite loops and the extended-loop currents for some
selected extended loops. Upon adding a finite number of
such basic currents, we obtain a current regime in the
infinite network. The set of all current regimes that are
constructed in this way as finite superpositions of basic
currents will be denoted by X °.
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Finally, we can think of a current regime that is not in
K?°, but whose power dissipations in the resistors r; are
arbitrarily close to those of some member of K° By
“arbitrarily close” we mean that, given any € >0 and the
current regime (iy, iy, iy, ) not in K9 we can always
find a current regime (if,i},i5,-++) in K° such that
bY (i if)?r, < . Upon appending to K° all such current
regimes, we obtain a larger set X, called the completion of
K° All this is analogous to thinking of an irrational
number as being arbitrarily close to a rational number and
to the completion of the set of rational numbers to obtain
the real line.

Here is what we have been preparing for,

Theorem: Under the condition (9.2), there is one and
only one member (i}, i,, i3, - ) of K such that

L(e;=1i;)x=0
for every member (x;, X3, X3, ) of K.

(9.3)

Although this theorem is brief, quite a lot is being said.
For one thing, (9.3) is a generalization of Tellegen’s theo-
rem for finite networks. From it we get Kirchhoff’s voltage
law around every finite loop and the selected extended
loops. Moreover, since the current regime (i), i, i3, -+ ) is
a member of K, it follows from the way X was constructed
that Kirchhoff’s current law is satisfied not only at all the
finite nodes but also at those infinite nodes whose incident
conductances have a finite sum. Another consequence of
the theorem is that Li?r, <Te’r/', a bound alluded to
previously. Still another one is the reciprocity theorem for
infinite networks. All these results are easily derived from
the theorem. :

We could go on describing other results concerning
finite-power regimes of infinite networks, but we have at
this point introduced the general approach and the flavor
of the subject. Let us therefore end this tutorial with a
brief literature survey. -

X. A PARADE OF PAPERS

This short survey is restricted to investigations of finite-
power regimes in infinite resistive networks, for they com-
prise the bulk of the research on infinite electrical net-
works (if we choose to ignore the massive literature on
waves in infinite electromagnetic lumped transmission lines
and lattices). Most of the works in this area tacitly assume
a unique voltage-current regime and do not explicitly state
what assumptions are being imposed to achieve it. Finite
power dissipation and open circuits at infinity are the
usual unstated conditions.

Our literature citations are not all-inclusive, nor, on the
other hand, are they just a cursory selection of some
typical papers. They may however serve as a guide to
various aspects of infinite-electrical-network theory. More-
over, the bibliographies of the works cited herein provide
references to prior papers. Also, the reader can find papers
appearing later on by searching the Science Citation Index
under our references. Probably all significant works on
infinite resistive networks can be traced in this fashion.
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The survey paper [45]), which was written over a dozen
years ago, contains 41 references.

Infinite resistive ladder networks can be viewed as dis-
cretizations of Laplace’s equation in all of one-dimensional
space. The same discretization in all of n-dimensional
space leads to infinite n-dimensional resistive grids. Quite
a lot has been determined about their electrical behavior;
see [10], [12], [16]-{19], [22], [24), [25], 28], [34), (38}, [40},
[52], [62]. Infinite cylindrical and spherical grids are dis-
cussed in [58], [60], [63]. A few results on infinite hexago-
nal grids appear in [24], and [40]. If a ground node is
introduced and each node of the grid is connected to it
through a resistive branch, a grounded grid is the result;
some recent works on infinite grounded grids appear in
{50}, {51}, [56}.

"In 1971 Flanders [21] produced the first rigorous analy-
sis of infinite resistive networks whose graphs need not
have regular patterns. However, he did assume only a
finite number of sources and only finite nodes. These
restrictions were removed in [41]. Other extensions of the
theory soon followed. Infinite networks whose branch re-
sistances are positive operators, rather than scalars, ap-
peared first for infinite ladder networks [42] and then for
arbitrary networks [43}. The idea of short circuits at infin-
ity was introduced in {44}, and a theory for finite sources
at infinity has been established quite recently [57].

Actually, not just infinite but also finite networks whose
elements are operators on infinite-dimensional spaces have
significance for infinite network theory because the opera-
tors may represent infinite subnetworks of scalar elements.
There is a substantial literature on operator networks, a
sampling of which is [1]-[9], [11], [20], [26], [27], [29], {31},
{42, [43), [47), [50], [51], [36], [62].

A powerful alternative approach to infinite electrical
networks was devised by Dolezal. Most of the results of his
many papers on this subject appear in his two books [13],
[14}. In Dolezal’s approach the graph of the infinite net-
work is represented by an incidence matrix, which, since
the network is infinite, is in fact a Hilbert-space operator.
This allows him to introduce operator—theoretic tech-
niques. In contrast to all of the above papers, which
discuss linear networks, his theory encompasses networks
whose elements are nonlinear and even multivalued opera-
tors. Since graph-theoretic techniques are abandoned in
favor of operator methods, his results are often difficult to
visualize. Moreover, to understand them, one must climb
steeply through functional analysis, but, be assured, there’s
gold in the Dolezal Hills.

Nonlinearities are also discussed in the more restricted
context of infinite cascades of three-terminal and two-port
networks [53]-[55]. Conditions are established under which
those cascades have unique driving-point immittances, and
the constructive proofs employed provide a means of
computing those immittances. (The paper [49], which
also encompasses nonlinearities, deals with infinite-power
regimes in general.)

As wage indicated in Section III, the theory of infinite
grids has an important practical application to the exterior
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problem for various partial differential equations. When
the domain of the equation is of infinite extent, a finite-
difference approximation often leads to an infinite-electri-
cal-network representation, The customary procedure is to
truncate the infinite domain and to introduce artificial
boundary conditions along a finite boundary. This in
effect replaces the infinite network by a finite one and
produces an error of truncation. However, if a solution to
the infinite network can be computed, there is no need to
truncate. Such is the case for certain infinite grids. As a
result, new computational methods have been devised for
certain exterior problems, which require less computation
times and smaller memory storages and are of value in
computer-aided simulation and design [36), [S6], [59]-[63).

Finally, we should point out that infinite electrical net-
works arise surprisingly enough in probability theory, more
specifically, in the theory of random walks on infinite
graphs. A tutorial exposition of the subject is given in [15],
and a more advanced treatment is provided in [33].
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