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Infinite Electrical Networks: A Reprise 
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Matmct--Ihis is a t u t d  p q m  011 d v c  infinite electrid net- 
rrorlrs presented at UI mkgdmte level. Rather than being a ”pm 
hendve survey M tbc wide variety of results existing in this subject, it 
inhduces the b.sic idens with several exullpks mdplvzks, examines 
how tk theory braodns into two sopu~ro avenues d SnvesUgation. points 
out how infinite nehaorlrr differ in tbeir behavior from finite nehrrorLq and 
ends nith a brief SlllTcy of tk &er”. No apobgy is offered for s e v d  
c k k y  remsrlrs 

I. A TALE AND A MORAL 
NCE UPON A TIME, an electrical engineer set out 0 to discover the value of the driving-point resistance R 

between two adjacent nodes a and b in an infinite resistive 
square grid of 1-Q resistors shown in Fig. l(a). He fulfilled 
his quest as follows: He first connected one of the termi- 
nals of a 1-A current source to node u and the other 
terminal to infinity, as shown in Fig. l e ) .  (He reached 
infinity through some magic he happened to have at hand 
-this is a fairy tale.) That source current was directed 
toward node U. The engineer found that the 1 A split up 
evenly into 1/4A currents flowing away from node a 
through the four grid branches incident to node u. This 
was to be expected because the grid was symmetric around 
node a. Next, he removed that current source and con- 
nected another 1-A current source between node b and 
infinity, but this time he directed the source current away 
from node b, as shown in Fig. l(c). This resulted in a 
1/4-A current flowing toward node b in each of the grid 
branches incident to b. He hew from the superposition 
principle that, when both sources were connected simulta- 
neously, the current in the branch between a and b would 
be the sum of the currents occurring when each source was 
mnnected all by itself, that is, 1/2 A would flow, as shown 
in Fig. l(d). Moreover, the simultaneous connection would 
both inject and extract 1 A at infinity; therefore, he 
concluded, the connection at infinity could be removed 
and the two 1-A sources could be combined into the single 
1-A source shown in Fig. l(d). Thus with the latter COM~C- 
tion, a potential of 1/2 V would appear across the branch 
between nodes a and b, by virtue of Ohms law. In this 
way the engineer determined that R = 1/2 8. 

“Suddenly, a mathematician appeared. “Stop,” said he, 
“You can’t do that.” 
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“What do you mean I can’t do that,” retorted the 
engineer, “I just did.” 

“Look,” said the mathematician, “if you’re going to 
determine node voltages in a network by connecting cur- 
rent sources out to infiity, you’ve first got to tell us what 
the potential at infinity is. Moreover, your 1-A current 
soutce from infinity to some node is a discrete version of a 
1-A current injection into an infinite uniform conducting 
plate; for the latter the potential function is proportional 
to logr, where r is the radial distance from the point of 
current injection. Now, I’ve got some bad news for you,” 
continued the mathematician. “The logarithm function has 
an infinite range. So, if you take the potential at infinity to 
be zero or, for that matter, any finite value, then any node 
you might point to will have an infinite potential. What 
you’ve really done is the following: With the first current- 
source connection to infinity, you have subtracted an 
infinite potential at node b from an infinite potential at 
node a to get a finite voltage drop between those nodes; in 
short, you’ve written o0-00=1/4. Similarly, with the 
second current-source connection to infinity, you have 
again obtained tacitly M - a0 =1/4. Finally, appealing to 
superposition, you have added those two equations to 
obtain 00 - 00 - 1/2. You can’t do that.” 

At a loss for a better response, the engineer shifted the 
argument. “Look, if we engineers stopped whenever you 
mathematicians told us to stop, we’d never get anything 
done. After all, it was our rockets that reached the moon, 
and they would never have been launched if we had to 
“prove” everything we did.” 

“Oh really? Tell me about the space shuttle,” the mathe 
matician shot back and then disappeared in a puff before 
the rejoinder could be made that it was an engineer who 
warned of the shuttle’s problem. 

Now, it happens that R -1/2 is the “right answer.” 
This can be seen by setting up (or simulating on a com- 
puter) a large finite square grid of 1 - 8 resistors, connect- 
ing a 1-A current source across a central branch, and then 
noting that the voltage drop across the branch gets closer 
and closer to 1/2 as the grid is made larger and larger. 
Engineers “knew” this fact through their symmetry argu- 
ment, faulty though it may be for mathematicians, while 
mathematicians “proved” it through a formal justification, 
fussy though it may be for engineers. 

The moral of all this-at least for engineers-is that it 
really does not matter how heuristic one’s reasoning is so 
long as the right answer is obtained. This remark is not 
meant to be either facetious or flippant. It asserts an 
important principle of engineering practice. One does not 
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Fig. 1. (a) An infinite ? w e  grid. each branch d which is a l-Q resistor. The driving-point resistance R between Ihe two 

is to be determined. (b) A current source in’ecting 1 A into node U from infinity. (c) A current 
sending it out to infinity. (d) he situation when both current sources are imposed 

adjacent nodes a and 
source cxtracting 1 A from node b 
simultaneously and &en combined into a single source. 

stop just because a theory fails us or a proof is unavailable. 
Any argument, any experiment, any hunch that leads to a 
worthwhile result is justified by that result. In engineering 
research and development, the ends do justify the means. 
(We are referring here to engineering methodology, not to 
unethical, immoral, or illegal means.) Of course, more 
successes and fewer failures are achieved when hunches are 
based upon valid reasoning The point here is that engi- 
neering endeavor is genmdy quite different from mathe- 
matical endeavor. 

11. SCIENCE, TECHNOLOGY, AND ENGINEERING 
This paper is a tutorial exposition of a mathematical 

theory spawned by electrical engineering. Much new math- 
ematics has been and continues to be generated by engi- 
neering, but this is incidental to engineering’s primary 
function. So, let us digress still further to examine briefly 
how mathematics-and science as well-relate to engi- 
neering. 

Engineering students, having struggled through physics, 
chemistry, and calculus during thcir freshman and sopho- 
more years, are well aware of the fundamental roles that 
science and mathematics play in engineering. In fact, the 
college experience can lead to the view that engineering 
is simply applied science. In short, the scientist creates a 
theory or the mathematician proves a theorem, and the 

role of the engineer is to apply it somehow to benefit 
society; that is, scientists and mathematicians create, soci- 
ety consumes, and engineers are the middlemen. Hardly. 
Engineering is more than applied science. It also originates 
from another source: technology-useful products, struc- 
tures, and techniques often empirically developed and not 
necessarily derived from scientific comprehension. (We 
shall henceforth use the word “technology” in this particu- 
lar way.) 

The flowering of science has occurred only during the 
last two or three hundred years, although its roots are 
considerably older-extending back about two or three 
millenia to its origins in the Middle East, India, and 
China, with incipient activities in other parts of the world 
such as Mesoamerica. Technology, on the other hand is 
older, indeed, very much older. A technological revolution 
occurred ten thousand or so years ago with the domestica- 
tion of plants and animals, the development of agriculture, 
and the consequent rise of civilizations. However, technol- 
ogy is even older than that. Its roots are lost in prehistory, 
and archeologists tell us that technological artifacts date 
back to the evolutionary beginnings of humankind. Stone 
toolmaking and the controlled use of fire are just two of 
the attributes that set human beings apart from all other 
forms of life. In fact, some argue that there is a strong link 
between primitive technology and human evolution. (See 
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[23] or [30]). For instance, the opposable thumb enabled 
the handling of tools, and reciprocally the development of 
tools bestowed an evolutionary advantage upon the oppos- 
able thumb; so, tools and thumbs were symbiotic during 
the genesis of homo sapiens. More generally, a technologi- 
cal imperative, which is characteristic of human behavior, 
is an evolutionary heritage dating back perhaps many 
hundreds of thousands of years-or so the speculation 
goes. 

Engineering derives not only from science but also from 
technology, and the impact of the latter should not be 
slighted. For example, the structural arch was used ubiqui- 
tously in Roman architecture without the Romans know- 
ing the science of solid mechanics. More recent examples 
are the typewriter, the mechanical clock, and the bicycle. 
These were not designed from theoretical learning. Tinker- 
ers, innovators, and inventors exploited practical workshop 
techniques to produce them as well as many other goods 
for which we now credit science. 

The importance of empirical technological development 
is masked by the current prominence of high technology, 
which depends so heavily upon science. Electrical engineer- 
ing students study Maxwell’s equations but hear only 
anecdotes about Thomas IEdison, who contributed so much 
to the initiation of the electrical industry. This is as it 
should be, for modem engineering practice requires scien- 
tific knowledge but hardly the history of inventions. 
Nonetheless, engineering students should be aware that 
many latter-day Misons are contributing a steady stream 
of trial-and-error improvements without making sophisti- 
cated scientific analyses, that indeed inventiveness is CN- 
cia1 to engineering advancements but is not and probably 
cannot be taught in a formal way. 

The purpose of these remarks is to emphasize the differ- 
ence between engineering and science. Engineering has its 
own distinctive objective and should not primarily be 
judged as a science. The goal of science may be succinctly 
stated as the creation of new knowledge, whereas the aim 
of engineering is to utilize science and current technologies 
in order to design and improve new technologies. Those 
distinctive goals, the creation of knowledge and the devel- 
opment of technology, should not be confused. However, 
the interaction betwcen Science and mathematics on the 
one hand and engineering on the other has become so 
strong that these disciplines have become intertwined and 
in certain ways indistinguishable. For example, engineer- 
ing is continually spawning new science and mathematics. 
Much of engineering research, especially in academia, is 
aimed at the creation of the science and mathematics that 
nourish engineering advancements. Indeed, mathematical 
and scientific endeavor is now an integral part of engineer- 
ing. Unlike engineering in general, this activity should be 
held to the same standards that the sciences and mathe- 
matics impose upon themselves. 

In particular, when an engineer publishes a “theorem” 
in an engineering journal, he purports to be doing mathe- 
matics and his theorem should be subjected to the criteria 
of rigor and proof that mathematics requires. The argu- 

ment that 00 - 00 = 1/2 remains mathematically invalid, 
even though it may in some context be useful and war- 
ranted by its end result. In the prior section that end result 
was a fairly convincing argument that R -1/2, so con- 
vincing in fact that one is surely justified in basing an 
engineering design upon it and relying upon a testing 
program to make sure that the design truly works. 

The theory of infinite electrical networks is an example 
of mathematics spawned by engineering. It is not in the 
mainstream of either mathematics or engineering. The 
subject seems to be too much like electrical engineering to 
attract mathematicians and too much like mathematics 
to attract engineers. Nonetheless, it has been steadily d e  
veloping, it is accessible to anyone with a knowledge of 
circuit theory and some elements of functional analysis, 
and, most importantly, it does have practical applications. 
The rest of this paper explains various parts of the subject 
at an undergraduate level of exposition. So, with no fur- 
ther apology, let us now plunge into the thicket of infinite 
electrical networks. 

111. THEM 
They are all around us. We just haven’t been paying 

attention. Mathematicians allude to them with a fancy 
name: “the exterior problem.” Indeed, there are a variety 
of partial differential equations, such as Poisson’s equa- 
tion, the heat equation, the acoustic wave equation, and 
polarized forms of Maxwell’s equations, whose finite-dif- 
ference approximations are realized by electrical networks. 
So, if the domain at hand is infinite in extent, then a 
discretized analysis leads to an infinite electrical network. 

For example, a current area of research is the 
computer-aided determination of the capacitance Coeffi- 
cients of VLSI interconnection wires. A typical model 
consists of several wires of various shapes above a grounded 
conducting plane, which represents the semiconducting 
chip. Laplace’s equation is to be solved in the infinite 
region between the wires and above the conducting plane, 
when particular electrical potentials are assigned to the 
wires. Analytical solutions are available only for the sim- 
plest geometries (e.g., a single, infinitely long wire with a 
circular cross section). In fact, a numerical analysis must 
be used for virtually every practical model. The discretiza- 
tion required by the numerical analysis leads to an infinite, 
purely capacitive network 159). The latter can be treated as 
a purely resistive network just by changing the meaning of 
the symbols. In that network, the ground plane is repre 
sented by an infinite node, that is, by a node having an 
infinity of incident branches. The conventional approach 
to this problem truncates the infinite network into a finite 
one by introducing an artificial grounded boundary sur- 
rounding all the wires but at some distance away from the 
wires. However, this introduces a truncation error. It would 
be better if the infinite network could be solved directly. 
This has recently been accomplished [59], and in fact the 
computations required by the infinite-network solution are 
considerably fewer than those needed by a reasonably 
accurate, finitely truncated network. 
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Another example is provided by the resistivity method 
of geophysical exploration, in which a large electrical cur- 
rent is injected into and extracted from the earth and the 
resulting potentials along the earth‘s surface are measured. 
The domain is now the Semi-infinite region below a hori- 
zontal plane (the flat-earth model), and Laplace’s equation 
again governs the phenomenon. Once again, a discretized 
analysis calls for a solution to an infiite resistive network 
[611, [42]. In the same way, the flow of petroleum from the 
earth into the bottom of an oil well can be represented by 
the flow of current in an infinite spherical grid of resistors 
[43]. As a final example, consider an electromagnetic 
method of geophysical exploration where a polarized elec- 
tromagnetic wave is radiated into the earth. In this case, 
the appropriate model is an infinite RLC network [56). 

There is a good reason to view infinite electrical net- 
works as practical models of important problems and, 
therefore, as comprising a compelling research area. To be 
sure, the jump in complexity from finite networks to 
infinite ones is comparable to the jump in complexity from 
finitsdimensional spaces to infinite-dimensional spaces. 
On the other hand, the theory of infinite electrical net- 
works is still in its puberty with many questions largely 
unexplored, especially with regard to computational prob- 
lems. As compared to the networks research currently 
being applied to other areas, such as nonlinear, distributed, 
large-scale, active, or digital finite networks, the amount of 
effort being expended on infinite networks is meager. 
Infinite networks deserve better attention. Let’s take a 
closer look at them. 

IV. Sow PRECISE DEFINITIONS 
We start with a definition of a finite electrical network. 

With this in hand, we can examine the peculiar problems 
that can arise in formulating the idea of an infinite electn- 
cal network. The mathematical style we now adopt will last 
only through this section. The rest of the paper will be 
presented in a manner more common to engineering. 

A finite electrical network is a finite graph upon which 
an analytical structure has been imposed. The graph is 
defined as the pair (N, B). N is any finite set, and its 
elements are called nodes. We think of the nodes as points 
in space, whereas in various applications they could repre- 
sent other ideas, such as places where wires are connected 
together in electrical circuits, bus or train stations in 
transportation networks, atoms in crystalline structures, 
and so on. Actually, however, the definition of a graph 
does not require any interpretation to be assigned to a 
node; it can be simply an abstract entity. Furthermore, B 
is a family of unordered pairs of not necessarily distinct 
nodes; these pairs are called branches. Thus if n and m 
denote two distinct nodes, then the set { n , m )  and the 
family { n ,  n }  are both branches. Conventionally, a branch 
is visualized as a line connecting the nodal points n and m 
or connecting n to itself. Moreover, a “family” is different 
from a “set” in these definitions; whereas the elements are 
all different from one another in a set, this need not be so 

Fig. 2. A graph having a self-branch 9 and two pardel branches 4 
and b4. 

“i 

- 

Fig. 3. The standard circuit symbolism for the five real numbers as- 
signed to branch bj. The branch’s orientation is from top to bottom. 

in a family. We shall also denote a branch by the symbol 
b,; no two branches will have the same index j, even 
among the repetitions of a node pair. 

As an example, consider the graph in Fig. 2. The node 
set is ( n , , n , , n , }  and the branch family is {{n1,n2}, 
{nl, q } , ( n 2 ,  n3),(n2,”3},(nl,n3)). We have designated 
those branches by b,, b2, b3, b,, and b,, respectively. A 
branch with only one node, such as b,, is called a self- 
branch, and branches with the same node pair, such as b3 
and b,, are said to be in parallel. 

In order to impose an analytical structure, we first 
specify an orientation to each branch. Then, each branch 
bj is assigned four real numbers: U,, i ,  ej ,  and hi, which 
we refer to, respectively, as the branch voltage, branch 
current, branch voltage source, and branch current source. 
Each of these quantities are said to be in the direction of 
the branch’s orientation if it is positive, and opposite to 
that direction if it is negative. Furthermore, a fifth real 
number rJ, which is now required to be positive, is also 
assigned to bj and is called its branch resistance. By 
definition, these quantities are related to each other by the 
following equation, namely, Ohm’s law. 

u, + e, = rJ(i, + hi). (4.1) 

Fig. 3 illustrates the analytical structure of a typical branch 
bi usine standard circuit symbolism. in a family, that is, an element may appear more than once ., ~~v 
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To complete the definition of a finite network, two more 
laws are required. The first of these is Kirchhoffs current 
law, which is imposed at every node. Let n denote a 
particular node and let the branches incident to n be 
b,, bj2,- - -, bjR. Then, Kirchhoff's current law asserts that 

K 
f i j k = O  ( 4 4  

k - 1  

where the plus sign is used if b, is oriented toward n and 
the minus sign is used otherwise. 

The second law is Kirchhoff's voltage law, which is 
required to hold around every loop of the network. A loop 
is a finite alternating sequence of nodes nk and branches 
bj: nkl ,  b,,, nk2, bj2,- - -, nk,, bjM, nk,, where each branch is 
incident to the two nodes immediately preceding and 
succeeding it in the sequence and no node appears more 
than once in the sequence except for the starting and 
ending elements; those two elements are one and the same 
node, which appears no place else in the sequence. An 
orientation is assigned to every loop by choosing one of 
the two ways of tracing through the sequence (i.e., from 
left to right or from right to left). For a given loop 
Kirchhoff's voltage law asserts that 

M 

It V j - Q O  (4.3) 
m -1 

where the plus sign is used if the orientations of bjm and 
the loop agree and the minus sign is used otherwise. Since 
the network is finite, there are only a finite number of 
distinct loops. 

Our complete definition of a finite network consists of 
the rite graph (N, B), the analytical structure illustrated 
in Fig. 3, and the three laws (4.1). (4.2), and (4.3). It can be 
proven [37] that every finite network has a unique 
voltage-current regime, that is, one and only one assign- 
ment of branch voltages and branch currents that satisfy 
(4.1) on every branch, (4.2) at every node, and (4.3) around 
every loop. 

Actually, what has been defined here is a finite resistive 
network with independent voltage and current sources, but 
no dependent souroes nor mutual coupling between 
branches. More complicated analytical structures can be 
defined for electrical networks by allowing U,, i j ,  e,, and 
h, to be functions of time or of a complex variable, by 
allowing 5 to be zero, negative, or complex, or by replac- 
ing 5 with a differential or integral operator or some still 
more general, linear or nonlinear, time invariant or time 
varying, mathematical operator. Furthermore, in our defi- 
nition each branch is a two-terminal device, but n-terminal 
devices could be allowed; this would complicate both the 
constituent relationship (4.1) and the graph-theoretical ba- 
sis of the network. We will not allow any of these general- 
izations because a discussion of the more complicated 
kinds of infinite networks would require a substantial 
amount of functional analysis. 

Let us turn now to the idea of an infinite electrical 
network. A rigorous construction of such a concept leads 

to a series of perplexing choices, the first of them being 
just what kind of infinities should be allowed in the 
definition of the network's graph (N, E). To avoid the 
formidabilities of uncountably infinite sets, we shall re- 
strict N to a finite or countably infinite set of nodes and B 
to a countably infinite (not finite) family of unordered 
pairs of not neceswily distinct nodes. As before, the 
members of N arc all distinct. However, any member of B 
can appear in B finitely or infinitely many times. Thus an 
infinity of parallel branches may occur between a given 
pair of nodes. 

As for the analytical structure, we begin exactly as 
before. Four real numbers U,, ij, e,, and h j  and a positive 
number 9 are assigned to each branch bj and interpreted 
in accordance with Fig. 3. The assumptions imposed up to 
this point can be illustrated with infinite-network dia- 
grams, examples of which appear in most of the figures of 
this paper. 

To complete our definition of an infinite electrical net- 
work, we need some laws to interrelate the five quantities 
of the analytical structure. Unfortunately, Ohm's law (4.1) 
and Kirchhoffs laws (4.2) and (4.3) are not enough to 
yield a unique voltage-current regime, except in certain 
trivial cases such as an infinite collection of finite net- 
works. We now examine some particular infinite-network 
diagrams to illustrate various difficulties that can arise if 
insufficient care is taken in the definition of an infinite 
electrical network. 

V. HIDE AND Go SEEK 
Let's play a game. 1'11 hide a mistake somewhere in the 

next paragraph, and your task is to find it. That a mistake 
is there will be obvious, for my argument will lead to a 
mathematical absurdity. 

Consider the infinite ladder network indicated in Fig. 
*a). The resistance values are understood to extend in- 
finitely to the right by continuing the indicated pattern of 
numbers. R denotes the driving-point resistance as mea- 
sured from the two input terminals on the left. Upper and 
lower bounds on R can be obtained by using a basic 
principle of purely resistive networks, namely, any driving- 
point resistance is a monotone nondecreasing function of 
every branch resistance. As a result, R is no less than the 
driving-point resistance R, obtained by letting every hori- 
zontal resistor in Fig. 4(a) tend to a short circuit. The 
limiting network is shown in Fig. 4(b). Specifically, the 
voltage drops become confined to the vertical resistors 
only, and a parallel connection of an infinity of resistors is 
obtained. By the formula for parallel resistances, 

1 
1 1 -+-+-+ ... 

10 100 lo00 
The aforementioned basic principle also implies that R is 
no larger than the driving-point resistaace R, obtained by 
letting every vertical resistor in Fig. 4(a) tend to an open 
circuit. This confines the current flow to the horizontal 
resistors, and we obtain the infinite series circuit of Fig. 

-9 .  (5.1) R>R,= 
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This matter can be explained still further by using the 
series and parallel rules for combining resistances to write r-’ : m r  -sa the driving-point resistance-for both the open-circuit and 
short-circuit cases-as the infinite continued fraction I 

I 
R 

--- .001 .0001 

--- 
1 

(3 1 
1 0.1 + 

0.1 + * 

0 --- .l -01 .001 .0001 

I 

1 0.01 + 
1 0.01 + 

0.001 + 1 
I 

O*Ool + O.OOol+ I 

r-* 
I 
I .  
I 

RU 

It happens that this is a divergent continued fraction (39, 
p. 281. In particular, its odd and even truncations converge 
to two different limits. Indeed, if we replace the nth 
horizontal resistor in Fig. 4(a) by an open circuit and then 
let n 4 CO, we obtain the odd truncations of (5.4), which 

-- - 

(C) 

Fig. 4. (a) An infiite ladder network. All resistance values are given in 
ohms. R if the driving-point resistance U observed from the input 
terminals. The idhte pualiel circuit ob,ainfd by letting 
horizontal resistor tend to a short c+xit. (c) The infinite yries. &cut 
obtained by letting every vertical resstor tend to au open arcuut. 

converge to the value R ,  = 9.001 - - - > 9, as can be seen 
with a hand calculator. Furthermore, if we replace the n th 
vertical resistor in Fig. 4(a) by a short circuit and then let 
n +a, we get the even truncations of (5.4). which con- 

qc). Thus 

- . -  
verge to R ,  = 0.1098 . - - .e 1/9, 

We should mention that for some infinite ladder net- 
1 works, it does not matter at all whether we have an open 

circuit or short circuit at infinity. For example, if we 
change every resistance value in Fig. 4(a) to 1 $2, we obtain 
the infinite continued fraction 

1 

R < R, = 0.1+0.01+0.001+ ... = 9.  (5.2) 

Equations (5.1) and (5.2) taken together yield 

1 
9‘5 (5.3) 

the promised absurdity. What went wrong? Review this 
paragraph ’to see if you can find the flaw, if you have not 
found it already. Hint: The given argument is perfectly 
correct for finite networks, but now we have an infinite 

Here’s the answer: We have tacitly used two different 
conditions at infinity. When computing R,, we assumed in 
effect that there is no connection at infinity between the 
upper and lower horizontal portions of the network. This 
open circuit at infinity forces the currents to flow through 
the vertical resistors of Fig. qb). On the other hand, when 
computing R,, we tacitly assumed that there was a short 
circuit at infiity, which completed the series connection 
of Fig. qc). All this shows that at least for some infinite 
networks it truly does matter what is occurring at infinity. 
In fact, for Fig. *a) we should deal with two driving-point 
resistances, R ,  for the case of an open circuit at infinity 
and R ,  for the case of a short circuit at infinity. Upon 
repeating the argument of the last paragraph for each case, 
we obtain 9 g R , ~ a o  and OcR,d1/9.  We may say 
that “infinity is pmceptible” to the observer at the input 
terminals of Fig. qa). 

me. 

1 
1 
1 

l+- I+  

1+ 
1+ 

which converges [39, p. 1201, that is, its odd and even 
truncations both converge to the same limit: (6-1)/2.  
In this case, infinity is not perceptible to an observer at the 
input terminals, in contrast to Fig. %a). Moreover, the 
argument of the second paragraph of this section now 
yields R, - 0 and R, - QO, so no absurdity arises despite 
the two different tacit assumptions at infinity. In fact, we 
now have R ,  = R ,  = (6 - 1)/2. In this case, we might 
say that “infinity is imperceptible” to the observer at the 
input terminals. 

One last matter before we leave this section. It seems 
intuitively clear that the short-circuit connection for R, 
can be made at the “ends at infinity” of the two horizontal 
portions of Fig. qa). However, how can we define the 
“ends at infiity” of more general kinds of infinite net- 
works? Wc will need to do this if we are going to specify 
what occurs at infinity. This is discussed in Section IX and 
in much greater detail in [57]. 

Reproduced uith permission of copyright ouner. Furthar reproduction prohibited. 
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VI. ?kE TROUBLE WITH KIRCHHOFF 
Mr. Kirchhoff is capable enough with finite networks, 

but he is not too reliable when it comes to infinite net- 
works. Sae how he handles the infinite network of Fig. 5(a) 
wherein a 1-V voltage sourcc in series with a 1-52 resistor is 
connected to an infinite parallel circuit of 1-51 resistors. 
The infinite parallel connection should be equivalent to a 
short circuit, according to the rule for combining parallel 
resistances, and so the voltage U between nodes a and b 
should be zero. Hence, the current i through the source 
ought to be 1 A, whereas the currents flowing through each 
of the purely resistive branches ought to be zero. However, 
calculus is unambiguous about the fact that an infinite 
series of zeros sums to zero. Therefore, we are led to 
conclude that 1 A flows toward node U while 0 A flows 
away from it. 

Perhaps our supposition that U = 0 is wrong; perhaps 
u+O.  If so, then i = ( l - U )  A and the current flowing 
downward through every purely resistive branch is U A. In 
this case, calculus dictates that an infinite series of nonzero 
constants U, all identical, is infinite. So, now we have a 
finite current flowing toward node a, and an infinite 
current flowing away from it. 

We have to conclude that Kirchhoffs current law fails 
at node U-and at node b too. Actually, we might blame 
the mathematicians who spoiled the calculus with their E’S 
and 8 ’s. In the early days of calculus one could circumvent 
the above discrepancy in current flows by working with 
quantities that are extremely small (smaller in absolute 
value then any positive real number) but are nonetheless 
not zero: namely, the infinitesimals. 

For instance, we could approximate our infinite network 
by using a large but finite number n of parallel 1-0 
resistors, as indicated in Fig. S(b). Let us now denote the 
currents flowing in this finite network by in,O, - -, as 
shown. The first subscript n is simply a parameter indicat- 
ing the number of purely resistive branches. By Ohm’s law 
and Kirchhoff s laws, U = 1/( n + l), = n /( n + l), and 
t * ,  i - 1/( n + 1) for all j - 1,. - -, n. Moreover, Kirchhoff s 
current law at node U is 

n 

j - 1  

There is no problem in passing to the limit as n - 00 on 
both sides of this equation; we obtain 1 = 1 so long as we 
sum first and then take the limit on the right-hand side. 
However, in passing to the limit for the current l/(n + 1) 
in each resistive branch, we have in effect interchanged 
these. two processes: We have taken the limit and then 
summed. This is invalid, for we get 1 = 0. (It would have 
been valid had q-li,,, converged uniformly with respect 
to all n, but this unfortunately is not the case). 

But wait; let’s relax a bit. Let’s say that the 1-A current i 
flowing toward node D in Fig. S(a) splits up into an 
infinity of infinitesimals and that the s u m  of those in- 
f i i tcs imals  is 1. That is, the current in each purely -is- 
tive branch of Fig. S(a) is infinitesimally small and yet 

.-- 

(a) 

(b) 
Fi 5. (a) An infinit of 1 9  resistors dl conwcted in parallel with a 

%kmch having a I-dresislor and a 1-V source in series. @) A finite 
network that approximates tbe infinite network. Au resistors are again 
10. 

Kirchhoff s current law continues to hold. Standard calcu- 
lus docs not allow this, but there is a nonstandard calculus 
that may [32], [35], that in fact rigorously resurrects the 
infinitesitnals. I have felt for some time that a more 
satisfactory theory of infinite electrical networks, which 
eliminates the present discrepancy and others of a similar 
nature, mi&t be built upon nonstandard analysis. How- 
ever, the months-probably years-of effort it would take 
me to penetrate the mysteries of nonstandard analysis 
would go unrewarded if appreciation by engineers is the 
goal, for who would understand a nonstandard network 
theory? It is expedient to stay with standard calculus and 
to build a theory that at times allows the nonsatisfaction of 
Kirchhoffs current law at an infinite node and (i.e.. at a 
node with an infinity of incident branches). 

Standard calculus also forces at times the nonsatisfao 
tion of Kirchhoff‘s voltage law. That law may fail if we try 
to apply it to an extended loop, that is, an infinite path 
that extends out to infinity in two directions and whose 
“ends at infinity” are shorted together. Such a network can 
be constructed by taking the electrical dual of Fig. S(a). 
This is shown in Fig. 6. By interchanging voltages and 
currents in the arguments given above for Fig. %a), one 
can show that Kirchhoff’s voltage law cannot be satisfied 
around that extended loop if all resistance values are 1 n. 

However, it is not true that Kirchhoff’s current law is 
never satisfied at an infinite node and that Kirchhoff’s 
voltage law is never satisfied around an extended loop. A 
theory in which these laws do hold at certain infinite nodes 
and around certain extended loops exists 1411, 1441, [57] 
and will be described briefly in Section IX. 
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Fig. 6. An extended "sg Coaristing of M infinit of 1-0 rtsisron, all 
cdnnected in acne wi a 1-d resistor and a l-A 

nght and i ts  "e~+ at i n b ~  m shorted together. Kirchhoff'r voltage 
law cannot be rotsfied around this atended loop. 

a branch ha 
8!nuw in parallel. ?be Bttprork dcnds%tely to the left and to the 

VII. Two ROADS DIVERGED 
As yet, we have not indicated MY method for determin- 

ing a branch current in an infinite network. Here's one 
method that almost always works: Just guess! 

For example, Consider the infinite network of Fig. 7(a); 
e and all the 5 are given and it is desired to find the 
current i through the voltage source when Ohm's law and 
Kirchhoff's two laws are satisfied throughout the network. 
Any arbitrary choice of i is correct in the sense that there 
is a corresponding vdtage-current regime that satisfies 
Ohm's law and Kirchhoffs two laws everywhere and for 
which 5 is the chosen value. Indeed, since i also flows 
through rl and r,, the voltage drop upward across r, is 
u3 = i(rl + rz)- e, and so the current flowing upward 
through r3 is i ,  = uJrY Then, Kirchhoffs current law 
applied to the two nodes of r3 dictates that the currents 
flowing to the right in r, and to the left in r, are both 
i + i,. Then, Kitchhoffs voltage law applied to the second 
loop shows that the voltage drop upward across r, is 
U, = u3 + ( i  + i3)(r4 + rs). This determines the current in i,, 
which by Kirchhoffs current law determines the currents 
in r7 and r,. These manipulations can be continued indefi- 
nitely, and thus there truly is a voltage-current regime of 
the asserted sort. A numerical example is shown in Fig. 
7(b), where it has been assumed that e is 1 V and all the r, 
are 1 S2; upon choosing i-1 and repeating the above 
manipulations, we obtain the indicated branch currents. 

Had the network been finite, in particular, had r, been 
the last resistor toward the right, only one choice of i 
would be correct, namely, e/R where 

1 
1 1 '  -+ 
r3 

For any other choice of i ,  the above construction of a 
voltage-current regime would violate Kirchhoff s current 
law at the nodes of ra because of the absence of r7 and r,. 

Let us return to Fig. 7(a). ThC power from the voltage 
source is ei watts, a finite amount. On the other hand, the 
power dissipated in a l l  the resistors might well be-and 
generally is-infinite. This indeed is so for Fig. 7(b). What 
is happening is that there is an implicit power source out 
at infinity pumping energy into the network. By specifying 
i, we indirectly specify that power source at infinity. Upon 
choosing a different i ,  we specify indirectly a different 
(probably infinite) power source at infinity. Moreover, 
there is no way of directly specifying an infinite power 

R - r, + rz + 
r, + r, -k r6 
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... ... _ _ _  
c c c 

1 2 7 

(b) 
Fs. 7. (a) An infiitc network in which e and all the r .  are given. It is 

desired to determiae i. It turns out that i can be any nhnber at all. (b) 
'Ihe branch cuTtcI11s when c- rj=rz= -1 and i is chosen to be 1 
as well. 

source out at infinity; standard calculus does not allow us 
to distinguish one infinite source from another infinite 
source. . 

Specid cases do arise where the power source at infinity 
is finite and perhaps zero. The zero source occurs when i is 
chosen to be e / R ,  or e/R,,  where R, and R, are the 
driving-point resistances as observed from the voltage 
source e for, respectively, an open circuit and a short 
circuit at infinity. Furthermore, if the 9 decrease in value 
quickly enough as j 4 00, it is possible to have a finite 
power source at infinity whose value can be assigned 
arbitrarily through an appropriate choice of i. This last 
statement is not obvious; it is a consequence of the results 

We can s i te  all this in a different way: Ohm's law and 
Kirchhoffs two laws do not by themselves determine a 
unique voltage-current regime (except for certain special 
infinite networks such as an infinite block-star network 
whose blocks are finite). This leads to two divergent ways 
of studying infinite electrical networks. One way is to 
impose only Ohm's law and Kirchhoff s laws and to exam- 
ine the whole class of different voltage-current regimes 
that the network can have. Typical questions in this ap- 
proach are the following. Can one always specify any 
permitted voltage-current regime by assigning currents to 
certain branches? Can arbitrary currents be assigned to 
more than one branch? If so, for how many branches can 
this be done, and how are those branches chosen? Does the 
above procedure for constructing a voltage-current regime 
always work, and, if not, can it be generalized to make it 
work? This is the less traveled road in the investigation of 
infinite electrical networks. A smaller body of results have 
been obtained along it. Nonetheless, the posed questions 
have all been answered. This is discussed in the next 
section. 

The other road through infinitc network theory starts 
with the following question. What additional requirements 

of [57]. 
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Fig. 8. An infinite network in which the maxi” number of non-touching ooc-cndcd, paths is four. Thc thick lincs 
rcprucnt a 6et of four such paths. Jir J2, and J3 8re three possible jomts. 

must be added to Ohm’s law and Kirchhoff’s voltage and 
current laws in order to ensure the existence of a unique 
voltage-current regime? This has been answered in differ- 
ent ways and has led to various results that extend proper- 
ties of finite networks. Much more has been achieved in 
this direction. It is in fact the main road in infinite 
network theory and leads to some practical applications. 
We will describe one such result in Section IX. 

VIII. THE ONE LESS TRAVELED BY 
Let us now use only Ohm’s law and Kirchhoff’s laws as 

the governing equations. In this section we shall describe 
the key idea underlying an analysis of the many different 
voltage-current regimes that can appear in a given infinite 
network. 

We are trying to determine how many degrees of free- 
dom a network has with regard to arbitrary choices of 
certain branch currents. Those degrees of freedom arise 
from the fact that unspecified sources may be connected to 
the network out at infinity. This leads to the question of 
how many different ways one can reach out to infinity 
through the network using one-ended paths that do not 
touch. A one-ended path is simply a tracing along branches 
that starts at some node and continues on indefinitely 
without ever looping back on itself. It turns out that the 
more non-touching one-ended paths one can squeeze into 
the network, the more independent connections at infinity 
the network can sustain. So finally, the basic task is to find 
a maximal set of disjoint onc-cndcd paths in the network 
-maximal with regard to the number of paths. 
When this has been done, the next step is to extend the 

paths so that every node is in a path and the resulting 
paths remain non-touching. (Actually, this may require 
that the paths be extended into more complicated subnet- 
works, but in our examples they will remain one-ended 
paths.) Finally, we choose branches, called joints, such 
that the following conditions are satisfied: (i) Each joint 
COM~C~S together two of the extended paths. (ii) The 
subnetwork consisting of all the joints and extended paths 
has no loops, that is, it is a tree. The joints are the 
branches in which we may choose currents arbitrarily. This 
construction can be performed in many different ways. 
Therefore, an infinite network has in general many differ- 
ent sets of joints, but every set of joints will have the same 
number (i.e., cardinality) of joints. It is worth mentioning 
at this point that a method of analyzing an infinite net- 
work based upon the selected paths and joints has been 
devised for determining all the other currents in the net- 
work once the joint currents have been assumed [48]. 
These ideas may (indeed, should) strike you as being 

nebulous. Nonetheless, they do have precise versions and 

I I 8 I I 

Fig. 9. A maximal set or non-touching one-ended.paths is indicated for 
this iofiitc square grid. The branches Jk compnse an appropnate set 
of joints. 

rigorous proofs, which however are beyond the scope of 
this paper. Our brief description along with the following 
examples should give you an intuitive appreciation of the 
key concept. 

For instance, what is the maximum number of non- 
touching one-ended paths that can be drawn in the ladder 
network of Fig. 8? The answer is four. One possible choice 
of the four paths, which together contain all the nodes, is 
indicated by the thick lines. Then, J1, Jz, and J3 comprise 
one of the many possible sets of joints satisfying condi- 
tions (i) and (2). On the other hand, the three branches 
incident at any one node (that is, three branches that form 
a “T”) would fail to satisfy those conditions, for there is 
no way they could connect together four nontouching 
one-ended paths-nor would Kirchhoffs current law be 
satisfied in general at their central node if their currents 
were chosen arbitrarily. Note also that the number of 
joints for this network must be exactly three under condi- 
tions (i) and (U). 

As another example, consider the infinite square grid of 
Fig. 9. How many disjoint one-ended paths can be traced 
in it? An infinity of them is now possible, as is shown by 
the thick lines. Moreover, a complicated argument, which 
we skip, shows that this set of paths is maximal. Finally, 
the branches labeled Jk comprise a possible set of joints. 
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c --- 1 

Our method works even when infinite nodes are present. 
Those nodes behave as infinite paths of short circuits to 
which sources at infinhty can be connected. A simple 
example of this is provided by Fig. S(a), which can be 
redrawn as in Fa. 10 by replacing nodes a and b by 
oneended paths of short circuits represented by the hori- 
zontal branches of Fig. 10. Upon choosing 1 arbitrarily as 
the single joint current, we can then determine the currents 
i,, i,, i, * - - . In this case, Kkchhoff s current law is satis 
fied at every (now f i t e )  node. Moreover, the choice of i 
indirectly specifies a source at infinity. This is one way of 
resolving the paradox regarding Fig. S(a). 

Have I piqued your curiosity? If someday you wish to 
see where these ideas lead to in mathematical circuit 
theory, read I W [ ~ I ,  and 1491. 

IX. THE ROAD NOT TAKEN 
Unlike Robert Frost’s traveler, we can easily return to 

where the two roads diverged and set out upon the one not 
as yet taken. So, let’s do so, for that will prove to be the 
more rewarding journey. 

Our aim now is to seek other requirements upon the 
infinite electrical network in addition to Ohm’s law and 
Kircbhoffs laws that will eliminate all but one of the 
possible vdtage-current regimes. A conspicuous require- 
ment is finiteness for the total dissipated power. This 
works for some networks but not for all. The network in 
Fig. 4(a) with a l-A current source ~onnected to its input 
terminals has at least two finitc-power regimes, one for an 
open circuit at infinity and another for a short circuit at 
infinity. Actually, it has an infity of finite-power regimes, 
for any finite-power source can be connected out at infin- 
ity. 

Thus it appears that a unique voltage-current regime 
might be established if two additional conditions are im- 
posed, namely, finite total power dissipation and open 
circuits everywhere at infiity. Flanders [2] showed that 
this is truly so. He imposed the fininite-power condition by 
dowing only a fi i te number of finite sources within the 
network, and he guaranteed the open-circuits-at-infinity 
condition by having the allowed current flows be the limits 
of current flows in an expanding sequence of finite subnet- 
works. He also assumed that there are no infiite nodes. 
More general theories, which relax these. wnditions, now 
exist [41], [&I, [57]. Our aim in this section is to describe 
some of the key ideas in an intuitive fashion once again. 

i v i  - 
i i  

- 0  

e i  ‘I 
Fig. 11. Tbe a$sumed Ihewnia’s equivalent tom of every branch for 

the tba” io Section IX. 

Given an infinite e1ectria.l network, number its branches 
with the index 1 = 1,2,3, * - * . Assume that every branch 
appears in its Thevenin’s equivalent form shown in Fig. 11. 
To insure that no more than a f i t e  amount of power is 
dissipated in all the resistors, 5, we require that the branch 
currents i j  satisfy 

Cijy/ <bo. (9 .I> 

Throughout this section, C will denote a summation over 
all the indices j .  With regard to the voltage sources, we 
require that 

Ce,2/r, < 00. (9.2) 

It can be shown that the total power delivered by all the 
sources is never greater than &:/.it and so (9.2) insures 
that that power is finite as well. 

Finally, we wish to allow current regimes that flow out 
to infinity, pass through connections there, and then flow 
back into the network. However, we do not want the 
connections at infinity to be infinite-valued sources; this 
would permit the many degrees of freedom discussed in 
the preceding section and would in fact violate (9.1). 
The idea is to construct the sought-for current regime 

out of certain basic current flows; this is analogous to 
constructing a current flow in a finite network as a sum of 
fundamental mesh currents. One kind of basic current is a 
single flow around a finite loop; we will call it a loop 
current. Another kind is one that flows around an extended 
loop, that is, out along a one-ended path to infinity, 
through a short circuit at infinity, and then back along 
another one-ended path to the starting point; this will be 
called an extended-loop current. For example, a flow 
through J, and the two one-ended paths on the right in 
Fig. 8 would be an extended-loop current. Whenever an 
extended-loop current is allowed in the construction of a 
solution, it is tautly being assumed that a short circuit at 
infinity connects the two one-ended paths in the extended 
loop. (Actually, finite sources at infinity could be allowed 
but this requires a more complicated construction (571.) 
Furthermore, one more condition must be imposed in 
order to satisfy (9.1): The sum of the resistances in the 
extended loop must be finite; if this is not so, the come 
spondmg extended-loop current wil l  not be allowed as a 
basic current. 

In short, the basic currents are the loop currents for all 
the f i t e  loops and the extended-loop currents for some 
selected extended loops. Upon adding a finite number of 
such basic currents, we obtain a current regime in the 
infinite network. The set of all current regimes that are 
constructed in th is  way as finite superpositions of basic 
currents will be denoted by KO. 

Repduced Mith pemi88ion of cowright wner. Further reproduction prohibited. 
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Finally, we can think of a current regime that is not in 
KO, but whose power dissipations in the resistors 9 are 
arbitrarily close to those of some member of KO. By 
"arbitrarily close" we mean that, given any E > 0 and the 
current regime ( i l ,  i,, i,, - - .  ) not in KO, we can always 
find a current regime ( i i ,  i$, ij, - * ) in KO such that 
T(i - i ')2r < c. Upon appending to KO all such current 
reDmes, we obtain a larger set K. called the completion of 
KO. All this is analogous to thinking of an irrational 
number as being arbitrarily close to a rational number and 
to the completion of the set of rational numbers to obtain 
the real line. 

l I j  

Here is what we have been preparing for. 

Theorem: Under the condition (9.2), there is one and 
only one member (i,, i,, i,, - . . ) of K such that 

C ( e , - r j i j ) x , = O  (9.3) 
for every member (xl, x2, xj, - - ) of K. 

Although this thwrem is brief, quite a lot is being said. 
For one thing, (9.3) is a generalization of Tellegen's theo- 
rem for finite networks. From it we get Kirchhoff s voltage 
law around every finite loop and the selected extended 
loops. Moreover, since the current regime ( i l ,  i,, i,, . - ) is 
a member of K, it follows from the way K was constructed 
that Kirchhoff's current law is satisfied not only at all the 
finite nodes but also at those infinite nodes whose incident 
conductances have a finite sum. Another consequence of 
the theorem is that Bjr, < Ze,'r,-', a bound alluded to 
previously. Still another one is the reciprocity theorem for 
infinite networks. All these results are easily derived from 
the theorem. 
We could go on describing other results concerning 

finite-power regimes of infinite networks, but we have at 
this point introduced the general approach and the flavor 
of the subject Let us therefore end this tutorial with a 
brief literature survey. 

X. A PARADE OF PAPERS 
"his short survey is restricted to investigations of finite- 

power regimes in infinite resistive networks, for they com- 
prise the bulk of the research on infinite electrical net- 
works (if we choose to ignore the massive literature on 
waves in infinite electromagnetic lumped transmission lines 
and lattices). Most of the works in this area tacitly assume 
a unique voltagocurrent regime and do not explicitly state 
what assumptions are being imposed to achieve it. Finite 
power dissipation and open circuits at infinity are the 
usual unstated conditions. 

Our literature citations are not all-inclusive, nor, on the 
other hand, are they just a cursory selection of some 
typical papers. They may however Serve as a guide to 
various aspects of infinite-electrical-network theory. More- 
over, the bibliographies of the works cited herein provide 
references to prior papers. Also, the reader can find papers 
appearing later on by searching the Science Citation Index 
under our references. Probably all significant works on 
infinite resistive networks can be traced in this fashion. 

The survey paper [45l, which was written over a dozen 
years ago, contains 41 references. 

Infinite resistive ladder networks can be viewed as dis- 
cretizations of Laplace's equation in all of one-dimensional 
space. The same discretization in all of n-dimensional 
space leads to infinite n-dimensional resistive grids, Quite 
a lot has been determined about their electrical behavior; 

[101, WI, 1161-1191, [221, t241, P I ,  1281, (341, W], [401, 
[52], [62]. Infinite cylindrical and spherical grids are dis- 
cussed in [58], 1681, 1631. A few results on infinite hexago- 
nal grids appear in [24], and [40]. If a ground node is 
introduced and each node of the grid is connected to it 
through a rqistive branch, a grounded grid is the result; 
some recent works on infinite grounded grids appear in 

In 1971 Flanders [21] produced the first rigorous analy- 
sis of infinite resistive networks whose graphs need not 
have regular patterns. However, he did assume only a 
finite number of sources and only finite nodes. These 
restrictions were removed in [41]. Other extensions of the 
thwry soon followed. Infinite networks whose branch re- 
sistances are positive operators, rather than scalars, ap- 
peared first for infinite ladder networks [42] and then for 
arbitrary networks [43]. The idea of short circuits at infin- 
ity was introduced in [44l, and a theory for finite sources 
at infinity has been established quite recently [57]. 

Actually, not just infinite but also finite networks whose 
elements are operators on infinite-dimensional spaces have 
significance for infinite network theory because the opera- 
tors may represent infinite subnetworks of scalar elements. 
There is a substantial literature on operator networks, a 
sampling of which is [1]-[9], [Ill, [ZO], [26], [27], [29], [31], 

A powerful alternative approach to infinite electrical 
networks was devised by Dolezal. Most of the results of his 
many papers on this subject appear in his two books [13], 
[14]. In Dolezal's approach the graph of the infinite net- 
work is represented by an incidence matrix, which, since 
the network is infinite, is in fact a Hilbert-space operator. 
This allows him to introduce operator-theoretic tech- 
niques. In contrast to all of the above papers, which 
discuss linear networks, his theory encompasses networks 
whose elements are nonlinear and even multivalued opera- 
tors. Since graph-theoretic techniques are abandoned in 
favor of operator methods, his results are often difficult to 
visualize. Moreover, to understand them, one must climb 
steeply through functional analysis, but, be assured, there's 
gold in the Dolezal Hills. 

Nonlinearities are also discussed in the more restricted 
context of infinite cascades of three-terminal and two-port 
networks [53]-[55]. Conditions are established under which 
those cascades have unique driving-point immittances, and 
the constructive proofs employed provide a means of 
computing those immittances. (The paper [49], which 
also encompasses nonlinearities, deals with infinite-power 
regimes in general.) 

As was indicated in Section 111, the theory of infinite 
grids has an important practical application to the exterior 

[501,[511, [561. 

[421, WI, ~ 7 1 ,  [501, [511, PI, ~ 1 .  
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problem for various partial differential equations. When 
the domain of the equation is of infinite extent, a finite- 
difference approximation often leads to an infinite-electri- 
cal-network representation. The customary procedure is to 
truncate the infinite domain and to introduce artificial 
boundary conditions along a finite boundary. This in 
effect replaces the infinite network by a finite one and 
produces an error of truncation. However, if a solution to 
the infinite network can be computed. there is no need to 
truncate. Such is the case for certain infinite grids. As a 
result, new computational methods have been devised for 
certain exterior problems, which require less computation 
times and smaller memory storages and are of value in 
computer-aided simulation and design 1361, [56], [59]-[63]. 

Finally, we should point out that infinite electrical net- 
works arise surprisingly enough in probability theory, more 
specifically, in the theory of random walks on infinite 
graphs. A tutorial exposition of the subject is given in [15], 
and a more advanced treatment is provided in [33]. 
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